WorldWideScience

Sample records for cat motor cortex

  1. On the Nature of the Intrinsic Connectivity of the Cat Motor Cortex: Evidence for a Recurrent Neural Network Topology

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, C; Brizzi, L

    2009-01-01

    Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102: 2131-2141, 2009. First published July 22, 2009; doi: 10.1152/jn.91319.2008. The details...

  2. Time organization of frontal-motor cortex interneuron interactions in the cat neocortex in conditions of different levels of food motivation.

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakyan, E E

    1997-01-01

    Studies were carried out in conscious cats with recording of multicellular activity in moderate hunger and after 24-h food deprivation. Cross-correlation analysis was used to assess statistical interneuron interactions between closely-located neurons in the frontal and sensorimotor regions of the neocortex (local networks), and between the cells of these regions (distributed networks). One-day food deprivation increased the number of interactions formed within both local and distributed neuron networks. Increases in intercortical connections between the frontal and motor regions was seen at all time intervals studied (0-100 msec), though the most significant changes occurred at time intervals of up to 30 msec.

  3. Circuit changes in motor cortex during motor skill learning.

    Science.gov (United States)

    Papale, Andrew E; Hooks, Bryan M

    2018-01-01

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Motor cortex stimulation: role of computer modeling

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Sakas, D.E.; Simpson, B.A

    Motor cortex stimulation (MCS) is a promising clinical technique used to treat chronic, otherwise intractable pain. However, the mechanisms by which the neural elements that are stimulated during MCS induce pain relief are not understood. Neither is it known which neural elements (fibers (parallel

  5. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  6. Misconceptions about mirror-induced motor cortex activation.

    NARCIS (Netherlands)

    Praamstra, P.; Torney, L.; Rawle, C.J.; Miall, R.C.

    2011-01-01

    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex

  7. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  8. Propagating waves in human motor cortex

    Directory of Open Access Journals (Sweden)

    Kazutaka eTakahashi

    2011-04-01

    Full Text Available Previous studies in non-human primates have shown that beta oscillations (15-30Hz of local field potentials (LFPs in the arm/hand areas of primary motor cortex (MI propagate as traveling waves across the cortex. These waves exhibited two stereotypical features across animals and tasks: 1 The waves propagated in two dominant modal directions roughly 180 degrees apart, and 2 their propagation speed ranged from 10 ~ 35 cm/s. It is, however, unknown if such cortical waves occur in the human motor cortex. This study shows that the two properties of propagating beta waves are present in MI of a tetraplegic human patient while he was instructed to perform an instruction delay center out task using a cursor controlled by the chin. Moreover, we show that beta waves are sustained and have similar properties whether the subject was engaged in the task or at rest. The directions of the successive sustained waves both in the human subject and a nonhuman primate (NHP subject tended to switch from one dominant mode to the other, and at least in the NHP subject the estimated distance travelled between successive waves traveling into and out of the central sulcus is consistent with the hypothesis of wave reflection between the border of motor and somatosensory cortices. Further, we show that the occurrence of the beta waves is not uniquely tied to periods of increased power in the beta frequency band. These results demonstrate that traveling beta waves in MI are a general phenomenon occurring in human as well as non-human primates. Consistent with the non-human primate data, the dominant directions of the beta LFP waves in human aligned to the proximal to distal gradient of joint representations in MI somatotopy. This consistent finding of wave propagation may imply the existence of a hardwired organization of motor cortex that mediates this spatio-temporal pattern.

  9. Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury

    Science.gov (United States)

    2012-09-01

    macromolecule at 1.21 ppm, M3 ¼ macromolecule at 1.39 ppm, M4 ¼ macromolecule at 1.62 ppm. ACC ¼ anterior cingulate cortex , SC ¼ somatosensory cortex , HP...AD_________________ Award Number: W81XWH-10-1-0651 TITLE: Motor Cortex Stimulation Reverses...SUBTITLE Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal 5a. CONTRACT NUMBER Cord Injury 5b. GRANT NUMBER

  10. Signals from the ventrolateral thalamus to the motor cortex during locomotion

    Science.gov (United States)

    Marlinski, Vladimir; Nilaweera, Wijitha U.; Zelenin, Pavel V.; Sirota, Mikhail G.

    2012-01-01

    The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL neurons projecting to the motor cortex were identified by antidromic responses. During locomotion, the activity of 92% of neurons was modulated in the rhythm of strides; 67% of cells discharged one activity burst per stride, a pattern typical for the motor cortex. The characteristics of these discharges in most VL neurons appeared to be well suited to contribute to the locomotion-related activity of the motor cortex. In addition to simple locomotion, we examined VL activity during walking on a horizontal ladder, a task that requires vision for correct foot placement. Upon transition from simple to ladder locomotion, the activity of most VL neurons exhibited the same changes that have been reported for the motor cortex, i.e., an increase in the strength of stride-related modulation and shortening of the discharge duration. Five modes of integration of simple and ladder locomotion-related information were recognized in the VL. We suggest that, in addition to contributing to the locomotion-related activity in the motor cortex during simple locomotion, the VL integrates and transmits signals needed for correct foot placement on a complex terrain to the motor cortex. PMID:21994259

  11. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  12. Surround Suppression Maps in the Cat Primary Visual Cortex

    Directory of Open Access Journals (Sweden)

    Matthieu P Vanni

    2013-04-01

    Full Text Available In the primary visual cortex and higher-order areas, it is well known that the stimulation of areas surrounding the classical receptive field of a neuron can inhibit its responses. In the primate area MT, this surround suppression was shown to be spatially organized into high and low suppression modules. However, such an organization hasn’t been demonstrated yet in the primary visual cortex. Here, we used optical imaging of intrinsic signals to spatially evaluate surround suppression in the cat visual cortex. The magnitude of the response was measured in areas 17 and 18 for stimuli with different diameters, presented at different eccentricities. Delimited regions of the cortex were revealed by circumscribed stimulations of the visual field (cortical response field. Increasing the stimulus diameter increased the spread of cortical activation. In the cortical response field, the optimal stimulation diameter and the level of suppression were evaluated. Most pixels (3/4 exhibited surround suppression profiles. The optimal diameter, corresponding to a population of receptive fields, was smaller in area 17 (22 deg. than in area 18 (36 deg. in accordance with electrophysiological data. No difference in the suppression strength was observed between both areas (A17: 25%, A18: 21%. Further analysis of our data revealed the presence of surround modulation maps, organized in low and high suppression domains. We also developed a statistical method to confirm the existence of this cortical map and its neuronal origin. The organization for center/surround suppression observed here at the level of the primary visual cortex is similar to those found in higher order areas in primates (e.g. area MT and could represent a strategy to optimize figure ground discrimination.

  13. Functional magnetic resonance imaging of the human motor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Sasahira, Masahiro; Asakura, Tetsuhiko; Niiro, Masaki; Haruzono, Akihiro; Hirakawa, Wataru [Kagoshima Univ. (Japan). Faculty of Medicine; Matsumoto, Tetsuro; Fujimoto, Toshiro

    1995-05-01

    Functional magnetic resonance (MR) imaging of the brain was performed during motor task activation in five normal subjects and a patient with meningioma using conventional fast low-angle shot sequences and a 2.0 T system. A high intensity area in the motor cortex was observed in all normal subjects. Single-slice studies showed the right-sided finger task produced an increase of 1.9-23.5% (6.67{+-}4.36%) in the signal intensity of the left motor cortex, while the left-sided finger task increased the signal by 1.5-18.2% (6.09{+-}3.34%) in the right motor cortex. There was no significant difference between the sides. Multiple-slice studies also showed the activated motor cortex as a high intensity area. The maximum signal intensity increase in the activated motor area was 11.0% for the left motor cortex and 8.8% for the right motor cortex. There was no significant difference between the sides. Preoperative mapping of the patient with meningioma showed that the motor cortex was displaced posteriorly by the tumor. Functional MR imaging is possible with a standard MR imaging system and conventional gradient echo sequences. Useful clinical information can be obtained by preoperative mapping of the motor cortex. (author).

  14. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  15. Anodal vs cathodal stimulation of motor cortex: a modeling study

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Veltink, Petrus H.; Buitenweg, Jan R.

    Objective. To explore the effects of electrical stimulation performed by an anode, a cathode or a bipole positioned over the motor cortex for chronic pain management. Methods. A realistic 3D volume conductor model of the human precentral gyrus (motor cortex) was used to calculate the

  16. Reflections on agranular architecture: predictive coding in the motor cortex

    OpenAIRE

    Shipp, Stewart; Adams, Rick A.; Friston, Karl J.

    2013-01-01

    The agranular architecture of motor cortex lacks a functional interpretation. Here, we consider a ?predictive coding? account of this unique feature based on asymmetries in hierarchical cortical connections. In sensory cortex, layer 4 (the granular layer) is the target of ascending pathways. We theorise that the operation of predictive coding in the motor system (a process termed ?active inference?) provides a principled rationale for the apparent recession of the ascending pathway in motor c...

  17. Modulation of sensory and motor cortex activity during speech preparation.

    Science.gov (United States)

    Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J

    2011-03-01

    Previous studies have shown that speaking affects auditory and motor cortex responsiveness, which may reflect the influence of motor efference copy. If motor efference copy is involved, it would also likely influence auditory and motor cortical activity when preparing to speak. We tested this hypothesis by using auditory event-related potentials and transcranial magnetic stimulation (TMS) of the motor cortex. In the speech condition subjects were visually cued to prepare a vocal response to a subsequent target, which was compared to a control condition without speech preparation. Auditory and motor cortex responsiveness at variable times between the cue and target were probed with an acoustic stimulus (Experiment 1, tone or consonant-vowels) or motor cortical TMS (Experiment 2). Acoustic probes delivered shortly before targets elicited a fronto-central negative potential in the speech condition. Current density analysis showed that auditory cortical activity was attenuated at the beginning of the slow potential in the speech condition. Sensory potentials in response to probes had shorter latencies (N100) and larger amplitudes (P200) when consonant-vowels matched the sound of cue words. Motor cortex excitability was greater in the speech than in the control condition at all time points before picture onset. The results suggest that speech preparation induces top-down regulation of sensory and motor cortex responsiveness, with different time courses for auditory and motor systems. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex

    OpenAIRE

    Narayanan, Nandakumar S.; Laubach, Mark

    2006-01-01

    Dorsomedial prefrontal cortex is critical for the temporal control of behavior. Dorsomedial prefrontal cortex might alter neuronal activity in areas such as motor cortex to inhibit temporally inappropriate responses. We tested this hypothesis by recording from neuronal ensembles in rodent dorsomedial prefrontal cortex during a delayed-response task. One-third of dorsomedial prefrontal neurons were significantly modulated during the delay period. The activity of many of these neurons was predi...

  19. [Functional asymmetry of the frontal cortex and lateral hypothalamus of cats during food instrumental conditioning].

    Science.gov (United States)

    Vanetsiian, G L; Pavlova, I V

    2003-01-01

    The synchronism and latency of auditory evoked potentials (EP) recorded in symmetric points of the frontal cortex and lateral hypothalamus of cats were measured at different stages of instrumental food conditioning and after the urgent transition to 30% reinforcement. Correlation coefficients between EPs in the cortex and hypothalamus were high (with left-side dominance) at the beginning of the experiments, when food motivation was high, and during the whole experiments in cases of high-probability of conditioned performance. Analysis of early positive P55-80 EP component showed that at all conditioning stages the peak latency of this component was shorter in the left cortical areas than in symmetrical points, whereas in the hypothalamus the shorter latency at the left side was observed at the stage of unstable conditioned reflex, and at the stage of stable reflex the latency of the studied component was shorter at the right side. During transition to 30% reinforcement, the latency was also shorter in the right hypothalamus. It is suggested that the high left-side correlation between the hypothalamus and cortex was associated with motivational and motor component of behavior rather than reflected the emotional stress induced by transition to another stereotype of food reinforcement (30%).

  20. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

    OpenAIRE

    Song, Weiguo; Truong, Dennis Q.; Bikson, Marom; Martin, John H.

    2015-01-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-reso...

  1. Reflections on agranular architecture: predictive coding in the motor cortex.

    Science.gov (United States)

    Shipp, Stewart; Adams, Rick A; Friston, Karl J

    2013-12-01

    The agranular architecture of motor cortex lacks a functional interpretation. Here, we consider a 'predictive coding' account of this unique feature based on asymmetries in hierarchical cortical connections. In sensory cortex, layer 4 (the granular layer) is the target of ascending pathways. We theorise that the operation of predictive coding in the motor system (a process termed 'active inference') provides a principled rationale for the apparent recession of the ascending pathway in motor cortex. The extension of this theory to interlaminar circuitry also accounts for a sub-class of 'mirror neuron' in motor cortex--whose activity is suppressed when observing an action--explaining how predictive coding can gate hierarchical processing to switch between perception and action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Peripheral Nerve Injury in Developing Rats Reorganizes Motor Cortex.

    Science.gov (United States)

    1986-05-19

    identify by block num ber) motor cortex neuroplasticity development cerebral cortex 0 ABSTRACT (Contfnue an revered Old. It necessay nd identify by block...PAGE (Mn Dt0 "ted) . .. .. 5 27 004 , -. - % SECURITY CLASSIFICATION OF THIS PAGE (Wign Dale, Ente,.dD - arts was present and there was an absence of a

  3. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  4. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    Science.gov (United States)

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  5. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  6. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  7. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Primary somatosensory cortex hand representation dynamically modulated by motor output.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Huang, Mingxiong; Ramachandran, V S

    2015-02-01

    The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex.

  9. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Surround suppression maps in the cat primary visual cortex

    OpenAIRE

    Vanni, Matthieu P.; Casanova, Christian

    2013-01-01

    In the primary visual cortex and higher-order areas, it is well known that the stimulation of areas surrounding the classical receptive field of a neuron can inhibit its responses. In the primate area middle temporal (MT), this surround suppression was shown to be spatially organized into high and low suppression modules. However, such an organization has not been demonstrated yet in the primary visual cortex. Here, we used optical imaging of intrinsic signals to spatially evaluate surround s...

  11. Mirror neurons: reflecting on the motor cortex and spinal cord.

    Science.gov (United States)

    Schieber, Marc H

    2013-02-18

    Neurons in the monkey motor cortex that project to the spinal cord to control particular muscle contractions and movements have been found to discharge again while the monkey simply watches another primate make similar movements: monkey see; monkey not do. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    cerebral pathophysiology, characterization and distinct regional mapping of human cognitive functions such as vision, motor, language, memory, etc. ..... Rosen B R 1991 Functional mapping of the human visual cortex by magnetic resonance imaging; Science 254 716–. 719. Blinkenberg M, Bonde C, Holm S, Svarer C, ...

  13. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  14. Seeing fearful body language rapidly freezes the observer's motor cortex.

    Science.gov (United States)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  16. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Directory of Open Access Journals (Sweden)

    Mengia-Seraina Rioult-Pedotti

    Full Text Available Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA, leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  17. The motor cortex and facial expression: new insights from neuroscience.

    Science.gov (United States)

    Morecraft, Robert J; Stilwell-Morecraft, Kimberly S; Rossing, William R

    2004-09-01

    For more than a century, unusual and complex deficits in facial expression have been known to occur following localized brain damage. Some brain injuries leave the face with pronounced alterations in affect whereas others result in movement disorders such as blepharospasm and Meige syndrome. There is also a historic trail of clinical observations that document deficits in either voluntary or emotional control of the facial muscles following central nervous system damage. Recent studies in the nonhuman primate cerebral cortex reveal the existence of multiple cortical facial representations in the frontal lobe and adjacent anterior cingulate cortex. These comprise the facial representation of the primary motor cortex (M1), ventral lateral premotor cortex (LPMCv), supplementary motor cortex (M2), rostral cingulate motor cortex (M3), and caudal cingulate motor cortex (M4). Homologous facial representations reside in the human brain based on observations following cortical stimulation, functional neuroimaging, and localized surgical resection. In the nonhuman primate, all these facial representations have been found to be directly interconnected through topographically organized corticocortical connections, and each facial area has also been found to send direct corticobulbar projections to the facial motor nucleus. The facial representations of M2 and M3 are both located on the medial wall of the hemisphere, in the vascular territory of the anterior cerebral artery. Both preferentially give rise to bilateral projections to parts of the facial nucleus that innervate the upper facial musculature as demonstrated in the monkey. The facial representation of M1, LPMCv, and M4 preferentially give rise to contralateral axonal projections ending in parts of the facial nucleus that innervate the lower facial musculature. The facial representation of M1 and LPMCv both reside in the vascular territory of the middle cerebral artery (MCA). The classic clinical presentation of

  18. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and ...

  19. Reduced synchronization in the visual cortex of cats with strabismic amblyopia

    NARCIS (Netherlands)

    Roelfsema, P. R.; König, P.; Engel, A. K.; Sireteanu, R.; Singer, W.

    1994-01-01

    Synchronous firing of spatially separate neurons was studied with multi-electrode recordings in area 17 of the visual cortex of strabismic cats which had developed behaviourally verified amblyopia of the deviated eye. Responses of neurons were evoked with moving light bars or gratings of different

  20. Motor cortex stimulation therapy for post-stroke weakness

    International Nuclear Information System (INIS)

    Ogura, Koichiro; Aoshima, Chihiro; Yamanouchi, Takashi; Tachibana, Eiji

    2009-01-01

    Motor cortex stimulation (MCS) delivered concurrently with rehabilitation therapy may enhance motor recovery following stroke. We investigated the effects of MCS on the recovery from upper extremity paresis in patients with chronic stroke. In 12 patients who had moderate arm and finger paresis at more than 4 months after stroke, an electrode was placed through a small craniotomy on the epidural space of the motor cortex that was identified using functional MRI. MCS during occupational therapy for one hour was performed 3 times a day for at least 4 weeks. The mean scores for Fugl-Meyer assessments of the arm improved, from 37 preoperatively to 46 postoperatively. The mean grip strength improved from 3.25 to 9.0 kg. All patients appeared satisfactory in their results because they recognized an improvement of arm function. Although the mechanism of the beneficial effects of MCS on recovery after stroke has not been well known, the neuroplasticity might play a important role. In a few cases of the present series, it was observed that the hand motor cortex area detected on functional MRI had been enlarged after MCS therapy. MCS could become a novel neurosurgical treatment modality for the chronic post-stroke weakness. (author)

  1. Visual attentional load influences plasticity in the human motor cortex.

    Science.gov (United States)

    Kamke, Marc R; Hall, Michelle G; Lye, Hayley F; Sale, Martin V; Fenlon, Laura R; Carroll, Timothy J; Riek, Stephan; Mattingley, Jason B

    2012-05-16

    Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)-like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity.

  2. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    Science.gov (United States)

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  3. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Madhu

    The cerebellum is a region of the brain that is important for a number of motor and cognitive functions, including motor learning, time perception and precise movement (Thach. 1998; Salman 2002; Matsumura et al 2004). The cortex has become the focus of particularly intense research because it is presumed to be ...

  4. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  5. The Development and Activity-Dependent Expression of Aggrecan in the Cat Visual Cortex

    Science.gov (United States)

    Sengpiel, F.; Beaver, C. J.; Crocker-Buque, A.; Kelly, G. M.; Matthews, R. T.; Mitchell, D. E.

    2013-01-01

    The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, suggesting a role for aggrecan in the termination of the sensitive period. Here, we demonstrate for the first time that the onset of aggrecan expression in area 17 also correlates with the decline in experience-dependent plasticity in visual cortex and that this expression is experience dependent. Dark rearing until 15 weeks of age dramatically reduced the density of aggrecan-positive neurons in the extragranular layers, but not in layer IV. This effect was reversible as dark-reared animals that were subsequently exposed to light showed normal numbers of Cat-301-positive cells. The reduction in aggrecan following certain early deprivation regimens is the first biochemical correlate of the functional changes to the γ-aminobutyric acidergic system that have been reported following early deprivation in cats. PMID:22368089

  6. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    Science.gov (United States)

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-04

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Low-threshold monopolar motor mapping for resection of primary motor cortex tumors.

    Science.gov (United States)

    Seidel, Kathleen; Beck, Jürgen; Stieglitz, Lennart; Schucht, Philippe; Raabe, Andreas

    2012-09-01

    Microsurgery within eloquent cortex is a controversial approach because of the high risk of permanent neurological deficit. Few data exist showing the relationship between the mapping stimulation intensity required for eliciting a muscle motor evoked potential and the distance to the motor neurons; furthermore, the motor threshold at which no deficit occurs remains to be defined. To evaluate the safety of low threshold motor evoked potential mapping for tumor resection close to the primary motor cortex. Fourteen patients undergoing tumor surgery were included. Motor threshold was defined as the stimulation intensity that elicited motor evoked potentials from target muscles (amplitude > 30 μV). Monopolar high-frequency motor mapping with train-of-5 stimuli (HF-TOF; pulse duration = 500 microseconds; interstimulus interval = 4.0 milliseconds; frequency = 250 Hz) was used to determine motor response--negative sites where incision and dissection could be performed. At sites negative to 3-mA HF-TOF stimulation, the tumor was resected. HF-TOF mapping localized the motor neurons within the precentral gyrus by using variable, low-stimulation intensities. The lowest motor thresholds after final resection ranged from 3 to 6 mA, indicating close proximity of motor neurons. Postoperatively, 12 patients had no new motor deficit, 1 patient had a minor new temporary deficit (M4+, National Institutes of Health Stroke Scale 1), and another patient had a minor new permanent deficit (M4+, National Institutes of Health Stroke Scale 2). Thirteen patients had complete or gross total resection. These preliminary data demonstrate that a monopolar HF-TOF threshold > 3 mA was not associated with a significant new motor deficit.

  8. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...... excitability and PPC–M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction....

  9. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps.

    Science.gov (United States)

    Song, Weiguo; Truong, Dennis Q; Bikson, Marom; Martin, John H

    2015-04-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. Copyright © 2015 the American Physiological Society.

  10. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.

    Science.gov (United States)

    Chiou, Ruei-Jen; Lee, Hsiao-Yun; Chang, Chen-Wei; Lin, Kuan-Hung; Kuo, Chung-Chih

    2012-06-29

    Motor cortex stimulation (MCS) is a promising clinical procedure to help alleviate chronic pain. Animal models demonstrated that MCS is effective in lessening nocifensive behaviors. The present study explored the effects of MCS on cortical somatosensory evoked potentials (SEPs) recorded at the primary somatosensory cortex (SI) of the rat. SEPs were evoked by electrical stimulation applied to the contralateral forepaws. Effects of different intensities, frequencies, and durations of MCS were tested. MCS at ≥2V suppressed SEPs of the ipsilateral SI. Suppression lasted 120 min at an intensity of 5 V. The optimal frequency was 50 Hz, and the duration was 30s. In contrast, MCS did not affect SEPs recorded on the contralateral SI. Cortical stimulation out of the motor cortex did not induce a decrease in the ipsilateral SEPs. We also investigated involvement of the endogenous opioid system in this inhibition of SEPs induced by MCS. The opioid antagonist, naloxone (0.5 mg/kg), was administered 30 min before MCS. Application of naloxone completely prevented the inhibitory effect of MCS on ipsilateral SEPs. These results demonstrate that MCS blocked the transmission of somatosensory information to the primary somatosensory cortex, and this interference was mediated by the endogenous opioid system. This inhibitory effect on sensory transmission induced by MCS may reflect its antinociceptive effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  12. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  13. Transformation of Cortex-wide Emergent Properties during Motor Learning.

    Science.gov (United States)

    Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki

    2017-05-17

    Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Motor cortex changes after amputation are modulated by phantom limb motor control rather than pain

    DEFF Research Database (Denmark)

    Raffin, Estelle E.; Pascal, Giraux,; Karen, Reilly,

    Amputation of a limb induces reorganization within the contralateral primary motor cortex (M1-c) (1-3). In the case of hand amputation, M1-c areas evoking movements in the face and the remaining part of the upper-limb expand toward the hand area. Despite this expansion, the amputated hand still...

  15. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Representation of individual forelimb muscles in primary motor cortex.

    Science.gov (United States)

    Hudson, Heather M; Park, Michael C; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2017-07-01

    Stimulus-triggered averaging (StTA) of forelimb muscle electromyographic (EMG) activity was used to investigate individual forelimb muscle representation within the primary motor cortex (M1) of rhesus macaques with the objective of determining the extent of intra-areal somatotopic organization. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was simultaneously recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 µA at 15 Hz) was delivered throughout the movement task and individual stimuli were used as triggers for generating StTAs of EMG activity. StTAs were used to map the cortical representations of individual forelimb muscles. As reported previously (Park et al. 2001), cortical maps revealed a central core of distal muscle (wrist, digit, and intrinsic hand) representation surrounded by a horseshoe-shaped proximal (shoulder and elbow) muscle representation. In the present study, we found that shoulder and elbow flexor muscles were predominantly represented in the lateral branch of the horseshoe whereas extensors were predominantly represented in the medial branch. Distal muscles were represented within the core distal forelimb representation and showed extensive overlap. For the first time, we also show maps of inhibitory output from motor cortex, which follow many of the same organizational features as the maps of excitatory output. NEW & NOTEWORTHY While the orderly representation of major body parts along the precentral gyrus has been known for decades, questions have been raised about the possible existence of additional more detailed aspects of somatotopy. In this study, we have investigated this question with respect to muscles of the arm and show consistent features of within-arm (intra-areal) somatotopic organization. For the first time we also show maps of how inhibitory output from motor cortex is

  17. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  18. Motor cortex compensates for lack of sensory and motor experience during auditory speech perception.

    Science.gov (United States)

    Schmitz, Judith; Bartoli, Eleonora; Maffongelli, Laura; Fadiga, Luciano; Sebastian-Galles, Nuria; D'Ausilio, Alessandro

    2018-01-06

    Listening to speech has been shown to activate motor regions, as measured by corticobulbar excitability. In this experiment, we explored if motor regions are also recruited during listening to non-native speech, for which we lack both sensory and motor experience. By administering Transcranial Magnetic Stimulation (TMS) over the left motor cortex we recorded corticobulbar excitability of the lip muscles when Italian participants listened to native-like and non-native German vowels. Results showed that lip corticobulbar excitability increased for a combination of lip use during articulation and non-nativeness of the vowels. Lip corticobulbar excitability was further related to measures obtained in perception and production tasks showing a negative relationship with nativeness ratings and a positive relationship with the uncertainty of lip movement during production of the vowels. These results suggest an active and compensatory role of the motor system during listening to perceptually/articulatory unfamiliar phonemes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Population response characteristics of intrinsic signals in the cat somatosensory cortex following canine mechanical stimulation.

    Science.gov (United States)

    Tao, Jianxiang; Wang, Jian; Li, Zhong; Meng, Jianjun; Yu, Hongbo

    2016-08-04

    Intrinsic signal optical imaging has been widely used to measure functional maps in various sensory cortices due to better spatial resolution and sensitivity for detecting cortical neuroplasticity. However, application of this technique in dentistry has not been reported. In this study, intrinsic signal optical imaging was used to investigate mechanically driven responses in the cat somatosensory cortex, when punctate mechanical stimuli were applied to maxillary canines. The global signal and its spatial organization pattern were obtained. Global signal strength gradually increased with stimulus strength. There was no significant difference in response strength between contralateral and ipsilateral mechanical stimulation. A slightly greater response was recorded in the sigmoidal gyrus than in the coronal gyrus. The cat somatosensory cortex activated by sensory inputs from mechanical stimulation of canines lacks both topographical and functional organization. It is not organized into columns that represent sensory input from each tooth or direction of stimulation. These results demonstrate that intrinsic signal optical imaging is a valid tool for investigating neural responses and neuroplasticity in the somatosensory cortex that represents teeth. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  1. Supplementary motor area-primary motor cortex facilitation in younger but not older adults.

    Science.gov (United States)

    Green, Peta E; Ridding, Michael C; Hill, Keith D; Semmler, John G; Drummond, Peter D; Vallence, Ann-Maree

    2018-04-01

    Growing evidence implicates a decline in white matter integrity in the age-related decline in motor control. Functional neuroimaging studies show significant associations between functional connectivity in the cortical motor network, including the supplementary motor area (SMA), and motor performance. Dual-coil transcranial magnetic stimulation studies show facilitatory connections between SMA and the primary motor cortex (M1) in younger adults. Here, we investigated whether SMA-M1 facilitation is affected by age and whether the strength of SMA-M1 facilitation is associated with bilateral motor control. Dual-coil transcranial magnetic stimulation was used to measure SMA-M1 connectivity in younger (N = 20) and older adults (N = 18), and bilateral motor control was measured with the assembly subtest of the Purdue Pegboard and clinical measures of dynamic balance. SMA-M1 facilitation was seen in younger but not older adults, and a significant positive association was found between SMA-M1 facilitation and bimanual performance. These results show that SMA-M1 facilitation is reduced in older adults compared to younger adults and provide evidence of the functional importance of SMA-M1 facilitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  3. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.

    NARCIS (Netherlands)

    Munchau, A.; Bloem, B.R.; Irlbacher, K.; Trimble, M.R.; Rothwell, J.C.

    2002-01-01

    Connections between the premotor cortex and the primary motor cortex are dense and are important in the visual guidance of arm movements. We have shown previously that it is possible to engage these connections in humans and to measure the net amount of inhibition/facilitation from premotor to motor

  4. Motor learning in animal models of Parkinson’s Disease: Aberrant synaptic plasticity in the motor cortex

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R.; Ding, Jun B

    2017-01-01

    In Parkinson’s disease (PD), dopamine depletion causes dramatic changes in the brain resulting in debilitating cognitive and motor deficits. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time point of PD progression. Models of PD where dopamine tone in the brain are chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this paper, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo, time-lapse imaging and motor-skill behavior assays. In combination with previous studies, a role of the motor cortex in skill-learning, and the impairment of this ability with the loss of dopamine, is becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in the motor-skill learning and cognitive impairments of PD, with the possibility of targeting the motor cortex for future PD therapeutics. PMID:28343366

  5. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    Science.gov (United States)

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated

  6. Behavioral detection of intra-cortical microstimulation in the primary and secondary auditory cortex of cats

    Directory of Open Access Journals (Sweden)

    Zhenling eZhao

    2015-04-01

    Full Text Available Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS delivered in the primary and secondary auditory fields (A1 and A2, respectively. After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal’s behavioral decision process and had an implication for the development of cortical auditory prosthetics.

  7. Stimulation of the human motor cortex alters generalization patterns of motor learning.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Marko, Mollie K; Pekny, Sarah E; Pastor, Damien; Izawa, Jun; Celnik, Pablo; Shadmehr, Reza

    2011-05-11

    It has been hypothesized that the generalization patterns that accompany learning carry the signatures of the neural systems that are engaged in that learning. Reach adaptation in force fields has generalization patterns that suggest primary engagement of a neural system that encodes movements in the intrinsic coordinates of joints and muscles, and lesser engagement of a neural system that encodes movements in the extrinsic coordinates of the task. Among the cortical motor areas, the intrinsic coordinate system is most prominently represented in the primary sensorimotor cortices. Here, we used transcranial direct current stimulation (tDCS) to alter mechanisms of synaptic plasticity and found that when it was applied to the motor cortex, it increased generalization in intrinsic coordinates but not extrinsic coordinates. However, when tDCS was applied to the posterior parietal cortex, it had no effects on learning or generalization in the force field task. The results suggest that during force field adaptation, the component of learning that produces generalization in intrinsic coordinates depends on the plasticity in the sensorimotor cortex.

  8. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome

    OpenAIRE

    Mercier, Catherine; Léonard, Guillaume

    2011-01-01

    Purpose: Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of moto...

  9. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    Science.gov (United States)

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, Pneck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  10. Acute aerobic exercise modulates primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO 2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABA B -mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  11. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms.

    Science.gov (United States)

    Garcia-Larrea, Luis; Peyron, Roland

    2007-01-01

    Motor cortex stimulation (MCS) is relatively recent neurosurgical technique for pain control, the use of which is growing steadily since its description in the last decade. While clinical series show that at least 50% of patients with chronic, pharmacoresistant neuropathic pain may benefit from this technique, the mechanisms of action of MCS remain elusive. In this review, we synthesise a number of studies that, combining electrophysiology and functional imaging, have permitted to proceed from phenomenology to models that may account for part of such mechanisms. MCS appears to trigger rapid and phasic activation in the lateral thalamus, which leads to a cascade of events of longer time-course in medial thalamus, anterior cingulate/orbitofrontal cortices and periaqueductal grey matter. Activity in these latter structures is delayed relative to actual cortical neurostimulation and becomes maximal during the hours that follow MCS arrest. Current hypotheses suggest that MCS may act through at least two mechanisms: activation of perigenual cingulate and orbitofrontal areas may modulate the emotional appraisal of pain, rather than its intensity, while top down activation of brainstem PAG may lead to descending inhibition toward the spinal cord. Recent evidence also points to a possible secretion of endogenous opioids triggered by chronic MCS. This, along with the delayed and long-lasting activation of several brain structures, is consistent with the clinical effects of MCS, which may also last for hours or days after MCS discontinuation.

  12. Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex.

    Science.gov (United States)

    Ueno, Hiroshi; Suemitsu, Shunsuke; Okamoto, Motoi; Matsumoto, Yosuke; Ishihara, Takeshi

    2017-07-04

    Perineuronal nets (PNNs) are structures of extracellular matrix molecules surrounding the cell bodies and proximal dendrites of certain neurons. While PNNs are present throughout the mouse cerebral cortex, recent studies have shown that the components differ among cortical sub-regions and layers, suggesting region-specific functions. Parvalbumin-expressing interneurons (PV neurons) may be important regulators of cortical plasticity during the early "critical period" that is sensitive to sensory input. Here we examined the distribution and developmental functions of PNN components associated with PV neurons in the somatosensory cortex during the critical period. Aggrecan, brevican, neurocan, phosphacan, and tenascin-R were identified as PNN components in the mouse somatosensory cortex. High-magnification analysis revealed that some lectin Wisteria floribunda agglutinin (WFA)-reactive molecules did not co-localize with monoclonal antibody Cat-315 recognition molecules around the cell body. During postnatal development, Cat-315-positive (Cat-315 + ) PNNs appeared later than PNNs binding to the lectin WFA (WFA + PNNs). These WFA + PNNs changed from granular-like to reticular-like structures during normal cortical development, while this transition was delayed by sensory deprivation. This study indicates that the formation of reticular-like WFA + PNNs is dependent on sensory experience in the mouse somatosensory cortex. We suggest that Cat-315 + molecules and WFA expression in PNNs are involved in the early critical period of input-dependent cortical plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Collateralization of the pathways descending from the cerebral cortex to brain stem and spinal cord in cat and monkey

    NARCIS (Netherlands)

    K. Keizer (Koos)

    1989-01-01

    textabstractThe present study deals with the collateralization of the descending pathways from the cerebral cortex to the brain stem and the spinal cord in cat and monkey. The distributions of the branching cortical neurons were studied using retrograde fluorescent tracers. In addition, a new

  14. Specialization for sound localization in fields A1, DZ, and PAF of cat auditory cortex.

    Science.gov (United States)

    Lee, Chen-Chung; Middlebrooks, John C

    2013-02-01

    Cortical deactivation studies in cats have implicated the primary auditory cortex (A1), the dorsal zone (DZ), and the posterior auditory field (PAF) in sound localization behavior, and physiological studies in anesthetized conditions have demonstrated clear differences in spatial sensitivity among those areas. We trained cats to perform two listening tasks and then we recorded from cortical neurons in off-task and in both on-task conditions during single recording sessions. The results confirmed some of the results from anesthetized conditions and revealed unexpected differences. Neurons in each field showed a variety of firing patterns, including onset-only, complex onset and long latency, and suppression or offset. A substantial minority of units showed sharpening of spatial sensitivity, particularly that of onset responses, during task performance: 44 %, 35 %, and 31 % of units in areas A1, DZ, and PAF, respectively, showed significant spatial sharpening. Field DZ was distinguished by a larger percentage of neurons responding best to near-midline locations, whereas the spatial preferences of PAF neurons were distributed more uniformly throughout the contralateral hemifield. Those directional biases also were evident in measures of the accuracy with which neural spike patterns could signal sound locations. Field DZ provided the greatest accuracy for midline locations. The location dependence of accuracy in PAF was orthogonal to that of DZ, with the greatest accuracy for lateral locations. The results suggest a view of spatial representation in the auditory cortex in which DZ exhibits an overrepresentation of the frontal areas around the midline, whereas PAF provides a more uniform representation of contralateral space, including areas behind the head. Spatial preferences of area A1 neurons were intermediate between those of DZ and PAF, sharpening as needed for localization tasks.

