WorldWideScience

Sample records for cat motor cortex

  1. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    Science.gov (United States)

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar.

  2. On the Nature of the Intrinsic Connectivity of the Cat Motor Cortex: Evidence for a Recurrent Neural Network Topology

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, C; Brizzi, L;

    2009-01-01

    Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102: 2131-2141, 2009. First published July 22, 2009; doi: 10.1152/jn.91319.2008. The details...... and functional significance of the intrinsic horizontal connections between neurons in the motor cortex (MCx) remain to be clarified. To further elucidate the nature of this intracortical connectivity pattern, experiments were done on the MCx of three cats. The anterograde tracer biocytin was ejected...

  3. Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity

    DEFF Research Database (Denmark)

    Capaday, Charles; van Vreeswijk, Carl; Ethier, Christian;

    2011-01-01

    to be determined. To address these issues, an 8 x 8 microelectrode array was inserted in the forelimb area of the cat motor cortex (MCx). The centre of the array had a laser etched hole ∼500 {#956}m in diameter. A microiontophoretic pipette, with a tip diameter of 2–3 {#956}m, containing bicuculline methiodide...

  4. Somatosensory responses in a human motor cortex.

    Science.gov (United States)

    Shaikhouni, Ammar; Donoghue, John P; Hochberg, Leigh R

    2013-04-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

  5. Where does TMS Stimulate the Motor Cortex?

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja;

    2016-01-01

    Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...... of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region...

  6. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep

    OpenAIRE

    Nima eDehghani; Hatsopoulos, Nicholas G.; Haga, Zach D.; Rebecca eParker; Bradley eGreger; Eric eHalgren; Sydney S Cash; Alain eDestexhe

    2012-01-01

    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and ...

  7. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  8. Anodic or cathodic motor cortex stimulation for pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Manola, L.

    2006-01-01

    Objective. In motor cortex stimulation (MCS) for central and trigeminal pain Resume leads are placed epidurally over the motor and sensory cortex. Several bipolar combinations are used to identify the cortical target corresponding to the painful body segment. The cathode giving the largest motor r

  9. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  10. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  11. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  12. The auditory representation of speech sounds in human motor cortex

    Science.gov (United States)

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  13. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  14. The discovery of motor cortex and its background.

    Science.gov (United States)

    Gross, Charles G

    2007-01-01

    In 1870 Gustav Fritsch and Edvard Hitzig showed that electrical stimulation of the cerebral cortex of a dog produced movements. This was a crucial event in the development of modern neuroscience because it was the first good experimental evidence for a) cerebral cortex involvement in motor function, b) the electrical excitability of the cortex, c) topographic representation in the brain, and d) localization of function in different regions of the cerebral cortex. This paper discusses their experiment and some developments in the previous two centuries that led to it including the ideas of Thomas Willis and Emanuel Swedenborg, the widespread interest in electricity and the localizations of function of Franz Joseph Gall, John Hughlings Jackson, and Paul Broca. We also consider the subsequent study of the motor cortex by David Ferrier and others.

  15. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  16. Motor cortex guides selection of predictable movement targets

    Science.gov (United States)

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  17. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Changzheng Zhang; Tianmiao Hua; Zaiman Zhu; Xun Luo

    2006-03-01

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and neurofilament-immunoreactive (NF-IR) neurons. Under the microscope, the thickness of the cerebellar cortex was measured; and the density of neurons in all the layers as well as that of GFAP-IR cells in the granular layer was analysed. Compared with young adult cats, the thickness of the molecular layer and total cerebellar cortex was significantly decreased in old cats, and that of the granular layer increased. The density of neurons in each layer was significantly lower in old cats than in young adult ones. Astrocytes in old cats were significantly denser than in young adult ones, and accompanied by evident hypertrophy of the cell bodies and enhanced immunoreaction of GFAP substance. Purkinje cells (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. The above findings indicate a loss of neurons and decrease in the number of dendrites of the PCs in the aged cerebellar cortex, which might underlie the functional decline of afferent efficacy and information integration in the senescent cerebellum. An age-dependent enhancement of activity of the astrocytes may exert a protective effect on neurons in the aged cerebellum.

  18. Towards a circuit mechanism for movement tuning in motor cortex

    Directory of Open Access Journals (Sweden)

    Thomas C Harrison

    2013-01-01

    Full Text Available The firing rates of neurons in primate motor cortex have been related to multiple parameters of voluntary movement. This finding has been corroborated by stimulation-based studies that have mapped complex movements in rodent and primate motor cortex. However, it has been difficult to link the movement tuning of a neuron with its role within the cortical microcircuit. In sensory cortex, neuronal tuning is largely established by afferents delivering information from tuned receptors in the periphery. Motor cortex, which lacks the granular input layer, may be better understood by analyzing its efferent projections. As a primary source of cortical output, layer 5 neurons represent an ideal starting point for this line of experimentation. It is in these deep output layers that movements can most effectively be evoked by intracortical microstimulation and recordings can obtain the most useful signals for the control of motor prostheses. Studies focused on layer 5 output neurons have revealed that projection identity is a fundamental property related to the laminar position, receptive field and ion channel complement of these cells. Given the variety of brain areas targeted by layer 5 output neurons, knowledge of a neuron’s downstream connectivity may provide insight into its movement tuning. Future experiments that relate motor behavior to the activity of neurons with a known projection identity will yield a more detailed understanding of the function of cortical microcircuits.

  19. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    OpenAIRE

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke wh...

  20. TMS: a navigator for NIRS of the primary motor cortex?

    NARCIS (Netherlands)

    Koenraadt, K.L.; Munneke, M.; Duysens, J.E.J.; Keijsers, N.L.W.

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive optical imaging technique, which is increasingly used to measure hemodynamic responses in the motor cortex. The location at which the NIRS optodes are placed on the skull is a major factor in measuring the hemodynamic responses optimally. In this s

  1. Modification of motor cortex excitability during muscle relaxation in motor learning.

    Science.gov (United States)

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning.

  2. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  3. Motor cortex stimulation therapy for post-stroke weakness

    International Nuclear Information System (INIS)

    Motor cortex stimulation (MCS) delivered concurrently with rehabilitation therapy may enhance motor recovery following stroke. We investigated the effects of MCS on the recovery from upper extremity paresis in patients with chronic stroke. In 12 patients who had moderate arm and finger paresis at more than 4 months after stroke, an electrode was placed through a small craniotomy on the epidural space of the motor cortex that was identified using functional MRI. MCS during occupational therapy for one hour was performed 3 times a day for at least 4 weeks. The mean scores for Fugl-Meyer assessments of the arm improved, from 37 preoperatively to 46 postoperatively. The mean grip strength improved from 3.25 to 9.0 kg. All patients appeared satisfactory in their results because they recognized an improvement of arm function. Although the mechanism of the beneficial effects of MCS on recovery after stroke has not been well known, the neuroplasticity might play a important role. In a few cases of the present series, it was observed that the hand motor cortex area detected on functional MRI had been enlarged after MCS therapy. MCS could become a novel neurosurgical treatment modality for the chronic post-stroke weakness. (author)

  4. The lateralization of motor cortex activation to action words

    Directory of Open Access Journals (Sweden)

    Olaf eHauk

    2011-11-01

    Full Text Available What determines the laterality of activation in motor cortex for words whose meaning is related to bodily actions? It has been suggested that the neuronal representation of the meaning of action-words is shaped by individual experience. However, core language functions are left-lateralized in the majority of both right- and left-handers. It is still an open question to what degree connections between left-hemispheric core language areas and right-hemispheric motor areas can play a role in semantics. We investigated laterality of brain activation using fMRI in right- and left-handed participants in response to visually presented hand-related action-words, namely uni- and bi-manual actions (such as "throw" and "clap". These stimulus groups were matched with respect to general (hand-action-relatedness, but differed with respect to whether they are usually performed with the dominant hand or both hands. We may expect generally more left-hemispheric motor-cortex activation for hand-related words in both handedness groups, with possibly more bilateral activation for bimanual words as well as left-handers. In our study, both participant groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups also showed a left-lateralized activation pattern to uni-manual words. We argue that this reflects the effect of left-hemispheric language dominance on the formation of semantic brain circuits on the basis of Hebbian correlation learning.

  5. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    Science.gov (United States)

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  6. Differential expression of molecular motors in the motor cortex of sporadic ALS.

    Science.gov (United States)

    Pantelidou, Maria; Zographos, Spyros E; Lederer, Carsten W; Kyriakides, Theodore; Pfaffl, Michael W; Santama, Niovi

    2007-06-01

    The molecular mechanisms underlying the selective neurodegeneration of motor neurons in amyotrophic lateral sclerosis (ALS) are inadequately understood. Recent breakthroughs have implicated impaired axonal transport, mediated by molecular motors, as a key element for disease onset and progression. The current work identifies the expression of 15 kinesin-like motors in healthy human motor cortex, including three novel isoforms. Our comprehensive quantitative mRNA analysis in control and sporadic ALS (SALS) motor cortex specimens detects SALS-specific down-regulation of KIF1Bbeta and novel KIF3Abeta, two isoforms we show to be enriched in the brain, and also of SOD1, a key enzyme linked to familial ALS. This is accompanied by a marked reduction of KIF3Abeta protein levels. In the motor cortex KIF3Abeta localizes in cholinergic neurons, including upper motor neurons. No mutations causing splicing defects or altering protein-coding sequences were identified in the genes of the three proteins. The present study implicates two motor proteins as possible candidates in SALS pathology. PMID:17418584

  7. Is one motor cortex enough for two hands?

    Science.gov (United States)

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. PMID:26104046

  8. Intracortical inhibition of the motor cortex is normal in chorea

    OpenAIRE

    HANAJIMA, R; Ugawa, Y; Y. Terao; Furubayashi, T.; Machii, K; Shiio, Y.; H. Enomoto; Uesugi, H.; Mochizuki, H.; Kanazawa, I

    1999-01-01

    Intracortical inhibition of the motor cortex was investigated using a paired pulse magnetic stimulation method in 14 patients with chorea caused by various aetiologies (six patients with Huntington's disease, one with chorea acanthocytosis, a patient with systemic lupus erythematosus with a vascular lesion in the caudate, three with senile chorea and three with chorea of unknown aetiology). The time course and amount of inhibition was the same in the patients as in normal su...

  9. Musical groove modulates motor cortex excitability: a TMS investigation.

    Science.gov (United States)

    Stupacher, Jan; Hove, Michael J; Novembre, Giacomo; Schütz-Bosbach, Simone; Keller, Peter E

    2013-07-01

    Groove is often described as a musical quality that can induce movement in a listener. This study examines the effects of listening to groove music on corticospinal excitability. Musicians and non-musicians listened to high-groove music, low-groove music, and spectrally matched noise, while receiving single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex either on-beat or off-beat. We examined changes in the amplitude of the motor-evoked potentials (MEPs), recorded from hand and arm muscles, as an index of activity within the motor system. Musicians and non-musicians rated groove similarly. MEP results showed that high-groove music modulated corticospinal excitability, whereas no difference occurred between low-groove music and noise. More specifically, musicians' MEPs were larger with high-groove than low-groove music, and this effect was especially pronounced for on-beat compared to off-beat pulses. These results indicate that high-groove music increasingly engages the motor system, and the temporal modulation of corticospinal excitability with the beat could stem from tight auditory-motor links in musicians. Conversely, non-musicians' MEPs were smaller for high-groove than low-groove music, and there was no effect of on- versus off-beat pulses, potentially stemming from suppression of overt movement. In sum, high-groove music engages the motor system, and previous training modulates how listening to music with a strong groove activates the motor system.

  10. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    Science.gov (United States)

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system.

  11. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    Science.gov (United States)

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  12. Cortical response field dynamics in cat visual cortex.

    Science.gov (United States)

    Sharon, Dahlia; Jancke, Dirk; Chavane, Frédéric; Na'aman, Shmuel; Grinvald, Amiram

    2007-12-01

    Little is known about the "inverse" of the receptive field--the region of cortical space whose spatiotemporal pattern of electrical activity is influenced by a given sensory stimulus. We refer to this activated area as the cortical response field, the properties of which remain unexplored. Here, the dynamics of cortical response fields evoked in visual cortex by small, local drifting-oriented gratings were explored using voltage-sensitive dyes. We found that the cortical response field was often characterized by a plateau of activity, beyond the rim of which activity diminished quickly. Plateau rim location was largely independent of stimulus orientation. However, approximately 20 ms following plateau onset, 1-3 peaks emerged on it and were amplified for 25 ms. Spiking was limited to the peak zones, whose location strongly depended on stimulus orientation. Thus, alongside selective amplification of a spatially restricted suprathreshold response, wider activation to just below threshold encompasses all orientation domains within a well-defined retinotopic vicinity of the current stimulus, priming the cortex for processing of subsequent stimuli. PMID:17395608

  13. Heterogeneous neural coding of corrective movements in motor cortex

    Directory of Open Access Journals (Sweden)

    Adam S Dickey

    2013-04-01

    Full Text Available During a reach, neural activity recorded from motor cortex is typically thought to linearly encode the observed movement. However, it has also been reported that during a double-step reaching paradigm, neural coding of the original movement is replaced by that of the corrective movement. Here, we use neural data recorded from multi-electrode arrays implanted in the motor and premotor cortices of rhesus macaques to directly compare these two hypotheses. We show that while a majority of neurons display linear encoding of movement during a double-step, a minority display a dramatic drop in firing rate that is predicted by the replacement hypothesis. Neural activity in the subpopulation showing replacement is more likely to lag the observed movement, and may therefore be involved in the monitoring of the sensory consequences of a motor command.

  14. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  15. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Directory of Open Access Journals (Sweden)

    Jason B Carmel

    2014-06-01

    Full Text Available The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST—is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that ten days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.

  16. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J.; Dreher, B. (Univ. of Sydney (Australia))

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.

  17. Neurochemical correlates of γ-aminobutyrate (GABA) inhibition in cat visual cortex

    International Nuclear Information System (INIS)

    High affinity binding of [3H]γ-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABAA agonists isoguvacine and THIP, GABAA antagonist SR95531 and GABAB agonist baclofen. Some of the GABAA-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABAA receptors in cat visual cortex. There were no differences in Km and Vmax values of high affinity uptake of GABA and in the potency of K+-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions

  18. Directional tunings independent of orientation in the primary visual cortex of the cat

    Institute of Scientific and Technical Information of China (English)

    陈垚; 李兵; 李宝旺; 刁云程

    2001-01-01

    A family of moving ‘random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.

  19. Kick with the finger: symbolic actions shape motor cortex excitability.

    Science.gov (United States)

    Betti, Sonia; Castiello, Umberto; Sartori, Luisa

    2015-11-01

    A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single-pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value. PMID:26354677

  20. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. PMID:26826448

  1. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury.

  2. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer;

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  3. High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat.

    Directory of Open Access Journals (Sweden)

    Blake E Butler

    Full Text Available The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential "pitch centres" in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo. Pitch-related activity was not observed to occur in either primary auditory cortex (A1 or the anterior auditory field (AAF which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF. This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception.

  4. Directional tunings independent of orientation in the primary visual cortex of the cat

    Institute of Scientific and Technical Information of China (English)

    CHEN; Yao(

    2001-01-01

    [1]Movshon. J. A., Adelson, E. H., Gizzi, M. S. et al., The analysis of moving visual patterns, in Pattern Recognition Mechanisms (eds. Chagas, C., Gattass, R., Gross, C. G.), Vatican City: Ponticifica Academia Scientiarum, 1985, 117-151.[2]Gizzi. M. S., Katz, E., Schumer, R. A. et al., Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex, J. Neurophysiol., 1990, 63: 1529-1543.[3]Nakayama, K., Silverman, G. H., The aperture problem. Ⅱ. Spatial integration of velocity information along contours, Vision Res., 1988, 28: 747-753.[4]Rubin. N., Hochstein, S., Solomon, S., Restricted ability to recover three-dimensional global motion from one-dimensional motion signals: Psychophysical observations, Vision Res., 1995, 35: 463-476.[5]Wang. Y., Wang, L., Li, B. et al., How is direction selectivity organized in the extrastriate visual area PMLS of the cat?Neuroreport, 1995, 63: 1969-1974.[6]Li, B., Wang, L, Wang, Y. et al,, Orientational and directional selectivities of visual neurons in the superior colliculus of the cat. Science in China, Ser. C, 1996, 39 (2): 123-132.[7]Hubel, D. H., Wiesel, T N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J.Physiol. (London), 1962, 168: 106-154.[8]Casanova, C., Savard, T., Nordmann, J. P. et al., Comparison of the responses to moving texture patterns of simple and complex cells in the cat's area 17, J. Neurophysiol., 1995, 74: 1271-1286.[9]Yang, J. K., Qi, X. L., Modem Biological Statistics (in Chinese), Hefei: Anhui Educational Publication, 1985, 160-215.[10]Shipp, S., Grant, S., Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex, Visual Neurosci., 1991, 6: 339-355.[11]Albright, T. D., Stoner, G. R., Visual motion perception, Proc. Natl. Acad. Sci. USA, 1995, 92: 2433-2440.[12]Hammond, R, MacKay, D. M

  5. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  6. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  7. Influence of the midbrain reticular formation irradiation with luminescent incoherent light on evoked potential of cerebral cortex in cats

    Science.gov (United States)

    Malinovskaya, Svetlana L.; Abakarov, Asadulla; Monich, Victor A.

    1996-11-01

    In acute experiments on cats it is shown, that direct, of- low-intensity incoherent light exposure on midbrain reticular formation, cases brain cortex projection areas functional state changes, which find expression in shifting amplitude of both positive and negative components of cortex evoked potentials on visual stimuli.

  8. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke; Jin, Seung-Hyun; Joutsen, Atte;

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants perfor...

  9. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    Directory of Open Access Journals (Sweden)

    David J Wright

    Full Text Available Experts in a skill produce movement-related cortical potentials (MRCPs of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training.

  10. Different motor learning effects on excitability changes of motor cortex in muscle contraction state.

    Science.gov (United States)

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio

    2013-09-01

    We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.

  11. The role of plastic changes in the motor cortex and spinal cord for motor learning

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Lundbye-Jensen, Jesper

    2010-01-01

    are key players in the early stages of skill acquisition and consolidation of motor learning. Expansion of the cortical representation of the trained muscles, changes in corticomuscular coupling and changes in stretch reflex activity are thus all markers of neuroplastic changes accompanying early skill...... acquisition. We have shown in recent experiments that sensory feedback from the active muscles play a surprisingly specific role at this stage of learning. Following motor skill training, repeated activation of sensory afferents from the muscle that has been involved in a previous training session, interfered......Adaptive changes of the efficacy of neural circuitries at different sites of the central nervous system is the basis of acquisition of new motor skills. Non-invasive human imaging and electrophysiological experiments have demonstrated that the primary motor cortex and spinal cord circuitries...

  12. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    OpenAIRE

    Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor (MI) cortex, but the relative topography of these afferent projections has not been established. Intracranial microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements....

  13. Population response characteristics of intrinsic signals in the cat somatosensory cortex following canine mechanical stimulation.

    Science.gov (United States)

    Tao, Jianxiang; Wang, Jian; Li, Zhong; Meng, Jianjun; Yu, Hongbo

    2016-08-01

    Intrinsic signal optical imaging has been widely used to measure functional maps in various sensory cortices due to better spatial resolution and sensitivity for detecting cortical neuroplasticity. However, application of this technique in dentistry has not been reported. In this study, intrinsic signal optical imaging was used to investigate mechanically driven responses in the cat somatosensory cortex, when punctate mechanical stimuli were applied to maxillary canines. The global signal and its spatial organization pattern were obtained. Global signal strength gradually increased with stimulus strength. There was no significant difference in response strength between contralateral and ipsilateral mechanical stimulation. A slightly greater response was recorded in the sigmoidal gyrus than in the coronal gyrus. The cat somatosensory cortex activated by sensory inputs from mechanical stimulation of canines lacks both topographical and functional organization. It is not organized into columns that represent sensory input from each tooth or direction of stimulation. These results demonstrate that intrinsic signal optical imaging is a valid tool for investigating neural responses and neuroplasticity in the somatosensory cortex that represents teeth. PMID:27163378

  14. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics.

    Science.gov (United States)

    Tanaka, Hirokazu

    2016-03-01

    Specialization of motor function in the frontal lobe was first discovered in the seminal experiments by Fritsch and Hitzig and subsequently by Ferrier in the 19th century. It is, however, ironical that the functional and computational role of the motor cortex still remains unresolved. A computational understanding of the motor cortex equals to understanding what movement variables the motor neurons represent (movement representation problem) and how such movement variables are computed through the interaction with anatomically connected areas (neural computation problem). Electrophysiological experiments in the 20th century demonstrated that the neural activities in motor cortex correlated with a number of motor-related and cognitive variables, thereby igniting the controversy over movement representations in motor cortex. Despite substantial experimental efforts, the overwhelming complexity found in neural activities has impeded our understanding of how movements are represented in the motor cortex. Recent progresses in computational modeling have rekindled this controversy in the 21st century. Here, I review the recent developments in computational models of the motor cortex, with a focus on optimality models, recurrent neural network models and spatial dynamics models. Although individual models provide consistent pictures within their domains, our current understanding about functions of the motor cortex is still fragmented.

  15. Concurrent TMS to the primary motor cortex augments slow motor learning.

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L; Fox, Peter T

    2014-01-15

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H2(15)O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy.

  16. Continuous theta-burst stimulation of the primary motor cortex in essential tremor

    DEFF Research Database (Denmark)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R;

    2012-01-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation.......We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation....

  17. Numbers of specific types of neuron in layer IVab of cat striate cortex.

    OpenAIRE

    Solnick, B; Davis, T L; Sterling, P

    1984-01-01

    Layer IVab of the visual cortex (area 17) of the cat contains about 51,400 neurons per mm3, including about 400-1200 per mm3 of each of three categories of neuron believed from previous work to represent discrete types. Each type forms about 0.5-1.5% of all the IVab neurons, which suggests that the total number of types in this layer might be much greater than previously supposed, perhaps as many as 50 or more. From their densities and estimates of their dendritic fields, we calculate that ea...

  18. Disrupting the ipsilateral motor cortex interferes with training of a complex motor task in older adults.

    Science.gov (United States)

    Zimerman, Máximo; Heise, Kirstin-F; Gerloff, Christian; Cohen, Leonardo G; Hummel, Friedhelm C

    2014-04-01

    Performance of unimanual movements is associated with bihemispheric activity in the motor cortex in old adults. However, the causal functional role of the ipsilateral MC (iMC) for motor control is still not completely known. Here, the behavioral consequences of interference of the iMC during training of a complex motor skill were tested. Healthy old (58-85 years) and young volunteers (22-35 years) were tested in a double-blind, cross-over, sham-controlled design. Participants attended 2 different study arms with either cathodal transcranial direct current stimulation (ctDCS) or sham concurrent with training. Motor performance was evaluated before, during, 90 min, and 24 h after training. During training, a reduced slope of performance with ctDCS relative to sham was observed in old compared with young (F = 5.8, P = 0.02), with a decrease of correctly rehearsed sequences, an effect that was evident even after 2 consecutive retraining periods without intervention. Furthermore, the older the subject, the more prominent was the disruptive effect of ctDCS (R(2) = 0.50, P = 0.01). These data provide direct evidence for a causal functional link between the iMC and motor skill acquisition in old subjects pointing toward the concept that the recruitment of iMC in old is an adaptive process in response to age-related declines in motor functions.

  19. Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?

    Science.gov (United States)

    Brasil-Neto, Joaquim P.

    2016-01-01

    Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain.

  20. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    Directory of Open Access Journals (Sweden)

    Jared B Smith

    2013-01-01

    Full Text Available Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor (MI cortex, but the relative topography of these afferent projections has not been established. Intracranial microstimulation (ICMS evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC and in the primary (SI and secondary (SII somatosensory cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial (AGm and lateral agranular (AGl cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker motor cortex is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor output region located more medially in AGm proper.

  1. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    Science.gov (United States)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  2. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    Science.gov (United States)

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  3. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    Science.gov (United States)

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  4. A threat to a virtual hand elicits motor cortex activation.

    Science.gov (United States)

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  5. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Dahlke, Carolin; Saberi, Darius; Ott, Bastian;

    2015-01-01

    An abnormal density of Iba-1-positive microglial cells expressing pro-inflammatory tumor necrosis factor (TNF) alpha- and glial fibrillary acidic protein (GFAP)-positive activated astroglial cells was detected in the motor cortex region of the WR mouse 40 days postnatal (d.p.n.). Motor neurons in the same...... be an important contributing factor of motor neuron degeneration. This would appear to be confirmed by the fact that there was no conspicuous increase of microglial cells and astrocytes in the motor cortex of control mice at any time. Conclusions Activated microglial cells secrete a variety of pro...

  6. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    Science.gov (United States)

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.

  7. Developmental changes in motor cortex activity as infants develop functional motor skills.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.

  8. Developmental changes in motor cortex activity as infants develop functional motor skills.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  9. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs and regular-spiking units (RSUs and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

  10. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex.

    Science.gov (United States)

    Britvina, T; Eggermont, J J

    2008-07-17

    It was often thought that synchronized rhythmic epochs of spindle waves disconnect thalamo-cortical system from incoming sensory signals. The present study addresses this issue by simultaneous extracellular action potential and local field potential (LFP) recordings from primary auditory cortex of ketamine-anesthetized cats during spindling activity. We compared cortical spectrotemporal receptive fields (STRF) obtained during spindling and non-spindling epochs. The basic spectro-temporal parameters of "spindling" and "non-spindling" STRFs were similar. However, the peak-firing rate at the best frequency was significantly enhanced during spindling epochs. This enhancement was mainly caused by the increased probability of a stimulus to evoke spikes (effectiveness of stimuli) during spindling as compared with non-spindling epochs. Augmented LFPs associated with effective stimuli and increased single-unit pair correlations during spindling epochs suggested higher synchrony of thalamo-cortical inputs during spindling that resulted in increased effectiveness of stimuli presented during spindling activity. The neuronal firing rate, both stimulus-driven and spontaneous, was higher during spindling as compared with non-spindling epochs. Overall, our results suggests that thalamic cells during spindling respond to incoming stimuli-related inputs and, moreover, cause more powerful stimulus-related or spontaneous activation of the cortex. PMID:18515012

  11. Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration

    NARCIS (Netherlands)

    Kamp, A.; Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Boeijinga, P.; Aitink, W.

    1984-01-01

    In cat the relation between various behaviours and the spectral properties of the hippocampal EEG was investigated. Both EEG and behaviour were quantified and results were evaluated statistically. Significant relationships were found between the properties of the hippocampal EEG and motor acts (walk

  12. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.

    Science.gov (United States)

    Armstrong, D M; Marple-Horvat, D E

    1996-04-01

    An account is given of the current state of knowledge of the contributions of the cerebellum and the forelimb motor cortex (MC) to the neural control of walking movements in the cat. The main emphasis is on information obtained by recording from single MC and cerebellar neurones in chronically instrumented cats engaged in walking on the rungs of a horizontal ladder, a form of locomotion that is heavily dependent on visual input and for which the integrity of MC is essential. Evidence from the authors' laboratory and from other studies is presented which establishes that MC neurones, including pyramidal tract neurones, show higher levels of activity during ladder walking than during overground walking (i.e., when less constraint exists over the locus of footfall) and that this increase is greatest in late swing-early stance in the contralateral forelimb, consistent with one role of MC being to help determine the locus of footfall. However, many MC neurones develop peak activity at other times in the step cycle, and a comparison with recordings during treadmill walking suggests MC may also help regulate stance duration when walking speed is an important performance variable. Recordings from Purkinje cells and cerebellar nuclear neurones show that during ladder walking step-related activity is widespread in the vermal, paravermal, and crural regions of cortex and in the interposed and dentate nuclei. Nuclear cell activity is so timed that it could be contributing to producing the locomotor rhythms evident in MC cells, although this is not yet proven. Results are also presented and discussed relating to MC and cerebellar neuronal responses that occur when a step onto an unstable rung results in an unexpected external perturbation of the forelimb step cycle. MC responses begin with onset latency as short as 20 ms so that MC may assist spinal reflex mechanisms to produce a post hoc compensatory change in motor output. However, work in progress suggests that corresponding

  13. Cross-correlations between three units in cat primary auditory cortex.

    Science.gov (United States)

    Eggermont, Jos J; Munguia, Raymundo; Shaw, Gregory

    2013-10-01

    Here we use a modification of the Joint-Peri-Stimulus-Time histogram (JPSTH) to investigate triple correlations between cat auditory cortex neurons. The modified procedure allowed the decomposition of the xy-pair correlation into a part that is due to the correlation of the x and y units with the trigger unit, and a remaining 'pair correlation'. We analyzed 16 sets of 15-minute duration stationary spontaneous recordings in primary auditory cortex (AI) with between 11 and 14 electrodes from 2 arrays of 8 electrodes each that provided spontaneous firing rates above 0.22 sp/s and for which reliable frequency-tuning curves could be obtained and the characteristic frequency (CF) was estimated. Thus we evaluated 11,282 conditional cross-correlation functions. The predictor for the conditional cross-correlation, calculated on the assumption that the trigger unit had no effect on the xy-pair correlation but using the same fraction of xy spikes, was equal to the conventional pair-wise correlation function between units xy. The conditional correlation of the xy-pair due to correlation of the x and/or y unit with the trigger unit decreased with the geometric mean distance of the xy pair to the trigger unit, but was independent of the pair cross-correlation coefficient. The conditional pair correlation coefficient was estimated at 78% of the measured pair correlation coefficient. Assuming a geometric decreasing effect of activities of units on other electrodes on the conditional correlation, we estimated the potential contribution of a large number of contributing units on the measured pair correlation at 35-50 of that correlation. This suggests that conventionally measured pair correlations in auditory cortex under ketamine anesthesia overestimate the 'true pair correlation', likely resulting from massive common input, by potentially up to a factor 2. PMID:23933479

  14. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    Science.gov (United States)

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  15. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    Science.gov (United States)

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  16. Cortical spreading depression and involvement of the motor cortex, auditory cortex, and cerebellum in eyeblink classical conditioning of the rabbit.

    Science.gov (United States)

    Case, Gilbert R; Lavond, David G; Thompson, Richard F

    2002-09-01

    The interrelationships of cerebellar and cerebral neural circuits in the eyeblink paradigm were explored with the controlled application of cortical spreading depression (CSD) and lidocaine in the New Zealand albino rabbit. The initial research focus was directed toward the involvement of the motor cortex in the conditioned eyeblink response. However, CSD timing and triangulation results indicate that other areas in the cerebral cortex, particularly the auditory cortex (acoustic conditioned stimulus), appear to be critical for the CSD effect on the eyeblink response. In summary: (1) CSD can be elicited, monitored, and timed and its side effects controlled in 97% of awake rabbits in the right and/or left cerebral hemisphere(s) during eyeblink conditioning. (2) The motor cortex appears to play little or no part in classical conditioning of the eyeblink in the rabbit in the delay paradigm. (3) Inactivating the auditory cortex with CSD or lidocaine temporarily impairs the conditioned response during the first 5 to 15 days of training, but has little effect past that point.

  17. Activation of the motor cortex during phasic rapid eye movement sleep

    Science.gov (United States)

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  18. Motor training increases the stability of activation patterns in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Yi Huang

    Full Text Available Learning to be skillful is an endowed talent of humans, but neural mechanisms underlying behavioral improvement remain largely unknown. Some studies have reported that the mean magnitude of neural activation is increased after learning, whereas others have instead shown decreased activation. In this study, we used functional magnetic resonance imaging (fMRI to investigate learning-induced changes in the neural activation in the human brain with a classic motor training task. Specifically, instead of comparing the mean magnitudes of activation before and after training, we analyzed the learning-induced changes in multi-voxel spatial patterns of neural activation. We observed that the stability of the activation patterns, or the similarity of the activation patterns between the even and odd runs of the fMRI scans, was significantly increased in the primary motor cortex (M1 after training. By contrast, the mean magnitude of neural activation remained unchanged. Therefore, our study suggests that learning shapes the brain by increasing the stability of the activation patterns, therefore providing a new perspective in understanding the neural mechanisms underlying learning.

  19. Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex.

    Science.gov (United States)

    Ojima, H; Honda, C N; Jones, E G

    1991-01-01

    Nine pyramidal neurons in layers II and III of cat primary auditory cortex (AI) were fully reconstructed after intracellular injections of horseradish peroxidase or biocytin. Each neuron was functionally characterized according to its position relative to an anteroposterior sequence of best frequency responses. All labeled somata were in layers II or III and gave rise to typical apical and basal dendritic arbors as well as to extensive systems of axon collaterals. The primary axon of all except 1 cell entered the white matter and was probably directed toward other cortical areas ipsi- or contralaterally. Two major intracortical collateral systems emerged from the main axon in AI, one ending in the vicinity of the cell and the second at a distance. (1) Many local and recurrent collaterals, given off in layers III and V, contributed terminal branches to the formation of a columnar pattern of terminations extending superficially and deeply into the soma. The column extended through layers I-V, with some constriction in the middle portion corresponding to layer IV. (2) The axon of each cell also gave rise to 2-5 thick, long-range collaterals in layers III and/or V. These ran parallel to the pial surface for several millimeters. At several points along these long horizontal collaterals, vertically directed branches emerged to form columnar terminations, again extending through layers I-V. These columns did not overlap with that formed in the vicinity of the cell, and were situated at distances 500-1200 microns from the cell body. When viewed in the tangential plane, horizontal collaterals were oriented, on the whole, dorsoventrally with respect to the surface of the cortex. This may correspond to the organization of isofrequency bands previously described in cats. The results suggest that the major spread of excitation in AI is mediated by horizontal collaterals of pyramidal cells and that it occurs along the lines of isofrequency domains. Within the latter the

  20. A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Sang Seok Yeo; Sung Ho Jang

    2012-01-01

    Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.

  1. Response of SII cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat

    Directory of Open Access Journals (Sweden)

    Favorov Oleg

    2005-02-01

    Full Text Available Abstract Background A distinctive property of SII is that it is the first cortical stage of the somatosensory projection pathway that integrates information arising from both sides of the body. However, there is very little known about how inputs across the body mid-line are processed within SII. Results Optical intrinsic signal imaging was used to evaluate the response of primary somatosensory cortex (SI and SII in the same hemisphere to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter" applied contralaterally, ipsilaterally, and bilaterally to the central pads of the forepaws. A localized increase in absorbance in both SI and SII was evoked by both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but not in SI. The SII region that responded with an increase in absorbance to ipsilateral stimulation was posterior to the region in which absorbance increased maximally in response to stimulation of the contralateral central pad. Additionally, in the posterior SII region that responded maximally to ipsilateral stimulation of the central pad, bilateral central pad stimulation approximated a linear summation of the SII responses to independent stimulation of the contralateral and ipsilateral central pads. Conversely, in anterior SII (the region that responded maximally to contralateral stimulation, bilateral stimulation was consistently less than the response evoked from the contralateral central pad. Conclusions The results indicate that two regions located at neighboring, but distinctly different A-P levels of the anterior ectosylvian gyrus process input from opposite sides of the body midline in very different ways. The results suggest that the SII cortex, in the cat, can be subdivided into at least two functionally distinct regions and that these functionally distinct regions demonstrate a laterality preference within SII.

  2. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  3. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    Directory of Open Access Journals (Sweden)

    M Cornelia Stoeckel

    Full Text Available Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  4. [Effects of ketamine and urethane on stimulation-induced c-fos expression in neurons of cat visual cortex].

