WorldWideScience

Sample records for casting impact properties

  1. Enhancements in Magnesium Die Casting Impact Properties

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5

  2. Effect of RE Modification and Heat Treatment on Impact Fatigue Property of a Wear Resistant White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 王继东

    2004-01-01

    The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.

  3. Effects of nonstandard heat treatment temperatures on tensile and Charpy impact properties of carbon-steel casting repair welds

    International Nuclear Information System (INIS)

    This report discusses carbon steel castings which are used for a number of different components in nuclear power plants, including valve bodies and bonnets. Components are often repaired by welding processes, and both welded components and the repair welds are subjected to a variety of postweld heat treatments (PWHT) with temperatures as high as 899 degrees C (1650 degrees F), well above the normal 593 to 677 degrees C (1100 to 1250 degrees F) temperature range. The temperatures noted are above the A1 transformation temperature for the materials used for these components. A test program was conducted to investigate the potential effects of such ''nonstandard'' PWHTs on mechanical properties of carbon steel casting welds. Four weldments were fabricated, two each with the shielded-metal-arc (SMA) and flux-cored-arc (FCA) processes,with a high-carbon and low-carbon filler metal in each case. All four welds were sectioned and given simulated PWHTs at temperatures from 621 to 899 degrees C (1150 to 1650 degrees F) in increments of 56 degrees C (100 degrees F) and for times of 5, 10, 20, and 40 h at each temperature. Hardness, tensile, and Charpy V-notch (CVN) impact tests were conducted for the as-welded and heat-treated conditions

  4. Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys

    Science.gov (United States)

    Ma, Zheyuan

    Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM

  5. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  6. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  7. Fatigue Properties of Cast Magnesium Wheels

    Science.gov (United States)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-05-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  8. Effect of annealing on mechanical properties of ledeburitic cast steel

    Directory of Open Access Journals (Sweden)

    E. Rożniata

    2007-01-01

    Full Text Available Purpose: The paper presents evaluation of influence of grain normalization (refinement as a result of repeatedaustenitizing, and the inclination to precipitate the hypereutectoid cementite in Widmannstätten structure inG200CrMoNi4-6-3 cast steel. Four temperatures of heat refining have been applied.Design/methodology/approach: Basic research of G200CrMoNi4-6-3 cast steel included metallographicanalysis, and hardness and impact strength tests. The heat treatment has been planned on the basis of CCTdiagram prepared for that alloy cast steel.Findings: The test material has been G200CrMoNi4-6-3 hypereutectoid cast steel. The evaluation has beencarried out for four annealing temperatures, i.e. 850°C, 900°C, 950°C and 1050°C. At all annealing temperaturesin the structure of cast steel the precipitation of hypereutectoid cementite along grain boundaries of formeraustenite took place. At the temperature of 850°C one may observe the coagulated hypereutectoid cementiteprecipitates inside of primary grains of austenite. Whereas beginning from the temperature of 900°C thecementite in G200CrMoNi4-6-3 cast steel forms distinct „subgrains” inside of primary grains of austenite.Research limitations/implications: Research financed by the Ministry of Scientific Research and InformationTechnology, grant No. 3 T08B 057 29.Practical implications: G200CrMoNi4-6-3 cast steel of ledeburite class is used mainly for rolls production.Any data related to the structure and mechanical properties of that cast steel are precious for the manufacturersand users of the mill rolls.Originality/value: The new heat treatment of G200CrMoNi4-6-3 cast steel

  9. Relationship between tensile and impact properties in Al–Si–Cu–Mg cast alloys and their fracture mechanisms

    International Nuclear Information System (INIS)

    An extensive study related to the investigation of the precipitation behavior of the CuAl2 phase in various 319-type alloys containing strontium (Sr), iron (Fe) and phosphorus (P) alloying elements, and its dissolution during solution heat treatment at 490 °C for times up to 100 h was carried out in the present work. Furthermore, the effect of CuAl2 and other intermetallics on the alloy performance under two different heat treatment conditions (i.e. T5 and T6) was also investigated through an examination of the tensile and impact properties. By comparing the experimental results, conclusions were drawn in terms of the optimum alloying elements, solidification parameters and heat treatment conditions (viz., Sr modification, Fe content, cooling rate and T6 condition). The fracture behaviors of the 319 base alloy and the Sr-modified 319 alloy containing ∼1.2% Fe were also compared through a study of the fracture surfaces of the corresponding alloy samples. The results explicitly reveal that solution heat treatment plays a critical role in the dissolution of the CuAl2 phase. Iron addition leads to an increased precipitation of brittle β-Al5FeSi platelets which act as preferred crack sites and dramatically reduce the impact properties, regardless of the value of dendrite arm spacing. Crack initiation usually occurs through the fragmentation of Si particles and β-Al5FeSi platelets, and the crack propagates through the cleavage of β-Al5FeSi platelets. - Highlights: • The addition of Sr leads to the segregation of the copper phase • The addition of Fe results in the dispersion of the CuAl2 • The CuAl2 phase particles are more or less completely dissolved in the Al matrix after 100 h of solution heat treatment • After T6 heat treatment most of the CuAl2 phase particles are dissolved into the aluminum matrix

  10. Mechanical properties of magnesium casting alloys

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-10-01

    Full Text Available Purpose: In the following paper there have been the properties of the MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 magnesium cast alloy as-cast state and after a heat treatment presented.Design/methodology/approach: A casting cycle of alloys has been carried out in an induction crucible furnace using a protective salt bath Flux 12 equipped with two ceramic filters at the melting temperature of 750±10ºC, suitable for the manufactured material. The following results concern sliding friction, mechanical properties, scanning microscopy.Findings: The different heat treatment kinds employed contributed to the improvement of mechanical properties of the alloy with the slight reduction of its plastic properties.Research limitations/implications: According to the alloys characteristic, the applied cooling rate and alloy additions seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates and parameters of solution treatment process and aging process.Practical implications: The concrete examples of the employment of castings from magnesium alloys in the automotive industry are elements of the suspension of the front and rear axes of cars, propeller shaft tunnel, pedals, dashboards, elements of seats, steering wheels, elements of timer-distributors, air filters, wheel bands, oil sumps, elements and housings of the gearbox, framing of doors and sunroofs, and others, etc.Originality/value: Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The above mentioned requirements and expectations regarding the contemporary materials are met by the non-ferrous metals alloys used nowadays, including the magnesium alloys.

  11. Effect of melt treatment on microstructure and impact properties of Al–7Si and Al–7Si–2.5Cu cast alloys

    Indian Academy of Sciences (India)

    K G Basavakumar; P G Mukunda; M Chakraborty

    2007-10-01

    The microstructures and impact toughness of Al–7Si and Al–7Si–2.5Cu cast alloys were studied after various melt treatments like grain refinement and modification. The results indicate that combined grain refined and modified Al–7Si–2.5Cu alloys have microstructures consisting of uniformly distributed -Al grains, interdendritic network of fine eutectic silicon and fine CuAl2 particles in the interdendritic region. These alloys exhibited improved impact toughness in as cast condition when compared to those treated by individual addition of grain refiner or modifier. The improved impact toughness of Al–7Si–2.5Cu alloys are related to breakage of the large aluminum grains and uniform distribution of eutectic silicon and fine CuAl2 particles in the interdendritic region resulting from combined refinement and modification. This paper attempts to investigate the influence of microstructural changes in the Al–7Si and Al–7Si–2.5Cu cast alloys by grain refinement, modification and combined action of both on the impact toughness.

  12. Impact of annealing on the structural and optical properties of methylene green nanostructure films prepared by drop casting

    Science.gov (United States)

    El-Menyawy, E. M.; Darwish, A. A. A.; Zedan, I. T.

    2016-05-01

    The methylene green (MG) powder was found to be polycrystalline with the triclinic system. MG films were deposited by drop coating technique. X-ray diffraction and scanning electron microscopy showed that the MG films have nanostructure nature. It is found that the crystal size is increased by annealing. Optical properties of nanostructured MG films were performed in the spectral range from 200 to 2500 nm to determine the optical constants (n and k). The absorption coefficient of the as-deposited film revealed a two indirect allowed optical band gap with values of 1.90 and 3.11 eV, which increased by annealing to 2 and 3.48 eV, respectively. The dispersion of n was discussed in terms of the single oscillator model. The high frequency dielectric constant and the lattice dielectric constant were estimated and found to decreased by annealing.

  13. Effect of thermal aging on mechanical properties of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for predicting mechanical properties of cast stainless steels in service at temperatures <450 degrees C from known material information. The ''saturation'' fracture properties of a cast stainless steel, i.e., the minimum values that would be achieved for the material after long-term service, are estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. The correlations successfully predict fracture toughness, Charpy-impact, and tensile properties of cast stainless steels from the Shippingport-, Ringhals-, and Gundremmingen-reactor components

  14. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    OpenAIRE

    Guzik, E.; S. Dzik

    2009-01-01

    The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain d...

  15. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    Science.gov (United States)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  16. Physical and mechanical properties of cast 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined. The tensile and compressive properties of cast 17-4 PH are only influenced to a slight degree by changing test temperature and strain rate. However, both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperature - this transition being related to a change in fracture mode from ductile, dimple to cleavage-like. Finally, although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 PH, its fracture toughness was at least comparable to that of wrought 17-4 PH. This observation suggests that prior correlations between Charpy impact energies and fracture toughness, as derived from wrought materials, must be approached with caution when applied to cast alloys

  17. The effect of thermohydrogen treatment on the structure and properties of casts obtained from titanium alloys

    International Nuclear Information System (INIS)

    The method based on the combination of high temperature gas-static and thermal hydrogen treatments is suggested to increase mechanical properties of cast pseudo-α and (α+β)-titanium alloys. The study is carried out using alloys VT20L, VT23L and alloy Ti-6%Al-2%Mo-4%Zr-2%Sn. It is shown that the method proposed provides the change in a cast structure, an increase in density of castings, an increase of strength properties by 10-20% and fatigue by a factor of 1.5-2 at satisfactory ductility and impact strength

  18. Aging degradation of cast stainless steels: Effects on mechanical properties

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures ≥4000C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel

  19. Effect of Ablation Casting on Microstructure and Casting Properties of A356 Aluminium Casting Alloy

    Institute of Scientific and Technical Information of China (English)

    V.Bohlooli; M.Shabani Mahalli; S.M.A.Boutorabi

    2013-01-01

    Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality.In this study,the effects of processing variables on the porosity content,microstructure and feedability of A356 casting alloy were investigated.Secondary dendrite arm spacing (SDAS) and eutectic silicon morphologies were studied to evaluate the influence of Ablation Casting on the microstructure.Casting density was measured in order to identify porosity content and feedability of ablated and non-ablated specimens.In addition,solidification behavior of the samples was investigated by using thermal analysis technique.The cooling curves and the first derivative curves were plotted and compared with each other.Results showed the ablation process could increase solidification rate significantly.In addition,the microstructural evidences revealed that Ablation Casting process results in more fine and homogeneous structure compared to the nonablated casting.The feedability improved,SDAS reduced to 35% and porosity content decreased to 3.84 vol.% by implementing this process.It concluded the Ablation Casting is an effective process to gain higher quality in aluminum foundry.

  20. Evaluation of the mechanical properties of Niobium modified cast AISI H 13 hot work tool steel

    International Nuclear Information System (INIS)

    In this research, the effects of partially replacing of vanadium and molybdenum with niobium on the mechanical properties of AISIH 13 hot-work tool steel have been studied. Cast samples made of the modified new steel were homogenized and austenitized at different conditions, followed by tempering at the specified temperature ranges. Hardness, red hardness, three point bending test and Charpy impact test were carried out to evaluate the mechanical properties together with characterizing the microstructure of the modified steel using scanning electron microscope. The results show that niobium addition modifies the cast structure of Nb-alloyed steel, and increases its maximum hardness. It was found that bending strength; bending strain, impact strength, and red hardness of the modified cast steel are also higher than those of the cast H13 steel, and lower than those of the wrought H13 steel.

  1. Tensile-property characterization of thermally aged cast stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  2. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  3. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  4. Simulation of mechanical properties of forged and casted steel 42CrMo4 specimen

    Directory of Open Access Journals (Sweden)

    B. Smoljan

    2010-12-01

    Full Text Available Purpose: In this paper, the prediction of working stress of quenched and tempered shaft has been done. Prediction was done for two different manufacture processes. In the first manufacture process the shaft was made of steel and in second one the shaft was made of cast steel. The working stress was characterized by yield strength and impact toughness. The method of computer simulation of working stress was applied in workpiece of complex form.Design/methodology/approach: Hardness distribution of quenched and tempered workpiece of complex form was predicted by computer simulation of quenching using a finite volume method. Hardness of quenched and tempered steel can be expressed as function of maximal hardness of actual steel, hardness of steel with 50% of martensite in microstructure, according to the time and temperature of tempering. The algorithm of estimation of yield strength and impact energy was based on hardness, HV. Starting point in studying of the mechanical properties of steel castings can be the fact that the mechanical properties of steel castings are derived from the mechanical properties of ordinary steel metal matrix reduced by the influence of the typical as-cast structure, i.e. casting defects on those properties. Hardness and yield strength will be unaffected by most defects. The only effect will be that due to the reduction in area. Coarse as-cast microstructure of cast steel lowers ductility and toughness. Impact energy of quenched and tempered cast steel was predicted based on pouring temperature, temperature of mould during the pouring and fact that steel castings are not subjected to different metallurgical and mechanical processes of microstructure improvement in so far as wrought steels.Findings: It can be concluded that working stress of quenched and tempered shaft can be successfully predicted by proposed method.Practical implications: Estimation of hardness distribution can be based on time, relevant for structure

  5. Optical storage properties in cast films of an azopolymer

    Directory of Open Access Journals (Sweden)

    Neves Ubaldo Martins das

    2003-01-01

    Full Text Available In this paper we discuss the properties of optically induced birefringence in DR19-MDI cast films that may be used in optical storage applications. The selection of DR19-MDI cast films was based on a comparative study of optical storage properties of Langmuir-Blodgett (LB films from various azopolymers. DR19-MDI possesses a high residual fraction of optical birefringence and good environmental stability, which was corroborated by the data from optical storage experiments. DR19-MDI cast films maintain a reasonable level of birefringence after the initial decay due to chromophore relaxation, thus making them promising candidates for optical storage devices.

  6. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-01-01

    Full Text Available The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain density has been reported to increase, while ferrite content was decreasing with decreasing casting diameter. The density number of the grains Nv has been related (by regression analysis to the undercooling degree

  7. Effect of aging on mechanical properties of austenitic stainless steel castings and welds

    International Nuclear Information System (INIS)

    Study of the influence of long time aging on the properties of the cast austenitic steel and associated welds or cladding in the components of the primary loop of nuclear plants: embrittlement by precipitation of α'(chromium rich) in ferrite islands (mostly for castings); precipitation hardens the ferrite wich breaks by cleavage. The impact energy and Isub(IC) value are lowered by this phenomenon. Low cycle fatigue properties and fatigue crack growth rates are not modified by aging. Study of correlation between KCU impact toughness at the end of the life of a component, chemical composition and ferrite content

  8. The microstructure and its impact on the high-temperature properties of the heat-resistant cast steel G-X 40 NiCr 35 25

    International Nuclear Information System (INIS)

    The report explains the influence of the elements Mo, W, Nb and Ti on the microstructure and thus on the high-temperature properties of the heat-resistant cast steel G-X 40 NiCr 35 25. The creep-rupture tests carried out at temperatures between 900deg C and 1100deg C for 2000 hours suggest that the interdendritic carbide skeleton as a non-creeping fiber reinforcement has a strong effect on the minimum creep rate. Especially the elements Nb and Ti have been found to reduce the minimum creep rate. Oxidation experiments have shown that the alloys with the lowest concentrations of the four elements varied in the alloying composition exhibit the least mass increases within the duration of the experiments. But enhanced concentrations of the dissolved elements Nb and Ti in the matrix have been found to reduce the solubility of the matrix with regard to carbon, and thus protect the material from carburization. (orig.) With 66 figs., 16 tabs

  9. Study on the microstructure and mechanical properties of medium carbon Cr-Si-Mn-Mo-V steel for cast inserted dies

    OpenAIRE

    Hao, Xiao-Yan; LI Guo-lu; LIU Jin-hai

    2005-01-01

    The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite,bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the har...

  10. The impact of breaks during foundry work of the pressure casting machine on casting quality

    Directory of Open Access Journals (Sweden)

    S. Borkowski

    2010-10-01

    Full Text Available The result in the appearance of the technical object damage are its failures, which are considered as the most important causes of productivity loss in the technical objects. The article introduces main types of losses resulting from the downtimes of a casting machine. The time impact analysis of the font mould failure and the remaining time of the machine's failures on the castings quality was conducted. The failure time structure of the font mould and other failures of the machine was presented.

  11. TESTING OF ALUMINUM-SILICON ALLOYS MECHANICAL PROPERTIES ON SEPARATELY CASTED SPECIMENS

    OpenAIRE

    Krushenko, G.

    2010-01-01

    The mechanical properties of aluminum alloys before casting into moulds were determined on separately casted control specimens casted in horizontal or vertical forms. A comparison of the mechanical properties (tensile strength t, elongation 8, hardness HB) of 12-mm-diameter individually casted of AK7ch alloy control specimens and its density in the solid state (p) showed that it is necessary to use specimens casted in a horizontal mold for evaluation of castings quality. It was estimated that...

  12. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  13. Sophorolipid-induced dimpling and increased porosity in solvent-cast short-chain polyhydroxyalkanoate films: impact on thermo-mechanical properties

    Science.gov (United States)

    Sophorolipids (SL; microbial glycolipids) were used as additives in solvent-cast short-chain polyhydroxyalkanoate (sc-PHA) films to enhance surface roughness and porosity. Poly-3-hydroxybutyrate (PHB), poly-(6%)-3-hydroxybutyrate-co-(94%)-3-hydroxyvalerate (PHB/V), and poly-(90%)-3-hydroxybutyrate-c...

  14. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  15. Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, John, A.; Bates, Charles, E.

    2005-09-19

    The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designers with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.

  16. Evaluation of tensile properties of cast stainless steel using ball

    International Nuclear Information System (INIS)

    In this study the ball indentation tests were performed on the four unaged cast stainless steel and 316 stainless steel, which have different microstructure and strength, to examine the applicability of ball indentation test to the evaluation of thermal aging of cast stainless steel. Also, the reliability of test results were analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and tensile test. The results showed that the maximum standard deviation to mean value are less than 6%, and the average standard deviation to mean value are about 1.5∼2.5%, when 2 point data that show out of trend were discarded from the data set tested a single specimen. Also, the scattering increased slightly with decreasing δ-ferrite content. Additionally, the ball indentation test predicted the tensile properties of cast stainless steel within an error of ±10% for all materials

  17. Basic properties of 3D cast skeleton structures

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2011-12-01

    Full Text Available Purpose: of this paper is to present recent achievements in field of skeleton structures. The aim of this work is to show results of searching for mechanically and technologically advantageous micro- and macrostructures. Methods of microstructure controlling were described. Most important parameters of the manufacturing process were identified.Design/methodology/approach: The influence of internal topology to stress distribution was described with the use of computer simulations. Simulations of the mold filling processes were also carried out. Real experiments were performed to prove the simulation results. The Qualitative and quantitative metallographic analysis were also carried out.Findings: It was found that the octahedron shape of internal cell causes best stress distribution and that the skeleton castings are a good alternative for cellular materials such as metal foams, lattice structures and sandwich panels. Their structured arranged topology allows precise design of properties.Research limitations/implications: Casting methods used to manufacture materials such as described skeleton castings confirmed their usefulness. Not well known and used yet rheological properties of liquid metals allow obtaining shape complicated structures near to metallic foams but structured arranged.Practical implications: Technological parameters of the skeleton castings manufacturing process were developed. Without use of advanced techniques there is a possibility to manufacture cheap skeleton structures in a typical foundry. With use of advanced technology like 3D printing there are almost unlimited possibilities of the skeleton castings internal topologies.Originality/value: Three dimensional cast skeleton structures with internal topology of octahedron confirmed their usefulness as elements used for energy dissipation. Obtaining the homogenous microstructure in the whole volume of complicated shape castings can be achieved.

  18. Wide – Ranging Influence of Mischmetal on Properties of GP240GH Cast Steel

    Directory of Open Access Journals (Sweden)

    J. Kasińska

    2012-12-01

    Full Text Available This paper presents influence of rare earth metals (REM on the properties of GP240GH cast carbon steel. The research has beenperformed on successive industrial melts. Each time ca 2000 kg of liquid metal was modified. The rare earth metals were put into the ladle during tapping of heat melt from the furnace. Because of this the amount of sulphur in the cast steel was decreased and the non-metallic inclusion morphology was significantly changed. It was found that non metallic inclusions the cracking mechanism of Charpy specimens and the impact strength were all changed. The following properties were tested: mechanical properties (y, UTS, plastic properties (necking, elongation and impact strength (SCI. In the three-point bend test the KJC stress intensity factor was evaluated.

  19. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  20. Microstructure and Mechanical Properties of Hyper-eutectic Al-Si Alloys Fabricated by Spray Casting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microstructure and mechanical properties of hyper-eutectic Al-Si alloy fabricated by spray casting were investigated and then these results were compared with those by squeeze cast. The spray-cast specimen was found to have finer Si particles (~5μm) compared to the squeeze-cast specimen (10-25μm). The tensile strength and elongation of the spray-cast specimen are also higher than those of the squeeze cast one. It was considered that the increased mechanical properties of the spray-cast specimen were mainly due to finer size of the Si particles distributed in Al matrix.

  1. Microstructure and Property of Hypereutectic High Chromium Cast Iron Prepared by Slope Cooling Body-Centrifugal Casting Method

    Institute of Scientific and Technical Information of China (English)

    Zhifu HUANG; Jiandong XING; Anfeng ZHANG

    2006-01-01

    In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138%more than that of the hypereutectic high Cr one prepared by conventional casting method.

  2. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for predicting Charpy- impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of aged cast stainless steels from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The JIC values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ''lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature

  3. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of aged cast stainless steels from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The JIC values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common predicted lower-bound J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature

  4. Thermal aging of cast stainless steels in LWR systems: Estimation of mechanical properties

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of aged cast stainless steels from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The JIC values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ''lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature

  5. Mechanical properties and wear resistance of magnesium casting alloys

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-11-01

    Full Text Available Purpose: In the following paper there have been the properties of the MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1magnesium cast alloy as-cast state and after a heat treatment presented.Design/methodology/approach: A casting cycle of alloys has been carried out in an induction crucible furnace using a protective salt bath Flux 12 equipped with two ceramic filters at the melting temperature of 750±10ºC, suitable for the manufactured material. The following results concern abrasive wear, mechanical properties, light and scanning microscopy.Findings: The different heat treatment kinds employed contributed to the improvement of mechanical properties of the alloy with the slight reduction of its plastic properties.Research limitations/implications: According to the alloys characteristic, the applied cooling rate and alloy additions seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates and parameters of solution treatment process and aging process.Practical implications: The concrete examples of the employment of castings from magnesium alloys in the automotive industry are elements of the pedals, dashboards, elements of seats, steering wheels, wheel bands, oil sumps, elements and housings of the gearbox, framing of doors and sunroofs, and others, etc.Originality/value: Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The above mentioned requirements and expectations regarding the contemporary materials are met by the non-ferrous metals alloys used nowadays, including the magnesium alloys.

  6. Transport Properties and Transport Phenomena in Casting Nickel Superalloys

    Science.gov (United States)

    Felicelli, S. D.; Sung, P. K.; Poirier, D. R.; Heinrich, J. C.

    1998-11-01

    Nickel superalloys that are used in the high-temperature regions of gas-turbine engines are cast by directional solidification (DS). In the DS processes, the castings are cooled from below, and three zones exist during solidification: (1) an all-solid zone at the bottom, (2) a "mushy zone" that is comprised of solid and liquid material, and (3) an overlying all-liquid zone. Computer simulations can be useful in predicting the complex transport phenomena that occur during solidification, but realistic simulations require accurate values of the transport properties. In addition to transport properties, the thermodynamic equilibria between the solid and liquid during solidification must also be known with reasonable accuracy. The importance of using reasonably accurate estimations of the transport properties is illustrated by two-dimensional simulations of the convection during solidification and the coincidental macrosegregation in the DS castings of multicomponent Ni-base alloys. In these simulations, we examine the sensitivity of the calculated results to measured partition ratios, thermal expansion coefficients, and viscosities that are estimated by regression analyses and correlations of existing property data.

  7. Properties of thermally embrittled cast duplex stainless steel

    International Nuclear Information System (INIS)

    The authors describe cast duplex stainless steel, grade CF-3, used in nuclear pump applications, thermally aged at 4000C to induce an embrittling phase transformation, thereby simulating long term exposures at 2800C (5360F). The mechanical properties of as-cast material and the thermally aged materials were subsequently investigated. Fracture roughness, Charpy V-Notch (CVN), tensile, precracked CVN, nil-ductility transition temperature, and hardness tests were performed on these materials. Tests were run as a function of temperature and loading rate. The as-cast structure of this duplex stainless steel is extremely tough, but thermal aging causes a decrease in upper shelf fracture toughness parameters and absorbed Charpy energy, and a marked increase in transition temperature. However, even the most severely aged material (14406 hr/4000C) appears to possess excellent upper shelf values, although the transition temperature shift is to a relatively high temperature. A conclusion is that cast duplex stainless steel is sufficiently tough, even in the aged condition, to resist crack initiation and propagation under expected nuclear pump service conditions

  8. Prediction of quenched and tempered steel and cast steel properties

    OpenAIRE

    B. Smoljan; D. Iljkić; H. Novak

    2011-01-01

    Purpose: The influence of processing parameters, such as pouring temperature and cooling rate during the casting, as well as application of hot working and pre-heat treatment, on strength and toughness of quenched and tempered steel was investigated.Design/methodology/approach: Strength and toughness were presented by yield strength and Charpy-V notch toughness, respectively. Experimental procedure of material properties optimization was done using the 25-2 factor experiment.Findings: It was ...

  9. Skeleton castings dynamic load resistance

    OpenAIRE

    M. Cholewa; J. Szajnar; T. Szuter

    2013-01-01

    Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of interna...

  10. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper; Svensson, Ingvar L; Seifeddine, Salem

    2009-01-01

    .e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it complex to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... in an aluminium alloy is considered including simulation of the entire casting process with emphasis on microstructure formation related to mechanical properties such as elastic modulus, yield stress, ultimate strength and elongation as well as residual stresses. Subsequently, the casting is...

  11. Investigation on Structure and Properties of Brass Casting

    Institute of Scientific and Technical Information of China (English)

    M.M.Haque; A.A.Khan

    2008-01-01

    In this work, alpha (α) brass was poured in green sand mould and metallic chill mould at about 1050℃. Sand casting method and metallic chill casting method are representing the slow and fast cooling rates of the castings, respectively. The slow cooling rate in the sand mould produces larger grains, while the metallic chill mould produces smaller grains in the castings. As the grain size decreases, the strength of the cast brass increases; micro-porosity in the casting decreases and the tendency for the casting to fracture during solidification decreases. Thus, the faster cooling rate casting offers higher strength, density and hardness compared to the slow cooling rate casting.

  12. Correlation Between Surface Roughness and Rheological Properties of Liquid Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2012-12-01

    Full Text Available The investigation of filling process of ductile cast iron flow in sand mould was showed the correlation between casting roughness surface and rheological properties of metal. Evidently of castings surface roughness was state of distance, from a few to a dozen diameters of vertical channel inlet. The method of rod fluidity test permit to study of rheological properties of metal and the roughness surface of castings.

  13. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhifu; Xing, Jiandong; Gao, Yimin; Zhi, Xiaohui [Xi' an Jiaotong Univ., Xi' an (China). State Key Lab. for Mechanical Behavior of Materials

    2012-05-15

    The effect of titanium on the as-cast microstructure of a hypereutectic high-chromium cast iron was investigated by means of optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicate that the primary M{sub 7}C{sub 3} carbides are refined and spheroidized with the addition of a suitable amount of titanium. TiC is found in the primary carbide by energy dispersive spectroscopy analysis. The mechanism of titanium modification on the microstructure of the alloy is also discussed. In addition, the impact test result indicates that, compared with the hypereutectic high-chromium cast iron without titanium addition, the impact toughness value of hypereutectic high-chromium cast iron with titanium additions is improved and approximately reaches 6.4 J . cm{sup -2}. (orig.)

  14. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    International Nuclear Information System (INIS)

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was ∼13 y at ∼281 C (538 F) for the hot-leg components and ∼264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of ∼ 15 y and the KRB reactor pump cover plate (CF-8) after ∼ 8 y of service

  15. Effect of quenching temperature on structure and properties of centrifugal casting high speed steel roll

    Directory of Open Access Journals (Sweden)

    Fu Hanguang

    2009-02-01

    Full Text Available The critical points and time-temperature-transformation (TTT curves of the isothermal transformation diagrams for a high-speed steel casting on a horizontal centrifugal casting machine had been determined experimentally in the study. The effects of quenching temperature on the microstructures and properties of centrifugal casting high speed steel (HSS roll has been investigated using scanning electron microscopy (SEM, light optical microscopy (LOM and X-ray diffraction (XRD as well as using tensile, impact, and hardness tests. The results show that the HSS roll has excellent hardenability and its matrix structure can be transformed into the martensite after being quenched in the sodium silicate solution. The retained austenite in the quenching structure increases and the hardness decreases when the quenching temperature exceeds 1,040℃. The tensile strength and impact toughness of HSS roll increase once the quenching temperature is raised from 980℃ to 1,040℃. However, the tensile strength and impact toughness have no signifi cant change when the quenching temperature exceeds 1,040℃. The HSS roll quenched at 1,040℃ exhibits excellent comprehensive mechanical properties.

  16. A Study of the Microstructure and Mechanical Properties of Continuously Cast Iron Products

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The horizontal continuous casting has a lot of advantages in comparison with traditional casting methods. But it has a few disadvantages and unsolved problems. The objective of this research was the experimental investigation of the effect of chemical composition of cast iron and the casting conditions on the microstructure and properties of continuously cast ingots. As a result, tensile strength, Brinell hardness, and pearlite content increased with increasing Cr, Cu, and Sb additions and decreasing carbon equivalent. As for microstructure of graphite, higher silicon to carbon ratio and lower solidification rate decreased a zone of interdendritic graphite. Nomograph of continuously cast iron structure was made.

  17. Prediction of quenched and tempered steel and cast steel properties

    Directory of Open Access Journals (Sweden)

    B. Smoljan

    2011-12-01

    Full Text Available Purpose: The influence of processing parameters, such as pouring temperature and cooling rate during the casting, as well as application of hot working and pre-heat treatment, on strength and toughness of quenched and tempered steel was investigated.Design/methodology/approach: Strength and toughness were presented by yield strength and Charpy-V notch toughness, respectively. Experimental procedure of material properties optimization was done using the 25-2 factor experiment.Findings: It was found out that yield strength is insensitive on differences between applied manufacturing processes, but by application of hot working and with appropriate pouring temperature the Charpy-V notch toughness is increased. Also, Charpy-V notch toughness is increased by interactive effect of the appropriate cooling rate during the casting and application of hot working.Research limitations/implications: The research was focused mainly on Charpy-V notch toughness of carbon and low alloyed heat treatable steels.Practical implications: The established algorithms can be used for prediction of tensile strength, yield strength and Charpy-V notch toughness in heat treating practice.Originality/value: Original relation for prediction of quenched and tempered steel and cast steel Charpy-V notch toughness are developed.

  18. Influence of dust addition from cast iron production on bentonite sand mixture properties

    Directory of Open Access Journals (Sweden)

    P. Gengeľ

    2010-04-01

    Full Text Available In cast iron foundry operations like melting, casting, feetling, casts cleaning and grinding of a high amount of dusts are produced. Threekinds of dusts from different parts of cast iron foundry were analysed; chemical analyses, granulometric analyses and microscopic analyseswere carried out. The bentonite sand mixtures with different portion of dusts were prepared. Technological properties of prepared sandmixtures (compression strength, shearing strength and permeability were measured.

  19. Surface modification, microstructure and mechanical properties of investment cast superalloy

    Directory of Open Access Journals (Sweden)

    M. Zielińska

    2009-07-01

    Full Text Available Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4 modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three different companies: Remet, Mason Color and Permedia Lublin. There were determined the grain size distribution of cobalt aluminate powder, the average diameter of the powder particles, phase composition, cobalt contamination. In the next step, the ceramic moulds were made with different kind of cobalt aluminate (Mason Color, Remet, Permedia Lublin and its concentration (0.5% in the primary slurry. The samples of stepped and cylindrical shape were poured in the ceramic moulds prepared earlier. The average grain size of the γ phase, was determined on the stepped samples. The microstructure investigations let to examine the influence of the surface modification on the morphology of γ ‘ - phase and carbides precipitations. Samples were turned from cylindrical castings for mechanical properties investigations: creep tests.Findings: Modification of the face coat of ceramic mould results in the reduction of the grains size of γ matrix and disintegration of carbide precipitates. It results in the improvement of mechanical properties of the alloy. On the grounds of the obtained results, it was found that the type of used modifier influenced the grain size of the alloy and its mechanical properties.Research limitations/implications: The established physical and chemical properties of modifier let to get better control of grain size of the castings and their quality what will result in decrease of defective products.Originality/value: It was proved that the

  20. Study on the microstructure and mechanical properties of medium carbon Cr-Si-Mn-Mo-V steel for cast inserted dies

    Directory of Open Access Journals (Sweden)

    HAO Xiao-yan

    2005-11-01

    Full Text Available The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite,bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the hardness after annealing and quenching are HRC 19 and HRC 60-62. In addition, the cast inserted dies have good hardenability. The depth of the hardening zone and the hardness after flame quenching satisfy the operating requirements. The cast inserted dies could completely replace the forged inserted dies for making the dies of automobile covering components.

  1. Life cycle assessment as a method of limitation of a negative environment impact of castings

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-07-01

    Full Text Available Casting production constitutes environmental problems going far beyond the foundry plant area. Applying a notion of the life cycle the input (suppliers side and output factors (clients side can be identified. The foundry plant activities for the environment hazard mitigation can be situated on various stages of the casting life cycle. The environment impact of motorisation castings made of different materials – during the whole life cycle of castings – are discussed in the paper. It starts from the charge material production, then follows via the casting process, car assembly, car exploitation and ends at the car breaking up for scrap.

  2. Derivative-gradient thermal analysis in casting properties forecasting

    Directory of Open Access Journals (Sweden)

    M. Dziuba

    2007-01-01

    Full Text Available Purpose: The aim of this work was to show possibilities and conception of more accurate structure andmechanical properties forecasting with use of modified derivative – gradient thermal method.Design/methodology/approach: The main restriction in standard thermal and derivative analysis is one pointmeasurement of temperature in casting with assumed geometry. In this work a modified method is describedin which restrictions present in TDA method are overcame and more accurate diagnostic of the liquid materialcan be conducted.Findings: Structural relations have been shown for local conditions of solidification defined by two derivativesdT/dt and dT/dl. Presented method incorporates up-to-date knowledge about structure influence on operatingproperties of metallic materials.Research limitations/implications: Proposed methodology can be used for cast metal matrix composite and alloysproperties diagnosis and forecasting. However accurate forecasting requires more detailed mathematical description.Originality/value: Proposed conception enables possibility of structure and operating properties forecastingbasing upon one physical measurement – temperature measurement.

  3. Impact Toughness and Heat Treatment for Cast Aluminum

    Science.gov (United States)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  4. Artificial intelligence-based control system for the analysis of metal casting properties

    Directory of Open Access Journals (Sweden)

    E. Mares

    2010-06-01

    Full Text Available Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (Case-Based Reasoning into Thermal Analysis Data Acquisition Software (NI LabView was developed to analyze casting component properties. The thermal data was tested in terms of accuracy, reliability and timeliness in order to secure metal casting process effectiveness.Findings: Quantitative values were defined as “Low”, “Medium” and “High” to assess the level of improvement in the metal casting analysis by means of the Artificial Intelligence-Based Control System (AIBCS. The traditional process was used as a reference to measure such improvement. As a result, the accuracy, reliability and timeliness were significantly increased to the “High” level.Research limitations/implications: Presently, the AIBCS predicts a limited number of casting properties. Due to its flexible design more properties could be added.Practical implications: The AIBCS has been successfully used at the Ford/Nemak Windsor Aluminum Plant (WAP to analyze Al casting properties of the engine blocks.Originality/value: The metal casting research community has immensely benefited from these developed information technologies that support the metal casting process.

  5. Study of Influence of Heat Treatment on Cyclic Properties of L21HMF Cast Steel

    Science.gov (United States)

    Mroziński, Stanisław; Golański, Grzegorz

    2016-07-01

    This work presents the results of studies of CrMoV cast steel after long-term service and after regenerative heat treatment (RHT). The cast steel was investigated in the conditions of static and changeable load. The tests were carried out at room temperature and 550 °C. The fatigue lifetime curves were determined and described using the Basquin-Manson-Coffin relationship. It has been shown that the cast steel after RHT is characterized by smaller range of plastic strain and bigger range of stress amplitude, with the same value of total strain, compared with the cast steel after service. For the cast steel after RHT, the observed fatigue properties were different in comparison with the cast steel after service at small and large strains. At room temperature (20 °C) and at elevated temperature (550 °C), there is an increase in the life of samples of the cast steel after RHT in comparison with the samples of the cast steel after service only in the area of large strains ( ɛ ac > 1.2%). For small strains ɛ ac life of the cast steel after RHT at the examined temperatures is shorter than that of the cast steel after service. The paper shows that regardless of an explicit improvement in the strength properties (the static and cyclic ones), as a result of the performed RHT, a complete improvement in the fatigue properties of the cast steel does not occur.