  15. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    Science.gov (United States)

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Stimulus-entrained oscillatory activity propagates as waves from area 18 to 17 in cat visual cortex.

    Directory of Open Access Journals (Sweden)

    Lian Zheng

    Full Text Available Previous studies in cat visual cortex reported that area 18 can actively drive neurons in area 17 through cortico-cortical projections. However, the dynamics of such cortico-cortical interaction remains unclear. Here we used multielectrode arrays to examine the spatiotemporal pattern of neuronal activity in cat visual cortex across the 17/18 border. We found that full-field contrast reversal gratings evoked oscillatory wave activity propagating from area 18 to 17. The wave direction was independent of the grating orientation, and could not be accounted for by the spatial distribution of receptive field latencies, suggesting that the waves are largely mediated by intrinsic connections in the cortex. Different from the evoked waves, spontaneous waves propagated along both directions across the 17/18 border. Together, our results suggest that visual stimulation may enhance the flow of information from area 18 to 17.

  17. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Van Hoesen, G W

    1998-01-01

    Limbic system influences on motor behavior seem widespread, and could range from the initiation of action to the motivational pace of motor output. Motor abnormalities are also a common feature of psychiatric illness. Several subcortical limbic-motor entry points have been defined in recent years, but cortical entry points are understood poorly, despite the fact that a part of the limbic lobe, the cingulate motor cortex (area 24c or M3, and area 23c or M4), contributes axons to the corticospinal pathway. Using retrograde and anterograde tracers in rhesus monkeys, we investigated the ipsilateral limbic input to area 24c and adjacent area 23c. Limbic cortical input to areas 24c and 23c arise from cingulate areas 24a, 24b, 23a, 23b, and 32, retrosplenial areas 30 and 29, and temporal areas 35, TF and TH. Areas 24c and 23c were also interconnected strongly. The dysgranular part of the orbitofrontal cortex and insula projects primarily to area 24c while the granular part of the orbitofrontal cortex and insula projects primarily to area 23c. Afferents from cingulate area 25, the retrocalcarine cortex, temporal pole, entorhinal cortex, parasubiculum, and the medial part of area TH target primarily or only area 24c. Our findings indicate that a variety of telencephalic limbic afferents converge on cortex lining the lower bank and fundus of the anterior part of the cingulate sulcus. Because it is known that this cortex gives rise to axons ending in the spinal cord, facial nucleus, pontine gray, red nucleus, putamen, and primary and supplementary motor cortices, we suggest that the cingulate motor cortex forms a strategic cortical entry point for limbic influence on the voluntary motor system.

  18. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    Directory of Open Access Journals (Sweden)

    Benjamin Hertler

    Full Text Available Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1-a gene that encodes the neuropeptide Substance P (Sub P-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session. To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1 contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session. Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  19. Motor cortex excitability following short trains of repetitive magnetic stimuli.

    Science.gov (United States)

    Modugno, N; Nakamura, Y; MacKinnon, C D; Filipovic, S R; Bestmann, S; Berardelli, A; Rothwell, J C

    2001-10-01

    Trains of repetitive transcranial magnetic stimuli (rTMS) appear to have effects on corticospinal excitability that outlast the duration of the train. In order to investigate the mechanism of this effect in more detail we applied short periods of rTMS consisting of up to 20 stimuli at 5 Hz, 10 Hz or 20 Hz (rTMS) to the motor cortex at an intensity equal to resting threshold in 11 healthy, relaxed subjects. Spinal excitability, as judged by effects on the H-reflex or on transcranial anodal facilitation of the H-reflex, was not affected by the rTMS. However, cortical excitability, as judged by the effect on the size of EMG responses evoked by a suprathreshold TMS pulse, was decreased for up to 1 s after the end of rTMS. Post-train suppression was more powerful following longer trains or higher frequencies of rTMS. The predominant suppression contrasts with previous reports of facilitation, particularly after high-frequency rTMS. A second set of experiments, however, showed that this could be converted into facilitation if the intensity of rTMS was increased. We conclude that the after-effects of rTMS depend on its frequency, intensity and duration. The results are consistent with a model in which inhibition and facilitation build up gradually during the course of a conditioning train. Inhibition reaches its maximum effect after only a small number of stimuli, whereas facilitation takes longer. The threshold for evoking inhibition is lower than that for facilitation. Thus if moderate intensities of conditioning train are applied, inhibition is predominant after short trains, whereas facilitation dominates after long trains.

  20. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  1. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1 G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1 G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  2. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    International Nuclear Information System (INIS)

    Rosier, A.M.; Vandesande, F.; Orban, G.A.

    1991-01-01

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of [ 125 I]-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed

  3. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.

  4. Motor cortex changes after amputation are modulated by phantom limb motor control rather than pain

    DEFF Research Database (Denmark)

    Raffin, Estelle E.; Pascal, Giraux,; Karen, Reilly,

    Amputation of a limb induces reorganization within the contralateral primary motor cortex (M1-c) (1-3). In the case of hand amputation, M1-c areas evoking movements in the face and the remaining part of the upper-limb expand toward the hand area. Despite this expansion, the amputated hand still...... retains a residual M1-c activity when amputees perform phantom limb movements (4-5). Except a correlation between phantom limb pain and M1-c expansion of the face (2-3), the relationship between the ability to voluntary move the phantom hand, the level of phantom limb pain, the degree of M1-c...... reorganization and the residual M1-c activity of the amputated hand is unknown. This fMRI study aimed to determine this relationship...

  5. The role of hearing ability and speech distortion in the facilitation of articulatory motor cortex.

    Science.gov (United States)

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Devlin, Joseph T; Adank, Patti

    2017-01-08

    Excitability of articulatory motor cortex is facilitated when listening to speech in challenging conditions. Beyond this, however, we have little knowledge of what listener-specific and speech-specific factors engage articulatory facilitation during speech perception. For example, it is unknown whether speech motor activity is independent or dependent on the form of distortion in the speech signal. It is also unknown if speech motor facilitation is moderated by hearing ability. We investigated these questions in two experiments. We applied transcranial magnetic stimulation (TMS) to the lip area of primary motor cortex (M1) in young, normally hearing participants to test if lip M1 is sensitive to the quality (Experiment 1) or quantity (Experiment 2) of distortion in the speech signal, and if lip M1 facilitation relates to the hearing ability of the listener. Experiment 1 found that lip motor evoked potentials (MEPs) were larger during perception of motor-distorted speech that had been produced using a tongue depressor, and during perception of speech presented in background noise, relative to natural speech in quiet. Experiment 2 did not find evidence of motor system facilitation when speech was presented in noise at signal-to-noise ratios where speech intelligibility was at 50% or 75%, which were significantly less severe noise levels than used in Experiment 1. However, there was a significant interaction between noise condition and hearing ability, which indicated that when speech stimuli were correctly classified at 50%, speech motor facilitation was observed in individuals with better hearing, whereas individuals with relatively worse but still normal hearing showed more activation during perception of clear speech. These findings indicate that the motor system may be sensitive to the quantity, but not quality, of degradation in the speech signal. Data support the notion that motor cortex complements auditory cortex during speech perception, and point to a role

  6. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  7. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  8. Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Rockland, K S; Van Hoesen, G W

    2000-02-01

    Area prostriata is a poorly understood cortical area located in the anterior portion of the calcarine sulcus. It has attracted interest as a separate visual area and progenitor for the cortex of this modality. In this report we describe a direct projection from area prostriata to the rostral cingulate motor cortex (M3) that forms the fundus and lower bank of the anterior part of the cingulate sulcus. Injections of retrograde tracers in M3 resulted in labeled neurons in layers III, V and VI of prostriate cortex. However, injections of anterograde tracers in M3 did not demonstrate axon terminals in area prostriata. This connection was organized topographically such that the rostral part of M3 received input from the dorsal region of prostriate cortex, whereas middle and caudal levels of M3 received input from more ventral locations. Injections of retrograde and anterograde tracers in the caudal cingulate motor cortex (M4) did not produce labeling in prostriate cortex. Cytoarchitectural analysis confirmed the identity of area prostriata and further clarified its extent and borders with the parasubiculum of the hippocampal formation rostrally, and V1 of the visual cortex caudally. This linkage between cortex bordering V1 and cortex giving rise to a component of the corticofacial and corticospinal pathways demonstrates a more direct visuomotor route than visual association projections coursing laterally.

  9. High-gamma oscillations in the motor cortex during visuo-motor coordination: A tACS interferential study.

    Science.gov (United States)

    Santarnecchi, E; Biasella, A; Tatti, E; Rossi, A; Prattichizzo, D; Rossi, S

    2017-05-01

    While the role of beta (∼20Hz), theta (∼5Hz) and alpha (∼10Hz) oscillations in the motor areas have been repeatedly associated with defined properties of motor performance, the investigation of gamma (∼40-90Hz) oscillatory activity is a more recent and still not fully understood component of motor control physiology, despite its potential clinical relevance for motor disorders. We have implemented an online neuromodulation paradigm based on transcranial alternating current stimulation (tACS) of the dominant motor cortex during a visuo-motor coordination task. This approach would allow a better understanding of the role of gamma activity, as well as that of other oscillatory bands, and their chronometry throughout the task. We tested the effects of 5Hz, 20Hz, 60Hz (mid-gamma) 80Hz (high-gamma) and sham tACS on the performance of a sample of right-handed healthy volunteers, during a custom-made unimanual tracking task addressing several randomly occurring components of visuo-motor coordination (i.e., constant velocity or acceleration pursuits, turns, loops). Data showed a significant enhancement of motor performance during high-gamma stimulation - as well as a trending effect for mid-gamma - with the effect being prominent between 200 and 500ms after rapid changes in tracking trajectory. No other effects during acceleration or steady pursuit were found. Our findings posit a role for high-frequency motor cortex gamma oscillations during complex visuo-motor tasks involving the sudden rearrangement of motor plan/execution. Such a "prokinetic" effect of high-gamma stimulation might be worth to be tested in motor disorders, like Parkinson's disease, where the switching between different motor programs is impaired. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...... connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC-M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied...

  11. L-dopa methyl ester attenuates amblyopia-induced neuronal injury in visual cortex of amblyopic cat.

    Science.gov (United States)

    Li, Rong; Liang, Tao; Chen, Zhaoni; Zhang, Shijun; Lin, Xing; Huang, Renbin

    2013-09-15

    In the present study, we aimed to assess the potential anti-amblyopic effects of L-dopa methyl ester (LDME) on visual cortex area 17 in an amblyopic feline model induced by monocular vision deprivation. After LDME administration, pathophysiologic and ultrastructural observations were utilized to examine the morphological changes of nerve cells in visual cortex area 17. Dopamine (DA) and its metabolite contents in visual cortex area 17 were investigated through HPLC analysis. Apoptotic cells in visual cortex area 17 were evaluated by TUNEL assay. Additionally, the c-fos expression both at gene and protein levels was assessed using RT-PCR and immunohistochemistry analyses, respectively. The contents of DA and its metabolites were elevated in visual cortex area 17. Neuronal rejuvenation which occurred in visual cortex area 17 was observed through anatomical and physiological assessments. Similarly, TUNEL results showed that neuronal apoptosis was inhibited in the visual cortex of amblyopic cats by both L-dopa and LDME therapies. Meanwhile, the c-fos expression was notably up-regulated at both the mRNA and protein levels by the treatments. These findings suggested that LDME treatment could effectively increase DA and its metabolite contents, and restrain the apoptotic process, as well as elevate the c-fos expression in nerve cells of visual cortex area 17. Taken together, LDME might ameliorate the functional cytoarchitecture in visual cortex area 17 through mechanisms that elevate DA content and increase endogenous c-fos expression, as well as inhibit neuronal lesion in visual cortex tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    Directory of Open Access Journals (Sweden)

    M Cornelia Stoeckel

    Full Text Available Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  13. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset. © 2015 Wiley Periodicals, Inc.

  14. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    Science.gov (United States)

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Dahlke, Carolin; Saberi, Darius; Ott, Bastian

    2015-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of the upper and lower motor neurons, characterized by rapid progressive weakness, muscle atrophy, dysarthria, dysphagia, and dyspnea. Whereas the exact cause of ALS remains uncertain, the wobbler mouse (phenotype...... WR; genotype wr/wr) equally develops a progressive degeneration of motor neurons in the spinal cord and motor cortex with striking similarities to sporadic human ALS, suggesting the possibility of a common pathway to cell death. Methods With the aid of immunohistochemistry, confocal laser scanning...... microscopy, and transmission electron microscopy techniques, we analyze the proliferation behavior of microglial cells and astrocytes. We also investigate possible motor neuron death in the mouse motor cortex at different stages of the wobbler disease, which so far has not received much attention. Results...

  16. The role of transcranial magnetic stimulation in evaluation of motor cortex excitability in Rett syndrome.

    Science.gov (United States)

    Krajnc, Natalija; Zidar, Janez

    2016-07-01

    Rett syndrome (RTT) is a frequent neurodevelopmental disorder confirmed by clinical criteria and supported by the methyl-CpG-binding protein 2 gene (MECP2) mutation. A short central motor conduction time (CMCT) was reported in transcranial magnetic stimulation (TMS) studies performed in RTT. This was attributed to hyperexcitability of the motor cortex and/or spinal motor neurons, but was not studied further. We performed TMS in RTT to evaluate motor cortex excitability by determining the cortical motor threshold (CMT) and motor cortex inhibition by the cortical silent period (CSP) besides measuring CMCT. Single-pulse TMS was performed in 17 Rett patients, diagnosed by clinical criteria and MECP2 mutation testing, and the same number of healthy controls. The outcome measures were compared between RTT groups with different antiepileptic drugs (AED) and those with and without the MECP2 mutation. CMCT was shorter, but we found elevated CMT and shorter CSP, which suggests decreased excitatory and inhibitory motor cortical function. The outcome was independent of AED and the presence or absence of the MECP2 mutation. Decreased excitatory and inhibitory motor cortical function could explain the short CMCT, with higher stimulus intensities needed to excite pyramidal neurons. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    Science.gov (United States)

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  18. A Study on a Brain-Computer Interface for Motor Assist by Prefrontal Cortex

    Science.gov (United States)

    Misawa, Tadanobu; Takano, Shinya; Shimokawa, Tetsuya; Hirobayashi, Shigeki

    In recent times, considerable research has been conducted on the development of brain-computer interfaces (BCIs). Although there have been several reports on BCIs that assist motor functions by measurement of brain activity in the motor cortex, only a few studies have reported on BCI that assist motor functions by measurement of activity in areas other than the motor cortex. In this study, we experimentally develop a BCI that assists motor functions on the basis of brain activity in the prefrontal cortex. In this BCI system, subjects are shown the labyrinth problem. Concretely, brain activity is measured using fNIRS and the data are acquired in real time. The signal processing module implements low pass filtering of these signals. Further, the pattern classification module used in this system currently is a support vector machine. 22 subjects, both male and female, volunteered to participate in this experiment. 8 of these 22 subjects were able to solve the labyrinth problem. In this experiment, we could not obtain a high distinction. However, these results show that it is possible to develop BCI systems that assist motor functions using information from the prefrontal cortex.

  19. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  20. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  1. Contribution of the primary motor cortex to motor imagery: a subthreshold TMS study.

    Science.gov (United States)

    Pelgrims, Barbara; Michaux, Nicolas; Olivier, Etienne; Andres, Michael

    2011-09-01

    Motor imagery (MI) mostly activates the same brain regions as movement execution (ME) including the primary motor cortex (Brodmann area 4, BA4). However, whether BA4 is functionally relevant for MI remains controversial. The finding that MI tasks are impaired by BA4 virtual lesions induced by transcranial magnetic stimulation (TMS) supports this view, though previous studies do not permit to exclude that BA4 is also involved in other processes such as hand recognition. Additionally, previous works largely underestimated the possible negative consequences of TMS-induced muscle twitches on MI task performance. Here we investigated the role of BA4 in MI by interfering with the function of the left or right BA4 in healthy subjects performing a MI task in which they had to make laterality judgements on rotated hand drawings. We used a subthreshold repetitive TMS protocol and monitored electromyographic activity to exclude undesirable effects of hand muscle twitches. We found that BA4 virtual lesions selectively increased reaction times in laterality judgments on hand drawings, leaving unaffected a task of equal difficulty, involving judgments on letters. Interestingly, the effects of virtual lesions of left and right BA4 on MI task performance were the same irrespective of the laterality (left/right) of hand drawings. A second experiment allowed us to rule out the possibility that BA4 lesions affect visual or semantic processing of hand drawings. Altogether, these results indicate that BA4 contribution to MI tasks is specifically related to the mental simulation process and further emphasize the functional coupling between ME and MI. Copyright © 2010 Wiley-Liss, Inc.

  2. Reversible worsening of Parkinson disease motor symptoms after oral intake of Uncaria tomentosa (cat's claw).

    Science.gov (United States)

    Cosentino, Carlos; Torres, Luis

    2008-01-01

    Uncaria tomentosa (UT), also known as cat's claw, isa Peruvian Rubiaceae species widely used in traditional medicine for the treatment of a wide range of health problems. There is no report about the use, safety, and efficacy of UT in neurological disorders. We describe reversible worsening of motor signs in a patient with Parkinson disease after oral intake of UT, and some possible explanations are discussed.

  3. A computational role for bistability and traveling waves in motor cortex

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-09-01

    Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.

  4. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl

    2005-01-01

    The role of the prefrontal cortex remains controversial. Neuroimaging studies support modality-specific and process-specific functions related to working memory and attention. Its role may also be defined by changes in its influence over other brain regions including sensory and motor cortex. We...... used functional magnetic imaging (fMRI) to study the free selection of actions and colours. Control conditions used externally specified actions and colours. The prefrontal cortex was activated during free selection, regardless of modality, in contrast to modality-specific activations outside...... included high-order interactions between modality, selection and regional activity. There was greater coupling between prefrontal cortex and motor cortex during free selection and action tasks, and between prefrontal cortex and visual cortex during free selection of colours. The results suggest...

  5. Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke.

    Science.gov (United States)

    Carlson, Helen L; MacMaster, Frank P; Harris, Ashley D; Kirton, Adam

    2017-03-01

    Perinatal stroke causes hemiparetic cerebral palsy and lifelong motor disability. Bilateral motor cortices are key hubs within the motor network and their neurophysiology determines clinical function. Establishing biomarkers of motor cortex function is imperative for developing and evaluating restorative interventional strategies. Proton magnetic resonance spectroscopy (MRS) quantifies metabolite concentrations indicative of underlying neuronal health and metabolism in vivo. We used functional magnetic resonance imaging (MRI)-guided MRS to investigate motor cortex metabolism in children with perinatal stroke. Children aged 6-18 years with MRI-confirmed perinatal stroke and hemiparetic cerebral palsy were recruited from a population-based cohort. Metabolite concentrations were assessed using a PRESS sequence (3T, TE = 30 ms, voxel = 4 cc). Voxel location was guided by functional MRI activations during finger tapping tasks. Spectra were analysed using LCModel. Metabolites were quantified, cerebral spinal fluid corrected and compared between groups (ANCOVA) controlling for age. Associations with clinical motor performance (Assisting Hand, Melbourne, Box-and-Blocks) were assessed. Fifty-two participants were studied (19 arterial, 14 venous, 19 control). Stroke participants demonstrated differences between lesioned and nonlesioned motor cortex N-acetyl-aspartate [NAA mean concentration = 10.8 ± 1.9 vs. 12.0 ± 1.2, P children with arterial but not venous strokes. Interrogation of motor cortex by fMRI-guided MRS is feasible in children with perinatal stroke. Metabolite differences between hemispheres, stroke types and correlations with motor performance support functional relevance. MRS may be valuable in understanding the neurophysiology of developmental neuroplasticity in cerebral palsy. Hum Brain Mapp 38:1574-1587, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    Directory of Open Access Journals (Sweden)

    Marie-Christine Désy

    Full Text Available The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS. Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects.

  9. 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex.

    Science.gov (United States)

    Holler, Iris; Siebner, Hartwig R; Cunnington, Ross; Gerschlager, Willibald

    2006-01-16

    In the present study, we analyzed how high-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor hand area (M1-Hand) shapes anticipatory motor activity in frontal areas as indexed by the contingent negative variation (CNV). Eight right-handed volunteers received real or sham 5Hz rTMS at an intensity of 90% resting motor threshold (1,500 stimuli per session). Real but not sham rTMS to left M1-Hand induced a site-specific increase in amplitude of the late component of the CNV at the electrode C3 overlaying the site of stimulation. The increase in pre-movement activity in the stimulated cortex may reflect an increase in facilitatory drive from connected motor areas, enhanced responsiveness of the stimulated cortex to these inputs or both.

  10. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rostral Agranular Insular Cortex Lesion with Motor Cortex Stimulation Enhances Pain Modulation Effect on Neuropathic Pain Model

    Directory of Open Access Journals (Sweden)

    Hyun Ho Jung

    2016-01-01

    Full Text Available It is well known that the insular cortex is involved in the processing of painful input. The aim of this study was to evaluate the pain modulation role of the insular cortex during motor cortex stimulation (MCS. After inducing neuropathic pain (NP rat models by the spared nerve injury method, we made a lesion on the rostral agranular insular cortex (RAIC unilaterally and compared behaviorally determined pain threshold and latency in 2 groups: Group A (NP + MCS; n=7 and Group B (NP + RAIC lesion + MCS; n=7. Also, we simultaneously recorded neuronal activity (NP; n=9 in the thalamus of the ventral posterolateral nucleus and RAIC to evaluate electrophysiological changes from MCS. The pain threshold and tolerance latency increased in Group A with “MCS on” and in Group B with or without “MCS on.” Moreover, its increase in Group B with “MCS on” was more than that of Group B without MCS or of Group A, suggesting that MCS and RAIC lesioning are involved in pain modulation. Compared with the “MCS off” condition, the “MCS on” induced significant threshold changes in an electrophysiological study. Our data suggest that the RAIC has its own pain modulation effect, which is influenced by MCS.

  12. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  13. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, V.; Avenanti, Alessio

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  14. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, S.; Vitale, F.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  15. Descending volleys generated by efficacious epidural motor cortex stimulation in patients with chronic neuropathic pain

    NARCIS (Netherlands)

    Lefaucheur, Jean-Pascal; Holsheimer, J.; Goujon, Colette; Keravel, Yves; Nguyen, Jean-Paul

    Epidural motor cortex stimulation (EMCS) is a therapeutic option for chronic, drug-resistant neuropathic pain, but its mechanisms of action remain poorly understood. In two patients with refractory hand pain successfully treated by EMCS, the presence of implanted epidural cervical electrodes for

  16. Increased prefrontal activity and reduced motor cortex activity during imagined eccentric compared to concentric muscle actions

    Science.gov (United States)

    Olsson, C.-J.; Hedlund, M.; Sojka, P.; Lundström, R.; Lindström, B.

    2012-01-01

    In this study we used functional magnetic resonance imaging (fMRI) to examine differences in recruited brain regions during the concentric and the eccentric phase of an imagined maximum resistance training task of the elbow flexors in healthy young subjects. The results showed that during the eccentric phase, pre-frontal cortex (BA44) bilaterally was recruited when contrasted to the concentric phase. During the concentric phase, however, the motor and pre-motor cortex (BA 4/6) was recruited when contrasted to the eccentric phase. Interestingly, the brain activity of this region was reduced, when compared to the mean activity of the session, during the eccentric phase. Thus, the neural mechanisms governing imagined concentric and eccentric contractions appear to differ. We propose that the recruitment of the pre-frontal cortex is due to an increased demand of regulating force during the eccentric phase. Moreover, it is possible that the inability to fully activate a muscle during eccentric contractions may partly be explained by a reduction of activity in the motor and pre-motor cortex. PMID:22973217

  17. On the functional organization and operational principles of the motor cortex

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles...... to generate the muscle activation patterns (synergies) required to move the arm and hold it in its final position....

  18. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury

    NARCIS (Netherlands)

    Fraiman, D.; Miranda, M.F.; Erthal, F.; Buur, P.F.; Elschot, M.; Souza, L.; Rombouts, S.A.; Schimmelpenninck, C.A.; Norris, D.G.; Malessy, M.J.; Galves, A.; Vargas, C.D.

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting

  19. tDCS over the motor cortex improves lexical retrieval of action words in poststroke aphasia.

    Science.gov (United States)

    Branscheidt, Meret; Hoppe, Julia; Zwitserlood, Pienie; Liuzzi, Gianpiero

    2018-02-01

    One-third of stroke survivors worldwide suffer from aphasia. Speech and language therapy (SLT) is considered effective in treating aphasia, but because of time constraints, improvements are often limited. Noninvasive brain stimulation is a promising adjuvant strategy to facilitate SLT. However, stroke might render "classical" language regions ineffective as stimulation sites. Recent work showed the effectiveness of motor cortex stimulation together with intensive naming therapy to improve outcomes in aphasia (Meinzer et al. 2016). Although that study highlights the involvement of the motor cortex, the functional aspects by which it influences language remain unclear. In the present study, we focus on the role of motor cortex in language, investigating its functional involvement in access to specific lexico-semantic (object vs. action relatedness) information in poststroke aphasia. To this end, we tested effects of anodal transcranial direct current stimulation (tDCS) to the left motor cortex on lexical retrieval in 16 patients with poststroke aphasia in a sham-controlled, double-blind study design. Critical stimuli were action and object words, and pseudowords. Participants performed a lexical decision task, deciding whether stimuli were words or pseudowords. Anodal tDCS improved accuracy in lexical decision, especially for words with action-related content and for pseudowords with an "action-like" ending ( t 15  = 2.65, P = 0.036), but not for words with object-related content and pseudowords with "object-like" characteristics. We show as a proof-of-principle that the motor cortex may play a specific role in access to lexico-semantic content. Thus motor-cortex stimulation may strengthen content-specific word-to-semantic concept associations during language treatment in poststroke aphasia. NEW & NOTEWORTHY The role of motor cortex (MC) in language processing has been debated in both health and disease. Recent work has suggested that MC stimulation together with

  20. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  1. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Astrocytes in old cats were significantly denser than in young adult ones, and accompanied by evident hypertrophy of the cell bodies and enhanced immunoreaction of GFAP substance. Purkinje cells (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. The above findings indicate a loss of ...

  2. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  3. Motor cortex representation of the upper-limb in individuals born without a hand.

    Directory of Open Access Journals (Sweden)

    Karen T Reilly

    Full Text Available The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS applied over the primary motor cortex (M1 of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1 whether we could evoke phantom sensations, and 2 whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.

  4. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  5. Transformation of a virtual action plan into a motor plan in the premotor cortex.

    Science.gov (United States)

    Nakayama, Yoshihisa; Yamagata, Tomoko; Tanji, Jun; Hoshi, Eiji

    2008-10-08

    Before preparing to initiate a forthcoming motion, we often acquire information about the future action without specifying actual motor parameters. The information for planning an action at this conceptual level can be provided with verbal commands or nonverbal signals even before the associated motor targets are visible. Under these conditions, the information signifying a virtual action plan must be transformed to information that can be used for constructing a motor plan to initiate specific movements. To determine whether the premotor cortex is involved in this process, we examined neuronal activity in the dorsal premotor cortex (PMd) of monkeys performing a behavioral task designed to isolate the behavioral stages of the acquisition of information for a future action and the construction of a motor plan. We trained the animals to receive a symbolic instruction (color and shape of an instruction cue) to determine whether to select the right or left of targets to reach, despite the physical absence of targets. Subsequently, two targets appeared on a screen at different locations. The animals then determined the correct target (left or right) based on the previous instruction and prepared to initiate a reaching movement to an actual target. The experimental design dissociated the selection of the right/left at an abstract level (action plan) from the physical motor plan. Here, we show that activity of individual PMd neurons initially reflects a virtual action plan transcending motor specifics, before these neurons contribute to a transformation process that leads to activity encoding a motor plan.

  6. Linear summation of outputs in a balanced network model of motor cortex.

    Science.gov (United States)

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.

  7. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    Science.gov (United States)

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  8. Occlusion of LTP-like plasticity in human primary motor cortex by action observation.

    Directory of Open Access Journals (Sweden)

    Jean-François Lepage

    Full Text Available Passive observation of motor actions induces cortical activity in the primary motor cortex (M1 of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement--similarly to active motor practice--would inhibit subsequent long-term potentiation-like (LTP plasticity induced by paired-associative stimulation (PAS. Before undergoing PAS, participants were asked to either 1 perform abductions of the right thumb as fast as possible; 2 passively observe someone else perform thumb abductions; or 3 passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP were used to assess cortical excitability before and after motor practice (or observation and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the "moving dot" group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning.

  9. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test...... stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the “hot-spot” of the tongue motor cortex and motor evoked potentials (MEPs) were.......042) in study 1. In study 2, there was a significant effect of ISI (PICF in the tongue motor cortex....

  10. Primary writing tremor: motor cortex reorganisation and disinhibition.

    Science.gov (United States)

    Byrnes, Michelle L; Mastaglia, Frank L; Walters, Susan E; Archer, Sarah-Anne R; Thickbroom, Gary W

    2005-01-01

    Primary writing tremor (PWT) is a task-specific tremor of uncertain origin. There has been debate as to whether PWT represents a variant of essential tremor or a tremulous form of focal dystonia related to writer's cramp. In writer's cramp there is evidence of changes in intracortical inhibition (ICI), as well as cortical motor reorganisation. To study corticomotor organisation and short-latency ICI in a patient with typical task-specific PWT. Transcranial magnetic stimulation mapping of the corticomotor representation of the hand and studies of ICI using paired-pulse stimulation were performed in a 47-year-old right-handed woman with a pure task-specific writing tremor. The motor maps for the hand were displaced posteriorly on both sides and reverted to a normal position after treatment with botulinum toxin. Short-latency ICI was reduced for the dominant hand. The findings indicate reorganisation and disinhibition of the corticomotor projection to the hand and point to the participation of cortical centres in the origin of PWT.

  11. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex.

    Science.gov (United States)

    Jara, J H; Stanford, M J; Zhu, Y; Tu, M; Hauswirth, W W; Bohn, M C; DeVries, S H; Özdinler, P H

    2016-03-01

    Direct gene delivery to the neurons of interest, without affecting other neuron populations in the cerebral cortex, represent a challenge owing to the heterogeneity and cellular complexity of the brain. Genetic modulation of corticospinal motor neurons (CSMN) is required for developing effective and long-term treatment strategies for motor neuron diseases, in which voluntary movement is impaired. Adeno-associated viruses (AAV) have been widely used for neuronal transduction studies owing to long-term and stable gene expression as well as low immunoreactivity in humans. Here we report that AAV2-2 transduces CSMN with high efficiency upon direct cortex injection and that transduction efficiencies are similar during presymptomatic and symptomatic stages in hSOD1(G93A) transgenic amyotrophic lateral sclerosis (ALS) mice. Our findings reveal that choice of promoter improves selectivity as AAV2-2 chicken β-actin promoter injection results in about 70% CSMN transduction, the highest percentage reported to date. CSMN transduction in both wild-type and transgenic ALS mice allows detailed analysis of single axon fibers within the corticospinal tract in both cervical and lumbar spinal cord and reveals circuitry defects, which mainly occur between CSMN and spinal motor neurons in hSOD1(G93A) transgenic ALS mice. Our findings set the stage for CSMN gene therapy in ALS and related motor neuron diseases.

  12. The effect of speech distortion on the excitability of articulatory motor cortex.

    Science.gov (United States)

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Hogan, John; Devlin, Joseph T; Adank, Patti

    2016-03-01

    It has become increasingly evident that human motor circuits are active during speech perception. However, the conditions under which the motor system modulates speech perception are not clear. Two prominent accounts make distinct predictions for how listening to speech engages speech motor representations. The first account suggests that the motor system is most strongly activated when observing familiar actions (Pickering and Garrod, 2013). Conversely, Wilson and Knoblich's account asserts that motor excitability is greatest when observing less familiar, ambiguous actions (Wilson and Knoblich, 2005). We investigated these predictions using transcranial magnetic stimulation (TMS). Stimulation of the lip and hand representations in the left primary motor cortex elicited motor evoked potentials (MEPs) indexing the excitability of the underlying motor representation. MEPs for lip, but not for hand, were larger during perception of distorted speech produced using a tongue depressor, relative to naturally produced speech. Additional somatotopic facilitation yielded significantly larger MEPs during perception of lip-articulated distorted speech sounds relative to distorted tongue-articulated sounds. Critically, there was a positive correlation between MEP size and the perception of distorted speech sounds. These findings were consistent with predictions made by Wilson & Knoblich (Wilson and Knoblich, 2005), and provide direct evidence of increased motor excitability when speech perception is difficult. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  14. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Xinyao Guo

    Full Text Available Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  15. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer

    Science.gov (United States)

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-01-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). Hmax (H-wave maximum amplitude)/Mmax (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential

  16. Representation of action semantics in the motor cortex and Broca's area.

    Science.gov (United States)

    Zhang, Zuo; Sun, Yaoru; Wang, Zijian

    2018-04-01

    Previous studies have shown that both reading action words and observing actions engage the motor cortex and Broca's area, but it is still controversial whether a somatotopic representation exists for action verbs within the motor cortex and whether Broca's area encodes action-specific semantics for verbs. Here we examined these two issues using a set of functional MRI experiments, including word reading, action observation and a movement localiser task. Results from multi-voxel pattern analysis (MVPA) showed a somatotopic organisation within the motor areas and action-specific activation in Broca's area for observed actions, suggesting the representation of action semantics for observed actions in these neural regions. For action verbs, however, a lack of finding for the somatotopic activation argues against semantic somatotopy within the motor cortex. Furthermore, activation patterns in Broca's area were not separable between action verbs and unrelated verbs, suggesting that Broca's area does not encode action-specific semantics for verbs. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals.

    Science.gov (United States)

    Foerster, Águida; Dutta, Anirban; Kuo, Min-Fang; Paulus, Walter; Nitsche, Michael A

    2018-02-14

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which alters motor functions in healthy humans and in neurological patients. Most studies so far investigated the effects of tDCS on mechanisms underlying improvements in upper limb performance. To investigate the effect of anodal tDCS over the lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, we conducted a randomized, single-blind and sham-controlled study. Thirty-three (25.81 ± 3.85, 14 female) volunteers were included, and received anodal or sham tDCS over the left M1 (M1-tDCS); 0.0625 mA/cm 2 anodal tDCS was applied for 15 min during performance of a visuo-motor task (VMT) with the right leg. Motor learning was monitored for performance speed and accuracy based on electromyographic recordings. We also investigated the influence of electrode size and baseline responsivity to transcranial magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, only M1-tDCS applied with small electrodes and in volunteers with high baseline sensitivity to TMS significantly improved VMT performance. The computational analysis showed that the small anode was more specific to the targeted leg motor cortex volume when compared to the large anode. We conclude that anodal M1-tDCS modulates VMT performance in healthy subjects. As these effects critically depend on sensitivity to TMS and electrode size, future studies should investigate the effects of intensified tDCS and/or model-based different electrode positions in low-sensitivity TMS individuals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  19. Sentential context modulates the involvement of the motor cortex in action language processing: an FMRI study.

    Science.gov (United States)

    Schuil, Karen D I; Smits, Marion; Zwaan, Rolf A

    2013-01-01

    Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a weak view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in non-literal sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to non-literal and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than non-literal action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  20. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.

    2013-01-01

    progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8......Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network...

  1. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    2014-01-01

    and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the "hot-spot" of the tongue...... motor cortex and motor evoked potentials (MEPs) were recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs: 2, 10, 15 ms were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body.......001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (Ptongue motor pathways using ppTMS and SICI...

