WorldWideScience

Sample records for cat retinal ganglion

  1. Recovery of cat retinal ganglion cell sensitivity following pigment bleaching.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C

    1979-01-01

    1. The threshold illuminance for small spot stimulation of on-centre cat retinal ganglion cells was plotted vs. time after exposure to adapting light sufficiently strong to bleach significant amounts of rhodopsin. 2. When the entire receptive field of an X- or Y-type ganglion cell is bleached by at most 40%, recovery of the cell's rod-system proceeds in two phases: an early relatively fast one during which the response appears transient, and a late, slower one during which responses become more sustained. Log threshold during the later phase is well fit by an exponential in time (tau = 11.5-38 min). 3. After bleaches of 90% of the underlying pigment, threshold is cone-determined for as long as 40 min. Rod threshold continues to decrease for at least 85 min after the bleach. 4. The rate of recovery is slower after strong than after weak bleaches; 10 and 90% bleaches yield time constants for the later phase of 11.5 and 38 min, respectively. This contrasts with an approximate time constant of 11 min for rhodopsin regeneration following any bleach. 5. The relationship between the initial elevation of log rod threshold extrapolated from the fitted exponential curves and the initial amount of pigment bleached is monotonic, but nonlinear. 6. After a bleaching exposure, the maintained discharge is initially very regular. The firing rate first rises, then falls to the pre-bleach level, with more extended time courses of change in firing rate after stronger exposures. The discharge rate is restored before threshold has recovered fully. 7. The change in the response vs. log stimulus relationship after bleaching is described as a shift of the curve to the right, paired with a decrease in slope of the linear segment of the curve. PMID:521963

  2. Spatial consequences of bleaching adaptation in cat retinal ganglion cells.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C

    1981-01-01

    1. Experiments were conducted to study the effects of localized bleaching on the centre responses of rod-driven cat retinal ganglion cells. 2. Stimulation as far as 2 degrees from the bleaching site yielded responses which were reduced nearly as much as those generated at the bleaching site. Bleaching in the receptive field middle reduced responsiveness at a site 1 degrees peripheral more than bleaching at that peripheral site itself. 3. The effectiveness of a bleach in reducing centre responsiveness is related to the sensitivity of the region in which the bleach is applied. 4. Response reduction after a 0.2 degree bleach followed the same temporal pattern for concentric test spots of from 0.2 to 1.8 degrees in diameter, implying a substantially uniform spread of adaptation within these bounds. 5. A linear trade-off between fraction of rhodopsin and area bleached over a range of 8:1 yields the same pattern of response reduction, implying that the non-linear nature of bleaching adaptation is a property of the adaptation pool rather than independent photoreceptors. PMID:7320894

  3. Image quality of the cat eye measured during retinal ganglion cell experiments.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C; Pinto, L H

    1972-01-01

    1. The modulation transfer function (MTF) of the dioptrics of fifteen cat eyes was determined. The aerial image, formed by the eye of a standard object (a 0.5-1.0 degrees annulus), was photographed. The transmission of the film negative was measured with a scanning microdensitometer to yield the light distribution within the aerial image. Correcting for the double passage, this experimentally determined light distribution and the known object light distribution were used to obtain the MTF, applying Fourier methods. Each MTF was used to calculate the light distribution within the retinal image of stimuli of various geometry used in experiments on retinal ganglion cells in the same eye.2. When the eye was equipped with an artificial pupil of the same size as that used in the neurophysiological experiments (4.0-4.8 mm diam.) the MTF had fallen to 0.5 at 2.43 c/deg. When the pupil was removed the MTF had fallen to 0.5 at a much lower spatial frequency (1.0 c/deg). This shows that even when one uses an artificial pupil too large to provide optimal image quality there is a vast improvement over using no pupil.3. These image quality measurements were prompted by the need to know the actual stimulus image in experiments on the functional organization of the receptive field, a need exemplified in this paper by a few specific physiological results. The full neurophysiological results appear in the next two papers.

  4. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  5. Topography of ganglion cell production in the cat's retina

    International Nuclear Information System (INIS)

    Walsh, C.; Polley, E.H.

    1985-01-01

    The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with [ 3 H]thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development

  6. Melanopsin retinal ganglion cell loss in Alzheimer's disease

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Koronyo, Yosef

    2015-01-01

    OBJECTIVE: Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer's disease (AD). We investigated mRGCs in AD, hypothesizing their contribution to circadian dysfunction. METHODS: We assessed retinal nerve...

  7. Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties

    Directory of Open Access Journals (Sweden)

    Romain Bachy

    2014-12-01

    Full Text Available We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.

  8. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  9. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  10. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  11. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    OpenAIRE

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.; Chintala, Shravan K.

    2011-01-01

    The functional effect of curcumin, a free radical scavenger and an herbal medicine from Indian yellow curry spice, Curcuma longa, on protease-mediated retinal ganglion cell death was investigated. These results show, for the first time, that curcumin indeed prevents the protease-mediated death of RGCs, both in vitro and in vivo.

  12. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  13. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  14. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  15. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  16. Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

    Directory of Open Access Journals (Sweden)

    Kenneth S. Shindler

    2009-11-01

    Full Text Available A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

  17. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  18. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...... of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC....

  19. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  20. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  1. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Science.gov (United States)

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  2. Real-Time Imaging of Retinal Ganglion Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Timothy E. Yap

    2018-06-01

    Full Text Available Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.

  3. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    Science.gov (United States)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  4. Melanopsin-expressing retinal ganglion cells: implications for human diseases

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Hannibal, Jens

    2011-01-01

    In the last decade, there was the seminal discovery of melanopsin-expressing retinal ganglion cells (mRGCs) as a new class of photoreceptors that subserve the photoentrainment of circadian rhythms and other non-image forming functions of the eye. Since then, there has been a growing research...... interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i...

  5. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  6. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  7. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  8. Caspases in retinal ganglion cell death and axon regeneration

    Science.gov (United States)

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  9. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  10. The molecular basis of retinal ganglion cell death in glaucoma.

    Science.gov (United States)

    Almasieh, Mohammadali; Wilson, Ariel M; Morquette, Barbara; Cueva Vargas, Jorge Luis; Di Polo, Adriana

    2012-03-01

    Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection. Copyright © 2011. Published by Elsevier Ltd.

  11. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    Science.gov (United States)

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  12. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    La Morgia, C; Ross-Cisneros, F.N.; Sadun, A.A.

    2010-01-01

    Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal...... ganglion cells containing the photopigment melanopsin. These cells give origin to the retinohypothalamic tract and support the non-image-forming visual functions of the eye, which include the photoentrainment of circadian rhythms, light-induced suppression of melatonin secretion and pupillary light reflex...... subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case...

  13. NUTRITION AND VASCULAR SUPPLY OF RETINAL GANGLION CELLS DURING HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Paul eRutkowski

    2016-04-01

    Full Text Available Purpose. To review the roles of the different vascular beds nourishing the inner retina (retinal ganglion cells during normal development of the human eye and using our own tissue specimens to support our conclusions.Methods. An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated.Results. The first critical interaction between vascular bed and retinal ganglion cell (RGC formation occurs in the 6th-8th month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first three years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail.Conclusion. This delicately balanced situation of retinal ganglion cell nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.

  14. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  15. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always

    DEFF Research Database (Denmark)

    Georg, Birgitte; Ghelli, Anna; Giordano, Carla

    2017-01-01

    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties...

  16. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we

  17. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Patients With Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Obara, Elisabeth Anne; Hannibal, Jens; Heegaard, Steffen

    2017-01-01

    Purpose: Photo-entrainment of the circadian clock is mediated by melanopsin-expressing retinal ganglion cells (mRGCs) located in the retina. Patients suffering from diabetic retinopathy (DR) show impairment of light regulated circadian activity such as sleep disorders, altered blood pressure...

  18. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  19. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  20. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  1. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  2. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  3. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    Science.gov (United States)

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  4. Density, proportion, and dendritic coverage of retinal ganglion cells of the common marmoset (Callithrix jacchus jacchus

    Directory of Open Access Journals (Sweden)

    F.L. Gomes

    2005-06-01

    Full Text Available We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm² at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm² at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.

  5. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  6. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  7. Structural analysis of retinal photoreceptor ellipsoid zone and postreceptor retinal layer associated with visual acuity in patients with retinitis pigmentosa by ganglion cell analysis combined with OCT imaging

    Science.gov (United States)

    Liu, Guodong; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang

    2016-01-01

    Abstract The aim of this study was to examine changes in photoreceptor ellipsoid zone (EZ) and postreceptor retinal layer in retinitis pigmentosa (RP) patients by ganglion cell analysis (GCA) combined with optical coherence tomography (OCT) imaging to evaluate the structure–function relationships between retinal layer changes and best corrected visual acuity (BCVA). Sixty-eight eyes of 35 patients with RP and 65 eyes of 35 normal controls were analyzed in the study. The average length of EZ was 911.1 ± 208.8 μm in RP patients, which was shortened with the progression of the disease on the OCT images. The average ganglion cell–inner plexiform layer thickness (GCIPLT) was 54.7 ± 18.9 μm in RP patients, while in normal controls it was 85.6 ± 6.8 μm. The GCIPLT in all quarters became significantly thinner along with outer retinal thinning. There was a significantly positive correlation between BCVA and EZ (r = −0.7622, P retinal layer changes from a new perspective in RP patients, which suggests that EZ and GCIPLT obtained by GCA combined with OCT imaging are the direct and valid indicators to diagnosis and predict the pathological process of RP. PMID:28033301

  8. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2007-03-01

    Full Text Available Abstract Background Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease. To determine if genetic background influences susceptibility to optic nerve damage, leading to ganglion cell death, we performed optic nerve crush on 15 different inbred lines of mice and measured ganglion cell loss. Resistant and susceptible strains were used in a reciprocal breeding strategy to examine the inheritance pattern of the resistance phenotype. Because earlier studies had implicated Bax as a susceptibility allele for ganglion cell death in the chronic neurodegenerative disease glaucoma, we conducted allelic segregation analysis and mRNA quantification to assess this gene as a candidate for the cell death phenotype. Results Inbred lines showed varying levels of susceptibility to optic nerve crush. DBA/2J mice were most resistant and BALB/cByJ mice were most susceptible. F1 mice from these lines inherited the DBA/2J phenotype, while N2 backcross mice exhibited the BALB/cByJ phenotype. F2 mice exhibited an intermediate phenotype. A Wright Formula calculation suggested as few as 2 dominant loci were linked to the resistance phenotype, which was corroborated by a Punnett Square analysis of the distribution of the mean phenotype in each cross. The levels of latent Bax mRNA were the same in both lines, and Bax alleles did not segregate with phenotype in N2 and F2 mice. Conclusion Inbred mice show different levels of resistance to optic nerve crush. The resistance phenotype is heritable in a dominant fashion involving

  9. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  10. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  11. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation

    Directory of Open Access Journals (Sweden)

    Yong Sook eGoo

    2016-01-01

    Full Text Available Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD and retinitis pigmentosa (RP, but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice, where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs. Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  12. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    International Nuclear Information System (INIS)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes; Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire; Giestal-de-Araujo, Elizabeth

    2016-01-01

    Ouabain is a steroid hormone that binds to the enzyme Na + , K + – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  13. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    Energy Technology Data Exchange (ETDEWEB)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil); Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire [Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Fisiologia e Farmacodinâmica, Av., no 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ (Brazil); Giestal-de-Araujo, Elizabeth, E-mail: egiestal@vm.uff.br [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2016-09-09

    Ouabain is a steroid hormone that binds to the enzyme Na{sup +}, K{sup +} – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  14. Investigation of retinal ganglion cells and axons of normal rats using fluorogold retrograde labeling

    International Nuclear Information System (INIS)

    Yin Xiaolei; Ye Jian; Chen Chunlin

    2006-01-01

    To investigate the retinal ganglion cells (RGCs) by means of fluorogold retrograde labeling, RGCs were labeled by injecting the fluorogold bilaterally into the superficial superior colliculus and lateral genicutate nucleus in six adult SD rats. One and two weeks (3 rats in each group) after injecting the fluorogold, RGCs FG-labeled were observed and the number of them were counted. The results showed that after a week mean density of fluorogold-labeled RGCs was 2210 ± 128/mm 2 , and it was 2164 ± 117/mm 2 after two weeks. Our conclusion is fluorogold retrograde labeling could be very useful in the research of RGCs. (authors)

  15. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Lemeng Wu; Dongmei Wang; Ying Li; Hongliang Dou; Mark OMTso; Zhizhong Ma

    2013-01-01

    Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in-creased, which was associated with retinal ganglion celldeath in diabetic retinas. The C/ERB ho-mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in-dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu-ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.

  16. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration

    Directory of Open Access Journals (Sweden)

    Valeria Colafrancesco

    2011-01-01

    Full Text Available The aim of this study was to investigate the effect of nerve growth factor (NGF administration on retinal ganglion cells (RGCs in experimentally induced glaucoma (GL and diabetic retinopathy (DR. GL was induced in adult rats by injection of hypertonic saline into the episcleral vein of the eye and diabetes (DT was induced by administration of streptozoticin. Control and experimental rats were treated daily with either ocular application of NGF or vehicle solution. We found that both animal models present a progressive degeneration of RGCs and changing NGF and VEGF levels in the retina and optic nerve. We then proved that NGF eye drop administration exerts a protective effect on these models of retinal degeneration. In brief, our findings indicate that NGF can play a protective role against RGC degeneration occurring in GL and DR and suggest that ocular NGF administration might be an effective pharmacological approach.

  17. Visual Acuity and Its Dependence Upon Receptor Density and Retinal Ganglion Cell Receptive Field Overlap.

    Science.gov (United States)

    1981-11-01

    organization of retinal receptive fields in monkeys and cats has been used to model the information flow to the retina in relation to the psychophysical...EXPERIMENTAL PROCEDURE Types of Animals Used Three types of monkeys were used in the present study, rhesus (Macaca mulatta), the Himalayan Macaque (Macaca...during the course of the program, although one died of Shigella infection. Attempts were made to trade the animals with local users in order to obtain

  18. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    Science.gov (United States)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  19. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  20. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation.

    Science.gov (United States)

    Gao, Zhiguang; Mao, Chai-An; Pan, Ping; Mu, Xiuqian; Klein, William H

    2014-11-01

    The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis. © 2014 Wiley Periodicals, Inc.

  1. The ciliary margin zone of the mammalian retina generates retinal ganglion cells

    Science.gov (United States)

    Marcucci, Florencia; Murcia-Belmonte, Veronica; Coca, Yaiza; Ferreiro-Galve, Susana; Wang, Qing; Kuwajima, Takaaki; Khalid, Sania; Ross, M. Elizabeth; Herrera, Eloisa; Mason, Carol

    2016-01-01

    Summary The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live-imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. As Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2−/− mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity. PMID:28009286

  2. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  3. Synchronized Firings in Retinal Ganglion Cells in Response to Natural Stimulation

    International Nuclear Information System (INIS)

    Zhang Ying-Ying; Xiao Lei; Liu Wen-Zhong; Gong Hai-Qing; Liang Pei-Ji

    2011-01-01

    The response of synchronously firing groups of population retinal ganglion cells (RGCs) to natural movies (NMs) and pseudo-random white-noise checker-board flickering (CB, as control) are investigated using an information-theoretic algorithm. The main results are: (1) the population RGCs tend to fire in synchrony far more frequently than expected by chance during both NM and CB stimulation; (2) more synchronous groups could be formed and each group contains more neurons under NM than CB stimulation; (3) the individual neurons also participate in more groups and have more distinct partners in NM than CB stimulation. All these results suggest that the synchronized firings in RGCs are more extensive and diverse, which may account for more effective information processing in representing the natural visual environment. (cross-disciplinary physics and related areas of science and technology)

  4. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always.

    Science.gov (United States)

    Georg, Birgitte; Ghelli, Anna; Giordano, Carla; Ross-Cisneros, Fred N; Sadun, Alfredo A; Carelli, Valerio; Hannibal, Jens; La Morgia, Chiara

    2017-09-01

    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    Science.gov (United States)

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  6. Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity.

    Science.gov (United States)

    Pushchin, Igor I; Karetin, Yuriy A

    2009-10-20

    The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.

  7. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  8. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model.

    Directory of Open Access Journals (Sweden)

    Shuifeng Deng

    Full Text Available Primary open angle glaucoma (POAG is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs. In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi and late or degraded autophagic vacuoles (AVd accumulated in the ganglion cell layer (GCL and in the inner plexiform layer (IPL as determined by transmission electron microscopy (TEM analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1 and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.

  9. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    Science.gov (United States)

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.

  11. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma

    Science.gov (United States)

    Akaiwa, Kei; Namekata, Kazuhiko; Azuchi, Yuriko; Guo, Xiaoli; Kimura, Atsuko; Harada, Chikako; Mitamura, Yoshinori; Harada, Takayuki

    2017-01-01

    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP. PMID:28703795

  12. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway.

    Science.gov (United States)

    Wan, Peixing; Su, Wenru; Zhang, Yingying; Li, Zhidong; Deng, Caibin; Zhuo, Yehong

    2017-09-15

    Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro TMZ treatment also reduced the production of inflammatory cytokines in vitro Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma. © 2017 The Author(s).

  13. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    Science.gov (United States)

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head. PMID:26505191

  14. Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

    Science.gov (United States)

    Osborne, Andrew; Aldarwesh, Amal; Rhodes, Jeremy D.; Broadway, David C.; Everitt, Claire; Sanderson, Julie

    2015-01-01

    Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina. PMID:25635827

  15. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.S.; Lyerly, D.P. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  16. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Padilla, S.S.; Lyerly, D.P.

    1989-01-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  17. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off

  18. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury.

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    Full Text Available Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2, is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs. We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO. mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.

  19. Virally delivered, constitutively active NFκB improves survival of injured retinal ganglion cells.

    Science.gov (United States)

    Dvoriantchikova, Galina; Pappas, Steve; Luo, Xueting; Ribeiro, Marcio; Danek, Dagmara; Pelaez, Daniel; Park, Kevin K; Ivanov, Dmitry

    2016-12-01

    As axon damage and retinal ganglion cell (RGC) loss lead to blindness, therapies that increase RGC survival and axon regrowth have direct clinical relevance. Given that NFκB signaling is critical for neuronal survival and may regulate neurite growth, we investigated the therapeutic potential of NFκB signaling in RGC survival and axon regeneration. Although both NFκB subunits (p65 and p50) are present in RGCs, p65 exists in an inactive (unphosphorylated) state when RGCs are subjected to neurotoxic conditions. In this study, we used a phosphomimetic approach to generate DNA coding for an activated (phosphorylated) p65 (p65mut), then employed an adeno-associated virus serotype 2 (AAV2) to deliver the DNA into RGCs. We tested whether constitutive p65mut expression prevents death and facilitates neurite outgrowth in RGCs subjected to transient retinal ischemia or optic nerve crush (ONC), two models of neurotoxicity. Our data indicate that RGCs treated with AAV2-p65mut displayed a significant increase in survival compared to controls in ONC model (77 ± 7% vs. 25 ± 3%, P-value = 0.0001). We also found protective effect of modified p65 in RGCs of ischemic retinas (55 ± 12% vs. 35 ± 6%), but not to a statistically significant degree (P-value = 0.14). We did not detect a difference in axon regeneration between experimental and control animals after ONC. These findings suggest that increased NFκB signaling in RGCs attenuates retinal damage in animal models of neurodegeneration, but insignificantly impacts axon regeneration. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Neuroprotective effect of He-Ying-Qing-Re formula on retinal ganglion cell in diabetic retinopathy.

    Science.gov (United States)

    Zhang, Cheng; Xu, Yu; Tan, Hor-Yue; Li, Sha; Wang, Ning; Zhang, Yinjian; Feng, Yibin

    2018-03-25

    He-Ying-Qing-Re Formula (HF) was empirically modified from Si-Miao-Yong-An Decoction (SD), which was recorded in the literature of Divine Doctor's Secret Transmission, and has been utilized for centuries to treat vasculopathy through clearing heat and accelerating bloodstream. HF has been used as an effective holistic treatment of diabetic retinopathy (DR) for decades and experimentally reported to ameliorate retinal condition in diabetic mice. Our study aims to investigate the effect of HF in preventing sustained hyperglycemia and hyperlipidemia-associated retinal ganglion cell (RGC) cell death and its possible mechanism. Chromatographic fingerprint of HF was obtained upon the UPLC-based analytic system; Diabetic retinopathy was established in streptozotocin (STZ) injection-induced hyperglycemic mice; Alterations of retinal structure was assayed by H&E staining. Expression of PSD-95 and CHOP in retinae was assessed by immunofluorescence; RGC cell line (mRGC) was used for in vitro study. Cell death was analyzed by flow cytometry; Intracellular reactive oxygen species (ROS) was measured by 2',7'-dichlorofluorescin diacetate (DCFDA); Apoptosis-related proteins and signaling were monitored with immunoblotting and colorimetric assay. Chlorogenic acid, ferulic acid, and rutin were identified in HF. HF attenuates the loss of RGCs, thinning of inner retinal layers in diabetic mice. Furthermore, expressions of Brn3a and PSD-95 were restored while CHOP level was downregulated upon HF treatment. In vitro study, HF alleviates H 2 O 2 -induced apoptosis of mRGCs and loss of postsynaptic protein via scavenging ROS and suppressing ATF4/CHOP-mediated endoplasmic reticulum stress and mitochondria-related pro-apoptotic factors, probably as cleaved-caspase-3, and phospho-p38 mitogen-activated protein kinase (MARK). Meanwhile, both pro-survival protein levels like Bcl-2/Bcl-xL and postsynaptic protein of PSD-95 were upregulated upon HF treatment. HF administration was a valid

  1. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    OpenAIRE

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes ...

  2. Coding properties of three intrinsically distinct retinal ganglion cells under periodic stimuli: a computational study

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-09-01

    Full Text Available As the sole output neurons in the retina, ganglion cells play significant roles in transforming visual information into spike trains, and then transmitting them to the higher visual centers. However, coding strategies that retinal ganglion cells (RGCs adopt to accomplish these processes are not completely clear yet. To clarify these issues, we investigate the coding properties of three types of RGCs (repetitive spiking, tonic firing, and phasic firing by two different measures (spike-rate and spike-latency. Model results show that for periodic stimuli, repetitive spiking RGC and tonic RGC exhibit similar spike-rate patterns. Their spike-rates decrease gradually with increased stimulus frequency, moreover, variation of stimulus amplitude would change the two RGCs’ spike-rate patterns. For phasic RGC, it activates strongly at medium levels of frequency when the stimulus amplitude is low. While if high stimulus amplitude is applied, phasic RGC switches to respond strongly at low frequencies. These results suggest that stimulus amplitude is a prominent factor in regulating RGCs in encoding periodic signals. Similar conclusions can be drawn when analyzes spike-latency patterns of the three RGCs. More importantly, the above phenomena can be accurately reproduced by Hodgkin’s three classes of neurons, indicating that RGCs can perform the typical three classes of firing dynamics, depending on the distinctions of ion channel densities. Consequently, model results from the three RGCs may be not specific, but can also applicable to neurons in other brain regions which exhibit part(s or all of the Hodgkin’s three excitabilities.

  3. Retinal Astrocytes and GABAergic Wide-Field Amacrine Cells Express PDGFRα: Connection to Retinal Ganglion Cell Neuroprotection by PDGF-AA.

    Science.gov (United States)

    Takahama, Shokichi; Adetunji, Modupe O; Zhao, Tantai; Chen, Shan; Li, Wei; Tomarev, Stanislav I

    2017-09-01

    Our previous experiments demonstrated that intravitreal injection of platelet-derived growth factor-AA (PDGF-AA) provides retinal ganglion cell (RGC) neuroprotection in a rodent model of glaucoma. Here we used PDGFRα-enhanced green fluorescent protein (EGFP) mice to identify retinal cells that may be essential for RGC protection by PDGF-AA. PDGFRα-EGFP mice expressing nuclear-targeted EGFP under the control of the PDGFRα promoter were used. Localization of PDGFRα in the neural retina was investigated by confocal imaging of EGFP fluorescence and immunofluorescent labeling with a panel of antibodies recognizing different retinal cell types. Primary cultures of mouse RGCs were produced by immunopanning. Neurobiotin injection of amacrine cells in a flat-mounted retina was used for the identification of EGFP-positive amacrine cells in the inner nuclear layer. In the mouse neural retina, PDGFRα was preferentially localized in the ganglion cell and inner nuclear layers. Immunostaining of the retina demonstrated that astrocytes in the ganglion cell layer and a subpopulation of amacrine cells in the inner nuclear layer express PDGFRα, whereas RGCs (in vivo or in vitro) did not. PDGFRα-positive amacrine cells are likely to be Type 45 gamma-aminobutyric acidergic (GABAergic) wide-field amacrine cells. These data indicate that the neuroprotective effect of PDGF-AA in a rodent model of glaucoma could be mediated by astrocytes and/or a subpopulation of amacrine cells. We suggest that after intravitreal injection of PDGF-AA, these cells secrete factors protecting RGCs.

  4. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    Science.gov (United States)

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  5. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma.

    Directory of Open Access Journals (Sweden)

    Harry A Quigley

    Full Text Available To determine if oral losartan treatment decreases the retinal ganglion cell (RGC death caused by experimental intraocular pressure (IOP elevation in mice.We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry.Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13, while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001. The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01. Both losartan and enalapril significantly lowered blood pressure (p< 0.001, but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9. Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007. Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP.The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at

  6. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available The direction of image motion is coded by direction-selective (DS ganglion cells in the retina. Particularly, the ON DS ganglion cells project their axons specifically to terminal nuclei of the accessory optic system (AOS responsible for optokinetic reflex (OKR. We recently generated a knock-in mouse in which SPIG1 (SPARC-related protein containing immunoglobulin domains 1-expressing cells are visualized with GFP, and found that retinal ganglion cells projecting to the medial terminal nucleus (MTN, the principal nucleus of the AOS, are comprised of SPIG1+ and SPIG1(- ganglion cells distributed in distinct mosaic patterns in the retina. Here we examined light responses of these two subtypes of MTN-projecting cells by targeted electrophysiological recordings. SPIG1+ and SPIG1(- ganglion cells respond preferentially to upward motion and downward motion, respectively, in the visual field. The direction selectivity of SPIG1+ ganglion cells develops normally in dark-reared mice. The MTN neurons are activated by optokinetic stimuli only of the vertical motion as shown by Fos expression analysis. Combination of genetic labeling and conventional retrograde labeling revealed that axons of SPIG1+ and SPIG1(- ganglion cells project to the MTN via different pathways. The axon terminals of the two subtypes are organized into discrete clusters in the MTN. These results suggest that information about upward and downward image motion transmitted by distinct ON DS cells is separately processed in the MTN, if not independently. Our findings provide insights into the neural mechanisms of OKR, how information about the direction of image motion is deciphered by the AOS.

  7. The role of NgR-Rhoa-Rock signal pathway in retinal ganglion cell apoptosis of early diabetic rats

    Directory of Open Access Journals (Sweden)

    Yun-Jie Fu

    2014-09-01

    Full Text Available AIM: To study the function and mechanism of the NgR-Rhoa-Rock signal pathways which exists in the retinal ganglion cells apoptosis in diabetes mellitus(DMrats. METHODS: Some healthy SD rats were operated by means of single intraperitoneal injection of 1% streptozotocin based on the standard of 50mg/kg wight, after that the blood sugar value was greater than 16.7mmol/L as DM model, then randomly divided into 3 groups, each group was 10 rats. In addition to take 10 healthy SD rats as control group. Four groups of rats were bilaterally eyeball intravitreal injection in turn with NgR-siRNA virus 10μL(siRNA group, NgR-siRNA virus diluted 10μL(DM group, NgR-siRNA virus-negative-control solution 10μL(siRNA blank group, NgR-siRNA virus diluted 10μL(normal control group, and fed normally. During that time, some life indexes like blood glucose, body mass, etc. were measured and recorded. After 12wk, the expression of NgR and Rhoa, HE staining, and TUNNEL staining were detected by Western blot analysis. RESULTS: Western blot analysis: compared with normal control group, the expression of NgR and Rhoa in DM group and siRNA blank group increased significantly(PP>0.05; compared with DM group and siRNA blank group, the expression of those proteins significantly lowered in siRNA group. HE staining: compared with normal control group, some extent ganglion cells arranged disorder, irregular shape, spacing not consistent were all found in three groups of model rats; compared with DM group and siRNA blank group, there was some improvement in siRNA group of ganglion cells about the order and shape size. TUNEL staining: compared with normal control group, there were retinal ganglion cells apoptosis in all of three groups of model rats. Compared with DM group and siRNA blank group, the number of retinal ganglion cells apoptotic cells was less, and the shape of cells had improved significantly in siRNA group. CONCLUSION: In the DM phase, the expression of NgR and

  8. Interspike Interval Based Filtering of Directional Selective Retinal Ganglion Cells Spike Trains

    Directory of Open Access Journals (Sweden)

    Aurel Vasile Martiniuc

    2012-01-01

    Full Text Available The information regarding visual stimulus is encoded in spike trains at the output of retina by retinal ganglion cells (RGCs. Among these, the directional selective cells (DSRGC are signaling the direction of stimulus motion. DSRGCs' spike trains show accentuated periods of short interspike intervals (ISIs framed by periods of isolated spikes. Here we use two types of visual stimulus, white noise and drifting bars, and show that short ISI spikes of DSRGCs spike trains are more often correlated to their preferred stimulus feature (that is, the direction of stimulus motion and carry more information than longer ISI spikes. Firstly, our results show that correlation between stimulus and recorded neuronal response is best at short ISI spiking activity and decrease as ISI becomes larger. We then used grating bars stimulus and found that as ISI becomes shorter the directional selectivity is better and information rates are higher. Interestingly, for the less encountered type of DSRGC, known as ON-DSRGC, short ISI distribution and information rates revealed consistent differences when compared with the other directional selective cell type, the ON-OFF DSRGC. However, these findings suggest that ISI-based temporal filtering integrates a mechanism for visual information processing at the output of retina toward higher stages within early visual system.

  9. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing

    International Nuclear Information System (INIS)

    Lorber, Barbara; Martin, Keith R; Hsiao, Wen-Kai; Hutchings, Ian M

    2014-01-01

    We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine. (paper)

  10. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    Directory of Open Access Journals (Sweden)

    Keith P. Johnson

    2018-02-01

    Full Text Available The spike trains of retinal ganglion cells (RGCs are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC. PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic. PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN of the thalamus and likely contribute to visual perception.