  6. Effect of Manganese on the Mechanical Properties of Welded As-Cast Aluminium Joint

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2013-11-01

    Full Text Available The effects of manganese on the mechanical properties of welded and un-weld as-cast 6063 aluminium alloy has been studied. Alloys of varying percentage of manganese from 0.019 to 0.24 were sand cast. A wooden pattern of dimensions 200×100×100mm was used, the aluminium (500g was charged into an induction furnace and heated to 750°C for 15 minutes, this was followed by the addition of weighed powdered manganese, stirred and heated at the same temperature for another 5 minutes and thereafter poured into the already prepared sand mould at a temperature of 690°C. The as-cast aluminium samples, were sectioned into two equal parts of 45mm each using power hack saw; a weld groove was created between the sides of the samples using an electric hand grinding machine, the groove served as the path along which the filler metal was deposited on the aluminium, a single v butt joint was produced from each sample and Metal Inert Gas Welding process was carried out to produce the required joint design. The different cast samples were machined to the different test pieces after which they were assessed to determine their mechanical properties (impact, hardness (welded joint and heat affected zone and tensile tests. The microstructures of the welded samples were also studied. From the results, it was observed that Sample F, which has 0.172% Mn, has the best hardness and impact strength while sample C with 0.160% Mn has the highest ultimate tensile strength.

  7. Effect of Heat Treatment on Mechanical Property of High Cr-W Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Liu Jianping; Li Lixia

    2007-01-01

    The microstructure of high Cr-W cast iron after heat treatment were analyzed, and the effect of various heat treatment temperature and time on mechanical properties of high Cr-W cast iron were studied, and the best process parameter of heat treatment was provided in this paper. The results show that the heat treatment can improve the mechanical property of high Cr-W cast iron, and higher synthetic mechanical property of high Cr-W cast iron can be obtained when treated with normalization at 980℃ for 2h and tempered at 400℃ for 2h.

  8. Effect of tempering temperature on the properties of low-alloy cast steel

    Directory of Open Access Journals (Sweden)

    D. Bartocha

    2011-07-01

    Full Text Available The mechanical properties of cast steel are primarily a function of chemical composition and solidification conditions i.e. primary structure, however, them can be change in a limited extent, by heat treatment. In the article the influence parameters of quenching on mechanical properties of low-alloy structural cast steel, modeled in terms of chemical composition, on the cast steel L20HGSNM, are presented. An attempt to quantify this relationship was made.

  9. Microstructure and properties of vacuum counter-pressure cast aluminum alloy

    OpenAIRE

    YAN Qing-song; Yu, Huan; WEI Bo-kang

    2006-01-01

    The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum co...

  10. RESEARCH OF MECHANICAL PROPERTY GRADIENT DISTRIBUTION OF Al-Cu ALLOY IN CENTRIFUGAL CASTING

    OpenAIRE

    ZHI SUN; YANWEI SUI; AIHUI LIU; BANGSHENG LI; JINGJIE GUO

    2011-01-01

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases w...

  11. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320 and 290 deg. C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, JIC, and tearing modules of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The ferrite content and concentration of carbon in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and the molybdenum-containing high-carbon CF-8M steels are the most susceptible to low-temperature embrittlement. Microstructural data indicate that three processes contribute to embrittlement of cast stainless steels, viz., Cr-rich α' and G-phase precipitation in the ferrite, and carbide precipitation on the austenite/ferrite phase boundary. The influence of nitrogen content and ferrite distribution on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280-450 deg. C, i.e., extrapolation of high temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel. (author)

  12. Effects of minor scandium on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy

    International Nuclear Information System (INIS)

    The effects of minor Sc on the as-cast microstructure, mechanical properties and casting fluidity of the ZA84 magnesium alloy were investigated. The results indicate that the Mg32(Al,Zn)49 phase in the ZA84 alloy is refined with the addition of 0.12-0.35 wt.% Sc, and the formation of the Mg32(Al,Zn)49 phase is suppressed. An increase in Sc amount from 0.12 wt.% to 0.35 wt.% causes the morphology of the Mg32(Al,Zn)49 phase to gradually change from coarse continuous and/or quasi-continuous net to relatively fine quasi-continuous and/or disconnected shapes. In addition, it is shown that the tensile and creep properties of the ZA84 alloy are improved, but the casting fluidity of the alloy is decreased with the addition of 0.12-0.35 wt.% Sc.

  13. Impact toughness and microstructure of continuous medium carbon steel bar-reinforced cast iron composite

    International Nuclear Information System (INIS)

    Although nodular cast iron has popular characteristics, its toughness and tensile strength are insufficient in many applications. In the present research, an attempt was made to produce a nodular cast iron composite reinforced with medium carbon steel bar, in order to investigate its effects on improving the toughness of the material. The composite material was produced by the sand mould casting technique. Then, the samples were annealed at 900 °C for 1 h. Afterwards, the microstructures of the composite in as cast and annealed conditions were analyzed by optical and electron microscopes. Later on, the hardness and impact toughness of the cast iron composite specimens were compared with the samples without reinforcement. The results revealed a pearlitic diffusion bond between the two components of the composite, due to the diffusion of carbon from the cast iron towards the steel bar. Furthermore, the impact toughness of the composite material showed better results in comparison with that of the simple specimens.

  14. Microstructure and properties of vacuum counter-pressure cast aluminum alloy

    Directory of Open Access Journals (Sweden)

    YAN Qing-song

    2006-05-01

    Full Text Available The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum counter-pressure cast aluminum alloy are improved significantly.

  15. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  16. Microstructure and Thermomechanical Properties of Magnesium Alloys Castings

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2012-04-01

    Full Text Available Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc., through exterior parts (wheels particularly of sporting models, up to driving (engine blocks and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type, and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr. These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation. From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.

  17. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    Science.gov (United States)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  18. Effect of Silicon on the casting properties of Al-5.0%Cu alloy

    Institute of Scientific and Technical Information of China (English)

    LI Weijing; CUI Shihai; HAN Jianmin; XU Chao

    2006-01-01

    Poor casting properties restrict the application of high strength casting Al-5.0%Cu alloy.The addition of element can improve the casting properties of this alloy.Effect of Si on the casting properties of Al-5.0%Cu alloy was studied.It has been found that the addition of Si can improve the casting properties of Al-5.0%Cu alloy obviously.With the increase of Si content, the hot cracking tendency of the alloy decreases significantly, and the fluidity of the alloy increases firstly and then decreases slowly.When the content of Si element is higher than 2wt.%, the fluidity of the alloy increases greatly with the increasing of Si content.

  19. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    OpenAIRE

    Chen Xiang; Li Yanxiang

    2013-01-01

    In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (...

  20. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance,steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.

  1. The efect of cooling rate on the properties of alloyed cast-iron sizing roll

    Directory of Open Access Journals (Sweden)

    P. Jelić

    2010-01-01

    Full Text Available Directional heat transfer was investigated by temperature measurements in the casting and in the mould using thermocouples. Measurements were performed in operating conditions during pouring, solidification, and cooling of the casting. Total measurement time was 35,5 hours. After cutting, specimens were extracted for metallographic and hardness testing. Test results provided confirmation of directional heat transfer (directional cooling that would ensure acquirement of a desired casting structure and mechanical properties.

  2. Effect of quenching temperature on structure and properties of centrifugal casting high speed steel roll

    OpenAIRE

    Fu Hanguang; Cheng Xiaole; Du Zhongze

    2009-01-01

    The critical points and time-temperature-transformation (TTT) curves of the isothermal transformation diagrams for a high-speed steel casting on a horizontal centrifugal casting machine had been determined experimentally in the study. The effects of quenching temperature on the microstructures and properties of centrifugal casting high speed steel (HSS) roll has been investigated using scanning electron microscopy (SEM), light optical microscopy (LOM) and X-ray diffraction (XRD) as well as us...

  3. Artificial intelligence-based control system for the analysis of metal casting properties

    OpenAIRE

    E. Mares; J.H. Sokolowski

    2010-01-01

    Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (...

  4. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  5. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  6. New crosslinked cast films based on poly(vinyl alcohol: Preparation and physico-chemical properties

    Directory of Open Access Journals (Sweden)

    C. Birck

    2014-12-01

    Full Text Available In this paper, we propose a green route to prepare insoluble poly(vinyl alcohol (PVOH cast films with potential application as antimicrobial packaging. First PVOH films were cast from different aqueous solutions and analyzed by Differential Scanning Calorimetry (DSC and Dynamic Mechanical Analysis (DMA to determine their physical properties under two storage conditions. In order to obtain insoluble films, PVOH was then crosslinked by citric acid (CTR as confirmed by Nuclear Magnetic Resonance (NMR analyses. The crosslinking reaction parameters (curing time, crosslinker content were studied by comparing the characteristics of PVOH/CTR films, such as free COOH content and glass transition temperature (Tg value, as well as the impact of the crosslinking reaction on mechanical properties. It was found that for 40 and 10 wt% CTR contents, 120 and 40 min of crosslinking times were necessary to bind all CTR respectively. Brittle films were obtained for 40 wt% CTR whereas 10 wt% CTR content led to ductile films. Finally, films containing hydroxypropyl-β-cyclodextrin (HPβCD, chosen as a potential vector of antimicrobial agent, were prepared. The obtained results show that the incorporation of HPβCD in the PVOH matrix does not mainly influence the physical and mechanical properties of the films.

  7. Structure and properties of metal of commercial steam pipes produced by centrifugal casting

    International Nuclear Information System (INIS)

    Structure and properties of metal of large diameter pipes produced by centrifugal casting of 15Kh1M1FL steel are investigated. It is shown that the structure of centrifugally cast pipe metal is much more in homogeneous than that of hot-rolled pipes

  8. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  9. Taguchi Optimization of Process Parameters on the Hardness and Impact Energy of Aluminium Alloy Sand Castings

    Directory of Open Access Journals (Sweden)

    John O. OJI

    2013-11-01

    Full Text Available An optimization technique for sand casting process parameters based on the Taguchi method is reported in this paper. While keeping other casting parameters constant, aluminium alloy castings were prepared by sand casting technique using three different parameters, namely the mould temperature, pouring temperature and runner size. Hardness and impact energy tests were done for the resulted castings. The settings of parameters were determined by using the Taguchi experimental design method. The level of importance of the parameters on the hardness impact energy was determined using the analysis of variance (ANOVA. The optimum parameter combination was obtained by using the analysis of signal-to-noise (S/N ratio. Analysis of the results shows that 100°C mould temperature and 700°C pouring temperatures are optimal values for hardness and impact energy. However 200 mm2 and 285 mm2 runner sizes are the optimal values for hardness and impact energy respectively. The mould temperature was the most influential parameter on the hardness impact energy of the castings.

  10. As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties

    OpenAIRE

    Torre, Urko de la; Loizaga, Aitor; Lacaze, Jacques; Sertucha, Jon

    2014-01-01

    International audience The present work shows a comparative study regarding the mechanical properties of 25 as cast ferritic ductile iron alloys, nine of them with silicon contents higher than 3·00% and carbon contents lower than 3·60%. In a first step, different carbon equivalent values have been used in order to analyse the effect of this parameter on the mechanical properties. After this comparative analysis, the composition ranges C = 3·30–3·40 wt-% and Si = 3·75–3·80 wt-% have been se...

  11. MICROSTRUCTURE AND PROPERTIES OF ZL201 ALLOY OBTAINED BY NEAR-LIQUIDUS ELECTROMAGNETIC CASTING

    Institute of Scientific and Technical Information of China (English)

    P. Wang; L.F. Sh; G.M. Lu; J.Z. Cui

    2005-01-01

    The microstructures of ZL201 alloy slurry prepared by near-liquidus electromagnetic casting(NLEMC), electromagnetic casting(EMC), and near-liquidus casting(NLC) were investigated by means of electron microscopy and image analysis. Mechanical properties of as-cast alloys were determined. The results show that the NLEMC induces a fine, uniform, and equiaxed grain structure with a mean equal-area-circle grain diameter of 32.8μm. The as-cast alloy has a hardness of HV122.8 and a tensile strength of 368MPa. Both of them are better than those of the alloys prepared by EMC and by NLC. The mechanism of grain refinement in the NLEMC alloy slurry was discussed.

  12. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper;

    2009-01-01

    product has constant material properties throughout the entire casting. Thus, if the microstructure is determined or predicted at a given point, it gives the possibility to calculate the local material behavior more realistically. In the present work, a test case of a complex high-pressure die cast part...

  13. Properties of cast Ti-stabilised stainless steel after long-term ageing

    International Nuclear Information System (INIS)

    Mechanical properties and microstructure are studied and compared for two kinds of specimens of cast Ti-stabilized stainless steel 08Kh18N10T used for manufacturing of valves and pumps in nuclear power plants. One set of specimens represents the main gate valve material after 106000 h (∼ 12 years) operation at 270 deg C. The comparison is made with reference specimens in as-fabricated state. The results of impact tests, hardness measurements and microscopic examination show that 12 year operation gives rise to the shift of ductile-brittle transition temperature to higher values (from - 68 deg C - 103 deg C). The microstructure of both materials is similar. The microhardness of δ-ferrite in the steel after long-term operation is slightly higher

  14. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohui, E-mail: mkmkzxh@hotmail.com [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Liu, Jinzhi [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Xing, Jiandong; Ma, Shengqiang [State Key Laboratory Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi Province (China)

    2014-05-01

    The effect of cerium modification on the microstructure and properties of hypereutectic high chromium cast iron primarily containing 4.0 wt% C and 20.0 wt% Cr was studied by means of optical microscopy, transmission electron microscope, scanning electron microscope, and energy dispersive X-ray spectrometry. The primary M{sub 7}C{sub 3} carbides were refined obviously when cerium was added in the melt. Ce{sub 2}S{sub 3} was found in the primary M{sub 7}C{sub 3} carbides and acted as the heterogeneous substrate of M{sub 7}C{sub 3} carbides. The impact toughness of the specimen modified with 0.5 wt% cerium increased by 50% compared with the specimen without cerium modification. The hardness of the alloy modified with cerium increased slightly compared with the specimen without cerium modification.

  15. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond

    2010-07-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  16. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impactenergy, J/sub IC/ and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The low-carbon CF-3 steels were the most resistant and the molybdenum-containing high-carbon CF-8M steels were the most susceptible to low-temperature embrittlement. The influence of nitrogen content and distribution of ferrite on loss of toughness are discussed. Data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steels. 13 refs., 13 figs., 2 tabs

  17. Rare earth metals influence on mechanical properties and crack resistance of GP240GH and G17CrMo5-5 cast steels

    Directory of Open Access Journals (Sweden)

    M. Gajewski

    2009-10-01

    Full Text Available This paper presents results of research on modification influence of REM on mechanical properties and crack resistance of GP240GH cast carbon steel and G17CrMo5-5 high-temperature cast steel. The tests have been performed on successive industrial melts. The rare earth metals were put into the ladle during tapping of heat melt from the furnace. Each time ca 2000 kg of liquid metals were modified. Because of this the amount of sulphur in the cast steel was decreased and the non-metallic inclusion morphology was significantly changed. There were tested mechanical properties (Re,Rm, plastic properties (A5,Z and impact strength (KV, and on the basis of the three-point bend test the KJC stress intensity factor was evaluated. It was noticed that the REM modification brings essential increase of impact strength as well as fracture toughness determined by KJC factor.

  18. Comparison of properties of centrifugally cast and wrought stainless steels with similar chemical composition for DWPF canisters

    International Nuclear Information System (INIS)

    This report compares the properties of centrifugally cast stainless steel and plate stainless steel (wrought). The comparison was to determine whether centrifugally cast cylinders are an acceptable alternative to wrought, rolled and welded cylinders. After comparing the two materials, it was found that the castings meet or exceed the requirements of the proposed DWPF (Defense Waste Project Facility) canister design. Recommendations for future action are: that the molten steel used to make the centrifugal castings must be processed by an Argon Oxygen Decarburizer (AOD) prior to casting, and that the effect of partially heat treating an as-cast centrifugal casting should be evaluated. This evaluation is to determine the metallurgical affect of pouring molten borosilicate glass into a casting and allowing the casting cool at ambient temperature

  19. Effects of cast properties and passage through the earthworm gut on seed germination and seedling growth

    OpenAIRE

    Clause, J.; Barot, Sébastien; Furey, E.

    2015-01-01

    Success of seed germination and seedling establishment is potentially affected by interactions with earthworms. Two of the possible mechanisms that might explain such impact are the selective ingestion of seeds by earthworms that might break seed dormancy, and germination in their nutrient-rich casts. The aim of this study was to disentangle the effect of seed passage through the earthworm gut and the effect of cast alone, as a germination medium, on the germination and growth of four herbace...

  20. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern p...

  1. Influence of heat treatment on microstructure and properties of GX12CrMoVNbN9-1 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2010-07-01

    Full Text Available The paper presents results of research on the influence of multistage heat treatment on microstructure and properties of high-chromiummartensitic GX12CrMoVNbN9 – 1 (GP91 steel. The material under investigation were samples taken out from a test coupon. Heattreatment of GP91 cast steel was performed at the parameters of temperature and time typical of treatment for multi-ton steel casts. The research has proved that in the as-received condition (as-cast state GP91 cast steel was characterized by a coarse grain, martensitic microstructure which provided the required standard mechanical properties. The heat treatment of GP91 cast steel contributed to obtainment of a fine grain microstructure of high tempered martensite with numerous precipitations of carbides of diverse size. The GP91 cast steel structure received through heat treatment made it possible to obtain high plastic properties, particularly impact strength, maintaining strength properties on the level of the required minimum.

  2. Static and cyclic creep properties of three forms of a cast nickel alloy

    International Nuclear Information System (INIS)

    The static and cyclic creep properties of conventionally cast, directionally solidified and single crystal forms of a cast nickel superalloy, Mar M246, have been evaluated at 850 and 9000C. Tensile and compressive creep curves have been obtained at constant stress and the results analyzed using power law creep terms. Typically, directionally solidified specimens have tensile lives twice those of comparable conventionally cast materials, and rupture strains three or four times greater. Increase in specimen size raised the life of conventionally cast material but had no effect on single crystals. Differences between tensile and compressive creep properties were accentuated in the tertiary stages of deformation. No improvement in compressive creep resistance was obtained using directionally solidified or single crystal specimens. Equations developed previously from strain hardening theory gave an accurate estimation of behavior under cyclic tension. This theory has been extended to include push-pull loading and is shown to give a satisfactory correlation with the data

  3. Effect of Zircon Silicate Reinforcements on the Microstructure and Properties of as Cast Al-4.5Cu Matrix Particulate Composites Synthesized via Squeeze Cast Route

    Directory of Open Access Journals (Sweden)

    E. G. Okafor

    2010-06-01

    Full Text Available The as-cast microstructure and properties of Al-4.5Cu/ZrSiO4 particulate composite synthesized via squeezed casting route was studied, varying the percentage ZrSiO4 in the range of 5-25wt%. The result obtained revealed that addition of ZrSiO4 reinforcements, increased the hardness value and apparent porosity by 107.65 and 34.23% respectively and decrease impact energy by 43.16 %. As the weight percent of ZrSiO4 increases in the matrix alloy, the yield and ultimate tensile strength increased by 156.52 and 155.81% up to a maximum of 15% ZrSiO4 addition respectively. The distribution of the brittle ZrSiO4 phase in the ductile matrix alloy led to increase strength and hardness values. These results had shown that, additions of ZrSiO4 particles to Al-4.5Cu matrix alloy improved properties.

  4. Effect of inter-critical quenching on mechanical properties of casting low-alloy steel

    OpenAIRE

    Liu Zhongli; Shang Yong

    2013-01-01

    For some casting low-alloy steels, traditional quenching and tempering heat treatments can improve the strength; however, sometimes the ductility is not satisfied. Therefore, some kind of effective heat treatment method seems necessary; one which could improve the ductility, but not seriously affect the strength. In this paper, the effect of inter-critical quenching (IQ) on the mechanical properties of casting low-alloy steel was studied. IQ was added between quenching and tempering heat trea...

  5. Modelling of mechanical properties of Al-Si-Cu cast alloys using the neural network

    OpenAIRE

    M. Krupiński; J.H. Sokolowski; R. Maniara; L.A. Dobrzański

    2007-01-01

    Purpose: The paper presents some results of the research connected with the development of new approach basedon the neural network to predict the chemical composition and cooling rate to the mechanical properties of Al–Si–Cu cast alloys. The independent variables in the model are chemical composition of Al–Si–Cu cast alloys andcooling rate. The dependent parameters are hardness, microhardess, yield strength and apparent elastic limit.Design/methodology/approach: The experimental alloy used fo...

  6. Solidification, growth mechanisms, and associated properties of aluminum-silicon and magnesium lightweight casting alloys

    Science.gov (United States)

    Hosch, Timothy Al

    often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesiumbased casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.

  7. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesium-based casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.

  8. Slip casting of silicon nitride and properties of sintered body

    International Nuclear Information System (INIS)

    To develop a shape forming for the obtention of Si3N4 ceramic body slip casting was studied. As the powder characteristics, the zeta potential measurements to pH range 3 - 10 were determined for Si3N4 (by carbothermal reduction of chilean rice husk), bentonite and cupper oxide. The preparation conditions of well-dispersed slurries were determined from viscosity pH curve of whisker- and commercial-Si3N4. A mixture of 93 wt% Si3N4, 4 wt% bentonite and 3 wt% cupper oxide yielded a compact green body (15 mm x 50 mm x 2 mm) by slip casting with a porous gips mold. The sintering of these Si3N4 bodies at 1700 C and 1850 C for 2 hours in N2 gas provided a increasing of relative density. XRD- and SEM-analysis were considered to describe this densification behaviour. (orig.)

  9. Investigation of Oxide Bifilms in Investment Cast Superalloy IN100: Part I. Mechanical Properties

    Science.gov (United States)

    Fuchs, Gerhard E.; Kaplan, Max A.

    2016-05-01

    Oxide bifilms are a proposed casting inclusion reported to have been observed in vacuum investment cast polycrystalline Ni-based superalloys. Ongoing research seeks to determine if current superalloy casting practices can result in the formation of oxide bifilms, and subsequently if it is possible to observe and characterize this phenomenon. The effects of casting atmosphere, turbulence, filtering, hot isostatic pressing (HIP), and heat treatment have been investigated to identify the critical parameters that have been reported to result in bifilm formation in Ni-based superalloys. Room temperature tensile and room temperature fatigue testing are used to identify the effects of each casting and processing parameter on casting defect formation and the resultant effects on mechanical properties. Characterization of mechanical test specimens seeks to identify the role of casting defects and microstructural features on the fracture mechanisms of the specimen conditions analyzed, and in particular, evidence of bifilm formation and the chemical composition(s) of oxide bifilms. Analyzed tensile and fatigue data did not indicate an influence of bifilms on the tensile or fatigue strength of vacuum processed IN100. Bifilms were not observed, via the characterization methods utilized, to be an active mechanism in tensile or fatigue fracture.

  10. Complex assessment of fracture properties of cast ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Kozák, Vladislav; Holzmann, Miloslav

    Brno : Ústav fyziky materiálů AV ČR Brno, 2001, s. čl. 3. [Transerability of Fracture Mechanical Characteristics - Final Project Workshop Brno. Brno (CZ), 05.11.2001-06.11.2001] R&D Projects: GA MŠk ME 303 Institutional research plan: CEZ:AV0Z2041904 Keywords : fracture toughness * cast ferritic steel * transferability Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Effect of Nb on Structure and Mechanical Properties of Chilled Cast Iron at Room and Elevated Temperatures

    Institute of Scientific and Technical Information of China (English)

    Qijie ZHAI; Li FU; Huaying ZHAI

    2004-01-01

    Effect of Nb on microstructure and mechanical properties of chilled cast iron at room and elevated temperatures is studied in this research. The results demonstrate that the cast structure and mechanical properties of chilled cast iron at room and elevated temperatures are improved with the addition of trace amount of Nb. However, if Nb was added too much, the cast structure and mechanical properties of chilled cast iron would deteriorate. The suitable content of Nb in chilled cast iron is about 0.05% (mass fraction). Except the dissolution in the matrix of cast iron the excessive Nb will form Nb-rich phases in three morphologies. Those are lumpy NbC, complicated strip-like phase and compound with pearlite structure.

  12. Microstructures and mechanical properties of AZ91D magnesium alloy processed by low pressure die casting

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-yan; FU Peng-huai; YU Yan-dong; ZHAI Chun-quan

    2006-01-01

    AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) were investigated under as-cast states. Compared with gravity casting, AZ91D with LPDC has much coarser grain size and second phases(Mg17Al12 and Al8Mn5). The different size and distribution of Mg17Al12 phase and shrinkage correspond to different mechanical properties. The ultimate tensile strengths and elongations are mainly decided by the content and distribution of shrinkage porosity, while the yield strengths are determined by the percentage and distribution of Mg17Al12 phase. The more and finer Mg17Al12 phase in the alloy, the relatively higher the yield strengths are. In the alloy without shrinkage, the mechanical properties are mainly determined by the size and distribution of Mg17Al12 phase. The finer Mg17Al12 phase, the better the mechanical properties are. Under optimal process, the density and mechanical properties of LPDC AZ91D are improved with fine microstructures.

  13. Influence of fabricating process on microstructure and properties of spheroidal cast tungsten carbide powder

    Institute of Scientific and Technical Information of China (English)

    DAI Yu; TAN Xing-long; LI Yu-xi; YANG Jian-gao; HUANG Bai-yun

    2005-01-01

    A super-high temperature furnace was developed to fabricate spheroidal cast tungsten carbide powder with excellent flowability and fine feathery structure in a large scale. Optical microscope and scanning electron microscope were taken to characterize the morphology and microstructure of cast tungsten carbide powder. X-ray diffractometry was used to analyze the phase composition of powders involved. It is found that the carbon potential in the furnace and feeding speed play an important role on the microstructure, morphology and properties of the spheroidal cast tungsten carbide powder. As carbon potential is between 0.3% and 0.9% in the furnace, cast tungsten carbide powder with hardness over 2800(HV0.5 ), flowability over 7. 1 s/50 g and tap density over 10.3 g/cm3 is obtained.

  14. Property enhancement of cast iron used for nuclear casks

    Science.gov (United States)

    Behera, R. K.; Mahto, B. P.; Dubey, J. S.; Mishra, S. C.; Sen, S.

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

  15. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel

    International Nuclear Information System (INIS)

    Effects of heat treatment on microstructure, mechanical properties and erosion behavior of cast 23-8-N nitronic steel were studied. A series of heat treatments were carried out in the temperature range of 1180–1240 °C to observe the effect on microstructure. Optimum heat treatment cycle was obtained at 1220 °C for holding time of 150 min, which leads to dissolution of carbides, formation of equiaxed grains and twins. Heat treatment has shown improvement in tensile strength, toughness, impact strength and work hardening capacity, however at the cost of marginal reduction in hardness and yield strength. This resulted in improvement of erosion resistance of cast 23-8-N nitronic steel. The microstructures, fractured surfaces and phases were studied by optical microscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis respectively

  16. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avnish, E-mail: avnishmnit@gmail.com [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Ashok, E-mail: ashok.mnit12@gmail.com [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Goel, S.K. [Star Wire India Ltd., Ballabgarh, Haryana 121404 (India)

    2015-06-18

    Effects of heat treatment on microstructure, mechanical properties and erosion behavior of cast 23-8-N nitronic steel were studied. A series of heat treatments were carried out in the temperature range of 1180–1240 °C to observe the effect on microstructure. Optimum heat treatment cycle was obtained at 1220 °C for holding time of 150 min, which leads to dissolution of carbides, formation of equiaxed grains and twins. Heat treatment has shown improvement in tensile strength, toughness, impact strength and work hardening capacity, however at the cost of marginal reduction in hardness and yield strength. This resulted in improvement of erosion resistance of cast 23-8-N nitronic steel. The microstructures, fractured surfaces and phases were studied by optical microscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis respectively.

  17. Mechanical properties of multicomponent cast high-strength martensitic titanium alloys

    International Nuclear Information System (INIS)

    The investigation of mechanical properties and workability of titanium alloys of the Ta-Al-Mo-V-Sn-Zn-Cu-Fe system with the purpose of alloy development for mold castings with σsub(u) >= 1100 MPa and high resistance to repeated static loads is performed. As optimum alloy for manufacturing power packs and details the alloy of the following composition is chosen: 5.5%Al, 3% Mo; 1.5% V; 1.0% Cu; 0.8% Fe; 1.5% Sn; 3.5% Zr (VT26L) having high stringth σsub(U)=1100... 1250 MPa, satisfactory plasticity ( delta=4...8%, PHI=8... 12%) resistance to repeated-static loads at the VT22 alloy level and satisfactory casting properties. It is established that the VT26L alloy has high level of properties upon casting, without any heat treatment

  18. Casting in sport.

    Science.gov (United States)

    Decarlo, M; Malone, K; Darmelio, J; Rettig, A

    1994-03-01

    Attempts by sports medicine professionals to return high school athletes with hand and wrist injuries to competition quickly and safely have been the source of confusion and debate on many playing fields around the country. In addition to the differing views regarding the appropriateness of playing cast usage in high school football, a debate exists among sports medicine professionals as to which material is best suited for playing cast construction. Materials used in playing cast construction should be hard enough to provide sufficient stabilization to the injured area and include adequate padding to absorb blunt impact forces. The purpose of the biomechanical portion of this investigation was to attempt to determine the most appropriate materials for use in constructing playing casts for the hand and wrist by assessing different materials for: 1) hardness using a Shore durometer, and 2) ability to absorb impact using a force platform. Results revealed that RTV11 and Scotchcast were the "least hard" of the underlying casting materials and that Temper Stick foam greatly increased the ability of RTV11 to absorb impact. Assessment of the mechanical properties of playing cast materials and review of current developments in high school football rules are used to aid practitioners in choosing the most appropriate materials for playing cast construction. PMID:16558257

  19. Influence of cooling rate on the structure and mechanical properties of G17CrMoV5 – 10 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-07-01

    Full Text Available The paper presents results of research on the influence of cooling rate on the structure and properties of G17CrMoV5 – 10 (L17HMF cast steel. The material for research was a section taken out from an outer cylinder of a steam turbine body after about 250 000 hours of operation at the temperature of 535°C and pressure 9 MPa. The investigated cast steel was subjected to heat treatment which consisted in cooling at the rates corresponding to the processes, such as: bainitic hardening, normalizing and full annealing. Tempering after the process of cooling from austenitizing temperature was carried out at the temperatures of: 700, 720 and 740°C. Performed research has proved that structures obtained after bainitic hardening and normalizing are characterized by a large strength margin which allows to apply high temperatures of tempering. It has been shown that the cast steel of bainitic structure, with similar mechanical properties as the cast steel of bainitic – ferritic structure, is characterized by almost twice as high impact energy. Full annealing and tempering of the examined cast steel ensures only the required impact strength, with mechanical properties comparable to those after service.

  20. Modelling the environmental impact of an aluminium pressure die casting plant and options for control

    NARCIS (Netherlands)

    Neto, B.A.F.; Kroeze, C.; Hordijk, L.; Costa, C.

    2008-01-01

    This study describes a model (MIKADO) to analyse options to reduce the environmental impact of aluminium die casting. This model will take a company perspective, so that it can be used as a decision-support tool for the environmental management of a plant. MIKADO can be used to perform scenario anal

  1. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: A scenario analysis

    NARCIS (Netherlands)

    Neto, B.; Kroeze, C.; Hordijk, L.; Costa, C.; Pulles, M.P.J.

    2009-01-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze,

  2. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  3. Mechanical properties of stainless steel castings at 4 K

    International Nuclear Information System (INIS)

    Ten heats of cast CF8M stainless steel, which is the casting equivalent of AISI 316, were produced by a commercial vendor. In five of the heats the chromium and nickel contents were varied to obtain different delta-ferritie contents, ranging from 1.1 to 28.5 percent. The other five heats all had approximately 8 percent delta-ferrite and the nitrogen content was varied from 0.02 to 0.20 percent. As was expected from previous data on weldments and wrought materials, an increase in either delta-ferrite or nitrogen content increases the yield strength. In the five heats with varying nitrogen content the increase in strength resulted in a corresponding decrease in fracture toughness. An increase in delta-ferrite content also gave a decrease in fracture toughness up to approximately 15 percent dela-ferrite. Above this level the fracture toughness remained constant with increasing delta-ferrite content. This has been shown, by metallographic and fractographic evidence, to be due to the establishment of a continuous delta-ferrite crack path, at approximately 15 percent delta-ferrite

  4. Properties of High Basicity Mold Fluxes for Peritectic Steel Slab Casting

    Institute of Scientific and Technical Information of China (English)

    LONG Xiao; HE Sheng-ping; XU Jian-fei; HUO Xu-ling; WANG Qian

    2012-01-01

    In high speed continuous casting of peritectic steel slabs, mold fluxes with high basicity are required for less surface defect product. However, the basicity of remaining liquid slag film tends to decrease in casting process because of the crystallization of 3CaO ·2SiO2 · CaF2. Thus, a way is put forward to improve mold fluxesr properties by raising the original basicity. In order to confirm the possibility of this method, the effect of rising original basicity on the properties of mold fluxes is discussed. Properties of high fluorine based mold fluxes with different basicities and contents of CaF2 , Na2 O, and MgO were measured, respectively. Then, properties of higher basicity mold fluxes were discussed and compared with traditional ones. The results show that increasing the basicity index can improve the melting and flow property of mold fluxes. With the increasing basicity, crystallization rate of mold fluxes increases obviously and crystallization temperature tends to decrease when the basicity exceeds 1.35. The method presen- ted before is proved as a potential way to resolve the contradiction between horizontal heat transfer controlling and solidified shell lubricating for peritectic steel slab casting. But further study on improving the flow property of liquid slag is needed. This work can be used to guide mold fluxes design for high speed continuous casting of peritectic steel slabs.

  5. EFFECT OF CASTING MOULD ON MECHANICAL PROPERTIES OF 6063 ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    WASIU AJIBOLA AYOOLA

    2012-02-01

    Full Text Available Modern production methods for casting articles include the use of sand- mould, metal-mould, die, and centrifugal castings. Castings produced using sand mould is known to have peculiar microstructures depending on average size, distribution and shape of the moulding sand grains and the chemical composition of the alloy. These affect the surface finish, permeability and refractoriness of all the castings. In this paper, the effect of using CO2 process, metal mould, cement-bonded sand mould and naturally-bonded sand mould on the hardness, tensile and impact strengths of as-cast 6063 Aluminum alloy is presented. The results show that there is significant increase in hardness(33.7 HB of the alloy when naturally-bonded sand mould is used for its production over that of metal, CO2 and cement moulds. The stress-strain curves behaviour of the samples also indicated that sample from naturally bonded sand has highest tensile strength with superior ductility. The alloy shows highest impact strength when metal mould is used for sample preparation in comparison with other moulds.

  6. Effect of Cu and Mn on the Mechanical Properties and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    A.M.Omran

    2014-06-01

    Full Text Available This paper described the method used for producing ductile cast iron (SGI. The processing parameters affecting the production of SGI were studied. These parameters include chemical composition, castings thickness, mechanical properties, alloying elements and microstructure. The chemical composition of producing SGI was optimized. The nodularity was increased with increasing the percentages of Mg content and with decreasing the castings thickness. The amount of pearlite and mechanical properties were increased sharply with increasing Cu and Mn contents in the produced SGI. Empirical equations were correlated to indicate the relations among nodularity, Mg content and other parameters. The results shown also as the post inoculation increased the metallurgical quality was improved. The suitability of SGI as automotive engine was tested and different empirical correlations were obtained

  7. Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel

    International Nuclear Information System (INIS)

    The aging behavior, especially saturation, of JIS SCS14A cast duplex stainless steels was investigated on the basis of the mechanical properties and microstructural changes during accelerated aging at 350 oC and 400 oC. The aging behavior of the materials mainly proceeds via two stages. During the first stage, the generation and concentration of the iron-rich and chromium-enriched phase in ferrite occurs by phase decomposition. The first stage corresponds to aging times of up to 3000 h at 400 oC. During the first stage, the ferrite hardness achieved is approximately 600 VHN, and the Charpy impact energy is almost saturated. During the second stage, the precipitated chromium-enriched phase aggregates and coarsens, and the G phase precipitation also occurs. The second stage corresponds to the aging times range of 3000-30 000 h at 400 oC. During the second stage, the ferrite hardness achieved is about 800 VHN; however, further hardening exceeding 600 VHN does not influence the Charpy impact energy

  8. Microstructure-Texture-Mechanical Properties in Hot Rolling of a Centrifugal Casting Ring Blank

    Science.gov (United States)

    Qin, Fang-cheng; Li, Yong-tang; Qi, Hui-ping; Ju, Li

    2016-03-01

    Deformation characteristic of centrifugal casting 25Mn steel was investigated by compression tests, and then processing maps were established. According to the deformation parameters identified from the established processing maps and hot ring rolling (HRR) process, the industrial test for the 25Mn ring blank was performed. Optical microscope (OM) and electron backscatter diffraction (EBSD) techniques were used for detecting grain boundary features and textures of deformation structures. The morphologies and mechanisms of tensile and impact fracture were revealed. The results show that softening effect plays a dominant role in higher temperatures of 1050-1150 °C and strain rates lower than 0.1 s-1. The average grain size of the rolled 25Mn ring is about 28 μm, but the grains are more coarse and inhomogeneous on the middle layer than that on rest of the areas. The texture on the outer layer is characterized by strong {110} and weak {112} , followed by {001} and {001} on the inner layer and {110} on the center layer, which is mainly associated with the shear deformation. The rolled ring with precise geometrical dimensions and sound mechanical properties is fabricated by HRR. Tensile fracture is composed of clear river-shaped pattern and a little dimple near the inner layer and outer layer, and the fracture mechanism is mainly quasi-cleavage fracture, accompanied by dimple fracture. The morphologies of impact fracture consist of tear ridge and cleavage platform.

  9. Modelling of mechanical properties of Al-Si-Cu cast alloys using the neural network

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2007-01-01

    Full Text Available Purpose: The paper presents some results of the research connected with the development of new approach basedon the neural network to predict the chemical composition and cooling rate to the mechanical properties of Al–Si–Cu cast alloys. The independent variables in the model are chemical composition of Al–Si–Cu cast alloys andcooling rate. The dependent parameters are hardness, microhardess, yield strength and apparent elastic limit.Design/methodology/approach: The experimental alloy used for training of neural network was prepared at theUniversity of Windsor (Canada in the Light Metals Casting Laboratory, in a 10 kg capacity ceramic crucible.Thermal analysis tests were conducted using the UMSA Technology Platform. Compression tests were conductedat room temperature using a Zwick universal testing machine. Prior to testing, an extensometer was used tominimize frame bending strains. Compression specimens were tested corresponding to each of the three coolingrate. Rockwell F–scale hardness tests were conducted at room temperature using a Zwick HR hardness testingmachine. Vickers microhardness tests were conducted using a DUH 202 microhardness testing machine.Findings: The results of this investigation show that there is a good correlation between experimental and predicteddates and the neural network has a great potential in mechanical behavior modeling of Al–Si–Cu castings.Practical implications: The worked out model can be applied in computer system of Al–Si–Cu casting alloysselection and designing for Al-Si-Cu casting parts.Originality/value: Original value of the work is applied the artificial intelligence as a tools for designing therequired mechanical properties of Al-Si-Cu castings.