    Science.gov (United States)

    Wang, Ke; Zhu, Hui; Chen, Cui-Yun; Li, Peng; Jin, Cai-Hong; Wang, Zi-Lu; Jiang, San; Hua, Tian-Miao

    2013-12-01

    The effects of ketamine and urethane on neuronal activities remain in debate. As a member of immediate early genes family, the expression of c-fos is stimulation dependent and could be treated as an index to evaluate the strength of neural activities. In this study, SABC immunohistochemical techniques were applied to compare the c-fos expression in neurons of the primary visual cortex (V1) of cats and therefore, to evaluate the effects of acute anesthesia with ketamine HCl and uethane on inhibiting neural activities. Our results showed that compared with control cats, there were no significant differences with the average densities of Nissl-stained V1 neurons in each cortical layers of either urethane or ketamine anesthetized cats. In urethane anesthetized cats, neither the average densities nor the immunoreactive intensities of c-fos positive V1 neurons showed significant difference with that of control ones. However, both the average densities and immunoreactive intensities of c-fos positive V1 neurons in ketamine anesthetized cats decreased significantly compared with that of control and urethane anesthetized cats. These results suggested that ketamine has strong inhibitory effects on the activities of visual cortical neurons, whereas urethane did not. PMID:24415690

  5. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    Science.gov (United States)

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  6. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    Science.gov (United States)

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  7. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex

    International Nuclear Information System (INIS)

    Calcium (45Ca2+) efflux was studied from preloaded cortex in cats immobilized under local anesthesia, and exposed to a 3.0-mW/cm2 450-MHz field, sinusoidally amplitude modulated at 16 Hz modulation depth 85%). Tissue dosimetry showed a field of 33 V/m in the interhemispheric fissure (rate of energy deposition 0.29 W/kg). Field exposure lasted 60 min. By comparison with controls, efflux curves from field exposed brains were disrupted by waves of increased 45Ca2+ efflux. These waves were irregular in amplitude and duration, but many exhibited periods of 20-30 min. They continued into the postexposure period. Binomial probability analysis indicates that the field-exposed efflux curves constitute a different population from controls at a confidence level of 0.96. In about 70% of cases, initiation of field exposure was followed by increased end-tidal CO2 excretion for about 5 min. However, hypercapnea induced by hypoventilation did not elicit increased 45Ca2+ efflux. Thus this increase with exposure does not appear to arise as a secondary effect of raised cerebral CO2 levels. Radioactivity measurements in cortical samples after superfusion showed 45Ca2+ penetration at about 1.7 mm/hr, consistent with diffusion of the ion in free solution

  8. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E.; Taylor, Janet L.;

    2010-01-01

    ABSTRACT This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of cortex. In addition, corticospinal...... magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression...... of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) contribute to drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal...

  9. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  10. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl;

    2005-01-01

    used functional magnetic imaging (fMRI) to study the free selection of actions and colours. Control conditions used externally specified actions and colours. The prefrontal cortex was activated during free selection, regardless of modality, in contrast to modality-specific activations outside...... prefrontal cortex. Structural equation modelling (SEM) of fMRI data was used to test the hypothesis that although the same regions of prefrontal cortex may be active in tasks within different domains, there is task-dependent effective connectivity between prefrontal cortex and non-prefrontal cortex. The SEM...... included high-order interactions between modality, selection and regional activity. There was greater coupling between prefrontal cortex and motor cortex during free selection and action tasks, and between prefrontal cortex and visual cortex during free selection of colours. The results suggest that the...

  11. A computational role for bistability and traveling waves in motor cortex

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-09-01

    Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.

  12. Reversible worsening of Parkinson disease motor symptoms after oral intake of Uncaria tomentosa (cat's claw).

    Science.gov (United States)

    Cosentino, Carlos; Torres, Luis

    2008-01-01

    Uncaria tomentosa (UT), also known as cat's claw, isa Peruvian Rubiaceae species widely used in traditional medicine for the treatment of a wide range of health problems. There is no report about the use, safety, and efficacy of UT in neurological disorders. We describe reversible worsening of motor signs in a patient with Parkinson disease after oral intake of UT, and some possible explanations are discussed.

  13. A computational role for bistability and traveling waves in motor cortex

    OpenAIRE

    Heitmann, Stewart; Gong, Pulin; Breakspear, Michael

    2012-01-01

    Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13–30 Hz) in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous osci...

  14. Oscillatory dynamics track motor performance improvement in human cortex.

    Directory of Open Access Journals (Sweden)

    Stefan Dürschmid

    Full Text Available Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go. Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz phase and high gamma (HG; 80-180 Hz amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45 were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice.

  15. Oscillatory dynamics track motor performance improvement in human cortex.

    Science.gov (United States)

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  16. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice.

    Science.gov (United States)

    Lee, Michael; Hinder, Mark R; Gandevia, Simon C; Carroll, Timothy J

    2010-01-01

    Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.

  17. Dr. Otto Soltmann (1876) on development of the motor cortex and recovery after its removal in infancy.

    Science.gov (United States)

    Finger, S; Beyer, T; Koehler, P J

    2000-09-15

    In 1870, Fritsch and Hitzig demonstrated that dogs have a motor cortex. In a chapter published 6 years later, Otto Soltmann studied the functional development of the motor cortex, which he believed functioned in willed movement. He was the first to show that the dog's motor cortex becomes electrically excitable at about 10 days of age, with the contralateral forepaw area appearing first. He also studied the effects of ablating the cortical motor regions unilaterally and bilaterally, and encountered a remarkable degree of sparing of function in his animals operated on as newborns, but not in older-operated dogs. Soltmann turned to the theory of functional take-over (vicariation) to account for the absence of deficits in his young animals. He was especially intrigued by the fact that electrical stimulation of a healthy motor cortex could produce bilateral matched movements, but only in dogs that sustained opposite motor cortex lesions very early in life.

  18. Homuncular organization of human motor cortex as indicated by neuromagnetic recordings.

    Science.gov (United States)

    Cheyne, D; Kristeva, R; Deecke, L

    1991-01-14

    Sources of neural activity identified using non-invasive measurements of cerebral magnetic fields (magnetoencephalography) were found to confirm the somatotopic organization of primary motor cortex for movements of different parts of the body in normal human subjects. Somatotopic maps produced with this technique showed slight differences to the 'classic' homunculus obtained from studies using direct cortical stimulation. These findings indicate that neuromagnetic recordings are capable of localizing cortical activity associated with voluntarily produced movements without the use of external stimulation and provide a new method for studying the functional organization of human motor cortex and its role in voluntary movement.

  19. Morphological properties of nociceptive and non-nociceptive neurons in primary somatic cerebral cortex (SI) of cat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron's level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the "specificity theory" of pain sensation in terms of morphology.

  20. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    Directory of Open Access Journals (Sweden)

    Marie-Christine Désy

    Full Text Available The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS. Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects.

  1. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  2. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk;

    stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the “hot-spot” of the tongue motor cortex and motor evoked potentials (MEPs) were...... recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs: 2, 10, 15 ms were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body positions (recline and supine) randomly. In study 2, single.......042) in study 1. In study 2, there was a significant effect of ISI (Ptongue training on SICI and ICF in the tongue motor cortex....

  3. Cats

    Science.gov (United States)

    ... those experienced by humans. Cats that hunt wild rodents and rabbits in the western, particularly the southwestern, ... caused by a fungus that can infect skin, hair, and nails of both people and animals. Ringworm ...

  4. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    Science.gov (United States)

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. PMID:23000258

  5. Diversity of layer 5 projection neurons in the mouse motor cortex

    OpenAIRE

    Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Ruth M Empson

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh)...

  6. Laminarly orthogonal excitation of fast spiking and low threshold spiking interneurons in mouse motor cortex

    OpenAIRE

    Apicella, Alfonso J; Wickersham, Ian R.; Seung, H. Sebastian; Gordon M. G Shepherd

    2012-01-01

    In motor cortex, long-range output to subcortical motor circuits depends on excitatory and inhibitory inputs converging on projection neurons in layers 5A/B. How interneurons interconnect with these projection neurons, and whether these microcircuits are interneuron- and/or projection-specific, is unclear. We found that fast spiking (FS) interneurons received strong intralaminar (horizontal) excitation from pyramidal neurons in layers 5A/B including corticostriatal and corticospinal neurons, ...

  7. Diversity of Layer 5 Projection Neurons in the Mouse Motor Cortex

    OpenAIRE

    Oswald, Manfred J.; Malinda LS Tantirigama; Ivo eSonntag; Hughes, Stephanie M.; Ruth M Empson

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labelled M1 corticospinal (CSp), corticothalamic (CTh...

  8. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  9. Modelling motor cortex stimulation for chronic pain control. electrical potential field, activating functions and responses of simple nerve fibre models

    NARCIS (Netherlands)

    Manola, L.; Roelofsen, B.H.; Holsheimer, J.; Marani, E.; Geelen, J.A.G.

    2005-01-01

    This computer modelling study on motor cortex stimulation (MCS) introduced a motor cortex model, developed to calculate the imposed electrical potential field characteristics and the initial response of simple fibre models to stimulation of the precentral gyrus by an epidural electrode, as applied i

  10. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    Science.gov (United States)

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  11. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery

    Directory of Open Access Journals (Sweden)

    Maria Laura eBlefari

    2015-02-01

    Full Text Available Motor imagery (MI has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME. The main region of the ME network, the primary motor cortex (M1, has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1 activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Activities in premotor and parietal regions were used as covariates. We found that cM1 activity was positively correlated to improvements in accuracy as well as overall performance improvements, whereas other regions in the sensorimotor network were not. The association between cM1 activation during MI with performance changes indicates that subjects with stronger cM1 activation during MI may benefit more from MI training, with implications towards targeted neurotherapy.

  12. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    Science.gov (United States)

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  13. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    Science.gov (United States)

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  14. Double representation of the wrist and elbow in human motor cortex

    NARCIS (Netherlands)

    Strother, L.; Medendorp, W.P.; Coros, A.M.; Vilis, T.

    2012-01-01

    Movements of the fingers, hand and arm involve overlapping neural representations in primary motor cortex (M1). Monkey M1 exhibits a coresurround organisation in which cortical representation of the hand and fingers is surrounded by representations of the wrist, elbow and shoulder. A potentially hom

  15. The involvement of the left motor cortex in learning of a novel action word lexicon

    NARCIS (Netherlands)

    Liuzzi, Gianpiero; Freundlieb, Nils; Ridder, Volker; Hoppe, Julia; Heise, Kirstin; Zimerman, Maximo; Dobel, Christian; Enriquez-Geppert, Stefanie; Gerloff, Christian; Zwitserlood, Pienie; Hummel, Friedhelm C

    2010-01-01

    Current theoretical positions assume that action-related word meanings are established by functional connections between perisylvian language areas and the motor cortex (MC) according to Hebb's associative learning principle. To test this assumption, we probed the functional relevance of the left MC

  16. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

    Science.gov (United States)

    Neymotin, Samuel A.; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D.; Lytton, William W.

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  17. Transformation of a virtual action plan into a motor plan in the premotor cortex.

    Science.gov (United States)

    Nakayama, Yoshihisa; Yamagata, Tomoko; Tanji, Jun; Hoshi, Eiji

    2008-10-01

    Before preparing to initiate a forthcoming motion, we often acquire information about the future action without specifying actual motor parameters. The information for planning an action at this conceptual level can be provided with verbal commands or nonverbal signals even before the associated motor targets are visible. Under these conditions, the information signifying a virtual action plan must be transformed to information that can be used for constructing a motor plan to initiate specific movements. To determine whether the premotor cortex is involved in this process, we examined neuronal activity in the dorsal premotor cortex (PMd) of monkeys performing a behavioral task designed to isolate the behavioral stages of the acquisition of information for a future action and the construction of a motor plan. We trained the animals to receive a symbolic instruction (color and shape of an instruction cue) to determine whether to select the right or left of targets to reach, despite the physical absence of targets. Subsequently, two targets appeared on a screen at different locations. The animals then determined the correct target (left or right) based on the previous instruction and prepared to initiate a reaching movement to an actual target. The experimental design dissociated the selection of the right/left at an abstract level (action plan) from the physical motor plan. Here, we show that activity of individual PMd neurons initially reflects a virtual action plan transcending motor specifics, before these neurons contribute to a transformation process that leads to activity encoding a motor plan. PMID:18842888

  18. Motor cortex representation of the upper-limb in individuals born without a hand.

    Directory of Open Access Journals (Sweden)

    Karen T Reilly

    Full Text Available The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS applied over the primary motor cortex (M1 of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1 whether we could evoke phantom sensations, and 2 whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.

  19. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  20. Intracortical inhibition and facilitation in different representations of the human motor cortex.

    Science.gov (United States)

    Chen, R; Tam, A; Bütefisch, C; Corwell, B; Ziemann, U; Rothwell, J C; Cohen, L G

    1998-12-01

    Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are associated with changes in ICI and ICF. Although well characterized in the hand representation, it is not known if ICI and ICF vary across different body part representations. Therefore we studied ICI and ICF in different motor representations of the human motor cortex. The target muscles were rectus abdominus (RA), biceps brachii (BB), abductor pollicis brevis (APB), quadriceps femoris (QF), and abductor hallucis (AH). For each muscle, we measured the rest and active motor thresholds (MTs), the motor-evoked potential (MEP) stimulus-response curve (MEP recruitment), ICI, and ICF. The effects of different interstimulus intervals (ISIs) were studied with a conditioning stimulus (CS) intensity of 80% active MT. The effects of different CS intensities were studied at ISI of 2 ms for ICI and ISI of 15 ms for ICF. MT was lowest for APB, followed by BB, AH, and QF, and was highest for RA. Except for BB, MEP recruitment was generally steeper for muscles with lower MT. ICI and ICF were present in all the motor representations tested. The stimulus intensity necessary to elicit ICI was consistently lower than that required to elicit ICF, suggesting that they are mediated by separate mechanisms. Despite wide differences in MT and MEP recruitment, the absolute CS intensities (expressed as percentage of the stimulator's output) required to elicit ICI and ICF appear unrelated to MT and MEP recruitment in the different muscles tested. These findings suggest that the intracortical mechanisms for inhibition and facilitation in different motor representations are not related to the strength of corticospinal projections. PMID

  1. Action verbs and the primary motor cortex: a comparative TMS study of silent reading, frequency judgments, and motor imagery.

    Science.gov (United States)

    Tomasino, Barbara; Fink, Gereon R; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS(M1) vs. TMS(vertex)) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation within the same experiment: subjects indicated with their left foot when they (i) had finished reading, (ii) had judged whether the corresponding movement involved a hand rotation after simulating the hand movement, and (iii) had judged whether they would frequently encounter the action verb in a newspaper (TASK: silent reading, motor imagery, and frequency judgment). Response times were compared between TMS(M1) and TMS(vertex), both applied at different time points after stimulus onset (DELAY: 150, 300, 450, 600, and 750 ms). TMS(M1) differentially modulated task performance: there was a significant facilitatory effect of TMS(M1) for the imagery task only (about 88 ms), with subjects responding about 10% faster (compared to TMS(vertex)). In contrast, response times for silent reading and frequency judgments were unaffected by TMS(M1). No differential effect of the time point of TMS(M1) was observed. The differential effect of TMS(M1) when subjects performed a motor imagery task (relative to performing silent reading or frequency judgments with the same set of verbs) suggests that the primary motor cortex is critically involved in processing action verbs only when subjects are simulating the corresponding movement. This task-dependent effect of hand motor cortex TMS on the processing of hand-related action verbs is discussed with respect to the notion of embodied cognition and the associationist theory. PMID:18328510

  2. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study.

    Science.gov (United States)

    Lakhani, Bimal; Bolton, David A E; Miyasike-Dasilva, Veronica; Vette, Albert H; McIlroy, William E

    2014-03-15

    'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

  3. Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex.

    Science.gov (United States)

    Ojima, H; Honda, C N; Jones, E G

    1992-01-01

    Pyramidal neurons in layers V and VI of cat primary auditory cortex (AI) were intracellularly injected with biocytin after functional characterization according to a position relative to an anteroposterior sequence of best-frequency responses. A sample of 19 completely filled neurons was analyzed, and a preliminary classification was made on the basis of dendritic morphology and axon collateral distribution. Layer V cells could be divided into two types. Cells in the upper part of layer V and projecting toward the diencephalon had a large cell body and an apical dendrite with extensive branches in layer I. These cells had few recurrent axon collaterals, and no terminal axonal bushes were formed in the vicinity of the dendritic field. Long horizontal collaterals with many boutons, however, extended in various directions parallel to the cortical surface. By contrast, cells in the lower part of layer V and sending an axon into the putamen, or without an obvious subcortical axon, had a medium soma and an apical dendrite with few branches in layer I. These cells had a dense bush of recurrent collaterals extending into layers II and III and surrounding the dendritic field, but few or no horizontal collaterals. Layer VI injected neurons were more heterogeneous. All had a thin ascending dendrite with oblique branches both ending in layer III. Axon collateral distributions varied from cell to cell. Relatively small cells with an apical dendrite that branched frequently in layers III and IV had a dense network of recurrent collaterals in the dendritic field, but virtually no horizontal collaterals. This type projected toward the diencephalon. Cells with relatively long horizontal collaterals and a weak recurrent system confined to layers V and VI had a unique arborization pattern of basal dendrites. This type may have projected to the claustrum or other cortical areas. One cell with dendritic branches restricted to layer VI had horizontal collaterals predominantly in layer

  4. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    at different stimulation durations (strength-duration relationship), after a conditioning nerve impulse (recovery of excitability), or during the application of a polarizing current (threshold electrotonus). Four months after the lesion, regenerated nerves showed a higher rheobase, shorter chronaxie, shorter......The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  5. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  6. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    Science.gov (United States)

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  7. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment:a voxel-based lesion symptom mapping study

    Institute of Scientific and Technical Information of China (English)

    Alexandria M. Reynolds; Denise M. Peters; Jennifer M. C. Vendemia; Lenwood P. Smith; Raymond C. Sweet; Gordon C. Baylis; Debra Krotish; Stacy L Fritz

    2014-01-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuro-nal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deifcits expected after damage to the cortical motor system due to stroke. These ifndings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex.

  8. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training.

    Science.gov (United States)

    Karabanov, Anke; Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark

    2012-06-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC-M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline. PMID:22442568

  9. Sentential context modulates the involvement of the motor cortex in action language processing: an FMRI study.

    Science.gov (United States)

    Schuil, Karen D I; Smits, Marion; Zwaan, Rolf A

    2013-01-01

    Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a weak view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in non-literal sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to non-literal and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than non-literal action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  10. Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex

    DEFF Research Database (Denmark)

    Balslev, Daniela; Braet, Wouter; McAllister, Craig;

    2007-01-01

    We evaluated inter-individual variability in optimal current direction for biphasic transcranial magnetic stimulation (TMS) of the motor cortex. Motor threshold for first dorsal interosseus was detected visually at eight coil orientations in 45 degrees increments. Each participant (n=13) completed...... two experimental sessions. One participant with low test-retest correlation (Pearson's rmotor threshold was compared to EMG detection; motor thresholds were very similar and highly correlated (0.94-0.99). Similar with previous studies...... sample the optimal orientation of current direction was normally distributed around the postero-lateral orientation with a range of 63 degrees (S.D.=13.70 degrees). Whenever the intensity of stimulation at the target site is calculated as a percentage from the motor threshold, in order to minimize...

  11. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk;

    2014-01-01

    and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the "hot-spot" of the tongue...... motor cortex and motor evoked potentials (MEPs) were recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs: 2, 10, 15 ms were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body.......001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (Ptongue motor pathways using ppTMS and SICI...

  12. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.;

    2013-01-01

    Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8...... of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network...

  13. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  14. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  15. FUNCTIONAL RECOVERY FOLLOWING MOTOR CORTEX LESIONS IN NON-HUMAN PRIMATES: EXPERIMENTAL IMPLICATIONS FOR HUMAN STROKE PATIENTS

    OpenAIRE

    Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.

    2011-01-01

    This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in ...

  16. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    Science.gov (United States)

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons.

  17. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  18. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  19. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: Anatomy, physiology and mechanisms

    Directory of Open Access Journals (Sweden)

    Emmanuel eBui Quoc

    2012-01-01

    Full Text Available In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When the latter is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, such data are sparse and incomplete. Thus, little is known about the consequences of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non deviated eye. Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute in succession to the development of the callosal maps in visual cortex.

  20. Intrahemispheric dysfunction in primary motor cortex without corpus callosum: a transcranial magnetic stimulation study

    Directory of Open Access Journals (Sweden)

    Lassonde Maryse

    2006-06-01

    Full Text Available Abstract Background The two human cerebral hemispheres are continuously interacting, through excitatory and inhibitory influences and one critical structure subserving this interhemispheric balance is the corpus callosum. Interhemispheric neurophysiological abnormalities and intrahemispheric behavioral impairments have been reported in individuals lacking the corpus callosum. The aim of this study was to examine intrahemispheric neurophysiological function in primary motor cortex devoid of callosal projections. Methods Intracortical excitatory and inhibitory systems were tested in three individuals with complete agenesis of the corpus callosum and sixteen healthy individuals. These systems were assessed using transcranial magnetic stimulation (TMS protocols: motor threshold at rest, paired-pulse curve, and cortical silent period. Results TMS revealed no difference between the patient and control groups on the motor threshold measure, as well as intracortical facilitation and intracortical inhibition systems as tested by paired stimulation. However, intrahemispheric inhibitory function was found to be abnormal in participants without callosal projections, as the cortical silent period duration was significantly increased in the patient group. Conclusion These data suggest that in addition to previously reported impaired interhemispheric function, patients lacking the entire corpus callosum also display abnormal intrahemispheric excitability of the primary motor cortex.

  1. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    Science.gov (United States)

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

  2. On the functional organization and operational principles of the motor cortex

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl;

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles...... appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled...... representation of muscles in the MCx. A key question addressed in this article is whether the selection of movement related muscle synergies is a dynamic process involving the moment to moment functional linking of a variety of motor cortical points, or rather the selection of fixed patterns embedded in the MCx...

  3. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Marianne Anke Stephan

    2016-05-01

    Full Text Available The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group. For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group. Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  4. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Science.gov (United States)

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  5. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  6. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex.

    Science.gov (United States)

    Kraus, Dominic; Gharabaghi, Alireza

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation. PMID:27610248

  7. Interplay of orientation selectivity and the power of low- and high-gamma bands in the cat primary visual cortex.

    Science.gov (United States)

    Bharmauria, Vishal; Bachatene, Lyes; Ouelhazi, Afef; Cattan, Sarah; Chanauria, Nayan; Etindele-Sosso, Faustin Armel; Rouat, Jean; Molotchnikoff, Stéphane

    2016-05-01

    Gamma oscillations are ubiquitous in brain and are believed to be inevitable for information processing in brain. Here, we report that distinct bands (low, 30-40Hz and high gamma, 60-80Hz) of stimulus-triggered gamma oscillations are systematically linked to the orientation selectivity index (OSI) of neurons in the cat primary visual cortex. The gamma-power is high for the highly selective neurons in the low-gamma band, whereas it is high for the broadly selective neurons in the high-gamma band. We suggest that the low-gamma band is principally implicated in feed-forward excitatory flow, whereas the high-gamma band governs the flow of this excitation. PMID:27033667

  8. Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex.

    Science.gov (United States)

    Bhatt, Mrudul B; Bowen, Stephanie; Rossiter, Holly E; Dupont-Hadwen, Joshua; Moran, Rosalyn J; Friston, Karl J; Ward, Nick S

    2016-06-01

    Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model selection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic canonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophysiological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease. PMID:26956910

  9. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    Science.gov (United States)

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOHethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  10. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  11. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology.

    Science.gov (United States)

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19-65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0-10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS

  12. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology

    Science.gov (United States)

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19–65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0–10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0–10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and

  13. Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology

    Directory of Open Access Journals (Sweden)

    Alícia Deitos

    2016-07-01

    Full Text Available The central sensitization syndrome (CSS encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA] to an absence of tissue injuries such as the one presented in fibromyalgia (FM and myofascial pain syndrome (MPS. First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by TMS, namely motor evoked potential (MEP, cortical silent period (CSP, short intracortical inhibition (SICI and short intracortical facilitation (SICF. Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS, could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM paradigm. Third, we explored whether BDNF had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n=114, aged 19 to 65 years old with disability by chronic pain syndromes: FM (n= 19, MPS (n=54, OA (n=27 and healthy subjects (n=14. We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on Numerical Pain Scale [NPS (0-10] during CPM-task. The adjusted mean (SD on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18 vs. 0.55 (0.32], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10 during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS than in OA and healthy subjects. Likewise, the inter-hemispheric disinhibition as well

  14. Dopaminergic mesocortical projections to M1: role in motor learning and motor cortex plasticity

    Directory of Open Access Journals (Sweden)

    Jonas Aurel Hosp

    2013-10-01

    Full Text Available Although the architecture of a dopaminergic (DA system within the primary motorcortex (M1 was well characterized anatomically, its functional significance remainedobscure for a long time. Recent studies in rats revealed that the integrity ofdopaminergic fibers in M1 is a prerequisite for successful acquisition of motor skills.This essential contribution of DA for motor learning is plausible as it modulates M1circuitry at multiple levels thereby promoting plastic changes that are required forinformation storage: at the network level, DA increases cortical excitability andenhances the stability of motor maps. At the cellular level, DA induces the expressionof learning related genes via the transcription factor c-fos. At the level of synapses,DA is required for the formation of long-term potentiation (LTP, a mechanism thatlikely is a fingerprint of a motor memory trace within M1. Dopaminergic fibersinnervating M1 originate within the midbrain, precisely the ventral tegmental area(VTA and the medial portion of substantia nigra (SN. Thus, they could be part of themeso-cortico-limibic pathway – a network that provides information about saliencyand motivational value of an external stimulus and is commonly referred as

  15. Learning-Dependent Potentiation in the Vibrissal Motor Cortex Is Closely Related to the Acquisition of Conditioned Whisker Responses in Behaving Mice

    Science.gov (United States)

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2007-01-01

    The role of the primary motor cortex in the acquisition of new motor skills was evaluated during classical conditioning of vibrissal protraction responses in behaving mice, using a trace paradigm. Conditioned stimulus (CS) presentation elicited a characteristic field potential in the vibrissal motor cortex, which was dependent on the synchronized…

  16. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  17. Recurrent CSPs after Transcranial Magnetic Stimulation of Motor Cortex in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Aulikki Ahlgrén-Rimpiläinen

    2012-01-01

    Full Text Available Aims. The aim of this study was to investigate the motor control and central silent period (CSP in restless legs syndrome (RLS. Methods. Transcranial magnetic stimulation was focused on the dominant and nondominant hemispheric areas of motor cortex in six subjects with RLS and six controls. The responses were recorded on the contralateral abductor digiti minimi (ADM and tibialis anterior (TA muscles with intramuscular needle electrodes. Results. No significant differences were found in the motor conduction or central motor conduction time, in the latency, or in the duration of the CSPs between or within the groups, but multiple CSPs were observed in both groups. The number of the CSPs was significantly higher in both ADMs and in the dominant TA (P≤0.01 in the RLS group compared to the controls. Conclusion. Descending motor pathways functioned correctly in both groups. The occurrence of the recurrent CSPs predominantly in the RLS group could be a sign of a change of function in the inhibitory control system. Further research is needed to clarify the role of the intramuscular recording technique and especially the role of the subcortical generators in the feedback regulation of the central nervous system in RLS.

  18. Age-related changes in soma size of neurons in the spinal cord motor column of the cat.

    Science.gov (United States)

    Liu, R H; Bertolotto, C; Engelhardt, J K; Chase, M H

    1996-06-28

    The present study was undertaken to examine the effect of the aging process on the soma size and number of motoneurons and interneurons in the motor column of the spinal cord of old cats. Neurons in the motor column were divided into small and large populations based on a bimodal distribution of their soma cross-sectional areas. A 17% decrease in the cross-sectional area of small neurons was observed, this decrease was statistically significant (P cats compared with the control animals. This data suggest that neurons in the motor column are not uniformly affected by the aging process because morphological changes are proportionally greater in small neurons than in large neurons. PMID:8817566

  19. [The functional role of the motor area of the cortex in the acquisition of escape reactions in dogs].

    Science.gov (United States)

    Frolov, A G; Maslov, A V; Pavlova, O G

    1993-01-01

    The model of escape conditioning similar to classical (pavlovian) was proposed. During shock application to the hind limb (a conditioned stimulus) the ipsilateral foreleg flexion was elicited by a stimulation of the motor cortex (an unconditioned stimulus); both stimuli were turned off in the course of the forepaw lifting. Such uniform pairings resulted in elaboration of a reaction of the foreleg flexion in response to the shock. Prolonging the shock by 3 s after the cortical stimulation led to a rapid extinction of the acquired response. So a possibility to instrumentalize movements elicited by stimulation of the motor cortex (MI) was proved. This is in argument in favour of an assumption that the established "instrumental" connection (drive-motor structures) can be addressed directly to the motor cortex.

  20. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander;

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1...

  1. Real time fMRI: a tool for the routine presurgical localisation of the motor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, M.; Freund, M.; Schwindt, W.; Gaus, C.; Heindel, W. [University of Muenster, Department of Clinical Radiology, Munster (Germany); Greiner, C. [University of Muenster, Department of Neurosurgery, Munster (Germany)

    2005-02-01

    In patients with brain lesions adjacent to the central area, exact preoperative knowledge of the spatial relation of the tumour to the motor cortex is of major importance. Many studies have shown that functional magnetic resonance imaging (fMRI) is a reliable tool to identify the motor cortex. However, fMRI data acquisition and data processing are time-consuming procedures, and this prevents general routine clinical application. We report a new application of real time fMRI that allows immediate access to fMRI results by automatic on-line data processing. Prior to surgery we examined ten patients with a brain tumour adjacent to the central area. Three measurements were performed at a 1.5-T Magnetom Vision Scanner (Siemens, Forchheim, Germany) on seven patients and at a 1.5-T Intera Scanner (Philips, Best, The Netherlands) on three patients using a sequential finger-tapping paradigm for motor cortex activation versus at rest condition. Blood oxygen level-dependant (BOLD) images were acquired using a multislice EPI sequence (16 slices, TE 60, TR 6000, FOV 210 x 210, matrix 64 x 64). The central sulcus of the left hemisphere could be clearly identified by a maximum of cortical activity after finger tapping of the right hand in all investigated patients. In eight of ten patients the right central sulcus was localised by a signal maximum, whereas in two patients the central sulcus could not be identified due to a hemiparesis in one and strong motion artefacts in the second patient. Finger tapping with one side versus rest condition seems to result in more motion artefacts, while finger tapping of the right versus the left hand yielded the strongest signal in the central area. Real time fMRI is a quick and reliable method to identify the central sulcus and has the potential to become a clinical tool to assess patients non-invasively before neurosurgical treatment. (orig.)

  2. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes

    Science.gov (United States)

    DosSantos, Marcos F.; Ferreira, Natália; Toback, Rebecca L.; Carvalho, Antônio C.; DaSilva, Alexandre F.

    2016-01-01

    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively. PMID:26903788

  3. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex.

    Science.gov (United States)

    Gebremedhin, Kibrom G; Rademacher, David J

    2016-08-01

    Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription. PMID:27241718

  4. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  5. Skilled Bimanual Training Drives Motor Cortex Plasticity in Children With Unilateral Cerebral Palsy.

    Science.gov (United States)

    Friel, Kathleen M; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L; Brandão, Marina; Carmel, Jason B; Bleyenheuft, Yannick; Gowatsky, Jaimie L; Stanford, Arielle D; Rowny, Stefan B; Luber, Bruce; Bassi, Bruce; Murphy, David L K; Lisanby, Sarah H; Gordon, Andrew M

    2016-10-01

    Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training versus unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9.5; 12 males) received therapy in a day camp setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n = 10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n = 10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor Test of Hand Function (JTTHF), and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation to map the representation of first dorsal interosseous and flexor carpi radialis muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; P < .05) and hand dexterity (JTTHF; P < .001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (P < .01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP.

  6. The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex

    OpenAIRE

    Finn, Ian M.; Priebe, Nicholas J.; Ferster, David

    2007-01-01

    Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determi...

  7. A Postnatal Critical Period for Orientation Plasticity in the Cat Visual Cortex

    OpenAIRE

    Shigeru Tanaka; Toshiki Tani; Jérôme Ribot; Kazunori O'Hashi; Kazuyuki Imamura

    2009-01-01

    Orientation selectivity of primary visual cortical neurons is an important requisite for shape perception. Although numerous studies have been previously devoted to a question of how orientation selectivity is established and elaborated in early life, how the susceptibility of orientation plasticity to visual experience changes in time remains unclear. In the present study, we showed a postnatal sensitive period profile for the modifiability of orientation selectivity in the visual cortex of ...

  8. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A;

    2012-01-01

    to address if activity arising in the motor cortex contributes to the muscle activity during gait. Nine healthy human subjects walked on a treadmill at a speed of 3.5–4 km h(-1). Seven of the subjects in addition walked at a speed of 1 km h(-1). Significant coupling between EEG recordings over the leg motor...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  9. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value.

    Directory of Open Access Journals (Sweden)

    Asha Iyer

    Full Text Available For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high "absolute value" (high gain or loss conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance.

  10. The responses to illusory contours of neurons in cortex areas 17 and 18 of the cats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Responses to illusory contours (ICs) were sampled from neurons incortical areas 17 and 18 of the anesthetized cats. For ICs sensitive cells, the differences of receptive field properties were compared when ICs and real contour stimuli were applied. Two hundred orientation or direction selective cells were studied. We find that about 42 percent of these cells were the ICs sensitive cells. Although their orientation or direction tuning curves to ICs bar and real bars were similar, the response modes (especially latency and time course) were different. The cells' responses to ICs were independent of the spatial phases of sinusoidal gratings, which composed the ICs. The cells' optimal spatial frequency to composing gratings the ICs was much higher than the one to moving gratings. Therefore, these cells really responded to the ICs rather than the line ends of composing gratings. For some kinds of velocity-tuning cells, the optimal velocity to moving ICs bar was much lower than the optimal velocity to moving bars. The present results demonstrate that some cells in areas 17 and 18 of cats have the ability to respond to ICs and have different response properties of the receptive fields to ICs and luminance boundaries via different neural mechanisms.

  11. Influence of repetitive peripheral magnetic stimulation on neural plasticity in the motor cortex related to swallowing.

    Science.gov (United States)

    Momosaki, Ryo; Kakuda, Wataru; Yamada, Naoki; Abo, Masahiro

    2016-09-01

    The aim of this study was to evaluate the effect of repetitive peripheral magnetic stimulation at two different frequencies (20 and 30 Hz) on cortical excitability in motor areas related to swallowing in healthy individuals. The study participants were 10 healthy normal volunteers (two women and eight men, age range 25-36 years). Repetitive peripheral magnetic stimulation was applied to the submandibular muscle using a parabolic coil at the site where contraction of the suprahyoid muscles was elicited. Stimulation was continued for 10 min (total 1200 pulses) at 20 Hz on 1 day and at 30 Hz on another day, with the stimulation strength set at 90% of the intensity that elicited pain. The motor-evoked potential amplitude of suprahyoid muscles was assessed before, immediately after, and 30 min after stimulation. Stimulations at both 20 and 30 Hz significantly increased motor-evoked potential amplitude (Pswallowing muscles, suggesting facilitation of the motor cortex related to swallowing in healthy individuals. PMID:27262135

  12. Analogous corticocortical inhibition and facilitation in ipsilateral and contralateral human motor cortex representations of the tongue.

    Science.gov (United States)

    Muellbacher, W; Boroojerdi, B; Ziemann, U; Hallett, M

    2001-11-01

    How the human brain controls activation of the ipsilateral part of midline muscles is unknown. We studied corticospinal and corticocortical network excitability of both ipsilateral and contralateral motor representations of the tongue to determine whether they are under analogous or disparate inhibitory and facilitatory corticocortical control. Motor evoked potentials (MEPs) to unilateral focal transcranial magnetic stimulation (TMS) of the tongue primary motor cortex were recorded simultaneously from the ipsilateral and contralateral lingual muscles. Single-pulse TMS was used to assess motor threshold (MT) and MEP recruitment. Paired-pulse TMS was used to study intracortical inhibition (ICI) and intracortical facilitation (ICF) at various interstimulus intervals (ISIs) between the conditioning stimulus (CS) and the test stimulus (TS), and at different CS and TS intensities, respectively. Focal TMS invariably produced MEPs in both ipsilateral and contralateral lingual muscles. MT was lower and MEP recruitment was steeper when recorded from the contralateral muscle group. ICI and ICF were identical in the ipsilateral and contralateral representations, with inhibition occurring at short ISIs (2 and 3 ms) and facilitation occurring at longer ISIs (10 and 15 ms). Moreover, changing one stimulus parameter regularly produced analogous changes in MEP size bilaterally, revealing strong linear correlations between ipsilateral and contralateral ICI and ICF (P < 0.0001). These findings indicate that the ipsilateral and contralateral representations of the tongue are under analogous inhibitory and facilitatory control, possibly by a common intracortical network. PMID:11779968

  13. Are there excitability changes in the hand motor cortex during speech in left-handed subjects?

    Science.gov (United States)

    Tokimura, Hiroshi; Tokimura, Yoshika; Arita, Kazunori

    2012-01-01

    Hemispheric dominance was investigated in left-handed subjects using single transcranial magnetic stimulation to assess the possible effect of forced change in the dominant hand. Single transcranial magnetic stimuli were delivered randomly over the hand area of the left or right motor cortex of 8 Japanese self-declared left-handed adult volunteers. Electromyographic responses were recorded in the relaxed first dorsal interosseous muscle while the subjects read aloud. Laterality quotient calculated by the Edinburgh Inventory ranged from -100 to -5.26 and laterality index calculated from motor evoked potentials ranged from -86.2 to 38.8. There was no significant correlation between laterality quotient and laterality index. Mean data values across all 8 subjects indicated significant increases only in the left hand. Our ratio analysis of facilitation of the hand motor potentials showed that 2 each of the 8 self-declared left-handers were right- and left-hand dominant and the other 4 were bilateral-hand dominant. Speech dominancy was localized primarily in the right cerebral hemisphere in left-handed subjects, but some individuals exhibited bilateral or left dominance, possibly attributable to the forced change of hand preference for writing in childhood. Our findings suggest changes in the connections between the speech and hand motor areas.