  11. Stanniocalcin-1 protects retinal ganglion cells by inhibiting apoptosis and oxidative damage.

    Directory of Open Access Journals (Sweden)

    Sang Jin Kim

    Full Text Available Optic neuropathy including glaucoma is one of the leading causes of irreversible vision loss, and there are currently no effective therapies. The hallmark of pathophysiology of optic neuropathy is oxidative stress and apoptotic death of retinal ganglion cells (RGCs, a population of neurons in the central nervous system with their soma in the inner retina and axons in the optic nerve. We here tested that an anti-apoptotic protein stanniocalcin-1 (STC-1 can prevent loss of RGCs in the rat retina with optic nerve transection (ONT and in cultures of RGC-5 cells with CoCl2 injury. We found that intravitreal injection of STC-1 increased the number of RGCs in the retina at days 7 and 14 after ONT, and decreased apoptosis and oxidative damage. In cultures, treatment with STC-1 dose-dependently increased cell viability, and decreased apoptosis and levels of reactive oxygen species in RGC-5 cells that were exposed to CoCl2. The expression of HIF-1α that was up-regulated by injury was significantly suppressed in the retina and in RGC-5 cells by STC-1 treatment. The results suggested that intravitreal injection of STC-1 might be a useful therapy for optic nerve diseases in which RGCs undergo apoptosis through oxidative stress.

  12. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mehmet Demir

    2014-01-01

    Full Text Available Aim: The aim of the following study is to evaluate the retinal nerve fiber layer (RNFL and ganglion cell complex (GCC thickness in patients with type 2 diabetes mellitus (DM. Materials and Methods: Average, inferior, and superior values of RNFL and GCC thickness were measured in 123 patients using spectral domain optical coherence tomography. The values of participants with DM were compared to controls. Diabetic patients were collected in Groups 1, 2 and 3. Group 1 = 33 participants who had no diabetic retinopathy (DR; Group 2 = 30 participants who had mild nonproliferative DR and Group 3 = 30 participants who had moderate non-proliferative DR. The 30 healthy participants collected in Group 4. Analysis of variance test and a multiple linear regression analysis were used for statistical analysis. Results: The values of RNFL and GCC in the type 2 diabetes were thinner than controls, but this difference was not statistically significant. Conclusions: This study showed that there is a nonsignificant loss of RNFL and GCC in patients with type 2 diabetes.

  13. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Severely Staged Glaucoma Patients

    DEFF Research Database (Denmark)

    Obara, Elisabeth Anne; Hannibal, Jens; Heegaard, Steffen

    2016-01-01

    Purpose: Multiple studies have shown overwhelming evidence supporting the impairment of melanopsin function due to glaucoma. However, few studies have been carried out in humans analyzing the histology of melanopsin-expressing retinal ganglion cells (mRGCs) in retinas with glaucoma. The aim...... of this study was to analyze the pattern of expression of mRGCs relative to RGCs in the normal retina and retinas harboring varying stages of glaucoma. Methods: Paraffin-embedded human donor eyes with glaucoma (n = 11) and age-matched controls (n = 10) were obtained from Department of Pathology at Rigshospital...... difference was observed in mRGC expression in the normal retinas and mild-staged retinas with glaucoma; the densities of mRGCs were 3.08 ± 0.47 and 3.00 ± 0.13 cell counts/mm2, respectively. However, the severely staged retinas with glaucoma showed a significant loss in mRGCs density, 1.09 ± 0.35 cell counts...

  14. Isolation of Primary Murine Retinal Ganglion Cells (RGCs) by Flow Cytometry.

    Science.gov (United States)

    Chintalapudi, Sumana R; Patel, Need N; Goldsmith, Zachary K; Djenderedjian, Levon; Wang, Xiang Di; Marion, Tony N; Jablonski, Monica M; Morales-Tirado, Vanessa M

    2017-07-05

    Neurodegenerative diseases often have a devastating impact on those affected. Retinal ganglion cell (RGC) loss is implicated in an array of diseases, including diabetic retinopathy and glaucoma, in addition to normal aging. Despite their importance, RGCs have been extremely difficult to study until now due in part to the fact that they comprise only a small percentage of the wide variety of cells in the retina. In addition, current isolation methods use intracellular markers to identify RGCs, which produce non-viable cells. These techniques also involve lengthy isolation protocols, so there is a lack of practical, standardized, and dependable methods to obtain and isolate RGCs. This work describes an efficient, comprehensive, and reliable method to isolate primary RGCs from mice retinae using a protocol based on both positive and negative selection criteria. The presented methods allow for the future study of RGCs, with the goal of better understanding the major decline in visual acuity that results from the loss of functional RGCs in neurodegenerative diseases.

  15. Study on the mechanism of retinal ganglion cell apoptosis in early stage of diabetic rats

    Directory of Open Access Journals (Sweden)

    Rui-Dong Gu

    2014-03-01

    Full Text Available AIM: To investigate the mechanism of retinal ganglion cell apoptosis in early stage of streptozotocin(STZ-induced diabetic rats. METHODS: Sixty SD rats were randomly divided into two groups: control group(CONand diabetes mellitus group(DM. Diabetic rat model was produced by intraperitoneal injection of 1% STZ in 30 adult male SD rats. At 4, 8, 12wk,the rats were killed and eyeballs were enucleated for the HE staining, TUNEL staining, transmission electron microscopy detection respectively, and laser confocal microscope detection was used to detect the calcium ion concentration.RESULTS:At 8wk RGCs decreased gradually and appeared disordered arrangement and got worse at 12wk in DM group. In DM group, mitochondrial swelling was detected at 4wk., and became more obvious, more in number at 8wk with reduction in some cells' volume and the number of organelles decreased. In DM group, few TUNEL positive RGCs were seen at 4wk, and became more and more at 8 and 12wk. The apoptosis index was significantly higher in DM group compared with CON group in different time points(PPPCONCLUSION: The study suggested that RGCs apoptosis occurs in early stage of diabetes, the mechanism might be associated with increased intracellular calcium ion concentration.

  16. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    Science.gov (United States)

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type

    Science.gov (United States)

    Im, Maesoon; Werginz, Paul; Fried, Shelley I.

    2018-06-01

    Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by

  18. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Yang F

    2015-11-01

    Full Text Available Fan Yang, Dongmei Wang, Lingling Wu, Ying Li Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China Purpose: To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs in a rat model of chronic glaucoma.Methods: Eighty Wistar rats were randomly divided into triptolide group (n=40 and normal saline (NS group (n=40. Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP, anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed.Results: Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05, with no statistical difference between the two groups (P>0.05. RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05. Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90 than the NS group (35.06±7.59 (P<0.05. TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01. The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia.Conclusion: Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. Keywords: glaucoma, triptolide

  19. DNA repair synthesis in rat retinal ganglion cells treated with chemical carcinogens or ultraviolet light in vitro, with special reference to aging and repair level

    International Nuclear Information System (INIS)

    Ishikawa, T.; Takayama, S.; Kitagawa, T.

    1978-01-01

    A system in which the retinal tissues of noninbred Wistar rats were used in combination with autoradiography was developed for measurement of DNA repair synthesis in ganglion cells of the central nervous system. Retinal tissues in short-term organ culture were treated with various carcinogens plus tritiated thymidine ([methyl -3 H]dThd) or were irradiated with uv light and then treated with [methyl -3 H]dThd. Preliminary study with retinal tissues from rats at various ages revealed no age-associated changes in the levels of unscheduled DNA synthesis in ganglion cells

  20. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway.

    Science.gov (United States)

    Qi, Yun; Chen, Li; Zhang, Lei; Liu, Wen-Bo; Chen, Xiao-Yan; Yang, Xin-Guang

    2013-02-01

    Crocin is a pharmacologically active component of Crocus sativus L. (saffron) and has been reported to be useful in the treatment of neuronal damage. In the present study, we investigated the neuroprotective effect of crocin on retinal ganglion cells (RGCs) after retinal ischaemia/reperfusion (IR) injury, and our results show that crocin acts through the PI3K/AKT signalling pathway. Retinal IR injury was induced by raising the intraocular pressure of Sprague-Dawley rats to 110 mmHg for 60 min. The neuroprotective effect of crocin was determined by quantifying the surviving RGCs and apoptotic RGCs following IR injury by means of retrograde labelling and TUNEL staining, respectively. The phosphorylated AKT protein level was determined by western blot and immunohistochemical analysis. To determine the extent to which the PI3K/AKT pathway contributes to the neuroprotective effect of crocin, experiments were also performed using the PI3K inhibitor LY294002. Compared with the IR + vehicle group, crocin (50 mg/kg) treatment enhanced RGC survival by approximately 36% and decreased RGC apoptosis by 44% after retinal IR injury. Western blot and immunohistochemical analysis demonstrated that the PI3K/AKT pathway was activated by crocin in the ganglion cell layer after retinal IR injury. Intravitreal injection of LY294002 blocked the neuroprotective effect of crocin on IR-induced RGC death. In conclusion, crocin prevents retinal IR-induced apoptosis of RGCs by activating the PI3K/AKT signalling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights

  2. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated.A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot.Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD.Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  3. Retinal ganglion cell-inner plexiform and nerve fiber layers in neuromyelitis optica.

    Science.gov (United States)

    Hu, Sai-Jing; Lu, Pei-Rong

    2018-01-01

    To determine the thickness of the retinal ganglion cell-inner plexiform layer (GCIPL) and the retinal nerve fiber layer (RNFL) in patients with neuromyelitis optica (NMO). We conducted a cross-sectional study that included 30 NMO patients with a total of 60 eyes. Based on the presence or absence of optic neuritis (ON), subjects were divided into either the NMO-ON group (30 eyes) or the NMO-ON contra group (10 eyes). A detailed ophthalmologic examination was performed for each group; subsequently, the GCIPL and the RNFL were measured using high-definition optical coherence tomography (OCT). In the NMO-ON group, the mean GCIPL thickness was 69.28±21.12 µm, the minimum GCIPL thickness was 66.02±10.02 µm, and the RNFL thickness were 109.33±11.23, 110.47±3.10, 64.92±12.71 and 71.21±50.22 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the NMO-ON contra group, the mean GCIPL thickness was 85.12±17.09 µm, the minimum GCIPL thickness was 25.39±25.1 µm, and the RNFL thicknesses were 148.33±23.22, 126.36±23.45, 82.21±22.30 and 83.36±31.28 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the control group, the mean GCIPL thickness was 86.98±22.37 µm, the minimum GCIPL thickness was 85.28±10.75 µm, and the RNFL thicknesses were 150.22±22.73, 154.79±60.23, 82.33±7.01 and 85.62±13.81 µm in the superior, inferior, temporal and nasal quadrants, respectively. The GCIPL and RNFL were thinner in the NMO-ON contra group than in the control group ( P deviation (MD) and corrected pattern standard deviation (PSD) in the NMO-ON group ( P <0.05). The thickness of the GCIPL and RNFL, as measured using OCT, may indicate optic nerve damage in patients with NMO.

  4. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells.

    Science.gov (United States)

    Liu, F; Weng, S-J; Yang, X-L; Zhong, Y-M

    2015-10-01

    Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway. Copyright

  5. Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Wen-Long Sheng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGCs are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.

  6. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model.

    Science.gov (United States)

    Schaub, Julie A; Kimball, Elizabeth C; Steinhart, Matthew R; Nguyen, Cathy; Pease, Mary E; Oglesby, Ericka N; Jefferys, Joan L; Quigley, Harry A

    2017-05-01

    To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains.

  7. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  8. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction.

    Directory of Open Access Journals (Sweden)

    Denise M Inman

    Full Text Available Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively, we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.

  9. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy

    Institute of Scientific and Technical Information of China (English)

    Ahmed; I.Hegazy; Rasha; H.Zedan; Tamer; A.Macky; Soheir; M.Esmat

    2017-01-01

    AIM:To assess the ganglion cell complex(GCC)thickness in diabetic eyes without retinopathy. METHODS:Two groups included 45 diabetic eyes without retinopathy and 21 non diabetic eyes. All subjects underwent full medical and ophthalmological history,full ophthalmological examination,measuring GCC thickness and central foveal thickness(CFT)using the RTVue~? spectral domainoptical coherence tomography(SD-OCT),and HbA1C level.RESULTS:GCC focal loss volume(FLV%)was significantly more in diabetic eyes(22.2% below normal)than normal eyes(P=0.024). No statistically significant difference was found between the diabetic group and the control group regarding GCC global loss volume(GLV%)(P=0.160). CFT was positively correlated to the average,superior and inferior GCC(P=0.001,0.000 and 0.001 respectively)and negatively correlated to GLV% and FLV%(P=0.002 and0.031 respectively)in diabetic eyes. C/D ratio in diabetic eyes was negatively correlated to average,superior and inferior GCC(P=0.015,0.007 and 0.017 respectively). The FLV% was negatively correlated to the refraction and level of Hb A1c(P=0.019 and 0.013 respectively)and positively correlated to the best corrected visual acuity(BCVA)in log MAR in diabetic group(P=0.004).CONCLUSION:Significant GCC thinning in diabetes predates retinal vasculopathy,which is mainly focal rather than diffuse. It has no preference to either the superior or inferior halves of the macula. Increase of myopic error is significantly accompanied with increased focal GCC loss. GCC loss is accompanied with increased C/D ratio in diabetic eyes.

  10. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy

    Directory of Open Access Journals (Sweden)

    Ahmed I. Hegazy

    2017-03-01

    Full Text Available AIM: To assess the ganglion cell complex (GCC thickness in diabetic eyes without retinopathy. METHODS: Two groups included 45 diabetic eyes without retinopathy and 21 non diabetic eyes. All subjects underwent full medical and ophthalmological history, full ophthalmological examination, measuring GCC thickness and central foveal thickness (CFT using the RTVue® spectral domain-optical coherence tomography (SD-OCT, and HbA1C level. RESULTS: GCC focal loss volume (FLV% was significantly more in diabetic eyes (22.2% below normal than normal eyes (P=0.024. No statistically significant difference was found between the diabetic group and the control group regarding GCC global loss volume (GLV% (P=0.160. CFT was positively correlated to the average, superior and inferior GCC (P=0.001, 0.000 and 0.001 respectively and negatively correlated to GLV% and FLV% (P=0.002 and 0.031 respectively in diabetic eyes. C/D ratio in diabetic eyes was negatively correlated to average, superior and inferior GCC (P=0.015, 0.007 and 0.017 respectively. The FLV% was negatively correlated to the refraction and level of HbA1c (P=0.019 and 0.013 respectively and positively correlated to the best corrected visual acuity (BCVA in logMAR in diabetic group (P=0.004. CONCLUSION: Significant GCC thinning in diabetes predates retinal vasculopathy, which is mainly focal rather than diffuse. It has no preference to either the superior or inferior halves of the macula. Increase of myopic error is significantly accompanied with increased focal GCC loss. GCC loss is accompanied with increased C/D ratio in diabetic eyes.

  11. Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Kumar Anil

    2010-10-01

    Full Text Available Abstract Background The ability to respond to changes in the extra-intracellular environment is prerequisite for cell survival. Cellular responses to the environment include elevating defense systems, such as the antioxidant defense system. Hypoxia-evoked reactive oxygen species (ROS-driven oxidative stress is an underlying mechanism of retinal ganglion cell (RGC death that leads to blinding disorders. The protein peroxiredoxin 6 (PRDX6 plays a pleiotropic role in negatively regulating death signaling in response to stressors, and thereby stabilizes cellular homeostasis. Results We have shown that RGCs exposed to hypoxia (1% or hypoxia mimetic cobalt chloride display reduced expression of PRDX6 with higher ROS expression and activation of NF-κB. These cells undergo apoptosis, while cells with over-expression of PRDX6 demonstrate resistance against hypoxia-driven RGC death. The RGCs exposed to hypoxia either with 1% oxygen or cobalt chloride (0-400 μM, revealed ~30%-70% apoptotic cell death after 48 and 72 h of exposure. Western analysis and real-time PCR showed elevated expression of PRDX6 during hypoxia at 24 h, while PRDX6 protein and mRNA expression declined from 48 h onwards following hypoxia exposure. Concomitant with this, RGCs showed increased ROS expression and activation of NF-κB with IkB phosphorylation/degradation, as examined with H2DCF-DA and transactivation assays. These hypoxia-induced adverse reactions could be reversed by over-expression of PRDX6. Conclusion Because an abundance of PRDX6 in cells was able to attenuate hypoxia-induced RGC death, the protein could possibly be developed as a novel therapeutic agent acting to postpone RGC injury and delay the progression of glaucoma and other disorders caused by the increased-ROS-generated death signaling related to hypoxia.

  12. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity.

    Science.gov (United States)

    Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen; Fahrenkrug, Jan; Kiilgaard, Jens Folke

    2017-06-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions. © 2017 Wiley Periodicals, Inc.

  13. Neuroprotection of the rat’s retinal ganglion cells against glutamate-induced toxicity

    Directory of Open Access Journals (Sweden)

    Kariman M.A El-Gohari

    2016-01-01

    Conclusion Taurine protects the retina against glutamate excitotoxicity and could have clinical implications in protecting the ganglion cells from several ophthalmic diseases such as glaucoma and diabetic retinopathy.

  14. Ganglion cell-inner plexiform layer and retinal nerve fibre layer changes within the macula in retinitis pigmentosa: a spectral domain optical coherence tomography study.

    Science.gov (United States)

    Yoon, Chang Ki; Yu, Hyeong Gon

    2018-03-01

    To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Iwamoto, K; Mata, D; Linn, D M; Linn, C L

    2013-05-01

    Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), in cultured adult rat retinal neurons. Adult Long Evans rat retinas were dissociated and retinal ganglion cells (RGCs) were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured under various pharmacological conditions to demonstrate excitotoxicity and neuroprotection against excitotoxicity. After 3 days, RGCs were immunostained with antibodies against the glycoprotein, Thy 1.1, counted and cell survival was assessed relative to control untreated conditions. 500 μM glutamate induced excitotoxicity in large and small RGCs in an adult rat dissociated culture. After 3 days in culture with glutamate, the cell survival of large RGCs decreased by an average of 48.16% while the cell survival of small RGCs decreased by an average of 42.03%. Using specific glutamate receptor agonists and antagonists, we provide evidence that the excitotoxic response was mediated through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) and N-methyl-d-aspartate (NMDA) glutamate receptors through an apoptotic mechanism. However, the excitotoxic effect of glutamate on all RGCs was eliminated if cells were cultured for an hour with 10 μM ACh, 100 μM nicotine or 100 nM of the α7 nAChR agonist, PNU-282987, before the glutamate insult. Inhibition studies using 10nM methyllycaconitine (MLA) or α-bungarotoxin (α-Bgt) supported the hypothesis that neuroprotection against glutamate-induced excitotoxicity on rat RGCs was mediated through α7 nAChRs. In immunocytochemical studies, double

  16. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  17. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli.Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.

  18. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    Science.gov (United States)

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat

  19. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas.

    Science.gov (United States)

    Chintalapudi, Sumana R; Djenderedjian, Levon; Stiemke, Andrew B; Steinle, Jena J; Jablonski, Monica M; Morales-Tirado, Vanessa M

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2(hi)CD48(neg)CD15(neg)CD57(neg) surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases.

  20. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    Science.gov (United States)

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases. PMID:27242509

  1. Retinal ganglion cell-inner plexiform and nerve fiber layers in neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Sai-Jing Hu

    2018-01-01

    Full Text Available AIM: To determine the thickness of the retinal ganglion cell-inner plexiform layer (GCIPL and the retinal nerve fiber layer (RNFL in patients with neuromyelitis optica (NMO. METHODS: We conducted a cross-sectional study that included 30 NMO patients with a total of 60 eyes. Based on the presence or absence of optic neuritis (ON, subjects were divided into either the NMO-ON group (30 eyes or the NMO-ON contra group (10 eyes. A detailed ophthalmologic examination was performed for each group; subsequently, the GCIPL and the RNFL were measured using high-definition optical coherence tomography (OCT. RESULTS: In the NMO-ON group, the mean GCIPL thickness was 69.28±21.12 μm, the minimum GCIPL thickness was 66.02±10.02 μm, and the RNFL thickness were 109.33±11.23, 110.47±3.10, 64.92±12.71 and 71.21±50.22 μm in the superior, inferior, temporal and nasal quadrants, respectively. In the NMO-ON contra group, the mean GCIPL thickness was 85.12±17.09 μm, the minimum GCIPL thickness was 25.39±25.1 μm, and the RNFL thicknesses were 148.33±23.22, 126.36±23.45, 82.21±22.30 and 83.36±31.28 μm in the superior, inferior, temporal and nasal quadrants, respectively. In the control group, the mean GCIPL thickness was 86.98±22.37 μm, the minimum GCIPL thickness was 85.28±10.75 μm, and the RNFL thicknesses were 150.22±22.73, 154.79±60.23, 82.33±7.01 and 85.62±13.81 μm in the superior, inferior, temporal and nasal quadrants, respectively. The GCIPL and RNFL were thinner in the NMO-ON contra group than in the control group (P<0.05; additionally, the RNFL was thinner in the inferior quadrant in the NMO-ON group than in the control group (P<0.05. Significant correlations were observed between the GCIPL and RNFL thickness measurements as well as between thickness measurements and the two visual field parameters of mean deviation (MD and corrected pattern standard deviation (PSD in the NMO-ON group (P<0.05. CONCLUSION: The thickness of the GCIPL

  2. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion.

    Science.gov (United States)

    Hadj-Saïd, Wahiba; Froger, Nicolas; Ivkovic, Ivana; Jiménez-López, Manuel; Dubus, Élisabeth; Dégardin-Chicaud, Julie; Simonutti, Manuel; Quénol, César; Neveux, Nathalie; Villegas-Pérez, María Paz; Agudo-Barriuso, Marta; Vidal-Sanz, Manuel; Sahel, Jose-Alain; Picaud, Serge; García-Ayuso, Diego

    2016-09-01

    Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion. We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water. Spectral-domain optical coherence tomography (SD-OCT) and electroretinograms (ERG) were performed on animals after 2 months of GES treatment administered through the drinking water. Retinas were dissected as wholemounts and immunodetection of Brn3a (RGC), S-opsin (S-cones), and L-opsin (L-cones) was performed. The number of Brn3a+ RGCs, and L- and S-opsin+ cones was automatically quantified and their retinal distribution studied using isodensity maps. The treatment resulted in a significant reduction in plasma taurine levels and a profound dysfunction of visual performance as shown by ERG recordings. Optical coherence tomography analysis revealed that the retina was thinner in the taurine-depleted group. S-opsin+cones were more affected (36%) than L-opsin+cones (27%) with greater cone cell loss in the dorsal area whereas RGC loss (12%) was uniformly distributed. This study confirms that taurine depletion causes RGC and cone loss. Electroretinograms results show that taurine depletion induces retinal dysfunction in photoreceptors and in the inner retina. It establishes a gradient of cell loss depending on the cell type from S-opsin+cones, L-opsin+cones, to RGCs. The greater cell loss in the dorsal retina and of the S-cone population may underline different cellular mechanisms of cellular degeneration and suggests that S-cones may be more sensitive to light-induced retinal toxicity enhanced by the taurine depletion.

  3. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Alba Galan

    Full Text Available Retinal ganglion cells (RGCs are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.

  4. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    Science.gov (United States)

    Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig

    2015-10-15

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Effect of Extracellular Zinc Chelator on Rat Retinal Ganglion Cell Number, and Taurine and Zinc Transporters in These Cells

    Directory of Open Access Journals (Sweden)

    Asarí Márquez García

    2017-05-01

    Full Text Available Zinc deficiency in humans causes decreased antioxidants in the retina and is related with abnormal darkness adaptation, cataracts, blindness, and macular degeneration. There is little information about the effects of zinc on the taurine system in mammalian retinal cells. Therefore, we studied the effect of zinc on the taurine transporter (TAUT and zinc transporters (ZnT-1 and 3 using the extracellular zinc chelator, diethylenetriaminepentaacetic acid (DTPA by fluorescence immunocytochemistry and immunohistochemistry in the ganglion cells (CG and cell layers of the retina of rats. Three days after administration of DTPA (10µM primary antibodies and secondary antibodies conjugated with rhodamine or fluorescein isothiocyanate (FITC were used as required. For immunocytochemical labeling approximately three hundred cells per condition were counted. For immunohistochemical labeling, the fluorescence intensity was measured as integrated optical density (DOI in four areas for each layer of tissue. DTPA produced a decrease of 32 % and 29 % in GC of the total cells labeled with antibody against glycoprotein Thy 1.1 and γ-synuclein, respectively. It also produced a significant decrease in TAUT localization in 27 and 28 % compared to controls. DTPA produced a decrease in the localization of ZnT-1 and ZnT-3 in the retina layers (ganglion cells, GCC and the outer and inner plexiform, CEP and CIP. The study of these molecules in the retina is relevant to understanding the interactions of taurine and zinc in this structure.

  6. The influence of venous blood flow on the retinal ganglion cell complex in patients with primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2014-07-01

    Full Text Available Purpose: To study the influence of venous blood flow on the ganglion cell complex (GCC in patients with preperimetric and perimetric open angle glaucoma.Methods: 74 patients were included in the research. 59 eyes and 62 eyes were diagnosed with preperimetric and perimetric open angle glaucoma respectively. The mean age was 56.5±10.5 years. 22 (12 female and 10 male healthy individuals constituted the control group. The ganglion cell complex and retinal nerve fibre layer were evaluated with the help of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA. Ocular blood flow was measured by Color Doppler Imaging (multifunctional VOLUSON 730 ProSystem. The statistical analysis included correlation between GCC and RNFL thickness in both glaucoma groups.Results: The results showed a statistically significant reduction of venous blood flow velocity in both glaucoma groups compared to the control group. No difference in venous blood flow parameters between two glaucoma groups was found, except resistance index, which was higher in perimetric group in comparison to preperimetric group. A correlation was also obtained between venous blood flow parameters and GCC and RNFL thickness in both glaucoma groups.Conclusion: Early GCC damage in glaucoma might occur due to venous blood flow reduction. This fact may be of great value in understanding glaucoma pathogenesis and search for novel treatment options.

  7. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  8. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey

    DEFF Research Database (Denmark)

    Hannibal, J; Kankipati, L; Strang, C E

    2014-01-01

    ). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we......, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing....

  9. Sustained Dorzolamide Release Prevents Axonal and Retinal Ganglion Cell Loss in a Rat Model of IOP-Glaucoma.

    Science.gov (United States)

    Pitha, Ian; Kimball, Elizabeth C; Oglesby, Ericka N; Pease, Mary Ellen; Fu, Jie; Schaub, Julie; Kim, Yoo-Chun; Hu, Qi; Hanes, Justin; Quigley, Harry A

    2018-04-01

    To determine if one injection of a sustained release formulation of dorzolamide in biodegradable microparticles (DPP) reduces retinal ganglion cell (RGC) loss in a rat model of glaucoma. We injected either DPP or control microparticles intravitreally in rats. Two days later, unilateral ocular hypertension was induced by translimbal, diode laser treatment by a surgeon masked to treatment group. IOP and clinical exams were performed until sacrifice 6 weeks after laser treatment. RGC loss was measured by masked observers in both optic nerve cross-sections and RGC layer counts from retinal whole mounts. Cumulative IOP exposure was significantly reduced by DPP injection (49 ± 48 mm Hg × days in treated versus 227 ± 191 mm Hg × days in control microparticle eyes; P = 0.012, t -test). While control-injected eyes increased in axial length by 2.4 ± 1.7%, DPP eyes did not significantly enlarge (0.3 ± 2.2%, difference from control, P = 0.03, t -test). RGC loss was significantly less in DPP eyes compared with control microparticle injection alone (RGC axon count reduction: 21% vs. 52%; RGC body reduction: 25% vs. 50% [beta tubulin labeling]; P = 0.02, t -test). A single injection of sustained release DPP protected against RGC loss and axial elongation in a rat model of IOP glaucoma. Sustained release IOP-lowering medications have the potential to stop glaucoma progression.

  10. Effects of Antipsychotic Drugs Haloperidol and Clozapine on Visual Responses of Retinal Ganglion Cells in a Rat Model of Retinitis Pigmentosa.

    Science.gov (United States)

    Jensen, Ralph J

    2016-12-01

    In the P23H rat model of retinitis pigmentosa, the dopamine D2 receptor antagonists sulpiride and eticlopride appear to improve visual responses of retinal ganglion cells (RGCs) by increasing light sensitivity of RGCs and transforming abnormal, long-latency ON-center RGCs into OFF-center cells. Antipsychotic drugs are believed to mediate their therapeutic benefits by blocking D2 receptors. This investigation was conducted to test whether haloperidol (a typical antipsychotic drug) and clozapine (an atypical antipsychotic drug) could similarly alter the light responses of RGCs in the P23H rat retina. Extracellular recordings were made from RGCs in isolated P23H rat retinas. Responses of RGCs to flashes of light were evaluated before and during bath application of a drug. Both haloperidol and clozapine increased light sensitivity of RGCs on average by ∼0.3 log unit. For those ON-center RGCs that exhibit an abnormally long-latency response to the onset of a small spot of light, both haloperidol and clozapine brought out a short-latency OFF response and markedly reduced the long-latency ON response. The selective serotonin 5-HT2A antagonist MDL 100907 had similar effects on RGCs. The effects of haloperidol on light responses of RGCs can be explained by its D2 receptor antagonism. The effects of clozapine on light responses of RGCs on the other hand may largely be due to its 5-HT2A receptor antagonism. Overall, the results suggest that antipsychotic drugs may be useful in improving vision in patients with retinitis pigmentosa.

  11. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    Science.gov (United States)

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  12. Chronic intestinal pseudo-obstruction associated with enteric ganglionitis in a Persian cat.