  10. Effect of the heat treatment on the structure and properties of GX12CrMoVNbN9-1 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2010-12-01

    Full Text Available Purpose: The paper presents the influence of heat treatment parameters (austenitization and tempering temperature on the microstructure and mechanical properties of high - chromium martensitic GX12CrMoVNbN9-1 (GP91 cast steel. Moreover, the influence of stress relief annealing at the temperatures of 730 and 750oC on microstructure and properties has been investigated.Design/methodology/approach: Microstructure of the cast steel was characterized using optical metallography and transmission electron microscopy. Identification of precipitates was made by means of thin foils and extraction carbon replicas. The size of precipitations was determined by Image Pro Plus software. Moreover, the mechanical properties (static tension, hardness and impact energy have been tested.Findings: What has been determined is the influence of heat treatment parameters on microstructure and mechanical properties of GP91 cast steel. Heat treatment (hardening and high-temperature tempering of GP91 cast steel allowed to obtain a fine-grained microstructure of high-tempered martensite with numerous precipitates whose properties met the standard requirements, regardless of the heat treatment parameters.Research limitations/implications: It is necessary to continue the research to determine description of the microstructure after different heat treatment parameters.Practical implications: Optimization of the heat treatment parameters from the aspect of using the investigated cast steel for long-term operation in power units designed for working at the so-called supercritical parameters.Originality/value: The relationship between the heat treatment parameters (austenitization and tempering temperatures and mechanical properties of high - chromium martensitic GX12CrMoVNbN9-1 (GP91 cast steel was specified. Moreover, the influence of the stress relief annealing parameters on microstructure and properties has been shown.

  11. Changes of Tempering Microstructure and Properties of Fe-Cr-V-Ni-Mn-C Cast Alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-xia; MA Yong-qing; WANG Yue-hua; ZHANG Zhan-ping; ZHANG Yang

    2004-01-01

    The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200℃ the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350℃ and the retained austenite decomposes almost until tempering at 560℃. When tempering at 600℃, the retained austenite in the alloys all decomposes. At 560℃ the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3~1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.

  12. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    International Nuclear Information System (INIS)

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  13. Skeleton castings dynamic load resistance

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2013-06-01

    Full Text Available Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of internal topology of skeleton casting was based on numerical simulations of stress distribution.Findings: The possibility of manufacturing of geometrically complex skeleton castings without use of advanced techniques was confirmed.Research limitations/implications: With use of computer tomography, analysis of deformation mechanisms was carried out. Different levels of impact energies were usedPractical implications: Spatial skeleton casting with octahedron elementary cell confirmed their usefulness as impact energy absorbers.Originality/value: The overall aim of presented research was to determine the mechanisms of skeleton castings deformation processes. Thanks to CT data next step will be to create accurate numerical model for further simulation and design optimization.

  14. Economic evaluation of environmental impacts of open cast mining project - an approach

    International Nuclear Information System (INIS)

    Economic valuation of environmental attributes are pragmatic approach to evaluating the impacts and it helps decision makers to arrive at objective decisions on the basis of cost benefit ratio. For determining the physical impact and its quantification, four evaluation methods, namely-market price method, surrogate market price, survey based and cost based approaches are generally used. The present paper reviews the importance of environmental evaluation of impacts of mining and also reviews a few suitable methodologies that could be effectively used for economic evaluation of environmental impacts in open cast mining projects. (author)

  15. Investigations of Properties of Wax Mixtures Used in the Investment Casting Technology – New Investigation Methods

    Directory of Open Access Journals (Sweden)

    J. Zych

    2012-09-01

    Full Text Available The results of testing of the selected group of wax mixtures used in the investment casting technology, are presented in the paper. Themeasurements of the kinetics of the mixtures shrinkage and changes of viscous-plastic properties as a temperature function wereperformed. The temperature influence on bending strength of wax mixtures was determined.

  16. ON MODELLING OF MICROSTRUCTURE FORMATION, LOCAL MECHANICAL PROPERTIES AND STRESS – STRAIN DEVELOPMENT IN ALUMINIUM CASTINGS

    DEFF Research Database (Denmark)

    Svensson, Ingvar; Seifeddine, Salem; Kotas, Petr;

    2009-01-01

    product has constant material properties throughout the entire casting. Thus, if the microstructure is determined or predicted at a given point, it gives the possibility to calculate the local material behaviour more realistically. The paper shows modelling and simulation of microstructure formation...

  17. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  18. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

    Science.gov (United States)

    Ferraro, Stefano; Timelli, Giulio

    2015-04-01

    The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

  19. Effect of centrifugal counter-gravity casting on solidification microstructure and mechanical properties of A357 aluminum alloy

    OpenAIRE

    Li Xinlei; Hao Qitang; Miao Xiaochuan

    2014-01-01

    To investigate the influence of Centrifugal Counter-gravity Casting (C3) process on the solidification microstructure and mechanical properties of the casting, A357 aluminum alloy samples were produced by different process conditions under C3. The results show that C3 has better feeding capacity compared with the vacuum suction casting; and that the mechanical vibration and the convection of melts formed at the centrifugal rotation stage suppress the growth of dendrites, subsequently resultin...

  20. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and compared...

  1. Effects of Ce addition on microstructure, mechanical properties and corrosion resistance of as-cast AZ80 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-05-01

    Full Text Available In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The results show that the addition of Ce into the AZ80 alloy can not only refine the microstructure, but also result in the formation of the needle-like Al4Ce phase. These tiny Al4Ce phases are homogeneously distributed at grain boundaries and within grains. An appropriate Ce addition can also change the β-Mg17Al12 phase at the grain boundaries from continuous network to small island-like. At the same time, with the increase of Ce content from 0 to 2.0wt.%, the macro-hardness of the as-cast alloy is enhanced linearly, while impact toughness, tensile strength and elongation all firstly increase and then decrease. The AZ80 alloy containing 1.0wt.% Ce exhibits the optimal properties. Its macro-hardness, impact toughness, tensile strength and elongation are 61.90 HB, 15.50 J·cm-2, 171.80 MPa and 3.35%, increase by 9.95%, 63%, 13.3% and 36.7%, respectively compared with the base alloy. In addition, Ce can enhance the corrosion resistance of the AZ80 magnesium alloy.

  2. Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels

    International Nuclear Information System (INIS)

    Highlights: ► The micro-hardness change tendency of ferrite and austenite by aging was studied. ► Embrittlement behavior of Z3CN20-09M CDSSs by aging was investigated by SP test. ► The crack propagation energy Wt − Wiu slightly changes with the thermal aging time. ► Spinodal decomposition and spinodally coarsening take place in ferrite by aging. ► Z3CN20-09M CDSSs become embrittlement after long-term thermal aging treatment. - Abstract: Casting duplex stainless steels (CDSSs) used for pressurized water reactor (PWR) pipes are susceptible to thermal aging brittleness during long-term service at its working temperature from 288 °C to 327 °C. In order to investigate its thermal aging behavior, Z3CN20-09M CDSSs have been thermally aged at 400 °C up to 15,000 h. The micro-hardness of austenite and ferrite phases, conventional tensile properties, impact properties and SPT properties at different aging duration have been measured. The results show that the micro-hardness in ferrite gradually increases with increase of long thermal aging time, while the effect of the long aging time on the micro-hardness in austenite is negligible. The tensile strength and yield strength progressively and slightly increase with the long aging time, respectively. The impact property test confirms that there is the same change tendency as the percentage of elongation which decreases with the long aging time. The changes of SPT ultimate strength, SPT yield strength and SPT specific fracture energy by aging individually show that there is an almost same tendency as the tensile strength, the yield strength and the percentage of elongation with the thermal aging time. All above the mechanical properties changes of Z3CN20-09M CDSSs are associated with the changes of the dislocation configurations in austenite, the precipitation of G-phase on the dislocation line and in ferrite phase, the spinodal decomposition and the coarsening of the spinodally decomposed structure in ferrite

  3. Microstructure and mechanical properties of TiAl castings produced by zirconia ceramic mould

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2011-11-01

    Full Text Available Owing to their low density and attractive high-temperature properties, gamma titanium aluminide alloys (TiAl alloys, hereafter have significant potential application in the aerospace and automobile industries, in which these materials may replace the heavier nickel-based superalloys at service temperatures of 600 – 900℃. Investment casting of TiAl alloys has become the most promising cost-effective technique for the manufacturing of TiAl components. Ceramic moulds are fundamental to fabricating the TiAl casting components. In the present work, ceramic mould with a zirconia primary coat was designed and fabricated successfully. Investment casting of TiAl blades and tensile test of specimens was carried out to verify the correctness and feasibility of the proposed method. The tensile test results indicate that, at room temperature, the tensile strength and the elongation are about 450 MPa and 0.8%, respectively. At 700℃, the tensile strength decreases to about 410 MPa and the elongation increases to 2.7%. Microstructure and mechanical properties of investment cast TiAl alloy are discussed.

  4. Effect of residual Al content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives

    Directory of Open Access Journals (Sweden)

    Wang Kaifeng

    2013-11-01

    Full Text Available The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because Al was added for the final deoxidation during the smelting process of the Grade B+Steel, residual Al existed to some extent in the castings. High residual Al content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual Al content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual Al content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual Al content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual Al content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of Al addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.

  5. Heat treatment impact on the structure of die-cast magnesium alloys

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-01-01

    Full Text Available Purpose: In the following paper there have been the structure and properties of the MCMgAl6Zn1 magnesiumcast alloy as-cast state and after a heat treatment presented.Design/methodology/approach: A casting cycle of alloys has been carried out in an induction crucible furnaceusing a protective salt bath Flux 12 equipped with two ceramic filters at the melting temperature of 750±10ºC,suitable for the manufactured material. The following results concern light and scanning microscopy, X-rayqualitative and quantitative microanalysis.Findings: The results of the EDS chemical composition analysis confirm the presence of magnesium, aluminum,manganese, and zinc, constituting the structure of α solid solution with the Mg17Al12 placed mainly on the grainorder in the form of plates, also the phase AlMnFe with irregular shape, occurred often in the shape of blocksor needles and the Laves phase Mg2Si.Research limitations/implications: According to the alloys characteristic, the applied cooling rate and alloyadditions seems to be a good compromise for mechanical properties and microstructures, nevertheless furthertests should be carried out in order to examine different cooling rates and parameters of solution treatmentprocess and aging process.Practical implications: A desire to create as light vehicle constructions as possible and connected with itlow fuel consumption have made it possible to make use of magnesium alloys as a constructional material inautomotive industry.Originality/value: The undertaken examinations aim at defining the influence of a chemical composition andprecipitation processes on the structure and casting magnesium alloy properties in its as-cast state and after heattreatment with a different content of alloy components.

  6. Estimation of integrity of cast-iron cask against impact due to free drop test, (1)

    International Nuclear Information System (INIS)

    Ductile cast iron is examined to use for shipping and storage cask from a economic point of view. However, ductile cast iron is considered to be a brittle material in general. Therefore, it is very important to estimate the integrity of cast iron cask against brittle failure due to impact load at 9 m drop test and 1 m derop test on to pin. So, the F.E.M. analysis which takes nonlinearity of materials into account and the estimation against brittle failure by the method which is proposed in this report were carried out. From the analysis, it is made clear that critical flaw depth (the minimum depth to initiate the brittle failure) is 21.1 mm and 13.1 mm in the case of 9 m drop test and 1 m drop test on to pin respectively. These flaw depth can be detected by ultrasonic test. Then, the cask is assured against brittle failure due to impact load at 9 m drop test and 1 m drop test on to pin. (author)

  7. A study on the composition optimization and mechanical properties of Al-Mg-Si cast alloys

    International Nuclear Information System (INIS)

    The mechanical properties of Al-Mg-Si cast alloys with different chemical compositions were investigated using an orthogonal test method. The optimized chemical compositions of Al alloy are given in wt% as follows: 7.0%Si-0.35%Mg-2.0%Cu-0.2%Mn-0.2%Ni-0.1%V-0.8%RE-89.35%Al. The optimized Al-Mg-Si alloy with metal mold casting had excellent mechanical properties. The softening resistance of the optimized alloy was better than that of ZL101 at elevated temperatures. The scanning electron microscopy fractographs of the tensile samples of ZL101 and optimized Al alloy at different magnifications revealed that all the specimens were fractured in a ductile manner, consisting of well-developed dimples over the entire surface. The alloys failed in a mixed-mode fracture, comprised predominantly of transgranular shears and a small amount of quasi-cleavages.

  8. Mechanical and microstructural properties of a nickel-chromium alloy after casting process

    OpenAIRE

    Mauro Sayão de Miranda; José Maria Paolucci Pimenta; Carlos Antonio Freire Sampaio; Sidnei Paciornik; Marilia Garcia Diniz; André Rocha Pimenta

    2012-01-01

    Introduction: There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To e...

  9. Cross-Linked Slurry Cast Composite Modified Double Base Propellants : Mechanical Properties

    Directory of Open Access Journals (Sweden)

    V. K. Bhat

    1987-01-01

    Full Text Available Cross-linking of NC by TDI in slurry cast CMDB propellant enhanced TS by about 100 per cent. Coated AP with resorcinol, phloroglucinol, hexanetriol or silicone oil etc. along with cross-linking of NC raised TS from 18 - 30 kg/cm2. Inclusion of phloroglucinol and silicone oil gave increased burning rates. The probable mechanism of action of cross-linking and improvement of mechanical properties by coating of AP has been discussed.

  10. Mechanical properties and creep resistance behaviour of IN-713C alloy castings

    OpenAIRE

    F. Binczyk; J. Śleziona

    2010-01-01

    The paper presents the results of investigations on the effect of modification process on mechanical properties and high-temperature creep resistance behaviour of IN-713C alloy specimens. Two melts modified in volume were made and one melt modified by combined surfacevolume technique. A beneficial modifying effect of filters designed according to the authors’ genuine concept has been proved. As a reference, the results obtained on non-modified castings were used. A very beneficial effect of c...

  11. Control of Wear-Resistance Properties in Ti-added Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2012-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The wear resistance and mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The Hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the s...

  12. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  13. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  14. Properties of ABNT 41xx and 86xx cast steel modified with niobium; evaluation methodology and experimental preliminary results

    International Nuclear Information System (INIS)

    The experimental methodology to evaluate the mechanical properties of ABNT 41xx and 86xx steels modified with NB in the as cast and heat treated conditions and the first preliminary results obtained in a laboratory scale, are presented. (Author)

  15. The evaluation of dynamic cracking resistance of chosen casting alloys in the aspect of the impact bending test

    Directory of Open Access Journals (Sweden)

    J.Sadowski

    2008-10-01

    Full Text Available The increase of quality and durability of produced casting alloys can be evaluated on the base of material tests performed on a high level. One of such modern test methods are tests of the dynamic damage process of materials and the evaluation on the base of obtained courses F(f, F(t of parameters of dynamic cracking resistance KId, JId, performed with the usage of instrumented Charpy pendulums. In the paper there was presented the evaluation of dynamic cracking resistance parameters of casting alloys such as: AK12 aluminum alloy, L20G cast steel and spheroid cast iron. The methodology of the evaluation of that parameters was described and their change as well, for the AK12 alloy with the cold work different level, L20G cast steel cooled from different temperatures in the range +20oC -60oC, and for the spheroid cast iron in different stages of treatment i.e. raw state, after normalization, spheroid annealing and graphitizing annealing.Obtained parameters of dynamic cracking resistance KId, JId of tested casting alloys enabled to define the critical value of the ad defect that can be tolerated by tested castings in different work conditions with impact loadings.

  16. Effect of excitation current intensity on mechanical properties of ZL205A castings solidified under a traveling magnetic field

    OpenAIRE

    Xue-yi Fan; Liang Wang; Zhi-qiang Du

    2015-01-01

    The effect of excitation current intensity on the mechanical properties of ZL205A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205A alloy castings increase 27.2% and 67.7%, respectively, compared with tho...

  17. Effect of eutectic phase on damping and mechanical properties of as-cast Mg-Ni hypoeutectic alloys

    Institute of Scientific and Technical Information of China (English)

    WAN Di-qing; WANG Jin-cheng; WANG Gai-fang; LIN Lin; FENG Zhi-gang; YANG Gen-cang

    2009-01-01

    Dynamic mechanical analysis (DMA) was applied to systematically investigate the low frequency damping properties of as-cast hypoeutectic Mg-Ni alloys. The results show that the as-cast hypoeutectic Mg-Ni alloys exhibit high damping capacities. The strain amplitude dependent damping curve has its own special characteristic, in which the damping is strongly related to the strain amplitude. The effect of the eutectic phase on damping and the mechanical properties of as-cast hypoeutectic Mg-Ni alloys were also discussed in detail.

  18. Morphological and Mechanical Properties of Dispersion-Cast and Extruded Nafion Membranes Subjected to Thermal and Chemical Treatments

    OpenAIRE

    Osborn, Shawn James

    2009-01-01

    The focus of this research project was to investigate morphological and mechanical properties of both extruded and dispersion-cast Nafion® membranes. The project can be divided into three primary objectives; obtaining a fundamental understanding of the glass transition temperature of Nafion®, determining the effect of thermal annealing treatments on the morphology and mechanical properties of dispersion-cast Nafion®, and examination of dispersion-cast Nafion® subjected to an ex-situ, Fen...

  19. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    Science.gov (United States)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-07-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  20. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    Science.gov (United States)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  1. Structure changes and mechanical properties of laser alloyed magnesium cast alloys

    OpenAIRE

    W. Kwaśny; T. Tański,; Sz. Malara; J. Domagała; L.A. Dobrzański

    2009-01-01

    Purpose: The aim of this work was to investigate structure and mechanical properties of the MCMgAl12Zn1 casting magnesium alloys after laser treatment. The laser treatment was carried out using a high power diode laser (HPDL).Design/methodology/approach: The laser processing of TiC, WC, SiC particles in MCMgAl12Zn1 and the resulted microstructures and properties are discussed in this paper. The resulting microstructure in the modified surface layer was examined. Phase composition was...

  2. Mechanical properties and corrosion behaviour of 18Cr-11Ni-2,5Mo cast steel

    Directory of Open Access Journals (Sweden)

    M. Starowicz

    2009-10-01

    Full Text Available The study discusses the effect of variable carbon concentration (0,02; 0,07 and 0,14% on the mechanical properties and corrosion resistance in 3,0% NaCl solution of 18Cr-11Ni-2,5Mo austenitic cast steel. It has been proved that at the concentration of 0,07%C, products made of the examined cast steel reveal on their surface some symptoms of local corrosion. Carbon concentration raised to 0,14%C results in advanced intercrystalline corrosion and the onset of local corrosion. Carbon concentration increased from 0,02 to 0,14% also results in the tensile strength UTS raised from 487MPa to 579MPa (a nearly 20% increase with elongation El reduced from 55,3% to 49,6%, and reduction of area RA from 69,3% to 53,4%.

  3. Value/impact of design criteria for cast ductile iron shipping casks

    International Nuclear Information System (INIS)

    The ductile failure criteria proposed in the Base report appear appropriate except that stress intensity values, S/sub m/ should be based on lower safety factors and ductility should be added as a criterion. A safety factor for stress intensity, s/sub m/ of 4 is recommended rather than 3 on minimum ultimate tensile strength, S/sub u/ in accordance with ASME code philosophy of assigning higher safety factors to cast ductile iron than to steel. This more conservative approach has no impact on costs since the selection of wall thickness is controlled by shielding rather than by stress considerations. The addition of a ductility criterion is recommended because of the problems associated with the selection of appropriate brittle failure criteria and the potential for cast ductile iron to have extremely low elongation at failure. Neither a materials nor a linear elastic fracture mechanics (LEFM) approach appear to be viable for demonstrating the prevention of brittle failure in cast ductile iron shipping casks. It is possible that the analytic methods predict brittle failure because of extremely conservative assumptions whereas real casks may not fail. Model drop tests could be used to demonstrate containment integrity. It is estimated that a risk committment of at least $1,000,000 would be required for engineering, design, model fabrication and testing. Before taking such risks, a mechanism should be found to obtain concurrence from NRC that the results of the test would be acceptable. Probabilistic approaches or model testing could be used to demonstrate the acceptability of cast ductile iron casks from a brittle failure point of view. Before probabilistic methods can be used, the NRC would have to be persuaded to accept the approach of the Competent Authority in West Germany or more formalized methods for probabilistic risk assessments

  4. Influence of multi element micro alloying on solidification microstructure and impact wear properties of high chromium cast iron%多元微合金化对高铬铸铁凝固组织及冲击磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    Titanium,vanadium,niobium and molybdenum were added into 2.85C⁃31Cr high chromium cast iron to prepare multicomponent chromium alloys. The influence of titanium,vanadium,niobium and molybdenum on microsturcture evolvement and impact wear properties was investigated. The results show that carbon in iron liquid together with strong carbides formation elements form the corresponding carbides or alloy carbides. With the increase of addition amount of alloy elements,the microstructure of high chromium cast iron changes from hypereutectic into eutectic and hypoeutectic alloy. The weight losses of the alloy with the same component increase first and then decrease with the increase of impact load(2.0,2.5,3.0,3.5 J),which is related with the hardening behavior of the wearing surface during the impact wear. The more the amount of austenite,the higher the wear weight loss rate. The microstructure with fine size and even distribution can decrease the wear weight loss rate. The wear weight loss for eutectic alloy is the minimum and that for hypoeutectic alloy is the maximum under the same impact load.%通过在2.85C-31Cr合金中加入多元微量合金元素V、Ti、Nb、Mo制备多元铬系合金,研究多元微合金化对高铬铸铁的凝固组织和冲击磨损性能的影响。结果表明:铁液中部分C与强碳化物形成元素结合生成碳化物或合金碳化物;随合金元素加入量的增加,高铬铸铁凝固组织从稍微过共晶转变成共晶、亚共晶组织;相同成分的合金质量损失率随冲击磨损载荷(2.0、2.5、3.0、3.5 J)的增加呈先增加后减小、再增大的变化规律,这与材料在冲击磨损过程中的硬化行为有关;凝固组织中奥氏体数量越多,磨损质量损失率越大,尺寸细小和分布均匀的凝固组织能减小磨损质量损失率;在同一冲击载荷下,共晶成分的合金质量损失率最小,亚共晶成分的质量损失率最大。

  5. Effect of centrifugal counter-gravity casting on solidification microstructure and mechanical properties of A357 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Li Xinlei

    2014-01-01

    Full Text Available To investigate the influence of Centrifugal Counter-gravity Casting (C3 process on the solidification microstructure and mechanical properties of the casting, A357 aluminum alloy samples were produced by different process conditions under C3. The results show that C3 has better feeding capacity compared with the vacuum suction casting; and that the mechanical vibration and the convection of melts formed at the centrifugal rotation stage suppress the growth of dendrites, subsequently resulting in the refinement of grains and the improvement of mechanical properties, density and hardness. A finer grain and higher strength can be obtained in the A357 alloy by increasing centrifugal radius and rotational speed. However, casting defects will appear near the rotational axis and the mechanical properties will decrease once the rotational speed exceeds 150 r·min-1.

  6. Measurement of thermophysical properties of metallic melts for high quality castings

    Science.gov (United States)

    Fecht, H. J.; Wunderlich, R.; Meier, M.; Sprenger, H. J.

    2001-02-01

    The thermophysical properties of interest for casting simulations are melting range, fraction solid, density (thermal expansion), viscosity, specific heat, Gibbs free enthalpies, diffusion coefficients, thermal (electrical) conductivity, surface tension and emissivity. Some of these data can be obtained more or less accurately by conventional methods. High precision measurements on chemically highly reactive melts and fluids at the temperatures of interest require the application of containerless processing using non-contact diagnostic tools. By eliminating the contact between the melt and a crucible accurate surface nucleation control and the synthesis of materials free of surface contamination become possible. Under microgravity conditions, further advantages are expected from the significantly smaller electromagnetic fields needed to stabilize the containerless melts. This was shown in several Spacelab missions in which the results clearly showed an improvement in accuracy over terrestrial measurement, even on pure metals. This is an indication that the electromagnetic levitation technique provides a suitable environment for the accurate measurement of the thermophysical properties of metallic melts of industrial interest also on the ISS. The expected outcomings from a running ``Thematic Network'' funded by the European Commission and industry together with the new co-operative project ``Thermolab'' supported by industry and the European Space Agency within the frame of the ESA-Microgravity Applications Promotion program will allow a broader use of castings in different applications. Another RTD-project dealing with improved metal cast processing routes prepared for submittance to the EC this year will be clustered with other R&D-projects building up a ``Virtual Institute for Advanced Casting.'' The whole R&D-network will combine research activities of about 30 partners from 10 different european countries, where microgravity research and technology development

  7. Structure changes and mechanical properties of laser alloyed magnesium cast alloys

    Directory of Open Access Journals (Sweden)

    W. Kwaśny

    2009-02-01

    Full Text Available Purpose: The aim of this work was to investigate structure and mechanical properties of the MCMgAl12Zn1 casting magnesium alloys after laser treatment. The laser treatment was carried out using a high power diode laser (HPDL.Design/methodology/approach: The laser processing of TiC, WC, SiC particles in MCMgAl12Zn1 and the resulted microstructures and properties are discussed in this paper. The resulting microstructure in the modified surface layer was examined. Phase composition was determined by the X-ray diffraction method using XPert device. The measurements of hardness after laser melt injection was also studied.Findings: Structure of the solidyifying material after laser alloying is characteristic with occurrences of areas with the diversified morphology, dependent on solidification rate of the magnesium alloys, is characteristic of structure of the solidified material after laser alloying. The MCMgAl12Zn1 casting magnesium alloys after laser alloying demonstrate similar hardness tests results, in reference to hardness of the alloys before their laser treatment.Research limitations/implications: In this research three powders (titanium carbide, tungsten carbide and silicon carbide were used to reinforcing the surface of the MCMgAl12Zn1 casting magnesium alloys.Practical implications: High power diode laser can be used as an economical substitute for CO2 and Nd:YAG lasers to modify the surface magnesium alloy by feeding the carbide particles.Originality/value: The originality of this work is applying of High Power Diode Laser for laser treatment of cast magnesium alloy consisting in fusion penetration of the hard particles of titanium, tungsten, and silicon carbides into the remelted surface layer of the alloy.

  8. Modeling Mechanical Properties of Aluminum Composite Produced Using Stir Casting Method

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available ANN (Artificial Neural Networks modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% Al2O3 particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580oC for half an hour and tempered at 120oC for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron feedforward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation.

  9. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  10. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  11. Mechanical Properties - Structure Correlation for Commercial Specification of Cast Particulate Metal Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep Rohatgi

    2002-12-31

    In this research, the effects of casting foundry, testing laboratory, surface conditions, and casting processes on the mechanical properties of A359-SiC composites were identified. To observe the effects, A359-SiC composites with 20 and 305 SiC particles were cast at three different foundries and tested at three different laboratories. The composites were cast in sand and permanent molds and tested as-cast and machined conditions. To identify the effect of the volume fraction and distribution of particles on the properties of the composites, particle distribution was determined using Clemex Image analysis systems, and particle volume fraction was determined using wet chemical analysis and Clemex Image analysis systems. The microstructure and fractured surfaces of the samples were analyzed using SEM, and EDX analysis was done to analyze chemical reaction between the particles and the matrix. The results of the tensile strengths exhibited that the tensile strengths depend on the density and porosity of the composites; in general the higher tensile strength is associated with lower porosity and higher density. In some cases, composites with lower density were higher than these with higher density. In the Al-20% SiC samples, the composites with more inclusions exhibited a lower tensile strength than the ones with fewer inclusions. This suggests that macroscopic casting defects such as micro-porosity, shrinkage porosity and inclusions appear to strongly influence the tensile strength more than the microstructure and particle distribution. The fatigue properties of A359/20 vol.% SiC composites were investigated under strain controlled conditions. Hysteresis loops obtained from strain controlled cyclic loading of 20% SiCp reinforced material did not exhibit any measurable softening or hardening. The fatigue life of Al-20% SiC heat treated alloy at a given total strain showed wide variation in fatigue life, which appeared to be related to factors such as inclusions

  12. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, A., E-mail: a2lombar@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); D' Elia, F.; Ravindran, C. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); MacKay, R. [Nemak of Canada Corporation, 4600 G.N. Booth Drive, Windsor, Ontario N9C4G8 (Canada)

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.

  13. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    International Nuclear Information System (INIS)

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions

  14. Effects of heat treatment on mechanical properties of modified cast AISI D3 tool steel

    International Nuclear Information System (INIS)

    Highlights: • Secondary hardening occurred when tempered at 500 °C and austenitized at 1050 °C. • Hardness of new steel is about 1 HRC higher than D3 steel, when tempered at 300 °C. • New steel has less bending strength and strain compared with D3 steel. • With increasing hardness wear resistance is improved about 56%. • Linear relationship observed between weight loss and hardness of modified steel. - Abstract: In this research new modified as-cast cold work AISI D3 tool steel was produced by increasing Ti and Nb and decreasing Cr. At first, Cast samples were homogenized at optimized cycle and then austenitized and tempered within the specified temperature ranges. Mechanical properties and wear behavior were determined by performing hardness test, three point bending test and pin on disc wear test. Also, scanning electron microscope was employed to characterize the new modified steel. For the specimens austenitized and tempered at 1050 °C and 500 °C respectively, the secondary hardening effect was observed which was consistent with lower weight loss of pin on disc wear test results. The results show that, the new modified as-cast steel represents hardness and wear resistance equal to or better than that of standard wrought D3 steel, while its strength and toughness are lower than those of wrought steel

  15. Effect of inter-critical quenching on mechanical properties of casting low-alloy steel

    Directory of Open Access Journals (Sweden)

    Liu Zhongli

    2013-07-01

    Full Text Available For some casting low-alloy steels, traditional quenching and tempering heat treatments can improve the strength; however, sometimes the ductility is not satisfied. Therefore, some kind of effective heat treatment method seems necessary; one which could improve the ductility, but not seriously affect the strength. In this paper, the effect of inter-critical quenching (IQ on the mechanical properties of casting low-alloy steel was studied. IQ was added between quenching and tempering heat treatment; and the microstructure and mechanical properties were compared to the same steel with the traditional quenching and tempering treatments. The experimental results show that the microstructure comprises small-size ferrite and martensite when the IQ is adopted; and that different temperatures can control the ferrite quantity and distribution, and, as a result, influence the mechanical properties. In the case of IQ, the tensile strength decreases just a little, but the ductility increases a lot; and the strength-ductility product (its value is the arithmetic product of elongation and tensile strength increases by between 6% and 10%, which means the IQ heat treatment can improve comprehensive mechanical properties.

  16. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys

    International Nuclear Information System (INIS)

    In this study, the mechanical properties of as-cast Ti-Sn alloys with Sn content ranging from 1 to 30 wt.% prepared using a dental cast machine were investigated and compared with commercially pure titanium (c.p. Ti), which was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Sn alloys matched those for α Ti, and no β phase peaks or any intermediate phases were found. All the Ti-Sn alloys had higher bending strengths, bending moduli and elastic recovery angles than those of c.p. Ti. For example, the bending strength of the Ti-1Sn alloy was higher than that of c.p. Ti by 68%, its bending modulus was higher than that of c.p. Ti by 43% and its elastically recoverable angle was higher than that of c.p. Ti by as much as 240%. Additionally, the Ti-1Sn, Ti-5Sn and Ti-10Sn alloys exhibited ductile properties. When the Sn content was 20 wt.% or greater, the alloys showed brittle properties. Our research suggested that Ti-1Sn alloy had the most favorable mechanical properties of all the metals in this study, making it the best candidate for prosthetic dental applications.

  17. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature

    International Nuclear Information System (INIS)

    Highlights: ► The primary circuit piping materials from Ling Ao Nuclear Power Plant was thermally aged for as long as 20,000 h. ► G-phase precipitation was characterized by HRTEM. ► Hardness in ferrite and austenite, tensile properties and impact behaviors of the long-term aged materials were studied. ► The mechanism of thermal aging embrittlement was proposed. - Abstract: The cast austenite stainless steels were investigate in order to understand the microstructural evolution and mechanical properties in the long-term thermal aging at 400 °C for up to 20,000 h. Spinodal decomposition and G-phase precipitation in ferrite after long-term thermal aging lead to the degradation of mechanical properties. Ferrite hardness increases with aging time, but the austenite hardness does not change. Tensile strength is not strongly affected by aging time, but the plasticity has a significant decrease after long-term aging. Under impact with high strain rate, the ferrite phases deform by the way of deformation twinning. High stress concentration on the phase boundaries cause the phase boundary separating and the austenite’s tearing off

  18. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    Science.gov (United States)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods

  19. Effect of graphite degradation on the LCF properties of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Denk Josef

    2014-06-01

    Full Text Available The effect of degraded microstructure on the tensile and LCF properties was studied on a casing of a turbocharger, which exhibited locally irregular graphite formation. The tensile tests showed that the ductility values of the zone with degraded graphite decreased strongly compared to the zone with normal graphite, while the strength values decreased only slightly. Based on these results and a LCF reference curve for nodular cast iron with normal graphite structure, a synthetic LCF curve was generated for the material condition with degraded graphite structure. LCF tests on specimens with irregular graphite structure confirmed the predicted LCF behaviour quite good.

  20. Effect of grain refinement on the microstructure and tensile properties of thin 319 Al castings

    International Nuclear Information System (INIS)

    The structural examinations and tensile properties of thin-section Al castings (319 Al alloy) have been investigated by applying a pattern with different cross sections (2-12 mm). Al-5Ti-1B and Al-5Zr grain refiners were added to the molten Al alloy to produce different levels of Ti (0.01%, 0.05%, 0.1% and 0.15%) and Zr (0.05%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5%) in the castings. From macrostructural studies, it was found that Al-5Zr is less effective in grain refining of 319 alloy in comparison with Al-5Ti-1B master alloy. The optimum levels of grain refiners were selected for determination of tensile properties. T6 heat treatment was applied for selected specimens before tensile testing. Further structural results also showed that thinner sections are less affected by grain refiners. This observation was found to be in a good agreement with tensile test results, where tensile properties of the base and grain refined alloys did not show considerable differences in thinner sections (<6 mm).

  1. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy

    International Nuclear Information System (INIS)

    With its combination of high specific strength, good machinability and excellent weldability, AA2219 direct chill (DC) cast alloy has become a new category of materials for manufacturing large molds for the plastics and automotive industries. The effect of two-step aging on the microstructural evolution and mechanical properties of AA2219 DC cast alloy was investigated. The precipitate microstructure was characterized under different heat treatment conditions using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The poor mechanical properties of the air-quenched alloy were attributed to the presence of quench-induced coarse θ′ and θ precipitates, which had very limited contribution to the precipitation hardening during the aging treatment. The two-step aging treatment of the air-quenched AA2219 alloy involved the precipitation of GP zones in the first step followed by their transformation into fine θ″ strengthening precipitates in the second step, which considerably improved the mechanical properties. After undergoing 120 °C/36 h+190 °C/8 h two-step aging, the hardness, YS and UTS of the air-quenched alloy were increased by 27%, 46% and 15%, respectively, compared with 190 °C/8 h one-step aging

  2. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2015-02-11

    With its combination of high specific strength, good machinability and excellent weldability, AA2219 direct chill (DC) cast alloy has become a new category of materials for manufacturing large molds for the plastics and automotive industries. The effect of two-step aging on the microstructural evolution and mechanical properties of AA2219 DC cast alloy was investigated. The precipitate microstructure was characterized under different heat treatment conditions using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The poor mechanical properties of the air-quenched alloy were attributed to the presence of quench-induced coarse θ′ and θ precipitates, which had very limited contribution to the precipitation hardening during the aging treatment. The two-step aging treatment of the air-quenched AA2219 alloy involved the precipitation of GP zones in the first step followed by their transformation into fine θ″ strengthening precipitates in the second step, which considerably improved the mechanical properties. After undergoing 120 °C/36 h+190 °C/8 h two-step aging, the hardness, YS and UTS of the air-quenched alloy were increased by 27%, 46% and 15%, respectively, compared with 190 °C/8 h one-step aging.

  3. MICROSTRUCTURE AND TENSILE PROPERTY OF AN AS-CAST DUPLEX STAINLESS STEEL

    Institute of Scientific and Technical Information of China (English)

    P.L.Mao; K.Yang; G.Y.Su

    2001-01-01

    The effect of high temperature solution heat treatment on the microstructure and ten-sile property of as-cast 0Cr17Mn14Mo2N duplex stainless steel was investigated.Itwas found that the morphology ofδ-ferrite in the dual phases microstructures changedgradually from dendritic to lamellar and then to spheroidal,and its distribution be-came more uniform under appropriate treatment.When the treat temperature waslower than 1250C,the spheroidial ratio and the homogeneous distribution o fδ-ferriteincrease with increasing temperature,which corresponds to a better tensile property.In addition,when the treat temperature reached 1250~C and above,the microstructureconsists of coarse equiaxial δ-ferrite grains with the needle austenite at its boundaries,which results in a decrease of the tensile properties of the steel.

  4. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  5. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  6. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  7. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    Directory of Open Access Journals (Sweden)

    Gabriele Gofferje

    2015-01-01

    Full Text Available There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resistance. The aim of this study was to explore the potential for packaging applications of proteins from Jatropha curcas L. and to compare the performance with literature data on cast films from whey protein isolate. As a by-product from oil extraction, high amounts of Jatropha meal are obtained requiring a concept for its sustainable utilization. Jatropha seed cake includes up to 40% (w/w of protein which is currently not utilized. The present study provides new data on the potential of Jatropha protein for packaging applications. It was shown that Jatropha protein cast films show suitable barrier and mechanical properties depending on the extraction and purification method as well as on the plasticiser content. Based on these findings Jatropha proteins own potential to be utilized as coating material for food packaging applications.