  2. Dissociable somatotopic representations of Chinese action verbs in the motor and premotor cortex.

    Science.gov (United States)

    Wu, Haiyan; Mai, Xiaoqin; Tang, Honghong; Ge, Yue; Luo, Yue-Jia; Liu, Chao

    2013-01-01

    The embodied view of language processing holds that language comprehension involves the recruitment of sensorimotor information, as evidenced by the somatotopic representation of action verbs in the motor system. However, this review has not yet been examined in logographic scripts such as Chinese, in which action verbs can provide explicit linguistic cues to the effectors (arm, leg, mouth) that conduct the action (hit, jump, drink). We compared the somatotopic representation of Chinese verbs that contain such effector cues and those that do not. The results showed that uncued verbs elicited similar somatotopic representation in the motor and premotor cortex as found in alphabetic scripts. However, effector-cued verbs demonstrated an inverse somatotopic pattern by showing reduced activation in corresponding motor areas, despite that effector-cued verbs actually are rated higher in imageability than uncued verbs. Our results support the universality of somatotopic representation of action verbs in the motor system.

  3. Functional connectivity for somatosensory and motor cortex in spastic diplegia.

    Science.gov (United States)

    Burton, Harold; Dixit, Sachin; Litkowski, Patricia; Wingert, Jason R

    2009-12-01

    Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627-638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs.

  4. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.

    Science.gov (United States)

    Kumru, Hatice; Albu, Sergiu; Rothwell, John; Leon, Daniel; Flores, Cecilia; Opisso, Eloy; Tormos, Josep Maria; Valls-Sole, Josep

    2017-10-01

    Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS ('magnetic-PAS') on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle. Eleven healthy subjects underwent three 10min stimulation sessions: 10HzrPMS alone, applied in trains of 5 stimuli every 10s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms before and immediately after each intervention. Magnetic-PAS , but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle. Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle. Application of magnetic-PAS might be relevant for motor rehabilitation. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  5. Epilepsy surgery involving the sensory-motor cortex.

    Science.gov (United States)

    Pondal-Sordo, Margarita; Diosy, David; Téllez-Zenteno, José F; Girvin, John P; Wiebe, Samuel

    2006-12-01

    involving the pre-central and inferior rolandic cortex. In unselected patients with intractable perirolandic epilepsy, many of whom have large, complex epileptogenic lesions, various levels of seizure improvement can be achieved in almost 75% through well-planned surgical resections. New, severe post-operative neurological deficits can occur in 23% of these patients and appear to be more frequent in older patients. Whereas scalp EEG provided limited information to guide surgery, findings on interictal ECoG predicted seizure outcome.

  6. Dorsal premotor cortex is involved in switching motor plans

    Science.gov (United States)

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  7. Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT) and Alberta Infant Motor Scale (AIMS): Validity and Responsiveness.

    Science.gov (United States)

    Dumas, Helene M; Fragala-Pinkham, Maria A; Rosen, Elaine L; Lombard, Kelly A; Farrell, Colleen

    2015-11-01

    Although preliminary studies have established a good psychometric foundation for the Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT) for a broad population of youth with disabilities, additional validation is warranted for young children. The study objective was to (1) examine concurrent validity, (2) evaluate the ability to identify motor delay, and (3) assess responsiveness of the PEDI-CAT Mobility domain and the Alberta Infant Motor Scale (AIMS). Fifty-three infants and young children (<18 months of age) admitted to a pediatric postacute care hospital and referred for a physical therapist examination were included. The PEDI-CAT Mobility domain and the AIMS were completed during the initial physical therapist examination, at 3-month intervals, and at discharge. A Spearman rank correlation coefficient was used to examine concurrent validity. A chi-square analysis of age percentile scores was used to examine the identification of motor delay. Mean score differences from initial assessment to final assessment were analyzed to evaluate responsiveness. A statistically significant, fair association (rs=.313) was found for the 2 assessments. There was no significant difference in motor delay identification between tests; however, the AIMS had a higher percentage of infants with scores at or below the fifth percentile. Participants showed significant changes from initial testing to final testing on the PEDI-CAT Mobility domain and the AIMS. This study included only young patients (<18 months of age) in a pediatric postacute hospital; therefore, the generalizability is limited to this population. The PEDI-CAT Mobility domain is a valid measure for young children admitted to postacute care and is responsive to changes in motor skills. However, further item and standardization development is needed before the PEDI-CAT is used confidently to identify motor delay in children <18 months of age. © 2015 American Physical Therapy Association.

  8. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: Anatomy, physiology and mechanisms

    Directory of Open Access Journals (Sweden)

    Emmanuel eBui Quoc

    2012-01-01

    Full Text Available In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When the latter is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, such data are sparse and incomplete. Thus, little is known about the consequences of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non deviated eye. Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute in succession to the development of the callosal maps in visual cortex.

  9. Stimulation of dural vessels excites the SI somatosensory cortex of the cat via a relay in the thalamus.

    Science.gov (United States)

    Lambert, Geoffrey A; Hoskin, Karen L; Michalicek, Jan; Panahi, Seyed E; Truong, Linda; Zagami, Alessandro S

    2014-04-01

    We carried out experiments in cats to determine the thalamo-cortical projection sites of trigeminovascular sensory neurons. 1) We stimulated the middle meningeal artery (MMA) with C-fibre intensity electrical shocks and made field potential recordings over the somatosensory cortical surface. 2) We then recorded neurons in the ventroposteromedial (VPM) nucleus of the thalamus in search of neurons which could be activated from the skin, MMA and superior sagittal sinus. 3) Finally, we attempted to antidromically activate the neurons found in stage 2 by stimulating the responsive cortical areas revealed in stage 1. VPM neurons received trigeminovascular input, input from the V1 facial skin and could also be activated by electrical stimulation of the somatosensory cortex. VPM neurons activated from the cortex responded with short and invariant latencies (6.7 ± 7.7 msec mean and SD). They could follow high rates of stimulation and sometimes showed collision with orthodromic action potentials. We conclude that somatosensory (SI) cortical stimulation excites trigeminovascular VPM neurons antidromically. In consequence, these VPM neurons project to the somatosensory cortex. These findings may help to explain the ability of migraineurs with headache in the trigeminal distribution to localise their pain to a particular region in this distribution.

  10. Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness.

    Science.gov (United States)

    Butler, Blake E; de la Rua, Alexandra; Ward-Able, Taylor; Lomber, Stephen G

    2018-03-01

    It has been well established that following sensory loss, cortical areas that would normally be involved in perceiving stimuli in the absent modality are recruited to subserve the remaining senses. Despite this compensatory functional reorganization, there is little evidence to date for any substantial change in the patterns of anatomical connectivity between sensory cortices. However, while many auditory areas are contracted in the deaf, the second auditory cortex (A2) of the cat undergoes a volumetric expansion following hearing loss, suggesting this cortical area may demonstrate a region-specific pattern of structural reorganization. To address this hypothesis, and to complement existing literature on connectivity within auditory cortex, we injected a retrograde neuronal tracer across the breadth and cortical thickness of A2 to provide the first comprehensive quantification of projections from cortical and thalamic auditory and non-auditory regions to the second auditory cortex, and to determine how these patterns are affected by the onset of deafness. Neural projections arising from auditory, visual, somatomotor, and limbic cortices, as well as thalamic nuclei, were compared across normal hearing, early-deaf, and late-deaf animals. The results demonstrate that, despite previously identified changes in A2 volume, the pattern of projections into this cortical region are unaffected by the onset of hearing loss. These results fail to support the idea that crossmodal plasticity reflects changes in the pattern of projections between cortical regions and provides evidence that the pattern of connectivity that supports normal hearing is retained in the deaf brain.

  11. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  12. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  13. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  14. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  15. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Science.gov (United States)

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  16. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy.

    Directory of Open Access Journals (Sweden)

    Vagner Wilian Batista E Sá

    Full Text Available Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS.In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1 the representations of the hand flexor digitorum superficialis (FDS, as well as of the intrinsic hand muscles abductor pollicis brevis (APB, first dorsal interosseous (FDI and abductor digiti minimi (ADM. All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05.Dynamometry performance of the patients' most affected hand (MAH, was worse than that of the less affected hand (LAH and of healthy controls participants (p = 0.031, confirming handgrip impairment. Motor threshold (MT of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy.Decreased sensory-motor function induced by

  17. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

    Science.gov (United States)

    Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves

    2015-01-01

    Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of pDynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased sensory-motor

  18. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  19. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.

    Science.gov (United States)

    Bazán, Paulo Rodrigo; Biazoli, Claudinei Eduardo; Sato, João Ricardo; Amaro, Edson

    2015-12-01

    The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results.

  20. Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, A-M; Siebner, H R; Soelberg Sørensen, P; Paulson, O B; Dyrby, T B; Blinkenberg, M; Madsen, K H

    2013-11-01

    To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). A total of 27 patients with relapsing-remitting MS (RR-MS) and 15 patients with secondary progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8 between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network with increasing clinical disability. No significant relation between motor resting-state connectivity of the right PMd and clinical disability was detected in MS. The increase in functional coupling between left PMd and the motor resting-state network with increasing clinical disability can be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing-remitting stage of the disease. © 2013 John Wiley & Sons A/S.

  1. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  2. Linear summation of outputs in a balanced network modelof motor cortex

    Directory of Open Access Journals (Sweden)

    Charles eCapaday

    2015-06-01

    Full Text Available Given the nonlinearities of the the neural circuitry's elements, we would expect corticalcircuits to respond nonlinearly when activated. Surprisingly, when two points in the motorcortex are activated simultaneously, the EMG responses are the linear sum of the responsesevoked by each of the points activated separately. Additionally, the corticospinal transferfunction is close to linear, implying that the synaptic interactions in motor cortex must beeffectively linear. To account for this, here we develop a model of motor cortex composedof multiple interconnected points, each comprised of reciprocally connected excitatory andinhibitory neurons. We show how nonlinearities in neuronal transfer functions areeschewed by strong synaptic interactions within each point. Consequently, thesimultaneous activation of multiple points results in a linear summation of their respectiveoutputs. We also consider the effects of reduction of inhibition at a cortical point when oneor more surrounding points are active. The network response in this condition is linear overan approximately two to three fold decrease of inhibitory feedback strength. This resultsupports the idea that focal disinhibition allows linear coupling of motor cortical points togenerate movement related muscle activation patterns; albeit with a limitation on gaincontrol. The model also explains why neural activity does not spread as far out as the axonalconnectivity allows, whilst also explaining why distant cortical points can be, nonetheless,functionally coupled by focal disinhibition. Finally, we discuss the advantages that linearinteractions at the cortical level afford to motor command synthesis.

  3. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.

    Science.gov (United States)

    Nitsche, Michael A; Nitsche, Maren S; Klein, Cornelia C; Tergau, Frithjof; Rothwell, John C; Paulus, Walter

    2003-04-01

    To induce prolonged motor cortical excitability reductions by transcranial direct current stimulation in the human. Cathodal direct current stimulation was applied transcranially to the hand area of the human primary motor cortex from 5 to 9 min in separate sessions in twelve healthy subjects. Cortico-spinal excitability was tested by single pulse transcranial magnetic stimulation. Transcranial electrical stimulation and H-reflexes were used to learn about the origin of the excitability changes. Neurone specific enolase was measured before and after the stimulation to prove the safety of the stimulation protocol. Five and 7 min direct current stimulation resulted in motor cortical excitability reductions, which lasted for minutes after the end of stimulation, 9 min stimulation induced after-effects for up to an hour after the end of stimulation, as revealed by transcranial magnetic stimulation. Muscle evoked potentials elicited by transcranial electric stimulation and H-reflexes did not change. Neurone specific enolase concentrations remained stable throughout the experiments. Cathodal transcranial direct current stimulation is capable of inducing prolonged excitability reductions in the human motor cortex non-invasively. These changes are most probably localised intracortically.

  4. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Madhu

    a number of motor and cognitive functions, including motor learning, time perception and precise movement (Thach. 1998; Salman 2002; Matsumura et al 2004). .... ented processes that reach the outer portions of the molecu- lar layer. However, no evident differences in the general morphological characteristics were ...

  5. Different Effects of Implicit and Explicit Motor Sequence Learning on Latency of Motor Evoked Potential Evoked by Transcranial Magnetic Stimulation on the Primary Motor Cortex.

    Science.gov (United States)

    Hirano, Masato; Kubota, Shinji; Koizume, Yoshiki; Tanaka, Shinya; Funase, Kozo

    2016-01-01

    Motor training induces plastic changes in the primary motor cortex (M1). However, it is unclear whether and how the latency of motor-evoked potentials (MEP) and MEP amplitude are affected by implicit and/or explicit motor learning. Here, we investigated the changes in M1 excitability and MEP latency induced by implicit and explicit motor learning. The subjects performed a serial reaction time task (SRTT) with their five fingers. In this task, visual cues were lit up sequentially along with a predetermined order. Through training, the subjects learned the order of sequence implicitly and explicitly. Before and after the SRTT, we recorded MEP at 25 stimulation points around the hot spot for the flexor pollicis brevis (FPB) muscle. Although no changes in MEP amplitude were observed in either session, we found increases in MEP latency and changes in histogram of MEP latency after implicit learning. Our results suggest that reorganization across the motor cortices occurs during the acquisition of implicit knowledge. In contrast, acquisition of explicit knowledge does not appear to induce the reorganization based on the measures we recorded. The fact that the above mentioned increases in MEP latency occurred without any alterations in MEP amplitude suggests that learning has different effects on different physiological signals. In conclusion, our results propose that analyzing a combination of some indices of M1 excitability, such as MEP amplitude and MEP latency, is encouraged in order to understand plasticity across motor cortices.

  6. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    Science.gov (United States)

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

  7. Long lasting structural changes in primary motor cortex after motor skill learning: a behavioural and stereological study

    Directory of Open Access Journals (Sweden)

    PAOLA MORALES

    2008-12-01

    Full Text Available Many motor skills, once acquired, are stored over a long time period, probably sustained by permanent neuronal changes. Thus, in this paper we have investigated with quantitative stereology the generation and persistence of neuronal density changes in primary motor cortex (MI following motor skill learning (skilled reaching task. Rats were trained a lateralised reaching task during an "early" (22-31 days oíd or "late" (362-371 days oíd postnatal period. The trained and corresponding control rats were sacrificed at day 372, immediately after the behavioural testing. The "early" trained group preserved the learned skilled reaching task when tested at day 372, without requiring any additional training. The "late" trained group showed a similar capacity to that of the "early" trained group for learning the skilled reaching task. All trained animáis ("early" and "late" trained groups showed a significant Ínter hemispheric decrease of neuronal density in the corresponding motor forelimb representation área of MI (cortical layers II-III

  8. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.

    Science.gov (United States)

    Zaaimi, Boubker; Dean, Lauren R; Baker, Stuart N

    2018-01-01

    Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more

  9. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Marianne Anke Stephan

    2016-05-01

    Full Text Available The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group. For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group. Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  10. Abnormal motor cortex plasticity in premanifest and very early manifest Huntington's disease

    Science.gov (United States)

    Orth, M; Schippling, S; Schneider, SA; Bhatia, KP; Talelli, P; Tabrizi, SJ; Rothwell, JC

    2010-01-01

    Background Cognition is affected early in Huntington's disease, and in HD animal models there is evidence that this reflects abnormal synaptic plasticity. We investigated whether there is evidence for abnormal synaptic plasticity using the human motor cortex-rTMS model, and if so, if there is any difference between premanifest HD gene carriers and very early manifest HD patients or any relationship with ratings of the severity of motor signs. Methods Fifteen HD gene carriers (7 premanifest, 8 very early manifest) and 14 control participants were given a continuous train of 100 bursts of theta burst stimulation (cTBS: three pulses at 50 Hz and 80% AMT repeated every 200ms). The size of the motor evoked potential was measured at regular intervals until 21 minutes after cTBS. Results HD gene carriers and controls responded differently to theta burst stimulation (F4.9,131.9=1.37, p=0.048) with controls having more inhibition than HD gene carriers (F1,27=13.3, p=0.001). Across all time points mean inhibition differed between the groups (F2,26=6.32, p=0.006); controls had more inhibition than either HD gene carrier subgroup (p=0.006 for premanifest and p=0.009 for early symptomatic) whereas there was no difference between premanifest and early symptomatic HD gene carriers. The measure of cortical plasticity was not associated with any clinical ratings (UHDRS motor score, estimate of age at onset). Conclusions Motor cortex plasticity is abnormal in HD gene carriers but is not closely linked to the development of motor signs of HD. PMID:19828482

  11. Effects of long-term exercise and low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor related cortex.

    Science.gov (United States)

    Inoue, Takahiro; Ninuma, Shuta; Hayashi, Masataka; Okuda, Akane; Asaka, Tadayoshi; Maejima, Hiroshi

    2018-01-01

    Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuroplasticity in the brain. The objective of this study was to examine the effects of long-term exercise combined with low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor-related cortex. Methods ICR mice were divided into four groups based on the factors exercise and GABA A receptor inhibition. We administered the GABA A receptor antagonist bicuculline intraperitoneally (0.25 mg/kg). Mice exercised on a treadmill 5 days/week for 4 weeks. Following behavioral tests, BDNF expression in the motor cortex and cerebellar cortex was assayed using RT-PCR and ELISA. Results Exercise increased BDNF protein in the motor cortex and improved motor coordination in the rotarod test either in the presence or absence of bicuculline. BDNF mRNA expression in the motor cortex and muscle coordination in the wire hang test decreased after administration of bicuculline, whereas bicuculline administration increased mRNA and protein expression of BDNF in the cerebellum. Discussion The present study revealed that long-term exercise increased BDNF expression in the motor cortex and facilitated a transfer of motor learning from aerobic exercise to postural coordination. Thus, aerobic exercise is meaningful for conditioning motor learning to rehabilitate patients with central nervous system (CNS) disorders. However, long-term inhibition of GABA A receptors decreased the expression of cortical BDNF mRNA and decreased muscle coordination, despite the increase of BDNF in the cerebellum, suggesting that we have to consider the term of the inhibition of the GABAergic receptor for future clinical application to CNS patients.

  12. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke.

    Directory of Open Access Journals (Sweden)

    Kate Murdoch

    Full Text Available Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown.The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition.We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS.Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons. The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise.Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response.

  13. Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation.

    Science.gov (United States)

    Alekseenko, S V; Toporova, S N; Shkorbatova, P Yu

    2008-09-01

    Plastic changes in intrahemisphere neuronal connections of the eye-dominance columns of cortical fields 17 and 18 were studied in monocularly deprived cats. The methodology consisted of microintophoretic administration of horseradish peroxidase into cortical columns and three-dimensional reconstruction of the areas of retrograde labeled cells. The eye dominance of columns was established, as were their coordinates in the projection of the visual field. In field 17, the horizontal connections of columns receiving inputs from the non-deprived eye via the crossed-over visual tracts were longer than the connections of the "non-crossed" columns of this eye and were longer than in normal conditions; the connections of the columns of the deprived eye were significantly reduced. Changes in the spatial organization of horizontal connections in field 17 were seen for the columns of the non-deprived eye (areas of labeled cells were rounder and the density of labeled cells in these areas were non-uniform). The longest horizontal connections in deprived cats were no longer than the lengths of these connections in cats with strabismus. It is suggested that the axon length of cells giving rise to the horizontal connections of cortical columns has a limit which is independent of visual stimulation during the critical period of development of the visual system.

  14. The role of plastic changes in the motor cortex and spinal cord for motor learning

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Lundbye-Jensen, Jesper

    2010-01-01

    are key players in the early stages of skill acquisition and consolidation of motor learning. Expansion of the cortical representation of the trained muscles, changes in corticomuscular coupling and changes in stretch reflex activity are thus all markers of neuroplastic changes accompanying early skill...... acquisition. We have shown in recent experiments that sensory feedback from the active muscles play a surprisingly specific role at this stage of learning. Following motor skill training, repeated activation of sensory afferents from the muscle that has been involved in a previous training session, interfered...... the consolidation of increased performance of a different previously trained task involving the same movement direction and muscle group, whereas training of other muscles had no effect. This emphasizes the role of specific sensory error signals in the acquisition of new motor skills and illustrates the functional...

  15. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  16. Differential activity patterns of putaminal neurons with inputs from the primary motor cortex and supplementary motor area in behaving monkeys.

    Science.gov (United States)

    Takara, Sayuki; Hatanaka, Nobuhiko; Takada, Masahiko; Nambu, Atsushi

    2011-09-01

    Activity patterns of projection neurons in the putamen were investigated in behaving monkeys. Stimulating electrodes were implanted chronically into the proximal (MI(proximal)) and distal (MI(distal)) forelimb regions of the primary motor cortex (MI) and the forelimb region of the supplementary motor area (SMA). Cortical inputs to putaminal neurons were identified by excitatory orthodromic responses to stimulation of these motor cortices. Then, neuronal activity was recorded during the performance of a goal-directed reaching task with delay. Putaminal neurons with inputs from the MI and SMA showed different activity patterns, i.e., movement- and delay-related activity, during task performance. MI-recipient neurons increased activity in response to arm-reach movements, whereas SMA-recipient neurons increased activity during delay periods, as well as during movements. The activity pattern of MI + SMA-recipient neurons was of an intermediate type between those of MI- and SMA-recipient neurons. Approximately one-half of MI(proximal)-, SMA-, and MI + SMA-recipient neurons changed activities before the onset of movements, whereas a smaller number of MI(distal)- and MI(proximal + distal)-recipient neurons did. Movement-related activity of MI-recipient neurons was modulated by target directions, whereas SMA- and MI + SMA-recipient neurons had a lower directional selectivity. MI-recipient neurons were located mainly in the ventrolateral part of the caudal aspect of the putamen, whereas SMA-recipient neurons were located in the dorsomedial part. MI + SMA-recipient neurons were found in between. The present results suggest that a subpopulation of putaminal neurons displays specific activity patterns depending on motor cortical inputs. Each subpopulation receives convergent or nonconvergent inputs from the MI and SMA, retains specific motor information, and sends it to the globus pallidus and the substantia nigra through the direct and indirect pathways of the basal ganglia.

  17. Chronometric electrical stimulation of right inferior frontal cortex increases motor braking.

    Science.gov (United States)

    Wessel, Jan R; Conner, Christopher R; Aron, Adam R; Tandon, Nitin

    2013-12-11

    The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal ("Maybe Stop" [MS] vs "No Stop" [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that--in the case of rIFC--this could lead to augmentation of motor braking.

  18. Magnetic susceptibility in the deep layers of the primary motor cortex in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Costagli, M; Donatelli, G; Biagi, L; Caldarazzo Ienco, E; Siciliano, G; Tosetti, M; Cosottini, M

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a progressive neurological disorder that entails degeneration of both upper and lower motor neurons. The primary motor cortex (M1) in patients with upper motor neuron (UMN) impairment is pronouncedly hypointense in Magnetic Resonance (MR) T2* contrast. In the present study, 3D gradient-recalled multi-echo sequences were used on a 7 Tesla MR system to acquire T2*-weighted images targeting M1 at high spatial resolution. MR raw data were used for Quantitative Susceptibility Mapping (QSM). Measures of magnetic susceptibility correlated with the expected concentration of non-heme iron in different regions of the cerebral cortex in healthy subjects. In ALS patients, significant increases in magnetic susceptibility co-localized with the T2* hypointensity observed in the middle and deep layers of M1. The magnetic susceptibility, hence iron concentration, of the deep cortical layers of patients' M1 subregions corresponding to Penfield's areas of the hand and foot in both hemispheres significantly correlated with the clinical scores of UMN impairment of the corresponding limbs. QSM therefore reflects the presence of iron deposits related to neuroinflammatory reaction and cortical microgliosis, and might prove useful in estimating M1 iron concentration, as a possible radiological sign of severe UMN burden in ALS patients.

  19. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  20. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  1. Magnetic susceptibility in the deep layers of the primary motor cortex in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    M. Costagli

    2016-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive neurological disorder that entails degeneration of both upper and lower motor neurons. The primary motor cortex (M1 in patients with upper motor neuron (UMN impairment is pronouncedly hypointense in Magnetic Resonance (MR T2* contrast. In the present study, 3D gradient-recalled multi-echo sequences were used on a 7 Tesla MR system to acquire T2*-weighted images targeting M1 at high spatial resolution. MR raw data were used for Quantitative Susceptibility Mapping (QSM. Measures of magnetic susceptibility correlated with the expected concentration of non-heme iron in different regions of the cerebral cortex in healthy subjects. In ALS patients, significant increases in magnetic susceptibility co-localized with the T2* hypointensity observed in the middle and deep layers of M1. The magnetic susceptibility, hence iron concentration, of the deep cortical layers of patients' M1 subregions corresponding to Penfield's areas of the hand and foot in both hemispheres significantly correlated with the clinical scores of UMN impairment of the corresponding limbs. QSM therefore reflects the presence of iron deposits related to neuroinflammatory reaction and cortical microgliosis, and might prove useful in estimating M1 iron concentration, as a possible radiological sign of severe UMN burden in ALS patients.

  2. Training the Motor Cortex by Observing the Actions of Others During Immobilization

    Science.gov (United States)

    Bassolino, Michela; Campanella, Martina; Bove, Marco; Pozzo, Thierry; Fadiga, Luciano

    2014-01-01

    Limb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation was used to study the excitability of the hand left motor cortex in normal subjects immediately before and after 10 h of right arm immobilization. During immobilization, subjects were requested either to imagine to act with their constrained limb or to observe hand actions performed by other individuals. A third group of control subjects watched a nature documentary presented on a computer screen. Hand corticomotor maps and recruitment curves reliably showed that AO, but not MI, prevented the corticomotor depression induced by immobilization. Our results demonstrate the existence of a visuomotor mechanism in humans that links AO and execution which is able to effect cortical plasticity in a beneficial way. This facilitation was not related to the action simulation, because it was not induced by explicit MI. PMID:23897648

  3. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  4. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  5. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback.

    Science.gov (United States)

    Bassolino, M; Franza, M; Bello Ruiz, J; Pinardi, M; Schmidlin, T; Stephan, M A; Solcà, M; Serino, A; Blanke, O

    2018-04-01

    Previous evidence highlighted the multisensory-motor origin of embodiment - that is, the experience of having a body and of being in control of it - and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo-tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non-invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non-matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor-evoked-potentials, TMS-evoked-movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS-induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non-invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Influence of repetitive peripheral magnetic stimulation on neural plasticity in the motor cortex related to swallowing.

    Science.gov (United States)

    Momosaki, Ryo; Kakuda, Wataru; Yamada, Naoki; Abo, Masahiro

    2016-09-01

    The aim of this study was to evaluate the effect of repetitive peripheral magnetic stimulation at two different frequencies (20 and 30 Hz) on cortical excitability in motor areas related to swallowing in healthy individuals. The study participants were 10 healthy normal volunteers (two women and eight men, age range 25-36 years). Repetitive peripheral magnetic stimulation was applied to the submandibular muscle using a parabolic coil at the site where contraction of the suprahyoid muscles was elicited. Stimulation was continued for 10 min (total 1200 pulses) at 20 Hz on 1 day and at 30 Hz on another day, with the stimulation strength set at 90% of the intensity that elicited pain. The motor-evoked potential amplitude of suprahyoid muscles was assessed before, immediately after, and 30 min after stimulation. Stimulations at both 20 and 30 Hz significantly increased motor-evoked potential amplitude (Pmotor-evoked potential amplitude immediately after stimulation was not significantly different between the 20 and 30 Hz frequencies. The results indicated that repetitive magnetic stimulation increased motor-evoked potential amplitude of swallowing muscles, suggesting facilitation of the motor cortex related to swallowing in healthy individuals.

  7. Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Monda, Vincenzo; Valenzano, Anna; Moscatelli, Fiorenzo; Salerno, Monica; Sessa, Francesco; Triggiani, Antonio I; Viggiano, Andrea; Capranica, Laura; Marsala, Gabriella; De Luca, Vincenzo; Cipolloni, Luigi; Ruberto, Maria; Precenzano, Francesco; Carotenuto, Marco; Zammit, Christian; Gelzo, Monica; Monda, Marcellino; Cibelli, Giuseppe; Messina, Giovanni; Messina, Antonietta

    2017-01-01

    Purpose: The mechanisms involved in the coordination of muscle activity are not completely known: to investigate adaptive changes in human motor cortex Transcranial magnetic stimulation (TMS) was often used. The sport models are frequently used to study how the training may affect the corticospinal system excitability: Karate represents a valuable sport model for this kind of investigations for its high levels of coordination required to athletes. This study was aimed at examining possible changes in the resting motor threshold (rMT) and in the corticospinal response in karate athletes, and at determining whether athletes are characterized by a specific value of rMT. Methods: We recruited 25 right-handed young karate athletes and 25 matched non-athletes. TMS was applied to primary motor cortex (M1). Motor evoked potential (MEP) were recorded by two electrodes placed above the first dorsal interosseous (FDI) muscle. We considered MEP latencies and amplitudes at rMT, 110% of rMT, and 120% of rMT. Results: The two groups were similar for age ( p > 0.05), height ( p > 0.05) and body mass ( p > 0.05). The TMS had a 70-mm figure-of-eight coil and a maximum output of 2.2 T, placed over the left motor cortex. During the stimulation, a mechanical arm kept the coil tangential to the scalp, with the handle at 45° respect to the midline. The SofTaxic navigator system (E.M.S. Italy, www.emsmedical.net) was used in order to correctly identifying and repeating the stimulation for every subject. Compared to non-athletes, athletes showed a lower resting motor threshold ( p < 0.001). Furthermore, athletes had a lower MEP latency ( p < 0.001) and a higher MEP amplitude ( p < 0.001) compared to non-athletes. Moreover, a ROC curve for rMT was found significant (area: 0.907; sensitivity 84%, specificity 76%). Conclusions: As the main finding, the present study showed significant differences in cortical excitability between athletes and non-athletes. The training can improve cortical

  8. Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study

    Directory of Open Access Journals (Sweden)

    Vincenzo Monda

    2017-09-01

    Full Text Available Purpose: The mechanisms involved in the coordination of muscle activity are not completely known: to investigate adaptive changes in human motor cortex Transcranial magnetic stimulation (TMS was often used. The sport models are frequently used to study how the training may affect the corticospinal system excitability: Karate represents a valuable sport model for this kind of investigations for its high levels of coordination required to athletes. This study was aimed at examining possible changes in the resting motor threshold (rMT and in the corticospinal response in karate athletes, and at determining whether athletes are characterized by a specific value of rMT.Methods: We recruited 25 right-handed young karate athletes and 25 matched non-athletes. TMS was applied to primary motor cortex (M1. Motor evoked potential (MEP were recorded by two electrodes placed above the first dorsal interosseous (FDI muscle. We considered MEP latencies and amplitudes at rMT, 110% of rMT, and 120% of rMT.Results: The two groups were similar for age (p > 0.05, height (p > 0.05 and body mass (p > 0.05. The TMS had a 70-mm figure-of-eight coil and a maximum output of 2.2 T, placed over the left motor cortex. During the stimulation, a mechanical arm kept the coil tangential to the scalp, with the handle at 45° respect to the midline. The SofTaxic navigator system (E.M.S. Italy, www.emsmedical.net was used in order to correctly identifying and repeating the stimulation for every subject. Compared to non-athletes, athletes showed a lower resting motor threshold (p < 0.001. Furthermore, athletes had a lower MEP latency (p < 0.001 and a higher MEP amplitude (p < 0.001 compared to non-athletes. Moreover, a ROC curve for rMT was found significant (area: 0.907; sensitivity 84%, specificity 76%.Conclusions: As the main finding, the present study showed significant differences in cortical excitability between athletes and non-athletes. The training can improve cortical

  9. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial.

    Science.gov (United States)

    Du, J; Tian, L; Liu, W; Hu, J; Xu, G; Ma, M; Fan, X; Ye, R; Jiang, Y; Yin, Q; Zhu, W; Xiong, Y; Yang, F; Liu, X

    2016-11-01

    Repetitive transcranial magnetic stimulation (rTMS) changes the excitability of the motor cortex and thereby has the potential to enhance motor recovery after stroke. This randomized, sham-controlled, double-blind study was to compare the effects of high-frequency versus low-frequency rTMS on motor recovery during the early phase of stroke and to identify the neurophysiological correlates of motor improvements. A total of 69 first-ever ischemic stroke patients with motor deficits were randomly allocated to receive five daily sessions of 3-Hz ipsilesional rTMS, 1-Hz contralesional rTMS or sham rTMS in addition to standard physical therapy. Outcome measures included motor deficits, neurological scores and cortical excitability, which were assessed at baseline, after the intervention and at 3-month follow-up. The rTMS groups manifested greater motor improvements than the control group, which were sustained for at least 3 months after the end of the treatment sessions. 1-Hz rTMS over the unaffected hemisphere produced more profound effects than 3-Hz rTMS in facilitating upper limb motor performance. There was a significant correlation between motor function improvement and motor cortex excitability change in the affected hemisphere. Repetitive transcranial magnetic stimulation is a beneficial neurorehabilitative strategy for enhancing motor recovery in the acute and subacute phase after stroke. © 2016 EAN.

  10. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1(H...

  11. Sensory-motor processing in substantia nigra pars reticulata in conscious cats.

    Science.gov (United States)

    Schwarz, M; Sontag, K H; Wand, P

    1984-02-01

    Extracellular recordings were made with chronically implanted micro-electrodes from 109 substantia nigra neurones in conscious cats. Ninety-six of 109 neurones met the criteria of presumed non-dopaminergic pars reticulata (s.n.r.) neurones. Background discharge, in animals in a state of relaxed wakefulness and in the absence of overt movements, was in the range of 11-37 impulses/s, mean 19.2 impulses/s. The discharges of fifty-two of ninety-six neurones tested were modified by innocuous mechanical skin stimulation. Neurones responded chiefly to stimuli delivered to the contralateral body side. Responses generally comprised net excitation and occurred with short latency (range 10-34 ms; mean 17.3 ms). Convergence from both forelimbs or the contralateral fore- and hind limbs was evident in a few cases. One-fourth (twenty-four out of ninety-six) of the s.n.r. neurones tested were sensitive to passive manipulation of limb joints in the quiet, conscious cat and responded exclusively to angular displacement of one contralateral joint. Responses were directional and phasic. None of the s.n.r. neurones tested responded to clicks and/or light flashes. However, stimuli moving across the contralateral visual field substantially modified the discharge rate of ten out of ninety-six s.n.r. neurones. Responses were directional and invariably associated with eye movements. Animals were also trained to walk on a treadmill and to perform certain self-generated limb movements. S.n.r. neurones with a receptive field on a limb regularly showed modulations in discharge during locomotion, phase-related to the step cycle, and also short-latency responses during disturbance of such movements. Ten out of ninety-six s.n.r. neurones discharged almost exclusively prior to and during self-generated movements of a single limb. Their most powerful modulations in firing rate occurred, whenever an animal tried to overcome an external impediment or to resist an imposed movement. These observations

  12. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes.

    Science.gov (United States)

    DosSantos, Marcos F; Ferreira, Natália; Toback, Rebecca L; Carvalho, Antônio C; DaSilva, Alexandre F

    2016-01-01

    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively.

  13. A preliminary fMRI study on activiation pattern and functional reorganization of motor cortex in acute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Fan-yong ZENG

    2018-01-01

    Full Text Available Objective To observe and explore the activation pattern and functional reorganization mechanism of motor cortex in acute ischemic stroke patients. Methods A total of 22 patients with first-ever acute ischemic stroke were included in this study. Functional magnetic resonance imaging (fMRI was used to observe the changing of activation pattern and functional reorganization of motor cortex in finger-tapping task. National Institutes of Health Stroke Scale (NIHSS and Fugl-Meyer Assessment Scale for Upper Extremity (FMA-UE were used to evaluate motor function, and neuroelectrophysiology monitored resting motor threshold (RMT. Spearman rank correlation analysis was used to analyze the correlation between activation of region of interest (ROI and neurological function, motor function and neuroelectrophysiology. Moreover, dynamic causal model (DCM was used to analyze the intrahemispheric and interhemispheric effective connectivity between brain regions in finger-tapping task. Results Movements of the affected hand showed significant signal activation in the ipsilesional primary motor cortex (M1, premotor cortex (PMC and bilateral supplementary motor area (SMA, while the contralesional PMC, posterior parietal cortex (PPC and bilateral cerebellar hemisphere also showed slight activation. Movements of the unaffected hand showed significant activation in the contralesional M1, PMC and SMA, while the ipsilesional SMA and inferior parietal lobule also showed slight activation. The activation value of ipsilesional M1 was negatively correlated with neurological function (NIHSS score; rs = -0.452, P = 0.035 and positively correlated with motor function of upper extremity (FMA-UE score; rs = 0.543, P = 0.009. The activation value of ipsilesional sensorimotor cortex (SMC was positively correlated with RMT (rs = 0.718, P = 0.001. The advantage model of DCM showed bidirectional suppressive influence of connectivity between bilateral M1, negative effective

  14. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  15. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J

    2009-01-01

    OBJECTIVE: In macaques, intracortical electrical stimulation of ventral premotor cortex (PMv) can modulate ipsilateral primary motor cortex (M1) excitability at short interstimulus intervals (ISIs). METHODS: Adopting the same conditioning-test approach, we used bifocal transcranial magnetic stimu...