    Science.gov (United States)

    Mortier, Jeremy; Elissalt, Estelle; Palierne, Sophie; Semin, Marie Odile; Delverdier, Maxence; Diquélou, Armelle

    2016-01-01

    Case summary A 7-year-old neutered male Persian cat was presented for acute vomiting and inappetence. Physical examination revealed severe abdominal distension. Radiographs demonstrated pneumoperitoneum, megaoesophagus and generalised gaseous distension of the digestive tract. Exploratory coeliotomy was performed, revealing markedly distended and thickened small and large intestines with no observable peristalsis. No intestinal perforation was present. Bacteriological and cytological analysis of abdominal fluid revealed a septic peritonitis involving Pasteurella multocida . Full-thickness intestinal biopsies demonstrated lymphocytic ganglioneuritis localised to the enteric nervous system, in association with glandular atrophy and muscular layer hypertrophy. Amoxicillin-clavulanate and analgesics were given. The cat's general condition gradually improved after the addition of pyridostigmine bromide (0.5 mg/kg q12h PO), initiated 3 days postsurgery. Vomiting resolved and did not recur. Follow-up radiographs at 15 days, and 1 and 6 months showed persistent intestinal ileus, milder than on the pretreatment radiographs. Thirty months after presentation the cat is still alive, without clinical signs, and receives 1 mg/kg q12h pyridostigmine. Relevance and novel information To our knowledge, this is the first case of ganglioneuritis of the myenteric plexus described in cats, as well as the first one successfully treated with pyridostigmine. Chronic intestinal pseudo-obstruction is a very rare condition in cats but should be included in the differential diagnosis of generalised gastrointestinal ileus.

  13. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    Directory of Open Access Journals (Sweden)

    Takeshi Morimoto

    Full Text Available Transcorneal electrical stimulation (TES activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all. The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  14. Macular retinal ganglion cell-inner plexiform layer thickness in patients on hydroxychloroquine therapy.

    Science.gov (United States)

    Lee, Min Gyu; Kim, Sang Jin; Ham, Don-Il; Kang, Se Woong; Kee, Changwon; Lee, Jaejoon; Cha, Hoon-Suk; Koh, Eun-Mi

    2014-11-25

    We evaluated macular ganglion cell-inner plexiform layer (GC-IPL) thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with chronic exposure to hydroxychloroquine (HCQ). This study included 130 subjects, who were divided into three groups: Group 1A, 55 patients with HCQ use ≥5 years; Group 1B, 46 patients with HCQ use 1000 g), significant correlations were not observed. This study revealed that macular GC-IPL thickness did not show definite correlations with HCQ use. However, some patients, especially with HCQ retinopathy or high cumulative doses, showed thin GC-IPL. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  15. Chronic intestinal pseudo-obstruction associated with enteric ganglionitis in a Persian cat

    Directory of Open Access Journals (Sweden)

    Jeremy Mortier

    2016-06-01

    Full Text Available Case summary A 7-year-old neutered male Persian cat was presented for acute vomiting and inappetence. Physical examination revealed severe abdominal distension. Radiographs demonstrated pneumoperitoneum, megaoesophagus and generalised gaseous distension of the digestive tract. Exploratory coeliotomy was performed, revealing markedly distended and thickened small and large intestines with no observable peristalsis. No intestinal perforation was present. Bacteriological and cytological analysis of abdominal fluid revealed a septic peritonitis involving Pasteurella multocida . Full-thickness intestinal biopsies demonstrated lymphocytic ganglioneuritis localised to the enteric nervous system, in association with glandular atrophy and muscular layer hypertrophy. Amoxicillin-clavulanate and analgesics were given. The cat’s general condition gradually improved after the addition of pyridostigmine bromide (0.5 mg/kg q12h PO, initiated 3 days postsurgery. Vomiting resolved and did not recur. Follow-up radiographs at 15 days, and 1 and 6 months showed persistent intestinal ileus, milder than on the pretreatment radiographs. Thirty months after presentation the cat is still alive, without clinical signs, and receives 1 mg/kg q12h pyridostigmine. Relevance and novel information To our knowledge, this is the first case of ganglioneuritis of the myenteric plexus described in cats, as well as the first one successfully treated with pyridostigmine. Chronic intestinal pseudo-obstruction is a very rare condition in cats but should be included in the differential diagnosis of generalised gastrointestinal ileus.

  16. Chronic intestinal pseudo-obstruction associated with enteric ganglionitis in a Persian cat

    OpenAIRE

    Jeremy Mortier; Estelle Elissalt; Sophie Palierne; Marie Odile Semin; Maxence Delverdier; Armelle Diquélou

    2016-01-01

    Case summary A 7-year-old neutered male Persian cat was presented for acute vomiting and inappetence. Physical examination revealed severe abdominal distension. Radiographs demonstrated pneumoperitoneum, megaoesophagus and generalised gaseous distension of the digestive tract. Exploratory coeliotomy was performed, revealing markedly distended and thickened small and large intestines with no observable peristalsis. No intestinal perforation was present. Bacteriological and cytological analysis...

  17. Neuroprotection of a novel cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5 in cellular and rodent models of retinal ganglion cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Huanhuan Cheng

    Full Text Available To investigate the protective effects of a novel cyclopeptide C*HSDGIC* (CHC from the cyclization of Pituitary adenylate cyclase-activating polypeptide (PACAP (1-5 in cellular and rodent models of retinal ganglion cell apoptosis.Double-labeling immunohistochemistry was used to detect the expression of Thy-1 and PACAP receptor type 1 in a retinal ganglion cell line RGC-5. The apoptosis of RGC-5 cells was induced by 0.02 J/cm(2 Ultraviolet B irradiation. MTT assay, flow cytometry, fluorescence microscopy were used to investigate the viability, the level of reactive oxygen species (ROS and apoptosis of RGC-5 cells respectively. CHC attenuated apoptotic cell death induced by Ultraviolet B irradiation and inhibited the excessive generation of ROS. Moreover, CHC treatment resulted in decreased expression of Bax and concomitant increase of Bcl-2, as was revealed by western-blot analysis. The in vivo apoptosis of retinal ganglion cells was induced by injecting 50 mM N-methyl-D-aspartate (NMDA (100 nmol in a 2 µL saline solution intravitreally, and different dosages of CHC were administered. At day 7, rats in CHC+ NMDA-treated groups showed obvious aversion to light when compared to NMDA rats. Electroretinogram recordings revealed a marked decrease in the amplitudes of a-wave, b-wave, and photopic negative response due to NMDA damage. In retina receiving intravitreal NMDA and CHC co-treatment, these values were significantly increased. CHC treatment also resulted in less NMDA-induced cell loss and a decrease in the proportion of dUTP end-labeling-positive cells in ganglion cell line.C*HSDGIC*, a novel cyclopeptide from PACAP (1-5 attenuates apoptosis in RGC-5 cells and inhibits NMDA-induced retinal neuronal death. The beneficial effects may occur via the mitochondria pathway. PACAP derivatives like CHC may serve as a promising candidate for neuroprotection in glaucoma.

  18. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    Science.gov (United States)

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. © 2016 The Authors.

  20. Protection by an oral disubstituted hydroxylamine derivative against loss of retinal ganglion cell differentiation following optic nerve crush.

    Directory of Open Access Journals (Sweden)

    James D Lindsey

    Full Text Available Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs. Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydroxy-2,2,6,6-tetramethylpiperidine derivative (OT-440 protects against loss of Thy-1 promoter activation following optic nerve crush and whether this effect targets the earlier quick phase or the later slow phase. The retina of mice expressing cyan fluorescent protein under control of the Thy-1 promoter (Thy1-CFP mice was imaged using a blue-light confocal scanning laser ophthalmoscope (bCSLO. These mice then received oral OT-440 prepared in cream cheese or dissolved in water, or plain vehicle, for two weeks and were imaged again prior to unilateral optic nerve crush. Treatments and weekly imaging continued for four more weeks. Fluorescent neurons were counted in the same defined retinal areas imaged at each time point in a masked fashion. When the counts at each time point were directly compared, the numbers of fluorescent cells at each time point were greater in the animals that received OT-440 in cream cheese by 8%, 27%, 52% and 60% than in corresponding control animals at 1, 2, 3 and 4 weeks after optic nerve crush. Similar results were obtained when the vehicle was water. Rate analysis indicated the protective effect of OT-440 was greatest during the first two weeks and was maintained in the second two weeks after crush for both the cream cheese vehicle study and water vehicle study. Because most of the fluorescent cells detected by bCSLO are RGCs, these findings suggest that oral OT-440 can either protect against or delay early degenerative responses occurring in RGCs following optic nerve injury.

  1. Protection by an oral disubstituted hydroxylamine derivative against loss of retinal ganglion cell differentiation following optic nerve crush.

    Science.gov (United States)

    Lindsey, James D; Duong-Polk, Karen X; Dai, Yi; Nguyen, Duy H; Leung, Christopher K; Weinreb, Robert N

    2013-01-01

    Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs). Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydroxy-2,2,6,6-tetramethylpiperidine derivative (OT-440) protects against loss of Thy-1 promoter activation following optic nerve crush and whether this effect targets the earlier quick phase or the later slow phase. The retina of mice expressing cyan fluorescent protein under control of the Thy-1 promoter (Thy1-CFP mice) was imaged using a blue-light confocal scanning laser ophthalmoscope (bCSLO). These mice then received oral OT-440 prepared in cream cheese or dissolved in water, or plain vehicle, for two weeks and were imaged again prior to unilateral optic nerve crush. Treatments and weekly imaging continued for four more weeks. Fluorescent neurons were counted in the same defined retinal areas imaged at each time point in a masked fashion. When the counts at each time point were directly compared, the numbers of fluorescent cells at each time point were greater in the animals that received OT-440 in cream cheese by 8%, 27%, 52% and 60% than in corresponding control animals at 1, 2, 3 and 4 weeks after optic nerve crush. Similar results were obtained when the vehicle was water. Rate analysis indicated the protective effect of OT-440 was greatest during the first two weeks and was maintained in the second two weeks after crush for both the cream cheese vehicle study and water vehicle study. Because most of the fluorescent cells detected by bCSLO are RGCs, these findings suggest that oral OT-440 can either protect against or delay early degenerative responses occurring in RGCs following optic nerve injury.

  2. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  3. Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells.

    Science.gov (United States)

    Chintalapudi, Sumana R; Morales-Tirado, Vanessa M; Williams, Robert W; Jablonski, Monica M

    2016-02-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Mechanistic studies on RGCs are hindered by the lack of sufficient primary cells and consensus regarding their signature markers. Recently, γ-synuclein (SNCG) has been shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the role of Sncg in RGCs, we used a novel systems genetics approach to identify a gene that modulates Sncg expression, followed by confirmatory studies in both healthy and diseased retinae. We found that chromosome 1 harbors an expression quantitative trait locus that modulates Sncg expression in the mouse retina, and identified the prefoldin-2 (PFDN2) gene as the candidate upstream modulator of Sncg expression. Our immunohistochemical analyses revealed similar expression patterns in both mouse and human healthy retinae, with PFDN2 colocalizing with SNCG in RGCs and their axons. In contrast, in retinae from glaucoma subjects, SNCG levels were significantly reduced, although PFDN2 levels were maintained. Using a novel flow cytometry-based RGC isolation method, we obtained viable populations of murine RGCs. Knocking down Pfdn2 expression in primary murine RGCs significantly reduced Sncg expression, confirming that Pfdn2 regulates Sncg expression in murine RGCs. Gene Ontology analysis indicated shared mitochondrial function associated with Sncg and Pfdn2. These data solidify the relationship between Sncg and Pfdn2 in RGCs, and provide a novel mechanism for maintaining RGC health. © 2015 FEBS.

  4. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Klassen, Henry; Johansson, Ulrica Englund

    2009-01-01

    electroretinography (mfERG), quantification of NeuN positive cells and evaluation of the degree of retinal perivasculitis and inflammation 6 weeks after the insult. In the post-injection eyes (days 14, 28 and 42), the ratios of the iN1 and the iP2 amplitudes were 0.10 (95% CI: 0.05-0.15) and 0.09 (95% CI: 0.......04-0.16) in eyes treated with blank microspheres, and 0.24 (95% CI: 0.18-0.32) and 0.23 (95% CI: 0.15-0.33) in eyes treated with GDNF microspheres. These differences were statistically significant (P eyes...... injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically...

  5. Glutamatergic neurotransmission from melanopsin retinal ganglion cells is required for neonatal photoaversion but not adult pupillary light reflex.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing retinal ganglion cells (mRGCs in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR. MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2 selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.

  6. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    Science.gov (United States)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  7. Low-Intensity Pulsed Ultrasound Protects Retinal Ganglion Cell From Optic Nerve Injury Induced Apoptosis via Yes Associated Protein

    Directory of Open Access Journals (Sweden)

    Jia-Xing Zhou

    2018-06-01

    Full Text Available Background: Low-intensity pulsed ultrasound (LIPUS has been used in clinical studies. But little is known about its effects on the central nervous system (CNS, or its mechanism of action. Retinal ganglion cells (RGCs are CNS neuronal cells that can be utilized as a classic model system to evaluate outcomes of LIPUS protection from external trauma-induced retinal injury. In this study, we aim to: (1 determine the pulse energy and the capability of LIPUS in RGC viability, (2 ascertain the protective role of LIPUS in optic nerve (ON crush-induced retinal injury, and 3 explore the cellular mechanisms of RGC apoptosis prevention by LIPUS.Methods: An ON crush model was set up to induce RGC death. LIPUS was used to treat mice eyes daily, and the retina samples were dissected for immunostaining and Western blot. The expression of yes-associated protein (YAP and apoptosis-related proteins was detected by immunostaining and Western blot in vitro and in vivo. Apoptosis of RGCs was evaluated by TUNEL staining, the survival of RGCs and retained axons were labeled by Fluoro-gold and Tuj1 antibody, respectively. Rotenone was used to set up an in vitro cellular degenerative model and siYAP was used to interfering the expression of YAP to detect the LIPUS protective function.Results: LIPUS protected RGC from loss and apoptosis in vivo and in vitro. The ratio of cleaved/pro-caspase3 also decreased significantly under LIPUS treatment. As a cellular mechanical sensor, YAP expression increased and YAP translocated to nucleus in LIPUS stimulation group, however, phospho-YAP was found to be decreased. When YAP was inhibited, the LIPUS could not protect RGC from caspase3-dependent apoptosis.Conclusion: LIPUS prevented RGCs from apoptosis in an ON crush model and in vitro cellular degenerative model, which indicates a potential treatment for further traumatic ON injury. The mechanism of protection is dependent on YAP activation and correlated with caspase-3 signaling.

  8. Interferon-gamma (IFN-γ-mediated retinal ganglion cell death in human tyrosinase T cell receptor transgenic mouse.

    Directory of Open Access Journals (Sweden)

    Shahid Husain

    Full Text Available We have recently demonstrated the characterization of human tyrosinase TCR bearing h3T-A2 transgenic mouse model, which exhibits spontaneous autoimmune vitiligo and retinal dysfunction. The purpose of current study was to determine the role of T cells and IFN-γ in retina dysfunction and retinal ganglion cell (RGC death using this model. RGC function was measured by pattern electroretinograms (ERGs in response to contrast reversal of patterned visual stimuli. RGCs were visualized by fluorogold retrograde-labeling. Expression of CD3, IFN-γ, GFAP, and caspases was measured by immunohistochemistry and Western blotting. All functional and structural changes were measured in 12-month-old h3T-A2 mice and compared with age-matched HLA-A2 wild-type mice. Both pattern-ERGs (42%, p = 0.03 and RGC numbers (37%, p = 0.0001 were reduced in h3T-A2 mice when compared with wild-type mice. The level of CD3 expression was increased in h3T-A2 mice (h3T-A2: 174 ± 27% vs. HLA-A2: 100%; p = 0.04. The levels of effector cytokine IFN-γ were also increased significantly in h3T-A2 mice (h3T-A2: 189 ± 11% vs. HLA-A2: 100%; p = 0.023. Both CD3 and IFN-γ immunostaining were increased in nerve fiber (NF and RGC layers of h3T-A2 mice. In addition, we have seen a robust increase in GFAP staining in h3T-A2 mice (mainly localized to NF layer, which was substantially reduced in IFN-γ ((-/- knockout h3T-A2 mice. We also have seen an up-regulation of caspase-3 and -9 in h3T-A2 mice. Based on our data we conclude that h3T-A2 transgenic mice exhibit visual defects that are mostly associated with the inner retinal layers and RGC function. This novel h3T-A2 transgenic mouse model provides opportunity to understand RGC pathology and test neuroprotective strategies to rescue RGCs.

  9. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

    Science.gov (United States)

    Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R

    2011-05-25

    The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.

  10. Retinal nerve fiber layer and ganglion cell complex thickness assessment in patients with Alzheimer disease and mild cognitive impairment. Preliminary results

    Directory of Open Access Journals (Sweden)

    A. S. Tiganov

    2014-07-01

    Full Text Available Purpose: to investigate the retinal nerve fiber layer (RNFL and the macular ganglion cell complex (GCC in patients with Alzheimer`s disease and mild cognitive impairment.Methods: this study included 10 patients (20 eyes with Alzheimer`s disease, 10 patients with mild cognitive impairment and 10 age- and sex-matched healthy controls that had no history of dementia. All the subjects underwent psychiatric examination, including the Mini-Mental State Examination (MMSE, and complete ophthalmological examination, comprising optical coherence tomography and scanning laser polarimetry.Results: there was a significant decrease in GCC thickness in patients with Alzheimer`s disease compared to the control group, global loss volume of ganglion cells was higher than in control group. there was no significant difference among the groups in terms of RNFL thickness. Weak positive correlation of GCC thickness and MMSE results was observed.Conclusion: Our data confirm the retinal involvement in Alzheimer`s disease, as reflected by loss of ganglion cells. Further studies will clear up the role and contribution of dementia in pathogenesis of optic neuropathy.

  11. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  12. Macular ganglion cell complex and retinal nerve fiber layer comparison in different stages of age-related macular degeneration.

    Science.gov (United States)

    Zucchiatti, Ilaria; Parodi, Maurizio Battaglia; Pierro, Luisa; Cicinelli, Maria Vittoria; Gagliardi, Marco; Castellino, Niccolò; Bandello, Francesco

    2015-09-01

    To employ optical coherence tomography (OCT) to analyze the morphologic changes in the inner retina in different categories of age-related macular degeneration (AMD). Observational cross-sectional study. Single-center study. Inclusion criteria were age over 50, diagnosis of Age-Related Eye Disease Study (AREDS) category 2 and 3, naïve neovascular AMD, and atrophic AMD. Healthy patients of similar age acted as a control group. Primary outcome measures were the changes in ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL). Secondary outcomes included modifications of rim area and cup-to-disc ratio. One hundred and thirty eyes of 130 patients were recruited: 26 eyes for AREDS category 2, 26 for AREDS category 3, 26 for neovascular AMD, 26 with atrophic AMD, and 26 controls. Mean peripapillary RNFL thickness was significantly lower in neovascular AMD, compared to controls (P = .004); peripapillary RNFL did not significantly vary among AREDS category 2 and 3 and atrophic AMD groups, compared to controls. Mean GCC thickness was higher in the control group, becoming progressively thinner up to neovascular and atrophic AMD groups (P < .0001). Rim area was significantly thinner in the neovascular AMD group compared with controls (P = .047); cup-to-disc ratio was higher in the neovascular AMD group compared with the control group (P = .047). This study demonstrates that eyes with neovascular AMD display reduced RNFL and GCC thickness. RNFL is partially spared in atrophic advanced AMD. The identification of alteration in RNFL and GCC thickness may reveal useful for future therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  14. Studies of Scleral Biomechanical Behavior Related to Susceptibility for Retinal Ganglion Cell Loss in Experimental Mouse Glaucoma

    Science.gov (United States)

    Nguyen, Cathy; Cone, Frances E.; Nguyen, Thao D.; Coudrillier, Baptiste; Pease, Mary E.; Steinhart, Matthew R.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.

    2013-01-01

    Purpose. To study anatomical changes and mechanical behavior of the sclera in mice with experimental glaucoma by comparing CD1 to B6 mice. Methods. Chronic experimental glaucoma for 6 weeks was produced in 2- to 4-month-old CD1 (43 eyes) and B6 mice (42 eyes) using polystyrene bead injection into the anterior chamber with 126 control CD1 and 128 control B6 eyes. Intraocular pressure (IOP) measurements were made with the TonoLab at baseline and after bead injection. Axial length and scleral thickness were measured after sacrifice in the CD1 and B6 animals and compared to length data from 78 eyes of DBA/2J mice. Inflation testing of posterior sclera was conducted, and circumferential and meridional strain components were determined from the displacement response. Results. Experimental glaucoma led to increases in axial length and width by comparison to fellow eyes (6% in CD1 and 10% in B6; all P glaucoma, the remainder of the sclera uniformly thinned in CD1, but thickened in B6. Peripapillary sclera in CD1 controls had significantly greater temporal meridional strain than B6 and had differences in the ratios of meridional to effective circumferential strain from B6 mice. In both CD1 and B6 mice, exposure to chronic IOP elevation resulted in stiffer pressure–strain responses for both the effective circumferential and meridional strains (multivariable regression model, P = 0.01–0.03). Conclusions. Longer eyes, greater scleral strain in some directions at baseline, and generalized scleral thinning after glaucoma were characteristic of CD1 mice that have greater tendency to retinal ganglion cell damage than B6 mice. Increased scleral stiffness after glaucoma exposure in mice mimics findings in monkey and human glaucoma eyes. PMID:23404116

  15. Protection of neurons in the retinal ganglion cell layer against excitotoxicity by the N-acylethanolamine, N-linoleoylethanolamine

    Directory of Open Access Journals (Sweden)

    Duncan RS

    2011-04-01

    Full Text Available R. Scott Duncan1,*, Hua Xin1,*, Daryl L Goad1, Kent D Chapman2,3, Peter Koulen1,31Vision Research Center and Departments of Ophthalmology and Basic Medical Science, School of Medicine, University of Missouri, Kansas City, MO, USA; 2Department of Biological Sciences, University of North Texas, Denton, TX, USA; 3Center for Plant Lipid Research, University of North Texas, Denton, TX, USA *Authors contributed equallyAbstract: Retinal ganglion cell (RGC death is a hallmark of neurodegenerative diseases and disease processes of the eye, including glaucoma. The protection of RGCs has been an important strategy for combating glaucoma, but little clinical success has been reported to date. One pathophysiological consequence of glaucoma is excessive extracellular glutamate subsequently leading to excitotoxicity in the retina. Endocannabinoids, such as the N-acylethanolamine (NAE, arachidonylethanolamine (NAE 20:4, exhibit neuroprotective properties in some models of neurodegenerative disease. The majority of NAEs, however, are not cannabinoids, and their physiological function is not clear. Here, we determined whether the noncannabinoid NAE, linoleoylethanolamine (NAE18:2, protects neurons in the RGC layer against glutamate excitotoxicity in ex-vivo retina cultures. Using a terminal deoxynucleotidyl transferase-mediated dUTP (2´-deoxyuridine 5´-triphosphate nick-end labeling (TUNEL assay, we determined that NAE18:2 reduces the number of apoptotic RGC layer neurons in response to glutamate and conclude that NAE18:2 is a neuroprotective compound with potential for treating glaucomatous retinopathy.Keywords: neuroprotection, glutamate, calcium signaling, immunocytochemistry, eye, vision, glaucoma.

  16. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available To investigate macular ganglion cell-inner plexiform layer (mGCIPL thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL defects on stereophotographs.112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS and the African Descent and Glaucoma Evaluation Study (ADAGES subjects had standard automated perimetry (SAP, optical coherence tomography (OCT imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001 and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000. The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior mGCIPL was thinnest in the same hemiretina in 26 eyes (90%. Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001 and inferior mGCIPL (P = 0.030 compared to glaucomatous eyes without a visible RNFL defect.The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

  17. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  18. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  19. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis

    Directory of Open Access Journals (Sweden)

    Brambilla Roberta

    2012-09-01

    Full Text Available Abstract Background Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis. Methods To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE. Results We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction. On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(PH oxidase subunit upregulation. Conclusions Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription

  20. EFFECT OF INTRAVITREAL RANIBIZUMAB ON GANGLION CELL COMPLEX AND PERIPAPILLARY RETINAL NERVE FIBER LAYER IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco

    2017-07-01

    To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.

  1. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  2. Molecular events associated with increased regenerative capacity of the goldfish retinal ganglion cells following X-irradiation: decreased level of axonal growth inhibitors

    International Nuclear Information System (INIS)

    Rachailovich, I.; Schwartz, M.

    1984-01-01

    In our previous work we established conditions to study the contribution of non-neuronal cells to the process of goldfish optic nerve regeneration. This issue has been studied successfully by adapting the use of X-irradiation to manipulate division of non-neuronal cells associated with the injured nerve. The regenerative capacity of the goldfish retinal ganglion cells was determined subsequent to the X-ray treatment. The authors present an analysis of the molecular events associated with regeneration and enhanced regenerative capacity which follows X-irradiation. (Auth.)

  3. Molecular events associated with increased regenerative capacity of the goldfish retinal ganglion cells following X-irradiation: decreased level of axonal growth inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Rachailovich, I.; Schwartz, M. (Weizmann Inst. of Science, Rehovot (Israel). Dept. of Neurobiology)

    1984-07-23

    In our previous work we established conditions to study the contribution of non-neuronal cells to the process of goldfish optic nerve regeneration. This issue has been studied successfully by adapting the use of X-irradiation to manipulate division of non-neuronal cells associated with the injured nerve. The regenerative capacity of the goldfish retinal ganglion cells was determined subsequent to the X-ray treatment. The authors present an analysis of the molecular events associated with regeneration and enhanced regenerative capacity which follows X-irradiation.

  4. [The neuroprotective effect of erigeron breviscapus (vant) hand-mazz on retinal ganglion cells after optic nerve crush injury].

    Science.gov (United States)

    Jiang, Bing; Jiang, You-qin

    2003-08-01

    To investigate whether a Chinese herbal medicine, erigeron breviscapus (vant) hand-mazz (EBHM), can protect the retinal ganglion cells (RGC) damaged by calibrated optic nerve crush injury. Forty-two Sprague-Dawley rats were randomly divided into two groups. Calibrated optic nerve crush injury model was induced in the right eyes by a special designed optic nerve clip. The left eyes served as a control. All 42 rats were randomly divided into 2 groups. Group A consisted of the rats with calibrated optic nerve crush injury and group B consisted of rats with calibrated optic nerve crush injury treated with EBHM. In group B, EBHM solution was given once after the crush injury. According to the time interval between the optic nerve crush and the sacrifice, both groups A and B were further divided into three subgroups (day 4, day 14 and day 21). Therefore, there were 7 rats in each subgroup. Three days before sacrifice, 3% fast blue was injected into superior colliculi bilaterally. The eyes were enucleated after the rat was sacrificed, and flat mounts of the retina from both eyes were prepared on a slide and observed under a fluorescence microscope. Four photos with 400 x magnification were taken from each of the four quadrants of the retina 1 mm away from the optic disc. The labeled RGC were counted by a computerized image analyzer. The labeled RGC rate was used for statistical analysis (the labeled RGC rate = number of RGC in injured eye/control eye x 100%). In group A, the labeled RGC rate was (77.79 +/- 7.11)%, (63.76 +/- 3.79)% and (54.66 +/- 4.75)% on day 4, day 14 and day 21, respectively. In group B, the labeled RGC rate was (80.13 +/- 12.03)%, (78.17 +/- 9.19)% and (83.59 +/- 12.61)% on day 4, day 14 and day 21, respectively. In group B, which was treated with EBHM after injury, the labeled RGC rate was significantly higher than that of group A on day 14 and day 21. In the experimental optic nerve crush model in rats, EBHM therapy can increase the survival rate of

  5. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Both systemic and local application of Granulocyte-colony stimulating factor (G-CSF is neuroprotective after retinal ganglion cell axotomy

    Directory of Open Access Journals (Sweden)

    Dietz Gunnar PH

    2009-05-01

    Full Text Available Abstract Background The hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF plays a crucial role in controlling the number of neutrophil progenitor cells. Its function is mediated via the G-CSF receptor, which was recently found to be expressed also in the central nervous system. In addition, G-CSF provided neuroprotection in models of neuronal cell death. Here we used the retinal ganglion cell (RGC axotomy model to compare effects of local and systemic application of neuroprotective molecules. Results We found that the G-CSF receptor is robustly expressed by RGCs in vivo and in vitro. We thus evaluated G-CSF as a neuroprotectant for RGCs and found a dose-dependent neuroprotective effect of G-CSF on axotomized RGCs when given subcutaneously. As stem stell mobilization had previously been discussed as a possible contributor to the neuroprotective effects of G-CSF, we compared the local treatment of RGCs by injection of G-CSF into the vitreous body with systemic delivery by subcutaneous application. Both routes of application reduced retinal ganglion cell death to a comparable extent. Moreover, G-CSF enhanced the survival of immunopurified RGCs in vitro. Conclusion We thus show that G-CSF neuroprotection is at least partially independent of potential systemic effects and provide further evidence that the clinically applicable G-CSF could become a treatment option for both neurodegenerative diseases and glaucoma.

  7. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1, preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN, superior colliculus, and accessory optic system (AOS. In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs. Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.

  8. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease.

    Science.gov (United States)

    Whiting, Rebecca E H; Jensen, Cheryl A; Pearce, Jacqueline W; Gillespie, Lauren E; Bristow, Daniel E; Katz, Martin L

    2016-05-01

    CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests

  9. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Directory of Open Access Journals (Sweden)

    Eun Kyoung Kim

    Full Text Available To evaluate the changes of retinal nerve fiber layer (RNFL, ganglion cell layer (GCL, inner plexiform layer (IPL, and ganglion cell-inner plexiform layer (GCIPL thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT in macular region of glaucoma patients.In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS values were measured using 24-2 standard automated perimetry (SAP.RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001. Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001. In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness.Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  10. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Science.gov (United States)

    Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee

    2017-01-01

    To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  11. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  12. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    Science.gov (United States)

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75 NTR , TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75 NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75 NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  13. Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients.

    Science.gov (United States)

    Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin

    2018-03-01

    The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.

  14. Comparison of Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Pigment Dispersion Syndrome, Pigmentary Glaucoma, and Healthy Subjects with Spectral-domain OCT.

    Science.gov (United States)

    Arifoglu, Hasan Basri; Simavli, Huseyin; Midillioglu, Inci; Berk Ergun, Sule; Simsek, Saban

    2017-01-01

    To evaluate the ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thickness in pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) with RTVue spectral domain optical coherence tomography (SD-OCT). A total of 102 subjects were enrolled: 29 with PDS, 18 with PG, and 55 normal subjects. Full ophthalmic examination including visual field analysis was performed. SD-OCT was used to analyze GCC superior, GCC inferior, and average RNFL thickness. To compare the discrimination capabilities, the areas under the receiver operating characteristic curves were assessed. Superior GCC, inferior GCC, and RNFL thickness values of patients with PG were statistically signicantly lower than those of patients with PDS (p  0.05). The SD-OCT-derived GCC and RNFL thickness parameters can be useful to discriminate PG from both PDS and normal subjects.