  14. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  15. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  16. Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q.

    Science.gov (United States)

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2016-08-01

    Brain mitochondrial function declines with age; however, the accompanying behavioral and histological alterations that are characteristic of Parkinson's disease (PD) are poorly understood. We found that the mitochondrial oxygen consumption rate (OCR) and coenzyme Q (CoQ) content were reduced in aged (15-month-old) male mice compared to those in young (6-month-old) male mice. Concomitantly, motor functions, including the rate of movement and exploratory and voluntary motor activities, were significantly reduced in the aged mice compared to the young mice. In the motor cortex of the aged mouse brain, the accumulation of α-synuclein (α-syn) phosphorylated at serine129 (Ser129) significantly increased, and the level of vesicular glutamate transporter 1 (VGluT1) decreased compared with that in the young mouse brain. The administration of exogenous water-soluble CoQ10 to aged mice via drinking water restored the mitochondrial OCR, motor function, and phosphorylated α-syn and VGluT1 levels in the motor cortex. These results suggest that early-onset motor impairment and the increased accumulation of Ser129-phosphorylated α-syn in the motor cortex are ameliorated by the exogenous administration of CoQ10. PMID:27143639

  17. Response of SI cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat

    Directory of Open Access Journals (Sweden)

    Favorov Oleg

    2005-04-01

    Full Text Available Abstract Background While SII cortex is considered to be the first cortical stage of the pathway that integrates tactile information arising from both sides of the body, SI cortex is generally not considered as a region in which neuronal response is modulated by simultaneous stimulation of bilateral (and mirror-image skin sites. Results Optical intrinsic signal imaging was used to evaluate the response of SI and SII in the same hemisphere to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter" applied contralaterally, ipsilaterally, and bilaterally (simultaneously to the central pads of the forepaws. A localized increase in absorbance in both SI and SII occurred in response to both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but little or no change in SI absorbance. In the forepaw representational region of SI, however, bilateral stimulation of the central pads evoked a response substantially smaller (approximately 30–35% smaller than the response to flutter stimulation of the contralateral central pad. Conclusion The finding that the response of SI cortex to bilateral central pad flutter stimulation is substantially smaller than the response evoked by a contralateral flutter stimulus, together with the recently published observation that a region located posteriorly in SII responds with a substantially larger response to a bilateral flutter stimulus than the response evoked from the contralateral central pad, lead us to propose that the SI activity evoked by contralateral skin stimulation is suppressed/inhibited (via corticocortical connections between SII and SI in the same hemisphere by the activity a simultaneous ipsilateral skin stimulus evokes in posterior SII.

  18. [The role of the motor cortex in rearrangement of the innate movement coordination in the dog].

    Science.gov (United States)

    Pavlova, O G; Mats, V N; Ponomarev, V N

    2007-01-01

    In chronical experiments in dogs the pattern of shoulder muscle recruitment was examined during the forelimb flexion by which the animal lifted and held a cup of food during eating. At the early stage of the instrumental reaction learning the forelimb lifting was performed with the anticipatory deviation of the head in up direction, when the head bent down to the foodwell the lifted forelimb lowered. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement was achieved only by learning. It was found that the forelimb lifting in the innate coordination in untrained dogs was performed with activation of m. deltoideus and m. teres major, whereas m. teres minor was active whilst the dog was standing but the muscle activity was abolished before the limb lifting. In the course of learning m. teres minor activity was changed into opposite one. In the learned coordination the limb lifting was accompanied by the activation of all three shoulder flexors. The lesion of the motor cortex in the area of the "working" forelimb, but not in other areas led to disturbance of the learned coordination and the novel pattern of the shoulder muscle activity. The data obtained led to the following conclusion: the rearrangement of the innate coordination is connected with the formation of the novel way of the forelimb lifting which pattern of muscle recruitment is provided by the motor cortex. PMID:17944105

  19. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    Science.gov (United States)

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  20. Participation of nucleus entopeduncularis in motor instrumental reflex and entopeduncular influences on motor thalamic nuclei in normal and MPTP-treated cats.

    Science.gov (United States)

    Voloshin MYa; Shevko, G N; Lukhanina, E P; Kolomiets, B P

    1993-04-01

    Activity of entopeduncular neurons was studied in chronic experiments on cats during performance of instrumental movement: pedal pressing and holding. One-hundred and twenty-four neurons were extracellularly investigated in intact animals and 81 neurons in cats treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (5 mg/kg daily, intramuscularly for five days). The mean discharge frequency of nucleus entopeduncularis neurons recorded 48-72 h after the last MPTP injection increased from 12.9 +/- 1.5 to 22.1 +/- 1.4 impulses/s, but dropped to preinjection values within the next ten days. In intact animals and in MPTP-treated cats 23 and 17%, respectively, of neurons changed their activity before or during the movement performance. Along with nucleus entopeduncularis neurons that changed their activity simultaneously with instrumental movement performance, 16% of nucleus entopeduncularis nerve cells in intact cats and 12% in MPTP-treated cats responded 50-800 ms before the myogramme of working forepaw biceps was started. Excitatory responses associated with movement performance in MPTP-exposed cats were more pronounced, indicating enhancement of nucleus entopeduncularis neuronal activity in animals with injured nigrostriatal system. Since nucleus entopeduncularis neurons are inhibitory cells, the increase in their activity had to be accompanied by reinforcement of inhibitory influence on neurons in motor thalamic nuclei. In order to test this hypothesis, two groups of acute experiments were performed on ketamine-anaesthetized and myorelaxine-immobilized cats. Neuronal responses in ventral anterior and ventral lateral thalamic nuclei to nucleus entopeduncularis stimulation were investigated in normal and MPTP-treated animals in doses that were identical to those administered in chronic experiments. In intact cats, 28% of neurons responded to nucleus entopeduncularis stimulation with the latency shorter than 7 ms. In half of the inhibited neurons after the

  1. Methylmercury intoxication and histochemical demonstration of NADPH-diaphorase activity in the striate cortex of adult cats

    Directory of Open Access Journals (Sweden)

    Oliveira R.B.

    1998-01-01

    Full Text Available The effects of methylmercury (MeHg on histochemical demonstration of the NADPH-diaphorase (NADPH-d activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1 and the other animals were perfused 6 months later (group 2. After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80. Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05. These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.

  2. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    Science.gov (United States)

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand. PMID:27322001

  3. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    Science.gov (United States)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  4. Encoding of temporal information by timing, rate, and place in cat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Kazuo Imaizumi

    Full Text Available A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1 the event-locked spike-timing precision, 2 the mean firing rate, and 3 the interspike interval (ISI. To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.

  5. Diversity of Layer 5 Projection Neurons in the Mouse Motor Cortex

    Directory of Open Access Journals (Sweden)

    Manfred J Oswald

    2013-10-01

    Full Text Available In the primary motor cortex (M1, layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labelled M1 corticospinal (CSp, corticothalamic (CTh, and commissural projecting corticostriatal (CStr and corticocortical (CC neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP waveform, firing behaviour, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behaviour in corticofugal neurons. At 26 ºC CTh neurons fired bursts of APs more often than CSp neurons, but at 36 ºC both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.

  6. Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex.

    Science.gov (United States)

    Wallace, M N; Kitzes, L M; Jones, E G

    1991-01-01

    Small iontophoretic injections of the lectin, Phaseolus vulgaris leucoagglutinin (PHA-L), were made into different layers of the primary auditory cortex (AI) of cats. Injections in layer I labeled two types of morphologically distinct fibers in layer I as well as a smaller number of axons in layers II and III. Layer II injections labeled descending axons that produced a dense plexus of terminal fibers in layers I-III of both AI and adjacent auditory fields. Injections in layer III also labeled a dense plexus of axon collaterals at the junction of layers V and VI and labeled patches of terminal fibers in both AI and adjacent auditory fields. These were densest in layers I-III but usually extended into layers IV and V as well. The patches were partly formed by axon collaterals of layer III pyramidal cells that traveled for over 4 mm in the gray matter. Injections confined to layer IV labeled axons in all layers of the cortex but none of these axons appeared to reach the white matter. The axons spread laterally in layer IV and up into the superficial layers and ramified especially layer I. Injections in layers V and VI labeled axons in all layers' of the cortex but these were densest in the deep layers where labeling was fairly homogeneous. In the upper layers the labeling was arranged in semi-discrete patches. Large injections involving layers I-III were studied in tangential sections. Between 3 and 8 patches of terminal labeling were observed in AI and these were mainly arranged in a band with its long axis aligned approximately in the dorsoventral direction. However dense patches of terminal labeling also occurred both anterior and posterior to the injection site. In selected experiments portions of the tonotopic map in AI were mapped by single unit recording and subsequently the map was related to patches of anterogradely labeled fibers that surrounded injections of PHA-L. Rows of dorsoventrally oriented patches were among cells with a similar best frequency to

  7. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Omer Bar-Yosef

    2007-11-01

    Full Text Available Animal vocalizations in natural settings are invariably accompanied by an acoustic background with a complex statistical structure. We have previously demonstrated that neuronal responses in primary auditory cortex of halothane-anesthetized cats depend strongly on the natural background. Here, we study in detail the neuronal responses to the background sounds and their relationships to the responses to the foreground sounds. Natural bird chirps as well as modifications of these chirps were used. The chirps were decomposed into three components: the clean chirps, their echoes, and the background noise. The last two were weaker than the clean chirp by 13 and 29 dB on average respectively. The test stimuli consisted of the full natural stimulus, the three basic components, and their three pairwise combinations. When the level of the background components (echoes and background noise presented alone was sufficiently loud to evoke neuronal activity, these background components had an unexpectedly strong effect on the responses of the neurons to the main bird chirp. In particular, the responses to the original chirps were more similar on average to the responses evoked by the two background components than to the responses evoked by the clean chirp, both in terms of the evoked spike count and in terms of the temporal pattern of the responses. These results suggest that some of the neurons responded specifically to the acoustic background even when presented together with the substantially louder main chirp, and may imply that neurons in A1 already participate in auditory source segregation.

  8. Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex

    Directory of Open Access Journals (Sweden)

    Shumikhina Svetlana

    2008-07-01

    Full Text Available Abstract Background Visual neurons respond essentially to luminance variations occurring within their receptive fields. In primary visual cortex, each neuron is a filter for stimulus features such as orientation, motion direction and velocity, with the appropriate combination of features eliciting maximal firing rate. Temporal correlation of spike trains was proposed as a potential code for linking the neuronal responses evoked by various features of a same object. In the present study, synchrony strength was measured between cells following an adaptation protocol (prolonged exposure to a non-preferred stimulus which induce plasticity of neurons' orientation preference. Results Multi-unit activity from area 17 of anesthetized adult cats was recorded. Single cells were sorted out and (1 orientation tuning curves were measured before and following 12 min adaptation and 60 min after adaptation (2 pairwise synchrony was measured by an index that was normalized in relation to the cells' firing rate. We first observed that the prolonged presentation of a non-preferred stimulus produces attractive (58% and repulsive (42% shifts of cell's tuning curves. It follows that the adaptation-induced plasticity leads to changes in preferred orientation difference, i.e. increase or decrease in tuning properties between neurons. We report here that, after adaptation, the neuron pairs that shared closer tuning properties display a significant increase of synchronization. Recovery from adaptation was accompanied by a return to the initial synchrony level. Conclusion We conclude that synchrony reflects the similarity in neurons' response properties, and varies accordingly when these properties change.

  9. Functional reorganization of human motor cortex after unaffected side C7 nerve root transposition

    International Nuclear Information System (INIS)

    Objective: To assess the characteristics of neuronal activity in human motor cortex after the seventh cervical nerve root transposition of the unaffected side by using functional MRI (fMRI). Methods: Thirteen patients who accepted the seventh cervical nerve root transposition of the unaffected side, due to total brachial plexus traction injury diagnosed by manifestation and operation, were examined retrospectively by using fMRI. 10 patients were injured on the left side and 3 on the right side. According to functional recovery of the affected hand, all subjects can be divided into 2 groups. The patients of the first group could not move the affected hand voluntarily. The patients of the second group could move the affected hand self-determined. 12 healthy volunteer's were also involved in this study as control. The fMRI examinations were performed by using echo-planer BOLD sequence. Then the SPM 99 software was used for post-processing. Results: The neuronal activation induced by the movement of both unaffected and affected upper' limb was seen in the contralateral PMC in all patients; Neuronal activation in the ipsilateral PMC evoked by movement of the unaffected extremity was seen in 10 cases, and induced by movement of the affected limb was seen in 7 cases. In the first group, the sharp of clusters in the contralateral PMC resulted by movement of the unaffected extremity showed normal in 9 eases, the average size of clusters resulted by the unaffected hand was 3159 (voxel), and resulted by the unaffected shoulder was 1746(voxel). The sharp of clusters in the contralateral PMC resulted by the affected shoulder or hand were revealed enlargement in 6 cases of each. In the second group, 1 case showed neuronal activation induced by movement of the affected limb in the PMC in both sides of motor cortex, and 2 cases showed neuronal activation in the contralateral PMC. Conclusions: Peripheral nerve injury was able to cause changes of motor cortex in human brain

  10. Comparison of LFP-Based and Spike-Based Spectro-Temporal Receptive Fields and Cross-Correlation in Cat Primary Auditory Cortex

    OpenAIRE

    Eggermont, Jos J.; Munguia, Raymundo; Pienkowski, Martin; Shaw, Greg

    2011-01-01

    Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that ...

  11. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Directory of Open Access Journals (Sweden)

    George L Chadderdon

    Full Text Available Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1, no learning (0, or punishment (-1, corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  12. Role of the primary motor cortex in the early boost in performance following mental imagery training.

    Directory of Open Access Journals (Sweden)

    Ursula Debarnot

    Full Text Available Recently, it has been suggested that the primary motor cortex (M1 plays a critical role in implementing the fast and transient post-training phase of motor skill consolidation, known to yield an early boost in performance. Whether a comparable early boost in performance occurs following motor imagery (MIM training is still unknown. To address this issue, two groups of subjects learned a finger tapping sequence either by MIM or physical practice (PP. In both groups, performance increased significantly in the post-training phase when compared with the pre-training phase and further increased after a 30 min resting period, indicating that both MIM and PP trainings were equally efficient and induced an early boost in motor performance. This conclusion was corroborated by the results of an additional control group. In a second experiment, we then investigated the causal role of M1 in implementing the early boost process resulting from MIM training. To do so, we inhibited M1 by applying a continuous theta-burst stimulation (cTBS in healthy volunteers just after they learnt, by MIM, the same finger-tapping task as in Experiment #1. As a control, cTBS was applied over the vertex of subjects who underwent the same experiment. We found that cTBS applied over M1 selectively abolished the early boost process subsequent to MIM training. Altogether, the present study provides evidence that MIM practice induces an early boost in performance and demonstrates that M1 is causally involved in this process. These findings further divulge some degree of behavioral and neuronal similitude between MIM and PP.

  13. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Science.gov (United States)

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  14. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.

    Science.gov (United States)

    Noda, Yoshihiro; Cash, Robin F H; Zomorrodi, Reza; Dominguez, Luis Garcia; Farzan, Faranak; Rajji, Tarek K; Barr, Mera S; Chen, Robert; Daskalakis, Zafiris J; Blumberger, Daniel M

    2016-09-01

    Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.

  15. Preserved foot motor cortex in patients with complete spinal cord injury: a functional near-infrared spectroscopic study

    NARCIS (Netherlands)

    Koenraadt, K.L.M.; Duysens, J.E.J.; Rijken, H.; Nes, I.J.W. van; Keijsers, N.L.W.

    2014-01-01

    BACKGROUND: Since the brain is intact, persons with a spinal cord injury (SCI) might benefit from a brain-computer interface (BCI) to improve mobility by making use of functional near-infrared spectroscopy (fNIRS). OBJECTIVE: We aimed to use fNIRS to detect contralateral primary motor cortex activit

  16. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette's syndrome.

    Science.gov (United States)

    Thomalla, Götz; Jonas, Melanie; Bäumer, Tobias; Siebner, Hartwig R; Biermann-Ruben, Katja; Ganos, Christos; Orth, Michael; Hummel, Friedhelm C; Gerloff, Christian; Müller-Vahl, Kirsten; Schnitzler, Alfons; Münchau, Alexander

    2014-01-01

    Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by an impaired ability to inhibit unwanted behaviour. Although the presence of chronic motor and vocal tics defines Tourette's syndrome, other distinctive behavioural features like echo- and coprophenomena, and non-obscene socially inappropriate behaviour are also core features. We investigated neuronal activation during stimulus-driven execution and inhibition of prepared movements in Tourette's syndrome. To this end, we performed event-related functional magnetic resonance imaging and structural diffusion tensor imaging in 15 moderately affected uncomplicated patients with 'pure' Tourette's syndrome and 15 healthy control participants matched for age and gender. Subjects underwent functional magnetic resonance imaging during a Go/NoGo reaction time task. They had to withhold a prepared finger movement for a variable time until a stimulus instructed them to either execute (Go) or inhibit it (NoGo). Tics were monitored throughout the experiments, combining surface electromyogram, video recording, and clinical assessment in the scanner. Patients with Tourette's syndrome had longer reaction times than healthy controls in Go trials and made more errors in total. Their functional brain activation was decreased in left primary motor cortex and secondary motor areas during movement execution (Go trials) but not during response inhibition (NoGo trials) compared with healthy control subjects. Volume of interest analysis demonstrated less task-related activation in patients with Tourette's syndrome in primary and secondary motor cortex bilaterally, but not in the basal ganglia and cortical non-motor areas. They showed reduced co-activation between the left primary sensory-motor hand area and a network of contralateral sensory-motor areas and ipsilateral cerebellar regions. There were no between-group differences in structural connectivity of the left primary sensory-motor cortex as measured by

  17. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury.

    Science.gov (United States)

    Fraiman, D; Miranda, M F; Erthal, F; Buur, P F; Elschot, M; Souza, L; Rombouts, S A R B; Schimmelpenninck, C A; Norris, D G; Malessy, M J A; Galves, A; Vargas, C D

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies. PMID:27547727

  18. The role of the murine motor cortex in action duration and order

    Directory of Open Access Journals (Sweden)

    Henry H Yin

    2009-10-01

    Full Text Available This study examined the contributions of the primary and secondary motor cortices (M1 and M2 to action differentiation and sequencing in mice. In Experiment 1, mice with excitotoxic lesions of M1 and M2 and sham controls learned to emit lever presses exceeding a criterion duration to earn food rewards. Duration differentiation obeys Weber’s law—i.e. the spread of the distribution is proportional to the average duration. M1 or M2 lesions did not affect differentiation of press durations. Experiment 2 studied the effects of the same lesions on the learning of a simple sequence consisting of two lever presses, one distal, and the other proximal, to the reward. M2 lesions impaired the acquisition and reversal of this sequence. M1 lesions, by contrast, had no effect on acquisition but impaired sequence reversal. Moreover, duration of the first press in a sequence was on average twice as long as that of the second press, though this ratio was not affected by motor cortex lesions. Together these results offer a first glimpse into the cortical substrates of instrumental differentiation in mice.

  19. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia;

    2009-01-01

    (LTD)-like or long-term potentiation (LTP)-like plasticity in left M1(HAND) through different afferents. We hypothesized that the left M1(HAND) would integrate LTP- and LTD-like plasticity in a homeostatic fashion. In ten healthy volunteers, low-intensity repetitive transcranial magnetic stimulation (r......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median...... nerve and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS...

  20. Primary motor cortex activity reduction under the regulation of SMA by real-time fMRI

    Science.gov (United States)

    Guo, Jia; Zhao, Xiaojie; Li, Yi; Yao, Li; Chen, Kewei

    2012-03-01

    Real-time fMRI (rtfMRI) is a new technology which allows human subjects to observe and control their own BOLD signal change from one or more localized brain regions during scanning. Current rtfMRI-neurofeedback studies mainly focused on the target region itself without considering other related regions influenced by the real-time feedback. However, there always exits important directional influence between many of cooperative regions. On the other hand, rtfMRI based on motor imagery mainly aimed at somatomotor cortex or primary motor area, whereas supplement motor area (SMA) was a relatively more integrated and pivotal region. In this study, we investigated whether the activities of SMA can be controlled utilizing different motor imagery strategies, and whether there exists any possible impact on an unregulated but related region, primary motor cortex (M1). SMA was first localized using overt finger tapping task, the activities of SMA were feedback to subjects visually on line during each of two subsequent imagery motor movement sessions. All thirteen healthy participants were found to be able to successfully control their SMA activities by self-fit imagery strategies which involved no actual motor movements. The activation of right M1 was also found to be significantly reduced in both intensity and extent with the neurofeedback process targeted at SMA, suggestive that not only the part of motor cortex activities were influenced under the regulation of a key region SMA, but also the increased difference between SMA and M1 might reflect the potential learning effect.

  1. Local field potentials in primate motor cortex encode grasp kinetic parameters.

    Science.gov (United States)

    Milekovic, Tomislav; Truccolo, Wilson; Grün, Sonja; Riehle, Alexa; Brochier, Thomas

    2015-07-01

    Reach and grasp kinematics are known to be encoded in the spiking activity of neuronal ensembles and in local field potentials (LFPs) recorded from primate motor cortex during movement planning and execution. However, little is known, especially in LFPs, about the encoding of kinetic parameters, such as forces exerted on the object during the same actions. We implanted two monkeys with microelectrode arrays in the motor cortical areas MI and PMd to investigate encoding of grasp-related parameters in motor cortical LFPs during planning and execution of reach-and-grasp movements. We identified three components of the LFP that modulated during grasps corresponding to low (0.3-7Hz), intermediate (~10-~40Hz) and high (~80-250Hz) frequency bands. We show that all three components can be used to classify not only grip types but also object loads during planning and execution of a grasping movement. In addition, we demonstrate that all three components recorded during planning or execution can be used to continuously decode finger pressure forces and hand position related to the grasping movement. Low and high frequency components provide similar classification and decoding accuracies, which were substantially higher than those obtained from the intermediate frequency component. Our results demonstrate that intended reach and grasp kinetic parameters are encoded in multiple LFP bands during both movement planning and execution. These findings also suggest that the LFP is a reliable signal for the control of parameters related to object load and applied pressure forces in brain-machine interfaces. PMID:25869861

  2. Excitability of the motor cortex in de novo patients with celiac disease.

    Directory of Open Access Journals (Sweden)

    Giovanni Pennisi

    Full Text Available INTRODUCTION: Celiac disease (CD may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking. OBJECTIVE: To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS in a group of de novo CD patients. MATERIALS AND METHODS: Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP, intracortical inhibition (ICI and facilitation (ICF. None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons. RESULTS: CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025, a reduced ICI (0.3 vs 0.2, p<0.045 and an enhanced ICF (1.1 vs 0.7, p<0.042 compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen's d -0.414, ICI (-0.278 and ICF (-0.292 measurements. CONCLUSION: A pattern of cortical excitability characterized by "disinhibition" and "hyperfacilitation" was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.

  3. Motoneuron properties during motor inhibition produced by microinjection of carbachol into the pontine reticular formation of the decerebrate cat.

    Science.gov (United States)

    Morales, F R; Engelhardt, J K; Soja, P J; Pereda, A E; Chase, M H

    1987-04-01

    It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep. PMID:3585456

  4. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    Science.gov (United States)

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850989

  5. Electrophysiological properties of lumbar motoneurons in the alpha-chloralose-anesthetized cat during carbachol-induced motor inhibition.

    Science.gov (United States)

    Xi, M C; Liu, R H; Yamuy, J; Morales, F R; Chase, M H

    1997-07-01

    The present study was undertaken 1) to examine the neuronal mechanisms responsible for the inhibition of spinal cord motoneurons that occurs in alpha-chloralose-anesthetized cats following the microinjection of carbachol into the nucleus pontis oralis (NPO), and 2) to determine whether the inhibitory mechanisms are the same as those that are responsible for the postsynaptic inhibition of motoneurons that is present during naturally occurring active sleep. Accordingly, the basic electrophysiological properties of lumbar motoneurons were examined, with the use of intracellular recording techniques, in cats anesthetized with alpha-chloralose and compared with those present during naturally occurring active sleep. The intrapontine administration of carbachol resulted in a sustained reduction in the amplitude of the spinal cord Ia monosynaptic reflex. Discrete large-amplitude inhibitory postsynaptic potentials (IPSPs), which are only present during the state of active sleep in the chronic cat, were also observed in high-gain recordings from lumbar motoneurons after the injection of carbachol. During carbachol-induced motor inhibition, lumbar motoneurons exhibited a statistically significant decrease in input resistance, membrane time constant and a reduction in the amplitude of the action potential's afterhyperpolarization. In addition, there was a statistically significant increase in rheobase and in the delay between the initial-segment (IS) and somadendritic (SD) portions of the action potential (IS-SD delay). There was a significant increase in the mean motoneuron resting membrane potential (i.e., hyperpolarization). The preceding changes in the electrophysiological properties of motoneurons, as well as the development of discrete IPSPs, indicate that lumbar motoneurons are postsynaptically inhibited after the intrapontine administration of carbachol in cats that are anesthetized with alpha-chloralose. These changes in the electrophysiological properties of lumbar

  6. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation.

    Directory of Open Access Journals (Sweden)

    Siobhan M Schabrun

    Full Text Available Peripheral electrical stimulation (PES is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1 excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1 and motor (M1 cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS and sensory cortex excitability using somatosensory evoked potentials (SEPs before and after 30 min of PES to right abductor pollicis brevis (APB. Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30-50 Hz; strong motor intensity and PES at sub motor-threshold intensity (100 Hz. PES applied to induce strong activation of APB increased the size of the N(20-P(25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P(14-N(20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.

  7. Age-dependent changes in the midsized neurofilament subunit in sensory-motor systems of the cat brainstem: an immunocytochemical study.

    Science.gov (United States)

    Zhang, J H; Sampogna, S; Morales, F R; Chase, M H

    2000-05-01

    This study documents age-related changes in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in sensory and motor neurons in the brainstem of the cat. In old age, there was a clear decrease in immunoreactivity in the following brainstem sensory and motor nuclei: sensory trigeminal, gracile, cuneate, and facial motor. Only a few neuronal perikarya and dendrites were labeled in these nuclei in old cats; moreover, when present, the labeling was weak. In contrast, in adult cats, these nuclei contained intensely stained neuronal perikarya and dendrites. In other sensory and motor nuclei of the brainstem, there was an obvious age-related increase in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in the perikarya. Despite different patterns of age-related alterations in immunoreactivity within perikarya and dendrites in distinct brainstem regions, most sensory and motor axons in old cats were smaller than those in adult cats. A decrease in the medium-molecular weight neurofilament subunit in the dendrites may be the basis for the dendritic atrophy that has been shown to occur in sensory nuclei in old animals. The decrease in axonal size is likely to be one of the causes of the decrease in axonal conduction velocity, in these neurons, that was reported in our previous studies. PMID:10819310

  8. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    Science.gov (United States)

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal.

  9. Neuroplastic effects of transcranial near-infrared stimulation (tNIRS on the motor cortex

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-06-01

    Full Text Available Near-infrared light stimulation of the brain has been claimed to improve deficits caused by traumatic brain injury and stroke. Here, we exploit the effect of transcranial near-infrared stimulation (tNIRS as a tool to modulate cortical excitability in the healthy human brain. tNIRS was applied at a wavelength of 810 nm for 10 minutes over the hand area of the primary motor cortex (M1. Both single-pulse and paired-pulse measures of transcranial magnetic stimulation (TMS were used to assess levels of cortical excitability in the corticospinal pathway and intracortical circuits. The serial reaction time task (SRTT was used to investigate the possible effect of tNIRS on implicit learning.By evaluating the mean amplitude of single-pulse TMS elicited motor-evoked-potentials (MEPs a significant decrease of the amplitude was observed up to 30 minutes post-stimulation, compared to baseline. Furthermore, the short interval cortical inhibition (SICI was increased and facilitation (ICF decreased significantly after tNIRS. The results from the SRTT experiment show that there was no net effect of stimulation on the performance of the participants. Results of a study questionnaire demonstrated that tNIRS did not induce serious side effects apart from light headache and fatigue. Nevertheless, 66% were able to detect the difference between active and sham stimulation conditions.In this study we provide further evidence that tNIRS is suitable as a tool for influencing cortical excitability and activity in the healthy human brain.

  10. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study

    Directory of Open Access Journals (Sweden)

    Koeneke Susan

    2007-08-01

    Full Text Available Abstract Background Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1 in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Methods Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools or the external strategy (e.g. pictures of houses or abstract figures. The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself. Single-pulse Transcranial Magnetic Stimulation (TMS was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs at the right hand muscle. Results Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. Conclusion This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  11. Sentential context modulates the involvement of the motor cortex in action language processing: An fMRI study

    Directory of Open Access Journals (Sweden)

    Karen D.I. Schuil

    2013-04-01

    Full Text Available Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a moderate view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in nonliteral sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to nonliteral and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than nonliteral action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  12. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    Science.gov (United States)

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  13. Motor cortex tDCS does not improve strength performance in healthy subjects

    Directory of Open Access Journals (Sweden)

    Rafael Montenegro

    2015-06-01

    Full Text Available The influence of transcranial direct current stimulation (tDCS upon maximal strength performance in exercises recruiting large muscle mass has not been established in healthy populations. The purpose of this study was to investigate whether anodal tDCS was able to increase the performance during maximal strength exercise (MSEX in healthy subjects. Fourteen volunteers (age: 26 ± 4 yrs performed two MSEX after anodal or sham tDCS (2mA; 20min prior MSEX, involving knee extensors and flexors in concentric isokinetic muscle actions of the dominant limb (3 sets of 10 repetitions. The electrical muscle activity (sEMG of four recruited muscles was recorded during MSEX. Anodal tDCS was not able to improve force production (i.e., total work and peak torque, fatigue resistance, or electromyographic activity during MSEX when compared to sham condition. In conclusion, anodal tDCS applied upon the contralateral motor cortex was not capable of increasing the strength performance of knee extensors and flexors in young healthy subjects.

  14. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex.

    Science.gov (United States)

    Todd, Gabrielle; Taylor, Janet L; Gandevia, Simon C

    2016-09-01

    This article reviews the use of transcranial magnetic stimulation (TMS) over the motor cortex to make estimates of the level of voluntary drive to muscles. The method, described in 2003 (Todd et al. J Physiol 551: 661-671, 2003), uses a TMS pulse to produce descending corticospinal volleys that synaptically activate motoneurons, resulting in a muscle twitch. Linear regression of the superimposed twitch amplitude and voluntary force (or torque) can generate an "estimated" resting twitch for muscles involved in a task. This procedure has most commonly been applied to elbow flexors but also to knee extensors and other muscle groups. Data from 44 papers using the method were tabulated. We identify and discuss five major technical challenges, and the frequency with which they are addressed. The technical challenges include inadvertent activation of the cortical representation of antagonist muscles, the role of antagonist torques at the studied joint, uncertainty about the effectiveness of the TMS pulse in activating the motoneuron pool, the linearity of the voluntary force (or torque) and superimposed twitch relationship, and variability in the TMS-evoked EMG and force/torque responses. The ideal situation in which the descending corticospinal volleys recruit all of the agonist motoneurons and none of the antagonist motoneurons is unlikely to ever occur, and hence results must be carefully examined to assess the authenticity of the voluntary activation estimates in the context of the experimental design. A partial compromise lies in the choice of stimulus intensity. We also identify aspects of the procedure that require further investigation.

  15. Motor cortex rTMS improves dexterity in relapsing-remitting and secondary progressive multiple sclerosis.

    Science.gov (United States)

    Elzamarany, Eman; Afifi, Lamia; El-Fayoumy, Neveen M; Salah, Husam; Nada, Mona

    2016-06-01

    The motor cortex (MC) receives an excitatory input from the cerebellum which is reduced in patients with cerebellar lesions. High-frequency repetitive transcranial magnetic stimulation (rTMS) induces cortical facilitation which can counteract the reduced cerebellar drive to the MC. Our study included 24 relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS) patients with dysmetria. The patients were divided into two groups: Group A received two sessions of real MC rTMS and Group B received one session of real rTMS and one session of sham rTMS. Ten healthy volunteers formed group C. Evaluation was carried out using the nine-hole pegboard task and the cerebellar functional system score (FSS) of the expanded disability status scale (EDSS). Group A patients showed a significant improvement in the time required to finish the pegboard task (P = 0.002) and in their cerebellar FSS (P = 0.000) directly after the second session and 1 month later. The RRMS patients showed more improvement than the SPMS patients. Group B patients did not show any improvement in the pegboard task or the cerebellar FSS. These results indicate that MC rTMS can be a promising option in treating both RRMS or SPMS patients with cerebellar impairment and that its effect can be long-lasting.

  16. Prediction of hand trajectory from electrocorticography signals in primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Chao Chen

    Full Text Available Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG has received much focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity time series and so on. However, there still remains considerable work to be done before a high performance ECoG-based neural prosthetic can be realized. In this study, we proposed an algorithm to decode hand trajectory from 15 and 32 channel ECoG signals recorded from primary motor cortex (M1 in two primates. To determine the most effective areas for prediction, we applied two electrode selection methods, one based on position relative to the central sulcus (CS and another based on the electrodes' individual prediction performance. The best coefficients of determination for decoding hand trajectory in the two monkeys were 0.4815 ± 0.0167 and 0.7780 ± 0.0164. Performance results from individual ECoG electrodes showed that those with higher performance were concentrated at the lateral areas and areas close to the CS. The results of prediction according with different numbers of electrodes based on proposed methods were also shown and discussed. These results also suggest that superior decoding performance can be achieved from a group of effective ECoG signals rather than an entire ECoG array.