  8. The Effects of Fracture Origin Size on Fatigue Properties of Ductile Cast Iron with Small Chill Structures

    Science.gov (United States)

    Sameshima, Daigo; Nakamura, Takashi; Horikawa, Noritaka; Oguma, Hiroyuki; Endo, Takeshi

    Reducing the weight of a machine structure is an increasingly important consideration both for the conservation of resources during production and for the energy saving during operation. With these objectives in mind, thin-walled ductile cast iron has recently been developed. Because rapid cooling could result in brittle microstructure of cementite (chill) in this cast iron, it is necessary to investigate the effect of cementite on the fatigue properties. Therefore, fatigue tests were carried out on a ductile cast iron of block castings which contained a relatively small amount of cementite. Fracture surface observation indicated that the fracture origins were located at graphite clusters and cast shrinkage porosity, not at cementite. It appears that when the size of the cementite is smaller than that of the graphite, the cementite does not affect the fatigue properties of ductile cast iron. Not surprisingly, the fatigue lives were found to increase with decrease in the size of the fatigue fracture origin. The threshold initial stress intensity factor range ΔKini,th for fatigue failure was found to be about 3-4MPa√m, independent of microstructure.

  9. Structure-property relationships in centrifugally cast IMI 550 (Ti4Al-4Mo-2Sn-0.5Si)

    International Nuclear Information System (INIS)

    Centrifugal casting technology has been used to produce test pieces and hard-point bracket components for a determination of the structure-property relationships in the age-hardenable titanium alloy IMI 550. Tensile, high cycle fatigue, fracture toughness and elevated temperature creep results have shown that an attractive combination of property levels can be achieved in this alloy. It has been established that the tensile, fatigue and creep performance of cast plus Hot Isostatically Pressed (HIP) IMI 550 approaches that of conventionally wrought material while fracture toughness is superior. The improvement obtained in fracture toughness is a direct result of the presence of the highly acicular Widmanstatten or transformed beta microstructure produced by casting compared with the more traditional equiaxed alpha + beta structure exhibited by wrought products. HIP'ing has been shown to eliminate all traces of as cast internal shrinkage porosity and to thus yield a dramatic improvement in high cycle fatigue performance. HIP'ing was accompanied by general coarsening of the acicular alpha phases present in the micro-structure after casting. Macro and microstructural analysis of the castings indicated a refined and uniform beta grain size which it is believed is due to the presence of silicon in the alloy. 16 references

  10. Evaluation of material properties considering thermal embrittlement for accelerated aged CF-8M and CF-8A cast austenitic stainless steel

    International Nuclear Information System (INIS)

    Cast austenitic stainless steel have been widely used for primary coolant piping in light water reactors. This material is subject to thermal embrittlement at reactor operating temperature. CF-8M and CF-8A cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. Thermal embrittlement results in spinodal decomposition of delta-ferrite leading to decreased fracture toughness. In this study, the specimens were prepared using an accelerated aging method. The measurement of ferrite content, Charpy impact test and J-R test were performed to verify the predicting equation for aged material properties. In case of above 25% ferrite content, predicted result of J-R curve might be non-conservative

  11. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  12. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, A.R., E-mail: arandrade@gmail.com [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Bolfarini, C. [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Ferreira, L.A.M.; Vilar, A.A.A. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Souza Filho, C.D.; Bonazzi, L.H.C. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Department of Materials, Aeronautical and Automotive Engineering, University of São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP (Brazil)

    2015-03-25

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same.

  13. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    International Nuclear Information System (INIS)

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same

  14. Structure and mechanical properties of as-cast Ti–5Sn–xCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Chen, Chien-Yu [Advanced Materials and BioMaterials Laboratory, Department of Materials Science and Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591, Taiwan, ROC (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Advanced Materials and BioMaterials Laboratory, Department of Materials Science and Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591, Taiwan, ROC (China)

    2014-06-01

    In this study, the effects of chromium (Cr) on the structure and mechanical properties of a Ti–5Sn-based system were examined, with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti–5Sn and a series of Ti–5Sn–xCr (x=1, 3, 5, 7, 9, 11 and 13 wt%) alloys prepared by using a commercial arc-melting vacuum-pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted using a diffractometer. Three-point bending tests were performed on all specimens to evaluate their mechanical properties. The experimental results indicate that the structure and mechanical properties of these alloys changed with the addition of various amounts of Cr. The as-cast Ti–5Sn has a hexagonal α' phase. When 1 wt% Cr was introduced into the Ti–5Sn alloy, the structure essentially stayed the same. When the Cr content was at 3 wt%, retention of the metastable β phase began. When the Cr content was increased to 5 wt% or greater, the β phase was entirely retained. The ω phase was detected in Ti–5Sn–3Cr and Ti–5Sn–5Cr. Ti–5Sn–5Cr, which had the largest quantity of the ω phase, exhibited the highest microhardness value due to the hardening effect of the ω phase. Among all Ti–5Sn-based alloys, the β-phase Ti–5Sn–7Cr alloy had the lowest elastic modulus. It also exhibited higher bending strength/modulus ratios, which at 26.8 were higher than that of c.p. Ti (8.5) and that of Ti–6Al–4V (17.4). Furthermore, the elastically recoverable angle of this alloy (31.0°) was much greater than that of c.p. Ti (2.7°). In the search for better implant materials, the low modulus, ductile property, excellent elastic recovery capability and high strength/modulus ratio of β-phase Ti–5Sn–7Cr make this alloy a promising candidate.

  15. EFFECT OF CASTING MOULD ON MECHANICAL PROPERTIES OF 6063 ALUMINUM ALLOY

    OpenAIRE

    WASIU AJIBOLA AYOOLA; SAMSON OLUROPO ADEOSUN; OLUJIDE SAMUEL SANNI; AKINLABI OYETUNJI

    2012-01-01

    Modern production methods for casting articles include the use of sand- mould, metal-mould, die, and centrifugal castings. Castings produced using sand mould is known to have peculiar microstructures depending on average size, distribution and shape of the moulding sand grains and the chemical composition of the alloy. These affect the surface finish, permeability and refractoriness of all the castings. In this paper, the effect of using CO2 process, metal mould, cement-bonded sand mould and ...

  16. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy

    Science.gov (United States)

    Fritzemeier, L. G.

    1988-01-01

    A development program has been conducted to improve the cyclic properties of the PWA 1480 single-crystal superalloy by reducing or entirely eliminating casting porosity at fatigue-initiation sites, through the use of improved casting process parameters and HIPing; potential mechanical property improvements in a high-pressure hydrogen environment were also sought in alternatives to the standard coating and heat-treatment cycle. High thermal gradient casting was found to yield a reduction in overall casting porosity density and pore sizes. The most dramatic mechanical property improvement resulted from HIPing.

  17. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  18. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si)3(Zr, Ti), Al3CuNi and Al9NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  19. Structure and mechanical properties of casting MSR-B magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2006-08-01

    Full Text Available Purpose: MSR-B is a high-strength magnesium alloy characterized by good mechanical properties both at anambient and elevated temperature (up to 200°C. It contains silver and rare earth elements. The aim of this paperis to present the results of research on the microstructure and mechanical properties of the MSR-B magnesiumalloy in an as-cast condition.Design/methodology/approach: For the microstructure observation, a Reichert metallographic microscopeMeF2 and a HITACHI S-3400N scanning electron microscope with a Thermo Noran EDS equipped withSYSTEM SIX were used. A qualitative phase analysis was performed with a JEOL JDX-7S diffractometer.Quantitative examination was conducted using the “MET-ILO” automatic image analysis programme.Findings: Based on the investigation carried out it was found that the MSR-B alloy in an as-cast conditioncharacterized with a solid solution structure α with island of divorced eutectic (α + (Mg,Ag12Nd and probably(Mg,Ag41Nd5 phase. The mean area of the solid solution α grain equals Ā=543 μm2, and the mean surfacefraction of eutectic regions is AA= 5.81%. The yield strength is near 90 MPa in 20°C and near 70 MPa in200°C. Tensile strength is near 180 MPa in both temperatures. The material hardness is 47 HV.Research limitations/implications: Future researches should contain investigations of the influence of alloyadditives on microstructure and mechanical properties of MSR_B alloy in as-cast condition and after heattreatment.Practical implications: MSR-B magnesium alloy is used in the aircraft industry, for wheels, engine casings,gear box casings and rotor heads in helicopters. Results of investigation may be useful for preparing castingtechnology of the Mg-Ag-Nd alloys.Originality/value: The results of the researches make up a basis for the next investigations of magnesium alloyswith addition of Ag and Nd designed to exploitation at temperature to 300°C.

  20. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    OpenAIRE

    Liu Guanglei; Si Naichao; Sun Shaochun

    2013-01-01

    In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS) increases significantly and the mecha...

  1. Heat treatment effect on structure and mechanical properties of nonmagnetic high nitrogen steels produced by casting with counterpressure

    International Nuclear Information System (INIS)

    Effects of quenching temperature, aging temperature and aging duration on the structure and mechanical properties of vanadium alloyed high nitrogen Cr-Mn steels produced by casting with nitrogen counter-pressure are investigated. For studying aging kinetics apart from the investigation of the structure and mechanical properties measurements of specific electric resistance, specific heat, relative elongation of specimens in the process of heating, cooling and isothermal holding have been performed. It has been found that casting with nitrogen counterpressure permits to produce aging stainless high nitrogen (up to 1.1 % N) nickel-free steels which can be used for manufacturing heavy-loaded nonmagnetic machine parts and devices. The strength level of high nitrogen Cr-Mn steels produced by casting with nitrogen counterpressure considerably increases using vanadium as an addition ensuring hardening with precipitation of VN disperse particles

  2. Impacts of the structure and processing conditions on the voltage arise in machining of gray cast irons

    Directory of Open Access Journals (Sweden)

    M. Aksoy

    2007-12-01

    Full Text Available Purpose: Machining is one of the most widely used manufacturing processes. The machining of gray cast iron is important because of wide application of these materials in various industries. The machinability studies have been carried out for these materials and it was reported that the amount of graphite in cast irons was one of the influential factor in tool wear during machining. This study is aimed to provide new approach to examine tool life by considering voltage arise during machining of gray cast irons.Design/methodology/approach: The experimental study carried out to measure voltage values during various machining conditions such as cutting speeds, feed rates and depth of cut. Chemical compositions of the four different gray cast irons were machined and the experimental results were compared to the machining of brass and steel. The selected machining conditions were 0.16, 0.32 and 0.48 mm feed rates, 0.5, 1 and 1.5 mm depths of cut and 125, 250 and 355 rpm spindle speeds, respectively.Findings: It was observed that the voltage difference was detected during the machining of cast iron specimens. This was due to increase of graphite particles within total intersections. This would lead to conclusion that high graphite particles would increase voltage and this would provide information about tool wear.Research limitations/implications: Because of being cheap, the usage of cast iron with lamella graphite particles in specific electric circuits to be used in industrial applications need to be further investigated. Also whether or not the cost iron with lamella graphite particles can be used as voltage storage under intensive stress needs to be investigated.Originality/value: Impacts of the structure and processing conditions on the voltage arise in machining of gray cast irons.

  3. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  4. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  5. Evaluation of Physical Properties of Wax Mixtures Obtained From Recycling of Patterns Used in Precision Casting

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2015-04-01

    Full Text Available The study investigated the properties of selected certified mixtures used to make wax patterns for the production of precision castings for the aerospace industry. In addition, an assessment of the recycled mixtures consisting of certified wax materials recovered during autoclaving was carried out. Hardness was tested via a proposed method based on penetration, creep related deformation, bending strength and linear contraction. The hardness was studied on laboratory specimens and patterns made with the use of injection molding equipment. For these patterns, linear contraction was estimated at variable pressure and for different temperature injection parameters. Deformations connected with creep and resistance were evaluated on cylindrical specimens. Differences in creep resistance in relation to the hardness were observed depending on the type of pattern mixtures. Recycled mixture has a greater resistance and smaller linear contraction than certified mixtures used for making sprue, raisers and other parts of filler system.

  6. Mechanical and microstructural properties of a nickel-chromium alloy after casting process

    Directory of Open Access Journals (Sweden)

    Mauro Sayão de Miranda

    2012-01-01

    Full Text Available Introduction: There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To evaluate the mechanical properties, tensile bond strength and microhardness tests were performed. The microstructural characterization was performed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Statistical analyses were performed on microhardness results, through Student t test. A program for digital image processing was used to determine the percentage of the existing phases. Results and conclusion: The tensile strength was higher than that reported by the manufacturer, 559.39±25.63MPa versus 306 MPa, respectively. However, the yield strength was slightly lower, 218.71±29.75 MPa versus 258 MPa, reported by the manufacturer. The microhardness tests showed about 70 HV, far above the value informed by the manufacturer (21 HV. It can be affirmed with 95% confidence interval that the casting process did not alter the material’s hardness. The alloy’s microstructure is formed by a matrix with dendritic aspect and gray color and a second white interdendritic phase with equally distributed precipitates as well as porosities. EDS tests showed that the matrix is rich in nickel and chromium, the interdendritic second phase is rich in molybdenum and the precipitates in titanium or silicon. The matrix represents 86% of the area and the second phase 12%.

  7. Microstructure and Mechanical Properties of Electromagnetic Centrifugal Cast 1Cr25Ni20Si2 Tube Blank

    Institute of Scientific and Technical Information of China (English)

    QIU Yi-qing; JIA Guang-lin; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    1Cr25Ni20Si2 tube blank centrifugally cast in a steady magnetic field was investigated. The results indicated that the solidification structure and the mechanical properties of the blank can be improved remarkably by electromagnetic stirring, and seamless tube can be manufactured from such blanks.

  8. DEVELOPMENT OF CASTING TECHNOLOGIES DURING FORMATION OF PROPERTIES OF ALUMINUM-BASED MATERIALS WITH CARBON OF DIFFERENT STRUCTURAL CONDITION

    OpenAIRE

    A. T. Volochko

    2015-01-01

    The paper gives an assessment of existing casting methods used for manufacturing products from aluminum materials with carbon filling compounds. It presents results of comparative studies of properties of aluminum materials in which microcrystalline graphite, fullerene black, nanotubes and an amorphous phase of glass carbon have been used as filling compounds.

  9. DEVELOPMENT OF CASTING TECHNOLOGIES DURING FORMATION OF PROPERTIES OF ALUMINUM-BASED MATERIALS WITH CARBON OF DIFFERENT STRUCTURAL CONDITION

    Directory of Open Access Journals (Sweden)

    A. T. Volochko

    2015-11-01

    Full Text Available The paper gives an assessment of existing casting methods used for manufacturing products from aluminum materials with carbon filling compounds. It presents results of comparative studies of properties of aluminum materials in which microcrystalline graphite, fullerene black, nanotubes and an amorphous phase of glass carbon have been used as filling compounds.

  10. The effect of the gaseous-plasma jet treatment of the powder vanadium cast iron and chromium mixture on the composition, structure powder and the casting properties

    International Nuclear Information System (INIS)

    The peculiarities of interaction in the low-temperature plasma of two powders, essentially differing in the melt temperature, are considered. The particles of the vanadium cast iron and chromium were chosen for the studies. The powders of three compositions with fractions from 50 up to 100 μm were obtained after mixing, combined regrinding and sifting the fractions from 50 up to 100 μm. The powders were transmitted through the plasma in the argon-nitrogen medium and quenched in the water. The conclusion on the oxidation and decarbonization of the particles by melting in the gaseous-plasma jet and cooling in the water may be made by the results of chemical analysis of various powder fractions. It is established, that by combined transfer of the cast iron and chromium particles, differing in the composition and melting temperature, there occurs their redistribution by fractions due to interaction bulk density, spillage density and yield morphology and increase in their internal porosity. Sufficiently high properties of coatings are provided for on the account of the particles statistically uniform distribution in spite of their nonuniformity by composition, structure and properties

  11. High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics

    OpenAIRE

    Laukli, Hans Ivar

    2004-01-01

    Cold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings.The investigatio...

  12. Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al-Si-Mg alloys: Statistical and image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Eisaabadi B, G., E-mail: G_eisaabadi@mehr.sharif.ir [Department of materials science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Foundry Technology Center, Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Davami, P. [Department of materials science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kim, S.K. [Foundry Technology Center, Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Varahram, N. [Department of materials science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Yoon, Y.O.; Yeom, G.Y. [Foundry Technology Center, Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2012-12-15

    Double oxide films (hereafter: oxides), inclusions and Fe-rich phases are known to be the most detrimental defects in cast Al-Si-Mg alloys. The effects of these defects on reproducibility of tensile properties in Al-7Si-0.35Mg alloy have been investigated in this study. Four different casting conditions (low oxide-low Fe, high oxide-low Fe, low oxide-high Fe and high oxide-high Fe) were studied. In each case, 30 tensile test samples were prepared by casting in a metallic mold and machining (total of 120 tensile test samples). Results of tensile test were analyzed by Weibull three-parameter and mixture analyses. The microstructure and fracture surface of samples were studied by optical and scanning electron microscopes. Total of 800 metallography images (200 images for each experiment) were taken and analyzed by image analysis software. Finally, the relationship between tensile properties and defects characteristics was discussed. According to the results, Fe (Fe-related phases) had larger negative impact on tensile properties of the alloy compared to oxides. On the other hand, Weibull analysis revealed that the scattering of tensile properties was mainly due to the presence of oxides in microstructure. Results of image analysis showed that the shape factor and number of pores were mainly controlled by oxides and Fe, respectively. Also, there was a clear relationship between Weibull modules of UTS and El% and shape factor of pores. Furthermore, tensile properties of the examined alloy showed strong dependence to the number of pores.

  13. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  14. Synthesis and Properties of Some polyurethane/ Partially Aromatic Polyester Casting Samples

    International Nuclear Information System (INIS)

    A series of partially aromatic terephthalate polyesters were synthesized by melt transesterification of dimethyl terephthalate with various types of aliphatic diol compounds in 1:1.1 molar ratio. Ethylene-, di-, tri-, tetra ethylene glycol and polyethylene glycol with different molecular weights 1000, 4000, 6000 as well as the prepared dihydroxy natural rubber were used. Another series of partially aromatic adipate and sebacate polyesters based on the prepared bisphenol A and its tetrabromo derivative were also synthesized by direct polycondensation esterification with adipic and sebacic acid. Polyurethane with NCO/OH ratio equal 4 was prepared from the reaction of 2,4 toluene diisocyanate with polyethylene glycol 1000. The prepared polyurethane was mixed with different weight percentages (2, 4, 6, 8, 10 or 12 % w/w) of the prepared partially aromatic polyesters to give polyurethane/polyester compositions. Mechanical and electrical properties as well as water and chemical resistance of the prepared film samples with thickness 3-4 mm were determined and compared with those of polyurethane film sample without polyester. The data indicate that 10 % w/w of the added partially aromatic polyester increases polyurethane tensile strength, improves its insulation properties and hydrolytic stability as well as its chemical resistance. Film samples based on bisphenol A impart excellent properties as compared with those based on aliphatic glycol species and dihydroxy natural rubber. Keywords: Partially aromatic polyesters, Dimethyl terephthalate, Glycols, Bisphenol A, Tetrabromo bisphenol A, Natural rubber, Adipic acid, Sebacic acid, Polyurethane, Casting

  15. Influence of the hip process on the properties of as-cast Ni-based alloys

    OpenAIRE

    Malcharcziková, Jitka; Pohludka, Martin; Michenka, Vít; Čegan, Tomáš; Juřica, Jan; Kursa, Miroslav

    2015-01-01

    The main goal of this work was to evaluate the application of the samples prepared by centrifugal casting as the test samples for a tensile test. Selected types of modified superalloys were prepared as experimental samples. The samples were molten by vacuum-induction melting and then cast centrifugally into a shaped graphite mould. The final castings had the shape corresponding approximately to the test specimens. Some of the samples were subjected to hot isostatic pressing (HIP). Af...

  16. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rzychoń, Tomasz, E-mail: tomasz.rzychon@polsl.pl [Silesian University of Technology, Faculty of Materials Science and Metallurgy, Krasińskiego 8, 40 019 Katowice (Poland); Kiełbus, Andrzej [Silesian University of Technology, Faculty of Materials Science and Metallurgy, Krasińskiego 8, 40 019 Katowice (Poland); Lityńska-Dobrzyńska, Lidia [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Street, 30-059 Kraków (Poland)

    2013-09-15

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes in the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.

  17. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    International Nuclear Information System (INIS)

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al11RE3phase, polyhedral precipitates of the Al2RE phase and Al10RE2Mn7 phase. After annealing at 175 °C for 3000 h, no changes in the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al11RE3 phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys

  18. Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    International Nuclear Information System (INIS)

    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process

  19. Predicting fatigue properties of cast aluminum by characterizing small-crack propagation behavior

    Science.gov (United States)

    Caton, Michael John

    2001-07-01

    The increased use of cast aluminum in structural components requires a deeper understanding of the mechanisms controlling fatigue properties in order to enable improved predictive capabilities. Of particular interest is the ability to model the influence of processing variables on the fatigue performance of alloys used in automotive applications such as engine blocks and cylinder heads. This thesis describes the results of a study conducted on cast W319 aluminum, a commercial Al-Si-Cu alloy used in automotive engine components, and presents a model that effectively predicts fatigue properties in this alloy as a function of material condition. The very high cycle fatigue regime (˜109 cycles) was examined using ultrasonic testing equipment (20 kHz) and distinct endurance limits were observed. The initiation and propagation of small fatigue cracks (˜5 mum to 2 mm) were monitored by a standard replication technique. It was observed that cracks initiate almost exclusively from microshrinkage pores and that the initiation life is negligible even at stresses below the endurance limit. The endurance limits result from the arrest of small cracks. Small crack growth rates were determined for a variety of material conditions where the influence of solidification time, heat treatment, and grain refinement were investigated. In addition, the influences of applied stress amplitude, stress ratio, and loading frequency on small crack growth were examined. A significant small crack effect was identified in this alloy and standard correlating parameters such as DeltaK and DeltaJ do not adequately characterize small crack growth. A correlating parameter written as [(epsilonmax sigmaa/sigma yield)s a] is proposed and shown to effectively characterize small crack growth for a wide range of stresses and a wide range of solidification conditions. In this parameter, epsilonmax is the total strain corresponding to the maximum applied stress, sigmaa is the stress amplitude, sigma yield is

  20. Utilization of En Ac-42100 Cast Aluminum Alloy for Casting of Critical Components. I. Preparation and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Vanko Branislav

    2014-12-01

    Full Text Available Requirement on the minimum value of elongation for critical components is about 15 %. The research deals with the possibility of replacing the dendritic morphology of primary solid solution and brittle eutectic silicon plates with finer particles with a more suitable morphology and size, and the possibility of increasing the mechanical properties. Introduced first part is focused on the process of preparation of experimental material and mechanical properties.

  1. Metal particle compaction during drop-substrate impact for inkjet printing and drop-casting processes

    Science.gov (United States)

    Clancy, I.; Amarandei, G.; Nash, C.; Glowacki, B. A.

    2016-02-01

    Direct coating methods using metal particles from aqueous solutions or solvent-based inks become central in the roll-to-roll fabrication processes as these methods can lead to continuous or pre-defined conductive layers on a large variety of substrates. For good electrical conductivity, the metal particles have to be brought into contact, and traditionally, additional sintering treatments are required. Such treatments can degrade the sensitive substrates as paper or polymer films. In this study, the possibility of obtaining conductive layers at room temperature is investigated for direct coating methods with an emphasis on drop-casting and inkjet printing. Thus, it is shown that electrical conductive layers can be achieved if the metal particles can compact during the drop-substrate impact interaction. It is theoretically shown that the compaction process is directly related to the particle and ink drop size, the initial fractional particle loading of the ink, solvent viscosity, and drop velocity. The theoretical predictions on compaction are experimentally validated, and the particle compaction's influence on changes in the electrical conductivity of the resulting layers is demonstrated.

  2. Synergy effect of heat and surface treatment on properties of the Mg-Al-Zn cast alloys

    Directory of Open Access Journals (Sweden)

    T. Tański

    2012-10-01

    Full Text Available Purpose: The aim of this paper is to present the results of the author’s own investigations concerning heat and surface treatment of Mg-Al-Zn magnesium alloys.Design/methodology/approach: The test results presented concern the characteristics of synergic heat and surface treatment impact on the structure and properties of Mg-Al-Zn cast magnesium alloys. The surface treatment of the magnesium alloys was carried out with the use of chemical and physical deposition methods from PA CVD and CAE PVD gas phase and laser surface treatment, including in particular laser feeding of hard ceramic particles into the surface of materials produced, enabling the production of a quasi-composite MMCs (Metal Matrix Composites structure. The tests of the surface and internal structure of materials with the use of macro- and microscopic methods were made with the use of light, transmission and scanning electron microscopy as well Raman spectrometry and X-ray phase analysis. The physical and mechanical properties of magnesium alloys after the standard heat and surface treatment operations were tested by methods appropriate for the properties.Findings: The results of mechanical and functional properties measurements of heat treated samples confirms, that the performed heat treatment, consisting of solution heat treatment with cooling in water, as well aging with cooling in air, causes strengthening of the MCMgAl12Zn1, MCMgAl9Zn1 and MCMgAl6Zn1 cast magnesium alloys according to the precipitation strengthening mechanism, induced by inhibition of dislocation movement due to the influence of strain fields of the homogeny distributed γ-phase Mg17Al12 precipitates. The combination of properly chosen heat treatment with the possibilities of structure- and phase composition modeling of the magnesium alloys matrix using laser feeding provides an additive increase of mechanical and functional properties by significant grain refinement and production of micro

  3. Evaluation of tensile properties of cast stainless steel using ball indentation test

    International Nuclear Information System (INIS)

    To investigate the applicability of Automated Ball Indentation (ABI) tests in the evaluation of the tensile properties of Cast Stainless Steel (CSS), ABI tests were performed on four types of unaged CSS and on 316 stainless steel, all of which had a different microstructure and strength. The reliability of ABI test data was analyzed by evaluating the data scattering of the ABI test and by comparing tensile properties obtained from the ABI test and the tensile test. The results show that the degree of scattering of the ABI test data is reasonably acceptable in comparison with that of standard tensile data, when two points data that exhibit out-of-trend are excluded from five to seven points data tested on a specimen. In addition, the scattering decreases slightly as the content of δ-ferrite in CSS increases. Moreover, the ABI test can directly measure the flow parameters of CSS with error bounds of about ±10% for the ultimate tensile stress and the strength coefficient, and about ±15% for the yield stress and the strain hardening exponent. The accuracy of the ABI test data is independent of the amount of δ-ferrite in the CSS

  4. Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study.

    Science.gov (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan

    2007-09-01

    The properties of cast films from hemp protein isolate (HPI) including moisture content (MC) and total soluble mass (TSM), tensile strength (TS) and elongation at the break (EAB), and surface hydrophobicity were investigated and compared to those from soy protein isolate (SPI). The plasticizer (glycerol) level effect on these properties and the interactive force pattern for the film network formation were also evaluated. At some specific glycerol levels, HPI films had similar MC, much less TSM and EAB, and higher TS and surface hydrophobicity (support matrix side), as compared to SPI films. The TS of HPI and SPI films as a function of plasticizer level (in the range of 0.3-0.6 g/g of protein) were well fitted with the exponential equation with coefficient factors of 0.991 and 0.969, respectively. Unexpectedly, the surface hydrophobicity of HPI films (including air and support matrix sides) increased with increasing the glycerol level (from 0.3 to 0.6 g/g of protein). The analyses of protein solubility of film in various solvents and free sulfydryl group content showed that the disulfide bonds are the prominent interactive force in the HPI film network formation, while in the SPI case, besides the disulfide bonds, hydrogen bonds and hydrophobic interactions are also to a similar extent involved. The results suggest that hemp protein isolates have good potential to be applied to prepare protein film with some superior characteristics, e.g., low solubility and high surface hydrophobicity. PMID:17696443

  5. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy

    International Nuclear Information System (INIS)

    Highlights: • Characterization of three-dimensional morphologies of precipitates using AFM. • Quantitative microstructure of aged squeeze-cast AZ91 alloy. • The non-uniform continuous precipitation during aging of squeeze-cast AZ91 alloy. • The relationship between microstructure and property of aged squeeze-cast AZ91 alloy. - Abstract: Quantitative microstructure information is critical to modeling and prediction of mechanical properties of structural components. In this study, the microstructure characteristics of aged squeeze-cast AZ91 alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses. Particularly, a study of the three-dimensional morphology of continuous precipitation during heat treatment was carried out using a combination of TEM and AFM. The results showed that a typical precipitate consisted of three kinds of faces, namely, broad, side, and end faces. The precipitate also presented a lath-shaped morphology with lozenge ends. Combined SEM and TEM analyses revealed quantitative information on the sizes and area number densities of precipitates after aging at different temperatures with different times. In general, the length and width of precipitates increased more rapidly than thickness during aging. The area number density initially increased and then slowly decreased because of coarsening. Furthermore, a special microstructure characteristic of the non-uniform continuous precipitation during aging was investigated using electron probe microanalysis (EPMA). The relationship between hardness response and yield strength was established

  6. Microstructure and mechanical properties of NZ30K alloy by semi-continuous direct chill and sand mould casting processes

    Directory of Open Access Journals (Sweden)

    Zheng Xingwei

    2011-02-01

    Full Text Available The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K alloys were prepared by direct-chill casting (DCC and sand mould casting (SMC processes, respectively and their microstructures and mechanical properties were investigated. The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy. The grain size increases from 35-40 μm in the billets made by the DCC to about 100-120 μm in the billets by the SMC. The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC. The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC, and 162.5 MPa and 3.2% by SMC, respectively. The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment, which reached 308.5 MPa. Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC, respectively.

  7. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  8. Influence of stress relief annealing on the microstructure and properties of GX12CrMoVNbN9-1(GP91) cast steel

    OpenAIRE

    G. Golański; J. Kupczyk; Kolan, C.

    2011-01-01

    The paper presents an effect of stress relief annealing, applied to casts after the repair by welding, on the microstructure and mechanical properties of quenched and tempered martensitic GX12CrMoVNbN9 – 1 cast steel (called GP91). The test pieces being the subject of research were taken out from a test coupon. Heat treatment of GP91 cast steel was carried out at the parameters of temperature and time appropriate for the treatment of multi-ton steel casts, while stress relief annealing was pe...

  9. Thermal analysis, structure and mechanical properties of the MC MgAl3Zn1 cast alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-06-01

    Full Text Available Purpose: This work presents effect of cooling rate on the mechanical and structural properties and thermal characteristic results of MC MgAl3Zn1 cast alloy.Design/methodology/approach: The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. Material used in this experiment is experimental magnesium alloy made as-cast.Findings: The research show that the thermal analysis carried out on UMSA Technology Platform is an efficient tool for collect and calculate thermal parameters. The formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength and grain size are shifting with an increasing cooling rate.Research limitations/implications: This paper presents results for one alloy - MC MgAl3Zn1 only, cooled with three different solidifications rate i.e. 0.6, 1.2 and 2.4°C/s, for assessment for the liquidus and solidus temperatures and its influence on the mechanical properties and structure.Practical implications: The parameters described can be applied in metal casting industry for selecting magnesium ingot preheating temperature for semi solid processing to achieve requirements properties.Originality/value: The paper contributes to better understanding and recognition an influence of different solidification condition on non-equilibrium thermal parameters of magnesium alloys.

  10. Wear Properties of Thixoformed and High Pressure Die Cast Aluminium Alloys for Connecting Rod Applications in Compressors

    Science.gov (United States)

    Birol, Yücel; Birol, Feriha

    2007-04-01

    Hypereutectic aluminium casting alloys are attractive candidates for connecting rod applications in compressors. The wear properties of these alloys are largely controlled by their microstructural features which in turn are affected by the processing route. Several hypo- and hypereutectic Al-Si alloys were produced by high pressure die casting and thixoforming in the present work. The former route produced a very fine microstructure while relatively coarser, globular α-Al matrix dominated in thixoformed grades. A modified Falex Block on Ring equipment was employed to investigate the wear properties of these alloys. Wear tests were carried out under service conditions in the lubricated state at 75°C. The superior wear properties of hypereutectic alloys produced by high pressure die casting with respect to the thixoformed variety is accounted for by the very fine microstructure with a fine dispersion of primary Si particles in the former. Of the two production routes employed, thixoforming had a favorable effect on wear properties at equal Si levels.

  11. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    Science.gov (United States)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  12. Measurement of magnetic properties in a melt cast Bi-Ca-Sr-Cu-O superconductor

    International Nuclear Information System (INIS)

    Magnetic measurements were made to examine the superconducting properties of a crystalline chunk, consisting of many small crystals, prepared by casting from the oxide melt with a starting composition of Bi3Ca2Sr2Cu3Ox. AC susceptibility revealed an onset temperature of 82 K and a transition width of ∼ 10 K. Hysteresis loops at 70 K showed a very small hysteresis, indicating a low density of effective flux pinning sites at this temperature, similar to the behavior observed for some superconducting samples of the Bi-Ca-Sr-Cu-O system prepared by other techniques. However, the magnetization at 10 K showed no hysteresis for fields greater than ∼ 3.5 kOe, a much smaller value than we have previously observed for other samples of this material regardless of preparation method, or for any other material with a Tc greater than 70 K. This critical field for flux depinning, Hcp, varies with temperature as Hcp - 4980(1-t)2.5, where t is T/Tc

  13. Effect of laser treatment on micro-structure and properties of cast magnesium alloys

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available Purpose: The goal of this paper is to present the structure and properties of the cast magnesium alloy after laser treatment.Design/methodology/approach: The laser treatment of magnesium alloys with TiC, WC powders was carried out using a high power diode laser (HDPL. The resulting microstructure in the modified surface layer was examined using optical microscopy, scanning electron microscopy and transmission electron microscope. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of hardness and wear resistance of the modified surface layer were also studied.Findings: The region after laser treatment has a fine microstructure with hard carbide particles. Hardness of laser surface layer with both TiC and WC particles was improved as compared to alloy without laser treatment.Research limitations/implications: In this research two powders (WC and TiC were used with the particle size over 5 μm. This investigation presents different laser power by one process speed rates.Practical implications: The results obtained in this investigation were promising towards compared other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd:YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles.Originality/value: The originality of this work is applying of High Power Diode Laser for alloying of magnesium alloy using hard particles like tungsten and titanium carbides.

  14. Microstructure and property of zinc phosphate coating on die-casting magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; LIAN Jian-she; NIU Li-yuan; JIANG Zhong-hao

    2006-01-01

    A surface treatment method was described, which can form a uniform and dense phosphate conversion coating on the die -casting magnesium alloy AZ91D in a non-chromate and non-nitrite bath. The coating consists of Zn3(PO4)2-4H2O, Zn, AlPO4 and MgZn2(PO4)2 analyzed by XRD. The SEM results show that the microstructure of the zinc phosphate coating transfers from flower-like to slab-like crystals with the increase of immersion time of magnesium alloy samples in the phosphating bath. The zinc phosphate coating formed in the bath with immersion time of 1 min is denser because metallic Zn and insoluble phosphate crystals co-deposit on the magnesium alloy surface and the growth of the crystals are restricted by each others. The zinc phosphate coating on the magnesium alloy is used as the base layer for further cataphoric and powder paintings. The cataphoric painting on AZ91D alloy based on phosphate coating has similar adhesion and corrosion-resistance to that based on the chromate conversion coating. But for powder painting, the former exhibits better adhesion property than the latter, due to the uneven microstructure and the enough thickness of the phosphate coating.

  15. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    OpenAIRE

    Zhang Xinning; Qu Yingdong; Yang Hongwang

    2013-01-01

    Different contents of Ni (0.3wt.% to 1.2wt.%) were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the...

  16. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    International Nuclear Information System (INIS)

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed

  17. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Subhranshu [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah-711 103 (India); Sinha, Arijit [School of Materials Science and Engineering, Bengal Engineering and Science University. Shibpur, Howrah-711 103 (India); Das, Debdulal; Ghosh, Sumit [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah-711 103 (India); Basumallick, Amitava, E-mail: abasumallick@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah-711 103 (India)

    2013-08-20

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed.

  18. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    OpenAIRE

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austeni...

  19. Repeatability of tensile properties in high pressure die-castings of an Al-Mg-Si-Mn alloy

    OpenAIRE

    Yang, H.; Ji, S; Watson, D; Fan, Z.

    2015-01-01

    © 2015 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht High pressure die-castings of an Al-Mg-Si-Mn alloy have been assessed in terms of the repeatability of the mechanical properties including yield strength, ultimate tensile strength and elongation by the normal standard deviations method and by the Weibull statistical model with three parameters. It was found that the round samples had the maximum Weibull modulus, indicating the best repeatability...

  20. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    A. Trytek

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  1. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2013-08-01

    Full Text Available Whey protein isolate (WPI-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased.

  2. Effect of excitation current intensity on mechanical properties of ZL205A castings solidified under a traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Xue-yi Fan

    2015-05-01

    Full Text Available The effect of excitation current intensity on the mechanical properties of ZL205A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding.

  3. Effects of cerium on as-cast microstructure and mechanical properties of Mg-3Sn-2Ca magnesium alloy

    International Nuclear Information System (INIS)

    The Mg-3Sn-2Ca-xCe (x = 0-2.0 wt.%) alloys were prepared by permanent mould casting method, the effects of Ce on the as-cast microstructure and mechanical properties of the alloys were investigated. The results indicated that the volume fraction and size of CaMgSn phase in the Mg-3Sn-2Ca alloy respectively were decreased by adding 0.5-2.0 wt.%Ce, and the average size of CaMgSn phase in the Mg-3Sn-2Ca alloys added 1.5 or 2.0 wt.%Ce was relatively smaller. The main phases in the as-cast Mg-3Sn-2Ca alloys with and without adding Ce were α-Mg, CaMgSn and Mg2Ca phases, and Mg12Ce phase were found in the alloys added more than 1.0 wt.%Ce. The addition of Ce improved the tensile and creep properties of Mg-3Sn-2Ca alloy, and the mechanical properties of Mg-3Sn-2Ca alloys added 1.5 or 2.0 wt.%Ce were relatively higher. The strengthening mechanism of Ce-containing Mg-3Sn-2Ca alloys was mainly attributed to the refinement of CaMgSn phase.

  4. Mechanical properties and microstructure of large IN713LC nickel superalloy castings

    OpenAIRE

    Zýka Jiří; Málek Jaroslav; Hrbáček Karel

    2014-01-01

    When approving large castings for use, mechanical values are measured by room temperature tensile test on test bodies made from the centres of the castings. These test bodies often exhibit lower values than required, in particular ultimate tensile strength and elongation. The presence of fragile niobium carbides in the structure of the alloy was identified as the main cause of this situation, which originated as a result of the slow speed cooling. Because of large grain size compared to gauge...