  15. Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Yeon Hee Lee

    Full Text Available To compare the patterns of retinal ganglion cell damage between primary open-angle glaucoma (POAG and non-arteritic anterior ischaemic optic neuropathy (NAION.In total, 35 eyes with unilateral NAION, and 70 age- and average peripapillary retinal nerve fibre layer (RNFL thickness-matched eyes with POAG, were enrolled as disease groups; 35 unaffected fellow eyes of the NAION, and 70 age- and refractive error-matched normal subjects for the POAG, were enrolled as their control groups, respectively. The peripapillary RNFL thickness and macular ganglion cell plus inner plexiform layer (GCIPL thickness were compared between the disease groups and their controls, and between the two disease groups.Mean RNFL thicknesses at the 1 and 2 o'clock (superonasal positions were thinner in NAION than in POAG (both p < 0.05. Mean RNFL thickness at 7 o'clock (inferotemporal was thinner in POAG than in NAION (p = 0.001. Although there was no significant difference between NAION and POAG in average GCIPL thickness, all of the sectoral GCIPL thicknesses were thinner in NAION (all p < 0.05, except in the inferior and inferotemporal sectors. The ranges of the clock-hour RNFL with damage greater than the average RNFL thickness reduction, versus fellow eyes and control eyes, were 7 hours in NAION and 4 hours in POAG.The more damaged clock-hour RNFL regions differed between NAION (1 and 2 o'clock and POAG (7 o'clock. Most sectoral GCIPL thicknesses were thinner in NAION than in POAG.

  16. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  17. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  18. Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell Layer in the Epiretinal Membrane: The Repeatability Study of Optical Coherence Tomography.

    Science.gov (United States)

    Lee, Haeng-Jin; Kim, Min-Su; Jo, Young-Joon; Kim, Jung-Yeul

    2015-07-01

    To analyze the repeatability of measurements of the thicknesses of the macula, retinal nerve fiber layer (RNFL), and ganglion cell inner plexiform layer (GCIPL) using spectral-domain optical coherence tomography (SD-OCT) in the epiretinal membrane (ERM). The prospective study analyzed patients who visited our retinal clinic from June 2013 to January 2014. An experienced examiner measured the thicknesses twice using macular cube 512 × 128 and optic disc cube 200 × 200 scans. The repeatability of the thicknesses of the macula, RNFL, and GCIPL were compared using the intraclass correlation coefficient (ICC) of two groups based on the central macular thickness (group A, ≤ 450 μm; group B, > 450 μm). A total of 88 patients were analyzed. The average thicknesses of the central macula, RNFL, and GCIPL were 256.5, 96.6, and 84.4 μm, respectively, in the normal fellow eye and 412.3, 94.6, and 56.7 μm in the affected eye. The ICCs of the central macula, RNFL, and GCIPL were 0.995, 0.994, and 0.996, respectively, for the normal fellow eye and 0.991, 0.973, and 0.881 for the affected eye. The average thicknesses of the central macula, RNFL, and GCIPL in group A were 360.9, 93.5, and 63.4 μm, respectively, and the ICCs were 0.997, 0.987, and 0.995. The thicknesses in group B were 489.5, 96.2, and 46.6 μm, respectively, and the ICCs were 0.910, 0.942, and 0.603, significantly lower repeatability compared with group A (P macula.

  19. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  20. The Effect of LASIK Procedure on Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Maja Zivkovic

    2017-01-01

    Full Text Available Purpose. To evaluate the effect of applied suction during microkeratome-assisted laser in situ keratomileusis (LASIK procedure on peripapillary retinal nerve fiber layer (RNFL thickness as well as macular ganglion cell-inner plexiform layer (GC-IPL thickness. Methods. 89 patients (124 eyes with established myopia range from −3.0 to −8.0 diopters and no associated ocular diseases were included in this study. RNFL and GC-IPL thickness measurements were performed by spectral domain optical coherence tomography (SD OCT one day before LASIK and at 1 and 6 months postoperatively. Results. Mean RNFL thickness prior to LASIK was 93.86±12.17 μm while the first month and the sixth month postoperatively were 94.01±12.04 μm and 94.46±12.27 μm, respectively. Comparing results, there is no significant difference between baseline, one month, and six months postoperatively for mean RNFL (p>0.05. Mean GC-IPL thickness was 81.70±7.47 μm preoperatively with no significant difference during the follow-up period (82.03±7.69 μm versus 81.84±7.64 μm; p>0.05. Conclusion. RNFL and GC-IPL complex thickness remained unaffected following LASIK intervention.

  1. Protective effects of a composition of Chinese herbs-Gurigumu-13 on retinal ganglion cell apoptosis in DBA/2J glaucoma mouse model

    Directory of Open Access Journals (Sweden)

    Qiu-Li Zhang

    2018-03-01

    Full Text Available AIM: To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM for glaucoma treatment. METHODS: DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs. The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA was examined by ELISA assay. RESULTS: GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION: GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.

  2. Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma

    Directory of Open Access Journals (Sweden)

    Cordeiro DV

    2011-09-01

    Full Text Available Daniela Valença Cordeiro1, Verônica Castro Lima1,2, Dinorah P Castro1,3, Leonardo C Castro1,3, Maria Angélica Pacheco2, Jae Min Lee2, Marcelo I Dimantas2, Tiago Santos Prata1,21Department of Ophthalmology, Federal University of São Paulo, São Paulo, 2Hospital Medicina dos Olhos, São Paulo, 3Centro Brasileiro de Especialidades Oftalmológicas, Araraquara, BrazilAim: To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC and conventional peripapillary retinal nerve fiber layer (pRNFL analyses provided by spectral domain optical coherence tomography (SD-OCT in glaucoma.Methods: Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers and pRNFL thickness measurement (3.45 mm circular scan by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm2 disc sizes were arbitrarily chosen (based on data distribution and the predicted areas under the ROC curves (AUCs and sensitivities were compared at fixed specificities for each.Results: Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872 and GCC parameters (average thickness = 0.824; P = 0.19.The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176 or average GCC thickness (0.088; P ≥ 0.56. AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm2 were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities – at

  3. Cats

    Science.gov (United States)

    ... CDC.gov . Healthy Pets, Healthy People About Pets & People Pets & Other Animals Birds Cats Dogs Farm Animals Backyard ... pets CDC Podcasts Zoonoses in the Bedroom CDC People Can Catch Diseases from Their Pets CDC Helpful books and references Cat-associated outbreaks ...

  4. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  5. Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma.

    Science.gov (United States)

    Cordeiro, Daniela Valença; Lima, Verônica Castro; Castro, Dinorah P; Castro, Leonardo C; Pacheco, Maria Angélica; Lee, Jae Min; Dimantas, Marcelo I; Prata, Tiago Santos

    2011-01-01

    To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC) and conventional peripapillary retinal nerve fiber layer (pRNFL) analyses provided by spectral domain optical coherence tomography (SD-OCT) in glaucoma. Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers) and pRNFL thickness measurement (3.45 mm circular scan) by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC) curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm(2) disc sizes were arbitrarily chosen (based on data distribution) and the predicted areas under the ROC curves (AUCs) and sensitivities were compared at fixed specificities for each. Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872) and GCC parameters (average thickness = 0.824; P = 0.19). The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176) or average GCC thickness (0.088; P ≥ 0.56). AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm(2)) were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities - at 80% specificity for average pRNFL (84.5%) and GCC thicknesses (74.5%) - were found with disc sizes fixed at 1.5 mm(2) and 2.5 mm(2). Diagnostic accuracy was similar between pRNFL and GCC thickness parameters. Although not statistically significant, there was a trend for a better diagnostic accuracy of pRNFL thickness measurement in cases of smaller discs. For GCC analysis, an inverse effect

  6. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Junming Wang

    Full Text Available c-Jun, c-Jun N-terminal kinase(JNK and endothelin B (ETB receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP. In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE. The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression

  7. Evaluation of Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer in Primary Craniopharyngioma by Fourier-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun

    2016-07-03

    BACKGROUND The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. MATERIAL AND METHODS Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. RESULTS The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). CONCLUSIONS GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients.

  8. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Donald R Cantrell

    2010-10-01

    Full Text Available The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC analysis, which we term Spike Triggered Covariance - Non-Centered (STC-NC analysis. Using a multi-electrode array (MEA, we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3 regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina.

  9. Study of the neuroprotective effects and mechanisms of Tianma Gouteng Decoction on retinal ganglion cells in rat optic nerve crush model

    Directory of Open Access Journals (Sweden)

    Fan-Tao Lyu

    2018-01-01

    Full Text Available AIM: To observe the mechanism of Tianma Gouteng Decoction on the protein molecular level in the optic nerve crush model rats. METHODS: Totally 36 participants 36 male Wistar rats were divided randomly into six groups(6 in every group: normal control group, negative control group, Tianma Gouteng Decoction treatment groups(con-centrations were 0.6g/mL, 1.2g/mL, 2.4g/mL respictivelyand ginkgo biloba tablets positive control group(concentrations was 1.2mg/mL. Nothing was done in the normal control group. The optic nerve of right eye in the other groups was done with the optic nerve crush model. Normal control group and negative control group was treated only with water. The average grey scale values of the N-methyl-D-aspartic acid receptor 2B(NMDA2Breceptor protein, beta - amyloid protein(Aβin the average grey scale values were detected. RESULTS: The average grey scale value of Tianma Gouteng Decoction in low, medium and high dose groups about NMDA2B receptor protein was significantly less than that of the negative control group(all PP=0.092, 0.411, 0.676, the difference between normal control group and negative control group was significant(PP=0.030, 0.001. The low dose group than the negative control group was not obviously(P=0.614. The high dose group was not significantly different from the positive control group(P=0.927, the difference between normal control group and negative control group was significant(PCONCLUSION: Tianma Gouteng Decoction can go through the decrease of the NMDA2B receptor protein expression and the control of beta-amyloid deposition to reduce the retinal ganglion cell injury and apoptosis.

  10. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities.

    Science.gov (United States)

    Teotia, Pooja; Van Hook, Matthew J; Wichman, Christopher S; Allingham, R Rand; Hauser, Michael A; Ahmad, Iqbal

    2017-11-01

    Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252. © 2017 AlphaMed Press.

  11. Normative Database and Color-code Agreement of Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-inner Plexiform Layer Thickness in a Vietnamese Population.

    Science.gov (United States)

    Perez, Claudio I; Chansangpetch, Sunee; Thai, Andy; Nguyen, Anh-Hien; Nguyen, Anwell; Mora, Marta; Nguyen, Ngoc; Lin, Shan C

    2018-06-05

    Evaluate the distribution and the color probability codes of the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thickness in a healthy Vietnamese population and compare them with the original color-codes provided by the Cirrus spectral domain OCT. Cross-sectional study. We recruited non-glaucomatous Vietnamese subjects and constructed a normative database for peripapillary RNFL and macular GCIPL thickness. The probability color-codes for each decade of age were calculated. We evaluated the agreement with Kappa coefficient (κ) between OCT color probability codes with Cirrus built-in original normative database and the Vietnamese normative database. 149 eyes of 149 subjects were included. The mean age of enrollees was 60.77 (±11.09) years, with a mean spherical equivalent of +0.65 (±1.58) D and mean axial length of 23.4 (±0.87) mm. Average RNFL thickness was 97.86 (±9.19) microns and average macular GCIPL was 82.49 (±6.09) microns. Agreement between original and adjusted normative database for RNFL was fair for average and inferior quadrant (κ=0.25 and 0.2, respectively); and good for other quadrants (range: κ=0.63-0.73). For macular GCIPL κ agreement ranged between 0.39 and 0.69. After adjusting with the normative Vietnamese database, the percent of yellow and red color-codes increased significantly for peripapillary RNFL thickness. Vietnamese population has a thicker RNFL in comparison with Cirrus normative database. This leads to a poor color-code agreement in average and inferior quadrant between the original and adjusted database. These findings should encourage to create a peripapillary RNFL normative database for each ethnicity.

  12. LONGITUDINAL CHANGES IN THICKNESSES OF THE MACULA, GANGLION CELL-INNER PLEXIFORM LAYER, AND RETINAL NERVE FIBER LAYER AFTER VITRECTOMY: A 12-Month Observational Study.

    Science.gov (United States)

    Lim, Hyung-Bin; Lee, Min-Woo; Kwak, Baek-Soo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-01-01

    To analyze longitudinal changes in the thicknesses of the macula, ganglion cell-inner plexiform layer (GC-IPL), and peripapillary retinal nerve fiber layer (RNFL) after vitrectomy. Thirty-eight patients diagnosed with intraocular lens (IOL) dislocation without evidence of other vitreoretinal diseases were included. They underwent conventional vitrectomy and IOL transscleral fixation, with a follow-up of 12 months. Using spectral domain optical coherence tomography, the thicknesses of the macula, GC-IPL, and peripapillary RNFL in the vitrectomized and fellow control eyes were measured. Various optic nerve head parameters were also determined. Optical coherence tomography showed that there were no significant differences in postoperative central macular thickness compared with baseline values. The average GC-IPL thickness increased 1 month after surgery from baseline (P = 0.038). The average RNFL thickness increased from baseline at 1 month (P = 0.001) and 3 months (P = 0.011) after vitrectomy. The mean foveal, GC-IPL, and RNFL thicknesses of the study eyes compared with the fellow control eyes increased at 1 month (P = 0.034), 1 month (P = 0.048), and 1 month (P = 0.013) to 3 months (P = 0.038), respectively, after surgery. However, no significant differences were found in intraocular pressure or optic nerve head parameters between the study and fellow control eyes at 12 months after surgery. Transient increases in the thickness of the macula and GC-IPL were observed at 1 month after vitrectomy, and the postoperative RNFL thickness increased until 3 months after surgery, after which it returned to preoperative levels. There was no significant change in intraocular pressure or optic nerve head parameters before and after surgery.

  13. Visual Neurons in the Superior Colliculus Innervated by Islet2+ or Islet2− Retinal Ganglion Cells Display Distinct Tuning Properties

    Directory of Open Access Journals (Sweden)

    Rachel B. Kay

    2017-10-01

    Full Text Available Throughout the visual system, different subtypes of neurons are tuned to distinct aspects of the visual scene, establishing parallel circuits. Defining the mechanisms by which such tuning arises has been a long-standing challenge for neuroscience. To investigate this, we have focused on the retina’s projection to the superior colliculus (SC, where multiple visual neuron subtypes have been described. The SC receives inputs from a variety of retinal ganglion cell (RGC subtypes; however, which RGCs drive the tuning of different SC neurons remains unclear. Here, we pursued a genetic approach that allowed us to determine the tuning properties of neurons innervated by molecularly defined subpopulations of RGCs. In homozygous Islet2-EphA3 knock-in (Isl2EA3/EA3 mice, Isl2+ and Isl2− RGCs project to non-overlapping sub-regions of the SC. Based on molecular and anatomic data, we show that significantly more Isl2− RGCs are direction-selective (DS in comparison with Isl2+ RGCs. Targeted recordings of visual responses from each SC sub-region in Isl2EA3/EA3 mice revealed that Isl2− RGC-innervated neurons were significantly more DS than those innervated by Isl2+ RGCs. Axis-selective (AS neurons were found in both sub-regions, though AS neurons innervated by Isl2+ RGCs were more tightly tuned. Despite this segregation, DS and AS neurons innervated by Isl2+ or Isl2− RGCs did not differ in their spatial summation or spatial frequency (SF tuning. Further, we did not observe alterations in receptive field (RF size or structure of SC neurons innervated by Isl2+ or Isl2− RGCs. Together, these data show that innervation by Isl2+ and Isl2− RGCs results in distinct tuning in the SC and set the stage for future studies investigating the mechanisms by which these circuits are built.

  14. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    Science.gov (United States)

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  15. A Comparative Analysis of Ganglion Cell Complex Parameters in ...

    African Journals Online (AJOL)

    Dr femi Oderinlo

    in the eyes, the optic nerve head, nerve fibre layer and retinal ganglion cells. Retinal ganglion cells encompass three layers ... of the macula in eyes with mild diabetic retinopathy. 8. *Correspondence: O Oderinlo, Eye Foundation ... most sensitive detection of GCC thinning. FLV provides a. 10 quantitative measure of the ...

  16. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population

    Directory of Open Access Journals (Sweden)

    Nabanita Barua

    2016-01-01

    Full Text Available Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD optical coherence tomography (OCT among primary open angle glaucoma (POAG and ocular hypertension (OHT versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group. After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson′s coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P 0.5 when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715. Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable.

  17. Periosteal ganglion

    International Nuclear Information System (INIS)

    Kolar, J.; Zidkova, H.; Matejovsky, Z.

    1986-01-01

    Ganglionic cysts are a common myxomatous degenerative disorder in periarticular connective tissues particularly in the hand and foot as well as within the subchondral bone adjacent to osteoarthritic joints. Compared with them, periosteal ganglia are only rarely reported in the literature. Their radiologic features are quite typical as documented by the following observation. (orig.) [de

  18. Ganglion Cysts

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Ganglion Cysts Email to a friend * required fields ...

  19. THICKNESS OF THE MACULA, RETINAL NERVE FIBER LAYER, AND GANGLION CELL-INNER PLEXIFORM LAYER IN THE AGE-RELATED MACULAR DEGENERATION: The Repeatability Study of Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-02-01

    To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.

  20. Optical quality of the living cat eye.

    Science.gov (United States)

    Bonds, A B

    1974-12-01

    1. The optical quality of the living cat eye was measured under conditions similar to those of cat retinal ganglion cell experiments by recording the aerial image of a nearly monochromatic thin line of light.2. Experiments were performed to assess the nature of the fundal reflexion of the cat eye, which was found to behave essentially as a diffuser.3. The optical Modulation Transfer Function (MTF) was calculated from the measured aerial linespread using Fourier mathematics; the MTF of a ;typical' cat eye was averaged from data collected from ten eyes.4. The state of focus of the optical system, the pupil size and the angle of the light incident on the eye were all varied to determine their effect on image quality.5. By using an image rotator, the aerial linespread was measured for several orientations of the line; these measurements yielded an approximation of the two-dimensional pointspread completely characterizing the optical system.6. Evidence is reviewed to show that the optical resolution of the cat, albeit some 3-5 times worse than that of human, appears to be better than the neural resolution of its retina and its visual system as a whole.

  1. Size of the Optic Nerve Head and Its Relationship with the Thickness of the Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer in Patients with Primary Open Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Nobuko Enomoto

    2015-01-01

    Full Text Available Purpose. To evaluate the relationships among the optic nerve head (ONH area, macular ganglion cell complex (mGCC thickness, circumpapillary retinal nerve fiber layer (cpRNFL thickness, and visual field defects in patients with primary open angle glaucoma (POAG. Methods. This retrospective study included 90 eyes of 90 patients with POAG. The ONH area, rim area, mGCC thickness, and cpRNFL thickness were measured using optical coherence tomography. Mean deviation (MD was measured using standard automated perimetry. The relationships among clinical factors including age, refraction, the ONH area, the rim area, the mGCC thickness, the cpRNFL thickness, and MD were evaluated using correlation coefficients and multiple regression analyses. Results. The significant correlation of the ONH area with refraction (r=0.362, P<0.001, the mGCC thickness (r=0.225, P=0.033, and the cpRNFL thickness (r=0.253, P=0.016 was found. Multiple regression analysis showed that the ONH area, rim area, and MD were selected as significant contributing factors to explain the mGCC thickness and cpRNFL thickness. No factor was selected to explain MD. Conclusions. The ONH area, in other words, the disc size itself may affect the mGCC thickness and cpRNFL thickness in POAG patients.

  2. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway.

    Science.gov (United States)

    Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi

    2016-04-20

    Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin

  3. Melanopsin expressing human retinal ganglion cells

    DEFF Research Database (Denmark)

    Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen

    2017-01-01

    microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1...

  4. Effects of simvastatin on CAT-1-mediated arginine transport and NO level under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell lines (TR-iBRB).

    Science.gov (United States)

    Tun, Temdara; Kang, Young-Sook

    2017-05-01

    Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  6. The meniscus ganglion

    International Nuclear Information System (INIS)

    Schaefer, H.

    1982-01-01

    Normal dimensions of the meniscus quoted in the literature vary somewhat; measurements were therefore carried out on the height and width on standardised arthrograms. This made it possible to evaluate changes in the height of the meniscus objectively and to diagnose degeneration with a ganglion at an earlier stage. Taking into account other, secondary, signs, 261 meniscus ganglia were diagnosed amongst 3133 meniscus lesions (8.3%) in the course of 5650 knee arthrograms. These were confirmed at operation and histologically. For the first time it has been possible to provide an estimate of the frequency of meniscus ganglion in the radiological literature. (orig.) [de

  7. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  8. REDUCED GANGLION CELL VOLUME ON OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH GEOGRAPHIC ATROPHY.

    Science.gov (United States)

    Ramkumar, Hema L; Nguyen, Brian; Bartsch, Dirk-Uwe; Saunders, Luke J; Muftuoglu, Ilkay Kilic; You, Qisheng; Freeman, William R

    2017-11-07

    Geographic atrophy (GA) is the sequelae of macular degeneration. Automated inner retinal analysis using optical coherence tomography is flawed because segmentation software is calibrated for normal eyes. The purpose of this study is to determine whether ganglion cell layer (GCL) volume is reduced in GA using manual analysis. Nineteen eyes with subfoveal GA and 22 controls were selected for morphometric analyses. Heidelberg scanning laser ophthalmoscope optical coherence tomography images of the optic nerve and macula were obtained, and the Viewing Module was used to manually calibrate retinal layer segmentation. Retinal layer volumes in the central 3-mm and surrounding 6-mm diameter were measured. Linear mixed models were used for statistics. The GCL volume in the central 3 mm of the macula is less (P = 0.003), and the retinal nerve fiber layer volume is more (P = 0.02) in patients with GA when compared with controls. Ganglion cell layer volume positively correlated with outer nuclear layer volume (P = 0.020). The patients with geographic atrophy have a small significant loss of the GCL. Ganglion cell death may precede axonal loss, and increased macular retinal nerve fiber layer volumes are not indicative of GCL volume. Residual ganglion cell stimulation by interneurons may enable vision in patients with GA.

  9. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  10. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  11. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  12. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  13. Sphenopalatine ganglion neuromodulation in migraine

    DEFF Research Database (Denmark)

    Khan, Sabrina; Schoenen, Jean; Ashina, Messoud

    2014-01-01

    OBJECTIVE: The objective of this article is to review the prospect of treating migraine with sphenopalatine ganglion (SPG) neurostimulation. BACKGROUND: Fuelled by preliminary studies showing a beneficial effect in cluster headache patients, the potential of treating migraine with neurostimulation...

  14. Progress toward the maintenance and repair of degenerating retinal circuitry.

    Science.gov (United States)

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  15. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  16. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  17. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    Science.gov (United States)

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  19. Domestic cat

    Science.gov (United States)

    Diffendorfer, James E.

    2017-01-01

    The familiar domestic cat is not native to southern California and is considered an invasive spe-cies by biologists and conservation organizations. When owners abandon their cats, wild or feral populations may arise, as they have in San Diego County. Cats’ pelage color, tail length, and hair thickness vary widely, given human fascination with breeding diverse phenotypes, but all have a typical felid body with upright ears, forward-looking eyes adapted for nocturnal foraging, protractible claws, and a sinuous, flexible body. Cats allowed outdoors and feral cats kill and eat a wide variety of vertebrates such as small mammals, birds, and reptiles

  20. Arthroscopic excision of ganglion cysts.

    Science.gov (United States)

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Tibial periosteal ganglion cyst: The ganglion in disguise

    Science.gov (United States)

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  2. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis

    DEFF Research Database (Denmark)

    Britze, Josefine; Pihl-Jensen, Gorm; Frederiksen, Jette Lautrup

    2017-01-01

    of Science and Scopus. Studies were included if they measured GCL thickness using OCT in patients with either ON, MS or clinically isolated syndrome. For the meta-analysis, we compared GCL thickness in MS patients with and without prior ON, to healthy controls. 42/252 studies were reviewed. In acute ON...

  3. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    Science.gov (United States)

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Blind Cat

    Directory of Open Access Journals (Sweden)

    Arka Chattopadhyay

    2015-08-01

    There’s no way to know whether he was blind from birth or blindness was something he had picked up from his fights with other cats. He wasn’t an urban cat. He lived in a little village, soaked in the smell of fish with a river running right beside it. Cats like these have stories of a different kind. The two-storied hotel where he lived had a wooden floor. It stood right on the riverbank and had more than a tilt towards the river, as if deliberately leaning on the water.

  5. Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.

    Science.gov (United States)

    Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A; Lee, Barry B; Alonso, Jose Manuel

    2015-07-01

    Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  7. Retinitis pigmentosa

    Science.gov (United States)

    ... treatments for retinitis pigmentosa, including the use of DHA, which is an omega-3 fatty acid. Other ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 630. ...

  8. Cytomegalovirus retinitis

    Science.gov (United States)

    ... have weakened immune systems as a result of: HIV/AIDS Bone marrow transplant Chemotherapy Drugs that suppress the immune system Organ transplant Symptoms Some people with CMV retinitis have no symptoms. ...

  9. Retinal Detachment

    Science.gov (United States)

    ... to your brain. It provides the sharp, central vision needed for reading, driving, and seeing fine detail. A retinal detachment lifts or pulls the retina from its normal position. It can occur at ...

  10. Retention of retinal axon collateral is responsible for induced ipsilateral retinotectal projections in adult goldfish.

    Science.gov (United States)

    Sharma, S C; Tsai, C

    1991-01-01

    In normal goldfish, optic axons innervate only the contralateral optic tectum. When one eye was enucleated and the optic nerve of the other eye crushed, the regenerating optic axons innervated both optic tecta. We studied the presence of bilaterally projecting retinal ganglion cells by double retrograde cell labeling methods using Nuclear Yellow and True Blue dyes. About 10% of the retinal ganglion cells were double labeled and these cells were found throughout the retina. In addition, HRP application to the ipsilateral tectum revealed retrogradely-labeled retinal ganglion cells of all morphological types. These results suggest that induced ipsilateral projections are formed by regenerating axon collaterals and that all cell types are involved in the generation of normal mirror image typography.

  11. Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G

    Directory of Open Access Journals (Sweden)

    Christian M. Felix

    2016-10-01

    Full Text Available Abstract Background Neuromyelitis optica (NMO, an autoimmune inflammatory disease of the central nervous system, is often associated with retinal abnormalities including thinning of the retinal nerve fiber layer and microcystic changes. Here, we demonstrate that passive transfer of an anti-aquaporin-4 autoantibody (AQP4-IgG produces primary retinal pathology. Methods AQP4-IgG was delivered to adult rat retinas by intravitreal injection. Rat retinas and retinal explant cultures were assessed by immunofluorescence. Results Immunofluorescence showed AQP4-IgG deposition on retinal Müller cells, with greatly reduced AQP4 expression and increased glial fibrillary acidic protein by 5 days. There was mild retinal inflammation with microglial activation but little leukocyte infiltration and loss of retinal ganglion cells by 30 days with thinning of the ganglion cell complex. Interestingly, the loss of AQP4 was complement independent as seen in cobra venom factor-treated rats and in normal rats administered a mutated AQP4-IgG lacking complement effector function. Exposure of ex vivo retinal cultures to AQP4-IgG produced a marked reduction in AQP4 expression by 24 h, which was largely prevented by inhibitors of endocytosis or lysosomal acidification. Conclusions Passive transfer of AQP4-IgG results in primary, complement-independent retinal pathology, which might contribute to retinal abnormalities seen in NMO patients.

  12. Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination.

    Science.gov (United States)

    Eldred, Megan K; Charlton-Perkins, Mark; Muresan, Leila; Harris, William A

    2017-03-15

    To investigate the cell-cell interactions necessary for the formation of retinal layers, we cultured dissociated zebrafish retinal progenitors in agarose microwells. Within these wells, the cells re-aggregated within hours, forming tight retinal organoids. Using a Spectrum of Fates zebrafish line, in which all different types of retinal neurons show distinct fluorescent spectra, we found that by 48 h in culture, the retinal organoids acquire a distinct spatial organisation, i.e. they became coarsely but clearly laminated. Retinal pigment epithelium cells were in the centre, photoreceptors and bipolar cells were next most central and amacrine cells and retinal ganglion cells were on the outside. Image analysis allowed us to derive quantitative measures of lamination, which we then used to find that Müller glia, but not RPE cells, are essential for this process. © 2017. Published by The Company of Biologists Ltd.

  13. The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina.

    Science.gov (United States)

    Kirby, A W

    1979-07-01

    The effect of intravenous strychnine and the GABA antagonists picrotoxin and bicuculline upon the discharge pattern of center-surround-organized cat retinal ganglion cells of X and Y type were studied. Stimuli (mostly scotopic, and some photopic) were selected such that responses from both on and off-center cells were either due to the center, due to the surround, or clearly mixed. Pre-drug control responses were obtained, and their behavior following administration of the antagonists was observed for periods up to several hours. X-cell responses were affected in a consistent manner by strychnine while being unaffected by GABA antagonists. All observed changes following strychnine were consistent with a shift in center-surround balance of X cells in favor of the center. For Y-cell responses to flashing annuli following strychnine, there was either no shift or a relatively small shift in center-surround balance. Compared to X-cell responses to flashing lights, those of Y cells were very little affected by strychnine and in most cases were unaffected. It thus appears that glycine plays a similar role in receptive field organization of X cells as does GABA in Y cells (Kirby and Enroth-Cugell, 1976. J. Gen. Physiol. 68:465-484).

  14. Katsvanga, CAT

    African Journals Online (AJOL)

    Katsvanga, CAT. Vol 1, No 2 (2006) - Articles Eucalyptus species performance under short rotation conditions on the Vumba highlands in Zimbabwe Abstract PDF. ISSN: 1819-3692. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners ...