  17. Motor cortex rTMS improves dexterity in relapsing-remitting and secondary progressive multiple sclerosis.

    Science.gov (United States)

    Elzamarany, Eman; Afifi, Lamia; El-Fayoumy, Neveen M; Salah, Husam; Nada, Mona

    2016-06-01

    The motor cortex (MC) receives an excitatory input from the cerebellum which is reduced in patients with cerebellar lesions. High-frequency repetitive transcranial magnetic stimulation (rTMS) induces cortical facilitation which can counteract the reduced cerebellar drive to the MC. Our study included 24 relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS) patients with dysmetria. The patients were divided into two groups: Group A received two sessions of real MC rTMS and Group B received one session of real rTMS and one session of sham rTMS. Ten healthy volunteers formed group C. Evaluation was carried out using the nine-hole pegboard task and the cerebellar functional system score (FSS) of the expanded disability status scale (EDSS). Group A patients showed a significant improvement in the time required to finish the pegboard task (P = 0.002) and in their cerebellar FSS (P = 0.000) directly after the second session and 1 month later. The RRMS patients showed more improvement than the SPMS patients. Group B patients did not show any improvement in the pegboard task or the cerebellar FSS. These results indicate that MC rTMS can be a promising option in treating both RRMS or SPMS patients with cerebellar impairment and that its effect can be long-lasting. PMID:26358951

  18. Evidence for high-fidelity timing-dependent synaptic plasticity of human motor cortex.

    Science.gov (United States)

    Cash, R F H; Mastaglia, F L; Thickbroom, G W

    2013-01-01

    A single transcranial magnetic stimulation (TMS) pulse typically evokes a short series of spikes in corticospinal neurons [known as indirect (I)-waves] which are thought to arise from transynaptic input. Delivering a second pulse at inter-pulse intervals (IPIs) corresponding to the timing of these I-waves leads to a facilitation of the response, and if stimulus pairs are delivered repeatedly, a persistent LTP-like increase in excitability can occur. This has been demonstrated at an IPI of 1.5 ms, which corresponds to the first I-wave interval, in an intervention referred to as ITMS (I-wave TMS), and it has been argued that this may have similarities with timing-dependent plasticity models. Consequently, we hypothesized that if the second stimulus is delivered so as not to coincide with I-wave timing, it should lead to LTD. We performed a crossover study in 10 subjects in which TMS doublets were timed to coincide (1.5-ms IPI, ITMS(1.5)) or not coincide (2-ms IPI, ITMS(2)) with I-wave firing. Single pulse motor-evoked potential (MEP) amplitude, resting motor threshold (RMT), and short-interval cortical inhibition (SICI) were measured from the first dorsal interosseous (FDI) muscle. After ITMS(1.5) corticomotor excitability was increased by ~60% for 15 min (P < 0.05) and returned to baseline by 20 min. Increasing the IPI by just 500 μs to 2 ms reversed the aftereffect, and MEP amplitude was significantly reduced (~35%, P < 0.05) for 15 min before returning to baseline. This reduction was not associated with an increase in SICI, suggesting a reduction in excitatory transmission rather than an increase in inhibitory efficacy. RMT also remained unchanged, suggesting that these changes were not due to changes in membrane excitability. Amplitude-matching ITMS(2) did not modulate excitability. The results are consistent with timing-dependent synaptic LTP/D-like effects and suggest that there are plasticity mechanisms operating in the human motor cortex with a temporal

  19. Why I tense up when you watch me: Inferior parietal cortex mediates an audience's influence on motor performance.

    Science.gov (United States)

    Yoshie, Michiko; Nagai, Yoko; Critchley, Hugo D; Harrison, Neil A

    2016-01-01

    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants' performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others' actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one's own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output. PMID:26787326

  20. [Role of different projection areas of the motor cortex in reorganization of the innate head-forelimb coordination in dogs].

    Science.gov (United States)

    Pavlova, O G; Mats, V N

    2005-01-01

    Dogs were trained to perform the forelimb tonic flexion in order to lift a cup with meat from a bottom of the foodwell and hold it during eating with the head bent down to the cup. It is known that conditioning of the instrumental reaction is based on reorganization of the innate head-forelimb coordination into the opposite one. In untrained dogs, the forelimb flexion is accompanied by the anticipatory lifting of the head bent down to the foodwell. The following lowering of the head leads to an extension of the flexed forelimb. Tonic forelimb flexion is possible if the head is in the up position. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement is achieved only by learning. It was shown earlier that the lesion of the motor cortex contralateral to the "working" forelimb led to a prolonged disturbance of the elaborated coordination and reappearance of the innate coordination. In the present work we studied the influence of local lesions of the projection areas in the motor cortex, such as a "working" forelimb area, bilateral representation of the neck, and the medial part of the motor cortex, on the learned instrumental feeding reaction. It was found that only the lesion of the forelimb but not neck projection led to a disturbance of the learned head-forelimb movement coordination. PMID:16396488

  1. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it. PMID:25301352

  2. Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Ziqian Chen; Hui Xiao; Ping Ni; Gennian Qian; Shangwen Xu; Xizhang Yang; Youqiang Ye; Jinhua Chen; Biyun Zhang

    2006-01-01

    BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable visible evidence for studying central mechanism of motor dysfunction after stroke, and has guiding and applicable value for clinical therapy.OBJECTIVE: To observe the activation of motor-related cortex of patients with acute ischemic stroke with functional magnetic resonance imaging, and analyze the relationship between brain function reconstruction and motor restoration after stroke.DESIGN: A contrast observation.SETTING: Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine patients with acute ischemic stroke who suffered from motor dysfunction and received the treatment in the Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December 2005 were recruited, serving as experimental group. The involved patients including 5 male and 4 female, aged 16 to 87 years, all met the diagnostic criteria of cerebrovascular disease revised by The Fourth National Conference on Cerebrovascular Disease, mainly presenting paralysis in clinic, and underwent fMRI. Another 9 right handed persons matched in age and gender who simultaneously received healthy body examination were recruited, serving as control group. All the subjects were informed of the detected items.METHODS: ①Muscular strength of patients of the experimental group was evaluated according to Brunnstrom grading muscular strength (Grade Ⅰ -Ⅵ). ② Passive finger to finger motion was used as the mission (alternate style of quiescence, left hand motion and quiescence, right hand motion was repeated 3 times, serving as 1 sequence, 20 s per block and 20 s time interval. The whole process of scanning was 260 s), and subjects of 2 groups were given Bold-fMRI examination with GE1.5T double gradient 16-channel

  3. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain.

    Science.gov (United States)

    Lefaucheur, Jean-Pascal; Drouot, Xavier; Cunin, Patrick; Bruckert, Rémy; Lepetit, Hélène; Créange, Alain; Wolkenstein, Pierre; Maison, Patrick; Keravel, Yves; Nguyen, Jean-Paul

    2009-06-01

    Epidural motor cortex stimulation (MCS) has been proposed as a treatment for chronic, drug-resistant neuropathic pain of various origins. Regarding pain syndromes due to peripheral nerve lesion, only case series have previously been reported. We present the results of the first randomized controlled trial using chronic MCS in this indication. Sixteen patients were included with pain origin as follows: trigeminal neuralgia (n = 4), brachial plexus lesion (n = 4), neurofibromatosis type-1 (n = 3), upper limb amputation (n = 2), herpes zoster ophthalmicus (n = 1), atypical orofacial pain secondary to dental extraction (n = 1) and traumatic nerve trunk transection in a lower limb (n = 1). A quadripolar lead was implanted, under radiological and electrophysiological guidance, for epidural cortical stimulation. A randomized crossover trial was performed between 1 and 3 months postoperative, during which the stimulator was alternatively switched 'on' and 'off' for 1 month, followed by an open phase during which the stimulator was switched 'on' in all patients. Clinical assessment was performed up to 1 year after implantation and was based on the following evaluations: visual analogue scale (VAS), brief pain inventory, McGill Pain questionnaire, sickness impact profile and medication quantification scale. The crossover trial included 13 patients and showed a reduction of the McGill Pain questionnaire-pain rating index (P = 0.0166, Wilcoxon test) and McGill Pain questionnaire sensory subscore (P = 0.01) when the stimulator was switched 'on' compared to the 'off-stimulation' condition. However, these differences did not persist after adjustment for multiple comparisons. In the 12 patients who completed the open study, the VAS and sickness impact profile scores varied significantly in the follow-up and were reduced at 9-12 months postoperative, compared to the preoperative baseline. At final examination, the mean rate of pain relief on VAS scores was 48% (individual results

  4. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex.

    Science.gov (United States)

    Todd, Gabrielle; Taylor, Janet L; Gandevia, Simon C

    2016-09-01

    This article reviews the use of transcranial magnetic stimulation (TMS) over the motor cortex to make estimates of the level of voluntary drive to muscles. The method, described in 2003 (Todd et al. J Physiol 551: 661-671, 2003), uses a TMS pulse to produce descending corticospinal volleys that synaptically activate motoneurons, resulting in a muscle twitch. Linear regression of the superimposed twitch amplitude and voluntary force (or torque) can generate an "estimated" resting twitch for muscles involved in a task. This procedure has most commonly been applied to elbow flexors but also to knee extensors and other muscle groups. Data from 44 papers using the method were tabulated. We identify and discuss five major technical challenges, and the frequency with which they are addressed. The technical challenges include inadvertent activation of the cortical representation of antagonist muscles, the role of antagonist torques at the studied joint, uncertainty about the effectiveness of the TMS pulse in activating the motoneuron pool, the linearity of the voluntary force (or torque) and superimposed twitch relationship, and variability in the TMS-evoked EMG and force/torque responses. The ideal situation in which the descending corticospinal volleys recruit all of the agonist motoneurons and none of the antagonist motoneurons is unlikely to ever occur, and hence results must be carefully examined to assess the authenticity of the voluntary activation estimates in the context of the experimental design. A partial compromise lies in the choice of stimulus intensity. We also identify aspects of the procedure that require further investigation. PMID:27418687

  5. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte;

    2012-01-01

    performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1......-motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline...

  6. Mice lacking the transcriptional coactivator PGC-1α exhibit alterations in inhibitory synaptic transmission in the motor cortex.

    Science.gov (United States)

    Dougherty, S E; Bartley, A F; Lucas, E K; Hablitz, J J; Dobrunz, L E; Cowell, R M

    2014-06-20

    Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator known to regulate gene programs in a cell-specific manner in energy-demanding tissues, and its dysfunction has been implicated in numerous neurological and psychiatric disorders. Previous work from the Cowell laboratory indicates that PGC-1α is concentrated in inhibitory interneurons and is required for the expression of the calcium buffer parvalbumin (PV) in the cortex; however, the impact of PGC-1α deficiency on inhibitory neurotransmission in the motor cortex is not known. Here, we show that mice lacking PGC-1α exhibit increased amplitudes and decreased frequency of spontaneous inhibitory postsynaptic currents in layer V pyramidal neurons. Upon repetitive train stimulation at the gamma frequency, decreased GABA release is observed. Furthermore, PV-positive interneurons in PGC-1α -/- mice display reductions in intrinsic excitability and excitatory input without changes in gross interneuron morphology. Taken together, these data show that PGC-1α is required for normal inhibitory neurotransmission and cortical PV-positive interneuron function. Given the pronounced motor dysfunction in PGC-1α -/- mice and the essential role of PV-positive interneurons in maintenance of cortical excitatory:inhibitory balance, it is possible that deficiencies in PGC-1α expression could contribute to cortical hyperexcitability and motor abnormalities in multiple neurological disorders.

  7. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    Science.gov (United States)

    Gorantla, Vasavi R.; Sirigiri, Amulya; Volkova, Yulia A.; Millis, Richard M.

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  8. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy.

    Science.gov (United States)

    Gorantla, Vasavi R; Sirigiri, Amulya; Volkova, Yulia A; Millis, Richard M

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  9. Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Ziqian Chen; Hui Xiao; Ping Ni; Gennian Qian; Shangwen Xu; Xizhang Yang; Youqiang Ye; Jinhua Chen; Biyun Zhang

    2006-01-01

    BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable visible evidence for studying central mechanism of motor dysfunction after stroke, and has guiding and applicable value for clinical therapy.OBJECTIVE: To observe the activation of motor-related cortex of patients with acute ischemic stroke with functional magnetic resonance imaging, and analyze the relationship between brain function reconstruction and motor restoration after stroke.DESIGN: A contrast observation.SETTING: Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine patients with acute ischemic stroke who suffered from motor dysfunction and received the treatment in the Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December 2005 were recruited, serving as experimental group. The involved patients including 5 male and 4 female, aged 16 to 87 years, all met the diagnostic criteria of cerebrovascular disease revised by The Fourth National Conference on Cerebrovascular Disease, mainly presenting paralysis in clinic, and underwent fMRI. Another 9 right handed persons matched in age and gender who simultaneously received healthy body examination were recruited, serving as control group. All the subjects were informed of the detected items.METHODS: ①Muscular strength of patients of the experimental group was evaluated according to Brunnstrom grading muscular strength (Grade Ⅰ -Ⅵ). ② Passive finger to finger motion was used as the mission (alternate style of quiescence, left hand motion and quiescence, right hand motion was repeated 3 times, serving as 1 sequence, 20 s per block and 20 s time interval. The whole process of scanning was 260 s), and subjects of 2 groups were given Bold-fMRI examination with GE1.5T double gradient 16-channel

  10. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness.

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  11. Transcranial direct current stimulation over the medial prefrontal cortex and left primary motor cortex (mPFC-lPMC affects subjective beauty but not ugliness

    Directory of Open Access Journals (Sweden)

    Koyo eNakamura

    2015-12-01

    Full Text Available Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC and the left primary motor cortex (lPMC correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS to examine whether noninvasive brain stimulation modulates two types of aesthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions.

  12. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness.

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions.

  13. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  14. The Functional MR study of motor cortex%大脑皮层运动功能区的功能性磁共振成像

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To observe the motor cortex activitie s on fMR imaging. Method The fMR study of motor cortex was performed in 15 normal volunteers using 1. 5T superconducting MR system, EPI pulse sequences, and BOLD fMR imaging. Six axial slices centered approxi- matdy at the precentral gyrus was obtained wit h or without both hands finger tapping motion under the operator instruction during the scanning. Pixels with significant signal differences ( P <0.0001) between with and without finger tapping were calculated as functional signal. The functional signal was superimposed on the corresponding T1 WI and brain water images Results The motor cortex ac tivities stimulated by finger tapping show as the area of increased signalintensity. The location of actwities is correspondent very well with the location of motor cortex. Most of activities present at the lateral aspect of precentral gyrus. In our group, the motion activities of left hemisphere is larger than that of right side in 10 volunteers, almost same sixe in 3 volunteers, smaller than that of right side in 1 volunteer. The fMR scan failed in 1 volunteer. Super- imposing the functional signals on the brain uner image may help to display the location of the activities. Conlusion fMR can show the location and size of motor cortex. It is simple, fast, noninvasive, and very convenient to implements with routine MR study.

  15. The activity of the primary motor cortex ipsilateral to the exercising hand decreases during repetitive handgrip exercise

    International Nuclear Information System (INIS)

    The brain function controlling muscle force production is not yet fully understood. The purpose of this study was to examine bilateral primary motor cortex (M1) oxygenation during static-handgrip exercises performed with the right hand (60% maximal voluntary contraction; 10 s exercise/75 s rest; five sets). Twelve healthy, right-handed male subjects participated in this study. Near-infrared spectroscopy probes were positioned over the bilateral M1 to measure cortical oxygenation during handgrip exercises. The maximum values of the changes in concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) across the trials (i) did not change significantly during the contralateral M1 activation (p > 0.05), whereas (ii) in the case of the ipsilateral M1 activation a significant (p < 0.05) decrease in HbO2 and a significant (p < 0.01) decrease in Hb could be measured. The activation in ipsilateral M1 at the fifth trial was significantly decreased compared with that in the first trial (HbO2: p < 0.001; Hb: p < 0.001). The present results suggest that the ipsilateral M1 is recruited during the motor task in compensation for the contralateral M1 and the habituation to motor task might alter the efficiency for interaction of the ipsilateral M1 to the contralateral M1. The interhemispheric interaction might change due to habituation to motor task

  16. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.

  17. Correlation of near-infrared spectroscopy and transcranial magnetic stimulation of the motor cortex in overt reading and musical tasks.

    Science.gov (United States)

    Lo, Y L; Zhang, H H; Wang, C C; Chin, Z Y; Fook-Chong, S; Gabriel, C; Guan, C T

    2009-01-01

    In overt reading and singing tasks, actual vocalization of words in a rhythmic fashion is performed. During execution of these tasks, the role of underlying vascular processes in relation to cortical excitability changes in a spatial manner is uncertain. Our objective was to investigate cortical excitability changes during reading and singing with transcranial magnetic stimulation (TMS), as well as vascular changes with nearinfrared spectroscopy (NIRS). Findings with TMS and NIRS were correlated. TMS and NIRS recordings were performed in 5 normal subjects while they performed reading and singing tasks separately. TMS was applied over the left motor cortex at 9 positions 2.5 cm apart. NIRS recordings were made over these identical positions. Although both TMS and NIRS showed significant mean cortical excitability and hemodynamic changes from baseline during vocalization tasks, there was no significant spatial correlation of these changes evaluated with the 2 techniques over the left motor cortex. Our findings suggest that increased left-sided cortical excitability from overt vocalization tasks in the corresponding "hand area" were the result of "functional connectivity," rather than an underlying "vascular overflow mechanism" from the adjacent speech processing or face/mouth areas. Our findings also imply that functional neurophysiological and vascular methods may evaluate separate underlying processes, although subjects performed identical vocalization tasks. Future research combining similar methodologies should embrace this aspect and harness their separate capabilities. PMID:19246780

  18. Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force

    International Nuclear Information System (INIS)

    It is possible to examine bilateral primary motor cortex (M1) activation during a sustained motor task using near-infrared spectroscopy (NIRS), in which it is assumed that increased oxygenation reflects cortical activation. The purpose of this study was to examine bilateral M1 activation in response to graded levels of force production during a unilateral finger task. Ten healthy right-handed male subjects participated in this study. NIRS probes were placed over the cortex to measure M1 activity while the subjects performed the finger task. The subjects performed a 10 s finger task at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Symmetrical activation was found over both M1 areas at all force levels investigated. In the contralateral M1, there were significant differences in oxygenation between 20% and 60% MVC, as well as between 40% and 60% MVC. In the ipsilateral M1, there were significant differences among all force levels. These results indicate the ipsilateral M1 takes part in muscle force control. (paper)

  19. Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials.

    Science.gov (United States)

    Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S

    2014-09-01

    The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes.

  20. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor e

  1. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  2. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  3. Remodeling of motor cortex function in acute cerebral infarction patients following human urinary kallidinogenase A functional magnetic resonance imaging evaluation after 6 months

    Institute of Scientific and Technical Information of China (English)

    Xuezhu Song; Lixin Han; Yan Liu

    2012-01-01

    A total of 29 patients were treated within 48 hours after acute subcortical cerebral infarction with Xuesaitong or Xuesaitong plus human urinary kallidinogenase for 14 days. Neurological deficits, activity of daily living, and evaluations of distal upper limb motor functions at the 6-month follow-up showed that patients treated with Xuesaitong plus human urinary kallidinogenase recovered better than with Xuesaitong alone. In addition, functional MRI revealed that activation sites were primarily at the ipsilesional side of injury in all patients. Human urinary kallidinogenase induced hyperactiva-tion of the ipsilesional primary sensorimotor cortex, premotor cortex, supplementary motor area, and contralesional posterior parietal cortex. Results showed that human urinary kallidinogenase improved symptoms of neurological deficiency by enhancing remodeling of long-term cortical motor function in patients with acute cerebral infarction.

  4. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  5. Bidirectional control of a one-dimensional robotic actuator by operant conditioning of a single unit in rat motor cortex

    Directory of Open Access Journals (Sweden)

    Pierre-Jean eArduin

    2014-07-01

    Full Text Available The design of efficient neuroprosthetic devices has become a major challenge for the long-term goal of restoring autonomy to motor-impaired patients. One approach for brain control of actuators consists in decoding the activity pattern obtained by simultaneously recording large neuronal ensembles in order to predict in real-time the subject’s intention, and move the prosthesis accordingly. An alternative way is to assign the output of one or a few neurons by operant conditioning to control the prosthesis with rules defined by the experimenter, and rely on the functional adaptation of these neurons during learning to reach the desired behavioral outcome. Here, several motor cortex neurons were recorded simultaneously in head-fixed awake rats and were conditioned, one at a time, to modulate their firing rate up and down in order to control the speed and direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain the bottle in front of the rat’s mouth, allowing it to drink. After learning, all conditioned neurons modulated their firing rate, effectively controlling the bottle position so that the drinking time was increased relative to chance. The mean firing rate averaged over all bottle trajectories depended non-linearly on position, so that the mouth position operated as an attractor. Some modifications of mean firing rate were observed in the surrounding neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led to a better control than surrounding neurons, as calculated by using the activity of those neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility, even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time bidirectionally. The learning process includes modifications of the activity of neighboring cortical neurons, while the conditioned neuron selectively leads the activity patterns associated with the prosthesis

  6. Role of direct vs indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity

    Directory of Open Access Journals (Sweden)

    Tadashi eIsa

    2013-11-01

    Full Text Available Evolutionally, development of the direct connection from the motor cortex to spinal motoneurons (corticomotoneuronal (CM pathway parallels the ability of hand dexterity. Damage to the corticofugal fibers in higher primates resulted in deficit of fractionated digit movements. Based on such observations, it was generally believed that the CM pathway plays a critical role in the control of hand dexterity. On the other hand, a number of phylogenetically older indirect pathways from the motor cortex to motoneurons still exist in primates. The indirect pathways are mediated by intercalated neurons such as segmental interneurons (sINs, propriospinal neurons (PNs reticulospinal neurons (RSNs or rubrospinal neurons (RuSNs. However, their contribution to hand dexterity remains elusive. Lesion of the brainstem pyramid sparing the transmission through the RuSNs and RSNs, resulted in permanent deficit of fractionated digit movements in macaque monkeys. On the other hand, in our recent study, after lesion of the dorsolateral funiculus (DLF at the C5 segment, which removed the CM pathway and the transmission through sINs and RuSNs but spared the processing through the PNs and RSNs, fractionated digit movements recovered within several weeks. These results suggest that the PNs can be involved in the recovery of fractionated digit movements, but the RSNs and RuSNs have less capacity in this regard. However, on closer inspection, it was found that the activation pattern of hand and arm muscles considerably changed after the C5 lesion, suggesting limitation of PNs for the compensation of hand dexterity. Altogether, it is suggested that PNs, RSNs RuSNs and the CM pathway (plus sINs make a different contribution to the hand dexterity and appearance of motor deficit of the hand dexterity caused by damage to the corticofugal fibers and potential of recovery varies depending on the rostrocaudal level of the lesion.

  7. Timing-dependent modulation of the posterior parietal cortex–primary motor cortex pathway by sensorimotor training

    Science.gov (United States)

    Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline. PMID:22442568

  8. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H;

    2012-01-01

    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To t...

  9. Functional magnetic resonance imaging of the primary motor cortex in humans: response to increased functional demands

    Indian Academy of Sciences (India)

    S Khushu; S S Kumaran; R P Tripathi; A Gupta; P C Jain; V Jain

    2001-06-01

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed in six different sessions of a volunteer over a period of one month. Increased tapping rate resulted in increase in the blood oxygenation level dependent (BOLD) signal intensity as well as the volume/area of activation (pixels) in the contralateral primary motor area up to tapping rate of 120 taps/min (2 Hz), beyond which it saturates. Activation in supplementary motor area was also observed. The obtained results are correlated to increased functional demands.

  10. Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.

    Science.gov (United States)

    Fung, S J; Yamuy, J; Xi, M C; Engelhardt, J K; Morales, F R; Chase, M H

    2000-12-01

    The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol into the pontine tegmentum (AS-carbachol). During AS-carbachol, 86% of the recorded hypoglossal motoneurons were found to be postsynaptically inhibited on the basis of analyses of their electrical properties; the electrical properties of the remaining 14% were similar to motoneurons recorded during control conditions. Those cells that exhibited changes in their electrical properties during AS-carbachol also displayed large-amplitude inhibitory synaptic potentials. Following sciatic nerve stimulation, hypoglossal motoneurons which responded with a depolarizing potential during control conditions exhibited a hyperpolarizing potential during AS-carbachol. Both spontaneous and evoked inhibitory potentials recorded during AS-carbachol were comparable to those that have been previously observed in trigeminal and spinal cord motoneurons under similar experimental conditions as well as during naturally occurring active sleep. Calculations based on modeling the changes that we found in input resistance and membrane time constant with a three-compartment neuron model suggest that shunts are present in all three compartments of the hypoglossal motoneuron model. Taken together, these data indicate that postsynaptic inhibitory drives are widely distributed on the soma-dendritic tree of hypoglossal motoneurons during AS-carbachol. These postsynaptic inhibitory actions are likely to be involved in the pathophysiology of obstructive sleep apnea. PMID:11102580

  11. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment

    Directory of Open Access Journals (Sweden)

    Alm PA

    2013-06-01

    Full Text Available Per A Alm, Karolina DreimanisDepartment of Neuroscience, Uppsala University, Uppsala, SwedenObjectives: Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS. A novel technique is transcranial random noise stimulation (tRNS, which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects.Methods: The study was divided into three phases: (1 a double-blind 100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 µA, at intervals ranging from daily to fortnightly.crossover study, with four subjects; (2 a double-blind extended case study with one responder; and (3 open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly.Results: One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006. Unexpectedly, this effect was shown to occur also for very weak (100 µA, P = 0.048 and brief (0.5 minutes, P = 0.028 stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months.Discussion: The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects.Keywords: neuropathic pain, central pain, transcranial direct current stimulation, motor cortex stimulation, random noise stimulation

  12. Blood oxygenation-level dependent functional MRI in evaluating the selective activation of motor cortexes associated with recovery of motor function in hemiplegic patients with ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Yuechun Li; Xiaoyan Liu; Guorong Liu; Ying He; Baojun Wang; Furu Liang; Li Wang; Hui Zhang; Jingfen Zhang; Ruiming Li

    2006-01-01

    an interval of 30 s. Te AVANTO 1.5T MRI machine (Siemens Company, Germany) was used for scanning, the 30 s before fMRI BOLD scanning was the adaptation phase for the patients, and the finger movements were alternated for 6-10 times till the end of the scanning.MAIN OUTCOME MEASURES: Differences after rehabilitation evaluated by the activations of different sensorimotor cortex in the hemiplegic patients with acute stroke. RESULTS: ① In passive and active movements of the affected hand, 5 cases of Brunnstrom grade Ⅰ or Ⅱ were manifested by the activation of unilateral sensorimotor cortex (SMC) of the hemiplegic side, and they were Brunnstrom grade Ⅱ after 3-week rehabilitation, and 1 case with activations of bilateral SMC recovered to Brunnstrom grade Ⅲ. ② Among the patients of Brunnstrom grade Ⅲ or Ⅳ, 5 cases were unilaterally activated, and had no changes after 3-week rehabilitation; Whereas of the 9 cases of bilateral activations, 3 recovered to grade Ⅵ and 6 recovered to grade Ⅴ after 3-week rehabilitation. ③ In the passive and active movements of the affected hand, all the cases of Brunnstrom grades Ⅴ and Ⅵ were manifested by the activations of bilateral SMC. After 3-week rehabilitation, 2 of the 4 cases of grade Ⅴ recovered to grade Ⅵ, and the other 2 recovered to normal; Whereas 5 of the 6 cases of grade Ⅵ recovered to normal, and the other 1 was still grade Ⅵ. CONCLUSION: BOLD fMRI showed that the outcomes of short-term rehabilitation in the patients with bilateral activations were obvious, whereas the outcomes were bad in the patients whose ipsilateral cortexes were activated. The activated signal in ipsilateral or bilateral SMC and the activation of supplementary motor area in active movements were greater than those in the passive ones.

  13. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    International Nuclear Information System (INIS)

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  14. Deep brain stimulation versus motor cortex stimulation for neuropathic pain: A minireview of the literature and proposal for future research.

    Science.gov (United States)

    Honey, C Michael; Tronnier, Volker M; Honey, Christopher R

    2016-01-01

    The treatment of neuropathic pain remains a public health concern. A growing cohort of patients is plagued by medically refractory, unrelenting severe neuropathic pain that ruins their quality of life and productivity. For this group, neurosurgery can offer two different kinds of neuromodulation that may help: deep brain simulation (DBS) and motor cortex stimulation (MCS). Unfortunately, there is no consensus on how to perform these procedures, which stimulation parameters to select, how to measure success, and which patients may benefit. This brief review highlights the literature supporting each technique and attempts to provide some comparisons and contrasts between DBS and MCS for the treatment of neuropathic pain. Finally, we highlight the current unanswered questions in the field and suggest future research strategies that may advance the care of our patients with neuropathic pain.

  15. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas;

    2014-01-01

    A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using...... a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i...

  16. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex

    OpenAIRE

    E. Ortu; F. Deriu; Suppa, A.; Tolu, E.; Rothwell, J. C.

    2008-01-01

    Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were assessed in the cortical motor area of the first dorsal interosseous muscle (FDI) of 16 healthy subjects. Paired-pulse TMS was delivered to the left hemisphere at the following interstimulus intervals (ISIs): 2 and 3 ms for SICI, 10 and 15 ms for ICF and 1-5 ms for SICF. Motor-evoked potentials were recorded from the resting and active right FDI. The effec...

  17. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  18. Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex

    NARCIS (Netherlands)

    E. Aronica; F. Baas; A. Iyer; A.L.M.A. ten Asbroek; G. Morello; S. Cavallaro

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. Although 10% of ALS cases are familial (FALS), the majority are sporadic (SALS) and probably associated to a multifactorial e

  19. Noise-improved signal detection in cat primary visual cortex via a well-balanced stochastic resonance-like procedure.

    Science.gov (United States)

    Funke, Klaus; Kerscher, Nicolas J; Wörgötter, Florentin

    2007-09-01

    Adding noise to a weak signal can paradoxically improve signal detection, a process called 'stochastic resonance' (SR). In the visual system, noise might be introduced by the image jitter resulting from high-frequency eye movements, like eye microtremor and microsaccades. To test whether this kind of noise might be beneficial or detrimental for cortical signal detection, we performed single-unit recordings from area 17 of anaesthetized cats while jittering the visual stimulus in a frequency and amplitude range resembling the possible range of eye movements. We used weak, sub- and peri-threshold visual stimuli, on top of which we superimposed noise with variable jitter amplitude. In accordance with the typical SR effect, we found that small noise levels actually increased the signal-to-noise ratio (SNR) of previously weak cortical visual responses, while originally strong responses were little affected or even reduced. Above a certain noise level, the SNR dropped a little, but not as a result of increased background activity - as would be proposed by SR theory - but because of a lowered response to signal and noise. Therefore, it seems that the ascending visual pathway optimally utilizes signal detection improvement by a SR-like process, while at the same time preventing spurious noise-induced activity and keeping the SNR sufficiently high.

  20. Effects of excitation of sensory pathways on the membrane potential of cat masseter motoneurons before and during cholinergically induced motor atonia.

    Science.gov (United States)

    Kohlmeier, K A; López-Rodríguez, F; Morales, F R; Chase, M H

    1998-09-01

    Electrical stimulation of the nucleus pontis oralis during wakefulness enhances somatic reflex activity; identical stimuli during the motor atonia of active (rapid eye movement) sleep induces reflex suppression. This phenomenon, which is called reticular response-reversal, is based upon the generation of excitatory postsynaptic potential activity in motoneurons during wakefulness and inhibitory postsynaptic potential activity during the motor atonia of active sleep. In the present study, instead of utilizing artificial electrical stimulation to directly excite brainstem structures, we sought to examine the effects on motoneurons of activation of sensory pathways by exogenously applied stimuli (auditory) and by stimulation of a peripheral (sciatic) nerve. Accordingly, we examined the synaptic response of masseter motoneurons prior to and during cholinergically induced motor atonia in a pharmacological model of active sleep-specific motor atonia, the alpha-chloralose-anesthetized cat, to two different types of afferent input, one of which has been previously demonstrated to elicit excitatory motor responses during wakefulness. Following the pontine injection of carbachol, auditory stimuli (95 dB clicks) elicited a hyperpolarizing potential in masseter motoneurons. Similar responses were obtained upon stimulation of the sciatic nerve. Responses of this nature were never seen prior to the injection of carbachol. Thus, stimulation of two different afferent pathways (auditory and somatosensory) that produce excitatory motor responses during wakefulness instead, during motor atonia, results in the inhibition of masseter motoneurons. The switching of the net result of the synaptic response from one of potential motor excitation to primarily inhibition in response to the activation of sensory pathways was comparable to the phenomenon of reticular response-reversal. This is the first report to examine the synaptic mechanisms whereby exogenously or peripherally applied

  1. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    Science.gov (United States)

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed.

  2. Compensation aids skilled reaching in aging and in recovery from forelimb motor cortex stroke in the rat.

    Science.gov (United States)

    Alaverdashvili, M; Whishaw, I Q

    2010-04-28

    Compensatory movements mediate success in skilled reaching for food after stroke to the forelimb region of motor cortex (MtCx) in the rat. The present study asks whether the neural plasticity that enables compensation after motor stroke is preserved in aging. In order to avoid potential confounding effects of age-related negative-learning, rats were trained in a single pellet reaching task during young-adulthood. Subgroups were retested before and after contralateral forelimb MtCx stroke via pial stripping given at 3, 18, or 23 months of age. Over a two-month post-stroke rehabilitation period, end point measures were made of learned nonuse, recovery, retention, and performance ratings were made of reaching movement elements. Prior to stroke, young and aged rats maintained equivalent end point performance but older rats displayed compensatory changes in limb use as measured with ratings of the elements of forelimb movement. Following stroke, the aged groups of rats were more impaired on end point, movement, and anatomical measures. Nevertheless, the aged rats displayed substantial recovery via the use of compensatory movements. Thus, this study demonstrates that the neural plasticity that mediates compensatory movements after stroke in young adults is preserved prior to and following stroke in aging.

  3. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area.

    Science.gov (United States)

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-03-01

    We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  4. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    Science.gov (United States)

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control.

  5. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  6. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat.

    Science.gov (United States)

    Xi, M C; Liu, R H; Engelhardt, J K; Morales, F R; Chase, M H

    1999-01-01

    The present study was undertaken to determine whether age-dependent changes in axonal conduction velocity occur in pyramidal tract neurons. A total of 260 and 254 pyramidal tract neurons were recorded extracellularly in the motor cortex of adult control and aged cats, respectively. These cells were activated antidromically by electrical stimulation of the medullary pyramidal tract. Fast- and slow-conducting neurons were identified according to their axonal conduction velocity in both control and aged cats. While 51% of pyramidal tract neurons recorded in the control cats were fast conducting (conduction velocity greater than 20 m/s), only 26% of pyramidal tract neurons in the aged cats were fast conducting. There was a 43% decrease in the median conduction velocity for the entire population of pyramidal tract neurons in aged cats when compared with that of pyramidal tract neurons in the control cats (P cats. However, the regression slope was significantly reduced in aged cats. This reduction was due to the appearance of a group of pyramidal tract neurons with relatively shorter spike durations but slower axonal conduction velocities in the aged cat. Sample intracellular data confirmed the above results. These observations form the basis for the following conclusions: (i) there is a decrease in median conduction velocity of pyramidal tract neurons in aged cats; (ii) the reduction in the axonal conduction velocity of pyramidal tract neurons in aged cats is due, in part, to fibers that previously belonged to the fast-conducting group and now conduct at slower velocity. PMID:10392844

  7. Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex

    Science.gov (United States)

    Madhavan, Sangeetha; Sriraman, Aishwarya; Freels, Sally

    2016-01-01

    Background: Transcranial direct current stimulation (tDCS) is emerging as a promising adjuvant to enhance motor function. However, there has been increasing reservations about the reliability and variability of the neuromodulatory effects evoked by tDCS. Objective/Hypothesis: The main purpose of this study was to explore the test-retest reliability and inter-individual variability of tDCS of the lower limb M1 and the relationship between transcranial magnetic stimulation (TMS)-related measures and tDCS-induced changes. Methods: Fifteen healthy participants received anodal tDCS of the lower limb M1 either when performing a lower limb motor task or when the limb was at rest. Each condition was tested twice. tDCS induced changes in corticomotor excitability of the tibialis anterior muscle were measured using TMS. A repeated measures ANOVA was performed to examine efficacy of tDCS between the two task conditions. Intraclass correlation coefficients (ICC) and variance component analyses were performed to examine reliability and variability respectively. Results: A significant increase in in corticomotor excitability was noted for the tDCS-task condition at 140% active motor threshold (AMT) and when comparing recruitment curve slopes, but not at 120% and 130% AMT. Overall, ICC values between testing days for each stimulation condition ranged from 0.6–0.9. Higher ICCs were seen for higher TMS intensities (140% AMT) and recruitment curve slopes. Inter-individual variability contributed to 34% of the exhibited variance. Conclusions: Our data suggest that the TMS-related measure used to assess neuromodulation after tDCS has an effect on its perceived test-retest reliability and inter-individual variability. Importantly, we noticed that a high reliability and low variability does not necessarily indicate clinical efficacy of tDCS as some participants showed little to no modulation of corticomotor excitability consistently. PMID:27472368

  8. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    Science.gov (United States)

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-01

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.

  9. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    Science.gov (United States)

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-01

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism. PMID:24713372

  10. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex.