  5. Thermo-mechanical properties and cracking during solidification of thin slab cast steel

    OpenAIRE

    Santillana, M.B.

    2013-01-01

    Nowadays a vast majority of the steel produced worldwide is via the continuous casting process route because this is the most low-cost, efficient and high quality method to mass produce metal products in a variety of sizes and shapes. Most of the continuous casters are the initial manufacturing step of a product which is very close to the final shape, reducing the need for further finishing. During continuous casting the liquid steel is solidified under controlled conditions of heat extractio...

  6. Impact properties of shear thickening fluid impregnated foams

    Science.gov (United States)

    Soutrenon, M.; Michaud, V.

    2014-03-01

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures.

  7. Impact properties of shear thickening fluid impregnated foams

    International Nuclear Information System (INIS)

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures. (paper)

  8. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  9. The structure and mechanical properties of as-cast Zr-Ti alloys

    International Nuclear Information System (INIS)

    This study has investigated the structure and mechanical properties of pure Zr and a series of binary Zr-Ti alloys in order to determine their potential application as dental implant materials. The titanium contents of these alloys range from 10 to 40 wt.% and were prepared by arc melting in inert gas. This study evaluated the phase and structure of these Zr-Ti alloys using an X-ray diffraction (XRD) for phase analysis, and an optical microscope for microstructure analysis of the etched alloys. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that the pure Zr and Zr-10Ti comprised entirely of an acicular hexagonal structure of α' phase. When the Ti content increased to 20 wt.%, a significant amount of β phase was retained. However, when the Ti content increased to 40 wt.%, only the equi-axed, retained β phase was observed in the cast alloy. Moreover, the hardness values and bending strengths of the Zr-Ti alloys decreased with an increasing Ti content. Among pure Zr and Zr-Ti alloys, the α'-phase Zr-10Ti alloy has the greatest hardness and bending strength. The pure Zr and Zr-Ti alloys exhibit a similar elastic modulus ranging from 68 GPa (Zr-30Ti) to 78 GPa (Zr-40Ti). Based on the results of elastic moduli, pure Zr and Zr-Ti alloys are found to be suitable for implant materials due to lower modulus. Like bending strength, the elastically recoverable angle of Zr-Ti alloys decreased as the concentration of Ti increased. In the current search for a better implant material, the Zr-10Ti alloy exhibited the highest bending strength/modulus ratios as large as 25.3, which are higher than that of pure Zr (14.9) by 70%, and commercially pure Ti (8.7) by 191%. Thus, Zr-Ti alloy's low modulus, ductile property, excellent elastic recovery capability and impressive strength confirm that it is a promising candidate for dental implant materials.

  10. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    2015-07-15

    Tensile behaviors of strip casting 6.5 wt% Si steel are tested at elevated temperatures ranging from 300 °C to 800 °C. A detailed study of the morphology of the fracture surface and the ordered phase at each deforming temperature is carried out by a scanning electron microscope and a transmission electron microscope. The results show that the deforming temperature rather than the ordered degree determines the tensile properties. As the deforming temperature increases, the stress level in the whole deforming stage continually decreases, whereas the elongation gradually increases. The ductile–brittle transition occurs around 350 °C. The elongation of 2% at 300 °C rapidly increases up to 16.4% at 350 °C and the corresponding fracture mode transforms from the complete cleavage fracture to the mixture of the very limited cleavage fracture, intergranular dimple fracture and the dimple fracture. Serrated flow is observed at 350 °C and 400 °C probably due to the occurrence of dynamic strain aging. Due to the gradually weakened grain boundary cohesion with the deforming temperature increasing, intergranular dimple pattern dominates the fracture surface at 600 °C and the elongation slowly increases from 16.4% at 350 °C to 22.8% at 600 °C. At 700 °C and 800 °C, the much more enhanced dynamic recovery, the substantially decreased stress levels which contribute to the inhibition of the intergranular dimple fracture, the much lower content of the B2 ordered phase at 700 °C, and the completely disordered state at 800 °C give rise to the dramatically improved elongations of 88.8% and 130.8%, respectively.

  11. MICROSTRUCTURE ANALYSIS AND MECHANICAL PROPERTIES OF Zn-Al ALLOY ROD PRODUCED BY HEATED MOLD CONTINUOUS CASTING

    Institute of Scientific and Technical Information of China (English)

    Y. Ma; Y. Hao; F.Y. Yan; H.J.Liu

    2003-01-01

    The new technology of continuous casting by heated mold was used to produce dtirectional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstructure of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The microstructure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 isβ,among them, but the primary phase of ZA22 and ZA27 is α. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.

  12. A study of anti-nodulizing properties of Pb, Bi, Al and Ti in nodular cast iron by SPM

    International Nuclear Information System (INIS)

    The nodular cast iron samples are prepared with the normal nodulizing process, in which the important anti-nodulizing elements Pb, Bi and Al are added respectively in order to research the influence of them on the nodulization of the graphites. The nodular graphites are extracted from the nodular cast iron by the electrolytic technique. The distribution of trace elements in nodular and deformed graphites are measured by Scanning Proton Microprobe. A large part of Pb, Bi and Al exists in matrix as impurities, a part of them intrudes into the nodular graphites. A new suggestion of Ti anti-nodulizing properties is proposed. The influence of Pb, Bi and Al on the nodulization is indirectly performed through Ti. Therefore, Ti is one of the most important anti-nodulizing elements

  13. Metal properties of centrifugal cast pipes of 15Kh1M1F and 15 GS steels

    International Nuclear Information System (INIS)

    In the present work the properties of the parent metla of experimental-industrial batches of centrifugally-cast tubes of 15Cr1Mo1V and 15MnSi (16MnSi) steel are investigated. The specimens were tested for creep and rupture strength; the macro- and microstructures of a large number of sections were studied. The tubes were carefully tested ultrasonically with the aid of a UDM1F flaw detector. A characteristic of the tube metal was the fairly dense structure. The results obtained showed that it is possible to use centrifugally-cast tubes, but that it is necessary to carry out improvement work and to ensure stability of the cycle of fabrication and treatment of the tubes

  14. Influence of stress relief annealing on the microstructure and properties of GX12CrMoVNbN9-1(GP91 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2011-04-01

    Full Text Available The paper presents an effect of stress relief annealing, applied to casts after the repair by welding, on the microstructure and mechanical properties of quenched and tempered martensitic GX12CrMoVNbN9 – 1 cast steel (called GP91. The test pieces being the subject of research were taken out from a test coupon. Heat treatment of GP91 cast steel was carried out at the parameters of temperature and time appropriate for the treatment of multi-ton steel casts, while stress relief annealing was performed at the temperatures of 730 and 750oC.After quenching and tempering GP91 cast steel was characterized by the microstructure of high-tempered martensite with numerousprecipitations of carbides of diverse size. Mechanical properties of the investigated cast steel after heat treatment fulfilled the standard requirements. Stress relief annealing contributes to the processes of recovery and recrystallization of the matrix as well as the privileged precipitation of M23C6 carbides on grain boundaries. Changes in the microstructure of the examined cast steel cause deterioration in mechanical properties – the higher the temperature of stress relief annealing, the greater the deterioration.

  15. EFFECT OF LOW-FREQUENCY ELECTROMAGNETIC FIELD ON THE AS-CASTING MICROSTRUCTURES AND MECHANICAL PROPERTIES OF HDC 2024 ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    Q.F.Zhu; Z.H.Zhao; J.Z.Cui; Y.B.Zuo; F.Qu

    2008-01-01

    The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm×200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processrespectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could substantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.

  16. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements

    DEFF Research Database (Denmark)

    Svec, Oldrich; Zirgulis, Giedrius; Bolander, John E.;

    2014-01-01

    The influences of formwork surface on the final orientation of steel fibres immersed in self-compacting concrete and on the resulting mechanical response of the cast structural elements are investigated. Experimental observations of fibre orientation within cast slabs, obtained via computed...... tomography, indicate that fibres tend to orient according to the flow patterns during casting, but such tendencies are suppressed near rough formwork surfaces. Fibre orientation, in turn, affects the mechanical properties of the concrete as demonstrated by the load testing of beams extracted from the cast...... slabs. These processes and results are simulated using a computational fluid dynamics model of the casting process, in tandem with a lattice model of the fracture of the beam specimens. The computational fluid dynamics model determines the coordinates of each fibre within the concrete, which serve as...

  17. Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy

    International Nuclear Information System (INIS)

    Highlights: ► The α-Al dendrite and the eutectic Si were significantly refined by adding Er. ► The Hv of alloys first increased with increasing Er content, then decreases. ► The UTS of alloys increased with addition of Er, but the EL decreased. - Abstract: The effects of rare earth erbium (Er) additions (0, 0.3, 0.6 and 0.9 wt.%) on the microstructure development and tensile properties of die-cast ADC12 aluminum alloy have been investigated in the present work. The microstructures and fracture surfaces of die-cast samples were examined by optical microscopy and scanning electron microscopy (SEM). It was found that the secondary dendrite arm spacing (SDAS) will decrease with increasing Er content, as the Er content increases to 0.6%, the lowest SDAS was obtained. In addition, the Er modified the eutectic silicon from a coarse plate-like and acicular structure to a fine branched and fibrous one. The microhardness of die-casted alloys were measured, the microhardness corresponding to the die-casted samples with 0, 0.3, 0.6 and 0.9 wt.% Er additions are 100.6, 107.1, 113.6 and 108.5 Hv, respectively. The tensile properties were improved by the addition of Er, and a good ultimate tensile strength (269 MPa) but poor elongation (2%) were obtained when the Er addition was 0.6 wt.%. Furthermore, fractographic examinations revealed that refined pore and spheroidized α-Al dendrite were responsible for the high ultimate tensile strength.

  18. The Effect of Casting Solvent on the Electrical Property of Polyaniline/Polyacrylonitrile

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Blends of dodecylbenzene sulfonic acid doped polyaniline (PANI-DBSA) and polyacrylonitrile (PAN) dissolved in either CHCl3/DMF or CHCl3/DMSO mixture were solution cast. The conductivity of the blends with various compositions was measured and the doped cxtent of PANIDBSA in different casting solvent systems was studied.Solution blends prepared from CHCl3/DMSO displayed higher conductivity than those obtained via CHCl3/DMF.The dedoping reaction of PANI-DBSA in CHCl3/DMF identified by UV-Vis and FTIR analysis contributed to the lower conductivity of PANI-DBSA/PAN blend.

  19. A Comparative Study on Wear Properties of As Cast, Cast Aged and Forge Aged A356 Alloy with Addition of Grain Refiner and/or Modifier

    Directory of Open Access Journals (Sweden)

    D.G. Mallapur

    2015-03-01

    Full Text Available In the present work, a comparative wear behavior study of three categories of materials viz, as cast, cast aged (casting followed by T6 and forge aged (forging followed by T6 has been investigated. Neither melt treatment nor solid state processing (like aging and forging seems to be altering the wear behavior of the materials drastically. Cast aged A356 materials exhibit higher wear resistance compared to as cast and forge aged A356 materials. Further, it was observed that cast aged samples register lower coefficient of friction compared to other samples. It is also noted that the difference in wear behavior is revealed only at conditions of higher load, higher speed and longer sliding distance of testing. At lower regimes the difference is marginal. Among cast aged samples, ones treated with combined addition exhibit better wear resistance compared to other materials. Samples treated with combined addition register lowest coefficient of friction followed by samples treated with Sr, those with B, those with Ti and untreated ones. Abrasive wear mechanism is found to be operative in the regime of higher loading and higher velocity of sliding. Adhesive wear mechanism seems to be dominating the wear process at the lower regime of load and velocity of sliding.

  20. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  1. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  2. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A.; Zhou, W.H. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Decatur Sheet Mill, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.G. [CBMM North America, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2014-02-10

    We describe here the influence of coiling temperature on the microstructure and mechanical properties, especially toughness, in a low carbon niobium microalloyed steel processed via thin slab casting. The objective is to elucidate the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocations) that contribute to variation in the strength–toughness relationship of these steels. In general, the microstructure primarily consisted of fine lath-type bainite and polygonal ferrite, and NbC, TiC and (Nb, Ti)C precipitates of size ∼2–10 nm in the matrix and at dislocations. However, the dominance of bainite and distribution of precipitates was a function of coiling temperature. The lower coiling temperature provided superior strength–toughness combination and is attributed to predominantly bainitic microstructure and uniform precipitation of NbC, TiC, and (Nb, Ti)C during the coiling process, consistent with continuous cooling transformation diagrams.

  3. Properties of cast films made of chayote (Sechium edule Sw.) tuber starch reinforced with cellulose nanocrystals

    Science.gov (United States)

    In this study, cellulose (C) and cellulose nanocrystals (CN) were blended with chayote tuber (Sechium edule Sw.) starch (CS) in formulations cast into films. The films were conditioned at different storage temperatures and relative humidity (RH), and analyzed by mechanical tests, X-ray diffraction, ...

  4. Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Schmidt, Cristine Grings; Kammer Hansen, Kent; Andersen, Kjeld Bøhm; Fu, Zongwen; Roosen, Andreas; Kaiser, Andreas

    2016-01-01

    Ce0.9Gd0.1O1.95 (CGO) electrolytes for electrochemical flue gas purification multilayers were fabricated by tape casting and sintering using different types, shapes and sizes of pore formers. The resulting tapes (with thickness of about 400μm) were characterized by scanning electron microscopy, g...

  5. Thermo-mechanical properties and cracking during solidification of thin slab cast steel

    NARCIS (Netherlands)

    Santillana, M.B.

    2013-01-01

    Nowadays a vast majority of the steel produced worldwide is via the continuous casting process route because this is the most low-cost, efficient and high quality method to mass produce metal products in a variety of sizes and shapes. Most of the continuous casters are the initial manufacturing step

  6. Stages of vermicular cast iron properties modeling in the intelligent design system

    Science.gov (United States)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article presents the structure of intelligent system of the cast iron with vermicular graphite iron (CGI) design under the conditions of current production, the technique of the optimal process TP parameters of the production of CGI parts in the preparatory phase of production based on mental models is designed.

  7. Microstructure and mechanical properties of an as-cast AZ91 magnesium alloy processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    An as-cast AZ91 magnesium alloy was processed by equal channel angular pressing (ECAP) at 593K and its microstructure and mechanical properties were studied using electron microscopy and room temperature tensile tests, respectively. It has been found that after the first pass of ECAP, the grain size of the alloy shows a bi-modal distribution, containing fine grains of about 14 μm and large dendrite structure. The dendritic structure completely disappeared after two passes of ECAP. The average grain size of the alloy after six passes of ECAP becomes less than 10 μm. The yield stress of the alloy has significantly increased from 65 MPa of the as-cast alloy to 135 MPa after the first pass of ECAP, but does not show much change with further ECAP. However, the elongation to failure measured from the alloy processed by the first pass of ECAP is similar to that measured from the as-cast alloy. A noticeable increase of the elongation to failure has been observed after the second pass of ECAP, which then remains at the similar level with further ECAP process. The fractography of the tensile tested samples have been studied using scanning electron microscope (SEM) and focused ion beam (FIB) microscope. The facture surface of the as-cast alloy is predominated by cleavages. Although not predominantly, cleavage has also been frequently observed in the alloy processed by one pass of ECAP. With further ECAP process, the facture surface becomes profuse in dimples, characteristic of ductile facture, consistent with the ductility change observed. FIB observation suggests that the cracking is mainly initiated at the blocky particles.

  8. Effects of cooling method after intercritical heat treatment on microstructural characteristics and mechanical properties of as-cast high-strength low-alloy steel

    International Nuclear Information System (INIS)

    Highlights: • The effect of cooling method after intercritical heat treatment on microstructure evolution was investigated. • Fracture mechanism of tensile and impact after different intercritical heat treatment has been analyzed. • The crack initiation and propagation after different intercritical heat treatment was compared in details. - Abstract: The effect of cooling method after intercritical heat treatment on the microstructures and mechanical properties of as-cast steel produced by electroslag casting was investigated. The microstructure characteristics were analyzed by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron back scatter diffraction (EBSD). The mechanical performance was evaluated by tensile testing at ambient temperature and Charp V-notch impact tests at various temperatures (−40 °C, −20 °C, 20 °C). The tensile and impact fracture micromechanisms were discussed in details. The results of microstructure investigation indicated that water cooling after intercritical heat treatment led to a mixed microstructure of ferrite and tempered martensite, while a composite microstructure of ferrite and tempered bainite was obtained after air cooling. The carbides of Cr, Mo and Nb in matrix after water quenching were finer than the ones after air cooling. Compared with water cooling, a good balance of strength and toughness was obtained after air cooling. The crack propagation path in the steel after water cooling can propagate along the long axis direction of ferrite bands, directly across the intersecting banded ferrite and martensite as well as along the interfaces between ferrite and martensite. However, the crack propagation path in the steel after air cooling depends on the shape, size and distribution of M/A islands

  9. Structure of Water Mist Stream and its Impact on Cooling Efficiency of Casting Die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2012-04-01

    Full Text Available The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys. The paper presents results of research and analysis process, spraying water and generated a stream of water mist, the effect of the type of nozzle, the nozzle size and shape of the emitting of the water mist on the wall surface of casting die on the microstructure and geometry of water mist stream and cooling efficiency. Tests were used to perform high-speed camera to record video in the visible and infrared camera. Results were used to develop a computerized image analysis and statistical analysis. The study showed that there are statistical relationships between water and air flow and geometry of the nozzle and nozzle emitting a stream of microstructure parameters of water mist and heat the incoming stream. These relationships are described mathematical models that allow you to control the generating of adequate stream of water mist and a further consequence, the cooling efficiency of casting die.

  10. An investigation into the microstructure and mechanical properties of centrifugally and conventional castings of complex Al-bronzes

    International Nuclear Information System (INIS)

    Complex Al-bronzes are new range of materials in copper alloys, attracting the attention of design engineers for high strength, better toughness, high temperature and favorable tribological applications properties accomplished by different casting methods give a comparable study of physical, mechanical and microstructural characteristics. The presence of gamma phase has been significantly controlled by the rate of cooling. Successful attempts have been made to produce the beneficial microstructure by controlling the freezing range. This paper discusses the finding of investigations to produce desirable microstructures in the centrifugal and conventional sand moulds. (author)

  11. Exploitation of rare earth metals in cast steel production for power engineering

    Directory of Open Access Journals (Sweden)

    J. Kasińska

    2008-12-01

    Full Text Available The paper presents results of experiments carried out on industrial melts. There has been tested the REM influence on carbon properties (0.20%C as well as austenitic cast steel Cr-Ni 18/8+Ti type.It was found that REM cause an essential improvement of cast steels impact strength and in case of austenitic cast steel – also the corrosion resistance improvement in boiling 65%HNO3 (Huey test.

  12. The influence of aluminosilicate fibre in moulding material for investment casting technology on its mechanical properties

    OpenAIRE

    Nadolski M.; Konopka Z.; Łągiewka M.; Zyska A.

    2008-01-01

    An incrcnsc of mcchnnicol propcrtics of thin-walled ccramic moulds far the invcstrncnt casting tcchnology has hccn thc main pupscOF thc undcrlakcn rcscnrch work. Partial rcplaccmcnt of grain silica rnatcrials with alrrminasilicatc materials in thc [ibrous rorm is ancsscncc nf a ncw cnnccpt of slruct~~mchla ngc of ~hmc oulding matcrial. Thcrc havc hcen prcparcd inntcrials ol various librc fractioncon~aincdin thc matrix and thcir mcchnnical propcrtics havc bccn cxamincd, narncly thcir bcndiiig ...

  13. The structure and mechanical properties of pearlitic-ferritic vermicular cast iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-01-01

    Full Text Available The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  14. Improvement of Structure and Properties of Cast Ferrite-Pearlite Steels for Freight Railway Cars

    Directory of Open Access Journals (Sweden)

    A. Rabinovich

    2008-03-01

    Full Text Available As it i s known For increasing of propcnics (YTS 2 380 MPa of cast stcds i t is c f k ~ i v tco incrcasc conlcnt o f alhsti~uiionaal lloyingclcrncnts, (Si, Mn, Cr, Ni. 1 lowevcr it lcads to rising in pricc olstccl ton. lncrcasing of Si and Mn conrcnl only is limitcd hy decreasing o lductility and weld nhility. As a rule silicon contcnt at ~hcsca ccls is not highcr than 0.4-0.67'0 and Si:Mn ratio is not highcr khan 1:2. Nowfor grain rcfincmcnt ~wc sin oculation of stcct by nitrogcn and clcincnrs with high chcmical affinity to nltmgcn. Mostly vanadium i s usd.howcvcr niobium sornctime is uscd. Dissldvantagcs of this arc high cost of alloying clcmcnrs and low thcrrnodynamic stability OFvanadium and niobium nitridcs. Parlicles of V(C,N and Nh(C.N dissolvc during hcating fnr licnt trcatmcnt or during wclding. It [cads lodccrcasing of grain refinement elfcc!.Adaptat ion or this microalloying stratcgy Tor casts producing For rrcight mil way cars let cstirnatc possibility of application thcsc casts in ancw gcnerazion freight railway cars.

  15. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy

    International Nuclear Information System (INIS)

    The continuing quest for aluminum castings with enhanced mechanical properties for applications in the automotive industries has intensified the interest in aluminum-silicon alloys. In Al-Si alloys, the properties are influenced by the shape and distribution of the eutectic silicon particles in the matrix, as also by the iron intermetallics and copper phases that occur upon solidification. The detailed microstructure and tensile properties of as-cast and heat-treated new experimental alloy belonging to cast Al-Si near-eutectic alloys have been investigated as a function of Fe, Mn, Cu, and Mg content. Microstructural examination was carried out using optical microscopy, image analysis, and electron probe microanalysis (EPMA), wavelength dispersive spectroscopic (WDS) analysis facilities. Tensile properties upon artificial aging in the temperature range of 155-240 oC for 5 h were also investigated. The results show that the volume fraction of Fe-intermetallics increases as the iron or manganese contents increase. Compact polygonal or star-like particles form when the sludge factor is greater than 2.1. The Al2Cu phase was observed to dissolve almost completely during solution heat treatment of all the alloys studied, especially those containing high levels of Mg and Fe, while Al5Cu2Mg8Si6, sludge, and α-Fe phases were found to persist after solution heat treatment. The β-Al5(Fe,Mn)Si phase dissolved partially in Sr-modified alloys, and its dissolution became more pronounced after solution heat treatment. At 0.5% Mn, the β-Fe phase forms when the Fe content is above 0.75%, causing the tensile properties to decrease drastically. The same results are obtained when the levels of both Fe and Mn are increased beyond 0.75%, because of sludge formation. On the other hand, the tensile properties of the Cu-containing alloys are affected slightly at high levels of Mg as a result of the formation of Al5Cu2Mg8Si6 which decreases the amount of free Mg available to form the Al2Cu

  16. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting

    International Nuclear Information System (INIS)

    The effect of double quenching and tempering (DQT) treatment as well as conventional high temperature quenching and tempering (CQT) treatment on the microstructures and mechanical properties of low carbon 5Cr martensitic as cast steel produced by electroslag casting was investigated. The microstructure changes were characterized by optical microscope (OM), scanning electron microscope (SEM), electron back scatter diffraction (EBSD) and transmission electron microscopy (TEM). The characteristics of carbides precipitated during tempering were analyzed on both carbon extraction replica and thin foil samples by TEM. The mechanical performance was evaluated by Vickers hardness test, tensile test, and Charpy V-notch impact test at ambient temperature. The results of microstructure study indicated that DQT treatment led to a finer microstructure than that of CQT. The carbides of the tempered samples were identified as M7C3. The carbides along the prior austenite grain boundaries nucleated directly while those within the laths should be transformed from cementite which formed at the early tempering stage. Compared with CQT condition, yield strength slightly increased after DQT treatment, and impact toughness improved a lot. The strengthening mechanisms were analyzed and it was found that grain refining and precipitation strengthening were mainly responsible for the increase of strength. The superior toughness of DQT condition was attributed to the finer microstructure resulting in more frequent deflections of the cleavage crack and the smaller size of carbides along the prior austenite boundaries. EBSD analysis showed that both martensitic block and packet of low carbon 5Cr tempered martensitic steel could hinder crack propagation, while the latter was more effective

  17. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: healygo@163.com; Yu, Hao, E-mail: yuhao@ustb.edu.cn; Zhou, Tao, E-mail: zhoutao130984@163.com; Song, Chenghao, E-mail: songchenghao28@126.com; Zhang, Kai, E-mail: zhangkai8901@126.com

    2014-12-01

    The effect of double quenching and tempering (DQT) treatment as well as conventional high temperature quenching and tempering (CQT) treatment on the microstructures and mechanical properties of low carbon 5Cr martensitic as cast steel produced by electroslag casting was investigated. The microstructure changes were characterized by optical microscope (OM), scanning electron microscope (SEM), electron back scatter diffraction (EBSD) and transmission electron microscopy (TEM). The characteristics of carbides precipitated during tempering were analyzed on both carbon extraction replica and thin foil samples by TEM. The mechanical performance was evaluated by Vickers hardness test, tensile test, and Charpy V-notch impact test at ambient temperature. The results of microstructure study indicated that DQT treatment led to a finer microstructure than that of CQT. The carbides of the tempered samples were identified as M{sub 7}C{sub 3}. The carbides along the prior austenite grain boundaries nucleated directly while those within the laths should be transformed from cementite which formed at the early tempering stage. Compared with CQT condition, yield strength slightly increased after DQT treatment, and impact toughness improved a lot. The strengthening mechanisms were analyzed and it was found that grain refining and precipitation strengthening were mainly responsible for the increase of strength. The superior toughness of DQT condition was attributed to the finer microstructure resulting in more frequent deflections of the cleavage crack and the smaller size of carbides along the prior austenite boundaries. EBSD analysis showed that both martensitic block and packet of low carbon 5Cr tempered martensitic steel could hinder crack propagation, while the latter was more effective.

  18. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    Directory of Open Access Journals (Sweden)

    Zhang Xinning

    2013-09-01

    Full Text Available Different contents of Ni (0.3wt.% to 1.2wt.% were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the Ni content is 0.7wt.%, the matrix structure is the refined ferrite with a very small fraction (about 2% of pearlite near the eutectic cell boundaries. When the Ni content is further increased, the fraction of pearlite increases significantly and reaches more than 5% when 1.2wt.% Ni is added. The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.% to 0.7 wt.%, but decreases as the Ni content further increases to 1.2wt.% due to the increase of pearlite fraction. The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.% Ni addition. The average value of the impact work is still more than 13 J even at -30 ℃. In addition, the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20 ℃ to -60 ℃.

  19. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  20. Embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Mechanical property data from Charpy-impact and J-R curve tests are presented for several experimental and commercial heats, as well as reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The effects of material variables on the embrittlement of cast stainless steels are evaluated. The chemical composition and ferrite morphology have a strong effect on the extent and kinetics of embrittlement. The data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature aged cast stainless steel are defined. 13 refs., 13 figs., 3 tabs

  1. New Approaches to Aluminum Integral Foam Production with Casting Methods

    OpenAIRE

    Ahmet Güner; Mustafa Merih Arıkan; Mehmet Nebioglu

    2015-01-01

    Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, m...

  2. Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method

    Indian Academy of Sciences (India)

    Zhecun Wang; Chengdong Xiong; Qing Li

    2015-10-01

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the PPDO matrix. Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the nanocomposites were studied in detail. It shows that the overall crystallization rates are faster in the nanocomposites than in neat PPDO and increase with the increase in ome-POSS loadings; however, X-ray diffraction patterns, POM and the Avrami exponent suggest that the crystal structure and the crystallization mechanism do not change despite the presence of ome-POSS. The mechanical property of PPDO/ome-POSS nanocomposites was enhanced with respect to neat PPDO.

  3. Application of cast nickel alloys for parts of electronics characterised by special magnetic properties

    Directory of Open Access Journals (Sweden)

    W. UhI

    2008-03-01

    Full Text Available Thc thcorctical part of the study highlights thc origin of thc idca 10 start investigations on alloys of high ~nngnctic pcrmcability.manufactured mainly by cornpanics in ~ h Uc S A and Japan.'Phc said materials arc applicd for various pans of ctcctronics uscd by thc military industry. c.g. sntctlitc antcnnas Tor globalcommunication with suhmarincs. and for rcscarch instmrncnts, c,g. fcrromagnctic corcs. Thcy arc chnr:~clcriscd by vcry high lnnpncticpcrrncability. resistivity and corrosion rcsistancc which makc thcm suitablc for opcrat ion undcr cxtrn-~ryingc onditions.Nickel alloys of high magnctic propcrtics arc usuall y manufactured as roZlcd products. The amhition of t hc authors or this srlldy is Inmanufacture !hem as cast prnducts.Thc pmgram of rcscarch incIudcd characteristic of nickcl alloys wirh ddi t i ons of molybdcnum slid iron sn~isryingt hc ahnvc mc~iito ncdrcquircmcnu. with attcn~ionf ocusscd on thcir application for magnctic parts of satcllitc antcnnns and fcrromngnctic corcs.Moulding and casting tcchnologics wcrc proposcd to bcst suit ~ h pcr occss OF maaufacturc of r hcsc clcmcnrs.Thc rangc of chcmicaI cornpostion was sclcctcd 20 cnsurc thc rcquircd magnctic. mcchnnicnl and anti-corrosive pmpcrtics.A scrics of melts was prcparcd and castings of thc abovc mcnlioncd clclncn1s wcrc mndc. Thc chclnicnl composi~ioii of IEIC alloys wasanalyscd along with thc stnlcturc cxarninations nnd quality asscssmcnt rnadc by ~ h cno n-dcsrructi vc rncthods, Casrings wcrc sitbjcctcd tothc finishing trcatmcnt, followed by tests and cxamina~ionsto cnablc thcir practical application.

  4. Mechanical properties of phase constituents in selected grades of cast steel

    OpenAIRE

    M. Garbiak; Zubko, P.

    2011-01-01

    The nanoindentation measurements performed on three cast steels of 0.3C-30Ni-18Cr type with various content of niobium and titanium were carried out.Mechanical propertiesofthe main phaseconstituents of the alloys, such as austenite, MC and M23C6 type carbides, were determined and analysed. The values of hardness (H) and Young modulus (E) for the austenite matrix were similar within the tested alloys. Essential differences (H=12 ÷ 24 GPa; E = 250 ÷ 400 GPa) were found between the carbide phase...

  5. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  6. Inoculation of chromium white cast iron

    OpenAIRE

    D. Kopyciński

    2009-01-01

    It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  7. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C;

    2010-01-01

    by measuring the heating curves. The viscosity of the coating, moisture content and the permeability of the cores were evaluated. The surface quality of the castings was investigated using SEM and OM. The results show that the moisture content of the cores affected the permeability. In furan cores the vapour...

  8. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program.

    Science.gov (United States)

    Martin, Matthew T; Dix, David J; Judson, Richard S; Kavlock, Robert J; Reif, David M; Richard, Ann M; Rotroff, Daniel M; Romanov, Sergei; Medvedev, Alexander; Poltoratskaya, Natalia; Gambarian, Maria; Moeser, Matt; Makarov, Sergei S; Houck, Keith A

    2010-03-15

    Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such effects during early stages of chemical development and use, and before potential exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation approaches to meet this demand is limited by low throughput and high costs. In the context of EPA's ToxCast project, we have evaluated a novel cellular biosensor system (Factorial (1) ) that enables rapid, high-content assessment of a compound's impact on gene regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated transcription factor reporter constructs with a highly homogeneous method of detection enabling simultaneous evaluation of multiplexed transcription factor activities. Here, we demonstrate the application of the technology toward determining bioactivity profiles by quantitatively evaluating the effects of 309 environmental chemicals on 25 nuclear receptors and 48 transcription factor response elements. We demonstrate coherent transcription factor activity across nuclear receptors and their response elements and that Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a chemical. Additionally, as part of the ToxCast program, we identify molecular targets that associate with in vivo end points and represent modes of action that can serve as potential toxicity pathway biomarkers and inputs for predictive modeling of in vivo toxicity. PMID:20143881

  9. Some characteristics properties of structure of stainless steel pipe blanks produced by vacuum centrifugal casting for nuclear power

    International Nuclear Information System (INIS)

    Results of studies macro- and microstructures of centrifugal castings and distributions of inclusions and alloying elements and impurities are presented. It was established that distribution of components of steels in castings is uniform. The macro structure is band and the microstructure is dendritic. Principal feature of centrifugal castings is redistribution of inclusions, main part of casting being free from conclusions. 1 refs.; 4 figs.; 3 tabs. (author)

  10. Electrical properties of Li doped sodium potassium niobate thick films prepared by a tape casting process

    International Nuclear Information System (INIS)

    Highlights: → Li doped KNN thick films were prepared by a tape casting process. → The coercive fields decreased with the addition of Li ions. → The thick film with 6 mol% Li exhibited an optimized value of d33 which was 92 pm/V. - Abstract: Lithium doped K0.5Na0.5NbO3 (abbreviated as KNN-xL, with x = 0.02, 0.04, 0.06, 0.08) thick films with a thickness of about 20 μm were prepared by a tape casting process. The presence of Li ions promoted the microstructure of these thick films. Coercive fields (Ec) of the thick films decreased with the addition of Li ions. Two phase transition temperatures, corresponding to TO-T and TC, were observed in the KNN-xL thick films. The sample with x = 0.06 exhibited an optimized value of d33 (91.6 pm/V), which was attributed to the formation of a morphotropic phase boundary.

  11. Mechanical properties and microstructure of large IN713LC nickel superalloy castings

    Directory of Open Access Journals (Sweden)

    Zýka Jiří

    2014-01-01

    Full Text Available When approving large castings for use, mechanical values are measured by room temperature tensile test on test bodies made from the centres of the castings. These test bodies often exhibit lower values than required, in particular ultimate tensile strength and elongation. The presence of fragile niobium carbides in the structure of the alloy was identified as the main cause of this situation, which originated as a result of the slow speed cooling. Because of large grain size compared to gauge length diameter, crystal orientation of individual grains also plays an important role. Interdendritic carbides are oriented parallel with dendrites thus parallel with directions in Ni superalloy crystal lattice. Grain oriented with axis parallel to tensile direction has platelet carbides oriented perpendicular to the tensile axis. In that position carbides crack easily at low grain deformation. Longitudinal metallographic cuts of selected tested specimen gauge lengths were prepared and grain orientation of individual grains was investigated by EBSD, Specimens, where grain oriented with axis parallel to tensile direction were found, performed poor elongation values 3%, compared to 7% where no such oriented grains were found.

  12. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  13. THE IMPACT OF STRUCTURAL, PETROGRAPHIC AND CLIMATIC FACTORS ON THE SLOPE STABILITY IN THE OPEN CAST MINE OF GRADNA

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1992-12-01

    Full Text Available This paper presents an analysis of a complexity of interrelated structural, petrologic and climatic factors that considerably affect the instabilities in the open cast mine of Gradna, near Samobor. The instabilities provoke the slope failures such as slides and slumps of rock material. During the protracted periodical investigations, the relationship among the factors of regional geology, tectonics, structural geology, petrography, engineering geology, rock mechanics and the rock mining technology was observed in the area. The local control of hydrogeologic properties, as well as climatic fluctuations of temperature and precipitation on the slope stability, was also recognized. It turned out that the structural relationships, characteristic of the manifold cataclased dolomite, stimulated the development of local instabilities, particularly during the period of low temperatures affecting the process of ground-water accumulation. When the temperatures are worm, the ground-water circulation is slow, exerting only the small-scale influence on the local instabilities (the paper is published in Croatian.

  14. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  15. Effect of rolling deformation and solution treatment on microstructure and mechanical properties of a cast duplex stainless steel

    Indian Academy of Sciences (India)

    S K Ghosh; D Mahata; R Roychaudhuri; R Mondal

    2012-10-01

    The present study deals with the effect of rolling deformation and solution treatment on the microstructure and mechanical properties of a cast duplex stainless steel. Cast steel reveals acicular/Widmanstätten morphology as well as island of austenite within the -ferrite matrix. Hot rolled samples exhibit the presence of lower volume percent of elongated band of -ferrite (∼40%) and austenite phase which convert into finer and fragmented microstructural constituents after 30% cold deformation. By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with the above-mentioned microstructural investigation. Enhancement in hardness, yield strength and tensile strength values as well as drop in percent elongation with cold deformation increases its suitability for use in thinner sections. 30% cold rolled and solution treated sample reveals attractive combination of strength and ductility (25.22 GPa%). The examination of fracture surface also substantiates the tensile results. The sub-surface micrographs provide the potential sites for initiation of microvoids.

  16. Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature

    Science.gov (United States)

    Bai, Qing-ling; Li, Hong-xiang; Du, Qiang; Zhang, Ji-shan; Zhuang, Lin-zhong

    2016-08-01

    The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress-strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter f GBWL, i.e., the fraction of grain boundaries covered by liquid phase.

  17. Simulation of Heat Flow in Computational Method and Its Verification on the Structure and Property of Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    S. K. Shaha

    2010-01-01

    Full Text Available Problem statement: The solidification of materials depends on the cooling rate of the materials which is governed by heat flow in the mould and alloy composition. Solidification rate also affects the structure and properties of the materials. Approach: In the present study, the heat flow of cold set resin bonded sand mould was simulated using JL Analyzer FEM analysis software. To verify the model, the gray cast iron was melted at 1350°C temperature and poured into a resin bonded sand mould at 1300°C. Results: It showed that most of the heat-reserve at the junction of the mould which was nearer to the source of liquid metal and the lowest heat-reserve at the end of the mould. So, the solidification rate was very high at the end of the mould wall whereas it was comparatively low near the sprue of the mould. Conclusion: Finally, depending on the heat-flow through the mould, the solidification rate changed the microstructure from chill, mottled and gray cast iron and hardness changed from 95.1 HRB-78.78 HRB.

  18. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

    Science.gov (United States)

    Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf

    2016-07-01

    In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

  19. Study of the Effect of Shrinkage Porosity on Strength Low Carbon Cast Steel

    Science.gov (United States)

    Ol'khovik, E.