  15. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  16. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    Science.gov (United States)

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  17. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Do, Ji Yeon; Choi, Young Keun [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kook, Hyun [Department of Pharmacology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, In-Kyu [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Dong Ho, E-mail: sarasate2222@gmail.com [Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  18. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    International Nuclear Information System (INIS)

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-01-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O 2 ). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice

  19. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    Science.gov (United States)

    2016-12-01

    Precision Tissue Models”, Distinguished Seminar, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of...in vitro drug screening and potential in vivo retinal neuron repair. The expansion of ganglion cells is tightly related to the spatial arrangement of...AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR

  20. Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Adnan Riaz, MD

    2018-04-01

    Full Text Available History of present illness: A 58-year-old female presented to the emergency department reporting six days of progressive, atraumatic left eye vision loss. Her symptoms started with the appearance of dark spots and “spider webs,” and then progressed to darkening of vision in her left eye. She reports mild pain since yesterday. Her review of symptoms was otherwise negative. Ocular physical examination revealed normal external appearance, intact extraocular movements, and visual acuities of 20/25 OD and light/dark sensitivity OS. Fluorescein uptake was negative and slit lamp exam was unremarkable. Significant findings: Bedside ocular ultrasound revealed a serpentine, hyperechoic membrane that appeared tethered to the optic disc posteriorly with hyperechoic material underneath. These findings are consistent with retinal detachment (RD and associated retinal hemorrhage. Discussion: The retina is a layer of organized neurons that line the posterior portion of the posterior chamber of the eye. RD occurs when this layer separates from the underlying epithelium, resulting in ischemia and progressive photoreceptor degeneration, with potentially rapid and permanent vision loss if left untreated.1 Risk factors include advanced age, male sex (60%, race (Asians and Jews, and myopia and lattice degeneration.2 Bedside ultrasound (US performed by emergency physicians provides a valuable tool that has been used by ophthalmologists for decades to evaluate intraocular disease.1,3 Findings on bedside ultrasound consistent with RD include a hyperechoic membrane floating in the posterior chamber. RD usuallyremain tethered to the optic disc posteriorly and do not cross midline, a feature distinguishing them from posterior vitreous detachments. Associated retinal hemorrhage, seen as hyperechoic material under the retinal flap, can often be seen.1,2 US can also distinguish between “mac-on” and “mac-off” detachments. If the retina is still attached to the

  1. The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations.

    Science.gov (United States)

    Collin, S P

    1988-01-01

    A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.

  2. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  3. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  4. CT and fluoroscopy guided celiac ganglion block

    International Nuclear Information System (INIS)

    Lim, Sun Kyung; Kwon, Dae Ik; Ahn, Hyup; Kim, Jong Il; Kim, Byung Young; Lee, Jong Gil

    1994-01-01

    To evaluate the effects and usefulness of fluoroscopy guided celiac ganglion block after marking of needle path with CT scan. Celiac ganglion block with 100% ethyl alcohol was performed in 50 cancer patients who were inoperable and had intractable abdominal pain. Duration and degree of pain relief after the procedure and its complication were analyzed. Early pain relief was observed in 98% and long term relief in 68% without serious complication. Fluoroscopy guided celiac ganglion block after marking of needle path with CT scan was a safe and valuable procedure in relieving intractable pain in terminal cancer patients and reduced the time in the CT room

  5. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2018-05-01

    Full Text Available AIM: To evaluate the intrinsic excitability of retinal ganglion cells (RGCs in degenerated retinas. METHODS: The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS rats, a common retinitis pigmentosa (RP model, in a relatively late stage of retinal degeneration (P90 were investigated. Several parameters of RGC morphologies and action potentials (APs were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS: Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells, and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION: RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  6. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  7. INVESTIGATION OF ENROFLOXACIN-ASSOCIATED RETINAL TOXICITY IN NONDOMESTIC FELIDS.

    Science.gov (United States)

    Newkirk, Kim M; Beard, L Kathryn; Sun, Xiaocun; Ramsay, Edward C

    2017-06-01

    Enrofloxacin is known to cause retinal toxicity in domestic cats. The hallmark lesion of enrofloxacin-associated retinal toxicity in domestic cats is thinning of the outer nuclear layer of the retina. Enrofloxacin is commonly used to treat bacterial infections in nondomestic felids because of its action against a wide spectrum of bacteria and the ability for it to be given orally. No previous studies have investigated the potential retinal toxicity of enrofloxacin in nondomestic felids. This retrospective study evaluated 81 eyes from 14 lions ( Panthera leo ) and 33 tigers ( Panthera tigris ) that had been enucleated or collected postmortem. The thickness of the outer nuclear retina was assessed in two separate sites in each eye by counting the rows of nuclei and by using digital image analysis software to determine the area of the nuclei at each site. Medical records were reviewed to determine the enrofloxacin dose for each cat. Cats that had not received enrofloxacin (n = 11) were compared with treated animals (n = 36). The outer nuclear layer thickness or area in treated versus untreated cats was not significantly different. Additionally, no clinical blindness was reported in any of the cats. This study showed no evidence of enrofloxacin-associated thinning of the outer nuclear layer in the lions and tigers evaluated, suggesting that enrofloxacin can be used safely in these animals.

  8. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available Alzheimer's disease (AD is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ in brain and retina. Because bone marrow transplantation (BMT results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4% compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.

  9. Ganglion block. When and how?

    International Nuclear Information System (INIS)

    Bale, R.

    2015-01-01

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [de

  10. Establishing an experimental rat model of photodynamically-induced retinal vein occlusion using erythrosin B

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-04-01

    Full Text Available AIM:To develop a reliable, reproducible rat model of retinal vein occlusion (RVO with a novel photosensitizer (erythrosin B and study the cellular responses in the retina.METHODS:Central and branch RVOs were created in adult male rats via photochemically-induced ischemia. Retinal changes were monitored via color fundus photography and fluorescein angiography at 1 and 3h, and 1, 4, 7, 14, and 21d after irradiation. Tissue slices were evaluated histopathologically. Retinal ganglion cell survival at different times after RVO induction was quantified by nuclear density count. Retinal thickness was also observed.RESULTS:For all rats in both the central and branch RVO groups, blood flow ceased immediately after laser irradiation and retinal edema was evident at one hour. The retinal detachment rate was 100% at 3h and developed into bullous retinal detachment within 24h. Retinal hemorrhages were not observed until 24h. Clearance of the occluded veins at 7d was observed by fluorescein angiography. Disease manifestation in the central RVO eyes was more severe than in the branch RVO group. A remarkable reduction in the ganglion cell count and retinal thickness was observed in the central RVO group by 21d, whereas moderate changes occurred in the branch RVO group.CONCLUSION: Rat RVO created by photochemically-induced ischemia using erythrosin B is a reproducible and reliable animal model for mimicking the key features of human RVO. However, considering the 100% rate of retinal detachment, this animal model is more suitable for studying RVO with chronic retinal detachment.

  11. Brazilian Green Propolis Protects against Retinal Damage In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yuta Inokuchi

    2006-01-01

    Full Text Available Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological (anticancer, antimicrobial and anti-inflammatory effects. We investigated whether Brazilian green propolis exerts neuroprotective effects in the retina in vitro and/or in vivo. In vitro, retinal damage was induced by 24 h hydrogen peroxide (H2O2 exposure, and cell viability was measured by Hoechst 33342 and YO-PRO-1 staining or by a resazurin–reduction assay. Propolis inhibited the neurotoxicity and apoptosis induced in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus by 24 h H2O2 exposure. Propolis also inhibited the neurotoxicity induced in RGC-5 cultures by staurosporine. Regarding the possible underlying mechanism, in pig retina homogenates propolis protected against oxidative stress (lipid peroxidation, as also did trolox (water-soluble vitamin E. In mice in vivo, propolis (100 mg kg−1; intraperitoneally administered four times reduced the retinal damage (decrease in retinal ganglion cells and in thickness of inner plexiform layer induced by intravitreal in vivo N-methyl-d-aspartate injection. These findings indicate that Brazilian green propolis has neuroprotective effects against retinal damage both in vitro and in vivo, and that a propolis-induced inhibition of oxidative stress may be partly responsible for these neuroprotective effects.

  12. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    Science.gov (United States)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  13. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Science.gov (United States)

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  14. Schroedinger's cat

    Energy Technology Data Exchange (ETDEWEB)

    Lubkin, E [Wisconsin Univ., Madison (USA). Dept. of Physics

    1979-08-01

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a matrix format (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and Schroedinger's cat symbolizes this broader perspective.

  15. Schroedinger's cat

    International Nuclear Information System (INIS)

    Lubkin, E.

    1979-01-01

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a 'matrix format' (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and 'Schroedinger's cat' symbolizes this broader perspective. (author)

  16. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice

    OpenAIRE

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-01-01

    Background Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. Methods CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GF...

  17. From retinal waves to activity-dependent retinogeniculate map development.

    Science.gov (United States)

    Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen

    2012-01-01

    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  18. From retinal waves to activity-dependent retinogeniculate map development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Markowitz

    Full Text Available A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+-activated K(+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  19. Cat and Dog Bites

    Science.gov (United States)

    ... Wellness Staying Healthy Pets and Animals Cat and Dog Bites Cat and Dog Bites Share Print Cat and dog bites are common injuries. A family pet or ... bites. Path to safety If a cat or dog bites you, you should: Wash the wound gently ...

  20. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone

    Directory of Open Access Journals (Sweden)

    Tomomi Masuda

    2017-01-01

    Full Text Available Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD, glaucoma, diabetic retinopathy (DR, and retinal vein occlusion (RVO. An excess amount of reactive oxygen species (ROS can lead to functional and morphological impairments in retinal pigment epithelium (RPE, endothelial cells, and retinal ganglion cells (RGCs. Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.

  1. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

    Science.gov (United States)

    Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress. PMID:28194256

  2. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.

    Science.gov (United States)

    Stafford, Ben K; Sher, Alexander; Litke, Alan M; Feldheim, David A

    2009-10-29

    During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.

  3. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  4. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    Science.gov (United States)

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.

  5. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  6. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  7. Aldose reductase mediates retinal microglia activation

    International Nuclear Information System (INIS)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-01-01

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1"G"F"P mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR"W"T background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  8. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  9. Retinal layer measurements after successful macula-off retinal detachment repair using optical coherence tomography.

    Science.gov (United States)

    Menke, Marcel N; Kowal, Jens H; Dufour, Pascal; Wolf-Schnurrbusch, Ute E; Ceklic, Lala; Framme, Carsten; Wolf, Sebastian

    2014-09-04

    Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. Piriformis ganglion: An uncommon cause of sciatica.

    Science.gov (United States)

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  12. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    Science.gov (United States)

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  13. Ganglion cell loss in relation to visual disability in multiple sclerosis.

    Science.gov (United States)

    Walter, Scott D; Ishikawa, Hiroshi; Galetta, Kristin M; Sakai, Reiko E; Feller, Daniel J; Henderson, Sam B; Wilson, James A; Maguire, Maureen G; Galetta, Steven L; Frohman, Elliot; Calabresi, Peter A; Schuman, Joel S; Balcer, Laura J

    2012-06-01

    We used high-resolution spectral-domain optical coherence tomography (SD-OCT) with retinal segmentation to determine how ganglion cell loss relates to history of acute optic neuritis (ON), retinal nerve fiber layer (RNFL) thinning, visual function, and vision-related quality of life (QOL) in multiple sclerosis (MS). Cross-sectional study. A convenience sample of patients with MS (n = 122; 239 eyes) and disease-free controls (n = 31; 61 eyes). Among MS eyes, 87 had a history of ON before enrollment. The SD-OCT images were captured using Macular Cube (200×200 or 512×128) and ONH Cube 200×200 protocols. Retinal layer segmentation was performed using algorithms established for glaucoma studies. Thicknesses of the ganglion cell layer/inner plexiform layer (GCL+IPL), RNFL, outer plexiform/inner nuclear layers (OPL+INL), and outer nuclear/photoreceptor layers (ONL+PRL) were measured and compared in MS versus control eyes and MS ON versus non-ON eyes. The relation between changes in macular thickness and visual disability was also examined. The OCT measurements of GCL+IPL and RNFL thickness; high contrast visual acuity (VA); low-contrast letter acuity (LCLA) at 2.5% and 1.25% contrast; on the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement composite score. Macular RNFL and GCL+IPL were significantly decreased in MS versus control eyes (Pvisual function and vision-specific QOL in MS, and may serve as a useful structural marker of disease. Our findings parallel those of magnetic resonance imaging studies that show gray matter disease is a marker of neurologic disability in MS. Proprietary or commercial disclosure may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Discospondylitis in a cat

    International Nuclear Information System (INIS)

    Watson, E.; Roberts, R.E.

    1993-01-01

    The incidence and causative agents of discospondylitis in cats are unknown. This report describes a cat with radiologic changes consistent with discospondylitis and concurrent urinary tract infection. As in dogs, discospondylitis should be the primary rule out for vertebral end plate lysis in cats

  15. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  16. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  17. Neuronavigated percutaneous approach to the sphenopalatine ganglion.

    Science.gov (United States)

    Benedetto, Nicola; Perrini, Paolo

    2017-02-01

    The sphenopalatine ganglion (SPG) has been assumed to be involved in the genesis of several types of facial pain, including Sluder's neuralgia, trigeminal neuralgia, persistent idiopathic facial pain, cluster headache, and atypical facial pain. The gold standard treatments for SPG-related pain are percutaneous procedures performed with the aid of fluoroscopy or CT. In this technical note the authors present, for the first time, an SPG approach using the aid of a neuronavigator.

  18. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    Science.gov (United States)

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  19. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    Science.gov (United States)

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  20. Optical coherence tomography study of retinal changes in normal aging and after ischemia.

    Science.gov (United States)

    Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce

    2015-05-01

    Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.

  1. Selective Thinning of the Perifoveal Inner Retina as an Early Sign of Hydroxychloroquine Retinal Toxicity

    Science.gov (United States)

    Pasadhika, Sirichai; Fishman, Gerald A; Choi, Dongseok; Shahidi, Mahnaz

    2013-01-01

    Purpose To evaluate macular thickness profiles using spectral-domain optical coherence tomography (SDOCT) and image segmentation in patients with chronic exposure to hydroxychloroquine. Methods This study included 8 patients with chronic exposure to hydroxychloroquine (Group 1) and 8 controls (Group 2). Group 1 patients had no clinically-evident retinal toxicity. All subjects underwent SDOCT imaging of the macula. An image segmentation technique was used to measure thickness of 6 retinal layers at 200 µm intervals. A mixed-effects model was used for multivariate analysis. Results By measuring total retinal thickness either at the central macular (2800 µm in diameter), the perifoveal region 1200-µm-width ring surrounding the central macula), or the overall macular area (5200 µm in diameter), there were no significant differences in the thickness between Groups 1 and 2. On an image segmentation analysis, selective thinning of the inner plexiform + ganglion cell layers (p=0.021) was observed only in the perifoveal area of the patients in Group 1 compared to that of Group 2 by using the mixed-effects model analysis. Conclusions Our results suggest that chronic exposure to hydroxychloroquine is associated with thinning of the perifoveal inner retinal layers, especially in the ganglion cell and inner plexiform layers, even in the absence of functional or structural clinical changes involving the photoreceptor or retinal pigment epithelial cell layers. This may be a contributing factor as the reason most patients who have early detectable signs of drug toxicity present with paracentral or pericentral scotomas. PMID:20395978

  2. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    Science.gov (United States)

    Zeitoun, M

    2017-01-01

    To try to establish a "point by point" relationship between the local thickness of the retinal ganglion cell complex and its sensitivity. In total, 104 glaucomatous eyes of 89 patients with a confirmed 24-2 visual field, were measured by superimposing the visual field, using imaging software, with the Wide 40° by 30° measurements of retinal ganglion cell complex obtained from the Topcon © 3D 2000 OCT, after upward adjustment, inversion and scaling. Visual fields were classified into two groups according to the extent of the disease: 58 mild to moderate (MD up to -12dB), and 46 severe (MD beyond -12dB). The 6mm by 6mm central region, equipped with a normative database, was studied, corresponding to 16 points in the visual field. These points were individually matched one by one to the local ganglion cell complex, which was classified into 2 groups depending on whether it was greater or less than 70 microns. The normative database confirmed the pathological nature of the thin areas, with a significance of 95 to 99%. Displacement of central retinal ganglion cells was compensated for. Of 1664 points (16 central points for 104 eyes), 283 points were found to be "borderline" and excluded. Of the 1381 analyzed points, 727 points were classified as "over 70 microns" and 654 points "under 70 microns". (1) For all stages combined, 85.8% of the 727 points which were greater than 70 microns had a deviation between -3 and +3dB: areas above 70 microns had no observable loss of light sensitivity. (2) In total, 92.5% of the 428 points having a gap ranging from -6 to -35dB were located on ganglion cell complex areas below 70 microns: functional visual loss was identified in thin areas, which were less than 70 microns. (3) Areas which were less than 70 microns, that is 654 points, had quite variable sensitivity and can be divided into three groups: the first with preserved sensitivity, another with obliterated sensitivity, and an intermediate group connecting

  3. Ganglion cell complex scan in the early prediction of glaucoma.

    Science.gov (United States)

    Ganekal, S

    2012-01-01

    To compare the macular ganglion cell complex (GCC) with peripapillary retinal fiber layer (RNFL) thickness map in glaucoma suspects and patients. Forty participants (20 glaucoma suspects and 20 glaucoma patients) were enrolled. Macular GCC and RNFL thickness maps were performed in both eyes of each participant in the same visit. The sensitivity and specificity of a color code less than 5% (red or yellow) for glaucoma diagnosis were calculated. Standard Automated Perimetry was performed with the Octopus 3.1.1 Dynamic 24-2 program. The statistical analysis was performed with the SPSS 10.1 (SPSS Inc. Chicago, IL, EUA). Results were expressed as mean +/- standard deviation and a p value of 0.05 or less was considered significant. Provide absolute numbers of these findings with their units of measurement. There was a statistically significant difference in average RNFL thickness (p=0.004), superior RNFL thickness (p=0.006), inferior RNFL thickness (p=0.0005) and average GCC (p=0.03) between the suspects and glaucoma patients. There was no difference in optic disc area (p=0.35) and vertical cup/disc ratio (p=0.234) in both groups. While 38% eyes had an abnormal GCC and 13% had an abnormal RNFL thickness in the glaucoma suspect group, 98% had an abnormal GCC and 90% had an abnormal RNFL thickness in the glaucoma group. The ability to diagnose glaucoma with macular GCC thickness is comparable to that with peripapillary RNFL thickness . Macular GCC thickness measurements may be a good alternative or a complementary measurement to RNFL thickness assessment in the clinical evaluation of glaucoma. © NEPjOPH.

  4. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Suk-Yee Li

    Full Text Available Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R injuries. Lycium barbarum polysaccharides (LBP, extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS or LBP (1 mg/kg once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP, aquaporin-4 (AQP4, poly(ADP-ribose (PAR and nitrotyrosine (NT were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL and the inner nuclear layer (INL of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.

  5. A Framework for Modeling Competitive and Cooperative Computation in Retinal Processing

    Science.gov (United States)

    Moreno-Díaz, Roberto; de Blasio, Gabriel; Moreno-Díaz, Arminda

    2008-07-01

    The structure of the retina suggests that it should be treated (at least from the computational point of view), as a layered computer. Different retinal cells contribute to the coding of the signals down to ganglion cells. Also, because of the nature of the specialization of some ganglion cells, the structure suggests that all these specialization processes should take place at the inner plexiform layer and they should be of a local character, prior to a global integration and frequency-spike coding by the ganglion cells. The framework we propose consists of a layered computational structure, where outer layers provide essentially with band-pass space-time filtered signals which are progressively delayed, at least for their formal treatment. Specialization is supposed to take place at the inner plexiform layer by the action of spatio-temporal microkernels (acting very locally), and having a centerperiphery space-time structure. The resulting signals are then integrated by the ganglion cells through macrokernels structures. Practically all types of specialization found in different vertebrate retinas, as well as the quasilinear behavior in some higher vertebrates, can be modeled and simulated within this framework. Finally, possible feedback from central structures is considered. Though their relevance to retinal processing is not definitive, it is included here for the sake of completeness, since it is a formal requisite for recursiveness.

  6. Retinal detachment following endophthalmitis.

    Science.gov (United States)

    Nelsen, P T; Marcus, D A; Bovino, J A

    1985-08-01

    Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.

  7. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    I-Mo Fang

    Full Text Available This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ. Low-dose (5 mg/kg or high-dose (10 mg/kg COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG. Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.

  8. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-01-01

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  9. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  10. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Lee, John J; Miller, Donald T

    2017-11-28

    Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging-using predominately singly scattered light-to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: ( i ) marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; ( ii ) performing 3D subcellular image registration to avoid motion blur; and ( iii ) using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease. Copyright © 2017 the Author(s). Published by PNAS.

  11. A tortoiseshell male cat

    DEFF Research Database (Denmark)

    Pedersen, A. S.; Berg, Lise Charlotte; Almstrup, Kristian

    2014-01-01

    Tortoiseshell coat color is normally restricted to female cats due to X-linkage of the gene that encodes the orange coat color. Tortoiseshell male cats do, however, occur at a low frequency among tortoiseshell cats because of chromosome aberrations similar to the Klinefelter syndrome in man...... tissue from a tortoiseshell male cat referred to us. Chromosome analysis using RBA-banding consistently revealed a 39,XXY karyotype. Histological examinations of testis biopsies from this cat showed degeneration of the tubules, hyperplasia of the interstitial tissue, and complete loss of germ cells....... Immunostaining using anti-vimentin and anti-VASA (DDX4) showed that only Sertoli cells and no germ cells were observed in the testicular tubules. As no sign of spermatogenesis was detected, we conclude that this is a classic case of a sterile, male tortoiseshell cat with a 39,XXY chromosome complement. © 2013 S...

  12. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Megaesophagus in two cats.

    Science.gov (United States)

    Hoenig, M; Mahaffey, M B; Parnell, P G; Styles, M E

    1990-03-01

    Megaesophagus was diagnosed in 2 cats. Both had a history of regurgitation, and one was dyspneic. Radiography of the thorax and abdomen revealed generalized megaesophagus and gastric distention with gas. There was no esophageal motility during fluoroscopic observation. The prognosis for cats with megaesophagus is guarded. Although they may be satisfactory pets, cats with this condition should not be used for breeding because the condition is believed to be inherited through recessive genes.

  14. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    Science.gov (United States)

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  15. Facial nerve ganglioneuroblastoma in a feline leukemia virus-positive cat

    Directory of Open Access Journals (Sweden)

    Paula Reis Pereira

    Full Text Available ABSTRACT: Neuroblastic tumors can originate from the central neuraxis, olfactory epithelium, adrenal medullary region or autonomous system. Ganglioneuroblastoma are a type of neuroblastic tumor, with very few case descriptions in animals. Diagnosis of facial nerve ganglioneuroblastoma was made in a feline leukemia virus-positive 11-month-old cat. The cat had hyporexia, left head tilt, depressed mental state, horizontal nystagmus, inability to retract the pinched left lip, anisocoria, ptosis, and absence of the menace reflex. Gross necropsy showed a mass at the left facial nerve root region. Histological examination of this mass showed neoplastic proliferation of neuroblasts arranged in a cohesive pattern and mature ganglion cells. Ganglion cells were positive for neurofilament, neuron-specific enolase, S100, and glial fibrillary acidic protein by immunohistochemistry, while neuroblasts were positive for vimentin, S100, neuron-specific enolase and feline leukemia virus.

  16. Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo

    Science.gov (United States)

    Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.

    2014-08-01

    Objective. In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach. PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main results. When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance. Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within

  17. Subchondral synovial cysts (intra-osseous ganglion)

    International Nuclear Information System (INIS)

    Graf, L.; Freyschmidt, J.

    1988-01-01

    Twelve cases of subchondral synovial cysts (intra-osseous ganglion) have been seen and their clinical features, radiological findings and differential diagnosis are described. The lesion is a benign cystic tumour-like mass in the subchondral portion of a synovial joint. Our findings in respect of age, sex and localisation are compared with those of other authors. The aetiology and pathogenesis of the lesion is not completely understood. There is an increased incidence in middle life and joints with high dynamic and static stress are favoured, particularly in the lower extremities. Chronic stress or microtrauma, causing damage to the involved joint, therefore appears to be a plausible explanation. (orig.) [de

  18. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  19. Versatile functional roles of horizontal cells in the retinal circuit.

    Science.gov (United States)

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  20. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  1. Correlation between Retinal Vessel Calibre and Neurodegeneration in Patients with Type 2 Diabetes Mellitus in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR)

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Simó, Rafael

    2016-01-01

    .04). In a multivariable linear regression model, CRAE was associated with macular ganglion cell layer thickness (coefficient 0.27 per micrometre, p correlated with macular retinal thickness (coefficient -0.07 per micrometre, p = 0.04) and retinal nerve fibre layer thickness at the optic disc......PURPOSE: To investigate the correlation between retinal vessel calibre and measurements of neurodegeneration in patients with type 2 diabetes (T2D) and no or early diabetic retinopathy (DR). METHODS: Baseline data on 440 patients with T2D from the EUROCONDOR clinical trial were used. DR was graded...... (coefficient 0.32 per micrometre, p

  2. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models.

    Science.gov (United States)

    Tan, Pan-Pan; Yuan, Hai-Hong; Zhu, Xu; Cui, Yong-Yao; Li, Hui; Feng, Xue-Mei; Qiu, Yu; Chen, Hong-Zhuan; Zhou, Wei

    2014-03-01

    Muscarinic acetylcholine receptor agonist pilocarpine reduces intraocular pressure (IOP) of glaucoma mainly by stimulating ciliary muscle contraction and then increasing aqueous outflow. It is of our great interest to know whether pilocarpine has the additional properties of retinal neuroprotection independent of IOP lowering in vitro and in vivo models. In rat primary retinal cultures, cell viability was measured using an MTT assay and the trypan blue exclusion method, respectively. Retinal ganglion cells (RGCs) were identified by immunofluorescence and quantified by flow cytometry. For the in vivo study, the retinal damage after retinal ischemia/reperfusion injury in rats was evaluated by histopathological study using hematoxylin and eosin staining, transmission electron microscopy, and immunohistochemical study on cleaved caspase-3, caspase-3, and ChAT. Pretreatment of pilocarpine attenuated glutamate-induced neurotoxicity of primary retinal neurons in a dose-dependent manner. Protection of pilocarpine in both retinal neurons and RGCs was largely abolished by the nonselective muscarinic receptor antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. After ischemia/reperfusion injury in retina, the inner retinal degeneration occurred including ganglion cell layer thinning and neuron lost, and the optic nerve underwent vacuolar changes. These degenerative changes were significantly lessened by topical application of 2% pilocarpine. In addition, the protective effect of pilocarpine on the ischemic rat retina was favorably reflected by downregulating the expression of activated apoptosis marker cleaved caspase-3 and caspase-3 and upregulating the expression of cholinergic cell marker ChAT. Taken together, this highlights pilocarpine through the activation of muscarinic receptors appear to afford significant protection against retinal neurons damage and optic nerve degeneration at clinically relevant concentrations. These data also

  3. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

    Science.gov (United States)

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  4. Radiographically ossified ganglion cyst of finger in a swimmer

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J.; Anavim, A. [Department of Radiological Sciences, University of California, Orange (United States); Lin, F. [Department of Pathology, University of California, Irvine Medical Center, Orange (Canada)

    1998-12-01

    Ganglion cysts are fibrous-walled cystic lesions closely associated with joint or tendon sheaths and contain gelatinous mucinous fluid. The radiographic appearance is usually normal. Calcification or ossification in these cysts is extremely unusual. We report on an unusual appearing ganglion cyst of the little finger in a swimmer with ossification resembling myositis ossificans. (orig.) With 3 figs., 8 refs.

  5. Retinal Information Processing for Minimum Laser Lesion Detection and Cumulative Damage

    Science.gov (United States)

    1992-09-17

    macula and especially the fovea. This is the region where information processing is most important, as it must make up for the poor optical quality of the...the fovea and portions of the central macula leave the retina with only large receptive field ganglion cells. In these cases, the ordinary mechanical... degeneration or failure of neurons following laser exposure without subsequent therapy. As the research progressed, significant progress was made in cat

  6. Obesity in show cats.

    Science.gov (United States)

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  7. Cat-Scratch Disease

    Science.gov (United States)

    ... CDC.gov . Healthy Pets, Healthy People About Pets & People Pets & Other Animals Birds Cats Dogs Farm Animals Backyard ... to have CSD and spread it to people, persons with a weakened immune system should ... Play rough with your pets because they may scratch and bite. Allow cats ...

  8. That Fat Cat

    Science.gov (United States)

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  9. [Eye and cat scratch disease: A case series].

    Science.gov (United States)

    Deschasse, C; Bielefeld, P; Muselier, A; Bour, J B; Besancenot, J F; Garcher, C C; Bron, A M

    2016-02-01

    Cat scratch disease is a pleiomorphic condition, sometimes with isolated ophthalmic involvement. We report the clinical observations of seven cases with ophthalmologic manifestations of cat scratch disease. There were seven patients, with a median age of 52 years, of whom five were women and three had unilateral involvement. Six exhibited Leber's stellate neuroretinitis, an incomplete syndrome in two cases, and one associated with chorioretinal foci. One patient had isolated retinal infiltrates. The diagnosis of cat scratch disease was confirmed by Bartonella henselae serology, positive in all cases. All patients received treatment with doxycycline. Ocular complications (with optic atrophy and macular retinal pigment epithelial changes) were noted in five cases. Ocular bartonellosis is an atypical clinical form. It requires a directed ancillary work-up with serology or PCR, which has the peculiarity of being highly specific if not very sensitive. Treatment is above all preventive. Antibiotics may be initiated. Cat scratch disease must be excluded in the work-up of posterior uveitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Sciatica and claudication caused by ganglion cyst.

    Science.gov (United States)

    Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen

    2013-12-15

    Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.

  11. Anterior cruciate ligament ganglion: case report

    Directory of Open Access Journals (Sweden)

    André Pedrinelli

    Full Text Available CONTEXT: A ganglion is a cystic formation close to joints or tendinous sheaths, frequently found in the wrist, foot or knee. Intra-articular ganglia of the knee are rare, and most of them are located in the anterior cruciate ligament. The clinical picture for these ganglia comprises pain and movement restrictions in the knee, causing significant impairment to the patient. Symptoms are non-specific, and anterior cruciate ligament ganglia are usually diagnosed through magnetic resonance imaging or arthroscopy. Not all ganglia diagnosed through magnetic resonance imaging need to undergo surgical treatment: only those that cause clinical signs and symptoms do. Surgical results are considered good or excellent in the vast majority of cases. CASE REPORT: A 29-year-old male presented with pain in the left knee during a marathon race. Physical examination revealed limitation in the maximum range of knee extension and pain in the posterior aspect of the left knee. Radiographs of the left knee were normal, but magnetic resonance imaging revealed a multi-lobed cystic structure adjacent to the anterior cruciate ligament, which resembled a ganglion cyst. The mass was removed through arthroscopy, and pathological examination revealed a synovial cyst. Patient recovery was excellent, and he resumed his usual training routine five months later.