  16. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-09-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants' disposition to feel personal distress. This 'orienting' inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants' tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system's involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues--reflecting neural processing necessary for visual perception--occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.

  17. Reduced motor cortex deactivation in individuals who suffer from writer's cramp.

    Directory of Open Access Journals (Sweden)

    Yi-Jhan Tseng

    Full Text Available This study investigated the neuromagnetic activities of self-paced finger lifting task and electrical median nerve stimulation in ten writer's cramp patients and fourteen control subjects. The event-related de/synchronizations (ERD/ERS of beta-band activity levels were evaluated and the somatosensory cortical activity levels were analyzed using equivalent-current dipole modeling. No significant difference between the patients and control subjects was found in the electrical stimulation-induced beta ERS and electrical evoked somatosensory cortical responses. Movement-related beta ERD did not differ between controls and patients. Notably, the amplitude of the beta ERS after termination of finger movement was significantly lower in the patients than in the control subjects. The reduced movement-related beta ERS might reflect an impairment of motor cortex deactivation. In conclusion, a motor dependent dysregulation of the sensorimotor network seems to be involved in the functional impairment of patients with writer's cramp.

  18. Reconstructing grasping motions from high-frequency local field potentials in primary motor cortex.

    Science.gov (United States)

    Zhuang, Jun; Truccolo, Wilson; Vargas-Irwin, Carlos; Donoghue, John P

    2010-01-01

    Recent developments in neural interface systems hold the promise to restore movement in people with paralysis. In search of neural signals for control of neural interface systems, previous studies have investigated primarily single and multiunit activity, as well as low frequency local field potentials (LFPs). In this paper, we investigate the information content about grasping motion of a broad band high frequency LFP (200 Hz - 400 Hz) by classifying discrete grasp aperture states and decoding continuous aperture trajectories. LFPs were recorded via 96-microelectrode arrays in the primary motor cortex (M1) of two monkeys performing free 3-D reaching and grasping towards moving objects. Our results indicate that broad band high frequency LFPs could serve as useful signals for restoring a motor function such as grasp control.

  19. Primary Motor Cortex Excitability Is Modulated During the Mental Simulation of Hand Movement.

    Science.gov (United States)

    Hyde, Christian; Fuelscher, Ian; Lum, Jarrad A G; Williams, Jacqueline; He, Jason; Enticott, Peter G

    2017-02-01

    It is unclear whether the primary motor cortex (PMC) is involved in the mental simulation of movement [i.e., motor imagery (MI)]. The present study aimed to clarify PMC involvement using a highly novel adaptation of the hand laterality task (HLT). Participants were administered single-pulse transcranial magnetic stimulation (TMS) to the hand area of the left PMC (hPMC) at either 50 ms, 400 ms, or 650 ms post stimulus presentation. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous via electromyography. To avoid the confound of gross motor response, participant response (indicating left or right hand) was recorded via eye tracking. Participants were 22 healthy adults (18 to 36 years), 16 whose behavioral profile on the HLT was consistent with the use of a MI strategy (MI users). hPMC excitability increased significantly during HLT performance for MI users, evidenced by significantly larger right hand MEPs following single-pulse TMS 50 ms, 400 ms, and 650 ms post stimulus presentation relative to baseline. Subsequent analysis showed that hPMC excitability was greater for more complex simulated hand movements, where hand MEPs at 50 ms were larger for biomechanically awkward movements (i.e., hands requiring lateral rotation) compared to simpler movements (i.e., hands requiring medial rotation). These findings provide support for the modulation of PMC excitability during the HLT attributable to MI, and may indicate a role for the PMC during MI. (JINS, 2017, 23, 185-193).

  20. Are there excitability changes in the hand motor cortex during speech in left-handed subjects?

    Science.gov (United States)

    Tokimura, Hiroshi; Tokimura, Yoshika; Arita, Kazunori

    2012-01-01

    Hemispheric dominance was investigated in left-handed subjects using single transcranial magnetic stimulation to assess the possible effect of forced change in the dominant hand. Single transcranial magnetic stimuli were delivered randomly over the hand area of the left or right motor cortex of 8 Japanese self-declared left-handed adult volunteers. Electromyographic responses were recorded in the relaxed first dorsal interosseous muscle while the subjects read aloud. Laterality quotient calculated by the Edinburgh Inventory ranged from -100 to -5.26 and laterality index calculated from motor evoked potentials ranged from -86.2 to 38.8. There was no significant correlation between laterality quotient and laterality index. Mean data values across all 8 subjects indicated significant increases only in the left hand. Our ratio analysis of facilitation of the hand motor potentials showed that 2 each of the 8 self-declared left-handers were right- and left-hand dominant and the other 4 were bilateral-hand dominant. Speech dominancy was localized primarily in the right cerebral hemisphere in left-handed subjects, but some individuals exhibited bilateral or left dominance, possibly attributable to the forced change of hand preference for writing in childhood. Our findings suggest changes in the connections between the speech and hand motor areas.

  1. An unavoidable modulation? Sensory attention and human primary motor cortex excitability.

    Science.gov (United States)

    Ruge, Diane; Muggleton, Neil; Hoad, Damon; Caronni, Antonio; Rothwell, John C

    2014-09-01

    The link between basic physiology and its modulation by cognitive states, such as attention, is poorly understood. A significant association becomes apparent when patients with movement disorders describe experiences with changing their attention focus and the fundamental effect that this has on their motor symptoms. Moreover, frequently used mental strategies for treating such patients, e.g. with task-specific dystonia, widely lack laboratory-based knowledge about physiological mechanisms. In this largely unexplored field, we looked at how the locus of attention, when it changed between internal (locus hand) and external (visual target), influenced excitability in the primary motor cortex (M1) in healthy humans. Intriguingly, both internal and external attention had the capacity to change M1 excitability. Both led to a reduced stimulation-induced GABA-related inhibition and a change in motor evoked potential size, i.e. an overall increased M1 excitability. These previously unreported findings indicated: (i) that cognitive state differentially interacted with M1 physiology, (ii) that our view of distraction (attention locus shifted towards external or distant location), which is used as a prevention or management strategy for use-dependent motor disorders, is too simple and currently unsupported for clinical application, and (iii) the physiological state reached through attention modulation represents an alternative explanation for frequently reported electrophysiology findings in neuropsychiatric disorders, such as an aberrant inhibition. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Methylmercury intoxication and histochemical demonstration of NADPH-diaphorase activity in the striate cortex of adult cats

    Directory of Open Access Journals (Sweden)

    R.B. Oliveira

    1998-09-01

    Full Text Available The effects of methylmercury (MeHg on histochemical demonstration of the NADPH-diaphorase (NADPH-d activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1 and the other animals were perfused 6 months later (group 2. After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80. Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05. These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.

  3. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  4. Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys

    Science.gov (United States)

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254

  5. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  6. Early hypersynchrony in juvenile PINK1-/- motor cortex is rescued by antidromic stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2014-05-01

    Full Text Available In Parkinson’s disease, cortical networks show enhanced synchronized activity but whether this precedes motor signs is unknown. We investigated this question in PINK1-/- mice, a genetic rodent model of the PARK6 variant of familial Parkinson’s disease which shows impaired spontaneous locomotion at 16 months. We used two-photon calcium imaging and whole-cell patch clamp in slices from juvenile (P14-P21 wild-type or PINK1-/- mice. We designed a horizontal tilted cortico-subthalamic slice where the only connection between cortex and subthalamic nucleus (STN is the hyperdirect cortico-subthalamic pathway. We report excessive correlation and synchronization in PINK1-/- M1 cortical networks 15 months before motor impairment. The percentage of correlated pairs of neurons and their strength of correlation were higher in the PINK1-/- M1 than in the wild type network and the synchronized network events involved a higher percentage of neurons. Both features were independent of thalamo-cortical pathways, insensitive to chronic levodopa treatment of pups, but totally reversed by antidromic invasion of M1 pyramidal neurons by axonal spikes evoked by high frequency stimulation (HFS of the STN. Our study describes an early excess of synchronization in the PINK1-/- cortex and suggests a potential role of antidromic activation of cortical interneurons in network desynchronization. Such backward effect on interneurons activity may be of importance for HFS-induced network desynchronization.

  7. Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation

    Directory of Open Access Journals (Sweden)

    Benjamin Thürer

    2017-08-01

    Full Text Available The motor learning literature shows an increased retest or transfer performance after practicing under unstable (random conditions. This random practice effect (also known as contextual interference effect is frequently investigated on the behavioral level and discussed in the context of mechanisms of the dorsolateral prefrontal cortex and increased cognitive efforts during movement planning. However, there is a lack of studies examining the random practice effect in motor adaptation tasks and, in general, the underlying neural processes of the random practice effect are not fully understood. We tested 24 right-handed human subjects performing a reaching task using a robotic manipulandum. Subjects learned to adapt either to a blocked or a random schedule of different force field perturbations while subjects’ electroencephalography (EEG was recorded. The behavioral results showed a distinct random practice effect in terms of a more stabilized retest performance of the random compared to the blocked practicing group. Further analyses showed that this effect correlates with changes in the alpha band power in electrodes over parietal areas. We conclude that the random practice effect in this study is facilitated by mechanisms within the parietal cortex during movement execution which might reflect online feedback mechanisms.

  8. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    Science.gov (United States)

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke.

    Science.gov (United States)

    Bashir, Shahid; Vernet, Marine; Najib, Umer; Perez, Jennifer; Alonso-Alonso, Miguel; Knobel, Mark; Yoo, Woo-Kyoung; Edwards, Dylan; Pascual-Leone, Alvaro

    2016-08-11

    The net effect of altered interhemispheric interactions between homologous motor cortical areas after unilateral stroke has been previously reported to contribute to residual hemiparesis. Using this framework, we hypothesized that navigated 1 Hz repetitive transcranial magnetic stimulation (rTMS) over the contralesional hemisphere would induce a stronger physiological and behavioural response in patients with residual motor deficit than in healthy subjects, because an imbalance in interhemispheric excitability may underlie motor dysfunction. Navigated rTMS was conducted in 8 chronic stroke patients (67.50±13.77 years) and in 8 comparable normal subjects (57.38±9.61 years). We evaluated motor function (Finger tapping, Nine Hole Peg test, Strength Index and Reaction Time) as well as the excitatory and inhibitory function (resting motor threshold, motor evoked potential amplitude, intra-cortical inhibition and facilitation, and silent period) of the stimulated and non-stimulated motor cortex before and after navigated rTMS. rTMS induced an increase in excitability in the ipsilesional (non-stimulated) motor cortex and led to improved performance in the finger tapping task and pinch force task. These physiological and behavioral effects were more prominent (or robust) in the group of stroke patients than in the control group. Navigated low-frequency rTMS involving precise and consistent targeting of the contralesional hemisphere in stroke patients enhanced the cortical excitability of the ipsilesional hemisphere and the motor response of the hemiparetic hand.

  10. Encoding of temporal information by timing, rate, and place in cat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Kazuo Imaizumi

    2010-07-01

    Full Text Available A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1 the event-locked spike-timing precision, 2 the mean firing rate, and 3 the interspike interval (ISI. To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.

  11. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex.

    Science.gov (United States)

    Heidegger, Tonio; Krakow, Karsten; Ziemann, Ulf

    2010-10-01

    Antiepileptic drugs (AEDs) are used extensively in clinical practice but relatively little is known on their specific effects at the systems level of human cortex. Here we tested, using a double-blind randomized placebo-controlled crossover design in healthy subjects, the effects of a single therapeutic oral dose of seven AEDs with different modes of action (tiagabine, diazepam, gabapentin, lamotrigine, topiramate, levetiracetam and piracetam) on long-term potentiation (LTP)-like motor cortical plasticity induced by paired associative transcranial magnetic stimulation (PAS). PAS-induced LTP-like plasticity was assessed from the increase in motor evoked potential amplitude in a hand muscle contralateral to the stimulated motor cortex. Levetiracetam significantly reduced LTP-like plasticity when compared to the placebo condition. Tiagabine, diazepam, lamotrigine and piracetam resulted in nonsignificant trends towards reduction of LTP-like plasticity while gabapentin and topiramate had no effect. The particularly depressant effect of levetiracetam is probably explained by its unique mode of action through binding at the vesicle membrane protein SV2A. Enhancement of gamma-amino butyric acid-dependent cortical inhibition by tiagabine, diazepam and possibly levetiracetam, and blockage of voltage-gated sodium channels by lamotrigine, may also depress PAS-induced LTP-like plasticity but these mechanisms appear to be less relevant. Findings may inform about AED-related adverse effects on important LTP-dependent central nervous systems processes such as learning or memory formation. The particular depressant effect of levetiracetam on LTP-like plasticity may also relate to the unique properties of this drug to inhibit epileptogenesis, a potentially LTP-associated process. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Amygdala interconnections with the cingulate motor cortex in the rhesus monkey.

    Science.gov (United States)

    Morecraft, Robert J; McNeal, David W; Stilwell-Morecraft, Kimberly S; Gedney, Matthew; Ge, Jizhi; Schroeder, Clinton M; van Hoesen, Gary W

    2007-01-01

    Amygdala interconnections with the cingulate motor cortices were investigated in the rhesus monkey. Using multiple tracing approaches, we found a robust projection from the lateral basal nucleus of the amygdala to Layers II, IIIa, and V of the rostral cingulate motor cortex (M3). A smaller source of amygdala input arose from the accessory basal, cortical, and lateral nuclei, which targeted only the rostral region of M3. We also found a light projection from the lateral basal nucleus to the same layers of the caudal cingulate motor cortex (M4). Experiments examining this projection to cingulate somatotopy using combined neural tracing strategies and stereology to estimate the total number of terminal-like immunoreactive particles demonstrated that the amygdala projection terminates heavily in the face representation of M3 and moderately in its arm representation. Fewer terminal profiles were found in the leg representation of M3 and the face, arm, and leg representations of M4. Anterograde tracers placed directly into M3 and M4 revealed the amygdala connection to be reciprocal and documented corticofugal projections to the facial nucleus, surrounding pontine reticular formation, and spinal cord. Clinically, such pathways would be in a position to contribute to mediating movements in the face, neck, and upper extremity accompanying medial temporal lobe seizures that have historically characterized this syndrome. Alterations within or disruption of the amygdalo-cingulate projection to the rostral part of M3 may also have an adverse effect on facial expression in patients presenting with neurological or neuropsychiatric abnormalities of medial temporal lobe involvement. Finally, the prominent amygdala projection to the face region of M3 may significantly influence the outcome of higher-order facial expressions associated with social communication and emotional constructs such as fear, anger, happiness, and sadness.

  13. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    Science.gov (United States)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  15. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  16. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy N; Carter, Cameron S

    2015-01-01

    Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.

  17. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.

    Science.gov (United States)

    Neef, Nicole E; Hoang, T N Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-03-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative

  18. Limited Contribution of Primary Motor Cortex in Eye-Hand Coordination: A TMS Study.

    Science.gov (United States)

    Mathew, James; Eusebio, Alexandre; Danion, Frederic

    2017-10-04

    The ability to track a moving target with the eye is substantially improved when the target is self-moved compared with when it is moved by an external agent. To account for this observation, it has been postulated that the oculomotor system has access to hand efference copy, thereby allowing to predict the motion of the visual target. Along this scheme, we tested the effect of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when human participants (50% females) are asked to track with their eyes a visual target whose horizontal motion is driven by their grip force. We reasoned that, if the output of M1 is used by the oculomotor system to keep track of the target, on top of inducing short latency disturbance of grip force, single-pulse TMS should also quickly disrupt ongoing eye motion. For comparison purposes, the effect of TMS over M1 was monitored when subjects tracked an externally moved target (while keeping their hand at rest or not). In both cases, results showed no alterations in smooth pursuit, meaning that its velocity was unaffected within the 25-125 ms epoch that followed TMS. Overall, our results imply that the output of M1 has limited contribution in driving the eye motion during our eye-hand coordination task. This study suggests that, if hand motor signals are accessed by the oculomotor system, this is upstream of M1. SIGNIFICANCE STATEMENT The ability to coordinate eye and hand actions is central in everyday activity. However, the neural mechanisms underlying this coordination remain to be clarified. A leading hypothesis is that the oculomotor system has access to hand motor signals. Here we explored this possibility by means of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when humans tracked with the eyes a visual target that was moved by the hand. As expected, ongoing hand action was perturbed 25-30 ms after TMS, but our results fail to show any disruption

  19. Self-organization of firing activities in monkey's motor cortex: trajectory computation from spike signals.

    Science.gov (United States)

    Lin, S; Si, J; Schwartz, A B

    1997-04-01

    The population vector method has been developed to combine the simultaneous direction-related activities of a population of motor cortical neurons to predict the trajectory of the arm movement. In this article, we consider a self-organizing model of a neural representation of the arm trajectory based on neuronal discharge rates. As self-organizing feature map (SOFM) is used to select the optimal set of weights in the model to determine the contribution of an individual neuron to an overall movement representation. The correspondence between movement directions and discharge patterns of the motor cortical neurons is established in the output map. The topology-preserving property of the SOFM is used to analyze the recorded data of a behaving monkey. The data used in this analysis were taken while the monkey was tracing spirals and doing center-->out movements. The arm trajectory could be well predicted using such a statistical model based on the motor cortex neuronal firing information. The SOFM method is compared with the population vector method, which extracts information related to trajectory by assuming that each cell has a fixed preferred direction during the task. This implies that these cells are acting along lines labeled only for direction. However, extradirectional information is carried in these cell responses. The SOFM has the capability of extracting not only direction-related information but also other parameters that are consistently represented in the activity of the recorded population of cells.

  20. Enhancement of motor coordination by applying high frequency repetitive TMS on the sensory cortex.

    Science.gov (United States)

    Choi, Eun-Hi; Yoo, Woo-Kyoung; Ohn, Suk Hoon; Ahn, SeungHo; Kim, Han Jun; Jung, Kwang-Ik

    2016-06-01

    The sensory function plays an important role for successful motor performance. We investigated the modulating effects of high frequency repetitive transcranial magnetic stimulation (rTMS) on sensory discrimination and motor coordination. Twenty healthy participants were assigned into two random groups; the real- and sham-rTMS group. Total of 900 rTMS pulses at a frequency of 10Hz (stimulus intensity of 90% RMT) were given over deltoid representational areas of the somatosensory cortex. Sensory discrimination ability was evaluated using two-point discrimination test. Motor coordination was measured by the latency difference between the synchronized contraction of deltoid and abductor pollicis brevis muscles before and after rTMS. The sensory discrimination was significantly increased only in the deltoid area and the difference in the latency of synchronized contraction of two muscles was significantly shortened after real-rTMS compared sham condition, which had tendency of negative correlation following real-rTMS condition. The results of this study demonstrated rTMS-induced enhancement of sensorimotor integration, which may contribute to develop effective therapeutic strategies for rehabilitation of various sensorimotor disorders in the clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Directory of Open Access Journals (Sweden)

    Chia-Hsiung Cheng

    2018-03-01

    Full Text Available Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG, a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI and of beta rebound oscillation in the primary motor cortex (MI in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1 amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound

  2. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Science.gov (United States)

    Cheng, Chia-Hsiung; Lin, Mei-Yin; Yang, Shiou-Han

    2018-01-01

    Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was

  3. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  4. Motor Cortex Reorganization and Repetitive Transcranial Magnetic Stimulation for Pain-A Methodological Study.

    Science.gov (United States)

    Nurmikko, Turo; MacIver, Kathryn; Bresnahan, Rebecca; Hird, Emily; Nelson, Andrew; Sacco, Paul

    2016-10-01

    Somatotopic reorganization of primary motor cortex (M1) has been described in several neurological conditions associated with chronic pain. We hypothesized that such reorganization impacts on the mechanisms of M1 stimulation induced analgesia and may either compromise the treatment effect of or provide an alternative target site for repetitive transcranial magnetic stimulation (rTMS). The aim of the study was to compare pain relief following rTMS of the standard motor "hotspot" with that of the reorganized area. We used TMS motor mapping in 30 patients to establish the location of the standard motor "hotspot" (site A) and an alternative site located in the reorganized area (site B), both within M1. Where TMS mapping was not possible (N = 8) we determined the location of the two sites using task-related fMRI. We compared the analgesic effect on neuropathic pain of 5 sessions of navigated rTMS applied over (i) site A, (ii) site B, and (iii) occipital fissure (SHAM stimulation site). Total Pain Relief (TOTPAR) was determined as the difference in average weekly pain scores between baseline and following each rTMS cycle, over three weeks. Data from 27 patients was analyzed. rTMS of sites A and B resulted in greater TOTPAR than that of SHAM. No difference was seen between sites A and B. Responders (≥15% pain relief) were seen in both groups, with partial overlap only. Addition of stimulation over site B improved the responder rate by 58% compared with site A. In an open-label extension study of five sessions of rTMS aimed at the optimized target site, 8/11 responders and 1/12 nonresponders reported pain relief. Cortical reorganization may provide a more effective stimulation target for rTMS in some individuals with neuropathic pain. © 2016 International Neuromodulation Society.

  5. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Science.gov (United States)

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  6. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Directory of Open Access Journals (Sweden)

    George L Chadderdon

    Full Text Available Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1, no learning (0, or punishment (-1, corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  7. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults.

    Science.gov (United States)

    Opie, George M; Vosnakis, Eleni; Ridding, Michael C; Ziemann, Ulf; Semmler, John G

    Primary motor cortex neuroplasticity is reduced in old adults, which may contribute to the motor deficits commonly observed in the elderly. Previous research in young subjects suggests that the neuroplastic response can be enhanced using non-invasive brain stimulation (NIBS), with a larger plastic response observed following priming with both long-term potentiation (LTP) and depression (LTD)-like protocols. However, it is not known if priming stimulation can also modulate plasticity in older adults. To investigate if priming NIBS can be used to modulate motor cortical plasticity in old subjects. In 16 young (22.3 ± 1.0 years) and 16 old (70.2 ± 1.7 years) subjects, we investigated the response to intermittent theta burst stimulation (iTBS; LTP-like) when applied 10 min after sham stimulation, continuous TBS (cTBS; LTD-like) or an identical block of iTBS. Corticospinal plasticity was assessed by recording changes in motor evoked potential (MEP) amplitude. In young subjects, priming with cTBS (cTBS + iTBS) resulted in larger MEPs than priming with either iTBS (iTBS + iTBS; P = 0.001) or sham (sham + iTBS; P  0.9), whereas the response to cTBS + iTBS was reduced relative to iTBS + iTBS (P = 0.02) and sham + iTBS (P = 0.04). Priming TBS is ineffective for modifying M1 plasticity in older adults, which may limit the therapeutic use of priming stimulation in neurological conditions common in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Non-stationary Discharge Patterns in Motor Cortex under Subthalamic Nucleus Deep Brain Stimulation: A Review.

    Directory of Open Access Journals (Sweden)

    Sabato eSantaniello

    2012-06-01

    Full Text Available Deep Brain Stimulation (DBS of the subthalamic nucleus (STN directly modulates the basal ganglia, but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine-lesioned rats and facilitation of motor evoked potentials in Parkinson’s disease (PD patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated.In recent studies, we used point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of awake non-human primates during STN DBS. We reported that these features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, which causes a consistent PD-like motor impairment, and that high-frequency DBS (i.e., >100 pulses-per-second [pps] strongly reduces the short-term patterns (3-7ms period both before and after MPTP treatment, while it elicits a consistent short-latency post-stimulus activation. Low-frequency DBS (≤50pps, instead, had negligible effects on the non-stationary features while decreased the burstiness of the spike trains.We evaluate here the impact of the DBS settings on the cortical discharge patterns by using tools from the information theory (receiver operating characteristic curve, information rate, etc. and report that the probability of spiking of the cortical neurons is significantly conditioned on the DBS settings, with such dependency being significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that high-frequency STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the basal ganglia

  9. On the functional organization and operational principles of the motor cortex

    Science.gov (United States)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl; Darling, Warren G.

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled representation of muscles in the MCx. A key question addressed in this article is whether the selection of movement related muscle synergies is a dynamic process involving the moment to moment functional linking of a variety of motor cortical points, or rather the selection of fixed patterns embedded in the MCx circuitry. It will be suggested that both operational principles are probably involved. We also discuss the neural mechanisms by which cortical points may be dynamically linked to synthesize movement related muscle synergies. Separate corticospinal outputs sum linearly and lead to a blending of the movements evoked by activation of each point on its own. This operational principle may simplify the synthesis of motor commands. We will discuss two possible mechanisms that may explain linear summation of outputs. We have observed that the final posture of the arm when pointing to a given spatial location is relatively independent of its starting posture. From this observation and the recurrent nature of the MCx intrinsic connectivity we hypothesize that the basic mode of operation of the MCx is to associate spatial location to final arm posture. We explain how the recurrent network connectivity operates to generate the muscle activation patterns (synergies) required to move the arm and hold it in its final position. PMID:23616749

  10. Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves

    Science.gov (United States)

    Hanajima, Ritsuko; Ugawa, Yoshikazu; Terao, Yasuo; Sakai, Katsuyuki; Furubayashi, Toshiaki; Machii, Katsuyuki; Kanazawa, Ichiro

    1998-01-01

    duration of GABA-mediated inhibition found in animal experiments. Responses produced by I1 waves were little affected by any type of subthreshold conditioning stimulus. We conclude that a subthreshold conditioning stimulus given over the motor cortex moderately suppresses I3 waves but does not affect I1 waves. The duration of suppression of the I3 waves supports the idea that this is an effect of GABAergic inhibition within the motor cortex. PMID:9575308

  11. Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex.

    Directory of Open Access Journals (Sweden)

    Ying-Zu Huang

    Full Text Available Daily sessions of therapeutic transcranial brain stimulation are thought to prolong or amplify the effect of a single intervention. Here we show in patients with focal hand dystonia that additional, new effects build up progressively over time, making it difficult to predict the effect of long term interventions from shorter treatment sessions. In a sham-controlled study, real or sham continuous theta burst stimulation (cTBS was given once daily for five consecutive days to dorsolateral premotor cortex (PMd. Five days of real, but not sham, premotor cTBS improved intracortical inhibition in primary motor cortex (M1 to a similar extent on day 1 and day 5. However 5 days of cTBS were required to restore the abnormal PMd-M1 interactions observed on day 1. Similarly, excessive M1 plasticity seen at baseline was also significantly reduced by five days of real premotor cTBS. There was only a marginal benefit on writing. The results show that additional, new effects, at sites distant from the point of stimulation, build up progressively over time, making it difficult to predict the effect of long term interventions from shorter treatment sessions. The results indicate that it may take many days of therapeutic intervention to rebalance activity in a complex network.

  12. Functional MR imaging of the motor cortex in healthy volunteers and patients with brain tumours: qualitative and quantitative results

    International Nuclear Information System (INIS)

    Fellner, C.; Friedrich-Alexander-Univ., Erlangen-Nuernberg; Schlaier, J.; Schwerdtner, J.; Brawanski, A.; Fellner, F.; Oberoesterreichische Landesnervenklinik, Linz; Held, P.; Blank, M.; Kalender, W.A.

    1999-01-01

    The purpose of this study was to compare functional magnetic resonance (MR) imaging of the motor cortex in healthy volunteers and patients with brain tumours. Functional MR imaging was performed in 14 healthy volunteers and 14 patients with tumours in or near the primary motor cortex with groups being matched for age, sex, and handedness. Functional images were acquired during motion of the right and left hand. Time courses of signal intensity within the contralateral, ipsilateral, and supplementary motor cortex as well as z-maps were calculated, their quality being assessed visually. Mean signal increase between activation and rest were evaluated within the contralateral, ipsilateral, and supplementary motor cortex, the activated area in those regions of interest was measured using z-maps. The quality of functional MR experiments was generally lower in patients than in volunteers. The quantitative results showed a trend towards increased ipsilateral activation in volunteers during left hand compared to right hand motion and in patients during motion of the affected compared to the non-affected hand. Considering quantitative and qualitative results, significantly increased ipsilateral activation was found in patients compared to healthy volunteers. In conclusion, functional MR imaging quality was significantly reduced in patient studies compared to healthy volunteers, even if influences of age, sex, and handedness were excluded. Increased ipsilateral activation was found in patients with brain tumours which can be interpreted by an improved connectivity between both hemispheres. (orig.) [de

  13. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    Science.gov (United States)

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  14. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  15. Motor association cortex activity in Parkinson's disease. A functional MRI study

    International Nuclear Information System (INIS)

    Tada, Yukiko

    1998-01-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  16. Modulation of motor cortex excitability by peripheral magnetic stimulation of different stimulus sites and frequencies.

    Science.gov (United States)

    Sato, A; Liu, X; Torii, T; Iwahashi, M; Iramina, K

    2016-08-01

    Peripheral stimulation is known to influence the state of cortical excitability. The purpose of this study is to investigate whether peripheral magnetic stimulation has similar effects on cortical excitability to transcranial magnetic stimulation (TMS). A magnetic stimulator with a flat figure-of-eight coil was used for both TMS, and peripheral magnetic stimulation applied to the bilateral forearms. TMS was performed on the left primary motor cortex to evaluate influence of the peripheral magnetic stimulation, and motor evoked potential (MEP) was measured from the right first dorsal interosseous. Peripheral magnetic stimulation was performed at a stimulus frequency of 1 Hz or 10 Hz, to the stimulus sites on the right and left supination of the forearm. The effects of peripheral magnetic stimulation were evaluated by comparing the mean MEP amplitude elicited by TMS before and after peripheral magnetic stimulation. We found that cortical excitability varied according to the stimulation site and frequency of the peripheral magnetic stimulation. The inhibition of cortical excitability was observed following 1 Hz peripheral magnetic stimulation over the right forearm (pmagnetic stimulation over the left forearm and 10 Hz stimulation over either the right or left forearms. We suggest that peripheral magnetic stimulation has a similar effect to TMS, and can induce both facilitation and inhibition of cortical excitability.

  17. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury

    Directory of Open Access Journals (Sweden)

    D. Fraiman

    2016-01-01

    Full Text Available This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA upon the organization of the primary motor cortex (M1. Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies.

  18. Epileptic Zone Resection for Magnetic Resonance Imaging-Negative Refractory Epilepsy Originating from the Primary Motor Cortex.

    Science.gov (United States)

    Zhang, Guangming; Meng, Dawei; Liu, Yanwu; Yang, Kai; Chen, Jianwei; Su, Lanmei; Zhang, Zhaozhao; Chen, Guoqiang

    2017-06-01

    Because of the balance between achieving complete seizure freedom and minimizing the postoperative neurologic deficits, surgery for refractory epilepsy originating from the primary motor cortex is difficult. Here, we report the outcomes of surgery for magnetic resonance imaging-negative refractory epilepsy originating from the primary motor cortex in a case series. Nine patients with refractory epilepsy originating from the primary motor cortex underwent intracranial electrodes implantation after preoperative evaluation. Subdural grid electrodes and depth electrodes were implanted through craniotomy assisted by stereotactic technique. We delineated the epileptic zone and executed tailored resection according to results of intracranial electroencephalography and mapping. The patients were followed up for at least 1 year. Muscle strength was evaluated at different postoperative times (day 1, 2 weeks, and 1 year). Regarding seizure outcome at the last follow-up, Engel class I outcome was achieved in 5 patients, class II was achieved in 3 patients, and class III was achieved in 1 patient. All cases had postoperative hemiparesis of different degree on the first day after operation. Three patients experienced distal muscle strength of single limb with grade 3 or lower and had obvious dysfunction at 1 year after operation. Six patients experienced distal muscle strength of grade 4 or 5 (Medical Research Council 6-point scale) and had no obvious dysfunction at that time. Most patients of refractory epilepsy originating from the primary motor cortex were seizure free and had no obvious neurologic deficits at follow-up. Epileptogenic zone resection may not always be contraindicated for patients with nonlesional refractory epilepsy originating from the primary motor cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  20. The effects of experimental knee pain on lower limb corticospinal and motor cortex excitability.

    Science.gov (United States)

    Rice, David Andrew; Graven-Nielsen, Thomas; Lewis, Gwyn Nancy; McNair, Peter John; Dalbeth, Nicola

    2015-08-12

    Notable weakness of the quadriceps muscles is typically observed as a consequence of knee joint arthritis, knee surgery and knee injury. This is partly due to ongoing neural inhibition that prevents the central nervous system from fully activating the quadriceps, a process known as arthrogenic muscle inhibition (AMI). To investigate the mechanisms underlying AMI, this study explored the effects of experimental knee pain on lower limb corticospinal and motor cortex excitability. Twenty-four healthy volunteers participated in this study. In experiment 1, experimental knee pain was induced by the injection of hypertonic saline into the infrapatellar fat pad (n = 18). In experiment 2, isotonic saline was injected into the fat pad as a non-painful control (n = 8). Pain intensity was measured on a 10-cm electronic visual analogue scale. Transcranial magnetic stimulation and electromyography were used to measure lower limb motor-evoked potential amplitude and short-interval intracortical inhibition before and after the injection. The peak VAS score following hypertonic saline (5.0 ± 0.5 cm) was higher than after isotonic saline (p knee pain that was not apparent during the control condition. Biceps femoris and tibialis anterior motor-evoked potential amplitude did not change following injection (all p >0.05). There was no change in short-interval intracortical inhibition measured from vastus lateralis following injection (both p >0.05). Quadriceps corticospinal excitability increases during experimental knee pain, providing no evidence for a supraspinal contribution to quadriceps AMI.

  1. Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available The effects produced by transcranial direct current stimulation (tDCS applied to the motor system have been widely studied in the past, chiefly focused on primary motor cortex (M1 excitability. However, the effects on functional tasks are less well documented.This study aims to evaluate the effect of tDCS-M1 on goal-oriented actions (i.e., arm-reaching movements; ARM, in a reaction-time protocol.13 healthy subjects executed dominant ARM as fast as possible to one of two targets in front of them while surface EMG was recorded. Participants performed three different sessions. In each session they first executed ARM (Pre, then received tDCS, and finally executed Post, similar to Pre. Subjects received three different types of tDCS, one per session: In one session the anode was on right-M1 (AR, and the cathode on the left-M1 (CL, thus termed AR-CL; AL-CR reversed the montage; and Sham session was applied likewise. Real stimulation was 1mA-10min while subjects at rest. Three different variables and their coefficients of variation (CV were analyzed: Premotor times (PMT, reaction-times (RT and movement-times (MT.triceps-PMT were significantly increased at Post-Sham, suggesting fatigue. Results obtained with real tDCS were not different depending on the montage used, in both cases PMT were significantly reduced in all recorded muscles. RT and MT did not change for real or sham stimulation. RT-CV and PMT-CV were reduced after all stimulation protocols.tDCS reduces premotor time and fatigability during the execution of fast motor tasks. Possible underlying mechanisms are discussed.