    2015-09-01

    Today there are many computer systems for modeling of the casting technology processes. All of them allow calculating the availability and distribution of the shrinkage porosity in the test casting, but this information allows only making changes in existing casting technology. In this paper you obtain the information about changes in the local and structural mechanical properties of the casting in the presence of its volume shrinkage porosity. Article presents the results of direct experimental studies of technological defects (shrinkage and gas porosity) impact on the mechanical properties of low carbon steel castings. Methods of investigation are also disclosed, including the methods for producing of molded samples obtained at different process conditions and the crystallization apparatus which is described for the measuring of the density of the samples. There are the mathematical relationship for the elastic modulus, yield stress, elongation and fatigue characteristics fracture cast steel with low carbon content in the presence of the volumetric shrinkage porosity.

  20. Role of Titanium in Thin Wall Vermicular Graphite Iron Castings Production

    Directory of Open Access Journals (Sweden)

    M. Górny

    2013-04-01

    Full Text Available In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI. The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM. Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.

  1. Effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Henry Kayode TALABI

    2014-11-01

    Full Text Available This study investigated the effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy. The casting methods used was spin, sand and die casting, these were done with a view to determine which of the casting methods will produce the best properties. The pure aluminium scrap, magnesium and silicon were subjected to chemical analysis using spectrometric analyzer, thereafter the charge calculation to determine the amount needed to be charged into the furnace was properly worked out and charged into the crucible furnace from which as-cast aluminium was obtained. The mechanical properties of the casting produced were assessed by hardness and impact toughness test. The optical microscopy and experimental density and porosity were also investigated. From the results it was observed that magnesium and silicon were well dispersed in aluminium matrix of the spin casting. It was observed from visual examination after machining that there were minimal defects. It was also observed that out of the three casting methods, spin casting possesses the best mechanical properties (hardness and impact toughness.

  2. Magnetic properties of Nd55-xCoxFe30Al10B5 cast rods

    International Nuclear Information System (INIS)

    Nd55-xCoxFe30Al10B5 (x=0,5,10,15 and 20) rods with a thickness of 1 mm were prepared by the arc-melting copper mold suction-casting method. At appropriate compositions, the coercivity, remanence and Curie temperature of the alloys simultaneously rise considerably. Coercivities larger than 1120 kA/m have been observed at room temperature for rods with x-values between 10 and 20. The remanent magnetization rises from ∼13 to ∼24 A m2/kg and the Curie temperature increases from ∼450 to ∼625 K when the Co-concentration, x, in the alloys increases from 0 to 20. The magnetic behavior of the alloys has been investigated at low temperatures

  3. The influence of aluminosilicate fibre in moulding material for investment casting technology on its mechanical properties

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2008-03-01

    Full Text Available An incrcnsc of mcchnnicol propcrtics of thin-walled ccramic moulds far the invcstrncnt casting tcchnology has hccn thc main pupscOF thc undcrlakcn rcscnrch work. Partial rcplaccmcnt of grain silica rnatcrials with alrrminasilicatc materials in thc [ibrous rorm is ancsscncc nf a ncw cnnccpt of slruct~~mchla ngc of ~hmc oulding matcrial. Thcrc havc hcen prcparcd inntcrials ol various librc fractioncon~aincdin thc matrix and thcir mcchnnical propcrtics havc bccn cxamincd, narncly thcir bcndiiig srrcngth MORE, work of frncrurc FI.and thc deflcclionl;,,,, An addit ion of ccminic fibrc [a thc rnatcrial matrix rcst~ltsin t hc inctcasc of a!l thc mechanical propcrtics. Thc fihrcfraction ranging horn 25 10 SO wt-% is oplirnal as far as mhanical propcrtics and rhc spraying icctlnology or huilrling lhc thin-wallcdmould arc conccmcd.

  4. Preparation and mechanical properties of SiC/2024 composite by semisolid casting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A SiC/2024 composite was made by semisolid casting. The wetting between SiC and Al matrix is improved by treating SiC particles at a high temperature, coating K2ZrF6, and adding Mg to the Al melt. An effective way to remove the gas around SiC particles was also found. Microsturctures were observed under optical microscope (OM) and scanning electron microscopy (SEM). The results show that SiC particles and Al matrix are well bonded and no gaps or cavities around the particles are observed. SiC particles distribute homogeneously in the Al matrix. The existence of SiC particles results in the increase of wear resistance and strength.

  5. Mechanical properties of phase constituents in selected grades of cast steel

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2011-07-01

    Full Text Available The nanoindentation measurements performed on three cast steels of 0.3C-30Ni-18Cr type with various content of niobium and titanium were carried out.Mechanical propertiesofthe main phaseconstituents of the alloys, such as austenite, MC and M23C6 type carbides, were determined and analysed. The values of hardness (H and Young modulus (E for the austenite matrix were similar within the tested alloys. Essential differences (H=12 ÷ 24 GPa; E = 250 ÷ 400 GPa were found between the carbide phases present in tested alloys. The nanoindentation measurement on small particles is affected by different effects. One of these effects was excluded using numerical simulation of impressing the phase constituent into the matrix during indentation. The values of H and E obtained from simulation were: 30/450 GPa for NbC; 50/580 GPa for TiC; and 19/320 GPa for Cr23C6 respectively

  6. Mechanical Properties of a Graded Alumina-Zirconia Composite Prepared by Centrifugal Slip Casting

    International Nuclear Information System (INIS)

    Compositionally graded composite of alumina-20 vol%zirconia was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thicknesss

  7. Mechanical Properties of a Graded Alumina-Zirconia Composite Prepared by Centrifugal Slip Casting

    Science.gov (United States)

    Hara, Yasuyuki; Onda, Tetsuhiko; Hayakawa, Motozo

    2008-02-01

    Compositionally graded composite of alumina-20 vol%zirconia was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thicknesss

  8. Effect of particle size on thermo-physical properties of SiCp/Cu composites fabricated by squeeze casting

    Institute of Scientific and Technical Information of China (English)

    WU Gao-hui; CHEN Guo-qin; ZHU De-zhi; ZHANG Qiang; JIANG Long-tao

    2005-01-01

    For the electronic packaging applications, copper matrix composites reinforced with different sized SiC particles (10 μm, 20 μm and 63 μm) were fabricated by squeeze casting technology. And the effect of particle size on their thermo-physical properties was discussed. The composites are free of porosity and the SiC particles are distributed uniformly in the composites. It is found that the mean linear thermal expansion coefficients(20 - 100 ℃ ) of SiCp/Cu composites are in the range of (8.4 - 9.2) × 10-6/℃, and smaller expansion coefficient can be obtained for the composites with finer SiC particles because of the larger restriction in expansion through interfaces. Their thermal conductivities are reduced with the decrease of SiC sizes. This is attributed to the fact that the negative effect of interfacial thermal resistance becomes increasingly dominant as the particles becomes smaller.

  9. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Germen, Gülşah, E-mail: gulsahgermen@hotmail.com; Şevik, Hüseyin, E-mail: gulsahgermen@hotmail.com [Mersin University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Mersin, 33343 (Turkey); Kurnaz, S. Can [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Adapazarý, 54187 (Turkey)

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  10. Effects of Nd on microstructure and mechanical properties of as-cast Mg-8Li-3Al alloy

    Institute of Scientific and Technical Information of China (English)

    LI Ming; HAO Hai; ZHANG Aimin; SONG Yingde; ZHANG Xingguo

    2012-01-01

    Effects of Nd on microstructure and mechanical properties of as-cast Mg-8Li-3Al alloy were investigated by OM,X-ray diffraction (XRD),EPMA,scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).The results showed that the dendrites sizes of α phase were decreased by the Nd addition.When the amount of addition Nd was 1.6 wt.%,the alloy with the smallest α phase was obtained.The refining mechanism mainly owed to the increasing constitutional supercooling at the solidification front.Furthermore,the compound Al2Nd generated by the reaction of Al and Nd,which distributed at the phase boundary and inside β phase,could also restrain the growth of α phase.Nd could improve the tensile strength and elongation of Mg-8Li-3Al alloy,however,excessive Al2Nd might also become crack source and decrease the elongation.

  11. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia

    International Nuclear Information System (INIS)

    Investigations on ceramic microspecimens made of Y2O3-stabilized ZrO2 produced by slip casting or micro powder injection moulding are introduced. During the production of the microspecimens, feedstocks and sintering conditions were varied. Differently moulded specimens were examined with respect to their microstructure and surface topography using light microscopy, scanning electron microscopy (SEM) and confocal white light microscopy. Additionally, the mechanical characteristics were investigated by three-point bending tests using a micro universal testing device. The statistical analysis was realised by means of the Weibull theory and interpreted by the aid of SEM images of fracture surfaces. This research allowed to understand correlations between different feedstocks used, process parameters like the sintering conditions applied and the resulting characteristics as well as material properties of the microspecimens. These results could be used to improve the production process. (orig.)

  12. Property Characteristics of a TiB2P/AI Composite Fabricated by Squeeze Casting Technology

    Institute of Scientific and Technical Information of China (English)

    Min ZHAO; Gaohui WU; Zuoyong DOU; Longtao JIANG

    2006-01-01

    TiB2P/Al composite was successfully fabricated by squeeze casting technology. Its mechanical and tribological properties were evaluated. The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffraction (XRD) studies. At 45% volume fraction, the bending strength at ambient temperature was 934 MPa. And the fracture modes included ductile failure of Al matrix and brittle fracture of TiB2 particles. In dry sliding wear mode, severe plastic deformation and adhesive wear were found on the worn surfaces of the SiCP/Alcomposite. But no obvious characteristics of adhesion or abrasion wear were observed on that of the TiB2P/Al composites. At the steady stage, the friction coefficient of the SiCP/Al composite was about 0.6. While that of TiB2P/Al composite was only about 0.16~0.17.

  13. Preparation and thermomechanical properties of stir cast Al–2Mg–11TiO2 (rutile) composite

    Indian Academy of Sciences (India)

    S K Chaudhury; A K Singh; C S S Sivaramakrishnan; S C Panigrahi

    2004-12-01

    Al–2Mg–11TiO2 composite was successfully prepared by the conventional vortex method. The macrostructural observation revealed columnar structure with rutile particles being distributed throughout the matrix in the form of agglomerates. Microstructural observation showed the presence of micro voids in the particle-enriched zone. Electrical resistivity measurement showed a phase transformation at 360°C, which was consistent during DSC studies due to the precipitation of TiAl3 phase. As-cast composite was both hot rolled and cold rolled successfully to 50 and 40% reduction, respectively. The mechanical properties of the thermomechanically-worked composite were studied. From fractographic analysis, it was clear that the crack had nucleated at the particle/matrix interface and propagated through the matrix by microvoid coalescence. Ultimate tensile strength of cold worked composite was found to be better than the hot worked material.

  14. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    International Nuclear Information System (INIS)

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg17Al12 and Mg2Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element

  15. Final Technical Report Quantification and Standardization of Pattern Properties for the Control of the Lost Foam Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Michaels

    2005-09-30

    This project takes a fresh look at the ''white side'' of the lost foam casting process. We have developed the gel front hypothesis for foam pyrolysis behavior and the magnetic metal pump method for controlling lost foam casting metal fill event. The subject of this report is work done in the improvement of the Lost Foam Casting Process. The original objective of this project was to improve the control of metal fill by understanding the influence of foam pattern and coating properties on the metal fill event. Relevant pattern properties could then be controlled, providing control of the metal fill event. One of the original premises of this project was that the process of metal fill was relatively well understood. Considerable previous work had been done to develop fluid mechanical and heat transfer models of the process. If we could just incorporate measured pattern properties into these models we would be able predict accurately the metal fill event. As we began to study the pyrolysis behavior of EPS during the metal fill event, we discovered that the chemical nature of this event had been completely overlooked in previous research. Styrene is the most prevalent breakdown product of EPS pyrolysis and it is a solvent for polystyrene. Much of the styrene generated by foam pyrolysis diffuses into intact foam, producing a molten gel of mechanically entangled polystyrene molecules. Much of the work of our project has centered on validation of this concept and producing a qualitative model of the behavior of EPS foam undergoing pyrolysis in a confined environment. A conclusion of this report is that styrene dissolution in EPS is a key phenomenon in the pyrolysis process and deserves considerable further study. While it is possible to continue to model the metal fill event parametrically using empirical data, we recommend that work be undertaken by qualified researchers to directly characterize and quantify this phenomenon for the benefit of modelers

  16. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  17. Influence of yttrium on microstructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy

    International Nuclear Information System (INIS)

    Highlights: → The effects of Y additions (0-2.0 wt.%) on the microstructure and mechanical properties of Mg-5Li-3Al-2Zn alloy have been studied. → The new phase generated after Y addition has been identified, the change of grain size due to Y addition has also been discussed. → The mechanisms of the improvement of the mechanical properties due to Y addition have been investigated. - Abstract: The influence of Y on microstructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy was investigated. The results show that the phase compositions of Mg-5Li-3Al-2Zn consist of α-Mg and AlLi phases. Adding Y to the alloy results in the formation of Al2Y compound and facilitates grain refinement. The addition of 0.8 wt.% Y produces the smallest grain size. The tensile tests performed at room temperature show that the additions of Y can improve the mechanical properties of the alloy; the tensile strength and ductility reach peak values when the Y additions are 0.8 wt.% and 1.2 wt.%, respectively. The mechanisms of improvement are related to grain refinement and compound strengthening effects.

  18. Influences of intergranular structure on the magnetic properties of directly cast nanocrystalline NdFeCoTiNbBC alloys

    International Nuclear Information System (INIS)

    The millimeter-sized Nd9.5Fe61.5Co10Ti2.5Nb0.5B16−xCx (x  =  0–1.25) alloy rods with various compositions were fabricated by direct casting. Nano-sized hard phase Nd2(FeCo)14B, soft phase α-FeCo, and amorphous phase were observed in all alloys. An optimized amount of carbon additions improved the magnetic properties by enhancing the glass forming ability and forming near single domain-sized Nd2(FeCo)14B grains around the rod surface. Various intergranular structures were observed in the alloys with x  =  0.25–1. Micromagnetic simulation using the images obtained from the magnetic force microscope and transition electron microscope indicates that the distribution and magnetism of the intergranular phase have an important influence on the magnetic properties and demagnetization process of the alloys. A uniformly distributed nonmagnetic intergranular amorphous phase may enhance the magnetic properties, but the coercivity decreases when the amorphous phase is magnetic. It is important to modify the structure and distribution of the inter-grain amorphous phase in order to achieve high hard magnetic properties in these alloys. (paper)

  19. Assessment of thermal embrittlement of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ''predicted lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented

  20. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    In the present paper a micro-mechanical approach is used to investigate the influence of the graphite mechanical properties on the loading response in the early deformation range of ductile cast iron. A periodic unit cell composed by a single graphite nodule embedded in a uniform ferritic matrix is...

  1. Impact of Swiss needle-cast on growth of Douglas-fir.

    Science.gov (United States)

    Kimberley, M O; Hood, I A; Knowles, R L

    2011-05-01

    Phaeocryptopus gaeumannii, the cause of Swiss needle-cast, is widely distributed in plantations of Douglas-fir in many parts of the world. Nevertheless, information remains limited on its precise effect on stand growth, particularly in relation to regional climate, and on its consequent economic cost. In New Zealand, the spread of P. gaeumannii over a period of ≈30 years following its discovery in 1959 was closely monitored, and the timing of its arrival in different forests is known. This information was coupled with data from permanent sample plots in order to quantify the associated historical growth increment loss. Analyses revealed a steady decline in growth rate over the period from the first appearance of P. gaeumannii to a point when it stabilized at a lower increment level 14 to 20 years later. The cumulative mean reduction was 25% for mean top height, 27% for basal area, and 32% for stem volume. Volume growth rate decline was greater in the North Island (35%) than the South Island (23%) of New Zealand. These reductions in volume growth are estimated to equate to a loss in net present value of $NZ2,620 ha(-1) and $NZ1,470 ha(-1) for the North and South Islands, respectively, using a discount rate of 6%. Mortality did not increase as a result of infection by P. gaeumannii. The disease had less effect on cooler sites, especially those with low spring minimum temperatures (P < 0.001). Negligible growth decline occurred on sites with daily minimum October temperatures averaging <3.2°C. PMID:20923368

  2. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  3. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    OpenAIRE

    Xiang Qingchun; Zhao Jing; Pan Haicheng

    2011-01-01

    The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy with...

  4. Study on plasma-spraying Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties

    International Nuclear Information System (INIS)

    Plasma-spraying Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties are studied. The analysis items include chemical composition, phase structure, average microhardness, wear resistance and corrosion resistance. The experimental results indicate that metallurgical combination has been achieved completely between the spraying layer and the surface of chrome cast iron, and that the chemical composition and micro-structure in the surface layer of the sample have been changed basically, and that the microhardness, the wear resistance, the corrosion resistance in the surface layer are increased by a large margin

  5. Effect of Ce-rich misch metal addition on squeeze cast microstructure and mechanical properties of AZ81 alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated. The results indicate that the addition of cerium-rich misch metal modifies the microstructure gradually. With the increase of the RE addition, the amount of Mg17Al12 decreases while that of Al11(RE)3 increases, accompanied by grain refinement. When the addition reaches 1.5%, the grain refinement becomes obvious. However, when the addition exceeds 2.0%,Al11(RE)3 phase coarsens into rod shape and the grain size increases. The tensile properties of the AZ81 at both room temperature and 150℃ increase with the addition, and reach their optimal values with the addition of 1.5%. Further increase of the addition to above 2.0% decreases the tensile properties considerably. The tensile fracture of the alloy is characterized by the cleavage of the brittle second phases and ductile dimples of the matrix.

  6. Effect of Cd and Sn Addition on the Microstructure and Mechanical Properties of Al-Si-Cu-Mg Cast Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Rong-de; LI Run-xia; YU Li; HU Zhuang-qi

    2004-01-01

    The present work has investigated the effect of trace elements Cd and Sn on the microstructure and mechanical properties of Al-Si-Cu-Mg cast alloy. With the increase of Cd addition the strength of alloy rises at first and then drops. The optimal amount of Cd and Sn addition for Al-Si-Cu-Mg alloy is about 0.27% and 0.1% respectively. Due to the formation of some coarse Cd-rich phases and pure Cd particles the mechanical properties of alloy decrease when Cd amount exceeds0.27%. When more than 0.1% Sn added, some Sn atoms form low-melting eutectic compound at grain boundary, and then cause over-burning in alloy when solution treated, which may deteriorate properties of alloy, especially ductility of alloy.On the other hand, the addition of Cd and Sn remarkably increases the peak hardness and reduces the time to reach aging peak in Al-Si-Cu-Mg alloy. The action of Cd/Sn in quaternary Al-Si-Cu-Mg alloy is effectively the same as that occur in binary Al-Cu alloy that the enhanced hardening associated with Cd / Sn addition is due to the promotion of the θ' phase.

  7. Research on the squeeze cast technology of the castings with large ratio of height to thickness

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; SAN Jing-chao; XU Na; CAO Liang; BAI Yan-hua; LI Rong-de

    2005-01-01

    The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thickness will broaden the applicable range of the advanced casting technology. This paper describes a study of the temperature distribution during solidification for castings with a ratio of height to thickness of 7 by the methods of experiment and computer simulation. The shrinkage porosity distribution in the castings and the mechanical properties of the castings were also researched. The experimental and simulated results show that increasing squeeze force, or enhancing mold temperature,cannot reduce the shrinkage porosities in the castings. When castings solidify in a sequential manner and the squeeze force effectively acts on the surface of the liquid metal, the shrinkage porosities in the castings are eliminated and mechanical properties are clearly improved.

  8. Properties of Cross-Impact Balance Analysis

    CERN Document Server

    Weimer-Jehle, Wolfgang

    2009-01-01

    CIB matrices are N x N hypermatrices, the elements of which are m x n matrices. They are used in Cross-Impact Balance Analysis, a concept applied in social sciences, management sciences, scenario analysis and technology foresight to identify plausible configurations of qualitatively defined impact networks. Cross-Impact Balance Analysis (CIB) offers an opportunity for qualitative systems analysis without complex mathematics. Although CIB doesn't confront its user with too much mathematics, the background of the method and its algorithm can be scrutinized by mathematical means, thus revealing an extensive set of useful properties which are described and proved in this article. Among them are four laws of invariance, a treatise on several special cases of CIB matrices, and the proof that CIB analysis is equivalent to a universal computer (a Turing machine).

  9. Hot extrusion and its effect on microstructure and properties of squeeze casting SiCp/Al composites with lower volume fraction of reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Geng, L.; Qu, S.J.; Lei, T.Q. [School of Material Science and Engineering, Harbin Inst. of Tech. (China)

    2003-07-01

    Deformable SiCp/Al composites with lower volume fractions (15%, 20%, 25%) of the SiC particle reinforcement were fabricated by a squeeze casting technique. The volume fraction of the SiC particle was controlled by adding aluminum powder into the preform. The deformability of the SiCp/Al composites was studied by hot extrusion and the effect of the hot extrusion on microstructure and properties of the composites was investigated. The results show that the SiCp/Al composites fabricated by the modified squeeze casting method used here could be extruded successfully by the extrusion ratios of 9:1, 16:1, 25:1, 36:1, respectively. The strength, modulus and tensile elongation of the composites were improved by the hot extrusion. The resulting microstructure of the composites in both as cast and extrusion states was observed and analyzed by using SEM and TEM. (orig.)

  10. Rheo-Cast Microstructure and Mechanical Properties of AM60 Alloy Produced by Self-Inoculation Rheo-Diecasting Process

    Directory of Open Access Journals (Sweden)

    Bo Xing

    2016-03-01

    Full Text Available Rheo-forming is becoming the choice for production of high quality parts with diminished defects and fine integrity. In this paper, the novel self-inoculation rheo-diecasting (SIRD process, in which semisolid slurry is produced by mixing two precursory solid and liquid alloys and subsequently pouring them through a multi-stream fluid director, has been proposed. Microstructural characteristics of AM60 alloy slurry and the microstructure and mechanical properties of rheo-diecasting AM60 samples were investigated. Quenching experiments reveal that the slurry microstructure of AM60 was well refined to irregular α-Mg particles with the average size of approximately 20–40 μm after pouring with the self-inoculation process, and these particles were evolved to globular and coarse morphology while continuously keeping in semisolid state. After rheo-diecasting, the microstructure of the sample was dominated by fine primary α-Mg globules accompanied with tiny secondary α-Mg particles while the sample from conventional liquid die casting was characterized by developed dendrite and porosity. Microscopic analysis indicates that there are three stages of remaining liquid solidification in die cavity in SIRD: α-Mg nucleation and growth on primary α-Mg surface, α-Mg nucleated independently in liquid, and, finally, formation of skeleton devoiced eutectic. Due to diminished porosity and hot tearing, tensile strength and elongation of SIRD samples were increased by 12.9% and 35.3%, respectively, compared to a conventional liquid die casting sample.

  11. Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service

    International Nuclear Information System (INIS)

    Highlights: → To investigate the weldability and property changes of high pressure heat-resistant cast stainless steel (HP) tubes. → Welding was done by gas-tungsten arc welding (GTAW) process. → Composition of precipitates was characterized by means of SEM and EDS analyses. → The solution treatment was used to recover the properties of tubes. → To investigate mechanical strength of specimens, tensile tests were carried out at room temperature. -- Abstract: High pressure heat-resistant cast stainless steel (HP steel) tubes produced by centrifugal casting are used in petrochemical industries for pyrolysis furnaces. They have appropriate ductility and weldability in as-cast conditions. These steels lose their ductility and weldability after being used in service and, hence, require repair. In the present study, the effect of metallurgical changes on weldability and ductility was investigated. The life span of the studied tubes was 5 years. Using electrodes with a chemical composition close to the base metal analysis, welding was done by gas-tungsten arc welding (GTAW) process. Solution treatment was used to recover the properties of tubes which can be useful, depending on metallurgical changes.

  12. Impact of sea-level rise in a Mediteranean delta: The Ebro delta cast

    NARCIS (Netherlands)

    Sánchez-Arcilla, A.; Stive, M.D.F.; Jiménez, J.A.; García, M.A.

    1993-01-01

    In anticipation of a comprehensive, multidisciplinary study on the impact of climatic change on the Ebro Delta preliminary results are here presented of the response of the outer delta coast to present and future relative sea-level rise. Due to the absence of observations and predictions of regional

  13. Improved material properties of solution-cast starch films: effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes

    OpenAIRE

    Menzel, Carolin; Andersson, Mariette; Andersson, Roger; Vázquez Gutiérrez, José Luis; Daniel, Geoffrey; Langton, Maud; Gällstedt, Mikael; Koch, Kristine

    2015-01-01

    High-amylose potato starches were produced through genetic modification resulting in changed granule morphology and composition, with higher amylose content and increased chain length of amylopectin. The increased amylose content and structural changes in amylopectin enhanced film-forming behavior and improved barrier and tensile properties in starch films. The molecular structure in these starches was related to film-forming properties. Solution-cast films of high-amylose starch revealed a h...

  14. Impact Property of Ultra Fine Grain Copper

    Directory of Open Access Journals (Sweden)

    Fahad Al-Mufadi

    2014-06-01

    Full Text Available Ultrafine Grained (UFG and Nano-Structured (NS materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present study has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm, respectively had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136 from 52 HV after the final pass. Also, about 285 and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reductions in the impact energy have been attained for the samples as contrasted to annealed specimens. Furthermore, the grain size of the final pass is 800 nm for Cu sample. Finally, fracture surfaces of billets after impact test have been investigated using Scanning Electron Microscope (SEM.

  15. Processing and mechanical properties of SiC particulate reinforced AZ91 composites fabricated by stir casting

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jun; WU Kun; PENG De-lin; ZHANG Hai-feng; ZHENG Ming-yi; HUANG Wen-xian

    2006-01-01

    The influence of stirring parameters (stirring temperature, stirring speed and stirring time) on the particle distribution of 10%(volume fraction) SiC particulate reinforced AZ91 composites (SiCp/AZ91) was studied. It is found that it is necessary for 10 μm SiC particulate reinforced AZ91 composites to stir the molten composites in semi-solid condition with vortex formation, or else the cluster of the reinforcements would not be eliminated. Compared with the monolithic alloy, the SiCp/AZ91 composite has higher strength, especially for yield strength, but the elongation is reduced. For the as-cast composite, the particles often segregate within the grain boundary regions. Extrusion can effectively reduce the segregation of SiC particles and improve the mechanical properties of the composite. The extrusion-induced reduction in particle size varies with extrusion temperatures and extrusion ratios. The effect of extrusion-induced reduction in particle size on the mechanical properties of the composites is not always beneficial.

  16. Properties of PP/MWCNT-COOH /PP composites made by melt mixing versus solution cast /melt mixing methods

    Science.gov (United States)

    Reinholds, I.; Roja, Z.; Zicans, J.; Merijs Meri, R.; Bitenieks, J.

    2015-03-01

    An approach on improvement of the properties of polypropylene / carbon nanotube (PP/CNT) composites is reported. PP blend compositions with carboxylic acid functionalized multi-walled carbon nanotubes (MWCNT-COOH) at filler content 1.0 wt.% were researched. One part of the composites was manufactured by direct thermoplastic mixing PP with the filler, but the other one was made from solution casted masterbatch with the following thermoplastic mixing. An increase of mechanical properties (Young's modulus, storage modulus and tensile strength), compared to an increase of glass transition temperature indicated a reinforcement effect of CNTs on PP matrix, determined from the tensile tests and differential mechanical analysis (DMA), while the elongation was reduced, compared to PP matrix. By differential scanning calorimetry (DSC) analysis, the effect of nanofiller on the reorganization of PP crystallites was observed. A noticeable enhanced effect on increase of the crystallization temperature was indicated for masterbatch manufactured composite. An increase of thermal stability was also observed, compared to pristine PP and the composite made by direct thermoplastic mixing PP with the filler.

  17. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2016-06-01

    Full Text Available The present work describes the effect of palm kernel shell ash (PKSA as reinforcement on the mechanical properties of As-cast aluminium alloy. Recycled aluminium alloy from cylinder of an automotive engine block was degreased by using premium motor spirit (PMS also known as petrol, washed thoroughly with soap and water and sun dried for 5 days. The palm kernel shell was screened of dirt and other unwanted foreign materials before being roasted in furnace. The ash was further pulverized by laboratory ball mill machine followed by sieving to obtain particle sizes of 106 µm and divided into two parts. One portion was treated with NaOH solution while the other part was left as untreated before they are used to reinforced molten aluminium alloy in predetermined proportions. The newly developed composites were characterized with respect to their mechanical properties in response to the tests that were carried out on them. The results indicate that palm kernel shell ash can be used as potential reinforcing material for automobile applications.

  18. DEVELOPMENTS IN THE FIELD OF STEEL AND CAST IRON

    OpenAIRE

    Ten, E. B.; V. D. Belov

    2015-01-01

    The article describes the use of a number of promising casting technologies applied to produce the castings of steel and cast iron with special properties. Such as, technology of centrifugal casting of large-size workpieces made of steel, forecasting method composition of slag in the smelting of high-manganese steels, method of complex modifying chromium cast irons, analysis of properties of perspective high-alloy aluminium cast iron.

  19. DEVELOPMENTS IN THE FIELD OF STEEL AND CAST IRON

    Directory of Open Access Journals (Sweden)

    E. B. Ten

    2015-05-01

    Full Text Available The article describes the use of a number of promising casting technologies applied to produce the castings of steel and cast iron with special properties. Such as, technology of centrifugal casting of large-size workpieces made of steel, forecasting method composition of slag in the smelting of high-manganese steels, method of complex modifying chromium cast irons, analysis of properties of perspective high-alloy aluminium cast iron.

  20. Addition of Oils to Polylactide Casting Solutions as a Tool to Tune Film Morphology and Mechanical Properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Schroën, C.G.P.H.; Boom, R.M.

    2010-01-01

    Poly(L-lactide) (PLLA) films exhibit toughening by the addition of oils to the polymer casting. This was investigated by casting films from solution and evaporation in air; the investigated oils were linear alkanes, cyclic alkanes, and two terpenes (limonene and eugenol). The addition of the oils gr

  1. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve

  2. Mechanical and structural properties of solution-cast high-amylose maize starch films.

    Science.gov (United States)

    Koch, Kristine; Gillgren, Thomas; Stading, Mats; Andersson, Roger

    2010-01-01

    Environmental issues have forced the introduction of sustainable solutions such as annually renewable resources being used as a raw material for packaging and disposables. This paper examined the effects of time and temperature during manufacturing and plasticiser content on the molecular structure of high-amylose maize starch films. It also analysed how manufacturing conditions, plasticiser content and molecular structure of the films affected their material properties. It was found that increased time or temperature increased the degradation of amylose and of amylopectin, which in turn negatively affected film cohesiveness. However, neither time nor temperature had any effect on tensile properties. PMID:19828118

  3. Fabrication and ageing of cast austenitic steels

    International Nuclear Information System (INIS)

    An investigation has been undertaken to determine the magnitude of any reduction in properties which may occur in cast duplex stainless steels and weldments during long term exposure to reactor operating conditions. Test panels were fabricated in CF3 stainless steel by a manual metal arc (MMA) process using 19.9.L (Type 308L) consumables. The mechanical properties and intergranular corrosion resistance of parent material and weldments were measured following accelerated ageing at 3750 and 4000C for up to 10,000 hours. Both the impact energy and J/sub R/ fracture toughness properties of the cast austenitic/ferritic stainless steel were reduced following aging at 4000C for 10,000 hours, whereas austenitic stainless steel MMA weld metals exhibited a reduction in J/sub R/ fracture toughness but no change in impact energy. Even in the unaged state, MMA weld metals were shown to have a much lower resistance to stable crack growth than the parent cast steel, and, following aging, there is a further reduction in the ductile tearing resistance of such weld metals. Therefore, in any assessment of the structural integrity of the reactor coolant pump bowl for a pressurized water reactor (PWR), the weld metal fracture properties during service are likely to be of considerable importance

  4. Fatigue properties of sheet, bar, and cast metallic materials for cryogenic applications

    Science.gov (United States)

    Green, E. F.

    1970-01-01

    Cryogenic fatigue and tensile properties for metallic materials are determined in the operating life-time range of ten thousand to ten million cycles at room temperature, at minus 320 degrees F, and at minus 423 degrees F. Results are presented as stress versus number of cycles to failure.

  5. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Q.; Han, J.; Wu, H.C. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China); Yang, B., E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China); Wang, X.T. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2013-06-15

    Highlights: ► The σ phase in the steel precipitated at a temperature range of 600–900 °C. ► The decomposition of α-ferrite into γ{sub 2} and σ phase in aged specimens is suggested. ► The tensile and yield strengths decreased first and then increased with aging time. ► The impact energy decreased slightly first but then drastically with aging time. ► The hardness and wear rates are not sensitive parameters to aged specimens. -- Abstract: The effect of sigma phase on the mechanical and wear properties of a Z3CN20.09M cast duplex stainless steel (CDSS) used in primary coolant pipe of nuclear power plants has been investigated. The experimental results showed that the sigma phase precipitated from ferrite at a temperature range of 600–900 °C. The tensile and yield strengths of the specimens aged at 700 °C decreased first and then increased with the increase of aging time. With increasing aging time, the impact energy of specimens decreased slightly before 4 h and then dropped drastically when aged a longer time more than 10 h. Fracture surface analysis showed that the hard and brittle sigma phase degraded the toughness of the aged steel. The hardness and wear resistance of the specimens aged for 1–4 h were lower than those of un-aged ones. However, the higher values of hardness and wear resistance were got in the specimens aged more than 10 h.

  6. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel

    International Nuclear Information System (INIS)

    Highlights: ► The σ phase in the steel precipitated at a temperature range of 600–900 °C. ► The decomposition of α-ferrite into γ2 and σ phase in aged specimens is suggested. ► The tensile and yield strengths decreased first and then increased with aging time. ► The impact energy decreased slightly first but then drastically with aging time. ► The hardness and wear rates are not sensitive parameters to aged specimens. -- Abstract: The effect of sigma phase on the mechanical and wear properties of a Z3CN20.09M cast duplex stainless steel (CDSS) used in primary coolant pipe of nuclear power plants has been investigated. The experimental results showed that the sigma phase precipitated from ferrite at a temperature range of 600–900 °C. The tensile and yield strengths of the specimens aged at 700 °C decreased first and then increased with the increase of aging time. With increasing aging time, the impact energy of specimens decreased slightly before 4 h and then dropped drastically when aged a longer time more than 10 h. Fracture surface analysis showed that the hard and brittle sigma phase degraded the toughness of the aged steel. The hardness and wear resistance of the specimens aged for 1–4 h were lower than those of un-aged ones. However, the higher values of hardness and wear resistance were got in the specimens aged more than 10 h

  7. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  8. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  9. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    OpenAIRE

    Gabriele Gofferje; Markus Schmid; Andreas Stäbler

    2015-01-01

    There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resist...

  10. Effect of Rolling Route on Microstructure and Tensile Properties of Twin-Roll Casting AZ31 Mg Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Dan Luo

    2016-06-01

    Full Text Available Twin-roll casting AZ31 Mg alloy sheets have been fabricated by normal unidirectional-rolling, head-to-tail rolling, and clock-rolling, respectively. It has been demonstrated that head-to-tail rolling is the most effective to refine the microstructure and weaken the basal texture among the three rolling routes. Excellent integrated tensile properties can be obtained by the head-to-tail rolling. The yield strength, ultimate tensile strength, and plastic elongation are 196 MPa, 301 MPa, and 28.9%, respectively. The strength can benefit from the fine grains (average value of 4.0 μm of the AZ31 alloy processed by the head-to-tail rolling route, while the excellent plastic elongation is achieved owing to the weakened basal texture besides the fine grains. Results obtained here can be used as a basis for further study of some simple rolling methods, which is critical to the development of Mg alloys with high strength and plasticity.

  11. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    International Nuclear Information System (INIS)

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  12. The enhancement of wear properties of squeeze-cast A356 composites reinforced with B{sub 4}C particulates

    Energy Technology Data Exchange (ETDEWEB)

    Mazahery, Ali; Shabani, Mohsen Ostad [Islamic Azad Univ., Karaj (Iran, Islamic Republic of)

    2012-07-15

    In the present study, squeeze-cast A356 matrix composites reinforced with B{sub 4}C particles were prepared and different volume fractions of B{sub 4}C particles of various sizes were incorporated into the aluminum alloy by a mechanical stirrer. Wear properties of the unreinforced alloy and composites with different vol.% of boron carbide particles were measured and compared. It is noted that composites exhibit better wear resistance compared to the unreinforced alloy. According to the differences in wear rates of the composites, two separate wear-rate regimes were identified as low- and high-wear-rate regimes. It is observed that all the composite samples reinforced with 1 {mu}m B{sub 4}C particles show high wear-rate, regardless of the particle volume fraction. However, none of the samples containing 50 {mu}m particles display this type of wear regime. Microscopic examination using a scanning electron microscope equipped with an energy-dispersive spectrometer, was carried out on the worn surfaces, subsurfaces, and debris. Rough and smooth regions are distinguished on the worn surface of the composites similar to the unreinforced alloy. (orig.)

  13. Preparation and properties of multi-wall carbon nanotube/SiC composites by aqueous tape casting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    MWCNTS/SiC composites were fabricated by aqueous tape casting. High solid content (50 vol%) SiC slurries with sintering additives and multi-wall carbon nanotubes (MWCNTs) as reinforcements were prepared using Tetramethylammonium hydroxide as the dispersant. The stability of MWCNTs/SiC slur-ries was studied and characterized in terms of zeta potential and rheology measurements. The relative density of the composite was about 98% after hot-pressing at 1850℃ (at 25 MPa in Ar for 30 min). The hardness of the composites decreased with the increase in MWCNTs content. The flexural strength and the fracture toughness were 742.17 MPa and 4.63 MPa·m1/2, respectively when the MWCNTs content was 0.25 wt%. Further increase in MWCNTs content to 0.50 wt% did not lead to the increase in mechanical properties. Most of MWCNTs were found to be located at SiC grain boundaries and the pull out of the MWCNTs was observed.