    Science.gov (United States)

    Ortu, Enzo; Deriu, Franca; Suppa, Antonio; Tolu, Eusebio; Rothwell, John C

    2008-11-01

    Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were assessed in the cortical motor area of the first dorsal interosseous muscle (FDI) of 16 healthy subjects. Paired-pulse TMS was delivered to the left hemisphere at the following interstimulus intervals (ISIs): 2 and 3 ms for SICI, 10 and 15 ms for ICF and 1-5 ms for SICF. Motor-evoked potentials were recorded from the resting and active right FDI. The effects exerted on SICI and ICF by four intensities (60-90% of active motor threshold, AMT) of the conditioning stimulus (S1) and by three levels of muscle contraction (10%, 25%, 50% of maximal voluntary contraction, MVC) were evaluated. The effects exerted on SICF were evaluated with two intensities (90% and 70% of AMT) of the test stimulus (S2) and with the same levels of muscle contraction. Results showed that: (i) during 10% MVC, maximum SICI was observed with S1 = 70% AMT; (ii) the amount of SICI obtained with S1 = 70% AMT was the same at rest as during 10% MVC, but decreased at higher contraction levels; (iii) ICF was observed only at rest with S1 = 90% AMT; (iv) SICF was facilitated at 10% and 25% MVC, but not at 50% MVC. We conclude that during muscle activation, intracortical excitability reflects a balance between activation of SICI and SICF systems. Part of the reduction in SICI during contraction is due to superimposed recruitment of SICF. Low intensity (70% AMT) conditioning stimuli can test SICI independently of effects on SICF at low contraction levels. PMID:18787036

  11. Maximization of learning speed in the motor cortex due to neuronal redundancy.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    2012-01-01

    Full Text Available Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed.

  12. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.

    Science.gov (United States)

    Suder, Katrin; Funke, Klaus; Zhao, Yongqiang; Kerscher, Nicolas; Wennekers, Thomas; Wörgötter, Florentin

    2002-06-01

    We investigated how changes in the temporal firing rate of thalamocortical activity affect the spatiotemporal structure of receptive field (RF) subunits in cat primary visual cortex. Spike activity of 67 neurons (48 simple, 19 complex cells) was extracellulary recorded from area 17/18 of anesthetized and paralyzed cats. A total of 107 subfields (on/off) were mapped by applying a reverse correlation technique to the activity elicited by bright and dark rectangles flashed for 300 ms in a 20x10 grid. We found that the width of the (suprathreshold) discharge fields shrank on average by 22% during this 300-ms-long stimulus presentation time. Fifty-eight subfields (54%) shrank by more than 20% of peak width and only ten (less than 10%) showed a slight increase over time. The main size reduction took place 40-60 ms after response onset, which corresponded to the transition from transient peak firing to tonic visual activity in thalamocortical relay cells (TC). The experimentally obtained RFs were then fitted with the aid of a neural field model of the primary visual pathway. Assuming a Gaussian-shaped spatial sensitivity profile across the RF subfield width, the model allowed us to estimate the subthreshold RF (depolarization field, D-field) from the minimal discharge field (MDF). The model allowed us to test to what degree the temporal dynamics of thalamocortical activity contributes to the spatiotemporal changes of cortical RFs. To this end, we performed the fitting procedure either with a pure feedforward model or with a field model that also included intracortical feedback. Spatial and temporal parameters obtained from fits of the experimental RFs matched closely to those achieved by simulating a pure feedforward system with the field model but were not compatible with additional intracortical feedback. Thus, our results show that dot stimulation, which optimally excites thalamocortical cells, leads to a shrinkage with respect to the size of the RF subfield at the

  13. Rhythmic Continuous-Time Coding in the Songbird Analog of Vocal Motor Cortex.

    Science.gov (United States)

    Lynch, Galen F; Okubo, Tatsuo S; Hanuschkin, Alexander; Hahnloser, Richard H R; Fee, Michale S

    2016-05-18

    Songbirds learn and produce complex sequences of vocal gestures. Adult birdsong requires premotor nucleus HVC, in which projection neurons (PNs) burst sparsely at stereotyped times in the song. It has been hypothesized that PN bursts, as a population, form a continuous sequence, while a different model of HVC function proposes that both HVC PN and interneuron activity is tightly organized around motor gestures. Using a large dataset of PNs and interneurons recorded in singing birds, we test several predictions of these models. We find that PN bursts in adult birds are continuously and nearly uniformly distributed throughout song. However, we also find that PN and interneuron firing rates exhibit significant 10-Hz rhythmicity locked to song syllables, peaking prior to syllable onsets and suppressed prior to offsets-a pattern that predominates PN and interneuron activity in HVC during early stages of vocal learning. PMID:27196977

  14. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  15. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli.

    Directory of Open Access Journals (Sweden)

    Igor Delvendahl

    Full Text Available A full-sine (biphasic pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS, but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1. In young healthy volunteers, we (i compared monophasic, half-sine, and full-sine pulses, (ii applied two-segment pulses consisting of two identical half-sines, and (iii manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.

  16. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    Full Text Available Multi-electrode array recordings of spike and local field potential (LFP activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs and 492 frequency-tuning curves (FTCs based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm and the 16-40 Hz LFP (7.4 mm, whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz LFP-pair correlations showed that about 16% (9% of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.

  17. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Science.gov (United States)

    Eggermont, Jos J; Munguia, Raymundo; Pienkowski, Martin; Shaw, Greg

    2011-01-01

    Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex. PMID:21625385

  18. Neural control of the sphincter of Oddi. A physiological role of 5-hydroxytryptamine in the regulation of basal sphincter of Oddi motor activity in the cat.

    OpenAIRE

    Behar, J; Biancani, P

    1983-01-01

    The effect of 5-hydroxytryptamine (5-HT) on the sphincter of Oddi (SO) was studied in the cat. The SO had two motor responses to 5-HT: the most common was an initial contraction followed by a more prolonged relaxation, and the other was an exclusive relaxation. Tetrodotoxin did not impair the magnitude of the net contraction induced by 5-HT, but it completely blocked the relaxation. Methysergide partially inhibited the SO contraction in response to submaximal doses of 5-HT (5-20 micrograms/kg...

  19. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ=7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS uc= 2.664, P=0.008; Zubrod -ECOG -WHO uc=2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate positioning

  20. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  1. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey.

    Science.gov (United States)

    Maier, Marc A; Kirkwood, Peter A; Brochier, Thomas; Lemon, Roger N

    2013-06-01

    The responses of individual primate corticospinal neurons to localized electrical stimulation of primary motor (M1) and of ventral premotor cortex (area F5) are poorly documented. To rectify this and to study interactions between responses from these areas, we recorded corticospinal axons, identified by pyramidal tract stimulation, in the cervical spinal cord of three chloralose-anesthetized macaque monkeys. Single stimuli (≤400 μA) were delivered to the hand area of M1 or F5 through intracortical microwire arrays. Only 14/112 (13%) axons showed responses to M1 stimuli that indicated direct intracortical activation of corticospinal neurons (D-responses); no D-responses were seen from F5. In contrast, 62 axons (55%) exhibited consistent later responses to M1 stimulation, corresponding to indirect activation (I-responses), showing that single-pulse intracortical stimulation of motor areas can result in trans-synaptic activation of a high proportion of the corticospinal output. A combined latency histogram of all axon responses was nonperiodic, clearly different from the periodic surface-recorded corticospinal volleys. This was readily explained by correcting for conduction velocities of individual axons. D-responding axons, taken as originating in neurons close to the M1 stimulating electrodes, showed more I-responses from M1 than those without a D-response, and 8/10 of these axons also responded to F5 stimulation. Altogether, 33% of tested axons responded to F5 stimulation, most of which also showed I-responses from M1. These excitatory effects are in keeping with facilitation of hand muscles evoked from F5 being relayed via M1. This was further demonstrated by facilitation of test responses from M1 by conditioning F5 stimuli. PMID:23536718

  2. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation.

    Science.gov (United States)

    Tinazzi, Michele; Zarattini, Stefano; Valeriani, Massimiliano; Romito, Silvia; Farina, Simona; Moretto, Giuseppe; Smania, Nicola; Fiaschi, Antonio; Abbruzzese, Giovanni

    2005-03-01

    Several lines of evidence indicate that motor cortex excitability can be modulated by manipulation of afferent inputs, like peripheral electrical stimulation. Most studies in humans mainly dealt with the effects of prolonged low-frequency peripheral nerve stimulation on motor cortical excitability, despite its being known from animal studies that high-frequency stimulation can also result in changes of the cortical excitability. To investigate the possible effects of high-frequency peripheral stimulation on motor cortical excitability we recorded motor-evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) of the left motor cortex from the right flexor carpi radialis (FCR), extensor carpi radialis (ECR), and first dorsal interosseous (FDI) in normal subjects, before and after transcutaneous electrical nerve stimulation (TENS) of 30 min duration applied over the FCR. The amplitude of MEPs from the FRC was significantly reduced from 10 to 35 min after TENS while the amplitude of MEPs from ECR was increased. No effects were observed in the FDI muscle. Indices of peripheral nerve (M-wave) and spinal cord excitability (H waves) did not change throughout the experiment. Electrical stimulation of the lateral antebrachial cutaneous nerve has no significant effect on motor cortex excitability. These findings suggest that TENS of forearm muscles can induce transient reciprocal inhibitory and facilitatory changes in corticomotoneuronal excitability of forearm flexor and extensor muscles lasting several minutes. These changes probably may occur at cortical site and seem to be mainly dependent on stimulation of muscle afferents. These findings might eventually lead to practical applications in rehabilitation, especially in those syndromes in which the excitatory and inhibitory balance between agonist and antagonist is severely impaired, such as spasticity and dystonia.

  3. Electroencephalographic spectral power in writer's cramp patients: evidence for motor cortex malfunctioning during the cramp.

    Science.gov (United States)

    Kristeva, Rumyana; Chakarov, Vihren; Losch, Florian; Hummel, Sibylla; Popa, Traian; Schulte-Mönting, Jürgen

    2005-09-01

    We investigated cortical activation as reflected in task-related spectral power (TRPow) changes in 8 writer's cramp patients during writing on a digital board and during isometric contraction and compared them to those of 8 age-matched healthy subjects. Scalp EEG was recorded over the contralateral primary sensorimotor area (SM1(c)), and from the ipsilateral sensorimotor area (SM1(i)). The electromyogram (EMG) was recorded from the Extensor Digitorum Communis (Extensor), Flexor Digitorum Superficialis (Flexor), and First Dorsal Interosseous (FDI) muscles. We analyzed (1) handwriting performance, (2) changes in the TRPow confined to alpha and beta band, and (3) the EMG spectral power during both tasks, writing and isometric contraction. During writing, all patients developed writer's cramp. The handwriting in writer's cramp patients was associated with significantly less reduction of the beta-range TRPow and lower frequency of the TRPow reduction compared to controls. No significant differences between patients and controls for the alpha band TRPow reduction during handwriting were observed. During writing, the patients showed higher EMG spectral power than the controls but this difference was at the border of significance. The present results indicate disorder in the motor execution system, in writer's cramp patients, associated with impaired functional beta-network state of the contra- and ipsilateral sensorimotor cortices, most probably due to inadequate modulation of the intracortical inhibition associated with writing.

  4. Implementación de un driver para motores paso a paso mediante microcontroladores ARM-CORTEX M3 con sistema operativo en tiempo real

    OpenAIRE

    López García, Jesús

    2012-01-01

    Este proyecto contiene el diseño e implementación de un sistema de control electrónico para un motor paso a paso bipolar. Dicho sistema está basado en un microcontrolador de 32 bits de la familia ARM-Cortex-M3® que se comunica por USB con el PC para recibir órdenes precisas por parte del usuario. El microcontrolador ejecuta los algoritmos de aceleración/deceleración necesarios para suavizar los movimientos del motor. El sistema operativo en tiempo real, uC/OS-II, permite al microcontrolador c...

  5. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J;

    2009-01-01

    stimulation (TMS) to examine intrahemispheric connectivity between left PMv and M1 in humans. A conditioning stimulus (CS) was applied to PMv at intensities of 80% and 90% of active motor threshold (AMT) and 90% and 110% of resting motor threshold (RMT). A supra-threshold test stimulus (TS) was given 2, 4, 6...... corticospinal excitability when the stimulus intensity was increased to 90% RMT. Conditioning effects were site-specific because conditioning the dorsal premotor cortex (PMd) at three different sites produced different effects. Using neuronavigated TMS the PMv site where applied CS produced changes...

  6. Primary sensory and motor cortex function in response to acute muscle pain: A systematic review and meta-analysis.

    Science.gov (United States)

    Burns, E; Chipchase, L S; Schabrun, S M

    2016-09-01

    Acute muscle pain has both motor and sensory consequences, yet the effect of muscle pain on the primary sensory (S1) and motor (M1) cortices has yet to be systematically evaluated. Here we aimed to determine the strength of the evidence for (1) altered activation of S1/M1 during and after pain, (2) the temporal profile of any change in activation and (3) the relationship between S1/M1 activity and the symptoms of pain. In September 2015, five electronic databases were systematically searched for neuroimaging and electrophysiological studies investigating the effect of acute experimental muscle pain on S1/M1 in healthy volunteers. Demographic data, methodological characteristics and primary outcomes for each study were extracted for critical appraisal. Meta-analyses were performed where appropriate. Twenty-five studies satisfied the inclusion criteria. There was consistent evidence from fMRI for increased S1 activation in the contralateral hemisphere during pain, but insufficient evidence to determine the effect at M1. Meta-analyses of TMS and EEG data revealed moderate to strong evidence of reduced S1 and corticomotor excitability during and following the resolution of muscle pain. A comprehensive understanding of the temporal profile of altered activity in S1/M1, and the relationship to symptoms of pain, is hampered by differences in methodological design, pain modality and pain severity between studies. Overall, the findings of this review indicate reduced S1 and corticomotor activity during and after resolution of acute muscle pain, mechanisms that could plausibly underpin altered sensorimotor function in pain. WHAT DOES THIS REVIEW ADD?: We provide the first systematic evaluation of the primary sensory (S1) and motor (M1) cortex response to acute experimental muscle pain in healthy volunteers. We present evidence from a range of methodologies to provide a comprehensive understanding of the effect of pain on S1/M1. Through meta-analyses we evaluate the strength

  7. 大脑皮层手运动区的形态学研究%Morphologic study of the hand motor cortex based on MRI

    Institute of Scientific and Technical Information of China (English)

    高雅; 王震寰

    2016-01-01

    Objective:To locate and analyze the morphology features of the hand motor cortex. Methods:The brains of 48 right-handed healthy people were scanned using MRI. The MRI imagings of transection plane,sagittal plane,coronal plane from 96 cerebral hemispheres were collected,which was used to identify,locate and analyze the morphology features of the hand motor cortex. Results:The hand motor cortex were classified into the inverted omega, omega, medially nonsymmetric omega, laterally nonsymmetric omega, curve,clover and wave types. The differences of the constituent ratio of various types between male and female,and between bilateral cerebral hemispheres of male and female were not statistically significant(P>0. 05). The width of the inverted omega type in male was significantly more than that in female(P0.05)。男性倒Ω型基底宽明显大于女性(P<0.01)。结论:完善手结运动区分型,为临床及实验研究识别中央前回提供便利条件。

  8. Bihemispheric Motor Cortex Transcranial Direct Current Stimulation Improves Force Steadiness in Post-Stroke Hemiparetic Patients: A Randomized Crossover Controlled Trial

    Science.gov (United States)

    Montenegro, Rafael A.; Midgley, Adrian; Massaferri, Renato; Bernardes, Wendell; Okano, Alexandre H.; Farinatti, Paulo

    2016-01-01

    Post-stroke patients usually exhibit reduced peak muscular torque (PT) and/or force steadiness during submaximal exercise. Brain stimulation techniques have been proposed to improve neural plasticity and help to restore motor performance in post-stroke patients. The present study compared the effects of bihemispheric motor cortex transcranial direct current stimulation (tDCS) on PT and force steadiness during maximal and submaximal resistance exercise performed by post-stroke patients vs. healthy controls. A double-blind randomized crossover controlled trial (identification number: TCTR20151112001; URL: http://www.clinicaltrials.in.th/) was conducted involving nine healthy and 10 post-stroke hemiparetic individuals who received either tDCS (2 mA) or sham stimulus upon the motor cortex for 20 min. PT and force steadiness (reflected by the coefficient of variation (CV) of muscular torque) were assessed during unilateral knee extension and flexion at maximal and submaximal workloads (1 set of 3 repetitions at 100% PT and 2 sets of 10 repetitions at 50% PT, respectively). No significant change in PT was observed in post-stroke and healthy subjects. Force steadiness during knee extension (~25–35%, P knee extension (~13–27%, P < 0.001) in healthy controls. These results suggest that tDCS may improve force steadiness, but not PT in post-stroke hemiparetic patients, which might be relevant in the context of motor rehabilitation programs. PMID:27601988

  9. Non-invasive Transcranial Magnetic Stimulation (TMS of the Motor Cortex for Neuropathic Pain—At the Tipping Point?

    Directory of Open Access Journals (Sweden)

    Roi Treister

    2013-10-01

    Full Text Available The term “neuropathic pain” (NP refers to chronic pain caused by illnesses or injuries that damage peripheral or central pain-sensing neural pathways to cause them to fire inappropriately and signal pain without cause. Neuropathic pain is common, complicating diabetes, shingles, HIV, and cancer. Medications are often ineffective or cause various adverse effects, so better approaches are needed. Half a century ago, electrical stimulation of specific brain regions (neuromodulation was demonstrated to relieve refractory NP without distant effects, but the need for surgical electrode implantation limited use of deep brain stimulation. Next, electrodes applied to the dura outside the brain’s surface to stimulate the motor cortex were shown to relieve NP less invasively. Now, electromagnetic induction permits cortical neurons to be stimulated entirely non-invasively using transcranial magnetic stimulation (TMS. Repeated sessions of many TMS pulses (rTMS can trigger neuronal plasticity to produce long-lasting therapeutic benefit. Repeated TMS already has US and European regulatory approval for treating refractory depression, and multiple small studies report efficacy for neuropathic pain. Recent improvements include “frameless stereotactic” neuronavigation systems, in which patients’ head MRIs allow TMS to be applied to precise underlying cortical targets, minimizing variability between sessions and patients, which may enhance efficacy. Transcranial magnetic stimulation appears poised for the larger trials necessary for regulatory approval of a NP indication. Since few clinicians are familiar with TMS, we review its theoretical basis and historical development, summarize the neuropathic pain trial results, and identify issues to resolve before large-scale clinical trials.

  10. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    Science.gov (United States)

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  11. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex.

    Science.gov (United States)

    Billeh, Yazan N; Rodriguez, Alexander V; Bellesi, Michele; Bernard, Amy; de Vivo, Luisa; Funk, Chadd M; Harris, Julie; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof; Cirelli, Chiara; Tononi, Giulio

    2016-01-01

    Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  12. Association between the fMRI manifestations of activated brain areas and muscle strength in patients with space-occupying lesions in motor cortex

    Institute of Scientific and Technical Information of China (English)

    Wenbin Zheng; Xiaoke Chen; Guorui Liu; Renhua Wu

    2006-01-01

    BACKGROUND: Functional magnetic resonance imaging (fMRI) studies have disclosed the changes of the motor function in the motor cortex of ipsilateral and contralateral hemispheres of tumor, which have special significance for making the surgical planning and most greatly minimizing the postoperative functional damages.OBJECTIVE: To analyze the association between the manifestation characteristics of hand functional area and motor dysfunction using fMRI in patients with space-occupying lesions of tumor in motor cortex.DESIGN: A case-controlled observation.SETTING: Department of Radiology, Second Affiliated Hospital, Shantou University Medical College.PARTICIPANTS: Twenty-three patients (13 males and 10 females) with space-occupying lesions of central sulcus area, aged 21-53 years with a mean age of (47±1) years were selected from the Second Affiliated Hospital of Shantou University Medical College. All the patients were diagnosed by MR scanning as space-occupying lesions of motor area, and pathologically confirmed that the lesions involved central sulcus and central Iobule; Lesions occurred in left and right hemispheres in 13 and 10 cases respectively. The tumcr types were astrocytoma (n =8), metastatic tumours (n =7), meningiomas (n =5) and oligodendroglioma (n =3). The muscle strength was normal in 11 cases (grade 5) and obviously decreased in 12 cases (grade 2-3 in 3 cases and grade 4 in 9 cases); muscle strengths of both upper and lower limbs were decreased in 7 cases, and only that of upper limbs was decreased in 5 cases. Informed consents were obtained from all the subjects. Meanwhile, 9 healthy physical examinees (5 males and 4 females) of 20-56 years old with an average of (34±1) years were taken as controls. All the patients and healthy subjects were right-handed.METHODS: All the enrolled subjects were examined with MR scanning and functional imaging. Twenty cases whose clinical symptoms were mild in the patient group and 9 healthy volunteers adopted

  13. Dimensions of individual alpha and gamma motor fibres in the ventral funiculus of the cat spinal cord.

    OpenAIRE

    Fabricius, C.; Berthold, C H; Rydmark, M

    1994-01-01

    Using light and electron microscopy, axon diameter, myelin sheath thickness (measured as number of myelin lamellae) and internodal length of alpha and gamma motor axons of the L7 ventral root and spinal cord segment were investigated in serial cross-sections. The CNS internodes of the alpha motor fibres had, on average, an axon diameter of 8.6 microns, 105 myelin lamellae and a length of about 560 microns. The CNS internodes of the gamma motor fibres had, on average, an axon diameter of 3.4 m...

  14. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  15. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis.

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3 weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  16. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  17. Changes in synapse quantity and growth associated protein 43 expression in the motor cortex of focal cerebral ischemic rats following catalpol treatment

    Institute of Scientific and Technical Information of China (English)

    Dong Wan; Huifeng Zhu; Yong Luo; Peng Xie

    2011-01-01

    The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia. A rat model of focal permanent brain ischemia was established using electrocoagulation. The rats were intraperitoneally injected with catalpol, at a dose of 5 mg/kg, daily for 1 week. Results showed that the number of neuronal synapses in the motor cortex and growth associated protein 43 expression were increased following catalpol treatment, indicating that catalpol might contribute to neuroplasticity and ameliorate functional neurological deficits induced by cerebral ischemia.

  18. Bihemispheric Motor Cortex Transcranial Direct Current Stimulation Improves Force Steadiness in Post-Stroke Hemiparetic Patients: A Randomized Crossover Controlled Trial.

    Science.gov (United States)

    Montenegro, Rafael A; Midgley, Adrian; Massaferri, Renato; Bernardes, Wendell; Okano, Alexandre H; Farinatti, Paulo

    2016-01-01

    Post-stroke patients usually exhibit reduced peak muscular torque (PT) and/or force steadiness during submaximal exercise. Brain stimulation techniques have been proposed to improve neural plasticity and help to restore motor performance in post-stroke patients. The present study compared the effects of bihemispheric motor cortex transcranial direct current stimulation (tDCS) on PT and force steadiness during maximal and submaximal resistance exercise performed by post-stroke patients vs. healthy controls. A double-blind randomized crossover controlled trial (identification number: TCTR20151112001; URL: http://www.clinicaltrials.in.th/) was conducted involving nine healthy and 10 post-stroke hemiparetic individuals who received either tDCS (2 mA) or sham stimulus upon the motor cortex for 20 min. PT and force steadiness (reflected by the coefficient of variation (CV) of muscular torque) were assessed during unilateral knee extension and flexion at maximal and submaximal workloads (1 set of 3 repetitions at 100% PT and 2 sets of 10 repetitions at 50% PT, respectively). No significant change in PT was observed in post-stroke and healthy subjects. Force steadiness during knee extension (~25-35%, P < 0.001) and flexion (~22-33%, P < 0.001) improved after tDCS compared to the sham condition in post-stroke patients, but improved only during knee extension (~13-27%, P < 0.001) in healthy controls. These results suggest that tDCS may improve force steadiness, but not PT in post-stroke hemiparetic patients, which might be relevant in the context of motor rehabilitation programs. PMID:27601988

  19. Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model.

    Science.gov (United States)

    Hammer, Jiří; Pistohl, Tobias; Fischer, Jörg; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2016-06-01

    How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG signal features, up to the 600-1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing population size. Our findings demonstrate that the information profile in large population signals may systematically differ from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general, including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population signal may help in developing brain-machine interfaces exploiting population signals. PMID:26984895

  20. A Concept for Extending the Applicability of Constraint-Induced Movement Therapy through Motor Cortex Activity Feedback Using a Neural Prosthesis

    Directory of Open Access Journals (Sweden)

    Tomas E. Ward

    2007-01-01

    Full Text Available This paper describes a concept for the extension of constraint-induced movement therapy (CIMT through the use of feedback of primary motor cortex activity. CIMT requires residual movement to act as a source of feedback to the patient, thus preventing its application to those with no perceptible movement. It is proposed in this paper that it is possible to provide feedback of the motor cortex effort to the patient by measurement with near infrared spectroscopy (NIRS. Significant changes in such effort may be used to drive rehabilitative robotic actuators, for example. This may provide a possible avenue for extending CIMT to patients hitherto excluded as a result of severity of condition. In support of such a paradigm, this paper details the current status of CIMT and related attempts to extend rehabilitation therapy through the application of technology. An introduction to the relevant haemodynamics is given including a description of the basic technology behind a suitable NIRS system. An illustration of the proposed therapy is described using a simple NIRS system driving a robotic arm during simple upper-limb unilateral isometric contraction exercises with healthy subjects.

  1. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    CERN Document Server

    Khosravie, H R

    2000-01-01

    During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T imager. Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effe...

  2. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study.

    Science.gov (United States)

    Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Bianco, Giovanni; Godone, Marco; Battista, Donato; Cardinali, Consuelo; Borgheresi, Alessandra; Sighinolfi, Antonella; D'Avanzo, Anna Maria; Breschi, Marco; Dine, Ylli; Lino, Mario; Zaccara, Gaetano; Viggiano, Maria Pia; Rossi, Simone

    2015-10-01

    We assessed the effects of a non-invasive neuromodulatory intervention with repetitive transcranial magnetic stimulation (rTMS) of the motor cortex in patients with vegetative state (VS) by a randomised, sham-controlled study with a cross-over design. Eleven patients classified as being in VS (9 post-anoxic, 2 post-traumatic, time elapsed from the injury 9-85 months) were included in the study. Real or sham 20 Hz rTMS were applied to the left primary motor cortex (M1) for 5 consecutive days. Primary outcome measures were changes in the JFK Coma Recovery Scale-Revised (CRS-R) scale total score and Clinical Global Impression Improvement (CGI-I) scale. Additional measures were EEG changes and impression of the patients' relatives using the CGI-I scale. Evaluations were blindly performed at baseline, after the first day of treatment, immediately after the end of the 5-days treatment, 1 week and 1 month later. Slight changes observed in the CRS-R and CGI-I scores did not significantly differ between real or sham stimulation conditions. EEG was not significantly changed on average, although spots of brain reactivity were occasionally found underneath the stimulation point. Findings did not provide evidence of therapeutic effect of 20 Hz rTMS of the M1 in chronic VS, at least with conventional coils and current safety parameters. Therefore, they might be useful to better allocate human and financial resources in future trials.

  3. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat.

    Science.gov (United States)

    Xi, Ming-Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2002-06-01

    Hypocretin (orexin)-containing neurons in the hypothalamus, which have been implicated in the pathology of narcolepsy, project to nuclei in the brain stem reticular formation that are involved in the control of the behavioral states of sleep and wakefulness. Among these nuclei is the nucleus pontis oralis (NPO). Consequently, the present study was undertaken to determine if the hypocretinergic system provides regulatory input to neurons in the NPO with respect to the generation of the states of sleep and wakefulness. Accordingly, polygraphic recordings and behavioral observations were obtained before and after hypocretin-1 and -2 were microinjected into the NPO in chronic, unanesthetized cats. Microinjections of either hypocretin-1 or -2 elicited, with a short latency, a state of active [rapid eye movement (REM)] sleep that appeared identical to naturally occurring active sleep. The percentage of time spent in active sleep was significantly increased. Dissociated states, which are characterized by the presence of muscle atonia without one or more of the electrophysiological correlates of active sleep, also arose following the injection. The effect of juxtacellular application of hypocretin-1 on the electrical activity of intracellularly recorded NPO neurons was then examined in the anesthetized cat. In this preparation, the application of hypocretin-1 resulted in the depolarization of NPO neurons, an increase in the frequency of their discharge and an increase in their excitability. These latter data represent the first description of the in vivo action of hypocretin on intracellularly recorded neuronal activity and provide evidence that the active sleep-inducing effects of hypocretin are due to a direct excitatory action on NPO neurons. Therefore we suggest that hypocretinergic processes in the NPO may play a role in the generation of active sleep, particularly muscle atonia and therefore are likely to be involved in the pathology of narcolepsy. PMID:12037191

  4. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    Science.gov (United States)

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC. PMID:27267243

  5. Grey matter volume and resting-state functional connectivity of the motor cortex-cerebellum network reflect the individual variation in masticatory performance in the healthy elderly people

    Directory of Open Access Journals (Sweden)

    Chia-Shu eLin

    2016-01-01

    Full Text Available Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI and resting-state function MRI were performed. We analyzed alterations in grey matter volume (GMV using voxel-based morphometry and resting-state functional connectivity (rsFC between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1 the GMV change in the premotor cortex was positively correlated with masticatory performance. (2 The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3 The GMV changes in the dorsolateral prefrontal cortex (DLPFC, as well as the rsFC between the cerebellum and the DLPFC, was positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  6. Sentential context modulates the involvement of the motor cortex in action language processing: An fMRI study

    NARCIS (Netherlands)

    K.D.I. Schuil (Karen); M. Smits (Marion); R.A. Zwaan (Rolf)

    2013-01-01

    textabstractTheories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously dur

  7. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    Science.gov (United States)

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  8. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal;

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb....

  9. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study.

    Science.gov (United States)

    Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Bianco, Giovanni; Godone, Marco; Battista, Donato; Cardinali, Consuelo; Borgheresi, Alessandra; Sighinolfi, Antonella; D'Avanzo, Anna Maria; Breschi, Marco; Dine, Ylli; Lino, Mario; Zaccara, Gaetano; Viggiano, Maria Pia; Rossi, Simone

    2015-10-01

    We assessed the effects of a non-invasive neuromodulatory intervention with repetitive transcranial magnetic stimulation (rTMS) of the motor cortex in patients with vegetative state (VS) by a randomised, sham-controlled study with a cross-over design. Eleven patients classified as being in VS (9 post-anoxic, 2 post-traumatic, time elapsed from the injury 9-85 months) were included in the study. Real or sham 20 Hz rTMS were applied to the left primary motor cortex (M1) for 5 consecutive days. Primary outcome measures were changes in the JFK Coma Recovery Scale-Revised (CRS-R) scale total score and Clinical Global Impression Improvement (CGI-I) scale. Additional measures were EEG changes and impression of the patients' relatives using the CGI-I scale. Evaluations were blindly performed at baseline, after the first day of treatment, immediately after the end of the 5-days treatment, 1 week and 1 month later. Slight changes observed in the CRS-R and CGI-I scores did not significantly differ between real or sham stimulation conditions. EEG was not significantly changed on average, although spots of brain reactivity were occasionally found underneath the stimulation point. Findings did not provide evidence of therapeutic effect of 20 Hz rTMS of the M1 in chronic VS, at least with conventional coils and current safety parameters. Therefore, they might be useful to better allocate human and financial resources in future trials. PMID:26301875

  10. Effects of left primary motor and dorsolateral prefrontal cortex transcranial direct current stimulation on laser-evoked potentials in migraine patients and normal subjects.

    Science.gov (United States)

    Vecchio, Eleonora; Ricci, Katia; Montemurno, Anna; Delussi, Marianna; Invitto, Sara; de Tommaso, Marina

    2016-07-28

    Migraine is characterized by an altered cortical excitability. Because transcranial direct current stimulation (tDCS) can change brain activity noninvasively, it is possible to hypothesize its efficacy in modulating pain in migraine. In this study, we compared the effects of tDCS of the left primary motor cortex (M1) and left dorsolateral prefrontal cortex (DLPFC) both on subjective pain and on evoked responses induced by laser stimulation (LEPs). Thirty-two patients and sixteen controls were randomized to receive sham stimulation and real tDCS with the anode centered over M1 or DLPFC. Laser Evoked potentials were recorded in basal, sham and tDCS conditions. We did not find significant acute changes in LEPs parameters and pain perception among subjects who received tDCS of both M1 and DLPFC. After DLPFC tDCS, we observed a significant increase of N2-P2 component habituation in migraine patients while M1 stimulation reduced it. These findings may suggest a modulation of abnormal pain processing induced by DLPFC and M1 anodal tDCS and outline the need for future investigations exploring the possible neuronal plasticity changes supporting the clinical effect on migraine. PMID:27208831

  11. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    DEFF Research Database (Denmark)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo;

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual......Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter......-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in...... effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND....

  12. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-01-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of mot

  13. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Delvendahl, Igor; Pechmann, Astrid;

    2012-01-01

    Transcranial magnetic stimulation (TMS) commonly uses so-called monophasic pulses where the initial rapidly changing current flow is followed by a critically dampened return current. It has been shown that a monophasic TMS pulse preferentially excites different cortical circuits in the human motor...

  14. Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries.

    Science.gov (United States)

    Cohen, L G; Bandinelli, S; Topka, H R; Fuhr, P; Roth, B J; Hallett, M

    1991-01-01

    We studied motor evoked potentials to transcranial magnetic stimulation in patients with unilateral upper limb amputations, complete T10-T12 spinal cord transection, and congenital mirror movements and in controls. Different muscles in the trunk and upper and lower extremities were evaluated at rest. In controls, muscles could be activated with stimulation of regions several centimeters wide. These areas overlapped extensively when muscles studied were from the same limb and shifted positions abruptly when muscles were from different limbs. Distal muscles were easier to activate than proximal muscles and normally evidenced exclusively a contralateral representation. Congenital defects in motor control in patients with mirror movements resulted in marked derangement of the map of outputs of distal hand muscles with enlarged and ipsilateral representations. Peripheral lesions, either acquired (amputations) or congenital (congenital absence of a limb), resulted in plastic reorganization of motor outputs targeting muscles immediately proximal to the stump. Central nervous system lesions (i.e., spinal cord injury producing paraplegia) also resulted in enlargement of the map of outputs targeting muscles proximal to the lesion. These results indicate that magnetic stimulation is a useful non-invasive tool for exploring plastic changes in human motor pathways following different types of injury.

  15. Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex.

    Science.gov (United States)

    Quartarone, Angelo; Bagnato, Sergio; Rizzo, Vincenzo; Morgante, Francesca; Sant'angelo, Antonio; Battaglia, Fortunato; Messina, Corrado; Siebner, Hartwig Roman; Girlanda, Paolo

    2005-02-01

    It has been shown that high-frequency repetitive transcranial magnetic stimulation (rTMS) to the human primary motor hand area (M1-HAND) can induce a lasting increase in corticospinal excitability. Here we recorded motor evoked potentials (MEPs) from the right first dorsal interosseus muscle to investigate how sub-threshold high-frequency rTMS to the M1-HAND modulates cortical and spinal excitability. In a first experiment, we gave 1500 stimuli of 5 Hz rTMS. At an intensity of 90% of active motor threshold, rTMS produced no effect on MEP amplitude at rest. Increasing the intensity to 90% of resting motor threshold (RMT), rTMS produced an increase in MEP amplitude. This facilitatory effect gradually built up during the course of rTMS, reaching significance after the administration of 900 stimuli. In a second experiment, MEPs were elicited during tonic contraction using weak anodal electrical or magnetic test stimuli. 1500 (but not 600) conditioning stimuli at 90% of RMT induced a facilitation of MEPs in the contracting FDI muscle. In a third experiment, 600 conditioning stimuli were given at 90% of RMT to the M1-HAND. Using two well-established conditioning-test paradigms, we found a decrease in short-latency intracortical inhibition (SICI), and a facilitation of the first peak of facilitatory I-waves interaction (SICF). There was no correlation between the relative changes in SICI and SICF. These results demonstrate that subthreshold 5 Hz rTMS can induce lasting changes in specific neuronal subpopulations in the human corticospinal motor system, depending on the intensity and duration of rTMS. Short 5 Hz rTMS (600 stimuli) at 90% of RMT can selectively shape the excitability of distinct intracortical circuits, whereas prolonged 5 Hz rTMS (> or =900 stimuli) provokes an overall increase in excitability of the corticospinal output system, including spinal motoneurones.