  12. CAT questions and answers

    International Nuclear Information System (INIS)

    1993-02-01

    This document, prepared in February 1993, addresses the most common questions asked by APS Collaborative Access Teams (CATs). The answers represent the best judgment on the part of the APS at this time. In some cases, details are provided in separate documents to be supplied by the APS. Some of the answers are brief because details are not yet available. The questions are separated into five categories representing different aspects of CAT interactions with the APS: (1) Memorandum of Understanding (MOU), (2) CAT Beamline Review and Construction, (3) CAT Beamline Safety, (4) CAT Beamline Operations, and (5) Miscellaneous. The APS plans to generate similar documents as needed to both address new questions and clarify answers to present questions

  13. Adaptive optics retinal imaging in the living mouse eye

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  14. The retinal clock in mammals: role in health and disease

    Directory of Open Access Journals (Sweden)

    Felder-Schmittbuhl MP

    2017-05-01

    Full Text Available Marie-Paule Felder-Schmittbuhl,1,* Hugo Calligaro,2 Ouria Dkhissi-Benyahya2,* 1Institute of Cellular and Integratives Neurosciences, UPR3212, CNRS, Université de Strasbourg, Strasbourg, 2University of Lyon, Stem Cell and Brain Research Institute, INSERM U1208, Bron, France *These authors contributed equally to this work Abstract: The mammalian retina contains an extraordinary diversity of cell types that are highly organized into precise circuits to perceive and process visual information in a dynamic manner and transmit it to the brain. Above this builds up another level of complex dynamic, orchestrated by a circadian clock located within the retina, which allows retinal physiology, and hence visual function, to adapt to daily changes in light intensity. The mammalian retina is a remarkable model of circadian clock because it harbors photoreception, self-sustained oscillator function, and physiological outputs within the same tissue. However, the location of the retinal clock in mammals has been a matter of long debate. Current data have shown that clock properties are widely distributed among retinal cells and that the retina is composed of a network of circadian clocks located within distinct cellular layers. Nevertheless, the identity of the major pacemaker, if any, still warrants identification. In addition, the retina coordinates rhythmic behavior by providing visual input to the master hypothalamic circadian clock in the suprachiasmatic nuclei (SCN. This light entrainment of the SCN to the light/dark cycle involves a network of retinal photoreceptor cells: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs. Although it was considered that these photoreceptors synchronized both retinal and SCN clocks, new data challenge this view, suggesting that none of these photoreceptors is involved in photic entrainment of the retinal clock. Because circadian organization is a ubiquitous feature of the retina and controls

  15. Differential diagnosis of retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2009-10-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  16. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis.

    Science.gov (United States)

    Erlich-Malona, Natalie; Mendoza-Santiesteban, Carlos E; Hedges, Thomas R; Patel, Nimesh; Monaco, Caitlin; Cole, Emily

    2016-12-01

    To determine whether a pattern of altitudinal ganglion cell loss, as detected and measured by optical coherence tomography (OCT), can be used to distinguish non-arteritic ischaemic optic neuropathy (NAION) from optic neuritis (ON) during the acute phase, and whether the rate or severity of ganglion cell loss differs between the two diseases. We performed a retrospective, case-control study of 44 patients (50 eyes) with ON or NAION and 44 age-matched controls. Non-arteritic ischaemic optic neuropathy and ON patients had OCT at presentation and four consecutive follow-up visits. Controls had OCT at one point in time. The ganglion cell complex (GCC) was evaluated in the macula, and the retinal nerve fibre layer (RNFL) was evaluated in the peripapillary region. Ganglion cell complex thickness, RNFL thickness and GCC mean superior and inferior hemispheric difference were compared between NAION and ON patients at each time-point using unpaired t-tests and between disease and control subjects at first measurement using paired t-tests. Mean time from onset of symptoms to initial presentation was 10.7 ± 6.6 days in NAION and 11.7 ± 8.6 days in ON (p = 0.67). There was a significantly greater vertical hemispheric difference in GCC thickness in NAION patients than ON patients at all time-points (5.5-10.7 μm versus 3.1-3.6 μm, p = 0.01-0.049). Mean GCC thickness was significantly decreased at less than 2 weeks after onset in NAION compared to age-matched controls (72.1 μm versus 82.1 μm, p < 0.001), as well as in ON compared to age-matched controls (74.3 μm versus 84.5 μm, p < 0.001). Progression and severity of GCC and RNFL loss did not differ significantly between NAION and ON. A quantitative comparison of mean superior and inferior hemispheric GCC thickness with OCT may be used to distinguish NAION from ON. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Analysis the macular ganglion cell complex thickness in monocular strabismic amblyopia patients by Fourier-domain OCT

    Directory of Open Access Journals (Sweden)

    Hong-Wei Deng

    2014-11-01

    Full Text Available AIM: To detect the macular ganglion cell complex thickness in monocular strabismus amblyopia patients, in order to explore the relationship between the degree of amblyopia and retinal ganglion cell complex thickness, and found out whether there is abnormal macular ganglion cell structure in strabismic amblyopia. METHODS: Using a fourier-domain optical coherence tomography(FD-OCTinstrument iVue®(Optovue Inc, Fremont, CA, Macular ganglion cell complex(mGCCthickness was measured and statistical the relation rate with the best vision acuity correction was compared Gman among 26 patients(52 eyesincluded in this study. RESULTS: The mean thickness of the mGCC in macular was investigated into three parts: centrial, inner circle(3mmand outer circle(6mm. The mean thicknesses of mGCC in central, inner and outer circle was 50.74±21.51μm, 101.4±8.51μm, 114.2±9.455μm in the strabismic amblyopia eyes(SAE, and 43.79±11.92μm,92.47±25.01μm, 113.3±12.88μm in the contralateral sound eyes(CSErespectively. There was no statistically significant difference among the eyes(P>0.05. But the best corrected vision acuity had a good correlation rate between mGcc thicknesses, which was better relative for the lower part than the upper part.CONCLUSION:There is a relationship between the amblyopia vision acuity and the mGCC thickness. Although there has not statistically significant difference of the mGCC thickness compared with the SAE and CSE. To measure the macular center mGCC thickness in clinic may understand the degree of amblyopia.

  18. Retinal specialisations in the dogfish Centroscymnus coelolepis from the Mediterranean deep-sea

    Directory of Open Access Journals (Sweden)

    Anna Bozzano

    2004-12-01

    Full Text Available The present work attempted to study the importance of vision in Centroscymnuscoelolepis, the most abundant shark in the Mediterranean beyond a depthof 1000 m, by using anatomical and histological data. C.coelolepis exhibited large lateral eyes with a large pupil, spherical lens and a tapetum lucidum that gave the eye a strong greenish-golden “eye shine”. In the outer retinal layer, a uniform population of rod-like photoreceptors was observed while in the vitreal retina a thick inner plexiform layer comprised up to 30% of the whole retinal thickness. The cell distribution of the ganglion cell layer formed a thin elongated visual streak in the central plane of the eye that provided a horizontal panoramic field of view. A specialised area of higher visual acuity was located caudally at 32-44º from the geometric centre of the retina and 5-10º above the horizontal plane of the eye. This position indicated that the visual axis pointed in a slightly outward-forward direction with respect to the fish body axis. A non-uniform distribution of large ganglion cells was also found in the horizontal plane of the retina that practically coincided with the distribution of the total cell population in the ganglion cell layer. This is the first time that this type of retinal specialisation has been observed in the elasmobranchs. These characteristics indicate that the retina of C.coelolepis is designed not only to increase sensitivity in the horizontal field of view, as was also observed in other sharks, but also to improve motion detection in the same plane. The visual capacities evolved by C.coelolepis make this species adapted for discriminating the horizontal gradation of light that exists in the mesopelagic environment. Similarly, the large ganglion cell distribution observed in its retina seems to be related to its predatory behaviour, since it allows this shark to perceive the movement of bioluminescent prey against a totally dark background.

  19. Comparison of eye morphology and retinal topography in two species of new world vultures (Aves: Cathartidae)

    DEFF Research Database (Denmark)

    Lisney, Thomas J.; Stecyk, Karyn; Kolominsky, Jeffrey

    2013-01-01

    Vultures are highly reliant on their sensory systems for the rapid detection and localization of carrion before other scavengers can exploit the resource. In this study, we compared eye morphology and retinal topography in two species of New World vultures (Cathartidae), turkey vultures (Cathartes...... aura), with a highly developed olfactory sense, and black vultures (Coragyps atratus), with a less developed sense of olfaction. We found that eye size relative to body mass was the same in both species, but that black vultures have larger corneas relative to eye size than turkey vultures. However......, the overall retinal topography, the total number of cells in the retinal ganglion cell layer, peak and average cell densities, cell soma area frequency distributions, and the theoretical peak anatomical spatial resolving power were the same in both species. This suggests that the visual systems of these two...

  20. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  1. Retinal Detachment Vision Simulator

    Science.gov (United States)

    ... Feb 20, 2018 Gene Therapy May Be a Game-Changer for People With Inherited Retinal Disease Dec 19, 2017 ... the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  2. Learning about Retinitis Pigmentosa

    Science.gov (United States)

    Skip to main content Learning about Retinitis Pigmentosa Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research ...

  3. Diagnostic imaging of tibial periosteal ganglion

    International Nuclear Information System (INIS)

    Valls, R.; Melloni, P.; Darnell, A.; Munoz, J.; Canalies, J.

    1997-01-01

    A case of a soft tissue tumor situated in the anterior surface of the proximal end of the tibia in an adult patient is demonstrated by conventional radiographs, CT, and MRI. The lesion was well defined with respect to the adjacent soft tissue. The CT exam showed a soft tissue mass with external cortical erosion and thick spicules by periosteal reaction. On T1-weighted images the mass was homogeneous and of low signal intensity, whereas on T2-weighted images it showed a high signal intensity, with some septa in the mass. The differential considerations include a periosteal chondroma, a lipoma, a subperiosteal hematoma, an inflammatory process, a giant cell tumor of tendon sheath, and a parosteal osteosarcoma. The CT and MR features of these entities are reviewed as an aid in differential diagnosis of the periosteal ganglion. (orig.). With 4 figs

  4. [Progression of nerve fiber layer defects in retrobulbar optic neuritis by the macular ganglion cell complex].

    Science.gov (United States)

    Hong, D; Bosc, C; Chiambaretta, F

    2017-11-01

    Recent studies with SD OCT had shown early axonal damage to the macular ganglion cell complex (which consists of the three innermost layers of the retina: Inner Plexiform Layer [IPL], Ganglion Cell Layer [GCL], Retinal Nerve Fibre layer [RNFL]) in optic nerve pathology. Retrobulbar optic neuritis (RBON), occurring frequently in demyelinating diseases, leads to atrophy of the optic nerve fibers at the level of the ganglion cell axons, previously described in the literature. The goal of this study is to evaluate the progression of optic nerve fiber defects and macular ganglion cell complex defects with the SPECTRALIS OCT via a reproducible method by calculating a mean thickness in each quadrant after an episode of retrobulbar optic neuritis. This is a prospective monocentric observational study including 8 patients at the Clermont-Ferrand university medical center. All patients underwent ocular examination with macular and disc OCT analysis and a Goldmann visual field at the time of inclusion (onset or recurrence of RBON), at 3 months and at 6 months. Patients were 40-years-old on average at the time of inclusion. After 6 months of follow-up, there was progression of the atrophy of the macular ganglion cell complex in the affected eye on (11.5% or 11μm) predominantly inferonasally (13.9% or 16μm) and superonasally (12.9% or 14μm) while the other eye remained stable. The decrease in thickness occurred mainly in the most internal 3 layers of the retina. On average, the loss in thickness of the peripapillary RNFL was predominantly inferotemporal (24.9% or 39μm) and superotemporal (21.8% or 28μm). In 3 months of progression, the loss of optic nerve fibers is already seen on macular and disc OCT after an episode of RBON, especially in inferior quadrants in spite of the improvement in the Goldmann visual field and visual acuity. Segmentation by quadrant was used here to compare the progression of the defect by region compared to the fovea in a global and reproducible

  5. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    Science.gov (United States)

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  6. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  7. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  8. IndexCat

    Data.gov (United States)

    U.S. Department of Health & Human Services — IndexCat provides access to the digitized version of the printed Index-Catalogue of the Library of the Surgeon General's Office; eTK for medieval Latin texts; and...

  9. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  10. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Dongqing Yuan

    Full Text Available Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p. treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs damage was evaluated by recording the pattern electroretinogram (ERG. RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, and the levels of reactive oxygen species (ROS were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  11. Tomographic Structural Changes of Retinal Layers after Internal Limiting Membrane Peeling for Macular Hole Surgery.

    Science.gov (United States)

    Faria, Mun Yueh; Ferreira, Nuno P; Cristóvao, Diana M; Mano, Sofia; Sousa, David Cordeiro; Monteiro-Grillo, Manuel

    2018-01-01

    To highlight tomographic structural changes of retinal layers after internal limiting membrane (ILM) peeling in macular hole surgery. Nonrandomized prospective, interventional study in 38 eyes (34 patients) subjected to pars plana vitrectomy and ILM peeling for idiopathic macular hole. Retinal layers were assessed in nasal and temporal regions before and 6 months after surgery using spectral domain optical coherence tomography. Total retinal thickness increased in the nasal region and decreased in the temporal region. The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) showed thinning on both nasal and temporal sides of the fovea. The thickness of the outer plexiform layer (OPL) increased. The outer nuclear layer (ONL) and outer retinal layers (ORL) increased in thickness after surgery in both nasal and temporal regions. ILM peeling is associated with important alterations in the inner retinal layer architecture, with thinning of the RNFL-GCL-IPL complex and thickening of OPL, ONL, and ORL. These structural alterations can help explain functional outcome and could give indications regarding the extent of ILM peeling, even though peeling seems important for higher rate of hole closure. © 2017 S. Karger AG, Basel.

  12. Visual advantage in deaf adults linked to retinal changes.

    Directory of Open Access Journals (Sweden)

    Charlotte Codina

    Full Text Available The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14 and hearing (N = 15 adults using Optical Coherence Tomography (OCT, an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

  13. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  14. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  15. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  16. Melatonin: An Underappreciated Player in Retinal Physiology and Pathophysiology

    Science.gov (United States)

    Tosini, Gianluca; Baba, Kenkichi; Hwang, Christopher K.; Iuvone, P. Michael

    2012-01-01

    In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential. PMID:22960156

  17. The Feline Mystique: Dispelling the Myth of the Independent Cat.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Describes learning activities about cats for primary and intermediate grades. Primary grade activity subjects include cat behavior, needs, breeds, storybook cats, and celestial cats. Intermediate grade activity subjects include cat history, care, language, literary cats, and cats in art. (BC)

  18. Sensitivity of Retinal Ganglion Cell Photoreceptors in Traumatic Brain Injury Patients with Photophobia

    Science.gov (United States)

    2015-11-01

    This work should also stimulate future investigations into therapeutic interventions that restore ipRGC function as a potential therapy for...visual acuity, refractive error, cover test, and optic nerve cup -to-disk (C/D) ratio values are means (SEM). These values were compared using Mann

  19. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan

    2015-01-01

    -reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective...

  20. Robust spike sorting of retinal ganglion cells tuned to spot stimuli.

    Science.gov (United States)

    Ghahari, Alireza; Badea, Tudor C

    2016-08-01

    We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.

  1. Retinal shows its true colours

    DEFF Research Database (Denmark)

    Coughlan, N. J.A.; Adamson, B. D.; Gamon, L.

    2015-01-01

    Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theor...

  2. Retinal findings in membranoproliferative glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2017-09-01

    Conclusions and importance: Drusen remain the ocular stigmata for MPGN occuring at an early age. The retinal disease is progressive with gradual thickening of Bruch's membrane and occurrence of retinal pigment epithelium detachment.

  3. Antonius Balthazar Raymundus Hirsch and the peregrination of "gasserian ganglion".

    Science.gov (United States)

    Sonig, Ashish; Thakur, Jai; Grass, Monica; Khan, Imad Saeed; Gandhi, Viraj; Nanda, Anil

    2013-09-01

    The anatomical description of the fifth cranial nerve ganglion lacked detail before the work of Antonius Balthazar Raymundus Hirsch (1744-1778). Hirsch used new dissection techniques that resulted in the most meticulous report of the trigeminal ganglion (the gasserian ganglion) to have been reported. In 1765, the 21-year-old published these findings in a thesis, Paris Quinti Nervorum Encephali Disquisitio Anatomica In Quantum Ad Ganglion Sibi Proprium, Semilunare, Et Ad Originem Nervi Intercostalis Pertinet [An anatomical inquiry of the fifth pair of the nerves of the brain, so far as it relates to the ganglion unto itself, the semilunar, and to the source of the intercostal nerve]. Hirsch wrote his thesis as a paean to his ailing teacher, Johann Lorenz Gasser, but Gasser died before Hirsch was able to defend his thesis. Thereafter, Hirsch applied to teach anatomy at his alma mater, the University of Vienna, but the university did not consider his application, deeming him too young for the position. Oddly, Hirsch died at the young age of 35. For the present paper, the library at the University of Vienna (Universität Wien), Austria, was contacted, and Anton Hirsch's thesis was digitized and subsequently translated from Latin into English. The authors here attempt to place the recognition of the fifth cranial nerve ganglion within a historical perspective and trace the trajectory of its anatomical descriptions.

  4. Bell inequalities with Schroedinger cats

    International Nuclear Information System (INIS)

    Reid, M.D.

    2001-01-01

    In the Schrodinger cat gedanken experiment a ''cat'' is in a quantum superposition of two macroscopically distinct states. There is the apparent interpretation that the ''cat'' is not in one state or the other, ''alive'' or ''dead''. Here this interpretation is proved objectively. I propose the following definition of macroscopic reality: first, that the ''cat'' is either dead or alive, the measurement revealing which; second, that measurements on other ''cats'' some distance away cannot induce the macroscopic change, ''dead'' to ''alive'' and vice versa, to the ''cat''. The predictions of quantum mechanics are shown to be incompatible with this premise. (orig.)

  5. Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans

    Directory of Open Access Journals (Sweden)

    Živković Vladimir

    2008-01-01

    Full Text Available Background/Aim. Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC (postganglionic sympathetic cell bodies of superior cervical ganglion in humans during ageing. Methods. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive sections 5 μm thick were made and stained with hematoxylin and eosin method (HE, silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Results. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent, unipolar type (lipofuscin granules were grouped at the end of the cell, bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell, annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one. Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells

  6. Bioelectronic retinal prosthesis

    Science.gov (United States)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  7. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  8. Sector retinitis pigmentosa.

    Science.gov (United States)

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  9. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Kelly E O'Quin

    Full Text Available The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish and eyeless (cavefish morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2 hybrid progeny. We used next generation sequencing (RAD-seq and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.

  10. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Chan-Sik Kim

    2015-09-01

    Full Text Available In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative stress in naturally-aged mice. In addition, we evaluated the effects of aerobic training on retinal oxidative stress by immunohistochemically evaluating oxidative stress markers. A group of twelve-week-old male mice were not exercised (young control. Two groups of twenty-two-month-old male mice were created: an old control group and a treadmill exercise group. The old control group mice were not exercised. The treadmill exercise group mice ran on a treadmill (5 to 12 m/min, 30 to 60 min/day, 3 days/week for 12 weeks. The retinal thickness and number of cells in the ganglion cell layer of the naturally-aged mice were reduced compared to those in the young control mice. However, treadmill exercise reversed these morphological changes in the retinas. We evaluated retinal expression of carboxymethyllysine (CML, 8-hydroxy-2′-deoxyguanosine (8-OHdG and nitrotyrosine. The retinas from the aged mice showed increased CML, 8-OHdG, and nitrotyrosine immunostaining intensities compared to young control mice. The exercise group exhibited significantly lower CML levels and nitro-oxidative stress than the old control group. These results suggest that regular exercise can reduce retinal oxidative stress and that physiological exercise may be distinctly advantageous in reducing retinal oxidative stress.

  11. Crystallized Schroedinger cat states

    International Nuclear Information System (INIS)

    Castanos, O.; Lopez-Pena, R.; Man'ko, V.I.

    1995-01-01

    Crystallized Schroedinger cat states (male and female) are introduced on the base of extension of group construction for the even and odd coherent states of the electromagnetic field oscillator. The Wigner and Q functions are calculated and some are plotted for C 2 , C 3 , C 4 , C 5 , C 3v Schroedinger cat states. Quadrature means and dispersions for these states are calculated and squeezing and correlation phenomena are studied. Photon distribution functions for these states are given explicitly and are plotted for several examples. A strong oscillatory behavior of the photon distribution function for some field amplitudes is found in the new type of states

  12. E-Z-CAT

    International Nuclear Information System (INIS)

    Nyman, U.; Dinnetz, G.; Andersson, I.

    1984-01-01

    A new barium sulphate suspension, E-Z-CAT, for use as an oral contrast medium at computed tomography of the abdomen has been compared with the commonly used water-soluble iodinated contrast medium Gastrografin as regards patient tolerance and diagnostic information. The investigation was conducted as an unpaired randomized single-blind study in 100 consecutive patients. E-Z-CAT seems to be preferred because of its better taste, its lesser tendency to cause diarrhoea, and for usage in patients who are known to be hypersensitive to iodinated contrast media. The diagnostic information was the same for both contrast media. (Auth.)

  13. General features of the retinal connectome determine the computation of motion anticipation

    Science.gov (United States)

    Johnston, Jamie; Lagnado, Leon

    2015-01-01

    Motion anticipation allows the visual system to compensate for the slow speed of phototransduction so that a moving object can be accurately located. This correction is already present in the signal that ganglion cells send from the retina but the biophysical mechanisms underlying this computation are not known. Here we demonstrate that motion anticipation is computed autonomously within the dendritic tree of each ganglion cell and relies on feedforward inhibition. The passive and non-linear interaction of excitatory and inhibitory synapses enables the somatic voltage to encode the actual position of a moving object instead of its delayed representation. General rather than specific features of the retinal connectome govern this computation: an excess of inhibitory inputs over excitatory, with both being randomly distributed, allows tracking of all directions of motion, while the average distance between inputs determines the object velocities that can be compensated for. DOI: http://dx.doi.org/10.7554/eLife.06250.001 PMID:25786068

  14. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and

  15. Juvenile hyperthyroidism in a cat.

    Science.gov (United States)

    Gordon, Jana M; Ehrhart, E J; Sisson, D D; Jones, M A

    2003-01-01

    An 8-month-old, male domestic shorthaired cat presented for chronic weight loss, intermittent dyspnea, chronic diarrhea, hyperactivity, and weakness. The cat had a palpable thyroid nodule and increased serum total thyroxine and 3,5,3' triiodothyronine levels. The cat was diagnosed with hyperthyroidism, and a unilateral thyroidectomy was performed followed by radioactive iodine at a later date. The clinical signs resolved following radioactive iodine, and the cat subsequently developed clinical hypothyroidism.

  16. Tracheal collapse in two cats

    International Nuclear Information System (INIS)

    Hendricks, J.C.; O'Brien, J.A.

    1985-01-01

    Two cats examined bronchoscopically to discover the cause of tracheal collapse were found to have tracheal obstruction cranial to the collapse. Cats with this unusual sign should be examined bronchoscopically to ascertain whether there is an obstruction, as the cause in these 2 cats was distinct from the diffuse airway abnormality that causes tracheal collapse in dogs

  17. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  18. The Ins2Akita mouse as a model of early retinal complications in diabetes.

    Science.gov (United States)

    Barber, Alistair J; Antonetti, David A; Kern, Timothy S; Reiter, Chad E N; Soans, Rohit S; Krady, J Kyle; Levison, Steven W; Gardner, Thomas W; Bronson, Sarah K

    2005-06-01

    This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P cell bodies in the retinal ganglion cell layer (P retinal complications of diabetes.

  19. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves).

    Science.gov (United States)

    Lisney, Thomas J; Wylie, Douglas R; Kolominsky, Jeffrey; Iwaniuk, Andrew N

    2015-01-01

    Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼ 45,000 cells · mm(-2), and a temporal area with lower densities (38,000-39,000 cells · mm(-2)). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles · degree(-1). Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects. © 2015 S. Karger AG, Basel.

  20. Coxofemoral luxations in cats

    International Nuclear Information System (INIS)

    Pérez-Aparicio, F.J.; Fjeld, T.O.

    1993-01-01

    In a retrospective study, 79 untreated luxations of the coxofemoral joint in cats were recorded over a 12-year period. Twenty-nine of these cases were available for follow-up, of which 13 were re-examined clinically and radiologically. It was found that the maximum incidence of the injury occurred from one to three years of age. Follow-up radiographs showed that the cats had developed nearthroses of various degrees located dorsally on the ilium. The degree of nearthrosis formation was not consistently correlated with the length of the observation time. Radiological signs of decreased bone density of the proximal femur may be caused by reduced weightbearing related to changes in biomechanical function and altered blood supply in the luxated limb. Almost two-thirds of the re-examined animals presented some kind of locomotor dysfunction on clinical examination. Limb function improved with time. The best clinical results appeared to be in cats that were immature at the time of injury and developed nearthrosis similar to a normal coxofemoral joint. All the cats available to this study showed acceptable functional results and had a normal level of activity according to the owners

  1. Developing an item bank to measure the coping strategies of people with hereditary retinal diseases.

    Science.gov (United States)

    Prem Senthil, Mallika; Khadka, Jyoti; De Roach, John; Lamey, Tina; McLaren, Terri; Campbell, Isabella; Fenwick, Eva K; Lamoureux, Ecosse L; Pesudovs, Konrad

    2018-05-05

    Our understanding of the coping strategies used by people with visual impairment to manage stress related to visual loss is limited. This study aims to develop a sophisticated coping instrument in the form of an item bank implemented via Computerised adaptive testing (CAT) for hereditary retinal diseases. Items on coping were extracted from qualitative interviews with patients which were supplemented by items from a literature review. A systematic multi-stage process of item refinement was carried out followed by expert panel discussion and cognitive interviews. The final coping item bank had 30 items. Rasch analysis was used to assess the psychometric properties. A CAT simulation was carried out to estimate an average number of items required to gain precise measurement of hereditary retinal disease-related coping. One hundred eighty-nine participants answered the coping item bank (median age = 58 years). The coping scale demonstrated good precision and targeting. The standardised residual loadings for items revealed six items grouped together. Removal of the six items reduced the precision of the main coping scale and worsened the variance explained by the measure. Therefore, the six items were retained within the main scale. Our CAT simulation indicated that, on average, less than 10 items are required to gain a precise measurement of coping. This is the first study to develop a psychometrically robust coping instrument for hereditary retinal diseases. CAT simulation indicated that on an average, only four and nine items were required to gain measurement at moderate and high precision, respectively.

  2. Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT.

    Directory of Open Access Journals (Sweden)

    Rayan A Alshareef

    Full Text Available To determine the frequency of different types of spectral domain optical coherence tomography (SD-OCT scan artifacts and errors in ganglion cell algorithm (GCA in healthy eyes.Infrared image, color-coded map and each of the 128 horizontal b-scans acquired in the macular ganglion cell-inner plexiform layer scans using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA macular cube 512 × 128 protocol in 30 healthy normal eyes were evaluated. The frequency and pattern of each artifact was determined. Deviation of the segmentation line was classified into mild (less than 10 microns, moderate (10-50 microns and severe (more than 50 microns. Each deviation, if present, was noted as upward or downward deviation. Each artifact was further described as per location on the scan and zones in the total scan area.A total of 1029 (26.8% out of total 3840 scans had scan errors. The most common scan error was segmentation error (100%, followed by degraded images (6.70%, blink artifacts (0.09% and out of register artifacts (3.3%. Misidentification of the inner retinal layers was most frequent (62%. Upward Deviation of the segmentation line (47.91% and severe deviation (40.3% were more often noted. Artifacts were mostly located in the central scan area (16.8%. The average number of scans with artifacts per eye was 34.3% and was not related to signal strength on Spearman correlation (p = 0.36.This study reveals that image artifacts and scan errors in SD-OCT GCA analysis are common and frequently involve segmentation errors. These errors may affect inner retinal thickness measurements in a clinically significant manner. Careful review of scans for artifacts is important when using this feature of SD-OCT device.

  3. Ganglion cysts in the paediatric wrist: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Jennifer; Bartlett, Murray [Royal Children' s Hospital, Medical Imaging Department, Melbourne, VIC (Australia)

    2013-12-15

    The majority of published literature on ganglion cysts in children has been from a surgical perspective, with no dedicated radiologic study yet performed. Our aim was to assess the magnetic resonance (MR) imaging appearance of ganglion cysts in a series of paediatric MR wrist examinations. Ninety-seven consecutive paediatric MR wrist examinations were retrospectively reviewed for the presence of ganglion cysts. Only those studies with wrist ganglia were included. Cysts were assessed for location, size, internal characteristics and secondary effect(s). Forty-one ganglion cysts (2-32 mm in size) were seen in 35/97 (36%) patients (24 female, 11 male), mean age: 13 years 11 months (range: 6 years 3 months-18 years). The majority were palmar (63.4%) with the remainder dorsal. Of the cysts, 43.9% were related to a wrist ligament(s), 36.6% to a joint and 17.1% to the triangular fibrocartilage complex. Of the patients, 91.4% had wrist symptoms: pain (n=29, 82.9%), swelling (n=7, 20%) and/or palpable mass (n=4, 11.4%); 71.4% patients had significant additional wrist abnormalities. Ganglion cysts were frequently found in children referred for wrist MRI. (orig.)

  4. Prostatic carcinoma in two cats

    International Nuclear Information System (INIS)

    Caney, S.M.A.; Holt, P.E.; Day, M.J.; Rudorf, H.; Gruffydd-Jones, T.J.