  2. Muscles in "concert": study of primary motor cortex upper limb functional topography.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Melgari

    Full Text Available BACKGROUND: Previous studies with Transcranial Magnetic Stimulation (TMS have focused on the cortical representation of limited group of muscles. No attempts have been carried out so far to get simultaneous recordings from hand, forearm and arm with TMS in order to disentangle a 'functional' map providing information on the rules orchestrating muscle coupling and overlap. The aim of the present study is to disentangle functional associations between 12 upper limb muscles using two measures: cortical overlapping and cortical covariation of each pair of muscles. Interhemispheric differences and the influence of posture were evaluated as well. METHODOLOGY/PRINCIPAL FINDINGS: TMS mapping studies of 12 muscles belonging to hand, forearm and arm were performed. Findings demonstrate significant differences between the 66 pairs of muscles in terms of cortical overlapping: extremely high for hand-forearm muscles and very low for arm vs hand/forearm muscles. When right and left hemispheres were compared, overlapping between all possible pairs of muscles in the left hemisphere (62.5% was significantly higher than in the right one (53.5% . The arm/hand posture influenced both measures of cortical association, the effect of Position being significant [p = .021] on overlapping, resulting in 59.5% with prone vs 53.2% with supine hand, but only for pairs of muscles belonging to hand and forearm, while no changes occurred in the overlapping of proximal muscles with those of more distal districts. CONCLUSIONS/SIGNIFICANCE: Larger overlapping in the left hemisphere could be related to its lifetime higher training of all twelve muscles studied with respect to the right hemisphere, resulting in larger intra-cortical connectivity within primary motor cortex. Altogether, findings with prone hand might be ascribed to mechanisms facilitating coupling of muscles for object grasping and lifting -with more proximal involvement for joint stabilization- compared to supine

  3. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.

    Science.gov (United States)

    Lehner, Rea; Meesen, Raf; Wenderoth, Nicole

    2017-07-01

    Observing another person experiencing exogenously inflicted pain (e.g. by a sharp object penetrating a finger) modulates the excitability of the observer' primary motor cortex (M1). By contrast, far less is known about the response to endogenously evoked pain such as sudden back pain provoked by lifting a heavy object. Here, participants (n=26) observed the lifting of a heavy object. During this action the actor (1) flexed and extended the legs (LEG), (2) flexed and extended the back (BACK) or (3) flexed and extended the back which caused visible pain (BACKPAIN). Corticomotor excitability was measured by applying a single transcranial magnetic stimulation pulse to the M1 representation of the muscle erector spinae and participants scored their perception of the actor's pain on the numeric pain rating scale (NPRS). The participants scored vicarious pain as highest during the BACKPAIN condition and lowest during the LEG condition. MEP size was significantly lower for the LEG than the BACK and BACKPAIN condition. Although we found no statistical difference in the motor-evoked potential (MEP) size between the conditions BACK and BACKPAIN, there was a significant correlation between the difference in NPRS scores between the conditions BACKPAIN and BACK and the difference in MEP size between these conditions. Participants who believed the vicarious pain to be much stronger in the BACKPAIN than in the BACK condition also exhibited higher MEPs for the BACKPAIN than the BACK condition. Our results indicate that observing how others lift heavy objects facilitates motor representations of back muscles in the observer. Modulation occurs in a movement-specific manner and is additionally modulated by the extent to which the participants perceived the actor's pain. Our findings suggest that movement observation might be a promising paradigm to study the brain's response to back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Excitability of the motor cortex in de novo patients with celiac disease.

    Directory of Open Access Journals (Sweden)

    Giovanni Pennisi

    Full Text Available INTRODUCTION: Celiac disease (CD may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking. OBJECTIVE: To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS in a group of de novo CD patients. MATERIALS AND METHODS: Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP, intracortical inhibition (ICI and facilitation (ICF. None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons. RESULTS: CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025, a reduced ICI (0.3 vs 0.2, p<0.045 and an enhanced ICF (1.1 vs 0.7, p<0.042 compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen's d -0.414, ICI (-0.278 and ICF (-0.292 measurements. CONCLUSION: A pattern of cortical excitability characterized by "disinhibition" and "hyperfacilitation" was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.

  5. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  6. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    Science.gov (United States)

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  7. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials.

    Science.gov (United States)

    Wu, Zehan; Xie, Tao; Yao, Lin; Zhang, Dingguo; Sheng, Xinjun; Farina, Dario; Chen, Liang; Mao, Ying; Zhu, Xiangyang

    2017-01-01

    We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  8. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  9. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study

    Directory of Open Access Journals (Sweden)

    Koeneke Susan

    2007-08-01

    Full Text Available Abstract Background Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1 in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Methods Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools or the external strategy (e.g. pictures of houses or abstract figures. The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself. Single-pulse Transcranial Magnetic Stimulation (TMS was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs at the right hand muscle. Results Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. Conclusion This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  10. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study.

    Science.gov (United States)

    Bode, Stefan; Koeneke, Susan; Jäncke, Lutz

    2007-08-07

    Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1) in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools) or the external strategy (e.g. pictures of houses or abstract figures). The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself). Single-pulse Transcranial Magnetic Stimulation (TMS) was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs) at the right hand muscle. Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  11. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    Science.gov (United States)

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. © 2015 Federation of European Neuroscience Societies and John

  12. Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors

    Directory of Open Access Journals (Sweden)

    Clément eVitrac

    2014-02-01

    Full Text Available The primary motor cortex (M1 is involved in fine voluntary movements control. Previous studies have shown the existence of a dopamine (DA innervation in M1 of rats and monkeys that could directly modulate M1 neuronal activity. However, none of these studies have described the precise distribution of DA terminals within M1 functional region nor have quantified the density of this innervation. Moreover, the precise role of DA on pyramidal neuron activity still remains unclear due to conflicting results from previous studies regarding D2 effects on M1 pyramidal neurons.In this study we assessed in mice the neuroanatomical characteristics of DA innervation in M1 using unbiased stereological quantification of dopamine transporter-immunostained fibers. We demonstrated for the first time in mice that DA innervates the deep layers of M1 targeting preferentially the forelimb representation area of M1. To address the functional role of the DA innervation on M1 neuronal activity, we performed electrophysiological recordings of single neurons activity in vivo and pharmacologically modulated D2 receptors activity. Local D2 receptors activation by quinpirole enhanced pyramidal neurons spike firing rate without changes in spike firing pattern. Altogether, these results indicate that DA innervation in M1 can increase neuronal activity through D2 receptors activation and suggest a potential contribution to the modulation of fine forelimb movement. Given the demonstrated role for DA in fine motor skill learning in M1, our results suggest that altered D2 modulation of M1 activity may be involved in the pathophysiology of movement disorders associated with disturbed DA homeostasis.

  13. Mild cognitive impairment: loss of linguistic task-induced changes in motor cortex excitability.

    Science.gov (United States)

    Bracco, L; Giovannelli, F; Bessi, V; Borgheresi, A; Di Tullio, A; Sorbi, S; Zaccara, G; Cincotta, M

    2009-03-10

    In amnestic mild cognitive impairment (aMCI), functional neuronal connectivity may be altered, as suggested by quantitative EEG and neuroimaging data. In young healthy humans, the execution of linguistic tasks modifies the excitability of the hand area of the dominant primary motor cortex (M1(hand)), as tested by transcranial magnetic stimulation (TMS). We used TMS to investigate functional connectivity between language-related cortical areas and M1(hand) in aMCI. Ten elderly women with aMCI and 10 age-matched women were recruited. All participants were right handed and underwent a neuropsychological evaluation. In the first TMS experiment, participants performed three different tasks: reading aloud, viewing of non-letter strings (baseline), and nonverbal oral movements. The second experiment included the baseline condition and three visual searching/matching tasks using letters, geometric shapes, or digits as target stimuli. In controls, motor evoked potentials (MEP) elicited by suprathreshold TMS of the left M1(hand) were significantly larger during reading aloud (170% baseline) than during nonverbal oral movements, whereas no difference was seen for right M1(hand) stimulation. Similarly, MEP elicited by left M1(hand) stimulation during letter and shape searching/matching tasks were significantly larger compared to digit task. In contrast, linguistic task performance did not produce any significant MEP modulation in patients with aMCI, although neuropsychological evaluation showed normal language abilities. Findings suggest that functional connectivity between the language-related brain regions and the dominant M1(hand) may be altered in amnestic mild cognitive impairment. Follow-up studies will reveal whether transcranial magnetic stimulation application during linguistic tasks may contribute to characterize the risk of conversion to Alzheimer disease.

  14. Improved dexterity after chronic electrical stimulation of the motor cortex for central pain: a special relevance for thalamic syndrome.

    Science.gov (United States)

    Nuti, Christophe; Vassal, François; Mertens, Patrick; Lemaire, Jean-Jacques; Magnin, Michel; Peyron, Roland

    2012-01-01

    To demonstrate that motor cortex stimulation (MCS) could improve motor function in patients with neuropathic pain. In this prospective clinical study of 38 patients referred for MCS as treatment for their neuropathic pain, we collected any declaration of improvement in motor performance that could be attributed to MCS. Ten patients (26%) declared a benefit in their motor function. Eight presented objective evidence of recovered dexterity for rapid alternating movements. A minor proportion had improvement in dystonic posture (n = 2), but none had detectable increased motor strength or tonus changes. Overall, 73% of the patients with limb ataxia declared a benefit after MCS. In 6 out of 10 patients (60%), the anatomic lesion responsible for pain was restricted to the lateral aspect of the thalamus. All of them had either clinical or electrophysiological evidence of lemniscal dysfunction (proprioceptive ataxia). No correlation was found between the scores of pain relief and the modification of motor status. The correlation between thalamic lesions and benefits in motor performance was significant (Fisher's exact test, two-tailed, p = 0.0017). Up to 26% of patients estimated that MCS improved their motor outcome through recovered dexterity and in cases of lateral thalamic lesions. Copyright © 2012 S. Karger AG, Basel.

  15. Sentential context modulates the involvement of the motor cortex in action language processing: An fMRI study

    Directory of Open Access Journals (Sweden)

    Karen D.I. Schuil

    2013-04-01

    Full Text Available Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a moderate view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in nonliteral sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to nonliteral and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than nonliteral action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  16. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    Science.gov (United States)

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  17. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients.

    Science.gov (United States)

    Antelis, Javier M; Montesano, Luis; Ramos-Murguialday, Ander; Birbaumer, Niels; Minguez, Javier

    2017-01-01

    Stroke survivors usually require motor rehabilitation therapy as, due to the lesion, they completely or partially loss mobility in the limbs. Brain-computer interface technology offers the possibility of decoding the attempt to move paretic limbs in real time to improve existing motor rehabilitation. However, a major difficulty for the practical application of the BCI to stroke survivors is that the brain rhythms that encode the motor states might be diminished due to the lesion. This study investigates the continuous decoding of natural attempt to move the paralyzed upper limb in stroke survivors from electroencephalographic signals of the unaffected contralesional motor cortex. Experiments were carried out with the aid of six severely affected chronic stroke patients performing/attempting self-selected reaching movements of the unaffected/affected upper limb. The electroencephalographic (EEG) analysis showed significant cortical activation on the uninjured motor cortex when moving the contralateral unaffected arm and in the attempt to move the ipsilateral affected arm. Using this activity, significant continuous decoding of movement was obtained in six out of six participants in movements of the unaffected limb, and in four out of six participants in the attempt to move the affected limb. This study showed that it is possible to construct a decoder of the attempt to move the paretic arm for chronic stroke patients using the EEG activity of the healthy contralesional motor cortex. This decoding model could provide to stroke survivors with a natural, easy, and intuitive way to achieve control of BCIs or robot-assisted rehabilitation devices.

  18. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS.

    Directory of Open Access Journals (Sweden)

    Carlotta Lega

    Full Text Available Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC, seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS. In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right, and then when it was in a novel scrambled order. Participant's ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound.

  19. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans.

    Science.gov (United States)

    Nitsche, Michael A; Liebetanz, David; Schlitterlau, Anett; Henschke, Undine; Fricke, Kristina; Frommann, Kai; Lang, Nicolas; Henning, Stefan; Paulus, Walter; Tergau, Frithjof

    2004-05-01

    Weak transcranial DC stimulation (tDCS) of the human motor cortex results in excitability shifts during and after the end of stimulation, which are most probably localized intracortically. Anodal stimulation enhances excitability, whereas cathodal stimulation reduces it. Although the after-effects of tDCS are NMDA receptor-dependent, nothing is known about the involvement of additional receptors. Here we show that pharmacological strengthening of GABAergic inhibition modulates selectively the after-effects elicited by anodal tDCS. Administration of the GABA(A) receptor agonist lorazepam resulted in a delayed, but then enhanced and prolonged anodal tDCS-induced excitability elevation. The initial absence of an excitability enhancement under lorazepam is most probably caused by a loss of the anodal tDCS-generated intracortical diminution of inhibition and enhancement of facilitation, which occurs without pharmacological intervention. The reasons for the late-occurring excitability enhancement remain unclear. Because intracortical inhibition and facilitation are not changed in this phase compared with pre-tDCS values, excitability changes originating from remote cortical or subcortical areas could be involved.

  20. Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia.

    Science.gov (United States)

    Castillo Saavedra, Laura; Mendonca, Mariana; Fregni, Felipe

    2014-09-01

    Fibromyalgia is a highly prevalent, debilitating disease, characterized by chronic widespread pain. The mechanisms underlying pain are not completely understood, but it is believed to be associated with important neuroplastic changes in pain-related neural circuits. Although the involvement of the pain matrix in fibromyalgia is well established, another area that has been found to play a role in the maintenance and treatment of chronic pain is the primary motor cortex (M1). Maladaptive plasticity of M1 is a common finding in patients with chronic pain and many studies in animal models and in human subjects have shown that modulation of the activity of this cortical area induces significant analgesic effects. Furthermore, studies in other chronic pain syndromes have found alterations in baseline characteristics of M1, including an increase in cortical excitability and an abnormally enhanced response to incoming sensory stimuli. Given these findings, we hypothesize that M1 is a major modulator of pain in fibromyalgia and therefore its baseline activity reflects this strong feedback between M1 and pain-related neural areas. However, the feedback loop between M1 and the pain matrix is not enough to decrease pain in fibromyalgia per se, thus increasing its modulatory effect by engaging this network through different behavioral and modulatory techniques is a potentially beneficial treatment for pain in fibromyalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Segregated parallel inputs to the brachial spinal cord from the cingulate motor cortex in the monkey.

    Science.gov (United States)

    Morecraft, R J; Louie, J L; Schroeder, C M; Avramov, K

    1997-12-22

    The corticospinal projection from the cingulate motor cortex to the lower cervical enlargement (C5-T1) was investigated in four rhesus monkeys. Each received an injection of biotinylated dextran amine involving the arm representation of M3 (area 24c) or M4 (area 23c). In M3 cases, contralateral terminal label occurred in the lateral part of laminae V and VI of the intermediate zone including the reticulated marginal border. Lighter labeling was found in laminae IV, VII and the dorsolateral part of the anterior horn (lamina IX). In marked contrast, M4 cases demonstrated contralateral terminal labeling in the medial part of the dorsal and intermediate zones (laminae III, IV, V and VI). Lighter labeling involved the medial part of laminae VII, X and the dorsolateral anterior horn (lamina IX). Our experiments demonstrate that the corticospinal projection from the arm representations of M3 and M4 innervate distinct and separate parts of the spinal gray. Along with the noted differences in the cortical inputs to M3 and M4, these data suggest that the two cingulospinal systems may mediate independent and specialized forms of information effecting upper limb movement.

  2. Neurochemical Analysis of Primary Motor Cortex in Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Anda E. Popescu

    2012-08-01

    Full Text Available The involvement of the primary motor cortex (M1 in chronic low back pain (LBP is a relatively new concept. Decreased M1 excitability and an analgesic effect after M1 stimulation have been recently reported. However, the neurochemical changes underlying these functional M1 changes are unknown. The current study investigated whether neurochemicals specific to neurons and glial cells in both right and left M1 are altered. N-Acetylaspartate (NAA and myo-inositol (mI were measured with proton magnetic resonance spectroscopy in 19 subjects with chronic LBP and 14 healthy controls. We also examined correlations among neurochemicals within and between M1 and relationships between neurochemical concentrations and clinical features of pain. Right M1 NAA was lower in subjects with LBP compared to controls (p = 0.008. Left M1 NAA and mI were not significantly different between LBP and control groups. Correlations between neurochemical concentrations across M1s were different between groups (p = 0.008. There were no significant correlations between M1 neurochemicals and pain characteristics. These findings provide preliminary evidence of neuronal depression and altered neuronal-glial interactions across M1 in chronic LBP.

  3. Prediction of hand trajectory from electrocorticography signals in primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Chao Chen

    Full Text Available Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG has received much focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity time series and so on. However, there still remains considerable work to be done before a high performance ECoG-based neural prosthetic can be realized. In this study, we proposed an algorithm to decode hand trajectory from 15 and 32 channel ECoG signals recorded from primary motor cortex (M1 in two primates. To determine the most effective areas for prediction, we applied two electrode selection methods, one based on position relative to the central sulcus (CS and another based on the electrodes' individual prediction performance. The best coefficients of determination for decoding hand trajectory in the two monkeys were 0.4815 ± 0.0167 and 0.7780 ± 0.0164. Performance results from individual ECoG electrodes showed that those with higher performance were concentrated at the lateral areas and areas close to the CS. The results of prediction according with different numbers of electrodes based on proposed methods were also shown and discussed. These results also suggest that superior decoding performance can be achieved from a group of effective ECoG signals rather than an entire ECoG array.

  4. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity.

    Science.gov (United States)

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a "state" condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (Pstuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering "state" in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).

  5. Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model.

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A I; Díaz-Cintra, S

    2017-04-19

    In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    International Nuclear Information System (INIS)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G

    2004-01-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control

  7. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia.

    Science.gov (United States)

    Meinzer, Marcus; Darkow, Robert; Lindenberg, Robert; Flöel, Agnes

    2016-04-01

    Transcranial direct current stimulation has shown promise to improve recovery in patients with post-stroke aphasia, but previous studies have only assessed stimulation effects on impairment parameters, and evidence for long-term maintenance of transcranial direct current stimulation effects from randomized, controlled trials is lacking. Moreover, due to the variability of lesions and functional language network reorganization after stroke, recent studies have used advanced functional imaging or current modelling to determine optimal stimulation sites in individual patients. However, such approaches are expensive, time consuming and may not be feasible outside of specialized research centres, which complicates incorporation of transcranial direct current stimulation in day-to-day clinical practice. Stimulation of an ancillary system that is functionally connected to the residual language network, namely the primary motor system, would be more easily applicable, but effectiveness of such an approach has not been explored systematically. We conducted a randomized, parallel group, sham-controlled, double-blind clinical trial and 26 patients with chronic aphasia received a highly intensive naming therapy over 2 weeks (8 days, 2 × 1.5 h/day). Concurrently, anodal-transcranial direct current stimulation was administered to the left primary motor cortex twice daily at the beginning of each training session. Naming ability for trained items (n = 60 pictures that could not be named during repeated baseline assessments), transfer to untrained items (n = 284 pictures) and generalization to everyday communication were assessed immediately post-intervention and 6 months later. Naming ability for trained items was significantly improved immediately after the end of the intervention in both the anodal (Cohen's d = 3.67) and sham-transcranial direct current stimulation groups (d = 2.10), with a trend for larger gains in the anodal-transcranial direct current stimulation group (d

  8. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  11. Discrimination of speech and non-speech sounds following theta-burst stimulation of the motor cortex

    Directory of Open Access Journals (Sweden)

    Jack Charles Rogers

    2014-07-01

    Full Text Available Perceiving speech engages parts of the motor system involved in speech production. The role of the motor cortex in speech perception has been demonstrated using low-frequency repetitive transcranial magnetic stimulation (rTMS to suppress motor excitability in the lip representation and disrupt discrimination of lip-articulated speech sounds (Möttönen & Watkins, 2009. Another form of rTMS, continuous theta-burst stimulation (cTBS, can produce longer-lasting disruptive effects following a brief train of stimulation. We investigated the effects of cTBS on motor excitability and discrimination of speech and non-speech sounds. cTBS was applied for 40 seconds over either the hand or the lip representation of motor cortex. Motor-evoked potentials recorded from the lip and hand muscles in response to single pulses of TMS revealed no measurable change in motor excitability due to cTBS. This failure to replicate previous findings may reflect the unreliability of measurements of motor excitability related to inter-individual variability. We also measured the effects of cTBS on a listener’s ability to discriminate:(1 lip-articulated speech sounds from sounds not articulated by the lips (‘ba’vs.‘da’; (2 two speech sounds not articulated by the lips (‘ga’vs.‘da’; and (3 non-speech sounds produced by the hands (‘claps’vs.‘clicks’. Discrimination of lip-articulated speech sounds was impaired between 20 and 35 minutes after cTBS over the lip motor representation. Specifically, discrimination of across-category ba–da sounds presented with an 800-ms inter-stimulus interval was reduced to chance level performance. This effect was absent for speech sounds that do not require the lips for articulation and non-speech sounds. Stimulation over the hand motor representation did not affect discrimination of speech or non-speech sounds. These findings show that stimulation of the lip motor representation disrupts discrimination of speech

  12. Regional glucose hypometabolic spread within the primary motor cortex is associated with amyotrophic lateral sclerosis disease progression: A fluoro-deoxyglucose positron emission tomography study

    Directory of Open Access Journals (Sweden)

    Hironobu Endo

    2017-03-01

    Conclusions: In patients with ALS, glucose metabolism decreased in the impaired side of the primary motor cortex depending on the clinical symptom progression in the corresponding extremities, regardless of the presence of clinical UMN signs. A decrement in glucose metabolism on FDG-PET corresponding to symptoms in the primary motor cortex might be an indicator of the time-dependent course of ALS neurodegeneration.

  13. Prefrontal versus motor cortex transcranial direct current stimulation (tDCS) effects on post-surgical opioid use.

    Science.gov (United States)

    Borckardt, Jeffrey J; Reeves, Scott T; Milliken, Cole; Carter, Brittan; Epperson, Thomas I; Gunselman, Ryan J; Madan, Alok; Del Schutte, H; Demos, Harry A; George, Mark S

    Pain is often a complaint that precedes total knee arthroplasty (TKA), however the procedure itself is associated with considerable post-operative pain lasting days to weeks which can predict longer-term surgical outcomes. Previously, we reported significant opioid-sparing effects of motor cortex transcranial direct current stimulation from a single-blind trial. In the present study, we used double-blind methodology to compare motor cortex tDCS and prefrontal cortex tDCS to both sham and active-control (active electrodes over non-pain modulating brain areas) tDCS. 58 patients undergoing unilateral TKA were randomly assigned to receive 4 20-min sessions (a total of 80 min) of tDCS (2 mA) post-surgery with electrodes placed to create 4 groups: 1) MOTOR (n = 14); anode-motor/cathode-right prefrontal, 2) PREFRONTAL (n = 16); anode-left-prefrontal/cathode-right-sensory, 3) ACTIVE-CONTROL (n = 15); anode-left-temporal-occipital junction/cathode-medial-anterior-premotor-area, and 4) SHAM (n = 13); 0 mA-current stimulation using placements 1 or 2. Patient controlled analgesia (PCA; hydromorphone) use was tracked during the ∼72-h post-surgery. Patients in the sham group and the active-control group used 15.4 mg (SD = 14.1) and 16.0 mg (SD = 9.7) of PCA hydromorphone respectively. There was no difference between the slopes of the cumulative PCA usage curves between these two groups (p = 0.25; ns). Patients in the prefrontal tDCS group used an average of 11.7 mg (SD = 5.0) of PCA hydromporhone, and the slope of the cumulative PCA usage curve was significantly lower than sham (p prefrontal cortex may be a reasonable approach to reducing post-TKA opioid requirements. Given the unexpected finding that motor cortex failed to produce an opioid sparing effect in this follow-up trial, further research in the area of post-operative cortical stimulation is still needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High-frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability.

    Science.gov (United States)

    Vasant, Dipesh H; Michou, Emilia; Mistry, Satish; Rothwell, John C; Hamdy, Shaheen

    2015-11-15

    in the cortex and cerebellum (midline and hemispheric) before acquisition of baseline motor evoked potential (MEP) recordings from each site as a measure of excitability. Post-interventional MEPs were recorded for an hour and compared to sham using repeated measures ANOVA. Only 10 Hz cerebellar rTMS increased cortico-pharyngeal MEP amplitudes (mean bilateral increase 52%, P = 0.007) with effects lasting 30 min post-intervention with an optimal train length of 250 pulses (P = 0.019). These optimised parameters of cerebellar rTMS can produce sustained increases in corticobulbar excitability and may have clinical translation in future studies of neurogenic dysphagia. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque.

    Science.gov (United States)

    Cozzi, Bruno; De Giorgio, Andrea; Peruffo, A; Montelli, S; Panin, M; Bombardi, C; Grandis, A; Pirone, A; Zambenedetti, P; Corain, L; Granato, Alberto

    2017-08-01

    The architecture of the neocortex classically consists of six layers, based on cytological criteria and on the layout of intra/interlaminar connections. Yet, the comparison of cortical cytoarchitectonic features across different species proves overwhelmingly difficult, due to the lack of a reliable model to analyze the connection patterns of neuronal ensembles forming the different layers. We first defined a set of suitable morphometric cell features, obtained in digitized Nissl-stained sections of the motor cortex of the horse, chimpanzee, and crab-eating macaque. We then modeled them using a quite general non-parametric data representation model, showing that the assessment of neuronal cell complexity (i.e., how a given cell differs from its neighbors) can be performed using a suitable measure of statistical dispersion such as the mean absolute deviation-mean absolute deviation (MAD). Along with the non-parametric combination and permutation methodology, application of MAD allowed not only to estimate, but also to compare and rank the motor cortical complexity across different species. As to the instances presented in this paper, we show that the pyramidal layers of the motor cortex of the horse are far more irregular than those of primates. This feature could be related to the different organizations of the motor system in monodactylous mammals.

  16. Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.

    Science.gov (United States)

    Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U

    2011-09-01

    Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses.

  17. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  18. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions...

  19. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  20. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  1. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  3. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  4. How does listening to different kinds of music influence excitability of primary motor cortex? - a study with transcranial magnetic stimulation.

    OpenAIRE

    Govejšek, Vid

    2016-01-01

    In this master thesis, we tried to prove with an experiment, what kind of changes can different kind of music cause on the motor cortex, compared to the states where individuals do not listen to any music. Even though there are more and more people involved in different musical therapies, for example parkinson and dystonia patients, we still do not know today what is the aspect of music that makes the difference and what are the ways of musical effects on brain. That is why, we have to return...

  5. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  6. Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex.

    Science.gov (United States)

    Wilkinson, Leonora; Steel, Adam; Mooshagian, Eric; Zimmermann, Trelawny; Keisler, Aysha; Lewis, Jeffrey D; Wassermann, Eric M

    2015-10-01

    Feedback and monetary reward can enhance motor skill learning, suggesting reward system involvement. Continuous theta burst (cTBS) transcranial magnetic stimulation (TMS) of the primary motor area (M1) disrupts processing, reduces excitability and impairs motor learning. To see whether feedback and reward can overcome the learning impairment associated with M1 cTBS, we delivered real or sham stimulation to two groups of participants before they performed a motor sequence learning task with and without feedback. Participants were trained on two intermixed sequences, one occurring 85% of the time (the "probable" sequence) and the other 15% of the time (the "improbable" sequence). We measured sequence learning as the difference in reaction time (RT) and error rate between probable and improbable trials (RT and error difference scores). Participants were also tested for sequence recall with the same indices of learning 60 min after cTBS. Real stimulation impaired initial sequence learning and sequence knowledge recall as measured by error difference scores and impaired sequence knowledge recall as measured by RT difference score. Relative to non-feedback learning, the introduction of feedback during sequence learning improved subsequent sequence knowledge recall indexed by RT difference score, in both real and sham stimulation groups and feedback reversed the RT difference score based sequence knowledge recall impairment from real cTBS that we observed in the non-feedback learning condition. Only the real cTBS group in the non-feedback condition showed no evidence of explicit sequence knowledge when tested at the end of the study. Feedback improves recall of implicit and explicit motor sequence knowledge and can protect sequence knowledge against the effect of M1 inhibition. Adding feedback and monetary reward/punishment to motor skill learning may help overcome retention impairments or accelerate training in clinical and other settings. Published by Elsevier Ltd.

  7. Age-related changes in late I-waves influence motor cortex plasticity induction in older adults.

    Science.gov (United States)

    Opie, George M; Cirillo, John; Semmler, John G

    2018-04-18

    The response to neuroplasticity interventions using transcranial magnetic stimulation (TMS) is reduced in older adults, which may be due, in part, to age-related alterations in interneuronal (I-wave) circuitry. The current study investigated age-related changes in interneuronal characteristics and whether they influence motor cortical plasticity in older adults. While I-wave recruitment was unaffected by age, there was a shift in the temporal characteristics of the late, but not early I-waves. Using I-wave periodicity repetitive TMS (iTMS), we showed that these differences in I-wave characteristics influence the induction of cortical plasticity in older adults. Previous research shows that neuroplasticity assessed using transcranial magnetic stimulation (TMS) is reduced in older adults. While this deficit is often assumed to represent altered synaptic modification processes, age-related changes in the interneuronal circuits activated by TMS may also contribute. Here we assessed age-related differences in the characteristics of the corticospinal indirect (I) waves and how they influence plasticity induction in primary motor cortex. Twenty young (23.7 ± 3.4 years) and 19 older adults (70.6 ± 6.0 years) participated in these studies. I-wave recruitment was assessed by changing the direction of the current used to activate the motor cortex, whereas short-interval intracortical facilitation (SICF) was recorded to assess facilitatory I-wave interactions. In a separate study, I-wave periodicity TMS (iTMS) was used to examine the effect of I-wave latency on motor cortex plasticity. Data from the motor evoked potential (MEP) onset latency produced using different coil orientations suggested that there were no age-related differences in preferential I-wave recruitment (P = 0.6). However, older adults demonstrated significant reductions in MEP facilitation at all 3 SICF peaks (all P-values < 0.05) and a delayed latency of the second and third SICF peaks (all P

  8. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil.

    Science.gov (United States)

    Navarro de Lara, Lucia I; Tik, Martin; Woletz, Michael; Frass-Kriegl, Roberta; Moser, Ewald; Laistler, Elmar; Windischberger, Christian

    2017-04-15

    To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments. Copyright

  9. Motor Cortex Reorganization in Patients with Glioma Assessed by Repeated Navigated Transcranial Magnetic Stimulation-A Longitudinal Study.

    Science.gov (United States)

    Barz, Anne; Noack, Anika; Baumgarten, Peter; Seifert, Volker; Forster, Marie-Therese

    2018-04-01

    Evidence for cerebral reorganization after resection of low-grade glioma has mainly been obtained by serial intraoperative cerebral mapping. Noninvasively collected data on cortical plasticity in tumor patients over a surgery-free period are still scarce. The present study therefore aimed at evaluating motor cortex reorganization by navigated transcranial magnetic stimulation (nTMS) in patients after perirolandic glioma surgery. nTMS was performed preoperatively and postoperatively in 20 patients, separated by 26.1 ± 24.8 months. Further nTMS mapping was conducted in 14 patients, resulting in a total follow-up period of 46.3 ± 25.4 months. Centers of gravity (CoGs) were calculated for every muscle representation area, and Euclidian distances between CoGs over time were defined. Results were compared with data from 12 healthy individuals, who underwent motor cortex mapping by nTMS in 2 sessions. Preoperatively and postoperatively pooled CoGs from the area of the dominant abductor pollicis brevis muscle and of the nondominant leg area differed significantly compared with healthy individuals (P reorganization of all representation areas was observed in 3 patients, and a significant shift of hand representation areas was identified in further 3 patients. Complete functional recovery of postoperative motor deficits was exclusively associated with cortical reorganization. Despite the low potential of remodeling within the somatosensory region, long-term reorganization of cortical motor function can be observed. nTMS is best suited for a noninvasive evaluation of this reorganization. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Effects of visual deprivation on primary motor cortex excitability: a study on healthy subjects based on repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Cambieri, Chiara; Iacovelli, Elisa; Gori, Maria Cristina; Onesti, Emanuela; Ceccanti, Marco; Frasca, Vittorio; Inghilleri, Maurizio

    2017-07-01

    We investigated whether rapid changes in visual input or dark adaptation modify primary motor cortex (M1) excitability in healthy subjects. Repetitive transcranial magnetic stimulation (rTMS), consisting of 10 stimuli delivered at 5 Hz at 120% of the resting motor threshold, was delivered over the M1 in 14 healthy volunteers. They were instructed to relax under eyes-open (EO) and eyes-closed (EC) resting conditions. Two experimental sessions were performed. In the first session, subjects were tested under both EO and EC conditions in order to determine whether short visual deprivation affected M1 excitability as tested through changes in the motor-evoked potential (MEP) amplitude during rTMS. In the second session, rTMS was delivered both under EO conditions with room lights on and after 30 min of blindfolding to evaluate the effects of prolonged visual deprivation on M1 excitability. Short-term visual deprivation lasting 2.5 s left the MEP facilitation unchanged during the 5-Hz rTMS trains, while 30 min of blindfolding significantly reduced MEP facilitation. Short-term visual deprivation did not significantly affect M1 excitability, whereas dark adaptation reduced rTMS-induced MEP facilitation, modulating motor cortical excitability.

  11. The activity of the primary motor cortex ipsilateral to the exercising hand decreases during repetitive handgrip exercise.

    Science.gov (United States)

    Shibuya, Kenichi

    2011-12-01

    The brain function controlling muscle force production is not yet fully understood. The purpose of this study was to examine bilateral primary motor cortex (M1) oxygenation during static-handgrip exercises performed with the right hand (60% maximal voluntary contraction; 10 s exercise/75 s rest; five sets). Twelve healthy, right-handed male subjects participated in this study. Near-infrared spectroscopy probes were positioned over the bilateral M1 to measure cortical oxygenation during handgrip exercises. The maximum values of the changes in concentrations of oxyhemoglobin (HbO(2)) and deoxyhemoglobin (Hb) across the trials (i) did not change significantly during the contralateral M1 activation (p > 0.05), whereas (ii) in the case of the ipsilateral M1 activation a significant (p activation in ipsilateral M1 at the fifth trial was significantly decreased compared with that in the first trial (HbO(2): p < 0.001; Hb: p < 0.001). The present results suggest that the ipsilateral M1 is recruited during the motor task in compensation for the contralateral M1 and the habituation to motor task might alter the efficiency for interaction of the ipsilateral M1 to the contralateral M1. The interhemispheric interaction might change due to habituation to motor task.

  12. Low signal intensity in motor cortex on susceptibility-weighted MR imaging is correlated with clinical signs of amyotrophic lateral sclerosis: a pilot study.

    Science.gov (United States)

    Endo, Hironobu; Sekiguchi, Kenji; Shimada, Hitoshi; Ueda, Takehiro; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2018-03-01

    There is no reliable objective indicator for upper motor neuron dysfunction in amyotrophic lateral sclerosis (ALS). To determine the clinical significance and potential utility of magnetic resonance (MR) signals, we investigated the relationship between clinical symptoms and susceptibility changes in the motor cortex measured using susceptibility-weighted MR imaging taken by readily available 3-T MRI in clinical practice. Twenty-four ALS patients and 14 control subjects underwent 3-T MR T1-weighted imaging and susceptibility-weighted MR imaging with the principles of echo-shifting with a train of observations (PRESTO) sequence. We analysed relationships between relative susceptibility changes in the motor cortex assessed using voxel-based analysis (VBA) and clinical scores, including upper motor neuron score, ALS functional rating scale revised score, and Medical Research Council sum score on physical examination. Patients with ALS exhibited significantly lower signal intensity in the precentral gyrus on susceptibility-weighted MR imaging compared with controls. Clinical scores were significantly correlated with susceptibility changes. Importantly, the extent of the susceptibility changes in the bilateral precentral gyri was significantly correlated with upper motor neuron scores. The results of our pilot study using VBA indicated that low signal intensity in motor cortex on susceptibility-weighted MR imaging may correspond to clinical symptoms, particularly upper motor neuron dysfunction. Susceptibility-weighted MR imaging may be a useful diagnostic tool as an objective indicator of upper motor neuron dysfunction.

  13. Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and /sup 3/H-leucine

    Energy Technology Data Exchange (ETDEWEB)

    McHaffie, J.G.; Kruger, L.; Clemo, H.R.; Stein, B.E.