  14. Joint properties of cast Fe-Pt magnetic alloy laser-welded to Co-Cr alloy.

    Science.gov (United States)

    Baba, Naoki; Watanabe, Ikuya; Tanaka, Yasuhiro; Hisatsune, Kunihiro; Atsuta, Mitsuru

    2005-12-01

    This study investigated the joint properties of Fe-Pt alloy laser-welded to Co-Cr alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared with Fe-Pt and Co-Cr alloys. Fe-Pt plates were butted against Co-Cr plates and laser-welded using Nd:YAG laser. Control and homogeneously welded specimens were also prepared. Laser welding was performed with and without argon shielding. Tensile testing was conducted, and both fracture force (Ff: N) and elongation (El: %) were recorded. There were no differences in the Ff value between the specimens with and without argon shielding for the welded Fe-Pt/Co-Cr. Lower Ff value of the welded specimen was obtained in the order of Fe-Pt alloy welded to Co-Cr had Ff values between the values of homogeneously welded Fe-Pt and Co-Cr alloys. Argon shielding, on the other hand, had no effect on the weld strength between Fe-Pt and Co-Cr alloys. PMID:16445017

  15. Tensile and impact properties of the steel MANET-II and their optimization

    International Nuclear Information System (INIS)

    The report describes the investigations concerning tensile and impact bending properties done in the IMF-II of the KfK. The tensile tests include the investigation of the parameters test temperature, deformation rate, specimen site, cast, dimensions of the semi finished products and other parameters. The material has an adequate strength (e.g. Rp0,2 (500 C) = 465 MPa), a sufficient ductility (e.g. A > 10%) and a good homogenity of this properties. The impact bending properties of some heats of the MANET-II grade steel had been investigated using instrumented V-notch impact bending tests, and it has been compared with other steels. The strength of the MANET-II grade steel, measured by the maximum load and the stress intensity factor, is very high. The ductility, measured by the specimen bending up to the cleavage fracture, is sufficient. The toughness of the material, measured by the upper shelf energy of the impact strength, by the energy up to the maximum load and by the J-integral, is adequate. Only the transition temperature of the impact energy (DBTT = 0 C) and the FATT (T = +4 C) are too high. The limiting temperature of the first or last appearance of cleavage fracture is too high, too. For that reason an optimization of the thermal treatment of the steel had been attempted. That leads to a higher yield strength at elevated temperature and to a lower DBTT = -30 C. (orig.)

  16. Effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Mingbo; CHENG Liang; SHEN Jia; PAN Fusheng

    2009-01-01

    The effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67×10~(-8) to 1.43×10~(-8) s~(-1). The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.

  17. Some properties of aluminum-uranium alloys in the cast, rolled and annealed conditions

    International Nuclear Information System (INIS)

    The metallographic and hardness changes associated with the rolling and subsequent. annealing of aluminum alloys containing up to 30-wt.% uranium have been described. The alloys possessed good rolling properties. However the richer alloys were unusual in that after an initial reduction,, further cold rolling caused softening. In the alloy range examined, increasing uranium contents caused reduced preferred orientation. Qualitative explanations have been proposed to account for the observations on roll softening and preferred orientation. Heat-treating and ageing experiments confirmed that the solid solubility of uranium in aluminum is negligible. (author)

  18. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ya, Bin; Zhou, Bingwen; Yang, Hongshuo; Huang, Bingkun; Jia, Fei; Zhang, Xingguo, E-mail: zxgwj@dlut.edu.cn

    2015-07-15

    Highlights: • Adding MWCNTs in situ casting fabricating TiC/Ti6Al4V composites is first reported. • The solidification process of in situ casting TiC/Ti6Al4V composites is discussed. • Microstructure shows remarkable correlations with adding MWCNTS. • Strength and plasticity show remarkable correlations with adding MWCNTs. - Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were added as carbon sources to fabricate in situ casting TiC/Ti6Al4V (TC4) composites. The effects of MWCNTs on the microstructure and mechanical properties are studied. The composites are analyzed by X-ray diffraction, field-emission scanning electron microscope and electron probe microanalysis. The fracture behavior of TiC/TC4 composites are also studied. Smaller size of TiC particles and grain compared with TC4-graphite composites can be observed. The tensile strength of TC4-MWCNTs composites is about 1110.1 MPa, which is higher than that of TC4-graphite composites, about 1003.6 MPa. Fracture behavior also was changed by adding MWCNTs in situ casting TiC/TC4 composites.

  19. Microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by a horizontal continuous casting with heating-cooling combined mold technology

    Science.gov (United States)

    Mei, Jun; Liu, Xin-hua; Xie, Jian-xin

    2012-04-01

    A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabricating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the production efficiency of a BFe10 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of left\\{ {012} right\\}leftcasting ( δ = 36.5%), HCCM can improve elongation ( δ = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe10 cupronickel alloy tube.

  20. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2013-07-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  1. Tribological properties of AlN-CeO2-Si3N4 cutting materials in unlubricated sliding against tool steel and cast iron

    OpenAIRE

    Gomes, J. R.; Miranda, A. S.; Silva, R F; J. M. Vieira

    1996-01-01

    Ceramic pins of the AIN-CeO2-Si3N4 system were tested in a pin-on-disc tribometer against discs of tool steel and grey cast iron, at room temperature, without lubrication, in different conditions of humidity and sliding speed. Ceramic samples were selected on the basis of their mechanical properties (hardness and fracture toughness), and microstructural characteristics, namely porosity, volume of intergranular phase and nitrogen content of the glass phase. Water vapour increased the ...

  2. Urinary casts

    Science.gov (United States)

    ... necrosis , viral disease (such as CMV nephritis ), and kidney transplant rejection . Waxy casts can be found in people with advanced kidney disease and chronic kidney failure . White blood cell ( ...

  3. Structure and Mechanical Properties of Al-Li Alloys as Cast

    Directory of Open Access Journals (Sweden)

    J. Augustyn-Pieniążek

    2013-04-01

    Full Text Available The high mechanical properties of the Al-Li-X alloys contribute to their increasingly broad application in aeronautics, as an alternative for the aluminium alloys, which have been used so far. The aluminium-lithium alloys have a lower specific gravity, a higher nucleation and crack spread resistance, a higher Young’s module and they characterize in a high crack resistance at lower temperatures. The aim of the research planned in this work was to design an aluminium alloy with a content of lithium and other alloy elements. The research included the creation of a laboratorial melt, the microstructure analysis with the use of light microscopy, the application of X-ray methods to identify the phases existing in the alloy, and the microhardness test.

  4. Structure and properties of tubes made of radiation-resistant austenitic steels, produced by centro fugal vacuum casting

    International Nuclear Information System (INIS)

    The perspectives and effectiveness of centrifugal vacuum casting for manufacturing materials for fuel cladding of nuclear reactors were shown. Temperature and deformation conditions have been selected to manufacture tubes from radiation-resistant steels obtained by centrifugal casting in vacuum. Basically, the possibility is established for using the existing equipment and traditional schemes for thin-walled tube production out of austenitic stainless steels alloyed with scandium or gadolinium

  5. Hair casts

    Directory of Open Access Journals (Sweden)

    Sweta S Parmar

    2014-01-01

    Full Text Available Hair casts or pseudonits are circumferential concretions,which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  6. Influence of compound deoxidation of steel with Al, Zr, rare earth metals, and Ti on properties of heavy castings

    Directory of Open Access Journals (Sweden)

    J. Senberger

    2012-01-01

    Full Text Available Heavy steel castings deoxidized with aluminium are sometimes brittle intercrystalline failed during their service along primary grain boundaries what is initiated by aluminium nitrides and so called conchoidal fractures are formed. The tendency to forming the conchoidal fractures depends in particular on cooling rate (the casting modulus, aluminium and nitrogen contents in steel. During deoxidation, when manufacturing heavy castings, the elements with high affinity to nitrogen, zirconium or titanium, are added to steel that would decrease nitrogen activity by the bond on stable nitrides. The formation of stable nitrides should reduce the tendency of steel to the formation of conchoidal fractures. Deoxidation was thermodynamically analyzed at presence of the mentioned elements. For particular conditions a probable course of deoxidation was estimated at test castings. The deoxidation course was checked by microanalysis of deoxidation products (inclusions. For service and experimental castings the anticipated composition of inclusions was compared. It has been proved that in heavy castings with high aluminium contents in steel under studied conditions neither the addition of zirconium nor of titanium nor of rare earth metals will prevent the formation of conchoidal fractures.

  7. Structure, castability and mechanical properties of commercially pure and alloyed titanium cast in graphite mould.

    Science.gov (United States)

    Cheng, W W; Ju, C P; Lin, J H Chern

    2007-07-01

    This report is a study of structure, castability, mechanical properties as well as corrosion behaviour of titanium doped with up to 5 weight percentage (wt%) of a series of alloy elements, including Ta, Mo, Nb, Hf, Zr, Sn, Bi and Ag. The results indicate that, with addition of 1 wt% alloy element, Bi and Mo were most effective in enhancing the castability of titanium. With more alloy elements added, the castability values of most alloys more or less decreased. Except Ti-Mo system, all Ti alloys with a fine acicular morphology had the same crystal structure (hcp) as that of c.p. Ti with a typical lath type morphology. When 3 wt% or more Mo was added, a finer orthorhombic alpha'' phase was formed. The microhardness and bending strength values of Ti alloys were all higher than those of c.p. Ti. Among all alloys, Ti-Mo system exhibited the highest hardness and strength level. For a certain alloy, the bending strength did not necessarily increase with its alloy content. Except Ti-5Zr and Ti-Mo alloys, the bending moduli of most alloy systems were not much different from that of c.p. Ti. All alloys showed an excellent resistance to corrosion in Hanks' solution at 37 degrees C. PMID:17559621

  8. Mechanical properties of a squeeze cast Mg–Al–Sr alloy

    Directory of Open Access Journals (Sweden)

    Z. Trojanová

    2008-02-01

    Full Text Available Purpose: The aim of the present work is to study the influence of temperature on tensile properties of the magnesium alloy AJ50, and to discuss possible hardening and softening mechanisms and thermally activated processes.Design/methodology/approach: Deformation behaviour of a Mg-Al-Sr magnesium alloy has been studied in tension as well as compression in the temperature interval from room temperature up to 300°C. Stress relaxation tests were performed with the aim to find applied stress components (internal stress and effective stress and parameters of the thermally activated process/-es.Findings: The yield stress as well as the maximum stress of the alloy are very sensitive to the testing temperature. The work hardening coefficient Θ=dσ/dε decreases with increasing stress and temperature. Performed analysis of the -! plots determined the hardening and softening mechanisms operating during the deformation. The internal stress decreses with increasin temperature, while the effective stress component increases.Practical implications: Estimated values of the activation volume as well as the activation energy indicate that the main thermally activated process is connected with the rapid decrease of the internal stress.Originality/value: An analysis showed that the main hardening process is the storage of dislocations at impenetrable obstacles. The activation volume values indicate that the main thermally activated process is connected with recovery process.

  9. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  10. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  11. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    International Nuclear Information System (INIS)

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved

  12. Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Kenta, E-mail: k_yamanaka@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Mori, Manami [Department of Materials and Environmental Engineering, Sendai National College of Technology, 48 Nodayama, Medeshima-Shiote, Natori 981-1239 (Japan); Chiba, Akihiko [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-07-01

    We determined the effects of carbon concentration on the microstructures and tensile properties of the Ni-free Co–29Cr–9W–1Si–C (mass%) cast alloys used in dental applications. Alloy specimens prepared with carbon concentrations in the range 0.01–0.27 mass% were conventionally cast. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) revealed that precipitates had formed in all the alloy specimens. The σ phase, a chromium-rich intermetallic compound, had formed in the region between the dendrite arms of the low-carbon-content (e.g., 0.01C) alloys. Adding carbon to the alloys increased the amount of interdendritic precipitates that formed and changed the precipitation behavior; the precipitated phase changed from the σ phase to the M{sub 23}C{sub 6} carbide with increasing carbon concentration. Adding a small amount of carbon (i.e., 0.04 mass%) to the alloys dramatically enhanced the 0.2% proof stress, which subsequently gradually increased with increasing content of carbon in the alloys. Elongation-to-failure, on the other hand, increased with increasing carbon content and showed a maximum at carbon concentrations of ∼ 0.1 mass%. The M{sub 23}C{sub 6} carbide formed at the interdendritic region may govern the tensile properties of the as-cast Co–Cr–W alloys similar to how it governed those of the hot-rolled alloys prepared in our previous study. - Highlights: • Microstructure and tensile properties of C-doped Co–Cr–W cast alloys was studied. • Adding carbon stabilized the γ matrix and changed the precipitation behavior. • Formation of carbide precipitates strengthened C-doped Co–Cr–Mo alloys. • A maximum tensile elongation was obtained at carbon concentrations of ∼0.1 mass%.

  13. Application of Integrated Database to the Casting Design

    Institute of Scientific and Technical Information of China (English)

    In-Sung Cho; Seung-Mok Yoo; Chae-Ho Lim; Jeong-Kil Choi

    2008-01-01

    Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for .the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.

  14. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  15. Preparation and properties of gradient Al2O3-ZrO2 ceramic foam by centrifugal slip casting method

    Directory of Open Access Journals (Sweden)

    Li Qiang

    2012-11-01

    Full Text Available The aim of the present research is to provide a novel technique for preparing gradient Al2O3-ZrO2 ceramic foams. This technique used epispastic polystyrene spheres to array templates and centrifugal slip casting to obtain cell struts with gradient distribution of Al2O3 and ZrO2 particles and high packing density. Aqueous Al2O3-20vol.% ZrO2 slurries with 20vol.% solid contents were prepared and the dispersion and rheological characteristics of the slurries were investigated. The settling velocity and mass segregation of Al2O3 and ZrO2 particles at different centrifugal accelerations were calculated and studied. The drying behavior, macrostructure, microstructure, compressive property and resistance to thermal shock of the sintered products were also investigated. The results show that the difference of settling velocity of Al2O3 and ZrO2 particles increases and mass segregation becomes acute with an increase in centrifugal acceleration. The cell struts prepared at a centrifugal acceleration of 1,690 g have high sintered density (99.0% TD and continuous gradient distribution of Al2O3 and ZrO2 particles. When sintered at 1,550 oC for 2 h, the cell size of gradient Al2O3-ZrO2 foam is approximately uniform, about 1.1 mm. With the porosity of gradient Al2O3-ZrO2 ceramic foams increasing from 75.3% to 83.0%, the compressive strength decreases from 4.4 to 2.4 MPa, and the ceramic foams can resist 8-11 repeated thermal shock from 1,100 oC to room temperature.

  16. Parameters controlling the performance of AA319-type alloys Part II. Impact properties and fractography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Samuel, A.M.; Samuel, F.H.; Ravindran, C.; Doty, H.W.; Valtierra, S

    2004-02-25

    The Charpy impact energy of Al-Si-Cu AA319-type alloys was measured in terms of the total absorbed energy. The Charpy specimens were machined from end-chilled castings to incorporate the effect of cooling rate on the impact properties. Unnotched specimens were used to increase the accuracy of the measurements, and to emphasize the effect of microstructure. The influence of the microconstituents on the impact strength was investigated by adding various alloying elements (i.e. Sr, Fe, and P) to the AA319 base alloy, and applying two different heat treatments (T5, and T6). The results show that strontium-modification enhances the impact properties, so that the Sr-modified AA319 alloy exhibits the highest impact properties compared to the base, and other alloys at any given dendrite arm spacing (DAS). The impact energy increases with increase in cooling rate, while iron, and phosphorus additions have a detrimental influence due, respectively, to the formation of {beta}-Al{sub 5}FeSi, and phosphorus oxide particles during solidification. T6 treatment assists in the even distribution, and dissolution of the microconstituents (including the block-like CuAl{sub 2} particles) into the aluminum matrix. With more Cu available for strengthening during aging, the impact toughness is greatly enhanced. In the unmodified AA319 base alloy, crack initiation, and propagation occur mainly through Si-particle fracture, and the mechanism of void coalescence. In the Sr-modified, 1.2% Fe-containing 319 alloys, however, crack initiation takes place through fragmentation of {beta}-Al{sub 5}FeSi, Si, and CuAl{sub 2} or Cu{sub 2}FeAl{sub 7} particles. Crack propagation occurs through cleavage of the {beta}-Fe platelets, and fracture of the Cu-intermetallics, and brittle Si particles. Such samples exhibit very low impact energies.

  17. Microstructural and mechanical properties of gravity-die-cast A356 alloy inoculated with yttrium and Al-Ti-B grain refiner simultaneously

    Directory of Open Access Journals (Sweden)

    Y.P. Lim

    2011-10-01

    Full Text Available In the present work, the effect of inoculating yttrium and Al-5Ti-1B simultaneously on A356 aluminum alloy has been studied. Gravity die casting process is used to cast the ASTM tensile test specimens for analysis. In each experiment, the Ti and B contents were maintained constantly at 0.1 and 0.02 wt% respectively. The addition of yttrium was manipulated at the amount of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 wt%. Microstructural characterization of the as-cast A356 alloy was investigated by means of optical microscope and its phases are detected by XRD. The mechanical properties tested are tensile strength and hardness. The inoculation of yttrium was found to enhance the grain refinement effect of Al-5Ti-1B grain refiner and improve the mechanical properties. The optimal weight percentage of yttrium was found to be 0.3. The grain refining efficiency of combining yttrium and Al-5Ti-1B on A356 aluminum alloy was mainly attributed to the heterogeneous nucleation of TiB2 and TiAl3 particles which were dispersed more evenly in the presence of yttrium and the grain growth restriction effected by the accumulation of Al-Y compound at grain boundaries.

  18. The heat treatment of Fermanal cast steel

    OpenAIRE

    F. Binczyk; A. Smoliński; J. Szymszal

    2007-01-01

    The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite) is the content of aluminium. The matrix totally austenitic is p...

  19. Thermal aging evaluation of casting stainless steel under BWR environment

    International Nuclear Information System (INIS)

    Effect of thermal aging under BWR condition on material properties of casting stainless steel were evaluated by such as Charpy impact test, using replaced BWR component material. Solution heat treatment was performed to the same material and the material properties were obtained. Comparing each material test results, impact value of thermal aging material was lower than solution heat treatment material. By the results, thermal aging effect on material properties under BWR condition was confirmed. The material properties were compared with model equation using PLM evaluation and conservativeness of model equation was confirmed. (author)

  20. Effect of Ternary Scandium and Quaternary Zirconium and Titanium Additions on the Tensile and Precipitation Properties of Binary Cast Al-6Mg Alloys

    OpenAIRE

    Kaiser, M. S.; Banerjee, M.K.

    2008-01-01

    Effect of ageing on the mechanical properties of Al-6Mg alloy doped with 0.4 wt% scandium and with or without tracezirconium and titanium is studied. As cast, samples were aged isochronally for 60 minutes at different temperatures up to500oC. The evaluation of tensile properties of the aged Al-6Mg (Sc, Zr, Ti) alloys was conducted by employing an Instrontesting machine. Various strain rate of the tensile testing were used to find out the values of strain rate sensitivity of theexperimental al...

  1. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  2. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    International Nuclear Information System (INIS)

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  3. Characterisation of the fatigue properties of cast irons used in the water industry and the effect on pipe strength and performance

    International Nuclear Information System (INIS)

    As part of an on going programme to characterise the residual properties and understand the failure mechanisms of in-service grey cast iron water pipes, the fatigue crack propagation behaviour of grey cast iron samples has been studied. Specimens were sourced from three ex-service pipes. For each pipe the microstructure and composition were characterised and the fracture toughness was determined. The fatigue behaviour was investigated in terms of the crack growth rate (da/dN) as a function of the applied stress intensity factor range. Clear differences in the fatigue behaviour of the samples from different pipes were observed. The result from these investigations, which indicate that microstructural differences play a role in mechanical behaviour, will support the development of asset management tools for use in the water industry.

  4. Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys

    International Nuclear Information System (INIS)

    Mg-Zn-Al-Ca-RE alloys have been found to be promising materials for substituting aluminum alloys used for automatic transmission case applications in the automobile industry. Particularly, Mg-0.5%Zn-6%Al-1%Ca-3%RE (ZAXE05613) alloy exhibits comparable creep resistance as ADC12 die-casting aluminum alloy that is currently used for automatic transmission case applications. Changing the rare earth (RE) content of the alloy from mischmetal to lanthanum gives a further improvement in the creep properties of the alloy. Lanthanum addition results in the crystallization of a large amount of acicular Al11RE3 (Al11La3) compound along the grain boundaries as well as across the grain boundaries and this effectively controls grain boundary sliding and dislocation motion in the vicinity of the grain boundaries. As a result, die-cast ZAXLa05613 alloy exhibits a higher creep resistance than that of ZAXE05613 alloy

  5. Residual Stress, Structure and Other Properties Formation by Combined Thermo-Hardening Processing of Surface Layer of Gray Cast Iron Parts

    Science.gov (United States)

    Rakhimyanov, Kh M.; Nikitin, Yu V.; Semenova, Yu S.; Eremina, A. S.

    2016-04-01

    The proposed combined thermo-hardening processing of gray cast iron enables to control the surface layer structure and mechanical properties formation. The processing includes high-speed heating by low-temperature plasma source and ultrasonic surface plastic deformation. The algorithm of calculation the stress-strain state of a surface layer at combined processing of gray cast iron is developed. This algorithm is based on method of sections. The ultrasonic surface deformation contribution is determined during formation of residual stresses. It is established that the combination of the thermal and deformation effects on the material provides an additional increment of microhardness and increase of surface layer thickness. Experimental results shows that the features of structural and phase transformations in a surface layer are revealed without a surface melting by energy of low-temperature plasma. The top of a layer does not contain inclusions of graphite that testifies to change of structural transformations in conditions of combined processing.

  6. Study on laser-cladding Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties

    International Nuclear Information System (INIS)

    Laser-cladding Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties are studied. The chemical composition, the phase structure, the average micro-hardness, the wear resistance and the corrosion resistance are analyzed for the Ni-Al-WC and the matrix, respectively. The results show that the metallurgical combination is achieved between the spray alloy layer and the surface of chrome cast iron, the chemical composition and micro-structure in the surface layer of the specimen are changed basically, and the micro-hardness, the wear resistance, the corrosion resistance in the surface layer are increased with a large range

  7. Modeling fracture properties in a die-cast AM60B magnesium alloy II-The effects of the size and location of porosity determined using finite element simulations

    International Nuclear Information System (INIS)

    This is the second of two papers that analyze the effects of porosity upon the fracture properties of the die-cast AM60B magnesium alloy. This paper investigates the effects of the size and location of porosity using finite element simulations. Failure models were developed for the cases of a pore centered in the cross-section, a volume of material intact in the casting, and samples removed from the casting for die-cast materials. The predicted fracture strains for a centered pore compared favourably with a previously developed analytical model. The fracture strains of samples removed from an AM60B casting and characterized using X-ray tomography were predicted with an average error percentage of 6.7%.

  8. Properties of pre-cast terrazzo tiles and recommended specifications Propriedades de telhas de terrazzo pré-moldadas e especificações recomendadas

    Directory of Open Access Journals (Sweden)

    G. Karam

    2009-03-01

    Full Text Available A targeted experimental program was carried out to establish basic reference physical and mechanical properties of commercially available pre-cast marble chip terrazzo tiles and to investigate the effects of varying manufacturing process parameters on those properties. The transverse strength, density, water absorption, and abrasion resistance were measured as a function of casting pressure and residence time in the casting mold for a standard mix design. A simple surface abrasion index test was developed and applied comparing pre-cast terrazzo tiles with reference natural tiling stones. Recommendations for improving existing specifications and developing quality control measures are presented.Foi feito um programa experimental direcionado para estabelecer propriedades físicas e mecânicas como referências básicas de telhas de terrazzo de peças de mármore pré-moldadas disponíveis comercialmente e para investigar os efeitos de vários parâmetros de processo de fabricação nessas propriedades. A resistência transversal, a densidade, a absorção de água e a resistência ao desgaste foram medidas em função da pressão de moldagem e do tempo de residência do molde de um projeto de mistura padrão. Um teste simples de índice de desgaste de superfície foi desenvolvido e aplicado na comparação de telhas de terrazzo pré-moldadas com pedras de telhas naturais de referência. As recomendações para a melhoria das especificações existentes e o desenvolvimento de medidas para controle de qualidade são apresentadas.

  9. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang

    2009-01-01

    @@ Preface Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc.

  10. A fracture mechanics safety concept to assess the impact behavior of ductile cast iron containers for shipping and storage of radioactive materials

    International Nuclear Information System (INIS)

    Within the scope of the German licensing procedures for shipping and storage containers for radioactive materials made of ductile cast iron, BAM performs approval design tests including material tests to ensure the main safety goals of shielding, leaktightness and subcriticality under ''Type B accident conditions''. So far the safety assessment concept of BAM is based essentially on the experimental proof of container strength by prototype testing under most damaging test conditions in connection with complete approval design tests, and has been developed especially for cylindrical casks like CASTOR- and TN-design. In connection with the development of new container constructions such as ''cubic cast containers'', and the fast developments in the area of numerical calculation methods, there is a need for a more flexible safety concept especially considering fracture mechanics aspects.This paper presents the state of work at BAM for such an extended safety concept for ductile cast iron containers, based on a detailed brittle fracture safe design proof. The requirements on stress analysis (experimental or numerical), material properties, material qualification, quality assurance provisions and fracture mechanics safety assessment, including well defined and justified factors of safety, are described. ((orig.))

  11. Centrifugally cast for top performance

    International Nuclear Information System (INIS)

    Centrifugally cast nickel-chromium alloy components, supplied by Fahralloy-Wisconsin Ltd. are being used for the lattice tubes in CANDU reactors. Horizontal centrifugal casting facilities enable tubular shapes to be made with outside diameters of 3 to 23 in.; lengths of up to 162 in. A unique feature of horizontal casting is that the mechanical properties are the same in all directions. The structure is also completely homogeneous and combines characteristically high resistance to heat and corrosion with enhanced physical and mechanical properties. (R.A.)

  12. Spring Cleaning: Rural Water Impacts, Valuation and Property Rights Institutions

    OpenAIRE

    Michael Kremer; Jessica Leino; Edward Miguel; Alix Peterson Zwane

    2009-01-01

    In many societies, social norms create common property rights in natural resources, limiting incentives for private investment. This paper uses a randomized evaluation in Kenya to measure the health impacts of investments to improve source water quality through spring protection, estimate the value that households place on spring protection, and simulate the welfare impacts of alternative water property rights norms and institutions, including common property, freehold private property, and a...

  13. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    OpenAIRE

    Fuller, M D; Swaminathan, S.; Zhilyaev, A.P.; T.R. McNelley

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal;...

  14. MECHANICAL PROPERTIES OF AS-CAST ZA-27/Gr/SiCp HYBRID COMPOSITE FOR THE APPLICATION OF JOURNAL BEARING

    OpenAIRE

    T. S. KIRAN; M. PRASANNA KUMAR; S. Basavarajappa; VISHWANATHA, B. M.

    2013-01-01

    The mechanical behavior of as-cast ZA-27 alloy and hybrid composite reinforced with graphite (Gr) of constant 3% by weight and silicon carbide particle (SiCp) varying from 0-9% by weight in steps of 3% was carried out. Vortex method of production was employed in which thoroughly mixed Gr and SiC particles were poured into the vortex created by means of mechanical stirrer. The melt was cast using a pre-heated permanent mold box. Microstructure showed fine distribution of the reinforcements in ...

  15. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  16. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  17. The influence of microstructure on the mechanical properties of metallurgical rolls made of G200CrMoNi4-3-3 cast steel

    Directory of Open Access Journals (Sweden)

    A. Brodziak

    2009-07-01

    Full Text Available The subject of the study is the high-carbon tool cast steel G200CrMoNi4-3-3 used for metallurgical rolls, especially in section rolling mills. The test material was derived from a roll damaged in production; therefore, the authors had the material in a raw state at their disposal, on which they were able to carry out additional heat treatment operations. The pearlitic matrix of casting steel G200CrMoNi4-3-3 allows machining to be done to modify the pass or to remove any defects, and the primary and secondary precipitates of carbides enhance the tribological properties. The authors have been for years involved in the optimization of the structure of this material by slight correction to its chemical composition and/or the modification of heat treatment. The presented principles of heat treatment modifications will lead to considerable economic and ecologic profits. It has also been demonstrated that raising slightly the contents of carbide-forming elements, which markedly increases the quantity of transformed ledeburite, results in an enhancement of tribological properties. The analysis of a dozen or so rolls exploited down to the dead roll diameter has shown that roll of cast steel with increased contents of carbon and carbide-forming elements exhibit better service properties, as characterized by the amount of feedstock rolled. Such a method of enhancing the service properties required the assessment of fracture toughness, which was verified using the linear-elastic methods of fracture mechanics.

  18. Liquid-solid interface control of BFe10-1-1 cupronickel alloy tubes during HCCM horizontal continuous casting and its effect on the microstructure and properties

    Science.gov (United States)

    Mei, Jun; Liu, Xin-hua; Jiang, Yan-bin; Chen, Song; Xie, Jian-xin

    2013-08-01

    Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the influence of LSI position on the surface quality, microstructure, texture, and mechanical properties of a BFe10-1-1 tube (ϕ50 mm × 5 mm). HCCM efficiently improves the temperature gradient in front of the LSI. Through controlling the LSI position, the radial columnar-grained microstructure that is commonly generated by cooling mold casting can be eliminated, and the axial columnar-grained microstructure can be obtained. Under the condition of 1250°C melting and holding temperature, 1200-1250°C mold heating temperature, 50-80 mm/min mean drawing speed, and 500-700 L/h cooling water flow rate, the LSI position is located at the middle of the transition zone or near the entrance of the cooling section, and the as-cast tube not only has a strong axial columnar-grained microstructure due to strong axial heating conduction during solidification but also has smooth internal and external surfaces without cracks, scratches, and other macroscopic defects due to short solidified shell length and short contact length between the tube and the mold at high temperature. The elongation and tensile strength of the tube are 46.0%-47.2% and 210-221 MPa, respectively, which can be directly used for the subsequent cold-large-strain processing.

  19. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Lu, Hui-Hu; Song, Hong-Yu; Wang, Guo-Dong

    2014-02-15

    An Fe-6.5 wt.% Si-0.3 wt.% Al as-cast sheet was produced by twin-roll strip casting process, then treated with hot rolling, warm rolling and annealing. A detailed study of the microstructure and texture evolution at different processing stages was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The initial as-cast strip showed strong columnar grains and pronounced < 001 >//ND texture. The hot rolled and warm rolled sheets were characterized by large amounts of shear bands distributed through the thickness together with strong < 110 >//RD texture and weak < 111 >//ND texture. After annealing, detrimental < 111 >//ND texture almost disappeared while beneficial (001)<210 >, (001)<010 >, (115)<5 − 10 1 > and (410) < 001 > recrystallization textures were formed, thus the magnetic induction of the annealed sheet was significantly improved. The recrystallization texture in the present study could be explained by preferred nucleation and grain growth mechanism. - Highlights: • A high silicon as-cast strip with columnar structure was produced. • A thin warm rolled sheet without large edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Beneficial (001)<210 >, (001)<010 >, (410)<001 > recrystallization textures were formed. • The magnetic induction of annealed sheet was significantly improved.

  20. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-07-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  1. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    Science.gov (United States)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-08-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  2. Investigation of the structure and properties of Fe-Co-B-Si-Nb bulk amorphous alloy obtained by pressure die casting method

    Directory of Open Access Journals (Sweden)

    W. Pilarczyk

    2012-12-01

    Full Text Available Purpose: The main aim of this paper is investigation of the microstructure and thermal properties of selected Fe-Co-B-Si-Nb bulk amorphous alloy.Design/methodology/approach: The studies were performed on Fe-Co-B-Si-Nb alloy in form of rods with diameter of ø=1.5 and ø=2 mm. Master alloy ingot with compositions of Fe37.44Co34.56B19.2Si4.8Nb4 was prepared by induction melting of pure Fe, Co, B, Si and Nb elements in argon atmosphere. The structure analysis of the studied materials in as-cast state was carried out using X-ray diffraction (XRD. The thermal properties: glass transition temperature (Tg, onset crystallization temperature (Tx and peak crystallization temperature (Tp of the as-cast alloys were examined by differential scanning calorimetry (DSC method. The microscopic observation of the fracture morphology of studied amorphous materials in rods form with different diameter was carried out by means of scanning electron microscope (SEM, within different magnification.Findings: The Fe-based bulk metallic glasses in form of rod were successfully produced by die pressure casting method. The investigation revealed that the studied rods are amorphous. These materials exhibit good glassforming ability. These tested rods with diameter of 1.5 and 2 mm exhibit similar characteristic temperatures (Tg, Tx, Tp. The exothermic peaks describing crystallization process of studied bulk metallic glasses are observed Morphology of cross section rods is changing having contact with copper mould during casting from smooth fracture inside rod to fine narrow dense veins pattern near to rod surface. These rods have smooth surface and metallic luster. The presented fractures are characteristic for metallic glasses.Practical implications: The success of production of studied Fe-based bulk metallic glasses is important for future practical application of those materials as elements of magnetic circuits, sensors and precise current transformers

  3. Impact of Intermetallic Precipitates on the Tribological and/or Corrosion Performance of Cast Aluminium Alloys: a Short Review

    OpenAIRE

    Culliton, David; Betts, Tony; Kennedy, David

    2013-01-01

    The role of various intermetallic precipitates (IMP), or secondary phase particles, in governing the wear and corrosion performance characteristics of cast aluminium alloys is outlined in this brief review. Such alloys are especially important in transport applications where their low weight, low cost and recyclability make them very attractive. However alloy wear and/or corrosion behaviour often limit their industrial application and more work needs to done to extend their use into other are...

  4. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  5. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  6. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys

    International Nuclear Information System (INIS)

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  7. MECHANICAL PROPERTIES OF AS-CAST ZA-27/Gr/SiCp HYBRID COMPOSITE FOR THE APPLICATION OF JOURNAL BEARING

    Directory of Open Access Journals (Sweden)

    KIRAN, T. S.

    2013-10-01

    Full Text Available The mechanical behavior of as-cast ZA-27 alloy and hybrid composite reinforced with graphite (Gr of constant 3% by weight and silicon carbide particle (SiCp varying from 0-9% by weight in steps of 3% was carried out. Vortex method of production was employed in which thoroughly mixed Gr and SiC particles were poured into the vortex created by means of mechanical stirrer. The melt was cast using a pre-heated permanent mold box. Microstructure showed fine distribution of the reinforcements in the specimen. Tensile and hardness tests were carried out as per ASTM standards. The results reveal that, as the percentage of SiCp was increased, UTS and hardness increased with reduction in ductility.

  8. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  9. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  10. Properties and application spectrum of cast porous implants made of Ti-6Al-7Nb in coated and uncoated conditions

    OpenAIRE

    Guillén Girón, Teodolito

    2012-01-01

    This thesis presents the development, the characterization and the application of cast Ti-6Al-7Nb porous implants with respect to repair defects in cancellous bone. In the framework of this project, it was aimed at fabricating a porous implant with high mechanical strength to resist the applied load, a relatively low Young's modulus to prevent stress shielding phenomena, controlled cell dimensions to stimulate both mineral and collagen osseointegration, high porosity to guarantee intercon...

  11. Creep Properties of the As-Cast Al-A319 Alloy: T4 and T7 Heat Treatment Effects

    Science.gov (United States)

    Erfanian-Naziftoosi, Hamid R.; Rincón, Ernesto J.; López, Hugo F.

    2016-08-01

    In this work, the creep behavior of a commercial Al-A319 alloy was investigated in the temperature range of 413 K to 533 K (140 °C to 260 °C). Tensile creep specimens in the as-cast condition and after heat treating by solid solution (T4) and by aging (T7) were tested in a stress range varying from 60 to 170 MPa. It was found that steady-state creep strain rate was significantly low in the T7 condition when compared with either the T4 or as-cast alloy conditions. As a result, the time to failure behavior considerably increased. The experimentally determined creep exponents measured from the stress-strain curves were 4 for the as-cast alloy, 7.5 in the solid solution, and 9.5 after aging. In particular, after solid solution a grain substructure was found to develop which indicated that creep in a constant subgrain structure was active, thus accounting for the n exponent of 7.5. In the aged condition, a stress threshold is considered to account for the power law creep exponent n of 9.5. Moreover, It was found that the creep activation energy values were rather similar for the alloys in the as-cast (134 kJ/mol) and T4 (146 kJ/mol) conditions. These values are close to the one corresponding to pure Al self-diffusion (143 kJ/mol). In the aged alloy, the apparent creep activation energy (202 kJ/mol) exceeded that corresponding to Al self-diffusion. This deviation in activation energy is attributed to the effect of temperature on the alloy elastic modulus. Microstructural observations using transmission electron microscopy provided further support for the various dislocation-microstructure interactions exhibited by the alloy under the investigated creep conditions and implemented heat treatments.

  12. Creep Properties of the As-Cast Al-A319 Alloy: T4 and T7 Heat Treatment Effects

    Science.gov (United States)

    Erfanian-Naziftoosi, Hamid R.; Rincón, Ernesto J.; López, Hugo F.

    2016-05-01

    In this work, the creep behavior of a commercial Al-A319 alloy was investigated in the temperature range of 413 K to 533 K (140 °C to 260 °C). Tensile creep specimens in the as-cast condition and after heat treating by solid solution (T4) and by aging (T7) were tested in a stress range varying from 60 to 170 MPa. It was found that steady-state creep strain rate was significantly low in the T7 condition when compared with either the T4 or as-cast alloy conditions. As a result, the time to failure behavior considerably increased. The experimentally determined creep exponents measured from the stress-strain curves were 4 for the as-cast alloy, 7.5 in the solid solution, and 9.5 after aging. In particular, after solid solution a grain substructure was found to develop which indicated that creep in a constant subgrain structure was active, thus accounting for the n exponent of 7.5. In the aged condition, a stress threshold is considered to account for the power law creep exponent n of 9.5. Moreover, It was found that the creep activation energy values were rather similar for the alloys in the as-cast (134 kJ/mol) and T4 (146 kJ/mol) conditions. These values are close to the one corresponding to pure Al self-diffusion (143 kJ/mol). In the aged alloy, the apparent creep activation energy (202 kJ/mol) exceeded that corresponding to Al self-diffusion. This deviation in activation energy is attributed to the effect of temperature on the alloy elastic modulus. Microstructural observations using transmission electron microscopy provided further support for the various dislocation-microstructure interactions exhibited by the alloy under the investigated creep conditions and implemented heat treatments.

  13. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    OpenAIRE

    Markus Schmid

    2013-01-01

    Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate ...