    1998-01-01

    Clinical, radiological and pathological features of two cats with prostatic carcinoma are reported. In both cats the presenting history included signs of lower urinary tract disease with haematuria and dysuria. Prostatomegaly was visible radiographically in one cat; an irregular intraprostatic urethra was seen on retrograde contrast urethrography in both cats. In one of the cats, neoplasia was suspected on the basis of a transurethral catheter biopsy. Following a poor response to palliative treatment in both cases, euthanasia was performed with histological confirmation of the diagnosis

  5. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  6. Health and behavioral survey of over 8000 Finnish cats

    Directory of Open Access Journals (Sweden)

    Katariina Vapalahti

    2016-08-01

    Full Text Available A comprehensive feline health survey was conducted to reveal breed-specific inheritable diseases in Finnish pedigree cats for genetic research. Prevalences of 19 disease categories and 227 feline diseases were defined in a study population of 8175 cats belonging to 30 breeds. Dental and oral diseases with a prevalence of 28% and dental calculus and gingivitis (21% and 8%, respectively were the most prevalent disease category and diseases among all cats and in most of the breeds. An exception was Korats, which were more often affected by the diseases of the respiratory tract (23% and asthma (19%. Other prevalent disease categories affected various organ systems such as the skin (12%, the urinary system (12%, the digestive tract (11%, eyes, (10%, the musculoskeletal system (10%, and genitals of female cats (17%. Prevalent health or developmental issues included repetitive vomiting (4%, tail kink (4%, feline odontoclastic resorption lesion (FORL (4%, urinary tract infections (4%, as well as caesarean section (6% and stillborn kittens (6% among female cats. We found 57 breed-specific conditions by Fisher’s exact tests and logistic regression analyses, including 32 previously described and 19 new breed-specific diseases. The genetic defect has already been found in six of them: polycystic kidney disease (PKD, progressive retinal atrophy (PRA, hypertrophic cardiomyopathy (HCM and three types of tail malformations. Behavioral profiling revealed breed-specific traits, such as an increased human avoidance in British Short and Longhairs and a higher level of aggression in Turkish vans. Our epidemiological study reveals the overall health profile in Finnish pure and mixed breed cats and identifies many breed-specific conditions without molecular identity for genetic research.

  7. Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang

    2017-09-01

    To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into

  8. Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterisation

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Warfvinge, Karin; Scherfig, Erik

    2009-01-01

    The purpose of this study was to establish, and characterize a porcine model of acute, controlled retinal ischemia. The controlled retinal ischemia was produced by clamping the ocular perfusion pressure (OPP) in the left eye to 5 mm Hg for 2 h. The OPP was defined as mean arterial blood pressure...... of the amplitudes obtained in the experimental, left eye, and the control, right eye. Quantitative histology was performed to measure the survival of ganglion cells, amacrine cells and horizontal cells 2-6 weeks after the ischemic insult. An OPP of 5 mm Hg for 2h induced significant reductions in the amplitudes...... the ischemic insult. This model seems to be suitable for investigations of therapeutic initiatives in diseases involving acute retinal ischemia....

  9. Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects.

    Science.gov (United States)

    Kolar, Radim; Tornow, Ralf P; Laemmer, Robert; Odstrcilik, Jan; Mayer, Markus A; Gazarek, Jiri; Jan, Jiri; Kubena, Tomas; Cernosek, Pavel

    2013-01-01

    The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  10. Analysis of Visual Appearance of Retinal Nerve Fibers in High Resolution Fundus Images: A Study on Normal Subjects

    Directory of Open Access Journals (Sweden)

    Radim Kolar

    2013-01-01

    Full Text Available The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL. This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  11. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  12. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    Science.gov (United States)

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2

  13. The structure and function of the macula in patients with advanced retinitis pigmentosa.

    Science.gov (United States)

    Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E; DeBuc, Delia Cabrera; Somfai, Gábor Márk

    2011-10-28

    To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure.

  14. The Structure and Function of the Macula in Patients with Advanced Retinitis Pigmentosa

    Science.gov (United States)

    Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E.; DeBuc, Delia Cabrera

    2011-01-01

    Purpose. To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Methods. Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. Results. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. Conclusions. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure. PMID:21948552

  15. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  16. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    International Nuclear Information System (INIS)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul; Jung, Sang Hoon

    2013-01-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca 2+ was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  17. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-A [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Shim, Sang Hee [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ahn, Hong Ryul [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Jung, Sang Hoon, E-mail: shjung507@gmail.com [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  18. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Tomomi Higashide

    Full Text Available To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects.The thickness of retinal layers {retinal nerve fiber layer (RNFL, ganglion cell layer plus inner plexiform layer (GCLIPL, RNFL plus GCLIPL (ganglion cell complex, GCC, total retina, total retina minus GCC (outer retina} were measured by macular scans (RS-3000, NIDEK in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters with or without magnification correction. For each layer thickness, a semipartial correlation (sr was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index.Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13 regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33 and a negative sr with GCLIPL (sr2, 0.22 to 0.31, GCC (sr2, 0.03 to 0.17, total retina (sr2, 0.07 to 0.17 and outer retina (sr2, 0.16 to 0.29 in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction.The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  19. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa

    2016-01-01

    To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  20. Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.

    Science.gov (United States)

    de Brouwer, S; Missal, M; Lefèvre, P

    2001-08-01

    Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.

  1. Ganglion Cyst Associated with Triangular Fibrocartilage Complex Tear That Caused Ulnar Nerve Compression

    Directory of Open Access Journals (Sweden)

    Ugur Anil Bingol, MD

    2015-03-01

    Full Text Available Summary: Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyonʼs canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination.

  2. Retinitis pigmentosa and deafness.

    OpenAIRE

    Mills, R P; Calver, D M

    1987-01-01

    Seventeen patients with retinitis pigmentosa (RP) have been investigated audiologically. Of 9 found to have a significant hearing loss, 6 were examples of Usher's syndrome; these patients had a cochlear pattern of hearing loss. The other 3 were examples of Senior's syndrome, Kearne-Sayre syndrome and Lawrence-Moon-Biedle syndrome respectively. Two of these patients had absent stapedius reflexes. It is suggested that patients with different RP-deafness syndromes may have lesions in different p...

  3. Inherited Retinal Degenerative Disease Registry

    Science.gov (United States)

    2017-09-13

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  4. Hybrid Cat Bonds

    OpenAIRE

    Barrieu, Pauline; Louberge, Henri

    2009-01-01

    Natural catastrophes attract regularly the attention of media and have become a source of public concern. From a financial viewpoint, natural catastrophes represent idiosyncratic risks, diversifiable at the world level. But for reasons analyzed in this paper reinsurance markets are unable to cope with this risk completely. Insurance-linked securities, such as cat bonds, have been issued to complete the international risk transfer process, but their development is disappointing so far. This pa...

  5. File list: His.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  6. File list: DNS.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  7. File list: DNS.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  8. File list: Pol.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  9. File list: Oth.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: Pol.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: His.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: ALL.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: Unc.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: ALL.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: ALL.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  16. File list: Unc.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  17. File list: ALL.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  18. File list: Oth.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  19. File list: Oth.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  20. File list: DNS.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  1. File list: Oth.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  2. File list: Unc.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  3. File list: Pol.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  4. Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury.

    Science.gov (United States)

    Akiyama, Goichi; Azuchi, Yuriko; Guo, Xiaoli; Noro, Takahiko; Kimura, Atsuko; Harada, Chikako; Namekata, Kazuhiko; Harada, Takayuki

    2017-09-01

    To assess the therapeutic potential of edaravone, a free radical scavenger that is used for the treatment of acute brain infarction and amyotrophic lateral sclerosis, in a mouse model of optic nerve injury (ONI). Two microliters of edaravone (7.2 mM) or vehicle were injected intraocularly 3 minutes after ONI. Optical coherence tomography, retrograde labeling of retinal ganglion cells (RGCs), histopathology, and immunohistochemical analyses of phosphorylated apoptosis signal-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinase (MAPK) in the retina were performed after ONI. Reactive oxygen species (ROS) levels were assessed with a CellROX Green Reagent. Edaravone ameliorated ONI-induced ROS production, RGC death, and inner retinal degeneration. Also, activation of the ASK1-p38 MAPK pathway that induces RGC death following ONI was suppressed with edaravone treatment. The results of this study suggest that intraocular administration of edaravone may be a useful treatment for posttraumatic complications.

  5. Chemical Burns of the Eye: The Role of Retinal Injury and New Therapeutic Possibilities.

    Science.gov (United States)

    Dohlman, Claes H; Cade, Fabiano; Regatieri, Caio V; Zhou, Chengxin; Lei, Fengyang; Crnej, Alja; Harissi-Dagher, Mona; Robert, Marie-Claude; Papaliodis, George N; Chen, Dongfeng; Aquavella, James V; Akpek, Esen K; Aldave, Anthony J; Sippel, Kimberly C; DʼAmico, Donald J; Dohlman, Jan G; Fagerholm, Per; Wang, Liqiang; Shen, Lucy Q; González-Andrades, Miguel; Chodosh, James; Kenyon, Kenneth R; Foster, C Stephen; Pineda, Roberto; Melki, Samir; Colby, Kathryn A; Ciolino, Joseph B; Vavvas, Demetrios G; Kinoshita, Shigeru; Dana, Reza; Paschalis, Eleftherios I

    2018-02-01

    To propose a new treatment paradigm for chemical burns to the eye - in the acute and chronic phases. Recent laboratory and clinical data on the biology and treatment of chemical burns are analyzed. Corneal blindness from chemical burns can now be successfully treated with a keratoprosthesis, on immediate and intermediate bases. Long term outcomes, however, are hampered by early retinal damage causing glaucoma. New data suggest that rapid diffusion of inflammatory cytokines posteriorly (TNF-α, etc) can severely damage the ganglion cells. Prompt anti-TNF-α treatment is markedly neuroprotective. Long term profound reduction of the intraocular pressure is also vital. A new regimen, in addition to standard treatment, for severe chemical burns is proposed. This involves tumor necrosis factor alpha (TNF-α) inhibition promptly after the accident (primarily for retinal neuroprotection), prophylactic maximal lowering of the intraocular pressure (starting immediately), and keratoprosthesis implantation in a later quiet state.

  6. Outcomes in bullous retinal detachment

    Directory of Open Access Journals (Sweden)

    Sarah P. Read

    2017-06-01

    Conclusions and importance: GRTs are an uncommon cause of retinal detachment. While pars plana vitrectomy with tamponade is standard in GRT management, there is variability in the use of scleral buckling and PFO in these cases. This is in contrast to retinal dialysis where scleral buckle alone can yield favorable results. Though a baseball ocular trauma is common, retinal involvement is rare compared to other sports injuries such as those occurring with tennis, soccer and golf. Sports trauma remains an important cause of retinal injury and patients should be counseled on the need for eye protection.

  7. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  8. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  9. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    Science.gov (United States)

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  10. Posterior pole asymmetry analysis and retinal thickness measurements in young relatives of glaucoma patients

    Directory of Open Access Journals (Sweden)

    Gökhan Pekel

    2015-08-01

    Full Text Available The presence of a family history of glaucoma is a known risk factor for primary open-angle glaucoma (POAG in middle-aged and older individuals. In this study, our aim was to demonstrate possible early glaucomatous alterations in young first- and second-degree relatives of POAG patients by spectral-domain optical coherence tomography. A total of 104 participants (52 relatives of POAG patients and 52 healthy individuals were recruited in this cross-sectional study. All the participants were between 17 years and 45 years of age. All eyes underwent testing with spectral-domain optical coherence tomography. Peripapillary retinal nerve fiber layer thickness, hemifield macular thickness, macular ganglion cell complex thickness, posterior pole asymmetry analysis, and retinal arteriolar caliber measurements were taken for comparison between the study and control groups. The mean peripapillary retinal nerve fiber layer thickness was 104.9 ± 8.8 μm in the study group and 105.6 ± 7.4 μm in the control group (p = 0.68. Although whole macular thickness measurements were higher in the control group when compared with the study group (p = 0.008, the macular ganglion cell complex thickness was similar in both groups (p = 0.87. The posterior pole asymmetry analysis revealed no statistically significant difference between the groups in the aspect of consecutive black squares (p = 0.79. The mean retinal arteriolar caliber was 85.9 ± 4.8 μm in the study group and 86.0 ± 5.0 μm in the control group (p = 0.90. In conclusion, young relatives of POAG patients do not show characteristic glaucomatous damage when compared with the controls.

  11. Changes in retinal structure and function of Alzheimer's patients

    Directory of Open Access Journals (Sweden)

    Xi Qin

    2017-10-01

    Full Text Available Alzheimer's disease(AD, a neurodegenerative disease, can result in memory loss,cognitive and behavioral deficits. The pathological hallmarkes are β amyloid plaques and neurofibrillary tangles which lead loss of neurons in brain. As the extension of the central nervous system, retina has a similar tissue anatomy with central nervous system. The β amyloid plaques have also been detected in retina of AD. Furthermore, according to eye examinations of AD patients, we have found the loss of retinal ganglion cells, the attenuation of retinal nerve fiber layer thickness, the smaller changes of macula lutea, the decline of vascular density and so on. And then, there occurs the visual field loss and the decline of contrast sensitivity and so on in AD patients. Thus, the retina has occurred nerve degenerative changes in AD. Meanwhile, there has been proved that the retina nerve degeneration is even earlier than senile plaques formation in brain. In addition,curcumin, a natural and safe fluorescent dye, can be used to label β amyloid plaques in retina. The above suggests that retina can be a window for the early diagnosis of AD.

  12. Local cloning of CAT states

    International Nuclear Information System (INIS)

    Rahaman, Ramij

    2011-01-01

    In this Letter we analyze the (im)possibility of the exact cloning of orthogonal three-qubit CAT states under local operation and classical communication (LOCC) with the help of a restricted entangled state. We also classify the three-qubit CAT states that can (not) be cloned under LOCC restrictions and extend the results to the n-qubit case. -- Highlights: → We analyze the (im)possibility of exact cloning of orthogonal CAT states under LOCC. → We also classify the set of CAT states that can(not) be cloned by LOCC. → No set of orthogonal CAT states can be cloned by LOCC with help of similar CAT state. → Any two orthogonal n-qubit GHZ-states can be cloned by LOCC with help of a GHZ state.

  13. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study

    NARCIS (Netherlands)

    Driessen, Antoine H. G.; Berger, Wouter R.; Krul, Sébastien P. J.; van den Berg, Nicoline W. E.; Neefs, Jolien; Piersma, Femke R.; Chan Pin Yin, Dean R. P. P.; de Jong, Jonas S. S. G.; van Boven, WimJan P.; de Groot, Joris R.

    2016-01-01

    Patients with long duration of atrial fibrillation (AF), enlarged atria, or failed catheter ablation have advanced AF and may require more extensive treatment than pulmonary vein isolation. The aim of this study was to investigate the efficacy and safety of additional ganglion plexus (GP) ablation

  14. Magnetic resonance imaging of lacunar infarcts in the basal ganglionic area

    International Nuclear Information System (INIS)

    Mukai, Kanji; Hondo, Hideki; Ueda, Shin; Matsumoto, Keizo

    1989-01-01

    During the previous 2 years, 88 patients have been diagnosed as having lacunar infarcts in the basal ganglioa ( a total of 157 lesions) on magnetic resonance imaging (MRI):42 patients had a single lesion and 46 patients had multiple lesions (2 lesions in 25 patients, 3 lesions in 14, and 4 or more lesions in 7). Seventy-seven lesions (49%) were smaller than 5 mm in diameter, and the others ranged from 5 mm to 15 mm. According to the regional relations to the internal capsule, the lesions were classified as lateral (57 lesions), anterior (36), superior (34), posterior (26), and inferior (4). Lesions of posterior, anterior, superior, and inferior types were associated with severer hemisparetic state, an abnormally slow gait, a sensory disturbance of numbness, and a depressive state, respectively. Forty five lesions (28%) were asymptomatic. Cat scanning failed to deliniate 47 lesions (30%) that were detected on MRI. Twenty three lesions were both asymptomatic and undistinguished on CT, which consisted of the superior type (10), anteior type (7), lateral type (5), and posterior type (one). Twenty four lesions were symptomatic, but were undistinguished on CT, suggesting that MRI is superior to CT in detecting the lacunar infarcts in the basal ganglionic area. Lacunar infarcts in both acute and chronic stages tended to be larger on T2-weighted images than T1-weighted images. In 7 patients who had neither history of hypertension, diabetes mellitus, or cardiac emboli nor CT evidence, MRI was capable of detecting lacunar infarcts. (N.K.)

  15. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings.

    Science.gov (United States)

    Portelli, Geoffrey; Barrett, John M; Hilgen, Gerrit; Masquelier, Timothée; Maccione, Alessandro; Di Marco, Stefano; Berdondini, Luca; Kornprobst, Pierre; Sernagor, Evelyne

    2016-01-01

    How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes.

  16. Petrosal Ganglion: a more complex role than originally imagined.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-12-01

    Full Text Available The petrosal ganglion is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties petrosal ganglion neurons can be ascribed to one of two categories: i neurons with action potentials presenting an inflection (hump on its repolarizing phase and ii neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite cells that prevents the formation of chemical or electrical synapses between neurons. Thus, petrosal ganglion neurons are regarded as mere wires that communicate the periphery (i.e., carotid body and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of petrosal ganglion neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  17. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

    Science.gov (United States)

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-08-13

    Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater

  18. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  19. Non-syndromic retinitis pigmentosa

    NARCIS (Netherlands)

    Verbakel, S.K. (Sanne K.); R.A.C. van Huet (Ramon A. C.); C.J.F. Boon (Camiel); A.I. Hollander (Anneke); R.W.J. Collin (Rob); C.C.W. Klaver (Caroline); C. Hoyng (Carel); R. Roepman (Ronald); B.J. Klevering (Jeroen)

    2018-01-01

    textabstractRetinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic,

  20. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  1. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    Science.gov (United States)

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  2. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes.

    Science.gov (United States)

    Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R

    2013-05-01

    Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

  3. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  4. Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes

    Science.gov (United States)

    Antony, Bhavna J.; Lang, Andrew; Swingle, Emily K.; Al-Louzi, Omar; Carass, Aaron; Solomon, Sharon; Calabresi, Peter A.; Saidha, Shiv; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality that has begun to find widespread use in retinal imaging for the detection of a variety of ocular diseases. In addition to structural changes in the form of altered retinal layer thicknesses, pathological conditions may also cause the formation of edema within the retina. In multiple sclerosis, for instance, the nerve fiber and ganglion cell layers are known to thin. Additionally, the formation of pseudocysts called microcystic macular edema (MME) have also been observed in the eyes of about 5% of MS patients, and its presence has been shown to be correlated with disease severity. Previously, we proposed separate algorithms for the segmentation of retinal layers and MME, but since MME mainly occurs within specific regions of the retina, a simultaneous approach is advantageous. In this work, we propose an automated globally optimal graph-theoretic approach that simultaneously segments the retinal layers and the MME in volumetric OCT scans. SD-OCT scans from one eye of 12 MS patients with known MME and 8 healthy controls were acquired and the pseudocysts manually traced. The overall precision and recall of the pseudocyst detection was found to be 86.0% and 79.5%, respectively.

  5. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  6. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.

    Science.gov (United States)

    Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David

    2016-05-10

    Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.

  7. Diprosopia in a cat.

    Science.gov (United States)

    Camón, J; Ruberte, J; Ordóñez, G

    1990-05-01

    A diprosopic cat is described. In the head, two snouts, three eyes and two pinnae were present. The mandible was single and immobile because labial skin of both upper lips and single lower lip was partly fused. Superimposition of upper and lower dental arches was impossible and the mouths remained permanently open. Two incomplete oral cavities were present and the two tongues were joined at their base. The brain was duplicated in part. In the cranium only occipital and temporal bones were normal, the basisphenoid was bifurcated and the remaining bones were duplicated. Embryological mechanisms are discussed.

  8. Multicenter reliability of semiautomatic retinal layer segmentation using OCT

    Science.gov (United States)

    Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.

    2018-01-01

    Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598

  9. Spectrophotometric retinal oximetry in pigs

    DEFF Research Database (Denmark)

    Traustason, Sindri; Kiilgaard, Jens Folke; Karlsson, Robert

    2013-01-01

    PURPOSE: To assess the validity of spectrophotometric retinal oximetry, by comparison to blood gas analysis and intra-vitreal measurements of partial pressure of oxygen (pO2). METHODS: Female domestic pigs were used for all experiments (n=8). Oxygen fraction in inspired air was changed using...... a mixture of room air, pure oxygen and pure nitrogen, ranging from 5% to 100% oxygen. Femoral arterial blood gas analysis and retinal oximetry was performed at each level of inspiratory oxygen fraction. Retinal oximetry was performed using a commercial instrument, the Oxymap Retinal Oximeter T1 (Oxymap ehf...... arterial oxygen saturation and the optical density ratio over retinal arteries revealed an approximately linear relationship (R(2) = 0.74, p = 3.4 x 10(-9)). In order to test the validity of applying the arterial calibration to veins, we compared non-invasive oximetry measurements to invasive pO2...

  10. Intraretinal proliferation induced by retinal detachment

    International Nuclear Information System (INIS)

    Fisher, S.K.; Erickson, P.A.; Lewis, G.P.; Anderson, D.H.

    1991-01-01

    Cellular proliferation after retinal detachment was studied by 3 H-thymidine light microscopic autoradiography in cats that had experimental detachments of 0.5-180 days duration. The animals underwent labeling 2 hr before death with an intraocular injection of 200 microCi of 3 H-thymidine. The number of labeled nuclei were counted in 1-micron thick tissue sections in regions of detachment, in regions of the experimental eyes that remained attached, and in control eyes that had no detachments. In the normal eye, in one that had only the lens and vitreous removed, and in the eyes with 0.5- and 1-day detachments, the number of labeled nuclei ranged from 0/mm (0.5-day detachment) to 0.38/mm (lens and vitreous removed only). By 2 days postdetachment, the number of labeled nuclei increased to 2.09/mm. The highest levels of labeling occurred in two animals with detachments of 3 (7.86/mm) and 4 (7.09/mm) days. Thereafter, the numbers declined steadily until near-baseline counts were obtained at 14 days. The number of labeled nuclei was slightly elevated in the attached regions of two animals with 3-day detachments. Labeled cell types included: Mueller cells, astrocytes, pericytes, and endothelial cells of the retinal vasculature, and both resident (microglial cells) and invading macrophages. In an earlier study RPE cells were also shown to proliferate in response to detachment. Thus, these data show that proliferation is a rapid response to detachment, reaching a maximum within 4 days, and that virtually every nonneuronal cell type in the retina can participate in this response. The data suggest that events leading to such clinical manifestations as proliferative vitreoretinopathy and subretinal fibrosis may have their beginnings in this very early proliferative response

  11. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats.

    Science.gov (United States)

    Liu, Jia; Chen, Shan-Shan; Dan, Qi-Qin; Rong, Rong; Zhou, Xue; Zhang, Lian-Feng; Wang, Ting-Hua

    2011-04-01

    Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.

  12. A novel imidazopyridine derivative, X22, prevents the retinal ischemia-reperfusion injury via inhibition of MAPKs.

    Science.gov (United States)

    Bian, Yang; Ren, Luqing; Wang, Lei; Xu, Shanmei; Tao, Jianjian; Zhang, Xiuhua; Huang, Yi; Qian, Yuanyuan; Zhang, Xin; Song, Zongming; Wu, Wencan; Wang, Yi; Liang, Guang

    2015-06-01

    Inflammation is a pathological hallmark of ischemia reperfusion (I/R) injury. The present study was conducted to explore the ability of a new anti-inflammatory compound, X22, to attenuate retinal I/R injury via cytokine-inhibitory mechanism. For the in vitro experiment, ARPE-19 cells were pretreated with X22 (5 or 10 μM) or saline for 2 h, followed by stimulation with tert-butyl hydroperoxide (TBHP, 1000 μM) for an indicated amount of time. The expression of inflammatory mediators, cell viability, and cell apoptosis were evaluated. For the in vivo experiment, the rats were randomized to receive treatment with saline or X22 (0.1 μM/kg, 3 μL) before the induction of I/R injury. Histological evaluation, apoptosis of retinal cells, macrophage infiltration, and retina functional changes were further determined. Our data showed that pretreatment with X22 significantly inhibited TBHP-induced inflammatory cytokine expression in ARPE-19 cells. The anti-inflammatory activity of X22 may be associated with its inhibition on MAPKs, rather than NF-κB. Subsequently, our data proved that TBHP induced apoptosis in ARPE-19 cells, while pretreatment of X22 significantly suppressed TBHP-caused ARPE-19 apoptosis. Finally, the in vivo data revealed that X22 administration maintained better inner retinal layer structures, reduced apoptosis of retinal ganglion cell, and improved retinal function in retinal I/R rat models, which were accompanied with a remarkable decrease in retinal macrophage infiltration. These results suggest that the novel compound X22 is a potential agent for the treatment of retinal I/R-related diseases via the MAPKs-targeting anti-inflammatory mechanism and deserves the further development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  14. European bat Lyssavirus transmission among cats, Europe.

    Science.gov (United States)

    Dacheux, Laurent; Larrous, Florence; Mailles, Alexandra; Boisseleau, Didier; Delmas, Olivier; Biron, Charlotte; Bouchier, Christiane; Capek, Isabelle; Muller, Michel; Ilari, Frédéric; Lefranc, Tanguy; Raffi, François; Goudal, Maryvonne; Bourhy, Hervé

    2009-02-01

    We identified 2 cases of European bat lyssavirus subtype 1 transmission to domestic carnivores (cats) in France. Bat-to-cat transmission is suspected. Low amounts of virus antigen in cat brain made diagnosis difficult.

  15. Toxoplasmosis: An Important Message for Cat Owners

    Science.gov (United States)

    ... role do cats play in the spread of toxoplasmosis? Cats get Toxoplasma infection by eating infected rodents, ... an infected cat may have defecated. What is toxoplasmosis? Toxoplasmosis is an infection caused by a microscopic ...

  16. Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Lulli, M.; Witort, E.; Papucci, L.; Torre, E.; Schiavone, N.; Capaccioli, S.; Dal Monte, M.

    2012-01-01

    The key pathogenetic event of many retinopathies is apoptosis of retinal cells. Our previous studies have demonstrated that Coenzyme Q10 (CoQ10) prevents apoptosis of corneal keratocytes both in vitro and in vivo, by virtue of its ability to inhibit mitochondrial depolarization, independently of its free radical scavenger role. The aim of this study was to evaluate whether CoQ10 can protect cultured retinal cells and the retinas of rats from radiation-induced apoptosis, if instilled as eye drops in the cornea. In vitro experiments were carried out on cultured ARPE-19 or retinal ganglion cells (RGC)-5 cells pretreated with CoQ10 before eliciting apoptosis by ultraviolet (UV)- and γ-radiation, chemical hypoxia (Antimycin A) and serum starvation. Cell viability was evaluated by light microscopy and fluorescence activated cell sorting analysis. Apoptotic events were scored by time-lapse videomicroscopy. Mitochondrial permeability transition was evaluated by JC-1. The anti-apoptotic effectiveness of CoQ10 in retina was also evaluated by an in situ end-labeling assay in Wistar albino rats treated with CoQ10 eye drops prior to UV irradiation of the eye. CoQ10 substantially increased cell viability and lowered retinal cell apoptosis in response both to UV- and γ-radiation and to chemical hypoxia or serum starvation by inhibiting mitochondrion depolarization. In the rat, CoQ10, even when applied as eye drops on the cornea, protected all retina layers from ultraviolet radiation (UVR)-induced apoptosis. The ability of CoQ10 to protect retinal cells from radiation-induced apoptosis following its instillation on the cornea suggests the possibility for CoQ10 eye drops to become a future therapeutic countermeasure for radiation-induced retinal lesions. (author)

  17. Inner retinal thinning after Brilliant Blue G-assisted internal limiting membrane peeling for vitreoretinal interface disorders.

    Science.gov (United States)

    Ambiya, Vikas; Goud, Abhilash; Khodani, Mitali; Chhablani, Jay

    2017-04-01

    The aim of this study was to evaluate ganglion cell layer and nerve fiber layer thickness after Brilliant Blue G (BBG)-assisted internal limiting membrane (ILM) peeling for vitreomacular disorders. Retrospective analysis of spectral domain optical coherence tomography (SD-OCT) of 42 eyes of 42 patients, who underwent pars plana vitrectomy with BBG-assisted ILM peeling, was performed. Inclusion criteria were idiopathic macular hole, idiopathic vitreomacular traction, and idiopathic epiretinal membrane. Key exclusion criteria were vitreoretinal interface abnormalities secondary to any other diseases, follow-up period of less than 3 months, and any other associated retinal pathology. Average, minimum, and sectoral ganglion cell, and inner plexiform layers (GCIPL) and retinal nerve fiber layer (RNFL) parameters were collected. Changes in these parameters from baseline to 3- and 6-month visits after surgery were analyzed. At 3 months after surgery, we found a statistically significant reduction in the average GCIPL thickness (P = 0.031) and also in the superior sectors (P peeling for vitreomacular interface disorders leads to thinning of the inner retina including GCIPL and RNFL. These structural changes should be correlated with retinal function tests to explore the pros and cons of this surgical step.

  18. Systemic Cat Scratch Disease

    Directory of Open Access Journals (Sweden)

    Hui-Min Liao

    2006-01-01

    Full Text Available Systemic cat scratch disease (CSD is often associated with prolonged fever and microabscesses in the liver and/or spleen. We report a case of systemic CSD with hepatic, splenic and renal involvement in an aboriginal child in Taiwan. A previously healthy 9-year-old girl had an intermittent fever for about 17 days, and complained of abdominal pain, headache and weight loss. Abdominal computed tomography showed multiple tiny hypodense nodular lesions in the spleen and both kidneys. Laparotomy revealed multiple soft, whitishtan lesions on the surface of the liver and spleen. Histopathologic examination of a biopsy specimen of the spleen showed necrotizing granulomatous inflammation with central necrosis surrounded by epithelioid cells and occasional Langhans' giant cells, strongly suggestive of Bartonella henselae infection. History revealed close contact with a cat. B. henselae DNA was detected by polymerase chain reaction in the tissue specimen, and the single antibody titer against B. henselae was greater than 1:2048. These results confirmed the diagnosis of visceral CSD caused by B. henselae. The patient's symptoms resolved after treatment with rifampin and tetracycline. This case illustrates the need for inclusion of systemic CSD in patients with fever of unknown origin and abdominal pain.

  19. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  20. Lumbosacral agenesis in a cat

    Directory of Open Access Journals (Sweden)

    Gabrielle C Hybki

    2016-01-01

    Full Text Available Case summary Lumbosacral agenesis is a rare congenital condition reported in children. We report a 17-week-old female domestic shorthair cat with lumbosacral agenesis on whole-body radiographs. The cat was euthanized shortly thereafter presentation. A necropsy was not permitted. Relevance and novel information This is the first reported feline case of lumbosacral agenesis.