    1988-08-01

    Corticothalamic and corticotectal projections from the anterior ectosylvian sulcus (AES) in neonatal cats were studied with anterograde and retrograde neuroanatomical techniques. When the injection site was relatively restricted to the sulcal walls and fundus of the rostral AES (i.e., the SIV cortex), heavy ipsilateral thalamic label was observed in the medial subdivision of the posterior group, in the suprageniculate nucleus, and in the external medullary lamina. No terminal label was seen in the contralateral thalamus although the contralateral homotopic cortex was heavily labeled. Within the ventrobasal complex (VB), dense axonal label was observed in fascicles that traversed VB, but only light terminal label was observed within VB itself. However, in cases where the tracer spread into adjacent SII, terminal label in VB was pronounced. Similarly, when the injection site extended into auditory cortex, terminal label was observed in the lateral and intermediate subdivisions of the posterior group. Rostral AES injections produced distinct, predominantly ipsilateral, terminal label in the superior colliculus that was distributed in two tiers: a discontinuous band in the stratum griseum intermedium and a more diffuse band in stratum griseum profundum. Caudally, dense terminal label was seen in the intercollicular zone and dorsolateral periaqueductal gray. When the injection site did not include rostral AES, no label was observed in the superior colliculus. Horseradish peroxidase injections into the superior colliculus of neonates produced retrogradely labeled neurons throughout the AES, but none was found on the crown of the gyrus where SII is located. Thus, the neonatal corticotectal somatosensory projection arises exclusively from AES and parallels that found in adults.

  14. Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in Parkinson's disease: A quantitative review of the literature.

    Science.gov (United States)

    Zanjani, Anosha; Zakzanis, Konstantine K; Daskalakis, Zafiris J; Chen, Robert

    2015-05-01

    Parkinson's disease (PD) is a progressive disorder characterized by the emergence of motor deficits. In light of the voluminous and conflicting findings in the literature, the aim of the present quantitative review was to examine the effects of repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) in the treatment of motor signs in PD. Studies meeting inclusion criteria were analyzed using meta-analytic techniques and the Unified Parkinson's Disease Rating Scale (UPDRS) sections II and III were used as outcome measures. In order to determine the treatment effects of rTMS, the UPDRS II and III scores obtained at baseline, same day, to 1 day post rTMS treatment (short-term follow-up) and 1-month post stimulation (long-term follow-up) were compared between the active and sham rTMS groups. Additionally, the placebo effect was evaluated as the changes in UPDRS III scores in the sham rTMS groups. A placebo effect was not demonstrated, because sham rTMS did not improve motor signs as measured by UPDRS III. Compared with sham rTMS, active rTMS targeting the M1 significantly improved UPDRS III scores at the short-term follow-up (Cohen's d of 0.27, UPDRS III score improvement of 3.8 points). When the long-term follow-up UPDRS III scores were compared with baseline scores, the standardized effect size between active and sham rTMS did not reach significance. However, this translated into a significant nonstandardized 6.3-point improvement on the UPDRS III. No significant improvement in the UPDRS II was found. rTMS over the M1 may improve motor signs. Further studies are needed to provide a definite conclusion. © 2015 International Parkinson and Movement Disorder Society.

  15. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials.

    Science.gov (United States)

    Fecchio, Matteo; Pigorini, Andrea; Comanducci, Angela; Sarasso, Simone; Casarotto, Silvia; Premoli, Isabella; Derchi, Chiara-Camilla; Mazza, Alice; Russo, Simone; Resta, Federico; Ferrarelli, Fabio; Mariotti, Maurizio; Ziemann, Ulf; Massimini, Marcello; Rosanova, Mario

    2017-01-01

    Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.

  16. Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force

    International Nuclear Information System (INIS)

    Shibuya, Kenichi; Kuboyama, Naomi; Tanaka, Junya

    2014-01-01

    It is possible to examine bilateral primary motor cortex (M1) activation during a sustained motor task using near-infrared spectroscopy (NIRS), in which it is assumed that increased oxygenation reflects cortical activation. The purpose of this study was to examine bilateral M1 activation in response to graded levels of force production during a unilateral finger task. Ten healthy right-handed male subjects participated in this study. NIRS probes were placed over the cortex to measure M1 activity while the subjects performed the finger task. The subjects performed a 10 s finger task at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Symmetrical activation was found over both M1 areas at all force levels investigated. In the contralateral M1, there were significant differences in oxygenation between 20% and 60% MVC, as well as between 40% and 60% MVC. In the ipsilateral M1, there were significant differences among all force levels. These results indicate the ipsilateral M1 takes part in muscle force control. (paper)

  17. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor

  18. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  19. Developmental profile of motor cortex transcallosal inhibition in children and adolescents.

    Science.gov (United States)

    Ciechanski, Patrick; Zewdie, Ephrem; Kirton, Adam

    2017-07-01

    Transcallosal fibers facilitate interhemispheric networks involved in motor tasks. Despite their clinical relevance, interhemispheric motor control systems have not been completely defined in the developing brain. The objective of this study was to examine the developmental profile of transcallosal inhibition in healthy children and adolescents. Nineteen typically developing right-handed participants were recruited. Two transcranial magnetic stimulation (TMS) paradigms assessed transcallosal inhibition: ipsilateral silent periods (iSP) and paired-pulse interhemispheric inhibition (IHI). TMS was applied to the motor hotspot of the first dorsal interosseous muscle. Resting motor threshold (RMT), iSP latency, duration and suppression strength, and paired-pulse IHI were measured from both hemispheres. The Purdue Pegboard Test assessed unimanual motor function. Hemispheric differences were evident for RMT and iSP latency and suppression strength, where the left hemisphere had a lower RMT, prolonged latency, and greater suppression strength. iSP duration showed hemispheric symmetry. RMT and iSP latency decreased with age, whereas iSP suppression strength increased. Girls showed shorter iSP latency. Children typically displayed IHI, although hemispheric differences were observed. iSP suppression strength was uniquely associated with IHI within individuals. iSP duration correlated with motor performance. TMS can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, sex, and motor performance. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy. NEW & NOTEWORTHY Here we demonstrate that transcranial magnetic stimulation can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, handedness, and motor performance. Interestingly, we also

  20. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    Science.gov (United States)

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  1. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  2. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  3. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  4. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H

    2012-01-01

    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To t......Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR...

  5. Lateralization of Motor Cortex Excitability in Stroke Patients during Action Observation: A TMS Study

    Directory of Open Access Journals (Sweden)

    Mattia Marangon

    2014-01-01

    Full Text Available Action observation activates the same motor areas as those involved in the performance of the observed actions and promotes functional recovery following stroke. Movement observation is now considered a promising tool for motor rehabilitation, by allowing patients to train their motor functions when voluntary movement is partially impaired. We asked chronic-stroke patients, affected by either left (LHD or right hemisphere (RHD lesions, to observe either a left or right hand, while grasping a small target (eliciting a precision grip or a large target (eliciting a whole hand grasp directed towards a target object. To better understand the effects of action observation on damaged motor circuits, we used transcranial magnetic stimulation (TMS to induce motor evoked potentials (MEP from two muscles of the unaffected hand in 10 completely hemiplegic participants. Results revealed that LHD patients showed MEP facilitation on the right (contralesional M1 during action observation of hand-object interactions. In contrast, results showed no facilitation of the left (contralesional M1 in RHD patients. Our results confirm that action observation might have a positive influence on the recovery of motor functions after stroke. Activating the motor system by means of action observation might provide a mechanism for improving function, at least in LHD patients.

  6. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.

    Science.gov (United States)

    Liebetanz, David; Nitsche, Michael A; Tergau, Frithjof; Paulus, Walter

    2002-10-01

    Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. These plastic excitability changes are selectively controlled by the polarity, duration and current strength of stimulation. To reveal the underlying mechanisms of direct current (DC)-induced neuroplasticity, we combined tDCS of the motor cortex with the application of Na(+)-channel-blocking carbamazepine (CBZ) and the N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan (DMO). Monitored by transcranial magnetic stimulation (TMS), motor cortical excitability changes of up to 40% were achieved in the drug-free condition. Increase of cortical excitability could be selected by anodal stimulation, and decrease by cathodal stimulation. Both types of excitability change lasted several minutes after cessation of current stimulation. DMO suppressed the post-stimulation effects of both anodal and cathodal DC stimulation, strongly suggesting the involvement of NMDA receptors in both types of DC-induced neuroplasticity. In contrast, CBZ selectively eliminated anodal effects. Since CBZ stabilizes the membrane potential voltage-dependently, the results reveal that after-effects of anodal tDCS require a depolarization of membrane potentials. Similar to the induction of established types of short- or long-term neuroplasticity, a combination of glutamatergic and membrane mechanisms is necessary to induce the after-effects of tDCS. On the basis of these results, we suggest that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.

  7. Bidirectional control of a one-dimensional robotic actuator by operant conditioning of a single unit in rat motor cortex

    Directory of Open Access Journals (Sweden)

    Pierre-Jean eArduin

    2014-07-01

    Full Text Available The design of efficient neuroprosthetic devices has become a major challenge for the long-term goal of restoring autonomy to motor-impaired patients. One approach for brain control of actuators consists in decoding the activity pattern obtained by simultaneously recording large neuronal ensembles in order to predict in real-time the subject’s intention, and move the prosthesis accordingly. An alternative way is to assign the output of one or a few neurons by operant conditioning to control the prosthesis with rules defined by the experimenter, and rely on the functional adaptation of these neurons during learning to reach the desired behavioral outcome. Here, several motor cortex neurons were recorded simultaneously in head-fixed awake rats and were conditioned, one at a time, to modulate their firing rate up and down in order to control the speed and direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain the bottle in front of the rat’s mouth, allowing it to drink. After learning, all conditioned neurons modulated their firing rate, effectively controlling the bottle position so that the drinking time was increased relative to chance. The mean firing rate averaged over all bottle trajectories depended non-linearly on position, so that the mouth position operated as an attractor. Some modifications of mean firing rate were observed in the surrounding neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led to a better control than surrounding neurons, as calculated by using the activity of those neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility, even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time bidirectionally. The learning process includes modifications of the activity of neighboring cortical neurons, while the conditioned neuron selectively leads the activity patterns associated with the prosthesis

  8. Role of direct vs indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity

    Directory of Open Access Journals (Sweden)

    Tadashi eIsa

    2013-11-01

    Full Text Available Evolutionally, development of the direct connection from the motor cortex to spinal motoneurons (corticomotoneuronal (CM pathway parallels the ability of hand dexterity. Damage to the corticofugal fibers in higher primates resulted in deficit of fractionated digit movements. Based on such observations, it was generally believed that the CM pathway plays a critical role in the control of hand dexterity. On the other hand, a number of phylogenetically older indirect pathways from the motor cortex to motoneurons still exist in primates. The indirect pathways are mediated by intercalated neurons such as segmental interneurons (sINs, propriospinal neurons (PNs reticulospinal neurons (RSNs or rubrospinal neurons (RuSNs. However, their contribution to hand dexterity remains elusive. Lesion of the brainstem pyramid sparing the transmission through the RuSNs and RSNs, resulted in permanent deficit of fractionated digit movements in macaque monkeys. On the other hand, in our recent study, after lesion of the dorsolateral funiculus (DLF at the C5 segment, which removed the CM pathway and the transmission through sINs and RuSNs but spared the processing through the PNs and RSNs, fractionated digit movements recovered within several weeks. These results suggest that the PNs can be involved in the recovery of fractionated digit movements, but the RSNs and RuSNs have less capacity in this regard. However, on closer inspection, it was found that the activation pattern of hand and arm muscles considerably changed after the C5 lesion, suggesting limitation of PNs for the compensation of hand dexterity. Altogether, it is suggested that PNs, RSNs RuSNs and the CM pathway (plus sINs make a different contribution to the hand dexterity and appearance of motor deficit of the hand dexterity caused by damage to the corticofugal fibers and potential of recovery varies depending on the rostrocaudal level of the lesion.

  9. Reorganization of the primary motor cortex following lower-limb amputation for vascular disease: a pre-post-amputation comparison.

    Science.gov (United States)

    Hordacre, Brenton; Bradnam, Lynley V; Crotty, Maria

    2017-08-01

    This study compared bilateral corticomotor and intracortical excitability of the primary motor cortex (M1), pre- and post-unilateral transtibial amputation. Three males aged 45, 55, and 48 years respectively who were scheduled for elective amputation and thirteen (10 male, 3 female) healthy control participants aged 58.9 (SD 9.8) were recruited. Transcranial magnetic stimulation assessed corticomotor and intracortical excitability of M1 bilaterally. Neurophysiological assessments were performed 10 (SD 7) days prior to surgery and again at 10 (SD 3) days following surgery. Data were analyzed descriptively and objectively compared to 95% confidence intervals from control data. Prior to amputation, all three patients demonstrated stronger short-latency intracortical inhibition evoked from M1 ipsilateral to the affected limb and reduced long-latency intracortical inhibition evoked from M1 contralateral to the affected limb compared to control subjects. Following amputation, short-latency intracortical inhibition was reduced in both M1s and long-latency intracortical inhibition was reduced for the ipsilateral M1. Single-pulse motor evoked potential amplitude and motor thresholds were similar pre-to-post amputation. Modulation of intracortical excitability shortly following amputation indicates that the cortical environment may be optimized for reorganization in the acute post-amputation period which might be significant for learning to support prosthetic mobility. Implications for Rehabilitation Amputation of a lower-limb is associated with extensive reorganization at the level of the cortex. Reorganization occurs in the acute post-amputation period implying a favorable cortical environment for recovery. Rehabilitation or brain interventions may target the acute pre-prosthetic post-amputation period to optimize recovery.

  10. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  11. Association of activity changes in the primary sensory cortex with successful motor rehabilitation of the hand following stroke.

    Science.gov (United States)

    Laible, Mona; Grieshammer, Steven; Seidel, Gundula; Rijntjes, Michel; Weiller, Cornelius; Hamzei, Farsin

    2012-09-01

    Previous studies demonstrated a posterior shift of activation toward the primary sensory cortex (S1) following stroke; however, any relationship between this posterior shift and clinical outcome measures for the affected hand function were unclear. The authors investigated the possible role of S1 in motor recovery. Assuming that previous studies examined inhomogeneous groups of patients, the authors selected participants with chronic stroke who had moderate hand paresis, normal sensory examination and somatosensory-evoked potentials, and no lesion within the S1, thalamus, or brain stem. Constraint-induced movement therapy (CIMT) was used to train the impaired hand. To relate fMRI (functional MRI) activation changes from baseline to post-CIMT, a correlation analysis was performed with changes of the Wolf Motor Function Test (WMFT) as a test for the hand function. A close relationship was found between increases in hand function and peak changes in activation within the ipsilesional S1. With a better outcome, greater increases in activation within the S1 were evident (P < .03; r = 0.73). In selected patients, the sensory network influences training-induced motor gains. This predictive knowledge of plasticity when applying CIMT may suggest strategies to enhance the effect of therapy, such as the addition of electrical stimulation to enhance S1 excitability.

  12. Observing how others lift light or heavy objects: time-dependent encoding of grip force in the primary motor cortex.

    Science.gov (United States)

    Alaerts, Kaat; de Beukelaar, Toon T; Swinnen, Stephan P; Wenderoth, Nicole

    2012-07-01

    During movement observation, corticomotor excitability of the observer's primary motor cortex (M1) is modulated according to the force requirements of the observed action. Here, we explored the time course of observation-induced force encoding. Force-related changes in M1-excitability were assessed by delivering transcranial magnetic stimulations at distinct temporal phases of an observed reach-grasp-lift action. Temporal changes in force-related electromyographic activity were also assessed during active movement execution. In observation conditions in which a heavy object was lifted, M1-excitability was higher compared to conditions in which a light object was lifted. Both during observation and execution, differential force encoding tended to gradually increase from the grasping phase until the late lift phase. Surprisingly, however, during observation, force encoding was already present at the early reach phase: a time point at which no visual cues on the object's weight were available to the observer. As the observer was aware that the same weight condition was presented repeatedly, this finding may indicate that prior predictions concerning the upcoming weight condition are reflected by M1 excitability. Overall, findings may provide indications that the observer's motor system represents motor predictions as well as muscular requirements to infer the observed movement goal.

  13. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study.

    Science.gov (United States)

    Rogić Vidaković, Maja; Jerković, Ana; Jurić, Tomislav; Vujović, Igor; Šoda, Joško; Erceg, Nikola; Bubić, Andreja; Zmajević Schönwald, Marina; Lioumis, Pantelis; Gabelica, Dragan; Đogaš, Zoran

    2016-11-01

    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.

  14. An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse.

    Science.gov (United States)

    Bopp, Rita; Holler-Rickauer, Simone; Martin, Kevan A C; Schuhknecht, Gregor F P

    2017-03-01

    The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2 + boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2 + synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm 2 vs 0.042 μm 2 ). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1. SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas

  15. Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke.

    Science.gov (United States)

    Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian

    2016-04-15

    Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Recording of corticospinal evoked potential for optimum placement of motor cortex stimulation electrodes in the treatment of post-stroke pain.

    Science.gov (United States)

    Yamamoto, Takamitsu; Katayama, Yoichi; Obuchi, Toshiki; Kano, Toshikazu; Kobayashi, Kazutaka; Oshima, Hideki; Fukaya, Chikashi; Kakigi, Ryusuke

    2007-09-01

    The corticospinal motor evoked potential (MEP) evoked by motor cortex stimulation was investigated as an intraoperative index for the placement of stimulation electrodes in the epidural space over the motor cortex for the treatment of post-stroke pain. A grid of plate electrodes was placed in the epidural space to cover the motor cortex, sensory cortex, and premotor cortex employing a magnetic resonance imaging-guided neuronavigation system in two patients with severe post-stroke pain in the right extremities, a 66-year-old man with dysesthesia manifesting as burning and aching sensation, and a 67-year-old woman with dysesthesia manifesting as pricking sensation. The D-wave of the corticospinal MEP was recorded with a flexible wire electrode placed in the epidural space of the spinal cord during anodal monopolar stimulation of each plate electrode under general anesthesia. The grid electrode was fixed in position with dural sutures and the craniotomy closed. The effect of pain reduction induced by anodal monopolar stimulation of the same plate electrodes was examined using the visual analogue scale (VAS) on a separate day in the awake state without anesthesia. Comparison of the percentage VAS reduction and the recorded amplitude of the D-wave employing the same stimulation electrode revealed significant correlations in Case 1 (r = 0.828, p r = 0.807, p < 0.01). The grid electrode was then replaced with two RESUME electrodes over the hand and foot areas, and the optimum positions were identified by D-wave recording before electrode fixation. Both patients reported satisfactory pain alleviation with lower stimulation voltages than usually required for patients with similar symptoms. These results indicate the potential of D-wave recording as an intraoperative indicator for the placement of stimulating electrodes over the motor cortex for pain relief.

  17. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E. [Vienna Medical Univ. (Austria). Dept. of Neurology; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D. [Vienna Medical Univ. (Austria). Dept. of Neuroradiology

    2011-11-15

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 {+-} 3.1 on a visual analog scale and decreased to 1.8 {+-} 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  18. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    International Nuclear Information System (INIS)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E.; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D.

    2011-01-01

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  19. Excitability of the motor cortex in patients with migraine changes with the time elapsed from the last attack.

    Science.gov (United States)

    Cortese, Francesca; Coppola, Gianluca; Di Lenola, Davide; Serrao, Mariano; Di Lorenzo, Cherubino; Parisi, Vincenzo; Pierelli, Francesco

    2017-12-01

    Motor-evoked potentials (MEPs) produced by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex can be an objective measure of cortical excitability. Previously, MEP thresholds were found to be normal, increased, or even reduced in patients with migraine. In the present study, we determined whether the level of cortical excitability changes with the time interval from the last migraine attack, thereby accounting for the inconsistencies in previous reports. Twenty-six patients with untreated migraine without aura (MO) underwent a MEP study between attacks. Their data were then compared to the MEP data collected from a group of 24 healthy volunteers (HVs). During the experiment, the TMS figure-of-eight coil was positioned over the left motor area. After identifying the resting motor threshold (RMT), we delivered 10 single TMS pulses (rate: 0.1 Hz, intensity: 120% of the RMT) and averaged the resulting MEP amplitudes. The mean RMTs and MEP amplitudes were not significantly different between the MO and HV groups. In patients with MO, the RMTs were negatively correlated with the number of days elapsed since the last migraine attack (rho = -0.404, p = 0.04). Our results suggest that the threshold for evoking MEPs is influenced by the proximity of an attack; specifically, the threshold is lower when a long time interval has passed after an attack, and is higher (within the range of normative values) when measured close to an attack. These dynamic RMT variations resemble those we reported previously for visual and somatosensory evoked potentials and may represent time-dependent plastic changes in brain excitability in relation to the migraine cycle.

  20. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas

    2014-01-01

    A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using...... a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i...

  1. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation.

    Science.gov (United States)

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M J; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-02-01

    Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60-80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml(-1) (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. The study was registered at www.clinicaltrials.gov as NCT01679782. © 2016 Associated Professional Sleep Societies, LLC.

  2. Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study.

    Science.gov (United States)

    Peyron, Roland; Faillenot, Isabelle; Mertens, Patrick; Laurent, Bernard; Garcia-Larrea, Luis

    2007-01-01

    To investigate brain mechanisms whereby electrical stimulation of the motor cortex (MCS) may induce pain relief in patients with neuropathic pain, cerebral blood flow (CBF) changes were studied using H2O PET in 19 consecutive patients treated with MCS for refractory neuropathic pain. Patients were studied in three conditions, (a) before MCS (Baseline, stimulator stopped 4 weeks before), (b) during a 35-min period of MCS and (c) during a 75-min period after MCS had been discontinued (OFF). Compared to Baseline, turning on the stimulator was associated with CBF increase in the contralateral (anterior) midcingulate cortex (aMCC, BA24 and 32) and in the dorso-lateral prefrontal (BA10) cortices. The most important changes of CBF were observed in the 75 min after discontinuation of MCS (OFF). This post-stimulation period was associated with CBF increases in a large set of cortical and subcortical regions (from posterior MCC (pMCC) to pregenual (pg) ACC, orbitofrontal cortex, putamen, thalami, posterior cingulate and prefrontal areas) and in the brainstem (mesencephalon/periaqueductal grey (PAG) and pons). CBF changes in the post-stimulation period correlated with pain relief. Functional connectivity analysis showed significant correlation between pgACC and PAG, basal ganglia, and lower pons activities, supporting the activation of descending ACC-to-PAG connections. MCS may act in part through descending (top-down) inhibitory controls that involve prefrontal, orbitofrontal and ACC as well as basal ganglia, thalamus and brainstem. These hemodynamic changes are lengthened and might therefore underlie the long-lasting clinical effects that largely outlast the actual stimulation periods.

  3. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  4. Motor Cortex Stimulation in Patients Suffering from Chronic Neuropathic Pain : Summary of Expert Meeting and Premeeting Questionnaire, Combined with Literature Review

    NARCIS (Netherlands)

    Kurt, Erkan; Henssen, Dylan J. H. A.; Steegers, Monique; Staal, Michiel; Beese, Ulrich; Maarrawi, Joseph; Pirotte, Benoit; Garcia-Larrea, Luis; Rasche, Dirk; Vesper, Jan; Holsheimer, Jan; Duyvendak, Wim; Herregodts, Patrick; van Dongen, Robert; Moens, Maarten

    2017-01-01

    BACKGROUND: Motor cortex stimulation (MCS) was introduced in the early 1990s by Tsubokawa and his group for patients diagnosed with drug-resistant, central neuropathic pain. Inconsistencies concerning the details of this therapy and its outcomes and poor methodology of most clinical essays divide

  5. Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space.

    Science.gov (United States)

    Koch, Giacomo; Fernandez Del Olmo, Miguel; Cheeran, Binith; Schippling, Sven; Caltagirone, Carlo; Driver, Jon; Rothwell, John C

    2008-06-04

    Posterior parietal cortex (PPC) has connections with motor and premotor cortex, thought to transfer information relevant for planning movements in space. We used twin-coil transcranial magnetic stimulation (tcTMS) methods to show that the functional interplay between human right PPC and ipsilateral motor cortex (M1) varies with current motor plans. tcTMS during the reaction time of a reach task revealed facilitatory influences of right PPC on right M1 only when planning a (contralateral) leftward rather than rightward reach, at two specific time intervals (50 and 125 ms) after an auditory cue. The earlier reach-direction-specific facilitatory influence from PPC on M1 occurred when subjects were blindfolded or when the targets were presented briefly, so that visual feedback corrections could not occur. PPC-M1 interplay was similar within the left hemisphere but was specific to (contralateral) rightward planned reaches, with peaks at 50 and 100 ms. Functional interplay between human parietal and motor cortex is enhanced during early stages of planning a reach in the contralateral direction.

  6. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    Science.gov (United States)

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed. © 2016 Wiley Periodicals, Inc.

  7. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation.

    Science.gov (United States)

    Bhandari, Apoorva; Radhu, Natasha; Farzan, Faranak; Mulsant, Benoit H; Rajji, Tarek K; Daskalakis, Zafiris J; Blumberger, Daniel M

    2016-08-01

    Transcranial magnetic stimulation (TMS) is a non-invasive tool used for studying cortical excitability and plasticity in the human brain. This review aims to quantitatively synthesize the literature on age-related differences in cortical excitability and plasticity, examined by TMS. A literature search was conducted using MEDLINE, Embase, and PsycINFO from 1980 to December 2015. We extracted studies with healthy old (50-89years) versus young (16-49years) individuals that utilized the following TMS measures: resting motor threshold (RMT), short-interval cortical inhibition (SICI), short-latency afferent inhibition (SAI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS). We found a significant increase in RMT (g=0.414, 95% confidence interval (CI) [0.284, 0.544], pmotor cortex. Alterations in the ability to regulate cortical excitability, sensorimotor integration and plasticity may underlie several age-related motor deficits. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production.

    Science.gov (United States)

    Therrien, Amanda S; Lyons, James; Balasubramaniam, Ramesh

    2013-08-01

    Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.

  9. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    Science.gov (United States)

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    Science.gov (United States)

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-06

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Clinical application of fMRI: Activation of the motor cortex in an LIS patient

    International Nuclear Information System (INIS)

    Mao, H.; Popp, C.A.; Song, A.W.; Kennedy, P.R.

    1999-01-01

    Patients suffering from the Locked-in Syndrome are completely paralyzed over their entire body, while their brain retains full consciousness. Functional magnetic resonance imaging (fMRI) is a method applied to identify those areas of the brain where activities of neurons indicate motor performance, and which might be electronically stimulated and used for controlling electronic aids expressing intended movements of the patient. (orig./CB) [de

  12. Embodied cognition: Is activation of the motor cortex essential for understanding action verbs?

    Science.gov (United States)

    Miller, Jeff; Brookie, Kate; Wales, Sid; Wallace, Simon; Kaup, Barbara

    2018-03-01

    In 8 experiments using language processing tasks ranging from lexical decision to sensibility judgment, participants made hand or foot responses after reading hand- or foot-associated words such as action verbs. In general, response time (RT) tended to be faster when the hand- versus foot-associated word was compatible with the limb that was required to respond (e.g., hand response to a hand-associated word) than when it was incompatible (e.g., foot response to a hand-associated word). To see whether this compatibility effect reflects differential hand- versus foot-specific motor activation produced by the words, as suggested by some embodied theories of language understanding, we monitored 2 event-related potential (ERP) measures previously found to be sensitive to the activation of these limbs. As expected, the ERP results replicated previous findings that the monitored ERPs differ for hand versus foot movements. More importantly, the ERPs provided no evidence of any difference for hand- versus foot-associated words. Thus, the results weaken previous claims that the understanding of action verbs requires activation of the motor areas used to carry out the named action. Instead, they support claims that language-related compatibility effects on RT may arise prior to motor processes, which implies that such effects are not decisive evidence for embodied language understanding. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex.

    Science.gov (United States)

    Arai, Noritoshi; Okabe, Shingo; Furubayashi, Toshiaki; Terao, Yasuo; Yuasa, Kaoru; Ugawa, Yoshikazu

    2005-03-01

    To compare motor evoked potentials (MEPs) elicited by short train, monophasic, repetitive transcranial magnetic stimulations (rTMS) with those by short train, biphasic rTMS. Subjects were 13 healthy volunteers. Surface electromyographic (EMG) responses were recorded from the right first dorsal interosseous muscle (FDI) in several different stimulation conditions. We gave both monophasic and biphasic rTMS over the motor cortex at a frequency of 0.5, 1, 2 or 3Hz. To study excitability changes of the spinal cord, we also performed 3Hz rTMS at the foramen magnum level [Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 1994;36:618-24]. We measured the size and latency of each of 20 MEPs recorded in the different stimulation conditions. 2 or 3Hz stimulation with either monophasic or biphasic pulses evoked MEPs that gradually increased in amplitude with the later MEPs being significantly larger than the earlier ones. Monophasic rTMS showed much more facilitation than biphasic stimulation, particularly at 3Hz. Stimulation at the foramen magnum level at 3Hz elicited fairly constant MEPs. The enhancement of cortical MEPs with no changes of responses to foramen magnum level stimulation suggests that the facilitation occurred at the motor cortex. We hypothesize that monophasic TMS has a stronger short-term effect during repetitive stimulation than biphasic TMS because monophasic pulses preferentially activate one population of neurons oriented in the same direction so that their effects readily summate. Biphasic pulses in contrast may activate several different populations of neurons (both facilitatory and inhibitory) so that summation of the effects is not so clear as with monophasic pulses. When single stimuli are applied, however, biphasic TMS is thought to be more powerful than monophasic TMS because the peak-to-peak amplitude of stimulus pulse is higher and its duration is

  14. A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex

    Directory of Open Access Journals (Sweden)

    Bernhard eSehm

    2013-05-01

    Full Text Available tDCS over the primary motor cortex (M1 has been shown to induce changes in motor performance and learning. Recent studies indicate that tDCS is capable of modulating widespread neural network properties within the brain. However the temporal evolution of online- and after- effects of tDCS on functional connectivity within and across the stimulated motor cortices (M1 still remain elusive. In the present study, two different tDCS setups were investigated: (i unilateral M1 tDCS (anode over right M1, cathode over the contralateral supraorbital region and (ii bilateral M1 tDCS (anode over right M1, cathode over left M1. In a randomized single-blinded crossover design, 12 healthy subjects underwent resting-state functional magnetic resonance imaging at rest (rs-fMRI before, during and after 20 min of either bi-, unilateral or sham M1 tDCS. Seed-based functional connectivity analysis (FC was used to investigate tDCS-induced changes across and within M1. We found that bilateral M1 tDCS induced (a a decrease in interhemispheric FC during stimulation and (b an increase in intracortical FC within right M1 after termination of the intervention. While unilateral M1 tDCS also resulted in similar effects during stimulation, no such changes could be observed after termination of tDCS. Our results provide evidence that depending on the electrode montage, tDCS acts upon a modulation of either intracortical and/or interhemispheric processing of M1.

  15. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  16. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation.

    Directory of Open Access Journals (Sweden)

    Rafael Polanía

    Full Text Available The primary motor cortex (M1 is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4 were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations.

  17. Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex

    Directory of Open Access Journals (Sweden)

    Kenji Ibayashi

    2018-04-01

    Full Text Available Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA, local field potential (LFP, and electrocorticography (ECoG are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC, we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs.

  18. Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity

    DEFF Research Database (Denmark)

    Capaday, Charles; van Vreeswijk, Carl; Ethier, Christian

    2011-01-01

    by the anatomical connections, indicating the existence of mechanisms that limit the spread of activity. Nonetheless, such an area contains the representations of a variety of muscles spanning several joints, from digits to shoulder. These results support the hypothesis that the MCx controls the forelimb...... (BIC) was inserted in the hole and driven to a depth of 1200–1400 {#956}m from the cortical surface. BIC was ejected for ∼2 min from the tip of the micropipette with positive direct current ranging between 20 and 40 nA in different experiments. This produced spontaneous nearly periodic bursts (0...

  19. Maximization of learning speed in the motor cortex due to neuronal redundancy.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    2012-01-01

    Full Text Available Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed.

  20. Parkinsonism and vigilance: alteration in neural oscillatory activity and phase-amplitude coupling in the basal ganglia and motor cortex.

    Science.gov (United States)

    Escobar Sanabria, David; Johnson, Luke A; Nebeck, Shane D; Zhang, Jianyu; Johnson, Matthew D; Baker, Kenneth B; Molnar, Gregory F; Vitek, Jerrold L

    2017-11-01

    Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1 ) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2 ) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3 ) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4 ) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance. NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different

  1. Changes in motor cortex excitability associated with muscle fatigue in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Milanović Slađan

    2013-01-01

    Full Text Available Background/Aim. Transcranial magnetic stimulation (TMS is a standard technique for noninvasive assessment of changes in central nervous system excitability. The aim of this study was to examine changes in responses to TMS in patients suffering from Parkinson’s disease (PD during sustained submaximal isometric voluntary contraction [60% of maximal voluntary contraction (MVC] of the adductor pollicis muscle, as well as during a subsequent recovery period. Methods. Cortical excitability was tested by single TMS pulses of twice of the motor threshold intensity applied over the vertex. Testing was carried out during the sustained contraction phase every 10 s before and every 5 s after the endurance point, as well as at rest and during brief 60% MVC contractions before (control, immediately after the sustained contraction, and at 5 min intervals during the recovery period. Results. Although the PD patients could sustain the contraction at the required level for as long period of time as the healthy subjects (though contraction level subsided more rapidly after the endurance point, effects of muscle fatigue on the responses to TMS were different. In contrast to the findings observed in the healthy people where motor evoked potentials (MEP and EMG silent period (SP in fatigued muscle gradually diminished during contraction up to the endurance point, and increased thereafter, in the majority of patients no changes occurred in MEP size (peak and area of the adductor pollicis muscle, either before or after the endurance point. On the other hand, changes in the SP of this muscle differed among the subjects, showing a gradual increase, a decrease or no changes in duration. The trends of changes in both MEP size and SP duration in the musculus brachioradialis varied among the tested PD patients, without any consistent pattern, which was in contrast with the findings in the healthy people where both measures showed a gradual increase from the beginning of

  2. Direct classification of all American English phonemes using signals from functional speech motor cortex

    Science.gov (United States)

    Mugler, Emily M.; Patton, James L.; Flint, Robert D.; Wright, Zachary A.; Schuele, Stephan U.; Rosenow, Joshua; Shih, Jerry J.; Krusienski, Dean J.; Slutzky, Marc W.

    2014-06-01

    Objective. Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as during speech production. In this study, we sought to decode elements of speech production using ECoG. Approach. We investigated words that contain the entire set of phonemes in the general American accent using ECoG with four subjects. Using a linear classifier, we evaluated the degree to which individual phonemes within each word could be correctly identified from cortical signal. Main results. We classified phonemes with up to 36% accuracy when classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified phonemes follow articulation organization described in phonology literature, aiding classification of whole words. Precise temporal alignment to phoneme onset was crucial for classification success. Significance. We identified specific spatiotemporal features that aid classification, which could guide future applications. Word identification was equivalent to information transfer rates as high as 3.0 bits s-1 (33.6 words min-1), supporting pursuit of speech articulation for BCI control.

  3. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  4. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans.

    Science.gov (United States)

    Quartarone, Angelo; Rizzo, Vincenzo; Bagnato, Sergio; Morgante, Francesca; Sant'Angelo, Antonino; Girlanda, Paolo; Siebner, Hartwig Roman

    2006-09-01

    Repetitive transcranial magnetic stimulation (rTMS) or repetitive electrical peripheral nerve stimulation (rENS) can induce changes in the excitability of the human motor cortex (M1) that is often short-lasting and variable, and occurs only after prolonged periods of stimulation. In 10 healthy volunteers, we used a new repetitive paired associative stimulation (rPAS) protocol to facilitate and prolong the effects of rENS and rTMS on cortical excitability. Sub-motor threshold 5 Hz rENS of the right median nerve was synchronized with submotor threshold 5 Hz rTMS of the left M1 at a constant interval for 2 min. The interstimulus interval (ISI) between the peripheral stimulus and the transcranial stimulation was set at 10 ms (5 Hz rPAS10ms) or 25 ms (5 Hz rPAS25ms). TMS was given over the hot spot of the right abductor pollicis brevis (APB) muscle. Before and after rPAS, we measured the amplitude of the unconditioned motor evoked potential (MEP), intracortical inhibition (ICI) and facilitation (ICF), short- and long-latency afferent inhibition (SAI and LAI) in the conditioned M1. The 5 Hz rPAS25ms protocol but not the 5 Hz rPAS10ms protocol caused a somatotopically specific increase in mean MEP amplitudes in the relaxed APB muscle. The 5 Hz rPAS25ms protocol also led to a loss of SAI, but there was no correlation between individual changes in SAI and corticospinal excitability. These after-effects were still present 6 h after 5 Hz rPAS25ms. There was no consistent effect on ICI, ICF and LAI. The 5 Hz rENS and 5 Hz rTMS protocols failed to induce any change in corticospinal excitability when given alone. These findings show that 2 min of 5 Hz rPAS25ms produce a long-lasting and somatotopically specific increase in corticospinal excitability, presumably by sensorimotor disinhibition.