  16. Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    Directory of Open Access Journals (Sweden)

    A Dilene van Campen

    2013-11-01

    Full Text Available The functional role of the right inferior frontal cortex (rIFC in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this study is to investigate the role of rIFC by combining a go/no-go paradigm with paired-pulse transcranial magnetic stimulation (ppTMS over rIFC and the primary motor cortex (M1 to probe the functional connectivity between these brain areas. Participants performed a go/no-go task with 20% or 80% of the trials requiring response inhibition (no-go trials in a classic and a reversed version of the task, respectively. Responses were slower to infrequent compared to frequent go trials, while commission errors were more prevalent to infrequent compared to frequent no-go trials. We hypothesized that if rIFC is involved primarily in response inhibition, then rIFC should exert an inhibitory influence over M1 on no-go (inhibition trials regardless of no-go probability. If, by contrast, rIFC has a role on unexpected trials other than just response inhibition then rIFC should influence M1 on infrequent trials regardless of response demands. We observed that rIFC suppressed M1 excitability during frequent no-go trials, but not during infrequent no-go trials, suggesting that the role of rIFC in response inhibition is context dependent rather than generic. Importantly, rIFC was found to facilitate M1 excitability on all low frequent trials, irrespective of whether the infrequent event involved response inhibition, a finding more in line with a predictive coding framework of cognitive control.

  17. Motor cortex stimulation(MCS) for intractable complex regional pain syndrome (CRPS) type II: PSM analysis of Tc-99m ECD brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Son, B. C.; Yoo, I. R.; Kim, S. H.; Kim, E. N.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    We had experienced a patient with intractable CRPS in whom statistical parametric mapping (SPM) analysis of cerebral perfusion explained the mechanism of pain control by MCS. A 43-year-old man presented spontaneous severe burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. After the electrodes for neuromodulation therapy were inserted in the central sulcus, the baseline and stimulation brain perfusion SPECT using Tc-99m ECD were obtained within two days. The differences between the baseline and stimulation SPECT images, estimated at every voxel using t-statistics using SPM-99 software, were considered significant at a threshold of uncorrected P values less than 0.01. Among several areas significantly activated following pain relief with MCS, ipsilateral pyramidal tract in the cerebral peduncle might be related to the mechanism of pain control with MCS through efferent motor pathway. The result suggested that corticospinal neurons themselves or motor cortex efferent pathway maintained by the presence of intact corticospinal neurons could play an important role in producing pain control after MCS. This study would helpful in understanding of neurophysiology.

  18. Spatial localization and distribution of the TMS-related 'hotspot' of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex.

    Science.gov (United States)

    Sivaramakrishnan, Anjali; Tahara-Eckl, Lenore; Madhavan, Sangeetha

    2016-08-01

    Transcranial magnetic stimulation (TMS) is a type of noninvasive brain stimulation used to study corticomotor excitability of the intact and injured brain. Identification of muscle representations in the motor cortex is typically done using a procedure called 'hotspotting', which involves establishing the optimal location on the scalp that evokes a maximum TMS response with minimum stimulator intensity. The purpose of this study was to report the hotspot locations for the tibialis anterior (TA) muscle representation in the motor cortex of healthy and post stroke individuals. A retrospective data analyses from 42 stroke participants and 32 healthy participants was conducted for reporting TMS hotspot locations and their spatial patterns. Single pulse TMS, using a 110mm double cone coil, was used to identify the motor representation of the TA. The hotspot locations were represented as x and y-distances from the vertex for each participant. The mediolateral extent of the loci from the vertex (x-coordinate) and anteroposterior extent of the loci from the vertex (y-coordinate) was reported for each hemisphere: non-lesioned (XNLes, YNLes), lesioned (XLes, YLes) and healthy (XH, YH). We found that the mean hotspot loci for TA muscle from the vertex were approximately: 1.29cm lateral and 0.55cm posterior in the non-lesioned hemisphere, 1.25cm lateral and 0.5cm posterior in the lesioned hemisphere and 1.6cm lateral and 0.8cm posterior in the healthy brain. There was no significant difference in the x- and y-coordinates between the lesioned and non-lesioned hemispheres. However, the locations of the XNLes (p=0.01) and XLes (p=0.004) were significantly different from XH. The YNLes and YLes showed no significant differences from YH loci. Analyses of spatial clustering patterns using the Moran's I index showed a negative autocorrelation in stroke participants (NLes: Moran's I=-0.09, p<0.001; Les: Moran's I=-0.14, p=0.002), and a positive autocorrelation in healthy participants

  19. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  20. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study

    Science.gov (United States)

    Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-06-01

    Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.

  1. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somato-motor cortex of healthy subjects

    Directory of Open Access Journals (Sweden)

    Tibor eAuer

    2015-10-01

    Full Text Available This study investigated the level of self-regulation of the somato-motor cortices (SMC attained by an extended functional MRI (fMRI neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging (rt-fMRI neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line GLM analysis determining the fMRI percent signal changes in the somato-motor cortex (SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e. the neurofeedback paradigm without the presentation of the feedback signal. Group results show a distinct increase in feedback performance in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the feedback performance showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left and right hand imagery, with a slight indication of more ipsilateral deactivation in the early right hand trainings.

  2. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  3. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex

    Directory of Open Access Journals (Sweden)

    Jung Nikolai H

    2012-11-01

    Full Text Available Abstract Background Transcranial magnetic stimulation (TMS commonly uses so-called monophasic pulses where the initial rapidly changing current flow is followed by a critically dampened return current. It has been shown that a monophasic TMS pulse preferentially excites different cortical circuits in the human motor hand area (M1-HAND, if the induced tissue current has a posterior-to-anterior (PA or anterior-to-posterior (AP direction. Here we tested whether similar direction-specific effects could be elicited in M1-HAND using TMS pulses with a half-sine wave configuration. Results In 10 young participants, we applied half-sine pulses to the right M1-HAND which elicited PA or AP currents with respect to the orientation of the central sulcus. Measurements of the motor evoked potential (MEP revealed that PA half-sine stimulation resulted in lower resting motor threshold (RMT than AP stimulation. When stimulus intensity (SI was gradually increased as percentage of maximal stimulator output, the stimulus–response curve (SRC of MEP amplitude showed a leftward shift for PA as opposed to AP half-sine stimulation. Further, MEP latencies were approximately 1 ms shorter for PA relative to AP half-sine stimulation across the entire SI range tested. When adjusting SI to the respective RMT of PA and AP stimulation, the direction-specific differences in MEP latencies persisted, while the gain function of MEP amplitudes was comparable for PA and AP stimulation. Conclusions Using half-sine pulse configuration, single-pulse TMS elicits consistent direction-specific effects in M1-HAND that are similar to TMS with monophasic pulses. The longer MEP latency for AP half-sine stimulation suggests that PA and AP half-sine stimulation preferentially activates different sets of cortical neurons that are involved in the generation of different corticospinal descending volleys.

  4. Suppression of EMG activity by subthreshold paired-pulse transcranial magnetic stimulation to the leg motor cortex.

    Science.gov (United States)

    Roy, François D

    2009-03-01

    Cortical activity driving a voluntary muscle contraction is inhibited by very low-intensity transcranial magnetic stimulation (TMS) and is reflected in the suppression of the average rectified EMG. This approach offers a method to test the contribution of cortical neurons actively involved in a motor task, but requires a large number of stimuli (approximately 100) to suitably depress the average EMG. Here, we investigated whether two pulses of subthreshold TMS at interstimulus intervals (ISIs) ranging between 1 and 12 ms could enhance the amount of EMG suppression in the tibialis anterior muscle compared to a single pulse. Pairs of subthreshold TMS at an ISI of 7 ms produced the maximum EMG suppression that was 42% more than the inhibition elicited using a single pulse. In addition, the signal-to-noise ratio of the TMS-induced suppression was further increased by a second pulse, delivered 7 ms later. The reduction in the EMG at the 7 ms paired-pulse interval occurred without any short-latency excitation suggesting that the two stimuli increased the activation of cortical inhibitory neurons. Subthreshold paired-pulse TMS at ISIs of 1-3 ms was prone to EMG excitation in the period that immediately preceded the inhibition and is consistent with the recruitment of short-interval intracortical facilitation (SICF). We propose that pairs of subthreshold TMS outside the range of SICF with an inter-pulse interval of 7 ms is optimal to inhibit ongoing cortical activity during human motor movement. PMID:19183971

  5. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex.

    Science.gov (United States)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bülthoff, Heinrich H; Thielscher, Axel

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans. PMID:26424179

  6. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb.

    Science.gov (United States)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal; Reilly, Karen T

    2016-04-15

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation are maladaptive and attempt to normalize representations of cortical areas adjacent to the hand area. Recent data suggest, however, that higher levels of phantom pain are associated with stronger local activity and more structural integrity in the missing hand area rather than with reorganization of neighbouring body parts. While these models appear to be mutually exclusive they could co-exist, and one reason for the apparent discrepancy between them might be that no single study has examined the organisation of lip, elbow, and hand movements in the same participants. In this study we thoroughly examined the 3D anatomy of the central sulcus and BOLD responses during movements of the hand, elbow, and lips using MRI techniques in 11 upper-limb amputees and 17 healthy control subjects. We observed different reorganizational patterns for all three body parts as the former hand area showed few signs of reorganization, but the lip and elbow representations reorganized and shifted towards the hand area. We also found that poorer voluntary control and higher levels of pain in the phantom limb were powerful drivers of the lip and elbow topological changes. In addition to providing further support for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb.

  7. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb.

    Science.gov (United States)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal; Reilly, Karen T

    2016-04-15

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation are maladaptive and attempt to normalize representations of cortical areas adjacent to the hand area. Recent data suggest, however, that higher levels of phantom pain are associated with stronger local activity and more structural integrity in the missing hand area rather than with reorganization of neighbouring body parts. While these models appear to be mutually exclusive they could co-exist, and one reason for the apparent discrepancy between them might be that no single study has examined the organisation of lip, elbow, and hand movements in the same participants. In this study we thoroughly examined the 3D anatomy of the central sulcus and BOLD responses during movements of the hand, elbow, and lips using MRI techniques in 11 upper-limb amputees and 17 healthy control subjects. We observed different reorganizational patterns for all three body parts as the former hand area showed few signs of reorganization, but the lip and elbow representations reorganized and shifted towards the hand area. We also found that poorer voluntary control and higher levels of pain in the phantom limb were powerful drivers of the lip and elbow topological changes. In addition to providing further support for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb. PMID:26854561

  8. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tessa, Carlo; Vignali, Claudio [Versilia Hospital, AUSL Versilia, Division of Radiology, Camaiore (Italy); Lucetti, Claudio [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario [University of Florence, Radiodiagnostic Section, Department of Clinical Physiopathology, Florence (Italy); Cecchi, Paolo; Baldacci, Filippo [University of Pisa, Department of Neuroscience, Pisa (Italy); Giannelli, Marco [Azienda Ospedaliero-Universitaria Pisana, Unit of Medical Physics, Pisa (Italy); Bonuccelli, Ubaldo [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); University of Pisa, Department of Neuroscience, Pisa (Italy)

    2012-03-15

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  9. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  10. Expression of NogoA in 21a area of visual cortex in visual developing normal cat and strabismic amblyopia cat%NogoA在视觉发育期正常猫和斜视性弱视猫视皮层21a区的表达

    Institute of Scientific and Technical Information of China (English)

    郭珍; 刘冰; 林锦镛; 赵堪兴

    2012-01-01

    Background The study of the molecular mechanism of visual plasticity is helpful for the explaining and prevention of strabismus and amblyopia.The effect and significance of NogoA in the strabismus and amblyopia formation are attracting more attention. Objective The present study was to investigate the expression of NogoA in 21a area of visual cortex in strabismic-induced amblyopia cats and explore the possible molecular mechanism of strabismic-induced amblyopia. Methods Sixteen 4-week old clean cats were randomizedly divided into normal group and strabismic-induced amblyopia group and eight for each group.The strabismic-induced amblyopia models were created by cutting off the external rectus in 8 cats.Pattern visual evoked potentials ( P-VEP ) were recorded 1 week after operation and compared with normal cats,and depression of amplitude and prolongation of implied time of P100 wave were as the successful criterion of model.The 200 ml paraformaldehyde was infused via heart to fax the brain under the deep anesthesia and then the cats were sacrificed and the brain cortex sections were prepared.The morphology of 21a zone of cat visual cortex was examined by haematoxylin and eosin staining,and the expressions of NogoA in 21a area of visual cortex were detected by immunohistochemistry with a monoclonal antiNogoA antibody.The use of the animals complied with the Regulations for the Administration of Affair Concerning Experimental Animals by State Science and Technology Commission. Results The implied time and amplitude ratio of VEP P100 wave were (98.10±7.07)ms and (0.83±0.14) in normal group,and those in strabismic-induced amblyopia group were (108.50±6.95 )ms and (0.35 ±0.09 ),showing significant differences between two groups (t=4.450,P=0.005 ; t =5.970,P =0.005 ).The numbers of neurons were similar in 21a area of visual cortex between the two groups,but the volume of the neurons was lessen in strabismic-induced amblyopia group.The positive cell densities for Nogo

  11. Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2012-07-01

    Full Text Available Combined administration of transcranial direct current stimulation (tDCS with either pergolide (PGL or D-cycloserine (D-CYC can prolong the excitability-diminishing effects of cathodal, or the excitability enhancing effect of anodal stimulation for up to 24hrs poststimulation. However, it remains unclear whether the potentiation of the observed aftereffects is dominated by the polarity and duration of the stimulation, or the dual application of combined stimulation and drug administration. The present study looks at whether the aftereffects of oral administration of PGL (a D1/D2 agonist or D-CYC (a partial NMDA receptor agonist, in conjunction with the short duration antagonistic application of tDCS (either 5 min cathodal followed immediately by 5 min anodal or vice versa, that alone only induces short lasting aftereffects, can modulate cortical excitability in healthy human subjects, as revealed by a single-pulse MEP (motor-evoked-potential paradigm. Results indicate that the antagonistic application of DC currents induces short-term neuroplastic aftereffects that are dependent upon the polarity of the second application of short-duration tDCS. The application of D-cycloserine resulted in a reversal of this trend and so consequently a marked inhibition of cortical excitability with the cathodal-anodal stimulation order was observed. The administration of pergolide showed no significant aftereffects in either case. These results emphasise that the aftereffects of tDCS are dependent upon the stimulation orientation, and mirror the findings of other studies reporting the neuroplasticity inducing aftereffects of tDCS, and their prolongation when combined with the administration of CNS active drugs.

  12. Intraoperative monitoring of the motor function: experimental and clinical study.

    Science.gov (United States)

    Kaneko, M; Fukamachi, A; Sasaki, H; Miyazawa, N; Yagishita, T; Nukui, H

    1988-01-01

    Manipulation of the lesions adjacent to the primary motor area or the motor pathway is troublesome for neurosurgeons because they lack an effective method to determine the primary motor area or to monitor motor function in the operative room. It will be of great value to establish a monitoring method of the corticospinal tract under general anaesthesia. We recorded the motor evoked potential (MEP) from direct motor cortex stimulation in cats and showed that it derives almost purely from the corticospinal tract. Then we used this technique during the operation of the resection of tumours near the primary motor area or the motor pathway. 1. Experimental study: Twenty adult cats were used in this study. Recording electrodes were flexible bipolar catheter electrodes inserted into the spinal epidural space. Stimulating electrodes were silver ball electrode on the cortex (anode) and needle electrode in the temporal muscle (cathode). Stimulation of 4-24 V, 5-10 Hz and 0.2 msec in duration were done and evoked potentials signals were averaged 60 to 512 times. MEP with multiple peaks was obtained that had a 112 msec conduction velocity in the spinal cord. We found the same signals from the stimulation of ipsilateral cerebral peduncle. Radiofrequency lesioning of ipsilateral cerebral peduncle produced a loss of MEP. These results show that MEP derives from the corticospinal tract. Significant wave form change, with components of short latency, was noted by the excessively intense stimuli. We supposed that superimposition of the signals from the extrapyramidal pathways, excited in the brain stem, results in this change.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Moving mirrors: a high-density EEG study investigating the effect of camera movements on motor cortex activation during action observation.

    Science.gov (United States)

    Heimann, Katrin; Umiltà, Maria Alessandra; Guerra, Michele; Gallese, Vittorio

    2014-09-01

    Action execution-perception links (mirror mechanism) have been repeatedly suggested to play crucial roles in social cognition. Remarkably, the designs of most studies exploring this topic so far excluded even the simplest traces of social interaction, such as a movement of the observer toward another individual. This study introduces a new design by investigating the effects of camera movements, possibly simulating the observer's own approaching movement toward the scene. We conducted a combined high-density EEG and behavioral study investigating motor cortex activation during action observation measured by event-related desynchronization and resynchronization (ERD/ERS) of the mu rhythm. Stimuli were videos showing a goal-related hand action filmed while using the camera in four different ways: filming from a fixed position, zooming in on the scene, approaching the scene by means of a dolly, and approaching the scene by means of a steadycam. Results demonstrated a consistently stronger ERD of the mu rhythm for videos that were filmed while approaching the scene with a steadycam. Furthermore, videos in which the zoom was applied reliably demonstrated a stronger rebound. A rating task showed that videos in which the camera approached the scene were felt as more involving and the steadycam was most able to produce a visual experience close to the one of a human approaching the scene. These results suggest that filming technique predicts time course specifics of ERD/ERS during action observation with only videos simulating the natural vision of a walking human observer eliciting a stronger ERD than videos filmed from a fixed position. This demonstrates the utility of ecologically designed studies for exploring social cognition. PMID:24666130

  14. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts

    International Nuclear Information System (INIS)

    The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT-PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT-PMC&CST group (p < 0.001). In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment

  15. 硬脑膜上微电极植入并记录家猫视皮层电活动%Recording visual cortex electrical activity through flexible microelectrode array implanted on duramater endocranium of cats

    Institute of Scientific and Technical Information of China (English)

    刘娜; 石卫卫; 陈丽峰; 侯文生; 阴正勤

    2011-01-01

    目的 建立初级视皮层区硬脑膜上柔性微电极阵列记录视皮层电活动的方法,比较黑白棋盘格图形和黑白闪烁刺激在诱发视觉诱发电位(visual evoked potential,VEP)方面的差异.方法 成年健康家猫5只,静脉持续麻醉,肌松、呼吸机人工通气,采用自行设计的柔性微电极阵列,微创植入并固定于视皮层定位区的硬脑膜上.比较无视觉刺激和有视觉刺激的视皮层电活动,验证是否能记录到VEP;给予闪光和图形视觉刺激,记录和比较视觉诱发电位的峰值和潜伏期.结果 通过微创手术将微电极阵列植入并固定在视皮层定位区的硬脑膜外;在硬脑膜外微电极阵列可记录到有效VEP;黑白棋盘格图形刺激与黑白闪烁刺激相比,前者诱发的VEP谷峰值显著高于后者(P<0.01),而诱发的VEP波谷潜伏期较后者长(P<0.05),且波峰潜伏期则显著长于后者(P<0.01).结论 在视皮层定位区硬脑膜外首创的微创植入并固定柔性微电极阵列的方法 适用性、重复性好,黑白棋盘格图形刺激优于黑白闪烁刺激,经硬脑膜外利用微电极阵列记录诱发电位是可行的.%Objective To establish a new experiment method for recording visual cortex electrical activity through flexible microelectrode array being implanted on the duramater endocranium above visual cortex, and compare the difference between the visual evoked potential (VEP) evoked by black and white flare and that evoked by black and white checker. Methods A total of 5 health adult cats of both sexes were anesthetized, and artificially ventilated by breathing machine. Then flexible microelectrode array designed by our group was implanted on the epidural area outside of visual cortex location region. The results of visual cortex electrical activity evoked by without any visual stimulus or with visual stimulus was compared in order to record VEP. Then flash (black and white flare, F) and graphic (black and white

  16. Cat Scan

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> A man takes his motionless dog to the vet."Doc,I think my dog is dead.”The vet looks the dog over, goes into a backroom,and comes out with a cat.He places the caton the table next to the dog.The cat walks aroundand sniffs at the dog.The dog does not move.The

  17. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  18. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    Directory of Open Access Journals (Sweden)

    Tatiana G. Polotow

    2015-09-01

    Full Text Available Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs and the antioxidant carotenoid astaxanthin (ASTA. However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation, drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  19. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    Science.gov (United States)

    Polotow, Tatiana G.; Poppe, Sandra C.; Vardaris, Cristina V.; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F.; Bondan, Eduardo F.; Barros, Marcelo P.

    2015-01-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  20. Cerebellum and motor learning, motor memory and motor integration: morphology and distribution of neuropeptide Y neurons in rat cerebellar cortex%大鼠小脑皮质内神经肽Y能神经元的形态与分布小脑的运动学习、记忆及整合功能

    Institute of Scientific and Technical Information of China (English)

    王省; 孙银平; 蔡新华

    2005-01-01

    BACKGROUND: Neuropeptide Y (NPY) neurons are extensively located in various brain regions such as cerebral cortex, caudate-putamen nucleus, syslimbic system, thalamus and brain stem. They are also involved in various brain activities such as motor learning, motor memory and motor integration. Considering the fact that cerebellum can reorganize through motor learning, we tried to identify the morphology and distribution of NPY neurons in rat's cerebellar cortex to obtain the morphologic knowledge that is related to its cerebellar-cortex-based motor learning.OBJECTIVE: To investigate the morphology and distribution of NPY -immunoreactive neurons in rat's cerebellar cortex, and discuss the relationship between NPY neurons and cerebellum motor learning and motor memory.DESIGN: A single-sample-study based on animal samples.SETTING: Anatomy Department, Pathophysiology Department and Morphology Center in Xinxiang Medical College.MATERIALS: From July to December 2001, the experiment was performed at the Morphology Center in Xinxiang Medical College. Ten Sprague-Dawley (SD) rats, clean grade, regardless of their gender and weighing 100-200 g,were selected.METHODS: After intraperitoneal injection anesthesia and ascending aorta infusion fixation, the cerebellum was taken out by craniosurgery. The cerebellum was immersed in the same fixative fluid for duration of 48 hours, and then was embedded in paraffin. The next step was to make continuous sagittal sections. NPY neurons were identified by SP immunohistochemical staining, using rats cerebral section as the positive control. In the negative control, the first antibody replaced by Bovine Calf Serum(BCS), and the second antibody replaced by 0.01 mol/L PBS. Sequentially the light-microscopic observation and micrography were recorded.MAIN OUTCOME MEASUREMENTS: The Morphology and distribution of NPY neurons in rat's cerebellar cortex were taken as main outcome measurements.RESULTS: NPY-immunoreactive neurons were distributed in

  1. Anti-Nogo-A antibody treatment does not prevent cell body shrinkage in the motor cortex in adult monkeys subjected to unilateral cervical cord lesion

    Directory of Open Access Journals (Sweden)

    Mir Anis

    2008-01-01

    Full Text Available Abstract Background After unilateral cervical cord lesion at the C7/C8 border interrupting the dorsolateral funiculus in adult monkeys, neutralization of Nogo-A using a specific monoclonal antibody promoted sprouting of corticospinal (CS axons rostral and caudal to the lesion and, in parallel, improved functional recovery. In monkeys lesioned but not treated with the anti-Nogo-A antibody, the CS neurons in the contralesional primary motor cortex (M1 survived to the axotomy, but their soma shrank. Because the anti-Nogo-A treatment induces regeneration and/or sprouting of CS axons, it may improve access to neurotrophic factors. The question therefore arises as to whether anti-Nogo-A treatment prevents the soma shrinkage observed in the contralesional M1? Results Using the marker SMI-32, a quantitative and qualitative anatomical assessment of the pyramidal neurons in the layer V (thus including the CS cells in M1 was performed and compared across three groups of animals: intact monkeys (n = 5; monkeys subjected to the cervical cord lesion and treated with a control antibody (n = 4; monkeys with the cervical lesion and treated with anti-Nogo-A antibody (n = 5. SMI-32 positive neurons on the side contralateral to the lesion were generally less well stained than those on the ipsilesional hemisphere, suggesting that they expressed less neurofilaments. Nevertheless, in all three groups of monkeys, the amount of SMI-32 positive neurons in both hemispheres was generally comparable, confirming the notion that most axotomized CS neurons survived. However, shrinkage of CS cell body area was observed in the contralesional hemisphere in the two groups of lesioned monkeys. The cell surface shrinkage was found to be of the same magnitude in the monkeys treated with the anti-Nogo-A antibody as in the control antibody treated monkeys. Conclusion The anti-Nogo-A antibody treatment did not preserve the axotomized CS cells from soma shrinkage, indicating that the

  2. Decoding of rat's primary motor cortex by partial least square%基于偏最小二乘的大鼠初级运动皮层解码

    Institute of Scientific and Technical Information of China (English)

    朱凡; 李悦; 蒋凯; 叶树明; 郑筱祥

    2013-01-01

    为了准确解析大鼠初级运动皮层神经元发放模式并预测相应的肢体动作,实验同时记录大鼠初级运动皮层神经元峰电位发放和大鼠前肢压力,利用K均值法和主成分分析法对神经元进行分类,采用偏最小二乘分析大鼠初级运动皮层神经元活动与前肢运动参数之间的关系,并对该解码结果与维纳滤波和卡尔曼滤波算法的解码结果进行比较.实验结果表明:神经元的发放活动在压杆前0.6s开始有增加的趋势,提示大鼠的初级运动皮层神经元分布式活动可用于大鼠前肢运动的解析和预测,且偏最小二乘解码得到的预测值与真实压杆值的相关系数在0.85以上,均高于维纳滤波和卡尔曼滤波的解码结果.%In order to analytizing neurons release pattern of the primary motor cortex of rats accurately and predicting corresponding body movement,the activities of the neurons ensemble spike activities in rat's primary motor cortex and the forelimb pressure were recorded simultaneously in the experiment.K-means and principal component analysis were used to classification of neurons,then the partial least squares was used to analyze the relations between the neurons activities of the primary motor cortex of the rat and the forelimb motion parameters,and the results were compared with Wiener filter and Kalman filter.The experimental results indicate that the activities of neurons ensembles began a trend of increase O.6 second before lever pressing,Which hints the neurons distributed activities of the primary motor cortex in rats can be used to analysis and prediction its forelimb movement and the correlation coefficient between the predicted value and real pressure value is more than 0.85 using the partial least squares,with a better decoding results than those using the Wiener filtering and Kalman filtering.

  3. Cat Scratch Disease

    Science.gov (United States)

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry ... infection does not make cats sick. However, the scratch or bite of an infected cat can cause ...

  4. Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    NARCIS (Netherlands)

    A.D. van Campen; F.X. Neubert; W.P.M. van den Wildenberg; K.R. Ridderinkhof; R.B. Mars

    2013-01-01

    The functional role of the right inferior frontal cortex (rIFC) in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this stud

  5. Cat's Claw

    Science.gov (United States)

    ... R S T U V W X Y Z Cat's Claw Share: On This Page Introduction What the ... More Information Key References © Steven Foster Common Names: cat’s claw, uña de gato Latin Name: Uncaria tomentosa, ...

  6. My Cat

    Institute of Scientific and Technical Information of China (English)

    王悦; 李成梅

    2002-01-01

    The name of my cat is Naty. This year he is one year old. He isvery fat, but he is very nice. He has a big round white head. His mouth and nose are small. His eyes are interesting. In the day,they are small and black,but at night they are big and blue.

  7. Chimera in a neuronal network model of the cat brain

    OpenAIRE

    Santos, M. S.; Szezech Jr., J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.

    2016-01-01

    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, so...

  8. 基于Cortex-M3内核MCU的BLDCM控制器研究%Research of Brushless DC Motor Controller Based on MCU of CortexTM-M3 Kernel

    Institute of Scientific and Technical Information of China (English)

    欧卫斌

    2011-01-01

    Cortex-M3内核32位高性能MCU设计一款通用性、控制性较好,性价比较高的BLDCM控制器.根据BLDCM的工作原理和MCU的良好性能进行了详细设计.实现了对BLDCM的转速、电流双闭环控制,通过实验测试了控制器的各项性能.该款基于32位MCU的控制器性能良好,结构紧凑,性价比高,具有较高实用价值.结合应用经验发现,API函数支持下Cortex-M3内核的MCU在硬件控制和软件编程方面较以往单片机等具有优势,基于API函数支持的MCU应用将是未来趋势.%A high generality, better controllable performance and high cost performance BLDCM controller with 32 bit high-performance MCU of Cortex?-M3 kernel was designed according to the working principles of BLDCM and the good performance of LM3S615. The speed and current double closed-loop control of BLDCM was realized after testing the performance of the controller. This controller based on the low power consumption 32 bit MCU has excellent performances, such as compact structure, high cost performance and high practical value. In combination with the application experience, it is found that ARM Cortex?-M3 Processor kernel MCU supported by API function is better than the common single chip microcomputer in the aspects of the hardware control and the software programming. The application of MCU supported by API function has a bright prospect.

  9. Functional differentiation of the premotor cortex: Behavioural and brain imaging studies in humans

    OpenAIRE

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also influence motor output through their direct interactions with both the spinal cord. Within the premotor cortex, the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and supplementary motor a...

  10. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  11. An evoked potential mapping of transcallosal projections in the cat

    Directory of Open Access Journals (Sweden)

    A. Cukiert

    1989-03-01

    Full Text Available In ten adult cats anesthetized with ketamine hydrochloride the neocortex was exposed and rectangular pulses (1msec, 0.5 Hz and variable intensity were applied to discrete points of one side and transcallosal evoked potentials were recorded from the other. The stimulation and recording positions were determined on a cartesian map of most of the exposable neocortical areas and the potentials were analysed as to their components, voltage and latency. Passive spread and electrotonic potentials and the effects of increasing frequency were also analysed. The results showed large transcallosal potentials in some areas and an increase of potentials in the caudorostral direction, attaining the highest values in anteromedial areas of the suprasylvian gyrus. Confirming anatomical studies, a few silent spots were found in the motor and somesthetic cortex and in restricted posterior regions of the visual cortex, where small or zero voltages occurred. While causing weak contralateral potentials, stimulation of some posterior sites provoked high voltage potentials in anterior regions of the side being stimulated and in the corresponding area of the opposite site. These posterior sites are. poorly interconnected by the corpus callosum. The L-shaped indirect connection described in this work may be involved in some types of epilepsy and may explain the effectiveness of partial callosotomy in their treatment.

  12. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  13. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    Science.gov (United States)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  14. Schroedinger's cat

    International Nuclear Information System (INIS)

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a 'matrix format' (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and 'Schroedinger's cat' symbolizes this broader perspective. (author)

  15. 共济失调患者手运动时脑激活区域的定量分析%Quantitative analysis of the hand motor cortex in ataxia patients using blood oxygen level dependent functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    元小冬; 王小洁; 王德; 赵丽君; 王守红

    2010-01-01

    Objective To study the characteristics of the hand motor cortex in ataxia patients during active and passive finger-to-thumb opposition movements using bold oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). Methods Ten right-handed healthy volunteers and 16 ataxia patients with motor cortex lesions were selected, and whole-brain BOLD-fMRI examinations were made while the subjects were performing the active and passive movements. Activated volume and intensity were recorded from the corresponding motor cortex and analyzed quantitatively. Meanwhile, the patients' coordination was evaluated using the international cooperative ataxia rating scale (ICARS). Results During passive movement of the ataxia patient's affected hands, the ipsilateral supplementary motor area (SMA) activated volume was larger than that during normal ipsilateral hand movement, and the activation intensity was also higher than that in the healthy controls. The ipsilateral cerebellum activated volume and intensity were significantly lower than those in the control group, and the frequency of appearance of the cerebellum was also less. The patients' activated volume and intensity in the ipsilateral cerebellum showed no correlation with ICARS scores. Conclusions When the ataxia patients' affected side cerebellum was dysfunctional, the ipsilateral SMA could compensate for the weak cerebellum function. The ICARS does not reflect cerebellum function.%目的 利用血氧水平依赖性功能性磁共振成像(BOLD-fMRI)技术,探讨共济失调患者在主动与被动复杂对指运动模式下关键脑功能区激活体积和强度的变化.方法 选取共济失调患者16例作为病例组,另选10名健康志愿者作为正常组.入选者均进行主动与被动复杂对指运动,在这两种运动模式下进行BOLD-fMRl检查,记录相应脑运动功能区的激活体积和强度并进行定量分析.采用共济失调量表(ICARS)对共济失调患者的

  16. Cat and Dog Bites

    Science.gov (United States)

    MENU Return to Web version Cat and Dog Bites Cat and Dog Bites How should I take care of a bite from a cat or a dog? Whether from a family pet or a neighborhood stray, cat and dog bites are common. Here are some things you ...

  17. Functional rearrangement of the primary and secondary motor cortex in patients with primary tumors of the central nervous system located in the region of the central sulcus depending on the histopathological type and the size of tumor: Examination by means of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    The aim of this study was to analyze the reorganization of the centers of the motor cortex in patients with primary neuroepithelial tumors of the central nervous system (CNS) located in the region of the central sulcus in relation to the histopathological type and the size of tumor, as determined by means of functional magnetic resonance imaging (fMRI). The fMRI was performed prior to the surgical treatment of patients with tumors located in the region of the central sulcus (WHO stage I and II, n=15; WHO stage III and IV, n=25). The analysis included a record of the activity in the areas of the primary motor cortex (M1) and the secondary motor cortex: the premotor cortex (PMA) and the accessory motor area (SMA). The results were correlated with the histopathological type of the tumor and its size expressed in cm3. The frequency of activation of the motor center was higher in the group of patients who had less aggressive tumors, such as low-grade glioma (LGG), as well as in tumors of lower volume, and this was true both for the hemisphere where the tumor was located and in the contralateral one. Mean values of t-statistics of activation intensity, mean numbers of activated clusters, and their ranges were lower in all analyzed motor areas of LGG tumors. The values of t-statistics and activation areas were higher in the case of small tumors located in ipsilateral centers, and in large tumors located in contralateral centers, aside from the SMA area where the values of t-statistics were equal for both groups. The contralateral SMA area was characterized by the highest stability of all examined centers of secondary motor cortex. No significant association (p>0.05) was observed between the absolute value of the mean registered activity (t-statistics) and the size of examined areas (number of clusters) when the groups were stratified with regards to the analyzed parameters. The presence of a neoplastic lesion, its histopathological type and finally its size modulate the

  18. Two-voxel spectroscopy with dynamic B0 shimming and flip angle adjustment at 7 T in the human motor cortex.

    Science.gov (United States)

    Lemke, Clark; Hess, Aaron; Clare, Stuart; Bachtiar, Velicia; Stagg, Charlotte; Jezzard, Peter; Emir, Uzay

    2015-07-01

    The aim of this study was to acquire high-quality in vivo (1) H spectra concurrently from two voxels at ultra-high field (7 T) without specialized hardware. To this end, an acquisition scheme was developed in which first-order shims and flip angles are dynamically updated to acquire spectra from both of the brain's motor cortices in an alternating fashion. To validate this acquisition scheme, separate, static, single-voxel acquisitions were also performed for comparison. Six subjects were examined using semi-LASER spectroscopy at 7 T. Barium titanate pads were used to increase the extent of the effective transmit field (B1 (+) ). Spectra were obtained from the hand area of both motor cortices for both acquisition schemes. LCModel was used to determine neurochemical profiles in order to examine variations between acquisition schemes and volumes of interest. The dynamic two-voxel acquisition protocol produced water linewidths (full width at half-maximum between 11.6 and 12.8 Hz) and signal-to-noise ratios similar to those from static single-voxel measurements. The concentrations of 13 individual and 3 combined metabolites with Cramér-Rao lower bounds below 30% were reliably detected for both acquisition schemes, and agreed well with previous postmortem assay and spectroscopy studies. The results show that high spectral quality from two voxels can be acquired concurrently without specialized hardware. This practical technique can be applied to many neuroscience applications.

  19. Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer.