  1. College Students and Their Cats

    Science.gov (United States)

    Weinstein, Lawrence; Alexander, Ralph

    2010-01-01

    Twenty-two Siamese and 32 mixed breed cats' personalities were rated by their respective college student owners and compared. Further, the owners' self rated personality traits were correlated with the pets'; significant Siamese and Mixed differences and correlations were obtained. These are the first data to examine breed of cat on a personality…

  2. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    Science.gov (United States)

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  3. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis.

    Science.gov (United States)

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián

    2018-01-01

    To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.

  4. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  5. Ganglion impar block in patients with chronic coccydynia

    Directory of Open Access Journals (Sweden)

    Nitesh Gonnade

    2017-01-01

    Full Text Available Introduction: Coccydynia refers to pain in the terminal segment of the spinecaused by abnormal sitting and standing posture. Coccydynia is usually managed conservatively, however in nonresponsive patients, ganglion impar block is used as a good alternate modality for pain relief. This article studies the effect of ganglion impar block in coccydynia patients who were not relieved by conservative management. Materials and Methods: The study was carried out at the pain clinic in the departments of Physical Medicine and Rehabilitation and Radiology in a tertiary centre in India.It was a prospective hospital-based study, in which 35 patients with coccydynia were considered for fluoroscopy-guided trans-sacro-coccygeal ganglion impar block. The outcome assessment was done using Numerical Rating Scale (NRS and Oswestry Disability Index (ODI scores for a follow-up period of 6 months. Of the 35 patients, 4 were lost to follow-up. Analysis was done usingthe data from the remaining 31 patients. Results: The mean age of the patients suffering from chronic coccydynia was 42.9 ± 8.39 years, and patients' age range was 28–57 years. The mean score of NRS and ODI before the procedure was 7.90 ± 0.16 and 48.97 ± 1.05, respectively. The interquartile range (IQR of NRS score remained almost unchanged during pre and postprocedure, however, IQR of ODI varied during the pre and post procedural events. The NRS and ODI scores immediately after the procedure decreased drastically showing significant pain relief in patients, and the difference of scores till the end of study was statistically significant. Conclusion: This study recommends the trans-sacro-coccygeal “needle inside needle” technique for local anesthetic block of the ganglion impar for pain relief in patients with coccydynia. This should be integrated with rehabilitative measures including ergonomical modification for prolonging pain free period.

  6. Arthroscopic Resection of Wrist Ganglion Arising from the Lunotriquetral Joint

    OpenAIRE

    Mak, Michael C. K.; Ho, Pak-cheong; Tse, W. L.; Wong, Clara W. Y.

    2013-01-01

    The dorsal wrist ganglion is the most common wrist mass, and previous studies have shown that it arises from the scapholunate interval in the vast majority of cases. Treatment has traditionally been open excision, and more recently arthroscopic resection has been established as an effective and less invasive treatment method. However, application of this technique to ganglia in atypical locations has not been reported, where open excision is the usual practice. This report describes two cases...

  7. Ganglionic cysts related to the scapula: MR findings

    International Nuclear Information System (INIS)

    Jeong, Ae Kyeong; Kim, Sung Moon; Kim, Kyung Sook; Shin, Myung Jin; Chun, Jae Myeung; Ahn, Joong Mo

    1999-01-01

    To evaluate the magnetic resonance (MR) imaging characteristics of ganglionic cysts related to the scapula. We retrospectively reviewed 15 ganglionic cysts diagnosed by MR imaging in 14 patients who subsequently underwent surgical excision (n=8) or needle aspiration (n=1). Five other patients whose lesion-related symptoms were not too severe to manage underwent conservative treatment. We analyzed MR findings with regard to the size, shape and presence of internal septa, the location and signal intensity of the lesion, and associated findings such as change of rotator cuff muscle, labral tear and bone erosion. We also evaluated the presence of tear of rotator cuff tendon, tendinosis, and subacromial enthesophyte. The diameter of ganglionic cysts was 0.5-5.5 (mean, 2.8)cm, and they were round (n=2), ovoid (n=6), or elongated (n=7). Where internal septa were present (n=13), cysts were lobulated. Lesions were located in both scapular and spinoglenoid notches (n=9), only in the scapular notch (n=2), only in the spinoglenoid notch (n=2) or within the bone (n=2). In eleven cases they were very close to the superoposterior aspect of the glenoid labrum (n=11). On T1-weighted images, all lesions were seen to be iso- or hypointense to muscle, while on T2-weighted images, they were hyperintense, resembling joint fluid (n=14), except in one patient with hemorrhage. Associated findings were edema of the infraspinatus muscle (n=4), pressure erosion of the scapular neck (n=1), and labral tear (n=1). A torn supraspinatus tendon (n=2), supraspinatus tendinosis (n=3), and subacromial enthesophyte (n=2) were also present. MR imaging was helpful in diagnosing ganglionic cysts and detecting associated lesions

  8. Toxoplasmosis : Beware of Cats !!!

    Directory of Open Access Journals (Sweden)

    Rubina Kumari Baithalu

    2010-10-01

    Full Text Available Anthropozoonotic parasite Toxoplasma gondii causes widespread human and animal diseases, mostly involving central nervous system. Human acquires toxoplasmosis from cats, from consuming raw or undercooked meat and from vertical transmission to the fetus through placenta from mother during pregnancy. Socio-epidemiological as well as unique environmental factors also plays a significant role in transmission of this infection. Preventive measures should be taken into account the importance of culture, tradition, and beliefs of people in various communities more than solving poverty and giving health education. Therefore the focus of this article is to create public awareness regarding sense of responsibility of looking after pets to prevent such an important zoonotic disease. [Vet. World 2010; 3(5.000: 247-249

  9. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-02

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage.

  10. Stellate ganglion block for persistent idiopathic facial pain

    Directory of Open Access Journals (Sweden)

    Poonam Patel

    2016-01-01

    Full Text Available Persistent idiopathic facial pain is a facial pain disorder without any identifiable cause. A patient has persistent facial pain without any objective sign on clinical examination or investigations. There are associated psychological problems such as depression and anxiety. This condition is poorly responsive to therapy with anticonvulsants or analgesics. Stellate ganglion block interrupts the sympathetic supply to head, neck, and upper extremities. This block can be used to alleviate pain of sympathetic origin in head and neck region as well as upper extremities. We report a case of a middle-aged female with persistent idiopathic facial pain on the right side of face with no response to analgesics and anticonvulsants. Her pain was provoked by exposure to cold weather or wind. Assuming a sympathetic component to her pain, we did a right-sided stellate ganglion block for her with local anesthetic and steroid. The patient had significant pain relief (>80% after the block. This indicates that the sympathetic nervous system plays a major role in initiation and perpetuation of this pain condition. Stellate ganglion block can be done early in such patients both as a diagnostic and therapeutic modality.

  11. X-ray and CT diagnosis of intraosseous ganglion

    International Nuclear Information System (INIS)

    Gong Xiangyang; Zhang Weimin; Yan Shigui

    2002-01-01

    Objective: To investigate the pathogenesis, clinical manifestations, imaging features, and differential diagnosis of intraosseous ganglion. Methods: Clinical and imaging features of 15 cases (5 men, 10 women; mean age 39.7 years) with intraosseous ganglia were retrospectively analyzed. There were 17 lesions, including 6 acetabular, 4 lunate, 3 proximal ends of tibia, 1 major tuberculum of humeral, 1 femoral head, 1 scaphoid, and 1 phalange. Results: ( 1 ) Common radiological features included a unilocular or multilocular cyst surrounded by a full and thin rim of sclerotic: bone in the subchondral epiphysis without any signs of degenerative joint disease. (2) Lesions were displayed as well-defined round radiolucent defect or multi-cystic changes with surrounding bony sclerosis or cystic and expansile change with irregular shape on CT scans. (3) CT showed an intraosseous ganglion communicating with adjacent joint in 1 patient. (4) CT values of the lesions were between 15 - 80 HU. (5) Gas in the cyst could be seen in 3 cases. Conclusion: Combined with patient's age, lesion distribution, clinical manifestations, and imaging features, it is possible to make a correct diagnosis of intraosseous ganglion

  12. CAT-D-T tokamaks

    International Nuclear Information System (INIS)

    Greenspan, E.; Blue, T.; Miley, G.H.

    1981-01-01

    The domains of plasma fuel cycles bounded by the D-T and Cat-D, and by the D-T and SCD modes of operation are examined. These domains, referred to as, respectively, the Cat-D-T and SCD-T modes of operation, are characterized by the number (γ) of tritons per fusion neutron available from external (to the plasma) sources. Two external tritium sources are considered - the blankets of the Cat-D-T (SCD-T) reactors and fission reactors supported by the Cat-D-T (SCD-T) driven hybrid reactors. It is found that by using 6 Li for the active material of the control elements of the fission reactors, it is possible to achieve γ values close to unity. Cat-D-T tokamaks could be designed to have smaller size, higher power density, lower magnetic field and even lower plasma temperature than Cat-D tokamaks; the difference becomes significant for γ greater than or equal to .75. The SCD-T mode of operation appears to be even more attractive. Promising applications identified for these Cat-D-T and SCD-T modes of operation include hybrid reactors, fusion synfuel factories and fusion reactors which have difficulty in providing all their tritium needs

  13. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  14. Sonography of cat scratch disease.

    Science.gov (United States)

    Melville, David M; Jacobson, Jon A; Downie, Brian; Biermann, J Sybil; Kim, Sung Moon; Yablon, Corrie M

    2015-03-01

    To characterize the sonographic features of cat scratch disease and to identify features that allow differentiation from other causes of medial epitrochlear masses. After Institutional Review Board approval was obtained, patients who underwent sonography for a medial epitrochlear mass or lymph node were identified via the radiology information system. Patients were divided into 2 groups: cat scratch disease and non-cat scratch disease, based on pathologic results and clinical information. Sonograms were retrospectively reviewed and characterized with respect to dimension, shape (round, oval, or lobular), symmetry, location (subcutaneous or intramuscular), multiplicity, echogenicity (anechoic, hypoechoic, isoechoic, hyperechoic, or mixed), hyperechoic hilum (present or absent), adjacent anechoic or hypoechoic area, hyperemia (present or absent), pattern of hyperemia if present (central, peripheral, or mixed), increased posterior through-transmission (present or absent), and shadowing (present or absent). Sonographic findings were compared between the patients with and without cat scratch disease. The final patient group consisted of 5 cases of cat scratch disease and 16 cases of other causes of medial epitrochlear masses. The 2 sonographic findings that were significantly different between the cat scratch disease and non-cat scratch disease cases included mass asymmetry (P = .0062) and the presence of a hyperechoic hilum (P = .0075). The other sonographic findings showed no significant differences between the groups. The sonographic finding of an epitrochlear mass due to cat scratch disease most commonly is that of a hypoechoic lobular or oval mass with central hyperemia and a possible adjacent fluid collection; however, the presence of asymmetry and a hyperechoic hilum differentiate cat scratch disease from other etiologies. © 2015 by the American Institute of Ultrasound in Medicine.

  15. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage.

    Science.gov (United States)

    Lulli, Matteo; Witort, Ewa; Papucci, Laura; Torre, Eugenio; Schipani, Christian; Bergamini, Christian; Dal Monte, Massimo; Capaccioli, Sergio

    2012-12-17

    To evaluate if coenzyme Q10 (CoQ10) can protect retinal ganglion cells (RGCs) from apoptosis and, when instilled as eye drops on the cornea, if it can reach the retina and exert its antiapoptotic activity in this area in a mouse model of kainate (KA)-induced retinal damage. Rat primary or cultured RGCs were subjected to glutamate (50 μM) or chemical hypoxia (Antimycin A, 200 μM) or serum withdrawal (FBS, 0.5%) in the presence or absence of CoQ10 (10 μM). Cell viability was evaluated by light microscopy and fluorescence-activated cell sorting analyses. Apoptosis was evaluated by caspase 3/7 activity and mitochondrion depolarization tetramethylrhodamine ethyl ester analysis. CoQ10 transfer to the retina following its instillation as eye drops on the cornea was quantified by HPLC. Retinal protection by CoQ10 (10 μM) eye drops instilled on the cornea was then evaluated in a mouse model of KA-induced excitotoxic retinal cell apoptosis by cleaved caspase 3 immunohistofluorescence, caspase 3/7 activity assays, and quantification of inhibition of RGC loss. CoQ10 significantly increased viable cells by preventing RGC apoptosis. Furthermore, when topically applied as eye drops to the cornea, it reached the retina, thus substantially increasing local CoQ10 concentration and protecting retinal layers from apoptosis. The ability of CoQ10 eye drops to protect retinal cells from apoptosis in the mouse model of KA-induced retinal damage suggests that topical CoQ10 may be evaluated in designing therapies for treating apoptosis-driven retinopathies.

  16. Genetics Home Reference: retinitis pigmentosa

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. ... in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol. 2008; ...

  17. Automated detection of retinal disease.

    Science.gov (United States)

    Helmchen, Lorens A; Lehmann, Harold P; Abràmoff, Michael D

    2014-11-01

    Nearly 4 in 10 Americans with diabetes currently fail to undergo recommended annual retinal exams, resulting in tens of thousands of cases of blindness that could have been prevented. Advances in automated retinal disease detection could greatly reduce the burden of labor-intensive dilated retinal examinations by ophthalmologists and optometrists and deliver diagnostic services at lower cost. As the current availability of ophthalmologists and optometrists is inadequate to screen all patients at risk every year, automated screening systems deployed in primary care settings and even in patients' homes could fill the current gap in supply. Expanding screens to all patients at risk by switching to automated detection systems would in turn yield significantly higher rates of detecting and treating diabetic retinopathy per dilated retinal examination. Fewer diabetic patients would develop complications such as blindness, while ophthalmologists could focus on more complex cases.

  18. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  19. Prophylactic treatment of retinal breaks

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Grauslund, Jakob

    2015-01-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...

  20. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    Science.gov (United States)

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-04-13

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  1. Experimental transconjunctival diode laser retinal photocoagulation through silicone scleral exoplants.

    Science.gov (United States)

    Nanda, S K; Han, D P

    1995-07-01

    To study the feasibility of inducing a chorioretinal lesion under a previously placed scleral buckle by experimental transconjunctival diode laser photocoagulation. We performed transconjunctival diode laser photocoagulation in the peripheral retinas of seven pigmented rabbit eyes with a silicone exoplant (No. 42 band or No. 276 tire) and seven eyes without an exoplant. Each eye received burns with an intensity of grades 1 to 3 in different quadrants at varying power levels, with a 0.5-second duration and 650-micron spot size. Eyes were enucleated for histopathologic studies 1 day and 1 week after treatment. Although the irradiance emitted through the No. 42 band and the No. 276 tire was attenuated by 17% and 23%, respectively, the range of threshold powers needed to produce grades 1 to 3 burns was similar between eyes with and without a silicone exoplant. At 1 day, full-thickness coagulative necrosis was observed in all lesions, except that the ganglion cell layer and inner nuclear layer were preserved in two of four grade 1 burns and the ganglion cell layer was intact in one of six grade 2 burns. Inner scleral changes were noted acutely in three of five grade 3 lesions. At 1 week, burns of all intensity grades showed a full-thickness atrophic chorioretinal lesion with inner scleral changes. Experimental transconjunctival diode laser photocoagulation through hard silicone elements reproducibly created a chorioretinal lesion with histopathologic findings similar to those of lesions obtained without these elements. Although retinal photocoagulative effects were prominent, inner scleral abnormalities were also observed histologically.

  2. Rac1 selective activation improves retina ganglion cell survival and regeneration.

    Directory of Open Access Journals (Sweden)

    Erika Lorenzetto

    Full Text Available In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.

  3. Concentric retinitis pigmentosa: clinicopathologic correlations.

    Science.gov (United States)

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  4. Unilateral retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Pearlman, J T; Saxton, J; Hoffman, G

    1976-05-01

    A patient presented with unilateral findings of night blindness shown by impaired rod function and dark adaptation, constricted visual fields with good central acuity, a barely recordable electro-retinographic b-wave, and a unilaterally impaired electro-oculogram. There were none of the pigmentary changes usually associated with retinitis pigmentosa. The unaffected right eye was normal in all respects. Therefore the case is most probably one of unilateral retinitis pigmentosa sine pigmento.

  5. Light and inherited retinal degeneration

    OpenAIRE

    Paskowitz, D M; LaVail, M M; Duncan, J L

    2006-01-01

    Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...

  6. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    Science.gov (United States)

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  7. Histological Study on the Protective Effect of Simvastatin on the Retinal Changes Induced by High-Fat Diet in Mice

    Directory of Open Access Journals (Sweden)

    Fayza Ezz Ahmad

    2017-09-01

    Full Text Available Background: High-fat diet (HFD feeding is an important model to study the changes induced by insulin resistance, Type 2 diabetes mellitus and obesity including retinopathy. Vascular endothelial growth factor (VEGF and p53 have been implicated in the development of retinopathy. Objectives: The aim of his study was to analyze histological retinal changes in a high-fat atherogenic mouse model and to evaluate the possible protective effect of simvastatin on these changes including its effects on the expression of VEGF and p53. Materials and Methods: A total of 27 mice (6 weeks old were divided into 3 study groups according to their diet and treatment given; Group I - normal balanced diet-fed mice, Group II - HFD-fed mice, and Group III - HFD-fed mice treated with simvastatin daily for 30 weeks. All mice were followed up for 30 weeks. At the end of the study at 36 weeks of age, eye tissues were collected and retinal sections were examined using light microscopy. Comparison of the thickness of retinal layers in the three groups was carried out. The localization of VEGF in the retina was determined by immunohistochemical analysis, and apoptotic cell death was assessed using the p53. Results: In the HFD-fed mice, there was an increase in the retinal thickness associated with presence of wide intercellular spaces in the outer nuclear layer. Many cells in the inner nuclear layer showed cytoplasmic vacuolations. Expression of VEGF was significantly increased in the retinal ganglion cell layers and nuclear cell layers. Elevated p53 reaction was demonstrated within the inner retina. The histological changes were significantly improved in the simvastatin treated group. Conclusions: HFD-induced structural changes in the retinal layers and simultaneous upregulation of VEGF and p53. Administration of simvastatin improved these retinal alterations. [J Interdiscip Histopathol 2017; 5(3.000: 83-91

  8. Ganglion of the Flexor Tendon Sheath at the A2 Pulley - Case Report

    Directory of Open Access Journals (Sweden)

    P Gunaseelan

    2015-03-01

    Full Text Available There are few reported cases of flexor tendon sheath ganglion arising from the A2 pulley. We report a case of a flexor tendon sheath ganglion in a 17-year old female who presented with pain, triggering and a swelling at the base of her right ring finger. During the excision biopsy, a ganglion measuring 0.5×0.8×0.4 cm in size was removed from the A2 pulley area.

  9. NRPC ServCat priorities

    Data.gov (United States)

    Department of the Interior — This document lists the Natural Resource Program Center’s priority ServCat documents. It is recommended that these documents- which include annual narrative reports,...

  10. Multistate matrix population model to assess the contributions and impacts on population abundance of domestic cats in urban areas including owned cats, unowned cats, and cats in shelters

    Science.gov (United States)

    Coe, Jason B.

    2018-01-01

    Concerns over cat homelessness, over-taxed animal shelters, public health risks, and environmental impacts has raised attention on urban-cat populations. To truly understand cat population dynamics, the collective population of owned cats, unowned cats, and cats in the shelter system must be considered simultaneously because each subpopulation contributes differently to the overall population of cats in a community (e.g., differences in neuter rates, differences in impacts on wildlife) and cats move among categories through human interventions (e.g., adoption, abandonment). To assess this complex socio-ecological system, we developed a multistate matrix model of cats in urban areas that include owned cats, unowned cats (free-roaming and feral), and cats that move through the shelter system. Our model requires three inputs—location, number of human dwellings, and urban area—to provide testable predictions of cat abundance for any city in North America. Model-predicted population size of unowned cats in seven Canadian cities were not significantly different than published estimates (p = 0.23). Model-predicted proportions of sterile feral cats did not match observed sterile cat proportions for six USA cities (p = 0.001). Using a case study from Guelph, Ontario, Canada, we compared model-predicted to empirical estimates of cat abundance in each subpopulation and used perturbation analysis to calculate relative sensitivity of vital rates to cat abundance to demonstrate how management or mismanagement in one portion of the population could have repercussions across all portions of the network. Our study provides a general framework to consider cat population abundance in urban areas and, with refinement that includes city-specific parameter estimates and modeling, could provide a better understanding of population dynamics of cats in our communities. PMID:29489854

  11. Multistate matrix population model to assess the contributions and impacts on population abundance of domestic cats in urban areas including owned cats, unowned cats, and cats in shelters.

    Science.gov (United States)

    Flockhart, D T Tyler; Coe, Jason B

    2018-01-01

    Concerns over cat homelessness, over-taxed animal shelters, public health risks, and environmental impacts has raised attention on urban-cat populations. To truly understand cat population dynamics, the collective population of owned cats, unowned cats, and cats in the shelter system must be considered simultaneously because each subpopulation contributes differently to the overall population of cats in a community (e.g., differences in neuter rates, differences in impacts on wildlife) and cats move among categories through human interventions (e.g., adoption, abandonment). To assess this complex socio-ecological system, we developed a multistate matrix model of cats in urban areas that include owned cats, unowned cats (free-roaming and feral), and cats that move through the shelter system. Our model requires three inputs-location, number of human dwellings, and urban area-to provide testable predictions of cat abundance for any city in North America. Model-predicted population size of unowned cats in seven Canadian cities were not significantly different than published estimates (p = 0.23). Model-predicted proportions of sterile feral cats did not match observed sterile cat proportions for six USA cities (p = 0.001). Using a case study from Guelph, Ontario, Canada, we compared model-predicted to empirical estimates of cat abundance in each subpopulation and used perturbation analysis to calculate relative sensitivity of vital rates to cat abundance to demonstrate how management or mismanagement in one portion of the population could have repercussions across all portions of the network. Our study provides a general framework to consider cat population abundance in urban areas and, with refinement that includes city-specific parameter estimates and modeling, could provide a better understanding of population dynamics of cats in our communities.

  12. Diabetes Accelerates Retinal neuronal cell Death in A Mouse Model of endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-01-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase ( cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs +/– mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs +/– and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs +/– non-DB cbs +/– DB cbs +/+ ; non-DB cbs +/+ . One group of diabetic cbs +/– mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs +/– had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs +/– and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 μm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  13. Diabetes Accelerates Retinal Neuronal Cell Death In A Mouse Model of Endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-07-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase (cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs+/- mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs+/- and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs+/-; non-DB cbs+/-; DB cbs+/+; non-DB cbs+/+. One group of diabetic cbs+/- mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs+/- had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs+/- and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 µm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  14. Acetaminophen Toxicosis in a Cat

    OpenAIRE

    Özkan, Burçak

    2017-01-01

    Acetaminophen causes serious problems as toxication in cats in spite of being an effective and reliable analgesic and antipyretic in humans. A six months-old female cat suffering from cough was presented to examination to International Pet Hospital/Tirana/Albania when no result was obtained after one  acetaminophen tablet had been administered in order to heal the disease. Depression, grey and cyanotic mucous membranes and tongue, tachypnea, tachycardia, hypothermia were primary clinical sign...

  15. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Omar, Z.M.

    1995-09-01

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  16. Alteration of retinal layers in healthy subjects over 60 years of age until nonagenarians

    Directory of Open Access Journals (Sweden)

    Altay L

    2017-08-01

    Full Text Available Lebriz Altay,1 Cheryl Jahn,1 Mücella Arikan Yorgun,1 Albert Caramoy,1 Tina Schick,1 Carel B Hoyng,2 Anneke I den Hollander,2 Sascha Fauser1 1Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany; 2Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Purpose: To assess alterations of retinal layers in healthy subjects over 60 years old. Methods: Retinal layers of 160 healthy subjects (aged 60–100 years without any retinal pathology were imaged using spectral domain optical coherence tomography. Mean thickness of retinal nerve fiber layer, ganglion cell/inner plexiform layer (GCLIPL, inner nuclear layer, outer plexiform layer/outer nuclear layer, photoreceptor complex (PR and retinal thickness (RT were measured in a 3.45 mm grid. Correlations between age and layers were estimated and linear regression equations were calculated. Different age-groups (60–69, 70–79, 80–89 years and nonagenarians, each group with 40 participants were compared. Results: Significant age-thickness correlations were observed for GCLIPL (P<0.001, r=-0.394, PR (P<0.001, r=-0.370 and RT (P<0.001, r=-0.290. A comparison between age groups 60–69 years and nonagenarians showed no significant thickness alteration of retinal nerve fiber layer (21.80±2.18 µm vs 22.82±2.97 µm, P=0.163, inner nuclear layer (37.23±3.02 µm vs 36.01±3.24 µm, P=0.07 and outer plexiform layer/outer nuclear layer (104.95±6.56 µm vs 104.23±7.59 µm, P=0.567, while GCLIPL (83.35±7.35 µm vs 74.38±9.09 µm, PR (83.03±3.31 µm vs 79.34±2.09 µm and RT (330.64±12.63 µm vs 316.83±18.35 µm showed a significant decrease (P<0.001 for all. Conclusion: Our study provides normative data of alterations of retinal layers for persons aged 60 years to nonagenarians and indicates a continuous decrease of RT, PR, and GCLIPL. This data may be useful for clinical trials investigating macular diseases in older patients

  17. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  18. Channeling Vision: CaV1.4—A Critical Link in Retinal Signal Transmission

    Directory of Open Access Journals (Sweden)

    D. M. Waldner

    2018-01-01

    Full Text Available Voltage-gated calcium channels (VGCC are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called “photoreceptors,” to the exclusion of intrinsically photoreceptive retinal ganglion cells to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.

  19. The prevalence of ocular lesions associated with hypertension in a population of geriatric cats in Auckland, New Zealand.

    Science.gov (United States)

    Carter, J M; Irving, A C; Bridges, J P; Jones, B R

    2014-01-01

    To provide an estimate of the prevalence of ocular lesions associated with hypertension in geriatric cats in Auckland, New Zealand and to evaluate the importance of examination of the ocular fundi of cats over eight years of age. A total of 105 cats ≥8 years of age were examined and clinical signs recorded. Blood was collected for the laboratory measurement of the concentrations of blood urea nitrogen (BUN), glucose and creatinine in serum, urine was collected for determination of urine specific gravity (USG), and blood pressure (BP) was measured using high definition oscillometry equipment. A cat was determined to have systemic hypertension with a systolic BP ≥160 mm Hg and a diastolic BP ≥100 mm Hg. Each animal had an ocular fundic examination using a retinal camera to diagnose ocular lesions associated with hypertension, including retinopathies, choroidopathies and optic neuropathies. Blood pressure was successfully recorded in 73 cats. Of these, 37 (51%) had no hypertensive ocular lesions and no underlying disease diagnosed, 24 (33%) had no hypertensive ocular lesions detected, but underlying disease such as chronic kidney disease, hyperthyroidism or diabetes mellitus was diagnosed, and 12 (16%) cats had evidence of hypertensive ocular lesions. Ten of the cats with hypertensive ocular lesions were hypertensive at the time of the first visit and two were normotensive. One additional cat had hypertensive ocular lesions, but it was not possible to obtain consistent BP readings in this animal. Chronic kidney disease was the most commonly diagnosed concurrent disease in cats with hypertensive ocular lesions (n=6). Mean systolic BP for cats with hypertensive ocular lesions (168.0 (SE 6.29) mm Hg) was higher than for those with no ocular lesions (144.7 (SE 3.11) mm Hg) or those with no lesions but with underlying disease (146.0 (SE 4.97) mm Hg) (p=0.001). Ocular fundic examination of cats over eight years of age allows identification of cats with

  20. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  1. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.

    Science.gov (United States)

    Ho, Elton; Smith, Richard; Goetz, Georges; Lei, Xin; Galambos, Ludwig; Kamins, Theodore I; Harris, James; Mathieson, Keith; Palanker, Daniel; Sher, Alexander

    2018-02-01

    Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We

  2. Retinal detachment in paediatric patients

    International Nuclear Information System (INIS)

    Zafar, S. N.; Qureshi, N.; Azad, N.; Khan, A.

    2013-01-01

    Objective: To assess the causes of retinal detachment in children and the various operative procedures requiring vitreoretinal surgical intervention for the same. Study Design: Case series. Place and Duration of Study: Department of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, from January 2006 to May 2009. Methodology: A total of 281 eyes of 258 patients, (aged 0 - 18 years) who underwent vitreo-retinal surgical intervention for retinal detachment were included. Surgical log was searched for the type of retinal detachment and its causes. Frequencies of various interventions done in these patients viz. vitrectomy, scleral buckle, use of tamponading agents, laser photocoagulation and cryotherapy were noted. Results were described as descriptive statistics. Results: Myopia was the cause in 62 (22.1%) and trauma in 51 (18.1%) of the eyes. Total retinal detachment (RD) was treated in 94 (33.5%) eyes, sub total RD in 36 (12.8%), recurrent RD in 32 (11.4%), giant retinal tear in 28 (10%), tractional RD in 15 (5.3%) and exudative RD in 2 (0.7%). Prophylactic laser or cryotherapy was applied in 74 (26.3%) of the eyes. Pars plana vitrectomy (PPV) was carried out in 159 (56.6%) eyes while scleral buckle procedure was done in 129 (45.9%) eyes. Silicon oil was used in 149 (53%), perfluorocarbon liquid in 32 (11.4%) and gas tamponade in 20 (7.1%) eyes. Conclusion: The most common cause of retinal detachment in paediatric patients was myopia, followed by trauma. Total RD was more common as compared to the other types. The most common procedure adopted was pars plana vitrectomy followed by scleral buckle procedure. (author)

  3. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Utility of MR imaging in cat-scratch neuroretinitis

    International Nuclear Information System (INIS)

    Reddy, Arun K.; Morriss, Michael C.; Lowe, Lisa H.; Ostrow, Greg I.; Stass-Isern, Merrill; Olitsky, Scott E.

    2007-01-01

    About 80% of cat-scratch disease (CSD) infections occur in children, and CSD neuroretinitis (optic neuropathy with retinal exudates in a ''macular star'' pattern) mostly occu