  5. Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex.

    Science.gov (United States)

    Mehring, Carsten; Nawrot, Martin Paul; de Oliveira, Simone Cardoso; Vaadia, Eilon; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2004-01-01

    Cortical field potentials have been used for decades in neurophysiological studies to probe spatio-temporal activity patterns of local populations of neurons. Recently, however, interest in these signals was spurred as they were proposed as potential control signals for neuronal motor prostheses, i.e., for devices fit to record and decode brain activity to restore motor functions in paralyzed patients. Little is known, however, about the functional significance of these cortical field potentials. Here we compared information about arm movement direction in two types of movement related cortical field potentials, obtained during a four direction center-out arm reaching paradigm: local field potentials (LFPs) recorded with intracortical micro-electrodes from monkey motor cortex, and epicortical field potentials (EFPs) recorded with macro-electrode arrays subdurally implanted on the surface of the human cerebral cortex. While monkey LFPs showed a typical sequence of positive and negative potential peaks, an initial negative peak was the most salient feature of human EFPs. Individual contralateral LFPs from the monkey motor cortex carried approximately twice as much decoded information (DI) about arm movement direction (median 0.27 bit) as did individual EFPs from the contralateral hand/arm area of primary motor cortex in humans (median 0.12 bit). This relation was similar to the relation between median peak signal-to-noise ratios for directional modulation of movement related potentials (MRPs) of both types of signals. We discuss possible reasons for the observed differences, amongst them epi- vs. intracortical recording and the different electrode dimensions used to measure EFPs and LFPs.

  6. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  7. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    Brain machine interfaces (BMIs) aim to assist people with paralysis by increasing their independence and ability to communicate, e.g., by using a cursor-based virtual keyboard. Current BMI clinical trials are hampered by modest performance that causes selection of wrong characters (errors) and thus reduces achieved typing rate. If it were possible to detect these errors without explicit knowledge of the task goal, this could be used to automatically "undo" wrong selections or even prevent upcoming wrong selections. We decoded imminent or recent errors during closed-loop BMI control from intracortical spiking neural activity. In our experiment, a non-human primate controlled a neurally-driven BMI cursor to acquire targets on a grid, which simulates a virtual keyboard. In offline analyses of this closed-loop BMI control data, we identified motor cortical neural signals indicative of task error occurrence. We were able to detect task outcomes (97% accuracy) and even predict upcoming task outcomes (86% accuracy) using neural activity alone. This novel strategy may help increase the performance and clinical viability of BMIs.

  8. New Zealand rugby health study: motor cortex excitability in retired elite and community level rugby players.

    Science.gov (United States)

    Lewis, Gwyn N; Hume, Patria A; Stavric, Verna; Brown, Scott R; Taylor, Denise

    2017-01-13

    Rugby union is a high contact sport in which players frequently experience brain injuries. Acute brain injury is associated with altered corticomotor function. However, it is uncertain if long-term exposure to rugby is associated with any alterations in corticomotor function. The aim of the study was to assess measures of corticomotor excitability and inhibition in retired rugby players in comparison to retired non-contact sport players. The design was a cross-sectional study with three groups of retired athletes: elite rugby (n=23), community level rugby (n=28) and non-contact sport control (n=22). Assessments of corticomotor excitability were made using transcranial magnetic stimulation. Resting motor threshold was significantly higher and long-interval intracortical inhibition was greater in the elite rugby group compared to the control group. Participants in the two rugby groups had sustained significantly more concussions than the control group. We provide some evidence of altered corticomotor excitation and inhibition in retired elite rugby players in comparison to retired non-contact sport players. Given the absence of findings in the community rugby group, who had experienced a similar number of concussions, the association with previous brain injury is unclear.

  9. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity.

    Science.gov (United States)

    Frazer, Ashlyn; Williams, Jacqueline; Spittles, Michael; Rantalainen, Timo; Kidgell, Dawson

    2016-11-01

    We examined the cumulative effect of 4 consecutive bouts of noninvasive brain stimulation on corticospinal plasticity and motor performance, and whether these responses were influenced by the brain-derived neurotrophic factor (BDNF) polymorphism. In a randomized double-blinded cross-over design, changes in strength and indices of corticospinal plasticity were analyzed in 14 adults who were exposed to 4 consecutive sessions of anodal and sham transcranial direct current stimulation (tDCS). Participants also undertook a blood sample for BDNF genotyping (N = 13). We observed a significant increase in isometric wrist flexor strength with transcranial magnetic stimulation revealing increased corticospinal excitability, decreased silent period duration, and increased cortical voluntary activation compared with sham tDCS. The results show that 4 consecutive sessions of anodal tDCS increased cortical voluntary activation manifested as an improvement in strength. Induction of corticospinal plasticity appears to be influenced by the BDNF polymorphism. Muscle Nerve 54: 903-913, 2016. © 2016 Wiley Periodicals, Inc.

  10. Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury.

    Science.gov (United States)

    Guimarães-Santos, Adriano; Santos, Diego Siqueira; Santos, Ijair Rogério; Lima, Rafael Rodrigues; Pereira, Antonio; de Moura, Lucinewton Silva; Carvalho, Raul Nunes; Lameira, Osmar; Gomes-Leal, Walace

    2012-01-01

    The oil-resin of Copaifera reticulata Ducke is used in the Brazilian folk medicine as an anti-inflammatory and healing agent. However, there are no investigations on the possible anti-inflammatory and neuroprotective roles of copaiba oil-resin (COR) after neural disorders. We have investigated the anti-inflammatory and neuroprotective effects of COR following an acute damage to the motor cortex of adult rats. Animals were injected with the neurotoxin N-Methyl-D-Aspartate (NMDA) (n = 10) and treated with a single dose of COR (400 mg/kg, i.p.) soon after surgery (Group 1) or with two daily doses (200 mg/kg, i.p.) during 3 days (Group 2) alter injury. Control animals were treated with vehicle only. COR treatment induced tissue preservation and decreased the recruitment of neutrophils and microglial activation in the injury site compared to vehicle animals. The results suggest that COR treatment induces neuroprotection by modulating inflammatory response following an acute damage to the central nervous system.

  11. Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex.

    Science.gov (United States)

    Zhuang, Jun; Truccolo, Wilson; Vargas-Irwin, Carlos; Donoghue, John P

    2010-07-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity (MUA), as well as low-frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode 3-D reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of seven different LFP frequency bands in the range of 0.3-400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g., 100-200 and 200-400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broad-band high frequency LFPs, likely reflecting MUA, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture, and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics.

  12. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Guillaume Lajoie

    2017-02-01

    Full Text Available Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI can artificially strengthen connections between separate neural sites in motor cortex (MC. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  13. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    Science.gov (United States)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  14. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS.

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    Full Text Available OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16 completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2 anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2 were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.

  16. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Naohiko Okabe

    Full Text Available Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  17. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    International Nuclear Information System (INIS)

    Khosravie, H.R.

    2000-01-01

    Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effects of thumb motor cortex of normal volunteer by using conventional standard 1.5 T imager and optimized gradient echo techniques. Activating sensory and motor stimulations can be led to, respective cortical area of that stimulation by which oxygenated blood flow is increased in that area (Bold contrast). By designing of a T 2* sensitized gradient echo protocol, thumb's sensory and motor cortex activation is evaluated. A protocol known as F AST i n picker system with the following specifications was used for F MRI: Band Width:24 Hz/Pixel, Tr=101 m Sec , T E=49 m Sec , Flip Angle= 10 deg., N E X=1 ,Slice thickness=5-7 mm F O V=250 mm ,Matrix=128*128 and total scan time= 14 Sec. Stimulation of the motor cortex was performed by periodic movement of dominant thumb in up-down and right-left direction within a Ls hape trajectory of plastic sheet with a frequency about 2 Hz. Then, acquired images in rest and stimulation period were evaluated by S P M 97, S P M 99 b software. During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T

  18. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    Science.gov (United States)

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  19. Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex

    Science.gov (United States)

    Guberman, Guido; Cisek, Paul

    2016-01-01

    Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial. In two SAT contexts, we compared neural activity in trials following a correct choice vs. those following an error. In dorsal premotor cortex (PMd), we found that 23% of cells exhibited significantly weaker baseline activity after error trials, and for ∼30% of these this effect persisted into the deliberation epoch. These cells also contributed to the process of combining sensory evidence with the growing urgency to commit to a choice. We also found that the activity of 22% of PMd cells was increased after error trials. These neurons appeared to carry less information about sensory evidence and time-dependent urgency. For most of these modulated cells, the effect was independent of whether the previous error was expected or unexpected. We found similar phenomena in primary motor cortex (M1), with 25% of cells decreasing and 34% increasing activity after error trials, but unlike PMd, these neurons showed less clear differences in their response properties. These findings suggest that PMd and M1 belong to a network of brain areas involved in SAT adjustments established using the recent history of reinforcement. NEW & NOTEWORTHY Setting the speed-accuracy trade-off (SAT) is crucial for efficient decision making. Previous studies have reported that subjects adjust their SAT after individual decisions, usually choosing more conservatively after errors, but the neural correlates of this phenomenon are only partially known. Here, we show that neurons in PMd and M1 of monkeys performing a reach decision task

  20. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.

    Science.gov (United States)

    Suner, Selim; Fellows, Matthew R; Vargas-Irwin, Carlos; Nakata, Gordon Kenji; Donoghue, John P

    2005-12-01

    Multiple-electrode arrays are valuable both as a research tool and as a sensor for neuromotor prosthetic devices, which could potentially restore voluntary motion and functional independence to paralyzed humans. Long-term array reliability is an important requirement for these applications. Here, we demonstrate the reliability of a regular array of 100 microelectrodes to obtain neural recordings from primary motor cortex (MI) of monkeys for at least three months and up to 1.5 years. We implanted Bionic (Cyberkinetics, Inc., Foxboro, MA) silicon probe arrays in MI of three Macaque monkeys. Neural signals were recorded during performance of an eight-direction, push-button task. Recording reliability was evaluated for 18, 35, or 51 sessions distributed over 83, 179, and 569 days after implantation, respectively, using qualitative and quantitative measures. A four-point signal quality scale was defined based on the waveform amplitude relative to noise. A single observer applied this scale to score signal quality for each electrode. A mean of 120 (+/- 17.6 SD), 146 (+/- 7.3), and 119 (+/- 16.9) neural-like waveforms were observed from 65-85 electrodes across subjects for all recording sessions of which over 80% were of high quality. Quantitative measures demonstrated that waveforms had signal-to-noise ratio (SNR) up to 20 with maximum peak-to-peak amplitude of over 1200 microv with a mean SNR of 4.8 for signals ranked as high quality. Mean signal quality did not change over the duration of the evaluation period (slope 0.001, 0.0068 and 0.03; NS). By contrast, neural waveform shape varied between, but not within days in all animals, suggesting a shifting population of recorded neurons over time. Arm-movement related modulation was common and 66% of all recorded neurons were tuned to reach direction. The ability for the array to record neural signals from parietal cortex was also established. These results demonstrate that neural recordings that can provide movement

  1. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.

    Science.gov (United States)

    Nowak, Dennis A; Grefkes, Christian; Dafotakis, Manuel; Eickhoff, Simon; Küst, Jutta; Karbe, Hans; Fink, Gereon R

    2008-06-01

    Following the concept of interhemispheric competition, downregulation of the contralesional primary motor cortex (M1) may improve the dexterity of the affected hand after stroke. To determine the effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the contralesional M1 on movement kinematics and neural activation within the motor system in the subacute phase after subcortical stroke. Crossover investigation. A university hospital. Fifteen right-handed patients with impaired dexterity due to subcortical middle cerebral artery stroke received 1-Hz rTMS for 10 minutes applied to the vertex (control stimulation) and contralesional M1. For behavioral testing, patients performed finger and grasp movements with both hands at 2 baseline conditions, separated by 1 week, and following each rTMS application. For functional magnetic resonance imaging, patients performed hand grip movements with their affected or unaffected hand before and after each rTMS application. Application of rTMS to the contralesional M1 improved the kinematics of finger and grasp movements in the affected hand. At the neural level, rTMS applied to the contralesional M1 reduced overactivity in the contralesional primary and nonprimary motor areas. There was no significant correlation between the rTMS-induced reduction in blood oxygen level-dependent responses within the contralesional M1 and the degree of behavioral improvement of the affected hand. Overactivity of the contralesional dorsal premotor cortex, contralesional parietal operculum, and ipsilesional mesial frontal cortex at baseline predicted improvement of movement kinematics with the affected hand after rTMS of the contralesional M1. The functional magnetic resonance imaging data suggest that rTMS of the contralesional M1 may normalize neural activation within the cortical motor network after subcortical stroke. Identifying patients suitable for rTMS intervention based on individual patterns of cortical activation may help

  2. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex.

    Science.gov (United States)

    Billeh, Yazan N; Rodriguez, Alexander V; Bellesi, Michele; Bernard, Amy; de Vivo, Luisa; Funk, Chadd M; Harris, Julie; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof; Cirelli, Chiara; Tononi, Giulio

    2016-01-01

    Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments.

  3. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

    Science.gov (United States)

    Litvak, Vladimir; Komssi, Soile; Scherg, Michael; Hoechstetter, Karsten; Classen, Joseph; Zaaroor, Menashe; Pratt, Hillel; Kahkonen, Seppo

    2007-08-01

    Analyzing the brain responses to transcranial magnetic stimulation (TMS) using electroencephalography (EEG) is a promising method for the assessment of functional cortical connectivity and excitability of areas accessible to this stimulation. However, until now it has been difficult to analyze the EEG responses during the several tens of milliseconds immediately following the stimulus due to TMS-induced artifacts. In the present study we show that by combining a specially adapted recording system with software artifact correction it is possible to remove a major part of the artifact and analyze the cortical responses as early as 10 ms after TMS. We used this methodology to examine responses of left and right primary motor cortex (M1) to TMS at different intensities. Based on the artifact-corrected data we propose a model for the cortical activation following M1 stimulation. The model revealed the same basic response sequence for both hemispheres. A large part of the response could be accounted for by two sources: a source close to the stimulation site (peaking approximately 15 ms after the stimulus) and a midline frontal source ipsilateral to the stimulus (peaking approximately 25 ms). In addition the model suggests responses in ipsilateral temporo-parietal junction areas (approximately 35 ms) and ipsilateral (approximately 30 ms) and middle (approximately 50 ms) cerebellum. Statistical analysis revealed significant dependence on stimulation intensity for the ipsilateral midline frontal source. The methodology developed in the present study paves the way for the detailed study of early responses to TMS in a wide variety of brain areas.

  4. A multi-scale computational model of the effects of TMS on motor cortex [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    2017-02-01

    Full Text Available The detailed biophysical mechanisms through which transcranial magnetic stimulation (TMS activates cortical circuits are still not fully understood. Here we present a multi-scale computational model to describe and explain the activation of different pyramidal cell types in motor cortex due to TMS. Our model determines precise electric fields based on an individual head model derived from magnetic resonance imaging and calculates how these electric fields activate morphologically detailed models of different neuron types. We predict neural activation patterns for different coil orientations consistent with experimental findings. Beyond this, our model allows us to calculate activation thresholds for individual neurons and precise initiation sites of individual action potentials on the neurons’ complex morphologies. Specifically, our model predicts that cortical layer 3 pyramidal neurons are generally easier to stimulate than layer 5 pyramidal neurons, thereby explaining the lower stimulation thresholds observed for I-waves compared to D-waves. It also shows differences in the regions of activated cortical layer 5 and layer 3 pyramidal cells depending on coil orientation. Finally, it predicts that under standard stimulation conditions, action potentials are mostly generated at the axon initial segment of cortical pyramidal cells, with a much less important activation site being the part of a layer 5 pyramidal cell axon where it crosses the boundary between grey matter and white matter. In conclusion, our computational model offers a detailed account of the mechanisms through which TMS activates different cortical pyramidal cell types, paving the way for more targeted application of TMS based on individual brain morphology in clinical and basic research settings.

  5. Effect of pimozide on the increase of muscarinic receptors caused by mazindol and apomorphine in the rat cerebral motor cortex.

    Science.gov (United States)

    de-Sousa, F C; Marinho, M M; Aguiar, G V; Viana, G S

    1995-01-01

    The effects of pimozide, mazindol and apomorphine on muscarinic receptors in homogenates of rat cerebral motor cortex were measured by binding assays, using 3H-N-methylscopolamine (3H-NMS) alone as ligand (for the measurement of M1- and M2-like receptors) or in the presence of carbachol or pirenzepine for determination of M1- and M2-like receptors, respectively. Female Wistar rats (150 g) were treated daily for one week with pimozide, a dopaminergic antagonist (10 and 20 mg/kg, po, by gavage), or with apomorphine (1 mg/kg, ip). In another set of experiments, animals were treated with pimozide and 30 min later with mazindol (10 mg/kg, po, by gavage) or apomorphine. The drugs were administered daily for one week. Controls received the same volume of saline. 3H-NMS binding was increased from the control value of 418 +/- 17 to 548 +/- 42 fmol/mg protein by administration of mazindol (10 mg/kg) but binding was reduced to 360 +/- 11 fmol/mg protein upon administration of pimozide (20 mg/kg) plus mazindol (10 mg/kg). Similarly 10 mg/kg pimozide reduced the increase in M1-like receptors caused by mazindol from 262 +/- 31 to 220 +/- 20 fmol/mg protein. Although 20 mg/kg pimozide alone produced a decrease in M1- plus M2-like receptors (from 418 +/- 17 to 348 +/- 22 fmol/mg protein), its action was preferentially on M2-like receptors, decreasing them from 148 +/- 10 to 111 +/- 15 fmol/mg protein in the control and treated groups, respectively. At the higher dose, 20 mg/kg pimozide also inhibited the 3H-NMS binding (M1- plus M2-like receptors) in the presence of apomorphine (263 +/- 25 vs 418 +/- 17 fmol/mg protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A multi-scale computational model of the effects of TMS on motor cortex [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    2017-05-01

    Full Text Available The detailed biophysical mechanisms through which transcranial magnetic stimulation (TMS activates cortical circuits are still not fully understood. Here we present a multi-scale computational model to describe and explain the activation of different pyramidal cell types in motor cortex due to TMS. Our model determines precise electric fields based on an individual head model derived from magnetic resonance imaging and calculates how these electric fields activate morphologically detailed models of different neuron types. We predict neural activation patterns for different coil orientations consistent with experimental findings. Beyond this, our model allows us to calculate activation thresholds for individual neurons and precise initiation sites of individual action potentials on the neurons’ complex morphologies. Specifically, our model predicts that cortical layer 3 pyramidal neurons are generally easier to stimulate than layer 5 pyramidal neurons, thereby explaining the lower stimulation thresholds observed for I-waves compared to D-waves. It also shows differences in the regions of activated cortical layer 5 and layer 3 pyramidal cells depending on coil orientation. Finally, it predicts that under standard stimulation conditions, action potentials are mostly generated at the axon initial segment of cortical pyramidal cells, with a much less important activation site being the part of a layer 5 pyramidal cell axon where it crosses the boundary between grey matter and white matter. In conclusion, our computational model offers a detailed account of the mechanisms through which TMS activates different cortical pyramidal cell types, paving the way for more targeted application of TMS based on individual brain morphology in clinical and basic research settings.

  7. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  8. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

    Science.gov (United States)

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro

    2016-10-01

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.

  9. Cat and Dog Primordial Follicles Enclosed in Ovarian Cortex Sustain Viability after In vitro Culture on Agarose Gel in a Protein-Free Medium

    Science.gov (United States)

    Fujihara, M; Comizzoli, P; Wildt, DE; Songsasen, N

    2014-01-01

    Contents Our objective was to examine the influences of differing media, protein supplementation and the microenvironment on cat vs dog primordial follicle viability in vitro. Ovarian cortical slices were cultured for 3, 9 or 15 days in α-minimum essential medium (α-MEM) or MEM supplemented with 10% fetal bovine serum (FBS), 10% knock-out serum replacement (KSR) or 0.1% polyvinyl alcohol (protein free). In a separate study, cat and dog ovarian tissues were cultured in protein-free α-MEM and MEM, respectively, in cell culture inserts, on 1.5% agarose gel or in 24-well cell culture plates (control). Follicle viability was assessed in both studies using calcein AM/ethidium homodimer and histological evaluation with haematoxylin/eosin staining. No cat follicle sustained viability beyond 9 days of in vitro culture in α-MEM compared to 37.5% of those incubated for 15 days in MEM in protein-free condition (p dog follicle viability (32.7% vs 8.1%) in protein-free condition at 15 days. Serum was detrimental (p cat follicle viability, whereas the latter was superior (p dog follicle survival. Likewise, dog follicle viability was enhanced (p cat, the agarose gel better (p cat vs the dog. A key factor to enhancing survival of these early stage follicles in culture appears to be the use of agarose gel, which enhances follicle viability, perhaps by promoting gas exchange. PMID:23279476

  10. New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study.

    Science.gov (United States)

    Moisa, Marius; Pohmann, Rolf; Ewald, Lars; Thielscher, Axel

    2009-01-01

    To develop and test a novel method for coil placement in interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) studies. Initially, a desired TMS coil position at the subject's head is recorded using a neuronavigation system. Subsequently, a custom-made holding device is used for coil placement inside the MR scanner. The parameters of the device corresponding to the prerecorded position are automatically determined from a fast structural image acquired directly before the experiment. The spatial accuracy of our method was verified on a phantom. Finally, in a study on five subjects, the coil was placed above the cortical representation of a hand muscle in M1 and the blood oxygenation level-dependent (BOLD) responses to short repetitive TMS (rTMS) trains were assessed using echo-planar imaging (EPI) recordings. The spatial accuracy of our method is in the range of 2.9 +/- 1.3 (SD) mm. Motor cortex stimulation resulted in robust BOLD activations in motor- and auditory related brain areas, with the activation in M1 being localized in the hand knob. We present a user-friendly method for TMS coil positioning in the MR scanner that exhibits good spatial accuracy and speeds up the setup of the experiment. The motor-cortex study proves the viability of the approach and validates our interleaved TMS/fMRI setup.

  11. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models.

    Science.gov (United States)

    Farr, Tracy D; Liu, Lily; Colwell, Keri L; Whishaw, Ian Q; Metz, Gerlinde A

    2006-05-15

    Mice are becoming increasingly popular to model neurological disease and motor system dysfunction. For evaluation of discrete, chronic motor impairments, skilled limb movements represent a valuable extension of standard mouse test batteries. This study introduces an efficient and sensitive test strategy for comprehensive assessment of skilled fore- and hind-limb stepping in mice. Adult C57BL/6 mice were trained and video-recorded in two walking tasks, the widely used rotorod test and a new ladder rung task. The animals then received a unilateral ischemic lesion in the motor cortex forelimb and hind limb area and were video-recorded on days 12 and 26 post-lesion. Forelimb and hind limb stepping movements were rated using a combination of endpoint measures and qualitative assessment. The results showed that while animals maintained a weight-supported gait, posture and stepping movements were abnormal at both post-operative intervals. The rotorod analysis revealed stepping deficits in both forelimbs that led to adoption of compensatory movement strategies. The ladder rung task revealed stepping errors in ipsi- and contralateral fore- and hind-limbs. The findings demonstrate that this test strategy provides comprehensive assessment of motor impairments in mice and that qualitative movement analysis is a valuable tool for elaborating subtle motor disturbances.

  12. Chronic motor cortex stimulation in patients with advanced Parkinson's disease and effects on striatal dopaminergic transmission as assessed by 123I-FP-CIT SPECT: a preliminary report.

    Science.gov (United States)

    Di Giuda, Daniela; Calcagni, Maria L; Totaro, Manuela; Cocciolillo, Fabrizio; Piano, Carla; Soleti, Francesco; Fasano, Alfonso; Cioni, Beatrice; Bentivoglio, Anna R; Giordano, Alessandro

    2012-09-01

    The objective of this study was to assess striatal dopamine transporter availability in patients with advanced Parkinson's disease (PD) before and after 13 months of unilateral extradural motor cortex stimulation (EMCS) with [123I]N-ω-fluoropropyl-2-β-carbo-methoxy-3-β-(4-iodophenyl)nortropane single photon emission computed tomography (123I-FP-CIT SPECT). Six PD patients (five women and one man, aged 63.2 ± 5.6 years) underwent 123I-FP-CIT SPECT and clinical evaluation [Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Quality of Life Scale (PDQL)] preoperatively, 8 and 13 months after EMCS. Striatum-to-occipital cortex, caudate-to-occipital cortex and putamen-to-occipital cortex 123I-FP-CIT uptake ratios were calculated using the region of interest method. Total and part III UPDRS scores significantly decreased at 8 and 13 months after stimulation (P=0.02 and 0.04, respectively); UPDRS part II and PDQL scores improved after 13 months (P=0.02 and 0.04, respectively). No significant differences in 123I-FP-CIT uptake ratios between baseline and follow-up were found in the examined regions. However, a progressive reduction in 123I-FP-CIT uptake ratios in the striatum contralateral to the implant was found. In contrast, no further decrease in 123I-FP-CIT uptake ratios was detected in the striatum ipsilateral to the implant. There were no correlations between changes in 123I-FP-CIT uptake ratios with disease duration, changes in medication dosage and motor UPDRS scores. Despite a small but highly selected sample of advanced PD patients, our results showed that no further dopamine transporter reduction occurred in the striatum ipsilateral to the implant side. This finding could lead to the hypothesis that EMCS might elicit a 'neuroprotective' effect, as suggested by significant clinical benefits.

  13. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  14. Variations in response control within at-risk gamblers and non-gambling controls explained by GABAergic inhibition in the motor cortex.

    Science.gov (United States)

    Chowdhury, Nahian S; Livesey, Evan J; Blaszczynski, Alex; Harris, Justin A

    2018-03-17

    Paired-pulse Transcranial Magnetic Stimulation (TMS) is used to study inhibitory and excitatory mechanisms in the motor cortex through the measurement of short-interval intracortical inhibition (SICI), indicative of GABAergic activity, and intracortical facilitation (ICF), indicative of glutamatergic activity. In the present study, TMS was delivered to the left motor cortex of 40 participants while we measured SICI and ICF at rest. We were interested in whether variation between individuals in these modulatory mechanisms is related to inhibitory control over responding measured as stop signal reaction time (SSRT). Within the same group of participants, we investigated whether SICI, ICF, SSRT, and self-reported impulsivity, are impaired in participants identified as At-Risk gamblers (n = 20) compared to non-gambling controls (n = 20). We found a significant negative correlation between SICI strength and SSRT, but no correlation between ICF strength and SSRT after controlling for the correlation between SICI and SSRT. Thus, poor inhibitory control of responding was associated with weak GABAergic activity. When taking into account the effects of substance/alcohol use and attention-deficit hyperactivity disorder (ADHD) symptom severity, At-Risk gamblers showed elevated self-reported impulsivity, but did not differ from controls on SSRT or SICI/ICF. Our study is the first to show that individual differences in motor cortex inhibition can predict stopping performance, and the first to investigate paired-pulse TMS parameters (together with other impulse control measures) in a gambling population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Observing how others lift light or heavy objects: which visual cues mediate the encoding of muscular force in the primary motor cortex?

    Science.gov (United States)

    Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2010-06-01

    Observers are able to judge quite accurately the weights lifted by others. Only recently, neuroscience has focused on the role of the motor system to accomplish this task. In this respect, a previous transcranial magnetic stimulation (TMS) study showed that the muscular force requirements of an observed action are encoded by the primary motor cortex (M1). Overall, three distinct visual sources may provide information on the applied force of an observed lifting action, namely, (i) the perceived kinematics, (ii) the hand contraction state and finally (iii) intrinsic object properties. The principal aim of the present study was to disentangle these three visual sources and to explore their importance in mediating the encoding of muscular force requirements in the observer's motor system. A series of experiments are reported in which TMS was used to measure 'force-related' responses from the hand representation in left M1 while subjects observed distinct action-stimuli. Overall, results indicated that observation-induced activity in M1 reflects the level of observed force when kinematic cues of the lift (exp. 1) or cues on the hand contraction state (exp. 2) are available. Moreover, when kinematic cues and intrinsic object properties provide distinct information on the force requirements of an observed lifting action, results from experiment 3 indicated a strong preference for the use of kinematic features in mapping the force requirements of the observed action. In general, these findings support the hypothesis that the primary motor cortex contributes to action observation by mapping the muscle-related features of observed actions. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Homologous muscle contraction during unilateral movement does not show a dominant effect on leg representation of the ipsilateral primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Shin-Yi Chiou

    Full Text Available Co-activation of homo- and heterotopic representations in the primary motor cortex (M1 ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI and recruitment curves (RCs of motor evoked potentials (MEPs in the right M1, and responses were recorded from the left rectus femoris (RF and left tibialis anterior (TA muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal

  17. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    Science.gov (United States)

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  18. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    CERN Document Server

    Khosravie, H R

    2000-01-01

    During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T imager. Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effe...

  19. A Concept for Extending the Applicability of Constraint-Induced Movement Therapy through Motor Cortex Activity Feedback Using a Neural Prosthesis

    Directory of Open Access Journals (Sweden)

    Tomas E. Ward

    2007-01-01

    Full Text Available This paper describes a concept for the extension of constraint-induced movement therapy (CIMT through the use of feedback of primary motor cortex activity. CIMT requires residual movement to act as a source of feedback to the patient, thus preventing its application to those with no perceptible movement. It is proposed in this paper that it is possible to provide feedback of the motor cortex effort to the patient by measurement with near infrared spectroscopy (NIRS. Significant changes in such effort may be used to drive rehabilitative robotic actuators, for example. This may provide a possible avenue for extending CIMT to patients hitherto excluded as a result of severity of condition. In support of such a paradigm, this paper details the current status of CIMT and related attempts to extend rehabilitation therapy through the application of technology. An introduction to the relevant haemodynamics is given including a description of the basic technology behind a suitable NIRS system. An illustration of the proposed therapy is described using a simple NIRS system driving a robotic arm during simple upper-limb unilateral isometric contraction exercises with healthy subjects.

  20. Grey matter volume and resting-state functional connectivity of the motor cortex-cerebellum network reflect the individual variation in masticatory performance in the healthy elderly people

    Directory of Open Access Journals (Sweden)

    Chia-Shu eLin

    2016-01-01

    Full Text Available Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI and resting-state function MRI were performed. We analyzed alterations in grey matter volume (GMV using voxel-based morphometry and resting-state functional connectivity (rsFC between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1 the GMV change in the premotor cortex was positively correlated with masticatory performance. (2 The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3 The GMV changes in the dorsolateral prefrontal cortex (DLPFC, as well as the rsFC between the cerebellum and the DLPFC, was positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  1. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  2. Transcranial alternating current stimulation at beta frequency: lack of immediate effects on excitation and interhemispheric inhibition of the human motor cortex

    Directory of Open Access Journals (Sweden)

    Viola Rjosk

    2016-11-01

    Full Text Available Transcranial alternating current stimulation (tACS is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1 or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI, remains elusive. Transcranial magnetic stimulation (TMS is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (MEP size, RMT, IHI from left to right M1 and vice versa was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT and/or interhemispheric inhibition (IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and interhemispheric inhibition.

  3. Observation-execution matching and action inhibition in human primary motor cortex during viewing of speech-related lip movements or listening to speech.

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2011-06-01

    One influential theory posits that language has evolved from gestural communication through observation-execution matching processes in the mirror neuron system (MNS). This theory predicts that observation of speech-related lip movements or even listening to speech would result in effector and task specific increase of the excitability of the corresponding motor representations in the primary motor cortex (M1), since actual movement execution is known be effector and task specific. In addition, effector and task specific inhibitory control mechanisms should be important to prevent overt motor activation during observation of speech-related lip movements or listening to speech. We tested these predictions by applying focal transcranial magnetic stimulation to the left M1 of 12 healthy right-handed volunteers and measuring motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in a lip muscle, the right orbicularis oris (OO), vs. a hand muscle, the right first dorsal interosseus (FDI). We found that MEP and SICI increased only in the OO but not in the FDI during viewing of speech-related lip movements or listening to speech. These changes were highly task specific because they were absent when lip movements non-related to speech were viewed. Finally, the increase in MEP amplitude in the OO correlated inversely with accuracy of speech perception, i.e. the MEP increase was directly related to task difficulty. The MEP findings support the notion that observation-execution matching is an operating process in the putative human MNS that might have been fundamental for evolution of language. Furthermore, the SICI findings provide evidence that inhibitory mechanisms are recruited to prevent unwanted overt motor activation during action observation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. [The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation].

    Science.gov (United States)

    Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente

    2015-01-06

    The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  5. Sentential context modulates the involvement of the motor cortex in action language processing: An fMRI study

    NARCIS (Netherlands)

    K.D.I. Schuil (Karen); M. Smits (Marion); R.A. Zwaan (Rolf)

    2013-01-01

    textabstractTheories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously

  6. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Gleich, Bernhard; Gattinger, Norbert

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex ...... in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1....... was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase...

  7. Subdural motor cortex stimulation: feasibility, efficacy and security on a series of 18 consecutive cases with a follow-up of at least 3 years.

    Science.gov (United States)

    Delavallée, Maxime; Finet, Patrice; de Tourtchaninoff, Marianne; Raftopoulos, Christian

    2014-12-01

    Motor cortex stimulation (MCS) is considered to be an effective treatment in some types of chronic refractory neuropathic pain. The aim of this study is to evaluate and confirm the feasibility, efficacy and security of our surgical technique for subdural motor cortex stimulation (SD MCS) on 18 consecutive cases with follow-up of at least 3 years. Our population consists of 18 consecutive patients (12 male) between 2000 and 2010, with a mean age of 63 years (11-91). The mean follow-up was 86 months (20-140 months). We identified the central sulcus by using classical anatomic landmarks and neuronavigation (BrainLab system; BrainLAB, Inc., Redwood City, CA). An elongated craniotomy (3 cm in length, 1 cm in width) was performed followed by linear opening of the dura mater. An eight-polar plate electrode (Specify Lead, 3998; Medtronic, Minneapolis, MN) was then slipped smoothly through this linear opening. In patients with interhemispheric electrodes (patients 2 and 17), we performed a parasagittal craniotomy of 4 cm length and 2 cm width. At last follow-up assessment, 14 patients had a favourable outcome (77.7 %): 10 patients with excellent relief of pain (>80 %), 1 with good relief of pain (60-80 %) and 3 with satisfactory relief of pain (50-60 %). Four patients showed bad results (<50 %). We did not observe any late complications specific to SD MCS. We report an efficacy at least as good as ED MCS, with no complications specific to SD MCS, even with prolonged follow-up. The data are insufficient to actually prove a lower energy use in SD MCS.

  8. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex.

    Science.gov (United States)

    Higo, Noriyuki; Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.

  9. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  10. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, S.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  11. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Delvendahl, Igor; Pechmann, Astrid

    2012-01-01

    Transcranial magnetic stimulation (TMS) commonly uses so-called monophasic pulses where the initial rapidly changing current flow is followed by a critically dampened return current. It has been shown that a monophasic TMS pulse preferentially excites different cortical circuits in the human motor...

  12. Dexamethasone rescues neurovascular unit integrity from cell damage caused by systemic administration of shiga toxin 2 and lipopolysaccharide in mice motor cortex.