    Science.gov (United States)

    Yaguchi, Masae; Ohashi, Yohei; Tsubota, Tadashi; Sato, Ayana; Koyano, Kenji W; Wang, Ningqun; Miyashita, Yasushi

    2013-12-01

    Lentiviral vectors deliver transgenes efficiently to a wide range of neuronal cell types in the mammalian central nervous system. To drive gene expression, internal promoters are essential; however, the in vivo properties of promoters, such as their cell type specificity and gene expression activity, are not well known, especially in the nonhuman primate brain. Here, the properties of five ubiquitous promoters (murine stem cell virus [MSCV], cytomegalovirus [CMV], CMV early enhancer/chicken β-actin [CAG], human elongation factor-1α [EF-1α], and Rous sarcoma virus [RSV]) and two cell type-specific promoters (rat synapsin I and mouse α-calcium/calmodulin-dependent protein kinase II [CaMKIIα]) in rat and monkey motor cortices in vivo were characterized. Vesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors expressing enhanced green fluorescent protein (EGFP) under the control of the various promoters were prepared and injected into rat and monkey motor cortices. Immunohistochemical analysis revealed that all of the VSV-G-pseudotyped lentiviral vectors had strong endogenous neuronal tropisms in rat and monkey brains. Among the seven promoters, the CMV promoter showed modest expression in glial cells (9.4%) of the rat brain, whereas the five ubiquitous promoters (MSCV, CMV, CAG, EF-1α, and RSV) showed expression in glial cells (7.0-14.7%) in the monkey brain. Cell type-specific synapsin I and CaMKIIα promoters showed excitatory neuron-specific expression in the monkey brain (synapsin I, 99.7%; CaMKIIα, 100.0%), but their specificities for excitatory neurons were significantly lower in the rat brain (synapsin I, 94.6%; CaMKIIα, 93.7%). These findings could be useful in basic and clinical neuroscience research for the design of vectors that efficiently deliver and express transgenes into rat and monkey brains.

  20. Relationship between the velocity of illusory hand movement and strength of MEG signals in human primary motor cortex and left angular gyrus.

    Science.gov (United States)

    Casini, Laurence; Roll, Jean-Pierre; Romaiguère, Patricia

    2008-03-01

    We studied the relationship between the velocity of movement illusion and the activity level of primary motor area (M1) and of the left angular gyrus (AG) in humans. To induce illusory movement perception, we applied co-vibration at different frequencies on tendons of antagonistic muscle groups. Since it is well established that the velocity of illusory movement is related to the difference in vibration frequency applied to two antagonistic muscles, we compared magnetoencephalography (MEG) signals recorded in two conditions of co-vibration: in the "fast illusion" condition a frequency difference of 80 Hz was applied on the tendons of the right wrist extensor and flexor muscle groups, whereas in the "slow illusion" condition a frequency difference of 40 Hz was applied on the same muscle groups. The dipole strength, reflecting the activity level of structures, was measured over M1 and the left AG in two different time-periods: 0-400 and 400-800 ms in each condition. Our results showed that the activity level of the AG was similar in both conditions whatever the time-period, whereas the activity level of M1 was higher in the "fast illusion" condition compared to the "slow illusion" condition from 400 ms after the vibration onset only. The data suggest that the two structures differently contributed to the perception of illusory movements. Our hypothesis is that M1 would be involved in the coding of cinematic parameters of the illusory movement but not the AG. PMID:18317743

  1. Cat Scratch Disease

    Science.gov (United States)

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry the infection ... symptoms of CSD, call your doctor. Centers for Disease Control and Prevention

  2. Predictive value of magnetic resonance diffusion tensor imaging in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs%DTI对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的预测价值

    Institute of Scientific and Technical Information of China (English)

    赵琳; 王守森; 黄银兴; 周晓平

    2012-01-01

    Objective To discuss the predictive value of magnetic resonance diffusion tensor imaging (MR-DTI) in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs. Methods Twenty patients with tumors in the motor areas of cerebral cortex,admitted to our hospital from March 2009 to January 2011,were recruited in our study; all these patients underwent MR-DTI and motor function of the hemiplegic limbs was evaluated with Brunnstrom scale before and after the surgery.According to the results of DTI test,the injured corticospinal tract (CST) was divided into 4 grades:type Ⅰ (CST integrity),type Ⅱ (CST integrity with mild compression),type Ⅲ (CST partial disruption) and type Ⅳ (CST mostly/completely disruption).The correlations between the CST damaged level and motor function of the hemiplegic limbs before and after surgery were analyzed. Results FA values ofipsilateral brain parenchyma (0.387±0.012) were statistically lower than those of the contralateral normal brain tissue (0.498±0.015,P<0.05).No significant differences on CST damaged level and motor function of the hemiplegic limbs were noted between before and after surgery (P>0.05).CST damaged level and motor function of the hemiplegic limbs had a negative correlation (P<0.05).Motor function of the hemiplegic limbs and CST damaged level before the surgery and 6 months after the surgery had a significantly negative correlation (before the surgery:r=-0.901,P=0.000; after the surgery:r=-0.912,P=0.000). Conclusion DTI can display damaged level of the tumors in the motor area of cerebral cortex and reflect the motor function of the hemiplegic limbs after the surgery.%目的 探讨磁共振(MRI)弥散张量成像(DTI)对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的评估价值. 方法 南京军区福州总医院神经外科自2009年3月至2011年1月共收治脑皮质运动区肿瘤患者20例,手术前后均行DTI检查并应

  3. Getting a CAT Scan

    Medline Plus

    Full Text Available ... Crushes What's a Booger? Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that ...

  4. Getting a CAT Scan

    Medline Plus

    Full Text Available ... Here's Help White House Lunch Recipes Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  5. Discospondylitis in a cat

    International Nuclear Information System (INIS)

    The incidence and causative agents of discospondylitis in cats are unknown. This report describes a cat with radiologic changes consistent with discospondylitis and concurrent urinary tract infection. As in dogs, discospondylitis should be the primary rule out for vertebral end plate lysis in cats

  6. Getting a CAT Scan

    Medline Plus

    Full Text Available ... Snowboarding, Skating Crushes What's a Booger? Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  7. Pulmonary thromboembolism in cats.

    Science.gov (United States)

    Schermerhorn, Thomas; Pembleton-Corbett, Julie R; Kornreich, Bruce

    2004-01-01

    Pulmonary thromboembolism (PTE) is rarely diagnosed in cats, and the clinical features of the disease are not well known. PTE was diagnosed at postmortem examination in 17 cats, a prevalence of 0.06% over a 24-year period. The age of affected cats ranged from 10 months to 18 years, although young (10 years) cats were more commonly affected than were middle-aged cats. Males and females were equally affected. The majority of cats with PTE (n = 16) had concurrent disease, which was often severe. The most common diseases identified in association with PTE were neoplasia, anemia of unidentified cause, and pancreatitis. Cats with glomerulonephritis, encephalitis, pneumonia, heart disease, and hepatic lipidosis were also represented in this study. Most cats with PTE demonstrated dyspnea and respiratory distress before death or euthanasia, but PTE was not recognized ante mortem in any cat studied. In conclusion, PTE can affect cats of any age and is associated with a variety of systemic and inflammatory disorders. It is recommended that the same clinical criteria used to increase the suspicion of PTE in dogs should also be applied to cats. PMID:15320593

  8. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  9. An olfactory input to the hippocampus of the cat: Field potential analysis

    NARCIS (Netherlands)

    Habets, A.M.M.C.; Lopes Da Silva, F.H.; Mollevanger, W.J.

    1980-01-01

    Hippocampal responses to electrical stimulation of the prepyriform cortex in the cat were studied both in acute experiments under halothane anesthesia and in awake cats with chronically indwelling electrodes. Analysis of field potentials and unit activity indicated the extent to which different hipp

  10. A tortoiseshell male cat

    DEFF Research Database (Denmark)

    Pedersen, A. S.; Berg, Lise Charlotte; Almstrup, Kristian;

    2014-01-01

    Tortoiseshell coat color is normally restricted to female cats due to X-linkage of the gene that encodes the orange coat color. Tortoiseshell male cats do, however, occur at a low frequency among tortoiseshell cats because of chromosome aberrations similar to the Klinefelter syndrome in man...... tissue from a tortoiseshell male cat referred to us. Chromosome analysis using RBA-banding consistently revealed a 39,XXY karyotype. Histological examinations of testis biopsies from this cat showed degeneration of the tubules, hyperplasia of the interstitial tissue, and complete loss of germ cells....... Immunostaining using anti-vimentin and anti-VASA (DDX4) showed that only Sertoli cells and no germ cells were observed in the testicular tubules. As no sign of spermatogenesis was detected, we conclude that this is a classic case of a sterile, male tortoiseshell cat with a 39,XXY chromosome complement. © 2013 S...

  11. That Fat Cat

    Science.gov (United States)

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  12. Cat Scratch Colon

    Directory of Open Access Journals (Sweden)

    M. Lourdes Ruiz-Rebollo

    2011-01-01

    Full Text Available Over the past few years, we have read several publications regarding the term “cat scratch colon.” This neologism was developed to define some bright red linear markings seen in the colonic mucosa that resemble scratches made by a cat. We would like to communicate a recent case attended at our institution.

  13. Hyperadrenocorticism in a cat.

    Science.gov (United States)

    Zerbe, C A; Nachreiner, R F; Dunstan, R W; Dalley, J B

    1987-03-01

    A diabetic cat with hyperadrenocorticism had polydipsia, polyuria, ventral abdominal alopecia, thin dry skin, and a pendulous abdomen. Results of laboratory testing indicated persistent resting hypercortisolemia, hyperresponsiveness of the adrenal glands (increased cortisol concentration) to ACTH gel, and no suppression of cortisol concentrations after administration of dexamethasone at 0.01 or 1.0 mg/kg of body weight. Necropsy revealed a pituitary gland tumor, bilateral adrenal hyperplasia, hepatic neoplasia, and demodicosis. Adrenal gland function was concurrently assessed in 2 cats with diabetes mellitus. One cat had resting hypercortisolemia, and both had hyperresponsiveness to ACTH gel (increased cortisol concentration) at one hour. After administration of dexamethasone (0.01 and 1.0 mg/kg), the diabetic cats appeared to have normal suppression of cortisol concentrations. The effects of mitotane were investigated in 4 clinically normal cats. Adrenocortical suppression of cortisol production occurred in 2 of 4 cats after dosages of 25, 37, and 50 mg/kg. Three cats remained clinically normal throughout the study. One cat experienced vomiting, diarrhea, and anorexia.

  14. Getting a CAT Scan

    Medline Plus

    Full Text Available ... Dictionary of Medical Words En Español What Other Kids Are Reading Movie: Digestive System Winter Sports: Sledding, ... Booger? Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A ...

  15. Getting a CAT Scan

    Medline Plus

    Full Text Available ... Skiing, Snowboarding, Skating Crushes What's a Booger? Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de ...

  16. Obesity in show cats.

    Science.gov (United States)

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. PMID:24612018

  17. Functional reorganization of sensorimotor cortex in early Parkinson disease.

    OpenAIRE

    Kojovic, M.; Bologna, M; Kassavetis, P.; Murase, N.; Palomar, F. J.; Berardelli, A; Rothwell, J C; Edwards, M. J.; Bhatia, K P

    2012-01-01

    OBJECTIVE: Compensatory reorganization of the nigrostriatal system is thought to delay the onset of symptoms in early Parkinson disease (PD). Here we sought evidence that compensation may be a part of a more widespread functional reorganization in sensorimotor networks, including primary motor cortex. METHODS: Several neurophysiologic measures known to be abnormal in the motor cortex (M1) of patients with advanced PD were tested on the more and less affected side of 16 newly diagnosed and dru...

  18. CAT questions and answers

    International Nuclear Information System (INIS)

    This document, prepared in February 1993, addresses the most common questions asked by APS Collaborative Access Teams (CATs). The answers represent the best judgment on the part of the APS at this time. In some cases, details are provided in separate documents to be supplied by the APS. Some of the answers are brief because details are not yet available. The questions are separated into five categories representing different aspects of CAT interactions with the APS: (1) Memorandum of Understanding (MOU), (2) CAT Beamline Review and Construction, (3) CAT Beamline Safety, (4) CAT Beamline Operations, and (5) Miscellaneous. The APS plans to generate similar documents as needed to both address new questions and clarify answers to present questions

  19. State of cat genomics.

    Science.gov (United States)

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  20. Modified areal cartography in auditory cortex following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2014-07-01

    Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography.

  1. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen;

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude of t...

  2. Population Receptive Field Dynamics in Human Visual Cortex

    NARCIS (Netherlands)

    Haak, Koen V.; Cornelissen, Frans W.; Morland, Antony B.

    2012-01-01

    Seminal work in the early nineties revealed that the visual receptive field of neurons in cat primary visual cortex can change in location and size when artificial scotomas are applied. Recent work now suggests that these single neuron receptive field dynamics also pertain to the neuronal population

  3. Orientation-tuned surround suppression in mouse visual cortex

    NARCIS (Netherlands)

    Self, Matthew W; Lorteije, Jeannette A M; Vangeneugden, Joris; van Beest, Enny H; Grigore, Mihaela E; Levelt, Christiaan N; Heimel, J.A.; Roelfsema, Pieter R

    2014-01-01

    The firing rates of neurons in primary visual cortex (V1) are suppressed by large stimuli, an effect known as surround suppression. In cats and monkeys, the strength of suppression is sensitive to orientation; responses to regions containing uniform orientations are more suppressed than those contai

  4. 脑磁图定位皮质运动区与术中皮质电刺激运动诱发电位的对照研究%Control study of magnetoencephalography and intraoperative cortical electrical stimulation based motor evoked potential monitoring for mapping motor cortex

    Institute of Scientific and Technical Information of China (English)

    杨坤; 张玉海; 杨露; 张岩松; 杨纶先; 邹元杰; 张锐; 刘宏毅

    2014-01-01

    目的评价脑磁图(MEG)术前定位初级运动皮质(M1)的准确性。方法选取顺序入院的中央区胶质瘤26例,术前均运用MEG定位皮质运动区,与MRI导航影像融合,在神经导航下定位MEG激活区。术中对MEG成功定位的病例行直接皮质电刺激(DCES),比较两种技术的吻合度。结果因病人不能配合,MEG定位失败2例,余24例均定位成功,每例激活区1~5个。DCES成功监测24例,所有选择的DCES靶点共41个,阳性靶点24个,1个/例。以所有的41个靶点分析,MEG定位M1区与DCES定位的吻合率为58.5%;而以第1组病灶侧M1区和第2组病灶侧中央区的MEG激活区中27个靶点分析,两者吻合率为88.9%;仅以第1组M1区的MEG激活区中17个靶点分析,两者吻合率为100%。结论 MEG可以灵敏而可靠地定位M1区,可用于中央区胶质瘤病人术前手术规划。%Objective To evaluate the accuracy of preoperative primary motor cortex (M1) mapping with magnetoencephalography (MEG). Methods Twenty-six consecutive patients with glioma in the central region were selected. Motor cortex was located by MEG preoperatively, and its results were overlaid on the MRI, then the activated regions located under neuronavigation. Intraoperative direct cortical electrical stimulation (DCES) was performed in patients located successfully by MEG, and the coincidence rate was calculated between MEG and DCES techniques. Results MEG mapping failed in 2 patients because of the problems of patients, and succeeded in other 24 patients with 1 to 5 activated regions in every patient. DCES was performed in 24 patients with 41 targets, including 24 positive targets, one target in every patient. For the analysis of all the 41 targets, the coincidence rate was 58.5%in mapping M1 between MEG and DCES. For the analysis of 27 targets in MEG activated regions of M1 in group 1 and central region in group 2 at the lesion side, the coincidence rate of the two techniques was 88.9%. For the

  5. Apraxia, pantomime and the parietal cortex

    Directory of Open Access Journals (Sweden)

    E. Niessen

    2014-01-01

    In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies and elderly neurological patients (typically included in structural lesion studies may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  6. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie;

    2010-01-01

    In 19 healthy volunteers, we used transcranial magnetic stimulation (TMS) to probe the excitability in pathways linking the left dorsal premotor cortex and right primary motor cortex and those linking the left and right motor cortex during the response delay and the reaction time period while sub...

  7. IndexCat

    Data.gov (United States)

    U.S. Department of Health & Human Services — IndexCat provides access to the digitized version of the printed Index-Catalogue of the Library of the Surgeon General's Office; eTK for medieval Latin texts; and...

  8. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  9. Resolving Schrodinger's cat

    OpenAIRE

    Hobson, Art

    2016-01-01

    Schrodinger's famous cat has long been misunderstood. According to quantum theory and experiments with entangled systems, an entangled state such as the Schrodinger's cat state is neither a superposition of states of either subsystem nor a superposition of compound states of the composite system, but rather a nonlocal superposition of correlations between pairs of states of the two subsystems. The entangled post-measurement state that results from an ideal measurement is not paradoxical, but ...

  10. Haemobartonellosis in Van Cats

    OpenAIRE

    AKKAN, Hasan Altan; Karaca, Mehmet; TÜTÜNCÜ, Mehmet

    2005-01-01

    The present study was conducted to determine prevalence of Haemobartonella felis in Van cats. 121 Van cats (82 female, 39 male, aged 1-9 years) were the materials of the study. To determine biochemical and haematological parameters, 2 ml blood with and without anticoagulant were taken according to technique from vena cephalica antebrachii. H. felis was detected in blood smears preparations of 18 (14.88%) by Papenheim staining. Among biochemical parameters aspartate amino transferase (AST), al...

  11. Cardiac Biomarkers in Hyperthyroid Cats

    OpenAIRE

    Sangster, Jodi Kirsten

    2013-01-01

    Background: Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT-proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been as extensively investigated in hyperthyroidism.Hypothesis: Plasma NT-proBNP and cTNI concentrations are higher in cats with primary cardiac disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats.Animals: Twenty-three hyperthyr...

  12. Cardiac Biomarkers in Hyperthyroid Cats

    OpenAIRE

    Sangster, J.K.; Panciera, D L; Abbott, J.A.; Zimmerman, K.C.; Lantis, A.C.

    2013-01-01

    Background Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT‐proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been extensively investigated in hyperthyroidism. Hypothesis Plasma NT‐proBNP and cTNI concentrations are higher in cats with primary myocardial disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats. Animals Twenty‐three hyperthyro...

  13. Cats protecting birds revisited.

    Science.gov (United States)

    Fan, Meng; Kuang, Yang; Feng, Zhilan

    2005-09-01

    In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282-292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator's functional responses are derived based on the classical Holling's time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems. PMID:15998496

  14. The Feline Mystique: Dispelling the Myth of the Independent Cat.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Describes learning activities about cats for primary and intermediate grades. Primary grade activity subjects include cat behavior, needs, breeds, storybook cats, and celestial cats. Intermediate grade activity subjects include cat history, care, language, literary cats, and cats in art. (BC)

  15. ServCat Sensitivity Guidelines

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This guide covers sensitivity in ServCat. This document provides technical guidance on how sensitivity fields work in ServCat, and provides suggestions on what...

  16. Reference values and clinical application of magnetic peripheral nerve stimulation in cats

    NARCIS (Netherlands)

    Van Soens, Iris; Struys, Michel M. R. F.; Bhatti, Sofie F. M.; Van Ham, Luc M. L.

    2012-01-01

    Magnetic stimulation of radial (RN) and sciatic (SN) nerves was performed bilaterally in 40 healthy cats. Reference values for onset latency and peak-to-peak amplitude of magnetic motor evoked potentials (MMEPs) were obtained and compared with values of electric motor evoked potentials (EMEPs) in 10

  17. Motor cortical plasticity induced by motor learning through mental practice.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2015-04-01

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1 excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after physical practice and motor-imagery practice, M1 excitability was evaluated by measuring the input-output (IO curve of motor evoked potentials. M1 long-term potentiation (LTP and long-term depression (LTD-like plasticity was assessed with paired-associative stimulation (PAS of the median nerve and motor cortex using an interstimulus interval of 25 ms (PAS25 or 10 ms (PAS10, respectively. We found that even if after both practice sessions subjects significantly improved their movement speed, M1 excitability and plasticity were differentially influenced by the two practice sessions. First, we observed an increase in the slope of IO curve after physical but not after motor-imagery practice. Second, there was a reversal of the PAS25 effect from LTP-like plasticity to LTD-like plasticity following physical and motor-imagery practice. Third, LTD-like plasticity (PAS10 protocol increased after physical practice, whilst it was occluded after motor-imagery practice. In conclusion, we demonstrated that motor-imagery practice lead to the development of neuroplasticity, as it affected the PAS25- and PAS10- induced plasticity in M1. These results, expanding the current knowledge on how motor-imagery training shapes M1 plasticity, might have a potential impact in

  18. Getting a CAT Scan

    Medline Plus

    Full Text Available ... More Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School ... Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands ...

  19. Getting a CAT Scan

    Medline Plus

    Full Text Available ... More Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Movie: Digestive System ... Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands ...

  20. Chemodectoma in a cat

    International Nuclear Information System (INIS)

    A 10-year-old, spayed female, domestic shorthair cat was presented for evaluation of a thoracic mass. Radiographs demonstrated a 4 by 5-cm mass dorsal to the heart. Cytology of specimens obtained by ultrasound-guided needle aspiration was compatible with a neuroendocrine tumor. Scintigraphy, thoracic exploratory, and histology were used to identify the mass as an aortic body chemodectoma

  1. Coxofemoral luxations in cats

    International Nuclear Information System (INIS)

    In a retrospective study, 79 untreated luxations of the coxofemoral joint in cats were recorded over a 12-year period. Twenty-nine of these cases were available for follow-up, of which 13 were re-examined clinically and radiologically. It was found that the maximum incidence of the injury occurred from one to three years of age. Follow-up radiographs showed that the cats had developed nearthroses of various degrees located dorsally on the ilium. The degree of nearthrosis formation was not consistently correlated with the length of the observation time. Radiological signs of decreased bone density of the proximal femur may be caused by reduced weightbearing related to changes in biomechanical function and altered blood supply in the luxated limb. Almost two-thirds of the re-examined animals presented some kind of locomotor dysfunction on clinical examination. Limb function improved with time. The best clinical results appeared to be in cats that were immature at the time of injury and developed nearthrosis similar to a normal coxofemoral joint. All the cats available to this study showed acceptable functional results and had a normal level of activity according to the owners

  2. Oligopsonistic Cats and Dogs

    OpenAIRE

    Dewit, Dr. Gerda; Leahy, Dr. Dermot

    2005-01-01

    We study the strategic investment behaviour of oligopsonistic rivals in the labour market. Under wage competition, firms play "puppy dog" with productivityaugmenting investment and "fat cat" with supply-enhancing investment. Under employment competition, investing strategically always involves playing "top dog".

  3. The Fishing Cat

    Institute of Scientific and Technical Information of China (English)

    孙雅飞; 乐伟国

    2008-01-01

    @@ 一、故事内容 A cat goes fishing every day. He wants to eat fish, but he can't catch any fish. One day, he goes to the river as usual. Suddenly, a fish comes out. He catches the fish and putsthe fish in the basket. He's very happy, but he forgest to put the lid on the basket.

  4. Membranous nephropathy in sibling cats.

    Science.gov (United States)

    Nash, A S; Wright, N G

    1983-08-20

    Membranous nephropathy was diagnosed in two sibling cats from the same household. Both cases presented with the nephrotic syndrome but 33 months elapsed before the second cat became ill, by which time the first cat had been in full clinical remission for over a year. PMID:6623883

  5. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study

    Science.gov (United States)

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Helaly, Ahmed N

    2014-01-01

    This study was designed to demonstrate the histopathological and biochemical changes in rat cerebral cortex and testicles due to chronic usage of tramadol and the effect of withdrawal. Thirty adult male rats weighing 180-200 gm were classified into three groups; group I (control group) group II (10 rats received 50 mg/kg/day of tramadol intraperitoneally for 4 weeks) and group III (10 rats received the same dose as group II then kept 4 weeks later to study the effect of withdrawal). Histological and immunohistochemical examination of cerebral cortex and testicular specimens for Bax (apoptotic marker) were carried out. Testicular specimens were examined by electron microscopy. RT-PCR after RNA extraction from both specimens was done for the genes of some antioxidant enzymes .Also, malondialdehyde (MDA) was measured colourimetrically in tissues homogenizate. The results of this study demonstrated histological changes in testicular and brain tissues in group II compared to group I with increased apoptotic index proved by increased Bax expression. Moreover in this group increased MDA level with decreased gene expression of the antioxidant enzymes revealed oxidative stress. Group III showed signs of improvement but not returned completely normal. It could be concluded that administration of tramadol have histological abnormalities on both cerebral cortex and testicular tissues associated with oxidative stress in these organs. Also, there is increased apoptosis in both organs which regresses with withdrawal. These findings may provide a possible explanation for delayed fertility and psychological changes associated with tramadol abuse. PMID:25550769

  6. The insular cortex: a comparative perspective.

    Science.gov (United States)

    Butti, Camilla; Hof, Patrick R

    2010-06-01

    The human insular cortex is involved in a variety of viscerosensory, visceromotor, and interoceptive functions, and plays a role in complex processes such as emotions, music, and language. Across mammals, the insula has considerable morphologic variability. We review the structure and connectivity of the insula in laboratory animals (mouse, domestic cat, macaque monkey), and we present original data on the morphology and cytoarchitecture of insular cortex in less common species including a large carnivore (the Atlantic walrus, Odobenus rosmarus), two artiodactyls (the pigmy hippopotamus, Hexaprotodon liberiensis, and the Western bongo, Tragelaphus eurycerus), two cetaceans (the beluga whale, Delphinapterus leucas, and the minke whale, Balaenoptera acutorostrata), and a sirenian (the Florida manatee, Trichechus manatus latirostris). The insula shows substantial variability in shape, extent, and gyral and sulcal patterns, as well as differences in laminar organization, cellular specialization, and structural association with the claustrum. Our observations reveal that the insular cortex is extremely variable among mammals. These differences could be related to the role exerted by specific and selective pressures on cortical structure during evolution. We conclude that it is not possible to identify a general model of organization for the mammalian insular cortex. PMID:20512368

  7. The Cat nRules

    CERN Document Server

    Mould, R A

    2004-01-01

    The nRules that are developed in another paper are applied to two versions of the Schrodinger cat experiment. In version I the initially conscious cat is made unconscious by a mechanism that is initiated by a radioactive decay. In version II the initially unconscious cat is awakened by a mechanism that is initiated by a radioactive decay. In both cases an observer is permitted to check the statues of the cat at any time during the experiment. In all cases the nRules correctly and unambiguously predict the conscious experience of the cat and the observer. Keywords: brain states of observer, stochastic choice, state reduction, wave collapse.

  8. Prostatic carcinoma in two cats

    International Nuclear Information System (INIS)

    Clinical, radiological and pathological features of two cats with prostatic carcinoma are reported. In both cats the presenting history included signs of lower urinary tract disease with haematuria and dysuria. Prostatomegaly was visible radiographically in one cat; an irregular intraprostatic urethra was seen on retrograde contrast urethrography in both cats. In one of the cats, neoplasia was suspected on the basis of a transurethral catheter biopsy. Following a poor response to palliative treatment in both cases, euthanasia was performed with histological confirmation of the diagnosis

  9. Genetic testing in domestic cats.

    Science.gov (United States)

    Lyons, Leslie A

    2012-12-01

    Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat's appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's genome.

  10. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  11. 大脑半球切除术后患者上肢运动功能定位及神经功能重塑性研究%Upper limbs motor maps in cortex and plasticity after the anatomical hemispherectomy

    Institute of Scientific and Technical Information of China (English)

    刘源; 曲金荣; 李少武; 徐宇伦

    2009-01-01

    Objective To locate motor functional area of patients who underwent modified anatomical hemisphereetomy in order to analyze the plasticity of upper limbs motor. Methods From July to December 2007 the patients who underwent modified anatomical hemispherectomy were performed BOLD sequences,to locate functional cortical areas in their residual brain. Results Six patients had performed examination of BOLl) sequences by 3.0-T MRI. Five of them obtained cuntralateral upper limb motor areas in their residual brain ,and 3 of them obtained ipsilateral and contralateral upper limb motor area map in cortex. The ipsilateral upper limb motor areas in the M1, SMA and posterior parietal cortex. Conclusions The patients who underwent modified anatomical hemispherectomy is an excellent model to investigate mechanism of plasticity in the developing brain. Functional magnetic resonance (fMRI) providing fine spatial detail of brain responses, would describle the motor functional area of cortical maps. These patients exist ipsilater motor areas in their residual monohemisphere. The study indicates that there maybe somewhat extent of correlation between the surgerical procedure and the outcome of neuroplasticity.%目的 对改良式大脑半球切除术后患者进行肢体运动在同侧大脑半球的功能定位及其神经功能重塑的研究.方法 2007年7月至12月以改良式解剖性大脑半球切除术后患者为研究对象,使用3.0 T磁共振仪行大脑运动功能磁共振(fMRI)检测.受检者分别行双侧上肢屈肘运动,使用BOLD序列,检测双侧上肢运动在健侧大脑半球的皮质投射区.结果 6例行改良式解剖性大脑半球切除术后患者有5例检测出对侧肢体运动fMRI代表区,其中3例得到双侧上肢在健侧大腑皮质的运动代表区.同侧上肢运动定位区出现在第一运动区、辅助运动区和顶后小叶皮质.结论 在人类一侧大脑半球切除后,健侧大脑半球存在支配同侧肢体运动的功

  12. The Cheshire Cat revisited

    CERN Document Server

    Vento, V

    1998-01-01

    The concept of effective field theory leads in a natural way to a construction principle for phenomenological sensible models known under the name of the Cheshire Cat Principle. We review its formulation in the chiral bag scenario and discuss its realization for the flavor singlet axial charge. Quantum effects inside the chiral bag induce a color anomaly which requires a compensating surface term to prevent breakdown of color gauge invariance. The presence of this surface term allows one to derive in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component formula for the flavor-singlet axial charge of the proton. We show that one can obtain a striking Cheshire-Cat phenomenon with a negligibly small singlet axial charge.

  13. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation.

    Science.gov (United States)

    Tupak, Sara V; Dresler, Thomas; Badewien, Meike; Hahn, Tim; Ernst, Lena H; Herrmann, Martin J; Deckert, Jürgen; Ehlis, Ann-Christine; Fallgatter, Andreas J

    2013-01-01

    Recent studies highlighted the great potential of newly established theta burst stimulation (TBS) protocols for non-invasive human brain stimulation studies using transcranial magnetic stimulation (TMS). While intermittent TBS over the primary motor cortex was found to potentiate motor evoked potentials, continuous TBS led to profound attenuations. Although numerous studies investigated the impact of TBS on motor cortex function, yet, only few imaging studies focused on its effects in other brain areas. Particularly for the prefrontal cortex, it is unclear whether TBS has similar effects compared to application over motor areas. In the current study continuous TBS was applied to either the left or right dorsolateral prefrontal cortex in a sample of healthy subjects. Changes in prefrontal oxygenation were measured during an emotional Stroop task by means of functional multi-channel near-infrared spectroscopy (fNIRS) before and after stimulation. Results showed bilaterally decreased prefrontal oxygenation following inhibitory stimulation of the left prefrontal cortex but no behavioral effect. No such alterations were observed following right-hemispheric or sham stimulation. The results of the current study are in line with earlier findings and additionally demonstrate that also prefrontal oxygenation can be impaired by continuous TBS.

  14. The cat is out of the bag

    KAUST Repository

    Ananthanarayanan, Rajagopal

    2009-01-01

    In the quest for cognitive computing, we have built a massively parallel cortical simulator, C2, that incorporates a number of innovations in computation, memory, and communication. Using C2 on LLNL\\'s Dawn Blue Gene/P supercomputer with 147, 456 CPUs and 144 TB of main memory, we report two cortical simulations - at unprecedented scale - that effectively saturate the entire memory capacity and refresh it at least every simulated second. The first simulation consists of 1.6 billion neurons and 8.87 trillion synapses with experimentally-measured gray matter thalamocortical connectivity. The second simulation has 900 million neurons and 9 trillion synapses with probabilistic connectivity. We demonstrate nearly perfect weak scaling and attractive strong scaling. The simulations, which incorporate phenomenological spiking neurons, individual learning synapses, axonal delays, and dynamic synaptic channels, exceed the scale of the cat cortex, marking the dawn of a new era in the scale of cortical simulations. Copyright 2009 ACM.

  15. The topology of connections between rat prefrontal, motor and sensory cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2014-09-01

    Full Text Available The connections of prefrontal cortex (PFC were investigated in the rat brain to determine the order and location of input and output connections to motor and somatosensory cortex. Retrograde (100nl Fluoro-Gold and anterograde (100nl Biotinylated Dextran Amines; Fluorescein and Texas Red neuronanatomical tracers were injected into the subdivisions of the prefrontal cortex (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital and their projections studied. We found clear evidence for organised input projections from the motor and somatosensory cortices to the prefrontal cortex, with distinct areas of motor and cingulate cortex projecting in an ordered arrangement to the subdivisions of prefrontal cortex. As injection location of retrograde tracer was moved from medial to lateral in PFC, we observed an ordered arrangement of projections occurring in sensory-motor cortex. There was a significant effect of retrograde injection location on the position of labelled cells occurring in sensory-motor cortex (dorsoventral, anterior-posterior and mediolateral axes p<.001. The arrangement of output projections from prefrontal cortex also displayed a significant ordered projection to sensory-motor cortex (dorsoventral p<.001, anterior-posterior p=.002 and mediolateral axes p<.001. Statistical analysis also showed that the locations of input and output labels vary with respect to one another (in the dorsal-ventral and medial-lateral axes, p<.001. Taken together, the findings show that regions of prefrontal cortex display an ordered arrangement of connections with sensory-motor cortex, with clear laminar organisation of input connections. These results also show that input and output connections to prefrontal cortex are not located in exactly the same sites and reveal a circuit between sensory-motor and prefrontal cortex.

  16. Orientation-tuned surround suppression in mouse visual cortex

    OpenAIRE

    Self, Matthew W.; Lorteije, Jeannette A. M.; Vangeneugden, Joris; van Beest, Enny H; Grigore, Mihaela E; Levelt, Christiaan N.; Heimel, J.A.; Roelfsema, Pieter R.

    2014-01-01

    The firing rates of neurons in primary visual cortex (V1) are suppressed by large stimuli, an effect known as surround suppression. In cats and monkeys, the strength of suppression is sensitive to orientation; responses to regions containing uniform orientations are more suppressed than those containing orientation contrast. This effect is thought to be important for scene segmentation, but the underlying neural mechanisms are poorly understood. We asked whether it is possible to study these ...

  17. Hypereosinophilic syndrome in two cats.

    Science.gov (United States)

    Takeuchi, Yoshinori; Matsuura, Shinobu; Fujino, Yasuhito; Nakajima, Mayumi; Takahashi, Masashi; Nakashima, Ko; Sakai, Yusuke; Uetsuka, Koji; Ohno, Koichi; Nakayama, Hiroyuki; Tsujimoto, Hajime

    2008-10-01

    Two cats showing chronic vomiting, diarrhea and weight loss were found to have leukocytosis with marked eosinophilia. Both cats were diagnosed with hypereosinophilic syndrome by the findings of increased eosinophils and their precursors in the bone marrow, eosinophilic infiltration into multiple organs, and exclusion of other causes for eosinophilia. Although cytoreductive chemotherapy with hydroxycarbamide and prednisolone was performed, these two cats died 48 days and 91 days after the initial presentation. PMID:18981665

  18. The Cat oRules

    CERN Document Server

    Mould, R A

    2004-01-01

    The oRules of state reduction are applied to the case of the Schrodinger cat experiment. It is shown that these rules can unambiguously describe the conscious state of the cat, as well as an outside observer at any time during the experiment. Two versions of the experiment are considered. In version I, the conscious cat is made unconscious by a mechanism that is triggered by a radioactive decay. In version II, the sleeping cat is made conscious by an alarm clock that is triggered by a radioactive decay.

  19. The Cat nRules

    OpenAIRE

    Mould, Richard A

    2004-01-01

    The nRules that are developed in another paper are applied to two versions of the Schrodinger cat experiment. In version I the initially conscious cat is made unconscious by a mechanism that is initiated by a radioactive decay. In version II the initially unconscious cat is awakened by a mechanism that is initiated by a radioactive decay. In both cases an observer is permitted to check the statues of the cat at any time during the experiment. In all cases the nRules correctly and unambiguousl...

  20. cats and dogs

    Institute of Scientific and Technical Information of China (English)

    颜玉秀

    2003-01-01

    有这样一则英语成语:“To rain cats anddogs.”如果望文生义,则会被译为“下猫下狗”,因而会弄出许多笑话来,这应当是值得引以为戒的。其实这句成语的真正含义是:“下倾盆大雨”。那么下雨为什么会与cats和dogs联系在一起呢?

  1. How Transcranial Direct Current Stimulation Can Modulate Implicit Motor Sequence Learning and Consolidation: A Brief Review.

    Science.gov (United States)

    Savic, Branislav; Meier, Beat

    2016-01-01

    The purpose of this review is to investigate how transcranial direct current stimulation (tDCS) can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation. PMID:26903837

  2. How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: A brief review

    Directory of Open Access Journals (Sweden)

    Branislav eSavic

    2016-02-01

    Full Text Available The purpose of this review is to investigate how transcranial direct current stimulation (tDCS can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT, the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.