    Directory of Open Access Journals (Sweden)

    Alipio Pinto

    Full Text Available Shiga toxin 2 (Stx2-producing Escherichia coli (STEC causes hemorrhagic colitis and hemolytic uremic syndrome (HUS that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS produced and secreted by enterohemorrhagic Escherichia coli (EHEC may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i whether Stx2 affects the neurovascular unit and parenchymal cells, (ii whether the contribution of LPS aggravates these effects, and (iii whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.

  13. Abrupt changes in pentobarbital sensitivity in preBötzinger complex region, hypoglossal motor nucleus, nucleus tractus solitarius, and cortex during rat transitional period (P10-P15).

    Science.gov (United States)

    Turner, Sara M F; Johnson, Stephen M

    2015-02-01

    On postnatal days P10-P15 in rat medulla, neurotransmitter receptor subunit composition shifts toward a more mature phenotype. Since medullary GABAARs regulate cardiorespiratory function, abrupt alterations in GABAergic synaptic inhibition could disrupt homeostasis. We hypothesized that GABAARs on medullary neurons become more resistant to positive allosteric modulation during P10-P15. Medullary and cortical slices from P10 to P20 rats were used to record spontaneous action potentials in pre-Botzinger Complex (preBötC-region), hypoglossal (XII) motor nucleus, nucleus tractus solitarius (NTS), and cortex during exposure to pentobarbital (positive allosteric modulator of GABAARs). On P14, pentobarbital resistance abruptly increased in preBötC-region and decreased in NTS, but these changes in pentobarbital resistance were not present on P15. Pentobarbital resistance decreased in XII motor nucleus during P11-P15 with a nadir at P14. Abrupt changes in pentobarbital resistance indicate changes in GABAergic receptor composition and function that may compensate for potential increased GABAergic inhibition and respiratory depression that occurs during this key developmental transitional period. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Simultaneously Excitatory and Inhibitory Effects of Transcranial Alternating Current Stimulation Revealed Using Selective Pulse-Train Stimulation in the Rat Motor Cortex.

    Science.gov (United States)

    Khatoun, Ahmad; Asamoah, Boateng; Mc Laughlin, Myles

    2017-09-27

    Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. We investigated this using transcranial current stimulation of the rat (all males) motor cortex consisting of a continuous subthreshold sine wave with short bursts of suprathreshold pulse-trains inserted at different phases to probe cortical excitability. We found that when a low-rate, long-duration, suprathreshold pulse-train was used, subthreshold cathodal tACS decreased cortical excitability and anodal tACS increased excitability. However, when a high-rate, short-duration, suprathreshold pulse-train was used this pattern was inverted. An integrate-and-fire model incorporating biophysical differences between cortical excitatory and inhibitory neurons could predict the experimental data and helped interpret these results. The model indicated that low-rate suprathreshold pulse-trains preferentially stimulate excitatory cortical neurons, whereas high-rate suprathreshold pulse-trains stimulate both excitatory and inhibitory neurons. If correct, this indicates that suprathreshold pulse-train stimulation may be able to selectively control the excitation-inhibition balance within a cortical network. The excitation-inhibition balance then likely plays an important role in determining whether subthreshold tACS will increase or decrease cortical excitability. SIGNIFICANCE STATEMENT Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that uses weak sinusoidal electric fields to modulate cortical activity. In healthy volunteers tACS can modulate perception, cognition, and motor function but the underlying neural mechanism is poorly understood. In this study, using rat

  15. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somato-motor cortex of healthy subjects

    Directory of Open Access Journals (Sweden)

    Tibor eAuer

    2015-10-01

    Full Text Available This study investigated the level of self-regulation of the somato-motor cortices (SMC attained by an extended functional MRI (fMRI neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging (rt-fMRI neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line GLM analysis determining the fMRI percent signal changes in the somato-motor cortex (SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e. the neurofeedback paradigm without the presentation of the feedback signal. Group results show a distinct increase in feedback performance in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the feedback performance showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left and right hand imagery, with a slight indication of more ipsilateral deactivation in the early right hand trainings.

  16. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  17. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A.; Mezzarane, Rinaldo A.; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  18. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii.

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A; Mezzarane, Rinaldo A; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  19. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  20. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    DEFF Research Database (Denmark)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo

    2013-01-01

    , at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects......Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter......TBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively...

  1. Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex.

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-05-19

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the weight of the object has to be predicted based on information learned from previous grasps. Here, we investigated how changes in corticospinal excitability (CSE) and grip force scaling depend on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions in which visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available but only in the period immediately after object presentation (50 ms); this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a "sensorimotor memory" of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control.

  2. Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-05-01

    Full Text Available ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment.MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females. To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs elicited by single-pulse transcranial magnetic stimulation (TMS before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01 at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity.

  3. Information about the weight of grasped objects from vision and from internal models interacts within the primary motor cortex

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-01-01

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the object’s weight has to be predicted based on information learned from previous grasps. Here, we investigated changes in corticospinal excitability (CSE) and grip force scaling depending on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions where visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available, but only in the period immediately after (50 ms) object presentation; this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a ‘sensorimotor memory’ of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control. PMID:20484640

  4. Reduced Short-Latency Afferent Inhibition in Prefrontal but not Motor Cortex and Its Association With Executive Function in Schizophrenia: A Combined TMS-EEG Study.

    Science.gov (United States)

    Noda, Yoshihiro; Barr, Mera S; Zomorrodi, Reza; Cash, Robin F H; Rajji, Tarek K; Farzan, Faranak; Chen, Robert; George, Tony P; Daskalakis, Zafiris J; Blumberger, Daniel M

    2018-01-13

    Cholinergic dysfunction is increasingly assumed to be involved in the pathophysiology of schizophrenia. Short-latency afferent inhibition (SAI) is a transcranial magnetic stimulation (TMS) paradigm that has been shown to assay central cholinergic activity from the motor cortex (M1). Recently, we established a method to index SAI from the dorsolateral prefrontal cortex (DLPFC), an area implicated in the pathophysiology of schizophrenia. We investigated SAI in M1 and DLPFC in schizophrenia. We hypothesized that modulation of N100 on TMS-evoked potentials (TEPs) from the DLPFC would be attenuated in patients with schizophrenia compared to healthy controls. SAI was examined in 12 patients, whose age was matched to controls, using TMS combined with electroencephalography (EEG). SAI was recorded with TMS applied to left M1 (M1-SAI) and DLPFC (DLPFC-SAI). For group comparison, we used the SAI data of healthy participants in our previous study. In patients, N100 TEP was significantly attenuated with DLPFC-SAI, whereas P180 TEP was significantly increased with M1-SAI. Between patients and controls, there were significant differences in modulation of P180 TEP by M1-SAI (t22 = -2.748, P = .012; patients > controls) and N100 TEP by DLPFC-SAI (t22 = 5.456, P < .0001; patients < controls). Further, modulation of N100 TEP by DLPFC-SAI significantly correlated with executive function (r = -.740, P = .006, N = 12). Our findings suggest that DLPFC-SAI but not M1-SAI were reduced in patients with schizophrenia and this was linked to deficits in cognition. This may reflect prefrontal cholinergic deficits and represent a biomarker for cholinergic and executive dysfunction in patients with schizophrenia. © The Author(s) 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... are maladaptive and attempt to normalize representations of cortical areas adjacent to the hand area. Recent data suggest, however, that higher levels of phantom pain are associated with stronger local activity and more structural integrity in the missing hand area rather than with reorganization of neighbouring...... of reorganization, but the lip and elbow representations reorganized and shifted towards the hand area. We also found that poorer voluntary control and higher levels of pain in the phantom limb were powerful drivers of the lip and elbow topological changes. In addition to providing further support...

  6. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  7. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  8. Domestic cat

    Science.gov (United States)

    Diffendorfer, James E.

    2017-01-01

    The familiar domestic cat is not native to southern California and is considered an invasive spe-cies by biologists and conservation organizations. When owners abandon their cats, wild or feral populations may arise, as they have in San Diego County. Cats’ pelage color, tail length, and hair thickness vary widely, given human fascination with breeding diverse phenotypes, but all have a typical felid body with upright ears, forward-looking eyes adapted for nocturnal foraging, protractible claws, and a sinuous, flexible body. Cats allowed outdoors and feral cats kill and eat a wide variety of vertebrates such as small mammals, birds, and reptiles

  9. Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention.

    Science.gov (United States)

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Köhler, Stefanie; Puta, Christian; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2017-03-01

    Strong evidence indicates that regular aerobic training induces beneficial effects on cognitive functions. The present controlled fMRI study was designed to investigate the impact of a short-term intense aerobic exercise on the pattern of functional activation during the retrieval of learned pair-associates in 17 young and healthy male adults compared to 17 matched control subjects. We further aimed to relate putative changes in hippocampal activation to postulated changes in the exercised-induced brain derived neurotrophic factor (BDNF). The supervised exercise program was performed on a bicycle ergometer and lasted six weeks, with three aerobic sessions per week. We found profound improvement of physical fitness in most subjects indicated by the target parameter 'individual anaerobic threshold'. Significant improvements in the cognitive performance were detected in the exercise group, but also in the control group. We observed significant differences in the activation pattern of the left anterior hippocampus during the pair-associates task after the intervention. We could also show a significant positive correlation between changes in exercise-induced BDNF and left anterior hippocampal activation. Moreover, we observed the brain's motor network to be significantly stronger activated after the exercise intervention. Thus, our results suggest BDNF dependent activation changes of the hippocampus in addition to previously described structural changes after exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Surround Inhibition in the Primary Motor Cortex is Task-specifically Modulated in Non-professional Musicians but not in Healthy Controls During Real Piano Playing.

    Science.gov (United States)

    Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper; Taube, Wolfgang

    2018-03-01

    Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P  0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2012-07-01

    Full Text Available Combined administration of transcranial direct current stimulation (tDCS with either pergolide (PGL or D-cycloserine (D-CYC can prolong the excitability-diminishing effects of cathodal, or the excitability enhancing effect of anodal stimulation for up to 24hrs poststimulation. However, it remains unclear whether the potentiation of the observed aftereffects is dominated by the polarity and duration of the stimulation, or the dual application of combined stimulation and drug administration. The present study looks at whether the aftereffects of oral administration of PGL (a D1/D2 agonist or D-CYC (a partial NMDA receptor agonist, in conjunction with the short duration antagonistic application of tDCS (either 5 min cathodal followed immediately by 5 min anodal or vice versa, that alone only induces short lasting aftereffects, can modulate cortical excitability in healthy human subjects, as revealed by a single-pulse MEP (motor-evoked-potential paradigm. Results indicate that the antagonistic application of DC currents induces short-term neuroplastic aftereffects that are dependent upon the polarity of the second application of short-duration tDCS. The application of D-cycloserine resulted in a reversal of this trend and so consequently a marked inhibition of cortical excitability with the cathodal-anodal stimulation order was observed. The administration of pergolide showed no significant aftereffects in either case. These results emphasise that the aftereffects of tDCS are dependent upon the stimulation orientation, and mirror the findings of other studies reporting the neuroplasticity inducing aftereffects of tDCS, and their prolongation when combined with the administration of CNS active drugs.

  12. Primary motor cortex neurons during individuated finger and wrist movements: correlation of spike firing rates with the motion of individual digits versus their principal components

    Directory of Open Access Journals (Sweden)

    Evan eKirsch

    2014-05-01

    Full Text Available The joints of the hand provide 24 mechanical degrees of freedom. Yet 2 to 7 principal components (PCs account for 80 to 95 % of the variance in hand joint motion during tasks that vary from grasping to finger spelling. Such findings have led to the hypothesis that the brain may simplify operation of the hand by preferentially controlling PCs. We tested this hypothesis using data recorded from the primary motor cortex (M1 during individuated finger and wrist movements. Principal component analysis (PCA of the simultaneous position of the 5 digits and the wrist showed relatively consistent kinematic synergies across recording sessions in two monkeys. The first 3 PCs typically accounted for 85% of the variance. Cross-correlations then were calculated between the firing rate of single neurons and the simultaneous flexion/extension motion of each of the 5 digits and the wrist, as well as with each of their 6 PCs. For each neuron, we then compared the maximal absolute value of the cross-correlations (MAXC achieved with the motion of any digit or the wrist to the MAXC achieved with motion along any PC axis. The MAXC with a digit and the MAXC with a PC were themselves highly correlated across neurons. A minority of neurons correlated more strongly with a principal component than with any digit. But for the populations of neurons sampled from each of two subjects, MAXCs with digits were slightly but significantly higher than those with PCs. We therefore reject the hypothesis that M1 neurons preferentially control PCs of hand motion. We cannot exclude the possibility that M1 neurons might control kinematic synergies identified using linear or non-linear methods other than PCA. We consider it more likely, however, that neurons in other centers of the motor system—such as the pontomedullary reticular formation and the spinal gray matter—drive synergies of movement and/or muscles, which M1 neurons act to fractionate in producing individuated finger and

  13. tDCS Over the Motor Cortex Shows Differential Effects on Action and Object Words in Associative Word Learning in Healthy Aging

    Directory of Open Access Journals (Sweden)

    Meret Branscheidt

    2017-05-01

    Full Text Available Healthy aging is accompanied by a continuous decline in cognitive functions. For example, the ability to learn languages decreases with age, while the neurobiological underpinnings for the decline in learning abilities are not known exactly. Transcranial direct current stimulation (tDCS, in combination with appropriate experimental paradigms, is a well-established technique to investigate the mechanisms of learning. Based on previous results in young adults, we tested the suitability of an associative learning paradigm for the acquisition of action- and object-related words in a cohort of older participants. We applied tDCS to the motor cortex (MC and hypothesized an involvement of the MC in learning action-related words. To test this, a cohort of 18 healthy, older participants (mean age 71 engaged in a computer-assisted associative word-learning paradigm, while tDCS stimulation (anodal, cathodal, sham was applied to the left MC. Participants’ task performance was quantified in a randomized, cross-over experimental design. Participants successfully learned novel words, correctly translating 39.22% of the words after 1 h of training under sham stimulation. Task performance correlated with scores for declarative verbal learning and logical reasoning. Overall, tDCS did not influence associative word learning, but a specific influence was observed of cathodal tDCS on learning of action-related words during the NMDA-dependent stimulation period. Successful learning of a novel lexicon with associative learning in older participants can only be achieved when the learning procedure is changed in several aspects, relative to young subjects. Learning success showed large inter-individual variance which was dependent on non-linguistic as well as linguistic cognitive functions. Intriguingly, cathodal tDCS influenced the acquisition of action-related words in the NMDA-dependent stimulation period. However, the effect was not specific for the associative

  14. Cat's Claw

    Science.gov (United States)

    ... R S T U V W X Y Z Cat's Claw Share: On This Page Background How Much ... Foster This fact sheet provides basic information about cat’s claw—common names, usefulness and safety, and resources ...

  15. Bioacoustic Signal Classification in Cat Auditory Cortex

    Science.gov (United States)

    1994-01-01

    in rhesus monkeys that were close to the human boundaries between voiced and voiceless consonants. Baru (19󈨏) discussed the parameters involved in...grant N00014-91-J-1317, the Coleman Fund, and Hearing Research Inc. nI 24 REFERENCES Baru , A.V. Discrimination of synthesized vowels /a/ and /i/ with

  16. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    Science.gov (United States)

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-09-28

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  17. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    Directory of Open Access Journals (Sweden)

    Tatiana G. Polotow

    2015-09-01

    Full Text Available Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs and the antioxidant carotenoid astaxanthin (ASTA. However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation, drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  18. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis.

    Science.gov (United States)

    Dissanayaka, Thusharika; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour

    2017-08-01

    Numerous studies have explored the effects of transcranial electrical stimulation (tES) - including anodal transcranial direct current stimulation (a-tDCS), cathodal transcranial direct current stimulation (c-tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE) in healthy populations. However, the efficacy of these techniques and their optimal parameters for producing robust results has not been studied. Thus, the aim of this systematic review was to consolidate current knowledge about the effects of various parameters of a-tDCS, c-tDCS, tACS, tRNS and tPCS on the CSE of the primary motor cortex (M1) in healthy people. Leading electronic databases were searched for relevant studies published between January 1990 and February 2017; 126 articles were identified, and their results were extracted and analysed using RevMan software. The meta-analysis showed that a-tDCS application on the dominant side significantly increases CSE (P < 0.01) and that the efficacy of a-tDCS is dependent on current density and duration of application. Similar results were obtained for stimulation of M1 on the non-dominant side (P = 0.003). The effects of a-tDCS reduce significantly after 24 h (P = 0.006). Meta-analysis also revealed significant reduction in CSE following c-tDCS (P < 0.001) and significant increases after tRNS (P = 0.03) and tPCS (P = 0.01). However, tACS effects on CSE were only significant when the stimulation frequency was ≥140 Hz. This review provides evidence that tES has substantial effects on CSE in healthy individuals for a range of stimulus parameters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  20. Katsvanga, CAT

    African Journals Online (AJOL)

    Katsvanga, CAT. Vol 1, No 2 (2006) - Articles Eucalyptus species performance under short rotation conditions on the Vumba highlands in Zimbabwe Abstract PDF. ISSN: 1819-3692. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners ...

  1. A Catalogue of Anatomical Fugitive Sheets: Cat. 49-62

    OpenAIRE

    1999-01-01

    Images Cat. 50 Cat. 51 Cat. 53 Cat. 54 Cat. 55 (a) Cat. 55 (b) Cat. 56 Cat. 57: 1 Cat. 57: 2 Cat. 57: 3 Cat. 57: 4 Cat. 59: 1 Cat. 59: 2 Cat. 59: 3 Cat. 59: 4 Cat. 60 Cat. 61 Cat. 62: 1 (a) Cat. 62: 1 (b) Cat. 62: 2 (a) Cat. 62: 2 (b)

  2. A Catalogue of Anatomical Fugitive Sheets: Cat. 26-48

    OpenAIRE

    1999-01-01

    Images Cat. 26: 1 (a) Cat. 26: 1 (b) Cat. 26: 2 (a) Cat. 26: 2(b) Cat. 27: 1 (a) Cat. 27: 1 (b) Cat. 27: 2 (a) Cat. 27: 2 (b) Cat. 28 Cat. 29: 2 (a) Cat. 29: 2 (b) Cat. 30: 1 Cat. 30: 2 Cat. 30: 3 Cat. 33 Cat. 34: 1 Cat. 34: 2 Cat. 35: 1 Cat. 35: 2 Cat. 35: 3 Cat. 36 Cat. 37 Cat. 38: 1 Cat. 38: 2 Cat. 40 Cat. 42 Cat. 43 Cat. 44 Cat. 45: 1 Cat. 45: 2 Cat. 46 Cat. 47: 1 Cat. 47: 2 Cat. 47: 3 Cat. 48: 1 Cat. 48: 2 Cat. 48: 3

  3. Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study.

    Science.gov (United States)

    Steel, Adam; Song, Sunbin; Bageac, Devin; Knutson, Kristine M; Keisler, Aysha; Saad, Ziad S; Gotts, Stephen J; Wassermann, Eric M; Wilkinson, Leonora

    2016-01-01

    Inhibitory transcranial magnetic stimulation (TMS), of which continuous theta burst stimulation (cTBS) is a common form, has been used to inhibit cortical areas during investigations of their function. cTBS applied to the primary motor area (M1) depresses motor output excitability via a local effect and impairs procedural motor learning. This could be due to an effect on M1 itself and/or to changes in its connectivity with other nodes in the learning network. To investigate this issue, we used functional magnetic resonance imaging to measure changes in brain activation and connectivity during implicit procedural learning after real and sham cTBS of M1. Compared to sham, real cTBS impaired motor sequence learning, but caused no local or distant changes in brain activation. Rather, it reduced functional connectivity between motor (M1, dorsal premotor & supplementary motor areas) and visual (superior & inferior occipital gyri) areas. It also increased connectivity between frontal associative (superior & inferior frontal gyri), cingulate (dorsal & middle cingulate), and temporal areas. This potentially compensatory shift in coupling, from a motor-based learning network to an associative learning network accounts for the behavioral effects of cTBS of M1. The findings suggest that the inhibitory TMS affects behavior via relatively subtle and distributed effects on connectivity within networks, rather than by taking the stimulated area "offline". Published by Elsevier Ltd.

  4. Schroedinger's cat

    International Nuclear Information System (INIS)

    Lubkin, E.

    1979-01-01

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a 'matrix format' (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and 'Schroedinger's cat' symbolizes this broader perspective. (author)

  5. Chimera-like states in a neuronal network model of the cat brain

    Science.gov (United States)

    Santos, M. S.; Szezech, J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.

    2017-08-01

    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, somatosensory-motor and frontolimbic. We consider a network where the local dynamics is given by the Hindmarsh-Rose model. The Hindmarsh-Rose equations are a well known model of neuronal activity that has been considered to simulate membrane potential in neuron. Here, we analyse under which conditions chimera states are present, as well as the affects induced by intensity of coupling on them. We observe the existence of chimera states in that incoherent structure can be composed of desynchronised spikes or desynchronised bursts. Moreover, we find that chimera states with desynchronised bursts are more robust to neuronal noise than with desynchronised spikes.

  6. A biologically based model for the integration of sensory-motor contingencies in rules and plans: a prefrontal cortex based extension of the Distributed Adaptive Control architecture.

    Science.gov (United States)

    Duff, Armin; Fibla, Marti Sanchez; Verschure, Paul F M J

    2011-06-30

    Intelligence depends on the ability of the brain to acquire and apply rules and representations. At the neuronal level these properties have been shown to critically depend on the prefrontal cortex. Here we present, in the context of the Distributed Adaptive Control architecture (DAC), a biologically based model for flexible control and planning based on key physiological properties of the prefrontal cortex, i.e. reward modulated sustained activity and plasticity of lateral connectivity. We test the model in a series of pertinent tasks, including multiple T-mazes and the Tower of London that are standard experimental tasks to assess flexible control and planning. We show that the model is both able to acquire and express rules that capture the properties of the task and to quickly adapt to changes. Further, we demonstrate that this biomimetic self-contained cognitive architecture generalizes to planning. In addition, we analyze the extended DAC architecture, called DAC 6, as a model that can be applied for the creation of intelligent and psychologically believable synthetic agents. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Abrupt changes in pentobarbital sensitivity in preBötzinger complex region, hypoglossal motor nucleus, nucleus tractus solitariius, and cortex during rat transitional period (P10–P15)

    Science.gov (United States)

    Turner, Sara M. F.; Johnson, Stephen M.

    2015-01-01

    On postnatal days P10–P15 in rat medulla, neurotransmitter receptor subunit composition shifts towards a more mature phenotype. Since medullary GABAARs regulate cardiorespiratory function, abrupt alterations in GABAergic synaptic inhibition could disrupt homeostasis. We hypothesized that GABAARs on medullary neurons become more resistant to positive allosteric modulation during P10–P15. Medullary and cortical slices from P10–P20 rats were used to record spontaneous action potentials in pre-Botzinger Complex (preBötC-region), hypoglossal (XII) motor nucleus, nucleus tractus solitariius (NTS), and cortex during exposure to pentobarbital (positive allosteric modulator of GABAARs). On P14, pentobarbital resistance abruptly increased in preBötC-region and decreased in NTS, but these changes in pentobarbital resistance were not present on P15. Pentobarbital resistance decreased in XII motor nucleus during P11–P15 with a nadir at P14. Abrupt changes in pentobarbital resistance indicate changes in GABAergic receptor composition and function that may compensate for potential increased GABAergic inhibition and respiratory depression that occurs during this key developmental transitional period. PMID:25550216

  8. Cat and Dog Bites

    Science.gov (United States)

    ... Wellness Staying Healthy Pets and Animals Cat and Dog Bites Cat and Dog Bites Share Print Cat and dog bites are common injuries. A family pet or ... bites. Path to safety If a cat or dog bites you, you should: Wash the wound gently ...

  9. Functional rearrangement of the primary and secondary motor cortex in patients with primary tumors of the central nervous system located in the region of the central sulcus depending on the histopathological type and the size of tumor: Examination by means of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bryszewski, Bartosz; Pfajfer, Lucjan; Antosik-Biernacka, Aneta; Tybor, Krzysztof; Śmigielski, Janusz; Zawirski, Marek; Majos, Agata

    2012-01-01

    The aim of this study was to analyze the reorganization of the centers of the motor cortex in patients with primary neuroepithelial tumors of the central nervous system (CNS) located in the region of the central sulcus in relation to the histopathological type and the size of tumor, as determined by means of functional magnetic resonance imaging (fMRI). The fMRI was performed prior to the surgical treatment of patients with tumors located in the region of the central sulcus (WHO stage I and II, n=15; WHO stage III and IV, n=25). The analysis included a record of the activity in the areas of the primary motor cortex (M1) and the secondary motor cortex: the premotor cortex (PMA) and the accessory motor area (SMA). The results were correlated with the histopathological type of the tumor and its size expressed in cm 3 . The frequency of activation of the motor center was higher in the group of patients who had less aggressive tumors, such as low-grade glioma (LGG), as well as in tumors of lower volume, and this was true both for the hemisphere where the tumor was located and in the contralateral one. Mean values of t-statistics of activation intensity, mean numbers of activated clusters, and their ranges were lower in all analyzed motor areas of LGG tumors. The values of t-statistics and activation areas were higher in the case of small tumors located in ipsilateral centers, and in large tumors located in contralateral centers, aside from the SMA area where the values of t-statistics were equal for both groups. The contralateral SMA area was characterized by the highest stability of all examined centers of secondary motor cortex. No significant association (p>0.05) was observed between the absolute value of the mean registered activity (t-statistics) and the size of examined areas (number of clusters) when the groups were stratified with regards to the analyzed parameters. The presence of a neoplastic lesion, its histopathological type and finally its size modulate the

  10. Suppression of phase synchronisation in network based on cat's brain

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Iarosz, Kelly C.; Caldas, Iberê L.; Batista, Antonio M.; Viana, Ricardo L.; Kurths, Jürgen

    2016-04-01

    We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.

  11. Cat-Scratch Disease

    Science.gov (United States)

    ... Mammals Pet Rodents Wildlife Animal Tales & Features Giant Sharks Help Wounded Warriors Heal Loving Your Special Cat ... bite while they play and learn how to attack prey. How cats and people become infected Kitten ...

  12. Cat Scratch Disease

    Science.gov (United States)

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry the infection ... symptoms of CSD, call your doctor. Centers for Disease Control and Prevention

  13. MicroRNA expression patterns in human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls.

    Science.gov (United States)

    Nelson, Peter T; Wang, Wang-Xia; Janse, Sarah A; Thompson, Katherine L

    2018-01-01

    MicroRNAs (miRNAs) have been implicated in neurodegenerative diseases including Parkinson's disease and Alzheimer's disease (AD). Here, we evaluated the expression of miRNAs in anterior cingulate (AC; Brodmann area [BA] 24) and primary motor (MO; BA 4) cortical tissue from aged human brains in the University of Kentucky AD Center autopsy cohort, with a focus on dementia with Lewy bodies (DLB). RNA was isolated from gray matter of brain samples with pathology-defined DLB, AD, AD + DLB, and low-pathology controls, with n = 52 cases initially included (n  = 23 with DLB), all with low (matter of MO, AC, primary somatosensory (BA 3), and dorsolateral prefrontal (BA 9) cortical regions. The miRNA expression patterns differed substantially according to anatomic location: of the relatively highly-expressed miRNAs, 150/481 (31%) showed expression that was different between AC versus MO (at p < .05 following correction for multiple comparisons), most (79%) with higher expression in MO. A subset of these results were confirmed in qPCR validation focusing on miR-7, miR-153, miR-133b, miR-137, and miR-34a. No significant variation in miRNA expression was detected in association with either neuropathology or sex after correction for multiple comparisons. A subset of miRNAs (some previously associated with α-synucleinopathy and/or directly targeting α-synuclein mRNA) were differentially expressed in AC and MO, which may help explain why these brain regions show differences in vulnerability to Lewy body pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Catalogue of Anatomical Fugitive Sheets: Cat. 1-10

    OpenAIRE

    1999-01-01

    Images Cat. 1 Cat. 2 (a) Cat. 2 (b) Cat. 2 (c) Cat. 2 (d) Cat. 2 (e) Cat. 2 (f) Cat. 3: 1 (a) Cat. 3: 1 (b) Cat. 3: 2 (a) Cat. 3: 2 (b) Cat. 4: 1 Cat. 4: 2 Cat. 6: 1 (a) Cat. 6: 1 (b) Cat. 6: 2 (a) Cat. 6: 2 (b) Cat. 7: 1 (a) Cat. 7: 1 (b) Cat. 7: 2 (a) Cat. 7: 2 (b) Cat. 8: 1 Cat. 9: 1 Cat. 9: 2 Cat. 10: 1 Cat. 10: 2

  15. Decoding hand gestures from primary somatosensory cortex using high-density ECoG

    NARCIS (Netherlands)

    Branco, Mariana P|info:eu-repo/dai/nl/413968731; Freudenburg, Zachary V.; Aarnoutse, Erik J.|info:eu-repo/dai/nl/340372362; Bleichner, Martin G.; Vansteensel, Mariska J.; Ramsey, Nick F.|info:eu-repo/dai/nl/07313774X

    2017-01-01

    Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex

  16. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  17. A Catalogue of Anatomical Fugitive Sheets: Cat. 11-25

    OpenAIRE

    1999-01-01

    Images Cat. 11 (a) Cat. 11 (b) Cat. 11 (c) Cat. 11 (d) Cat. 12: 1 (a) Cat. 12: 1 (b) Cat. 12: 2 (a) Cat. 12: 2 (b) Cat. 13 Cat. 14 (a) Cat. 14 (b) Cat. 14 (c) Cat. 15 (a) Cat. 15 (b) Cat. 17: 1 Cat. 17: 2 Cat. 18: 1 Cat. 18: 2 Cat. 19: 1 (a) Cat. 19: 1 (b) Cat. 19: 2 (a) Cat. 19: 2 (b) Cat. 20: 1 Cat. 20: 2 (a) Cat. 20: 2 (b) Cat. 21 (a) Cat. 21 (b) Cat. 21 (c) Cat. 21 (d) Cat. 21 (e) Cat. 22 Cat. 24: 1 and 2 Cat. 25: 1 Cat. 25: 2 Cat. 25: 3 Cat. 25: 4

  18. Two different motor systems are needed to generate human speech.

    Science.gov (United States)

    Holstege, Gert; Subramanian, Hari H

    2016-06-01

    Vocalizations such as mews and cries in cats or crying and laughter in humans are examples of expression of emotions. These vocalizations are generated by the emotional motor system, in which the mesencephalic periaqueductal gray (PAG) plays a central role, as demonstrated by the fact that lesions in the PAG lead to complete mutism in cats, monkeys, as well as in humans. The PAG receives strong projections from higher limbic regions and from the anterior cingulate, insula, and orbitofrontal cortical areas. In turn, the PAG has strong access to the caudal medullary nucleus retroambiguus (NRA). The NRA is the only cell group that has direct access to the motoneurons involved in vocalization, i.e., the motoneuronal cell groups innervating soft palate, pharynx, and larynx as well as diaphragm, intercostal, abdominal, and pelvic floor muscles. Together they determine the intraabdominal, intrathoracic, and subglottic pressure, control of which is necessary for generating vocalization. Only humans can speak, because, via the lateral component of the volitional or somatic motor system, they are able to modulate vocalization into words and sentences. For this modulation they use their motor cortex, which, via its corticobulbar fibers, has direct access to the motoneurons innervating the muscles of face, mouth, tongue, larynx, and pharynx. In conclusion, humans generate speech by activating two motor systems. They generate vocalization by activating the prefrontal-PAG-NRA-motoneuronal pathway, and, at the same time, they modulate this vocalization into words and sentences by activating the corticobulbar fibers to the face, mouth, tongue, larynx, and pharynx motoneurons. © 2015 Wiley Periodicals, Inc.

  19. Motor perception and anatomical realism in Classical Greek art.

    Science.gov (United States)

    Skoyles, J R

    1998-07-01

    The rise of anatomical realism in sculpture with the Classical Greeks puzzles art historians. Recently, it has been discovered that the motor cortex perceives motor actions. I argue that Classical artists discovered a new aesthetic based on using art to stimulate not just, as previously, the visual cortex, but also the motor one.

  20. Anti-streptococcus IgM antibodies induce repetitive stereotyped movements: cell activation and co-localization with Fcα/μ receptors in the striatum and motor cortex.

    Science.gov (United States)

    Zhang, Danhui; Patel, Ankur; Zhu, Youhua; Siegel, Allan; Zalcman, Steven S

    2012-05-01

    Group A beta-hemolytic streptococcus (GABHS) infections are implicated in neuropsychiatric disorders associated with an increased expression of repetitive stereotyped movements. Anti-streptococcus IgG presumably cross-reacts with elements on basal ganglia cells, modifies their function, and triggers symptoms. IgM may play a unique role in precipitating behavioral disturbances since variations in cortico-striatal activity occur in temporal congruity with peak IgM titers during an orchestrated immune response. We discovered in Balb/c mice that single subcutaneous injections of mouse monoclonal IgM antibodies to streptococcus group A bacteria induce marked dose-dependent increases in repetitive stereotyped movements, including head bobbing, sniffing, and intense grooming. Effects were antibody- and antigen-specific: anti-streptococcus IgG stimulated ambulatory activity and vertical activity but not these stereotypies, while anti-KLH IgM reduced activity. We suggest that anti-streptococcus IgM and IgG play unique roles in provoking GABHS-related behavioral disturbances. Paralleling its stereotypy-inducing effects, anti-streptococcus IgM stimulated Fos-like immunoreactivity in regions linked to cortico-striatal projections involved in motor control, including subregions of the caudate, nucleus accumbens, and motor cortex. This is the first evidence that anti-streptococcus IgM antibodies induce in vivo functional changes in these structures. Moreover, there was a striking similarity in the distributions of anti-streptococcus IgM deposits and Fos-like immunoreactivity in these regions. Of further importance, Fcα/μ receptors, which bind IgM, were present- and co-localized with anti-streptococcus IgM in these structures. We suggest that anti-streptococcus IgM-induced alterations of cell activity reflect local actions of IgM that involve Fcα/μ receptors. These findings support the use of anti-streptococcus monoclonal antibody administration in Balb/c mice to model GABHS

  1. Anti-Streptococcus IgM Antibodies Induce Repetitive Stereotyped Movements: Cell Activation and Co-Localization with Fcα/μ Receptors in the Striatum and Motor Cortex

    Science.gov (United States)

    Zhang, Danhui; Patel, Ankur; Zhu, Youhua; Siegel, Allan; Zalcman, Steven S.

    2012-01-01

    Group A beta-hemolytic streptococcus (GABHS) infections are implicated in neuropsychiatric disorders associated with an increased expression of repetitive stereotyped movements. Anti-streptococcus IgG presumably cross-reacts with elements on basal ganglia cells, modifies their function, and triggers symptoms. IgM may play a unique role in precipitating behavioral disturbances since variations in cortico-striatal activity occur in temporal congruity with peak IgM titers during an orchestrated immune response. We discovered in Balb/c mice that single subcutaneous injections of mouse monoclonal IgM antibodies to Streptococcus Group A bacteria induce marked dose-dependent increases in repetitive stereotyped movements, including head bobbing, sniffing, and intense grooming. Effects were antibody- and antigen-specific: anti-streptococcus IgG stimulated ambulatory activity and vertical activity but not these stereotypies, while anti-KLH IgM reduced activity. We suggest that anti-streptococcus IgM and IgG play unique roles in provoking GABHS-related behavioral disturbances. Paralleling its stereotypy-inducing effects, anti-streptococcus IgM stimulated Fos-like immunoreactivity in regions linked to cortico-striatal projections involved in motor control, including subregions of the caudate, nucleus accumbens, and motor cortex. This is the first evidence that anti-streptococcus IgM antibodies induce in vivo functional changes in these structures. Moreover, there was a striking similarity in the distributions of anti-streptococcus IgM deposits and Fos-like immunoreactivity in these regions. Of further importance, Fcα/μ receptors, which bind IgM, were present- and co-localized with anti-streptococcus IgM in these structures. We suggest that anti-streptococcus IgM-induced alterations of cell activity reflect local actions of IgM that involve Fcα/μ receptors. These findings support the use of anti-streptococcus monoclonal antibody administration in Balb/c mice to model GABHS

  2. A tortoiseshell male cat