  3. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  4. Effects of lumbosacral epidural ketamine and lidocaine inxylazine-sedated cats : article

    OpenAIRE

    R. DeRossi; A.P. Benites; J.Z. Ferreira; J.M.N. Neto; L.C. Hermeto

    2009-01-01

    In order to determine the analgesic and cardiovascular effects of the combination of epidural ketamine and lidocaine, 6 sedated cats were studied. Six healthy, young cats were used in a prospective randomised study. Each cat underwent 3 treatments, at least 1 week apart, via epidural injection: (1) ketamine (2.5 mg/kg), (2) lidocaine (4.0 mg/kg), and (3) ketamine (2.5 mg/kg) plus lidocaine (4.0 mg/kg). Epidural injections were administered through the lumbosacral space. Analgesia, motor block...

  5. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  6. Instructive signals for motor learning from visual cortical area MT

    OpenAIRE

    Carey, Megan R; Medina, Javier F.; Lisberger, Stephen G.

    2005-01-01

    Sensory error signals have long been proposed to act as instructive signals to guide motor learning. Here we have exploited the temporal specificity of learning in smooth pursuit eye movements and the well-defined anatomical structure of the neural circuit for pursuit to identify a part of sensory cortex that provides instructive signals for motor learning in monkeys. We show that electrical microstimulation in the motion-sensitive middle temporal area (MT) of extrastriate visual cortex instr...

  7. [Glomerulonephritis in dogs and cats].

    Science.gov (United States)

    Reinacher, M; Frese, K

    1991-04-01

    Immunohistology and special staining of plastic sections allow diagnosis and differentiation of subtypes of glomerulonephritis in dogs. Frequency and clinical importance of these forms of glomerulonephritis vary significantly. In cats, glomerulonephritis occurs frequently in FIV-positive cats but is rare in animals suffering from persistent FeLV infection or FIP. PMID:2068715

  8. Lumbosacral agenesis in a cat

    Directory of Open Access Journals (Sweden)

    Gabrielle C Hybki

    2016-01-01

    Full Text Available Case summary Lumbosacral agenesis is a rare congenital condition reported in children. We report a 17-week-old female domestic shorthair cat with lumbosacral agenesis on whole-body radiographs. The cat was euthanized shortly thereafter presentation. A necropsy was not permitted. Relevance and novel information This is the first reported feline case of lumbosacral agenesis.

  9. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    Science.gov (United States)

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  10. College Students and Their Cats

    Science.gov (United States)

    Weinstein, Lawrence; Alexander, Ralph

    2010-01-01

    Twenty-two Siamese and 32 mixed breed cats' personalities were rated by their respective college student owners and compared. Further, the owners' self rated personality traits were correlated with the pets'; significant Siamese and Mixed differences and correlations were obtained. These are the first data to examine breed of cat on a personality…

  11. A Mediating Role of the Premotor Cortex in Phoneme Segmentation

    Science.gov (United States)

    Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.

    2009-01-01

    Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…

  12. Peritoneopericardial diaphragmatic hernia in cats

    International Nuclear Information System (INIS)

    Peritoneopericardial diaphragmatic hernia in a cat is often an incidental finding on a routine thoracic or abdominal radiograph. Clinical signs are nonspecific-usually respiratory (dyspnea) or gastrointestinal(vomiting or diarrhea). Some of the cats with this anomaly are asymptomatic. The physical examination may be normal: muffled heart sounds are the most common abnormality noted during a physical examination. Cats of many breeds are affected, although 26% of reported cases were inPersians. Age of the cat at diagnosis ranged from 6 days to 14 years. Thirty of the 52 reported cases were in females. Diagnostic studies used to confirm the diagnosis included echocardiography, upper gastrointestinal study, ultrasonography, angiography, positive-contrast peritoneography, and laparotomy. Surgical correction was reportedly successful in 22 of 25 cats

  13. CAT-generation of ideals

    CERN Document Server

    Ueckerdt, Torsten

    2010-01-01

    We consider the problem of generating all ideals of a poset. It is a long standing open problem, whether or not the ideals of any poset can be generated in constant amortized time, CAT for short. We refine the tree traversal, a method introduced by Pruesse and Ruskey in 1993, to obtain a CAT-generator for two large classes of posets: posets of interval dimension at most two and so called locally planar posets. This includes all posets for which a CAT-generator was known before. Posets of interval dimension at most two generalize both, interval orders and 2-dimensional posets. Locally planar posets generalize for example posets with a planar cover graph. We apply our results to CAT-generate all $c$-orientations of a planar graph. As a special case this is a CAT-generator for many combinatorial objects like domino and lozenge tilings, planar spanning trees, planar bipartite perfect matchings, Schnyder woods, and others.

  14. How cats lap

    Science.gov (United States)

    Stocker, Roman; Reis, Pedro; Jung, Sunghwan; Aristoff, Jeffrey

    2010-11-01

    We studied the lapping of the domestic cat (Felis catus) by combining high-speed photography with a laboratory model of lapping. We found that Felis catus laps by a subtle mechanism based on water adhesion to the dorsal side of the tongue and the creation of a liquid column, exploiting inertia to defeat gravity and pull liquid into the mouth. The competition between inertia and gravity controls the pinch-off time of the column, determining the optimal lapping frequency, f. Felis catus was found to operate near the optimum and theoretical analysis yielded a scaling, f ˜M-1/6, of lapping frequency with animal mass, M. This prediction was verified by measuring lapping frequency across felids, from ocelots to lions, suggesting that the lapping mechanism is conserved among felines.

  15. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  16. Response properties of cat AMLS neurons to optic flow stimuli

    Institute of Scientific and Technical Information of China (English)

    LI; Baowang(李宝旺); LI; Bing(李兵); CHEN; Hui(陈辉); XU; Ying(徐颖); DIAO; Yuncheng(刁云程)

    2002-01-01

    Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.

  17. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats

    OpenAIRE

    Zito, Sarah; Vankan, Dianne; Bennett, Pauleen; Paterson, Mandy; Phillips, Clive J. C.

    2015-01-01

    People who feed cats that they do not perceive they own (sometimes called semi-owners) are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people’s perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its ass...

  18. Short colon in a cat

    International Nuclear Information System (INIS)

    An 11-year-old male Japanese domestic cat was referred to the veterinary hospital with a chronic diarrhea and signs of pain and vocalization when defecating. The cat has discharged unformed feces throughout his life. Morphological diagnosis of short colon was made radiographically after barium enema. The ileocolic junction and cecum was located to the left of the midline at the proximal end of the descending colon. Additional endoscopic examination demonstrated the difference in visual structures of the mucosal surface and in histological structures on mucosal biopsy specimens, between the colon and ileum. This is the first report of short colon in a cat in Japan

  19. Weight-specific anticipatory coding of grip force in human dorsal premotor cortex

    DEFF Research Database (Denmark)

    van Nuenen, Bart F L; Kuhtz-Buschbeck, Johann; Schulz, Christian;

    2012-01-01

    The dorsal premotor cortex (PMd) uses prior sensory information for motor preparation. Here, we used a conditioning-and-map approach in 11 healthy male humans (mean age 27 years) to further clarify the role of PMd in anticipatory motor control. We transiently disrupted neuronal processing in PMd...

  20. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    Science.gov (United States)

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  1. Motor neglect.

    OpenAIRE

    Laplane, D.; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection...

  2. La estimulación eléctrica de la corteza motora para el tratamiento del dolor central y dolor periférico por desaferentización Electrical stimulation of the motor cortex for the management of central pain and peripheral pain caused by desafferentiation

    Directory of Open Access Journals (Sweden)

    J. V. Pesudo

    2004-09-01

    Full Text Available El dolor central y el dolor periférico por desaferentización son de difícil tratamiento incluso con fármacos de última generación. La estimulación eléctrica sobre diversas estructuras ha demostrado en general ser poco efectiva. La estimulación sobre la corteza motora es una técnica relativamente nueva que parece ofrecer resultados prometedores en estos cuadros. Aunque desde el punto de vista quirúrgico es una técnica sencilla, no lo es tanto la localización adecuada de la corteza motora, lo cual es una condición importante para su efectividad. En este trabajo ofrecemos una revisión bibliográfica sobre ella. Sus indicaciones fundamentales actualmente son el dolor central fundamentalmente talámico, y el dolor trigeminal por desaferentización. La respuesta a barbitúricos sin respuesta a opioides, la conservación relativa de las vías motoras y sensitivas, y la respuesta a la estimulación magnética transcraneal predicen un buen resultado. Diversos métodos son utilizados para determinar la zona a estimular: PESS, estimulación intraoperatoria, neuronavegación, RNM funcional. Los parámetros de estimulación recomendados varían de unos autores a otros. Su mecanismo de actuación no es en la actualidad bien conocido aunque las teorías más aceptadas son la activación de zonas que modulan el dolor y la inhibición de la transmisión de los estímulos nociceptivos a nivel medular.Central pain and peripheral pain caused by desafferentation are difficult to treat even with last generation drugs. Electric stimulation of several structures has shown to be scarcely effective in general. Stimulation of motor cortex is a relatively new technique that seems to offer promising results in these disorders. While it is a simple technique from the surgical point of view, the adequate location of the motor cortex is not so easy, this being a significant condition for its effectiveness. In this paper we review the literature that has been

  3. Fundamentals of ServCat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This training manual for the U.S. Fish and Wildlife Service Catalog (ServCat) provides detailed instructions on searching for records, creating records, and...

  4. Seizures and epilepsy in cats

    OpenAIRE

    Moore SA

    2014-01-01

    Sarah A Moore Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA Abstract: Seizures are a common presenting complaint in cats, although causes and options for the treatment of seizures in this species have been historically poorly described in the veterinary literature. Seizure manifestation in cats may be different than what is typically seen in dogs, but the underlying causes of seizure activity are the same. These include primary epilepsies, structura...

  5. Food hypersensitivity in a cat.

    Science.gov (United States)

    Medleau, L; Latimer, K S; Duncan, J R

    1986-09-15

    Food hypersensitivity was diagnosed in a 4-year-old Siamese cat. Clinical signs included intense erythema, with alopecia, excoriations, erosions, and crusts involving the ventral portion of the abdomen, inguinal region, medial aspect of each thigh, and cranial and lateral aspects of all 4 limbs. The cat was intensely pruritic. Histologically, there was cutaneous mast cell hyperplasia and diffuse infiltration of eosinophils in the dermis. Blood eosinophilia also was found. Clinical signs resolved after exclusive feeding of a hypoallergenic diet.

  6. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  7. Acquired retinal folds in the cat.

    Science.gov (United States)

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  8. Echocardiographic Findings in 11 Cats with Acromegaly

    OpenAIRE

    Myers, J A; Lunn, K.F.; Bright, J.M.

    2014-01-01

    Background Information regarding cardiac changes in domestic cats with acromegaly is limited. Hypothesis/Objectives The objective of this study was to describe the echocardiographic findings in cats with acromegaly. Animals Eighteen cats diagnosed with acromegaly at Colorado State University between 2008 and 2012. Of these 18 cats, 11 had echocardiography performed. Methods A retrospective review of medical records was made to identify cats with acromegaly that also had echocardiography perfo...

  9. Schrodinger's cat: much ado about nothing

    CERN Document Server

    Ionicioiu, Radu

    2016-01-01

    In this note I briefly discuss the Schrodinger's cat Gedankenexperiment. By analysing the information flow in the system I show that no entanglement exists between the atom and the cat. The atom and the cat are connected only through a classical information channel (detector clicks $\\rightarrow$ poison is released $\\rightarrow$ cat is dead). No amount of local operations and classical communication can entangle the atom and the cat. Consequently, the paradox disappears.

  10. Mesotelioma pleural com metástase renal em gato Pleural mesothelioma with renal metastasis in a cat

    Directory of Open Access Journals (Sweden)

    A.M. Piacenti

    2004-08-01

    Full Text Available It has been described the anatomopathological and immunohistochemical characteristics of a multinodular neoplasm distributed in the parietal and visceral pleurae, pericardium, thoracic portion of the diaphragm and renal cortex of an eight year-old, female, mixed breed, cat. Based on the anatomopathological and immunohistochemical findings it was firmed the diagnosis of biphasic pleural mesotelioma with renal metastasis.

  11. Interactive visuo-motor therapy system for stroke rehabilitation

    OpenAIRE

    Eng, K; Siekierka, E; Pyk, P; Chevrier, E; Hauser, Y; Holper, L; Cameirao, M; Hägni, K; Zimmerli, L; Duff, A.; Schuster, C.; Bassetti, C.; Verschure, P; Kiper, D.

    2007-01-01

    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas (mirror neurons); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, fa...

  12. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    Science.gov (United States)

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke.

  13. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    Science.gov (United States)

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia. PMID:22016533

  14. Reported cat bites in Dallas: characteristics of the cats, the victims, and the attack events.

    OpenAIRE

    Wright, J C

    1990-01-01

    Associated with the increased popularity of cats as pets in American households has been an increase in the number of cat bites reported to health departments. Bite reports from Dallas, TX, for 1985 were analyzed for different aspects of the cat bite event, including characteristics of the cats, the people bitten, the wounds, and the attack events. Cat bites and scratches constituted 25 percent of the 2,494 reported animal bites. Biting cats were typically stray females. People 21 to 35 years...

  15. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats.

    Directory of Open Access Journals (Sweden)

    Sarah Zito

    Full Text Available People who feed cats that they do not perceive they own (sometimes called semi-owners are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people's perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding, revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (p<0.01. All interactions and caretaking behaviours were more likely to be displayed towards cats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (p<0.05 and included association time, attachment, perceived cat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner "gatekeepers" could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist

  16. Motor homopolar

    OpenAIRE

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  17. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects—A Pilot Study

    OpenAIRE

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R.; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in prim...

  18. Energy requirements of adult cats.

    Science.gov (United States)

    Bermingham, Emma N; Thomas, David G; Morris, Penelope J; Hawthorne, Amanda J

    2010-04-01

    A meta-analysis was carried out in order to establish the energy requirements of adult cats. Publications that identified cat body weight (BW) were used to generate allometric relationships between energy requirements and BW of healthy adult cats, using log-log linear regression. Energy requirements were expressed in kcal/kg BW to be consistent with those reported by the National Research Council. Mean maintenance energy requirements were 55.1 (se 1.2) kcal/kg BW (115 treatment groups). Three allometric equations were identified to predict the energy requirements for maintenance of BW in the cat based on BW: light (53.7 kcal/kg BW- 1.061), normal (46.8 kcal/kg BW- 1.115) and heavy (131.8 kcal/kg BW- 0 .366). When reported on lean mass, the allometric equation revealed maintenance requirements were 58.4 kcal/kg lean mass- 1.140 (adjusted R2 0.694; thirty-six treatment groups). The present review suggests that values for maintenance energy requirements based on BW alone may not be an accurate prediction and more detailed information on the age, sex and neuter status, BW and composition would enhance the ability to interpret the maintenance energy requirements of cats.

  19. Application of stepping motor

    International Nuclear Information System (INIS)

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  20. Acquisition of conditioned facial reflexes in the cat: cortical control of different facial movements.

    Science.gov (United States)

    Woody, C D

    1982-04-01

    The motor cortex plays a role in determining which of three different facial movements is acquired in Pavlovian conditioning experiments. Three separate facial reflexes can be distinguished by recording electromyographic activity from the orbicularis oculi (eye blink) and levator orii (nose twitch) muscles. One in a pure eye blink; a second is a nose twitch; the third is a compound eye blink and nose twitch. Which of these movements is elicited by a click (conditioned stimulus) following associative conditioning is reflected by the pattern of unit activity elicited by the click at the motor cortex. Activity is enhanced, after conditioning, in those units that project polysynaptically to the specific muscles performing the learned movement. This enhancement of activity is, in turn, relatable to an enhanced electrical excitability of the involved neurons. Analogous changes in the excitability of neurons of the motor cortex to applied currents can be produced by local application of cholinergic agents. Iontophoresis of acetylcholine, aceclidine (a cholinomimetic drug), or intracellularly applied cyclic GMP produces changes in single neuron membrane resistance that increase neuronal excitability. The units of the motor cortex that respond preferentially to these agents and to the click conditioned stimuli with short latencies have been identified as pyramidal cells of layer V. The axons of these neurons form the pyramidal tract, a pathway characterized as serving voluntary movement. It appears that this system supports rapid transmission and processing of auditory-motor information used to perform learned movements adaptively, selectively, and discriminatively.

  1. Localization of sensorimotor cortex: the influence of Sherrington and Cushing on the modern concept.

    Science.gov (United States)

    Uematsu, S; Lesser, R P; Gordon, B

    1992-06-01

    According to Penfield, the work of Charles Sherrington's laboratory forced a change from the long-held concept of a broad, overlapping sensorimotor cortex to the concept of a narrow, discrete pre-Rolandic motor cortex separate from the post-Rolandic sensory strip. Harvey Cushing, one of the founders of modern neurosurgery, coined the term narrow motor strip. Cushing also appears to have been the first to color the precentral gyrus in a mosaic pattern and to use red coloring for the motor cortex and blue for the sensory cortex. Cushing's red and blue color coding is still used in textbooks, nearly 100 years later. In this article, we review the historical evolution of and the evidence for the concept of narrow and discrete motor and sensory strips anterior and posterior to the Rolandic cortex. A review of the historical development of the concept and recent physiological studies reaffirms the proposition that the motor and sensory areas are much broader and more complex than they were thought to be in the classic teaching that originated with Sherrington and Cushing.

  2. Experience with the "good" limb induces aberrant synaptic plasticity in the perilesion cortex after stroke.

    Science.gov (United States)

    Kim, Soo Young; Allred, Rachel P; Adkins, DeAnna L; Tennant, Kelly A; Donlan, Nicole A; Kleim, Jeffrey A; Jones, Theresa A

    2015-06-01

    Following unilateral stroke, the contralateral (paretic) body side is often severely impaired, and individuals naturally learn to rely more on the nonparetic body side, which involves learning new skills with it. Such compensatory hyper-reliance on the "good" body side, however, can limit functional improvements of the paretic side. In rats, motor skill training with the nonparetic forelimb (NPT) following a unilateral infarct lessens the efficacy of rehabilitative training, and reduces neuronal activation in perilesion motor cortex. However, the underlying mechanisms remain unclear. In the present study, we investigated how forelimb movement representations and synaptic restructuring in perilesion motor cortex respond to NPT and their relationship with behavioral outcomes. Forelimb representations were diminished as a result of NPT, as revealed with intracortical microstimulation mapping. Using transmission electron microscopy and stereological analyses, we found that densities of axodendritic synapses, especially axo-spinous synapses, as well as multiple synaptic boutons were increased in the perilesion cortex by NPT. The synaptic density was negatively correlated with the functional outcome of the paretic limb, as revealed in reaching performance. Furthermore, in animals with NPT, there was dissociation between astrocytic morphological features and axo-spinous synaptic density in perilesion motor cortex, compared with controls. These findings demonstrate that skill learning with the nonparetic limb following unilateral brain damage results in aberrant synaptogenesis, potentially of transcallosal projections, and this seems to hamper the functionality of the perilesion motor cortex and the paretic forelimb. PMID:26041926

  3. Cognition without Cortex.

    Science.gov (United States)

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  4. On Schr\\"odinger's cat

    CERN Document Server

    de Silva, Nalin

    2010-01-01

    Schr\\"odinger's cat appears to have been harassed in a chamber during the past eighty years or so by interpreting the role of the observer as a person, who sets an experiment and then observes results, may be after some time. The realist position tells us that the physical processes would take place independent of the observer with well defined properties, whereas the positivist position wants us to believe that nothing can be said of a system when it is not being observed. In this paper we question both these positions and also the assumption that the atom and the cat are entangled and further whether the atom could be considered to be in a state of decay and not decay. We let the cat either out of the bag (chamber) or rest in peace with or without the atom or the observer.

  5. Neural Correlates of an Auditory Afterimage in Primary Auditory Cortex

    OpenAIRE

    Noreña, A. J.; Eggermont, J. J.

    2003-01-01

    The Zwicker tone (ZT) is defined as an auditory negative afterimage, perceived after the presentation of an appropriate inducer. Typically, a notched noise (NN) with a notch width of 1/2 octave induces a ZT with a pitch falling in the frequency range of the notch. The aim of the present study was to find potential neural correlates of the ZT in the primary auditory cortex of ketamine-anesthetized cats. Responses of multiunits were recorded simultaneously with two 8-electrode arrays during 1 s...

  6. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats.

    Science.gov (United States)

    Zito, Sarah; Vankan, Dianne; Bennett, Pauleen; Paterson, Mandy; Phillips, Clive J C

    2015-01-01

    People who feed cats that they do not perceive they own (sometimes called semi-owners) are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people's perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding), revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (pcats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (pcat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner "gatekeepers" could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist welfare and government agencies to identify cat semi-owners in order to develop strategies to address this source of unwanted cats. PMID:26218243

  7. Evidence for visual cortical area homologs in cat and macaque monkey.

    Science.gov (United States)

    Payne, B R

    1993-01-01

    The maps of visuotopically discrete visual cerebral cortical areas in the cat and the macaque monkey are compared and gaps in knowledge are identified that limit such comparisons. Cat areas 17, 18, and 19 can be equated with macaque areas V1, V2, and V3, respectively, based on criteria of relative position in the cortical mantle, internal organization of visual field representations, and trans- and subcortical connections. Using these same criteria, a visual area on the medial bank of the lateral suprasylvian sulcus (area PMLS) in the cat can be equated with macaque area V5. The equivalences are supported by data on neuronal receptive field properties and the contributions the areas make to visual behavior. Although the data are scanty for most other visual areas, there are enough data tentatively to equate collectively cat areas 20a and 20b with macaque areas TF and TH and to liken cat areas 21a and 21b with macaque area V4. What is not clear is if there is a region in cat that is equivalent to area TE in the macaque monkey. If there is, it likely lies on the banks of the posterior suprasylvian sulcus between areas 20 and 21 and the polysensory cortex of the posterior ectosylvian gyrus. Knowledge gained from prior research on macaque areas V4 and TE can be used to formulate specific additional investigations of cat area 21 and the uncharted posterior suprasylvian sulcus. In addition, prior investigations carried out on cat area 20 can be used to devise specific explorations of macaque areas TF and TH.

  8. Cerebellar networks with the cerebral cortex and basal ganglia.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  9. Dipylidium (Dog and Cat Flea Tapeworm) FAQs

    Science.gov (United States)

    ... if my pet has a tapeworm infection? Although cats and dogs are rarely ill as a result of a ... and outdoor environments. Have your veterinarian treat your dogs and cats promptly if they have tapeworms. Clean up after ...

  10. The Nucleon as a Holographic Cheshire Cat

    OpenAIRE

    Zahed, Ismail

    2014-01-01

    The Cheshire cat principle emerges naturally from the holographic approach of the nucleon in terms of a bulk instanton. The cat hides in the holographic direction. I briefly review the one-nucleon problem in the holographic limit.

  11. The nucleon as a holographic Cheshire cat

    International Nuclear Information System (INIS)

    The Cheshire cat principle emerges naturally from the holographic approach of the nucleon in terms of a bulk instanton. The cat hides in the holographic direction. I briefly review the one-nucleon problem in the holographic limit

  12. Degenerative mucinotic mural folliculitis in cats.

    Science.gov (United States)

    Gross, T L; Olivry, T; Vitale, C B; Power, H T

    2001-10-01

    A novel form of mural folliculitis is described in seven cats. Clinically, all cats exhibited generalized alopecia with scaling or crusting that was more pronounced over the head, neck, and shoulders. The face and muzzle of all cats was unusually thickened. Six of seven cats were progressively lethargic but did not demonstrate any other consistent systemic abnormalities. Histologically, there was severe mixed inflammation of the wall of the follicular isthmus in all cats, accompanied by some follicular destruction in five cats. Sebaceous glands were not affected. All cats had variable, but often striking, follicular mucin deposition, as well as epidermal hyperkeratosis and crusting. The cause of the severe mural folliculitis was not identified, and all cats responded poorly to immunomodulating therapy. Follicular mucinosis may be a nonspecific finding, likely reflective of the follicular lymphocytic milieu, and does not always herald follicular lymphoma.

  13. Cerebral cysticercosis in a cat : clinical communication

    Directory of Open Access Journals (Sweden)

    E.V. Schwan

    2002-07-01

    Full Text Available The metacestode of Taenia solium, Cysticercus cellulosae, was recovered from the brain of a cat showing central nervous clinical signs ante mortem. This is the first record of cerebral cysticercosis in a cat in South Africa.

  14. Basic electrophysiological properties of spinal cord motoneurons during old age in the cat.

    Science.gov (United States)

    Morales, F R; Boxer, P A; Fung, S J; Chase, M H

    1987-07-01

    1. The electrophysiological properties of alpha-motoneurons in old cats (14-15 yr) were compared with those of adult cats (1-3 yr). These properties were measured utilizing intracellular recording and stimulating techniques. 2. Unaltered in the old cat motoneurons were the membrane potential, action potential amplitude, and slopes of the initial segment (IS) and soma dendritic (SD) spikes, as well as the duration and amplitude of the action potential's afterhyperpolarization. 3. In contrast, the following changes in the electrophysiological properties of lumbar motoneurons were found in the old cats: a decrease in axonal conduction velocity, a shortening of the IS-SD delay, an increase in input resistance, and a decrease in rheobase. 4. In spite of these considerable changes in motoneuron properties in the old cat, normal correlations between different electrophysiological properties were maintained. The following key relationships, among others, were the same in adult and old cat motoneurons: membrane potential polarization versus action potential amplitude, duration of the afterhyperpolarization versus motor axon conduction velocity, and rheobase versus input conductance. 5. A review of the existing literature reveals that neither chronic spinal cord section nor deafferentation (13, 21) in adult animals produce the changes observed in old cats. Thus we consider it unlikely that a loss of synaptic contacts was responsible for the modifications in electrophysiological properties observed in old cat motoneurons. 6. We conclude that during old age there are significant changes in the soma-dendritic portion of cat motoneurons, as indicated by the modifications found in input resistance, rheobase, and IS-SD delay, as well as significant changes in their axons, as indicated by a decrease in conduction velocity. PMID:3612223

  15. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  16. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  17. Motor and mental training in older people: Transfer, interference, and associated functional neural responses.

    Science.gov (United States)

    Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip

    2016-08-01

    Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. PMID:27450266

  18. Dirac Cat States in Relativistic Landau Levels

    OpenAIRE

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-01-01

    We show that a relativistic version of Schrodinger cat states, here called Dirac cat states, can be built in relativistic Landau levels when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily Dirac cat states involving the orbital quanta of the particle in a well defined mesoscopic regime. We demonstrate that the proposed Dirac cat states have a purely relativistic origin and cease...

  19. Halal Cat Food for the World Market

    OpenAIRE

    Amir H.M.S; Razauden Z; Harisun Y; Ida I.M; Mona Z

    2014-01-01

    Currently, University Technology Malaysia (UTM) is engaged with a well-known private company in Malaysia to develop halal cat food for the world. A team of scientists from UTM was formed for the development of cat food from preparing palatants to producing canned cat and kibbled cat food formulation on a commercial scale to fulfil the vast market demand, as well as to act as contract manufacturer for this private company. Financial aid is made available by the university and Malaysian governm...

  20. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  1. Genitourinary dysplasia in a cat

    International Nuclear Information System (INIS)

    A six-month-old kitten had congenital urethral sphincter mechanism incompetence due to urethral hypoplasia and associated uterine hypoplasia and vaginal aplasia. Diagnosis was based on radiographic examination, surgical exploration and histological examination of the lower urinary tract. Surgical correction resulted in a marked clinical improvement. The cat became fully continent following treatment with phenylpropanolamine

  2. A strange cat in Dublin

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  3. Lessons from the Cheshire Cat

    Science.gov (United States)

    Tinberg, Donna

    2012-01-01

    "If you don't know where you're going, any road will take you there." This oft-cited but not-quite-accurate quote is from the Lewis Carroll's classic children's tale, Alice in Wonderland. In Carroll's altered reality, the conversation between the disoriented Alice and the mysterious Cheshire Cat actually went like this: "Would you tell me, please,…

  4. Cats & Dogs%猫狗大战

    Institute of Scientific and Technical Information of China (English)

    阿萌

    2003-01-01

    @@ ( Dogs and cats are permanent enemies. A dog named Bubby is catnapped by the cats. The whole cats' world is shocked and alert. ) Dog Chairman: Gentlemen, a few moments ago I received word of the gravest nature. The key agent working the Brody case has been catnapped. Although he is safe, new must replace him as soon as possible.

  5. 9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle..., Care, Treatment, and Transportation of Dogs and Cats 1 Transportation Standards § 3.15 Primary conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  6. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  7. Enhanced Behavioral Recovery from Sensorimotor Cortex Lesions After Pyramidotomy in Adult Rats

    OpenAIRE

    V. V. Fanardjian; Gevorkyan, O. V.; R. K. Mallina; Melik-Moussian, A. B.; I. B. Meliksetyan

    2000-01-01

    Unilateral transection of the bulbar pyramid, performed before the ablation of the ipsilateral sensorimotor cortex, has been shown to facilitate the recovery of operantly conditioned reflexes and compensatory processes in rats. Such enhanced behaviorai recovery was absent when only the sensorimotor cortex was ablated. This phenomenon is explained by the switching of motor activity under the control of the cortico-rubrospinal system. Switching of the descending in...

  8. Effects of medetomidine and ketamine on the regional cerebral blood flow in cats: a SPECT study.

    Science.gov (United States)

    Waelbers, T; Peremans, K; Vermeire, S; Piron, K; Doom, M; Boer, V O; de Leeuw, H; Vente, M A D; Dobbeleir, A; Gielen, I; Audenaert, K; Polis, I

    2012-04-01

    Brain perfusion can be investigated using single photon emission computed tomography (SPECT) and the intravenous injection of (99m)technetium ethyl cysteinate dimer ((99m)Tc-ECD). However, sedation using medetomidine, an α(2)-agonist, or anaesthesia using medetomidine and ketamine, an N-methyl-d-aspartate-(NMDA)-antagonist, may be required for SPECT studies in cats but can affect the regional cerebral blood flow (rCBF). The effects of medetomidine, with or without ketamine, on regional brain perfusion were therefore investigated in six cats under three conditions. Injection of tracer occurred before sedation or anaesthesia (condition A), following intramuscular (IM) sedation with medetomidine (condition M) or after IM anaesthesia with medetomidine and ketamine (condition MK). Medetomidine and medetomidine with ketamine caused a significantly higher total tracer uptake in all brain regions. Semi-quantification of brain perfusion gave lower perfusion indices in several sub-cortical regions in conditions M and MK, compared to A. Left-right differences were observed in the temporal cortex (A), the temporal, parietal cortex and the thalamus (M) and the frontal cortex (MK). A significantly higher perfusion index in the sub-cortical regions, compared to the whole cortex, was only present in condition A. This study showed that caution is needed when quantifying brain perfusion indices when using sedative or anaesthetic agents that may affect rCBF. PMID:21636298

  9. An olfactory input to the hippocampus of the cat: field potential analysis.

    Science.gov (United States)

    Habets, A M; Lopes Da Silva, F H; Mollevanger, W J

    1980-01-20

    Hippocampal responses to electrical stimulation of the prepyriform cortex in the cat were studied both in acute experiments under halothane anesthesia and in awake cats with chronically indwelling electrodes. Analysis of field potentials and unit activity indicated the extent to which different hippocampal subareas were activated, the laminar level at which the synaptic action took place and the dynamics of the evoked responses. It was found that: (1) the main generator of evoked responses in the hippocampus upon prepyriform cortex stimulation is localized in the fascia dentata and CA3 (CA1 pyramidal cells, and probably also subiculum cells, are activated but in a lesser degree); (2) the initial synaptic activity takes place at the most distal part of the dendrites of fascia dentata granuhat leads to a transient increase in the firing rate of the hippocampal units, which is often followed by a long-lasting decrease in firing rate. We conclude that the pathway from the prepyriform cortex via lateral entorhinal cortex to hippocampal neurons may enable olfactory inputs to effectively excite hippocampal neurons.

  10. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: A TMS study

    Directory of Open Access Journals (Sweden)

    Jennifer eGrau-Sánchez

    2013-09-01

    Full Text Available Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician’s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning. Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  11. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study.

    Science.gov (United States)

    Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy. PMID:24027507

  12. Dietary dissolution of urinary calculi in cats

    International Nuclear Information System (INIS)

    A young adult, castrated male DSH cat was admitted for pollakiuria, hematuria and dysuria. The cat was being fed a commercial dry grocery brand cat food. Radiographs demonstrated multiple radiodense cystic calculi and urinalysis showed hematuria but no crystalluria. A tentative diagnosis of struvite urolithiasis was made. The cat was fed s/d® Feline food exclusively. Clinical signs disappeared within a week and no calculi were visible radiographically within three weeks. s/d® Feline food was continued an additional two weeks. This case study shows that s/d® Feline therapeutic food can be used to successfully manage struvite urolithiasis in cats

  13. My Experience of Feeding a Cat

    Institute of Scientific and Technical Information of China (English)

    乔琳

    2006-01-01

    I liked cat very much. In my old opinion, cat was cute and gentle. One day, my friend asked me to feed the cat for him. So I went to his house in order to take care of his cat. His neighbor was an old woman. When I was doing some cleaning, the old woman asked me if I needed some help. Suddenly, the cat stretched out its sharp claws, and clawed me and bit me with its sharp teeth. WowA It was too abrupt. The old woman got scared. “It goes crazyA” I said and asked her to get out of the room, otherwise she woul...

  14. Reach task-associated excitatory overdrive of motor cortical neurons following infusion with ALS-CSF.

    Science.gov (United States)

    Sankaranarayani, R; Raghavan, Mohan; Nalini, A; Laxmi, T R; Raju, T R

    2014-01-01

    Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit. PMID:23900732

  15. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...

  16. Motor Magnates

    Institute of Scientific and Technical Information of China (English)

    ISABEL DING

    2008-01-01

    @@ The automotive industry is often seen as a man's world. Wang Fengying (王风英) begs to differ. The 38-year-old has presided over Great Wall Motors (长城汽车), the leading pick-up truck and Sport Utility Vehicle(SUV) manufacturer in China for the past five years.

  17. Motor radiculopathy

    OpenAIRE

    Khan, Afsha; Camilleri, Jeremy

    2012-01-01

    A 48-year-old immunosuppressed woman presented to a rheumatology follow-up clinic after suffering from herpes zoster infection. She had manifestations of foot drop 3 months after the initial infection. She was diagnosed with motor radiculopathy following herpes zoster infection that was effectively managed by physiotherapy and amitriptyline.

  18. Development of the cerebellar cortex in the mouse

    Institute of Scientific and Technical Information of China (English)

    Xiangshu Cheng; Jin Du; Dongming Yu; Qiying Jiang; Yanqiu Hu; Lei Wang; Mingshan Li; Jinbo Deng

    2011-01-01

    The cerebellum is a highly conserved structure in the central nervous system of vertebrates, and is involved in the coordination of voluntary motor behavior. Supporting this function, the cerebellar cortex presents a layered structure which requires precise spatial and temporal coordination of proliferation, migration, differentiation, and apoptosis events. The formation of the layered structure in the developing cerebellum remains unclear. The present study investigated the development of the cerebellar cortex. The results demonstrate that the primordium of the cerebellum comprises the ependymal, mantle, and marginal layers at embryonic day 12 (E12). Subsequently, the laminated cerebellar cortex undergoes cell proliferation, differentiation, and migration, and at about postnatal day 0 (P0), the cerebellar cortex presents an external granular layer, a molecular layer, a Purkinje layer, and an internal granular layer. The external granular layer is thickest at P6/7 and disappears at P20. From P0 to P30, the internal granular cells and the Purkinje cells gradually differentiate and develop until maturity. Apoptotic neurons are evident in the layered structure in the developing cerebellar cortex. The external granular layer disappears gradually because of cell migration and apoptosis. The cells of the other layers primarily undergo differentiation, development, and apoptosis.

  19. Spindle Bursts in Neonatal Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Jenq-Wei Yang

    2016-01-01

    Full Text Available Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i the functional properties of spindle bursts, (ii the mechanisms underlying their generation, (iii the synchronous patterns and cortical networks associated with spindle bursts, and (iv the physiological and pathophysiological role of spindle bursts during early cortical development.

  20. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.