  14. Influence of regenerative heat treatment on structure and properties of G20CrMo2 - 5 (L20HM cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-03-01

    Full Text Available Thc papcr prcscnts rcsuSts or rcscarch on thc influence of rcgcncratic hcat treatment on thc structurc and propcrtics [hardncss. impactcncrgy or L2O11M cnst stccl. Invcstipatcd material was taken from outer fmmc of a turbinc which was scrviccd for t 67 424 hours a! thctcmpcrauirc or 535 "C and prcssurc or 12.75 MPa. In psi-operating condition ~hicnv cstigntcd cast steel was cl~aracteri~cbdy low impactcncrpy of II I ant1 hart3ncss of 139HV30. Analysis uF the irlflue~~uuel ;lustcniriz;~ti on pariimctcrs (tcrnpcr;lturc and lime has rcvealcd rhntat thc tcinpcr;~turcr angc o f 895 + 955 "C (i-e. h3 - +I IO + 70 "C.fo r both 3 and 5 hours of holtl timc. rhc ohtaincd grain sizc amounls to 20+ 2511m. I has hccn pmved that tempcred bainitic-rcrri~ica nd remit ic-hainiric-pearlit ic stn~cturco f thc invcstigatcd cast stccl msurcs highimpact cncrgy, i.c. KV > 1001. as well a5 hardncss. i.e. 11Y30. just at thc tcrnpcmturc of OXl "C. 'I'crnpcmliirc or 7110 "C causcs i'~tnhcrincrclrsc of impact cncrgy along with a slight dccrcasc of hardncss. Morcovcr. it has hccn concludd that nppl ying oS under-annealinginstcad or tcmpcring. nflcr standardizalion. guarantees scquircd impact cncrgy of KY r 271.

  15. A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-07-01

    Full Text Available The results of studies on the use of magnesium alloy in modern cored wire injection method for production of vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 45% for the production of vermicular graphite cast irons at Giesserei Heunisch GmbH Foundry with the pearlite matrix with about 20%ferrite content. The results of calculations and experiments have indicated the length of the cored wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium cored wire process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  16. Effect of Ti, Nb, Cr and B on Structure and Mechanical Properties of High Aluminium Cast Iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2013-01-01

    Full Text Available In this work, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a high-aluminium alloys, and thusimprove the production process. The melting conditions employed in this work enabled the formation of a Fe-Al-C liquid solution.Moreover, titanium additions into the liquid allowed the precipitation of TiC. According to this reaction, the extent of carbon removal from the melt is strongly influenced by the amount of Ti additions. Hence, proper titanium levels can result in total removal of carbon from the liquid. Notice from this figure that Ti additions above 4.5%, totally eliminate the undesirable Al4C3 precipitates. Making Cr, Ti, B additions reduces size of FeAl alloys grains. In addition, this work indicates that the high-aluminium cast iron posses high oxidation resistance, exceeding that of high-chromium cast iron and chromium cast steels. Finally, the alloy ductility can be enhanced by additions of dopants such as B and Cr. Hence, additions of 0.03% B and 0.03%B-5% Cr combined with a heat treatment were implemented. As a result, the alloy ductility was significantly improved, where the strain of up to 5.3%, (B alone or 15% (B-Cr were obtained.

  17. Effect of volume ratio of liquid to solid on the interfacial microstructure and mechanical properties of high chromium cast iron and medium carbon steel bimetal

    International Nuclear Information System (INIS)

    Highlights: → Volume ratio of liquid to solid affects significantly the interfacial microstructure. → Elemental diffusion activity is increased by increasing volume ratio. → Mechanical property is improved by increasing volume ratio. - Abstract: The high chromium cast iron and medium carbon steel bimetal was fabricated by liquid-solid casting technology. The effect of volume ratios of liquid to solid (6:1, 10:1 and 12:1) on the interfacial microstructure and mechanical properties of bimetal was investigated. The interfacial microstructure was analyzed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The shear strength and microhardness in as-cast condition were studied at room temperature. The results show that the volume ratios of liquid to solid affect significantly the interfacial microstructure. When liquid-solid volume ratio was 6:1, the unbonded region was detected in interface region because the imported heat energy cannot support effectively the diffusion of element, whereas, when liquid-solid volume ratios reach 10:1 and 12:1, a sound interfacial microstructure was achieved by the diffusion of C, Cr, Mo, Cu and Mn, and metallurgical bonding without unbonded region, void and hole, etc. was detected. With the increase of liquid-solid volume ratio, the elemental diffusion activity improves, resulting in the increase of width of interface transition region. At the same distance from interface, with the increase of liquid-solid volume ratio, the microhardness is degraded in HCCI, but increased in MCS. The shear strength is also improved with the increase of liquid-solid volume ratio.

  18. Plaster mould casting process of AlSi11 alloy

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2009-07-01

    Full Text Available The paper presents the results of the crystallization and cooling process of AlSi11 silumin in the plaster mould with TDA method and describes the impact of the preparation of plaster mould and liquid silumin on received microstructure and quality of casting. The effect of the pouring temperature of silumin on porosity and filling of mould cavity was investigated. The nature and rate of change of temperature in casting and the formation of the microstructure was shown by means thermal and derivative curves. Through the use of control samples in range of a thickness of 0.5 ÷ 4 mm confirmed the possibility of obtaining thin-walled silumin castings in pre-heated before plaster moulds. It has been proved that changing the parameters of pre-treatment moulds of gypsum, the pouring temperature and modification of silumin you can control the crystallization process, obtained microstructure and properties Rm, RP02 and HB.

  19. Prediction of Part Distortion in Die Casting

    Energy Technology Data Exchange (ETDEWEB)

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  20. Effect of Substrate Movement Speed by Synchronous Rolling-casting Freeform Manufacturing for Metal on Microstructure and Mechanical Property of ZLl04 Aluminum Alloy Slurry

    Institute of Scientific and Technical Information of China (English)

    LUO Xiaoqiang; LI Zhengyang; CHEN Guangnan; XU Wanli; YAN Qingzhi

    2015-01-01

    Synchronous rolling-casting freeform manufacturing for Metal (SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet. The clearance between the outlet and the plate is about several hundred micrometers. SRCFMM, similar to additive manufacturing, implies layer by layer shaping and consolidation of feedstock to arbitrary conifgurations, normally using a computer controlled movable plate. The primary dendritic crystal is easily crushed by movement of substrate in the rolling-casting area. ZL104 was used as the test materials, determi-ning the control temperature by differential scanning thermal analysis (DSC), preparing a kind of samples by SR CFMM, then analyzing microstructures and mechanical property of the samples. Characteristics and distribution of the primary particles were assessed by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) and image analysis software. Mechanical property of the samples was assessed by vickers hardness. The results show that the samples fabricated by SRCFMM have uniform structures and good performances with the velocity of the substrate controlled about 10 cm/s and temperature at about 580℃.

  1. Superplastic Properties of AZ31 and AZ31-1.0Y-1.3Sr Alloy Produced by Twin-Roll Casting and Sequential Hot Rolling

    Science.gov (United States)

    Ning, Huiyan; Yu, Yandong; Lin, Kai; Wen, Lihua; Liu, Chunxiang

    2016-02-01

    Superplastic mechanical properties of the AZ31 and AZ31-1.0Y-1.3Sr magnesium alloy sheets produced by twin-roll casting and sequential hot rolling (TRC) were investigated. The AZ31-1.0Y-1.3Sr alloy sheets with the thickness of 1 mm were prepared by twin-roll casting process, which exhibited finer equiaxed grain structure. Uniaxial tensile testing and gas blow forming on AZ31 and AZ31-1.0Y-1.3Sr magnesium alloy sheets were carried out. Results show that the superplastic mechanical properties of AZ31-1.0Y-1.3Sr alloys are better than those of AZ31 alloys at 400 °C and the strain rate of 7 × 10-4/s. The addition of Y and Sr elements is helpful to improve the formability of AZ31 alloy. Grain boundary sliding plays a dominant role in superplastic forming.

  2. Preparation and Electrical Properties of CaCu3Ti4O12 Thin Ceramic Sheets via Water-based Tape Casting

    Directory of Open Access Journals (Sweden)

    LI Wei, XIONG Zhao-Xian, XUE Hao

    2014-11-01

    Full Text Available Thin ceramic sheet of CaCu3Ti4O12 has a great significance for preparation of multiplayer ceramic chip capacitors. In this work, a simple plan was made to achieve CaCu3Ti4O12 thin ceramic sheets with excellent dielectric properties. Thin ceramic sheets of CaCu3Ti4O12 were prepared via water-based tape casting at various sintering temperatures. The CaCu3Ti4O12 samples sintered at 1080℃ exhibit a great performance on dielectric properties with high permittivity (εr=98605 and low dielectric loss (tanδ=0.028 which are better than those of samples prepared by conventional dry pressing. Meanwhile, the complex impedance spectra were measured to explain the mechanism of special electrical behaviors of CaCu3Ti4O12 ceramics. These testing results indicate that the CaCu3Ti4O12 ceramics via tape casting exhibits a better performance of giant permittivity and lower dielectric loss than other reports, which provides a possibility for the application of the CaCu3Ti4O12 in modern micro-electronics technology.

  3. Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below

    Science.gov (United States)

    Eckner, R.; Reichel, B.; Savinykh, A. S.; Krüger, L.; Razorenov, S. V.; Garkushin, G. V.

    2016-01-01

    A low-carbon metastable austenitic CrMnNi cast steel was investigated under shock conditions in a flyer-plate impact test. The samples were impacted by aluminum flyer-plates with impact velocities of 620 ± 30 m/s. Depending on deformation temperature and strain rate, the material exhibited different deformation mechanisms (dislocation glide, martensitic transformation, and mechanical twinning), which determined the microstructural evolution and mechanical behavior. Flyer-plate impact tests were carried out at 213 K and 293 K (-60 °C and +20 °C). A soft recovered sample revealed microstructural changes directly after impact. The subsequent microstructural investigations via light-optical microscopy and scanning electron microscopy revealed that transformation-induced plasticity (TRIP effect) was the primary deformation mechanism. Moreover, it was possible to quantify the martensite volume fraction by different methods and to identify the hcp ɛ-martensite phase as an intermediate transformation stage. A decrease in temperature also increased the driving force for the martensitic transformation.

  4. Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys.

    Science.gov (United States)

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2016-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, and Vickers hardness- and alloy phases of the dental cast alloys Ti-6%Nb-4%Cu, Ti-18%Nb-2%Cu, and Ti-24%Nb-1%Cu were investigated. Ti-6%Nb-4%Cu consisted of a single α-phase, while Ti-18%Nb-2%Cu and Ti-24%Nb-1%Cu consisted of α- and β-phases. The tensile strengths, yield strengths, and hardnesses of these alloys were higher than those of Ti-5%Cu and Ti-30%Nb; however, their breaking elongations were smaller. These differences in the mechanical properties are attributable to solid-solution strengthening or to precipitation strengthening by the dual-phase (α+β) structure. Thus, Ti-Nb-Cu alloys are suitable for use in high-strength dental prostheses, such as implantretained superstructures and narrow-diameter implants. PMID:27477221

  5. Mechanical properties dependency on chemical composition of spheroidal graphite cast iron; Dependencia de las propiedades mecanicas y de la composicion quimica en la fundicion de grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga-Cinco, R.; Fernandez-Carrasquilla, J.

    2006-07-01

    With this work, we try to study the chemical composition of four specimens in form of stair of ductile cast iron to determine the influence of the chemical composition of different alloying elements on microstructure and on mechanical properties. The dimensions of each specimens are 200 x 100 x 50 mm. Cooling rate has been considered to be different for each one of the four stairs when determining the mechanical properties, therefore, grain size varies in each case. In this analysis, the different microstructures of the stairs have been considered. Influence of the thickness on hardness of each specimen has been taken into account. Heat treatments are not used. Yield and tensile strength are determined. Charpy tests have been done. Rockwell and Brinell hardness are determined. (Author)

  6. Estimation of sediment properties during benthic impact experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.

    Sediment properties, such as water content and density, have been used to estimate the dry and wet weights, as well as the volume of sediment recovered and discharged, during benthic impact experiments conducted in the Pacific and Indian Oceans...

  7. Aluminium Alloy Cast Shell Development for Torpedoes

    Directory of Open Access Journals (Sweden)

    Vijaya Singh

    2005-01-01

    Full Text Available The sand-cast aluminium alloy cylindrical shells were developed for the advanced experimental torpedo applications. The components had intricate geometry, thin-walled sections, and stringent property requirements. The casting defects, such as shrinkage, porosity, incomplete filling of thin sections, cold shuts, inclusions and dimensional eccentricity, etc were found inthe initial castings trials. improvements in casting quality were achieved through modified methodology, selective chilling, risering, and by introducing ceramic-foam filters in the gatingsystem. The heat-treated and machined components met radiographic class I grade C/E standards, mechanical properties to BS1490 specifications, and leakage and hydraulic pressure testrequirements relevant for such applications.

  8. Ductile iron castings fabricated using metallic moulds

    International Nuclear Information System (INIS)

    The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed. (Author)

  9. Effect of inoculation on high temperature plastic properties of the centrifugally cast Cr-Ni-Nb steel

    Directory of Open Access Journals (Sweden)

    G. Tęcza

    2008-12-01

    Full Text Available From the centrifugally cast sleeve segments, in direction parallel to the axis, the specimens for mechanical tests were cut out in a way such as to get in one batch of the specimens a structure composed of columnar crystals and in another batch of the specimens a structure composed of equiaxial crystals. The specimens were subjected to a tensile test at the temperature of 820°C. It has been observed that the two zones of crystals differ quite considerably in the values of elongation, while preserving similar tensile strength levels.

  10. Effect of inoculation on high temperature plastic properties of the centrifugally cast Cr-Ni-Nb steel

    OpenAIRE

    G. Tęcza; Głownia, J.

    2008-01-01

    From the centrifugally cast sleeve segments, in direction parallel to the axis, the specimens for mechanical tests were cut out in a way such as to get in one batch of the specimens a structure composed of columnar crystals and in another batch of the specimens a structure composed of equiaxial crystals. The specimens were subjected to a tensile test at the temperature of 820°C. It has been observed that the two zones of crystals differ quite considerably in the values of elongation, while pr...

  11. Microstructure-properties correlation of pressure die cast eutectic aluminum-silicon alloys for escalator steps (Part I)

    International Nuclear Information System (INIS)

    This paper is a study of the roles of strontium as a modifier and titanium as a refiner of the Al-12%Si commercial alloy for escalator steps processed by a hot-chamber pressure-die casting method. Specifically, two objectives were pursued. First, the detection of the level at which the modifier and the refiner become effective in altering the relevant microstructural parameters, namely, the volume fraction, grain size and shape of proeutectic phases. Second, investigation of the morphology of the eutectic matrix

  12. Preparation and properties of gradient Al2O3-ZrO2 ceramic foam by centrifugal slip casting method

    OpenAIRE

    Li Qiang; Yu Jingyuan; Tang Ji

    2012-01-01

    The aim of the present research is to provide a novel technique for preparing gradient Al2O3-ZrO2 ceramic foams. This technique used epispastic polystyrene spheres to array templates and centrifugal slip casting to obtain cell struts with gradient distribution of Al2O3 and ZrO2 particles and high packing density. Aqueous Al2O3-20vol.% ZrO2 slurries with 20vol.% solid contents were prepared and the dispersion and rheological characteristics of the slurries were investigated. The settling veloc...

  13. Evaluation of impact and fatigue properties on austempered ductile iron

    OpenAIRE

    Arias Fernández, Sergio

    2009-01-01

    Austempered Ductile Iron (ADI) proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. In this work impact and the fatigue properties have been evaluated for low alloyed Austempered Ductile Iron. To do this, Charpy-type impact test for austempered ductile iron was performed by the standard ASTM A 327M and Fatigue Crack Growth Rates (FCGR) were measured by the stand...

  14. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  15. Thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CR8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties have been investigated using Charpy impact specimens and fracture toughness specimens aged at 300∼400 C up to 40,000 hours. As the results, effects of thermal aging on mechanical properties of these stainless steels were identified and a good relationship between Charpy impact energy and fracture toughness was obtained. In addition, prediction method for Charpy absorbed energy and fracture toughness was established

  16. Predicting the impact of biochar additions on soil hydraulic properties

    Science.gov (United States)

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic con...

  17. Casting defects in low-pressure die-cast aluminum alloy wheels

    Science.gov (United States)

    Zhang, B.; Cockcroft, S. L.; Maijer, D. M.; Zhu, J. D.; Phillion, A. B.

    2005-11-01

    Defects in automotive aluminum alloy casting continue to challenge metallurgists and production engineers as greater emphasis is placed on product quality and production cost. A range of casting-related defects found in low-pressure die-cast aluminum wheels were examined metallographically in samples taken from several industrial wheel-casting facilities. The defects examined include macro- and micro- porosity, entrained oxide films, and exogenous oxide inclusions. Particular emphasis is placed on the impact of these defects with respect to the three main casting-related criteria by which automotive wheel quality are judged: wheel cosmetics, air-tightness, and wheel mechanical performance.

  18. Properties of Dispersion Casting of Y2O3 Particles in Hypo, Hyper and Eutectic Binary Al-Cu Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present work, the dispersion casting of Y2O3 particles in aluminum-copper alloy was investigated in terms of microstructural changes with respect to Cu contents of 20 (hypo), 33 (eutectic) and 40 (hyper)wt pct by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the fabrication of Al-Cu alloy dispersed Y2O3 ceramic particles, stir casting method was employed. In case of Al-20 wt pct Cu alloy (hypoeutectic), SEM images revealed that primary Al was grown up in the beginning. After that, eutectic phase with well dispersed ceramic particles was formed. In case of eutectic composition, Y2O3 particles were uniformly dispersed in the matrix. When the Cu is added into Al up to 40 wt pct (hypereutectic), primary θ phase was grown up without any Y2O3 ceramic particles in the early stage of solidification. Thereafter,eutectic phase was formed with well dispersed ceramic particles. It can be concluded that Y2O3 ceramic particles is mostly dispersed in case of eutectic composition in Al-Cu alloy.

  19. The Impact of Landfills on Residential Property Values

    OpenAIRE

    Alan K. Reichert; Michael Small; Sunil Mohanty

    1992-01-01

    The purpose of this study is to determine the impact of five municipal landfills on residential property values in a major metropolitan area (Cleveland, Ohio). The study concludes that landfills will likely have an adverse impact upon housing values when the landfill is located within several blocks of an expensive housing area. The negative impact is between 5.5%-7.3% of market value depending upon the actual distance from the landfill. For less expensive, older areas the landfill effect is ...

  20. Integral Steel Casting of Full Spade Rudder Trunk Carrier Housing for Supersized Container Vessels through Casting Process Engineering (Sekjin E&T

    Directory of Open Access Journals (Sweden)

    Tae Won Kim

    2015-04-01

    Full Text Available In casting steel for offshore construction, integral casted structures are superior to welded structures in terms of preventing fatigue cracks in the stress raisers. In this study, mold design and casting analysis were conducted for integral carrier housing. Casting simulation was used for predicting molten metal flow and solidification during carrier housing casting, as well as the hot spots and porosity of the designed runner, risers, riser laggings, and the chiller. These predictions were used for deriving the final carrier housing casting plan, and a prototype was fabricated accordingly. A chemical composition analysis was conducted using a specimen sampled from a section of the prototype; the analytically obtained chemical composition agreed with the chemical composition of the existing carrier housing. Tensile and Charpy impact tests were conducted for determining the mechanical material properties. Carrier housing product after normalizing (920 °C/4.5 h, air-cooling has 371 MPa of yield strength, 582 MPa of tensile strength, 33.4% of elongation as well as 64 J (0 °C of impact energy.

  1. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  2. Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and Titanium-5Al-2.5Sn ELI

    Science.gov (United States)

    Billinghurst, E. E., Jr.

    1992-01-01

    This work was performed to determine the tensile properties of cast, hot isostatic pressed (HIP'ed), and annealed titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2.5Sn ELI, that are candidate materials for the space transportation main engine (STME) liquid hydrogen turbopump impeller. Samples of the cast alloys were HIP'ed, annealed, and machined into tensile specimens. The specimens were tested in air at ambient temperature (70 F) and also at -423 F in liquid hydrogen. The Ti-6Al-4V alloy had an average ultimate strength of 129.1 ksi at 70 F and 212.2 ksi at -423 F. The Ti-5Al-2.5Sn alloy had an average ultimate strength of 108.4 ksi at 70 degrees F and 185.0 ksi at -423 F. The ductility, as measured by reduction of area, for the Ti-6Al-4V averaged 15.2 percent at 70 F and 8.7 percent at -423 F, whereas for the Ti-5Al-2.5Sn alloy average reduction of area was 24.6 percent at 70 F and 11.7 percent at -423 F.

  3. Manufacture of centrifugal Castings

    OpenAIRE

    Minář, Martin

    2015-01-01

    The main goal of this bachelor thesis is to collect basic information related to the production of castings by centrifugal casting. It is focused on horizontal and vertical centrigugal casting, casting of various metals and their alloys, such as zinc, aluminum, iron, steel and silumin. This technology is compared with other casting methods in terms of specific characteristics, amount of usage, production economics, advantages, disadvantages, the resulting quality of castings and other factors.

  4. Effect of intermediate annealing on the microstructure and mechanical property of ZK60 magnesium alloy produced by twin roll casting and hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongmei, E-mail: hmchen@just.edu.cn [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Zang, Qianhao [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Yu, Hui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Zhang, Jing [School of Metallurgical and Materials Engineering, Jiangsu University of Science and Technology, Zhang Jiagang 215600 (China); Jin, Yunxue [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2015-08-15

    Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealing can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.

  5. Effect of intermediate annealing on the microstructure and mechanical property of ZK60 magnesium alloy produced by twin roll casting and hot rolling

    International Nuclear Information System (INIS)

    Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealing can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing

  6. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5 wt% Si electrical steel

    International Nuclear Information System (INIS)

    6.5 wt% Si electrical steel thin sheets were produced by a processing route including strip casting, hot rolling, warm rolling, intermediate annealing, warm temper rolling and final annealing, in which the warm temper rolling reduction varied from 2.7% to 14.4%. A detailed study of the microstructural and textural evolutions through the whole processing route was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The findings revealed that the final recrystallization microstructure, texture and magnetic properties relied heavily on the warm temper rolling reduction. As the warm temper rolling reduction increased from 2.7% to 14.4%, the finally recrystallized microstructures were more homogeneous and the average grain size was decreased. At the warm temper rolling reduction lower than 7.0%, the occurrence of the exaggeratedly large annealing grains which dominated the whole sheet thickness resulted in strong 〈001〉//ND fiber, parallel α-fiber, 〈111〉//ND fiber and many other strong hard-magnetization texture components. By contrast, at the warm temper rolling reduction higher than 7.0%, the recrystallization textures were characterized by weak 〈001〉//ND fiber, parallel α-fiber, 〈111〉//ND texture, together with fewer and weak hard-magnetization texture components. The mechanism responsible for the finally microstructural and textural changes was explained by strain induced boundary migration. As warm temper rolling reduction increased, the magnetic properties at high frequency were gradually improved due to smaller grain sizes and more desirable textures. The highest magnetic inductions of 1.383 T (B8), 1.484 T (B25) and 1.571 T (B50) in combination with the lowest iron losses at high frequencies of 19.11 W/Kg (W10/400) and 3.824 W/Kg (W2/1000) were obtained at 14.4% warm temper rolling reduction under the applied condition. - Highlights: • 6.5 wt% Si electrical steel as-cast strip was produced by

  7. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5 wt% Si electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Liu, Yi [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Cao, Guang-Ming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin; Lyu, Li [National Engineering Research Center for Silicon Steel, Wuhan Iron and Steel (Group) Corp, Wuhan 430083 (China); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2014-12-15

    6.5 wt% Si electrical steel thin sheets were produced by a processing route including strip casting, hot rolling, warm rolling, intermediate annealing, warm temper rolling and final annealing, in which the warm temper rolling reduction varied from 2.7% to 14.4%. A detailed study of the microstructural and textural evolutions through the whole processing route was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The findings revealed that the final recrystallization microstructure, texture and magnetic properties relied heavily on the warm temper rolling reduction. As the warm temper rolling reduction increased from 2.7% to 14.4%, the finally recrystallized microstructures were more homogeneous and the average grain size was decreased. At the warm temper rolling reduction lower than 7.0%, the occurrence of the exaggeratedly large annealing grains which dominated the whole sheet thickness resulted in strong 〈001〉//ND fiber, parallel α-fiber, 〈111〉//ND fiber and many other strong hard-magnetization texture components. By contrast, at the warm temper rolling reduction higher than 7.0%, the recrystallization textures were characterized by weak 〈001〉//ND fiber, parallel α-fiber, 〈111〉//ND texture, together with fewer and weak hard-magnetization texture components. The mechanism responsible for the finally microstructural and textural changes was explained by strain induced boundary migration. As warm temper rolling reduction increased, the magnetic properties at high frequency were gradually improved due to smaller grain sizes and more desirable textures. The highest magnetic inductions of 1.383 T (B{sub 8}), 1.484 T (B{sub 25}) and 1.571 T (B{sub 50}) in combination with the lowest iron losses at high frequencies of 19.11 W/Kg (W{sub 10/400}) and 3.824 W/Kg (W{sub 2/1000}) were obtained at 14.4% warm temper rolling reduction under the applied condition. - Highlights: • 6.5 wt% Si electrical steel

  8. The UK Casting Industry

    Institute of Scientific and Technical Information of China (English)

    Jincheng Liu

    2006-01-01

    The casting production in the UK in 2004 is presented and analysed. The UK casting industry has played an important role in world casting and manufacturing production. However recent years the rapid development of some developing countries has been shifting the casting production from the western industrialized countries including the UK. The UK casting industry and associated research and technology organizations, universities have been working together very hard to face the serious competition to make the UK casting industry have a sustainable future. The UK casting industry remains strong and plays an important role in world casting and manufacturing production.

  9. How property title impacts urban consolidation

    DEFF Research Database (Denmark)

    Easthope, Hazel; Warnken, Jan; Sherry, Cathy;

    2014-01-01

    Continuing urbanisation is triggering an increase in multi-titled housing internationally. This trend has given rise to a substantial research interest in the social consequences of higher density living. Little enquiry, however, has been directed to examining how property title subdivisions...... generate social issues in multi-titled housing. This appears as a significant gap in the literature, as the tensions inherent in multi-title developments have significant implications for individuals, developments and entire metropolitan areas. This paper employs a lifecycle framework to examine three...... tensions inherent in multi-title developments: i) tensions between individual and collective property rights, ii) tensions between the needs and responsibilities of different stakeholders, and iii) tensions inherent in the concurrent role of multi-title developments as governmental, market and civil...

  10. A Conceptual Framework of Green Certification Impact On Property Price

    Directory of Open Access Journals (Sweden)

    Abdullah Lizawati

    2016-01-01

    Full Text Available Green building is one of the sustainability dimensions in built environment. The issues of green building and its impact to the society have been increasingly discussed. Green certification is one of the components in measuring sustainable development and plays an important role as an assessment system to an individual building’s performance. The question arises whether the market understand and recognized the green certification. The objectives of this research are to discuss the issue pertaining to green value and the relationship between green certification and property price. The research emphasized on the understanding of property attributes focusing on green certification and the impact to the property price. Among the attributes identified are structural characteristics, location and neighborhood, and time attributes. Thus, this paper will discusses the review of literature on green development and the significance impact on property market in term of price and value. The green building development across the country could be classified as another sector in property markets that give significant impact to the real estate industry. As a result, a conceptual framework in assessing the impact of green certification is suggested to provide a significant input in developing the model of hedonic pricing for green building. This research may contribute to extend the body of knowledge in the area of green development and a suggested significant input will give much emphasize on the new valuation technique in valuing green building properties.

  11. CA Investment Casting Process of Complex Castings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment ...

  12. Estimation of fracture toughness of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the low-temperature embrittlement of cast duplex stainless steels under light water reactor (LWR) operating conditions and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes the following goals: develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, validate the simulation of in-reactor degradation by accelerated aging, and establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. Microstructural and mechanical property data are being obtained on 25 experimental heats (static-cast keel blocks and slabs) and 6 commercial heats (centrifugally cast pipes and a static-cast pump impeller and pump casing ring), as well as on reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The ferrite content of the cast materials ranges from 3 to 30%. Charpy-impact, tensile, and J-R curve tests have been conducted on several experimental and commercial heats of cast stainless steel that were aged up to 30,000 h at temperatures of 290 to 400 degrees C. The results indicate that thermal aging at these temperatures increases the tensile strength and decreases the impact energy and fracture toughness of the steels. In general, the low-carbon CF-3 steels are the most resistant to embrittlement, and the molybdenum-containing high-carbon CF-8M steels are the least resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement, and the kinetics of embrittlement can vary significantly with small changes in the constituent elements of the cast material

  13. Effect of delta-ferrite on the mechanical properties of CF8M stainless steel castings at 4 K

    International Nuclear Information System (INIS)

    A series of five CF8M stainless steel castings, with varying delta-ferrite contents, has been tensile and fracture toughness tested at 4 K. Tensile tests were conducted in the low strain region to establish the initial strain hardening behavior for comparison with two phase deformation theory. It was found that the tensile behavior of the duplex austenite/delta-ferrite structure fits very well with the two phase deformation theory proposed by Ashby. The initial strain hardening rate is determined by the mean-free-path between delta-ferrite particles. Fracture toughness results at 4 K show a decrease in fracture toughness with increasing delta-ferrite content up to approximately 15%; at this point a continuous delta-ferrite crack path is established, and the fracture toughness remains constant with increasing delta-ferrite

  14. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  15. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  16. Impact of foundation properties on seismic response

    International Nuclear Information System (INIS)

    Seismic response of the NPP structures depends on the foundation properties twice. First, “free-field excitation” depends on soil/rock layering; second, soil-structure interaction also depends on soil/rock profile. Extreme cases of soil foundation profile are homogeneous half-space and soil layer resting on rigid rock. These two site profiles are principally different in behavior. Each particular site is usually somewhere in between. It is important to know the type of site in order to predict seismic response of NPP structures. (author)

  17. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A

  18. Changes of Structure and Magnetic Properties during Crystallization in Cast Nd60Fe20Al8Co10B2 Alloy

    Institute of Scientific and Technical Information of China (English)

    谭晓华; 徐晖; 王庆; 戚楠楠; 董远达

    2004-01-01

    The Nd60Fe20Al8Co10B2 alloy was prepared by suction casting of the molten alloy into a copper mold under argon atmosphere.The micro-structural and magnetic property changes in the Nd60Fe20Al8Co10B2 alloy during crystallization were investigated by X-ray diffraction(XRD),differential scanning calorimetry(DSC),scanning electron microscope(SEM)and the vibrating sample magnetometer(VSM).The precipitation and Nd-rich and Fe-rich phases have no significant effect on the intrinsic coercitity for Nd60Fe20Al8Co10B2 alloy annealed below 723 K.However,the growth of Fe-rich phase decreases the saturate magnetization and remanence of the alloy.The hard magnetic behavior is disappeared when the alloy is fully crystallized.

  19. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    Science.gov (United States)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  20. Soft magnetic properties and thermal stability of bulk Fe83B17 alloy prepared by undercooling and Cu-mold casting methods

    International Nuclear Information System (INIS)

    The thermal stability and soft magnetic properties of bulk Fe83B17 rods with nano-lamellar eutectic structures and metastable Fe3B phases were investigated by annealing at 973–1273 K for 1.5 h. Samples with a diameter of 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The decomposition of Fe3B and the transformation of nano-lamellar eutectic structures were finished after annealing at 1173 K for 1.5 h. Increasing annealing temperature showed that the soft magnetic properties of the sample were kept relatively stable. The saturation magnetization and retentivity were decreased only slightly, while the coercivity was decreased significantly. - Highlights: • Thermal stability of the nano-lamellar eutectic structure was obtained. • Thermal stability of the metastable Fe3B phase was obtained. • The soft magnetic properties of the sample remain stability by annealing. • Nano-lamellar eutectic structures enhance the soft magnetic properties

  1. Degradation of stainless castings. A literature study

    International Nuclear Information System (INIS)

    Duplex cast stainless steels, containing mainly austenite and some ferrite, is used for different components in light water reactors. These alloys have good mechanical properties, good weldability, and they are resistant to intergranular stress corrosion cracking (IGSCC). Examples of components where cast duplex stainless steel is used are pump housings, valves and pipe elbows. A model for the aging/embrittlement of these materials when used in light water reactors has been developed. The model is based on regression of a large data matrix. It is mainly the impact energy (Charpy V) that has been regarded. The model only requires knowledge of the chemical composition of the material but the prediction can be improved if additional data like initial impact properties and measured ferrite content are available. The model is also capable of predicting fracture toughness. The susceptibility to IGSCC in BWR environment is primarily determined by the amount of ferrite and the carbon content of the material. When the amount of ferrite exceeds 12%, IGSCC has not been observed regardless of the carbon content. At carbon contents lower than 0.035% in weld-sensitized material IGSCC was not observed regardless of the ferrite content. Data for corrosion fatigue in primary PWR and BWR environment are available. Under BWR conditions the crack propagation rate is decreased with decreasing corrosion potential, consequently also with decreasing oxygen content of the water. Some areas have been identified where additional work is needed. In all cases the efforts should focus on characterizing cast duplex stainless steel components removed from Swedish reactors. The characterization should include: Microstructure and chemical analysis, susceptibility to IGSCC, and a comparison with existing models for embrittlement. 24 refs, 12 figs

  2. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    International Nuclear Information System (INIS)

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al3Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al3Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al3Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L12 Al3Zr phases with 35–60 nm in diameter precipitate during homogenization. • L12 and DO22 Al3Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005

  3. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad J.M.PAPIS; Joerg F.LOEFFLER; Peter J.UGGOWITZER

    2009-01-01

    'Compound casting'simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, 'compound casting' of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu-ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and AI12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protec-tive coating to the substrate.

  4. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems-revision 1

    International Nuclear Information System (INIS)

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330 degrees C (535-625 degrees F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to ∼58,000 h at 290-350 degrees C (554-633 degrees F). The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of JIC are determined from the estimated J-R curve and flow stress. A common open-quotes predicted lower-boundclose quotes J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of ferrite content, and temperature. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented

  5. The ancient Chinese casting techniques

    OpenAIRE

    Tan Derui; Lian Haiping

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  6. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    This progress report summarizes work performed by Argonne National Laboratory on longterm thermal embrittlement of cast duplex stainless steels in LWR systems during the six months from April--September 1992. A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, tearing modulus, and JIC of aged cast stainless steels from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The JIC values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ''lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature

  7. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1991. A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of aged cast stainless steels from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The JIC values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ''lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature

  8. The heat treatment of Fermanal cast steel

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-12-01

    Full Text Available The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite is the content of aluminium. The matrix totally austenitic is present in cast steel containing from 0,8 to 0,9% C, from 22 to 24% Mn, and from 4,5 to 5,5% Al. The magnetic properties examined on samples of the Fermanal cast steel were determined by spectroscopy of the Mössbauer effect with isotope 57Fe. The magnetic properties represented by a mean value of the hyperfine magnetic field Bhf and relative magnetic permeability were determined. It has been stated that the level of magnetic properties of the Fermanal cast steel depends on the content of ferrite. The effect of the parameters of solutioning and ageing on the cast steel microstructure and hardness after modification with additions of B, Ti and Nb was investigated.

  9. Biaxial casting method and apparatus for isolating radioactive waste

    International Nuclear Information System (INIS)

    Hazardous radioactive waste is compacted and cast into safely handled monolithic castings having a radiation barrier wall completely enclosing the radioactive waste by centrifugal casting processes in which the barrier wall may be either a pre-formed shell transported to the jobsite or it may be formed by biaxial centrifugal casting and curing of the barrier wall in a mold. When a pre-formed shell is used, means are provided for thickening the radiation barrier if necessary by biaxial casting of additional barrier material inside of the shell. Castable radioactive material is cast inside the barrier wall before removal of the casting mold from the finished cast monolith. The cast monolith is supported for rotation as the mold is removed therefrom so that additional impact resisting and radiation barrier material can also easily be applied to the exterior surface monolith if radiation leakage exceeds tolerance levels. (author) figs

  10. Cross accumulative roll bonding—A novel mechanical technique for significant improvement of stir-cast Al/Al{sub 2}O{sub 3} nanocomposite properties

    Energy Technology Data Exchange (ETDEWEB)

    Ardakani, Mohammad Reza Kamali [Department of Mining and Metallurgy, Yazd University, Yazd (Iran, Islamic Republic of); Amirkhanlou, Sajjad [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Young Researchers and Elite Club, Behshahr Branch, Islamic Azad University, Behshahr (Iran, Islamic Republic of); Khorsand, Shohreh, E-mail: s.khorsand@ma.iut.ac.ir [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of)

    2014-01-03

    Lightweight metal-matrix nanocomposites (MMNCs—metal matrix with nanosized ceramic particles) can be of significance for automobile, aerospace, and numerous other applications. There are some problems in obtaining suitable mechanical properties of MMNCs, including weak bonding between reinforcement and matrix, non-uniformity of reinforcement nanoparticles and high porosity content. In this study, aluminum/alumina nanocomposite was fabricated by stircasting method. Subsequently, cross accumulative roll bonding (CARB) process was used as an effective method for refinement of microstructure and improvement of mechanical properties. The microstructural evolution and the mechanical properties of the nanocomposites during various CARB cycles were examined by the Archimedes method, X-ray defractometer, scanning electron microscopy and tensile testing. The results showed that the microstructure of the nanocomposite after eight cycles of CARB had an excellent distribution of alumina nanoparticles in aluminum matrix without any remarkable porosity. The X-ray diffraction results showed that the crystallite size of the nanocomposite was 71 nm by employing eight cycles of CARB technique. Mechanical experiment also indicated that the ultimate tensile strength and the elongation of the nanocomposite increased as the number of CARB cycles increased. After eight CARB cycles, ultimate tensile strength and the elongation values reached 344 MPa and 6.4%, which were 3.13 and 3.05 times greater than those of as-cast nanocomposites, respectively.

  11. Cross accumulative roll bonding—A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties

    International Nuclear Information System (INIS)

    Lightweight metal-matrix nanocomposites (MMNCs—metal matrix with nanosized ceramic particles) can be of significance for automobile, aerospace, and numerous other applications. There are some problems in obtaining suitable mechanical properties of MMNCs, including weak bonding between reinforcement and matrix, non-uniformity of reinforcement nanoparticles and high porosity content. In this study, aluminum/alumina nanocomposite was fabricated by stircasting method. Subsequently, cross accumulative roll bonding (CARB) process was used as an effective method for refinement of microstructure and improvement of mechanical properties. The microstructural evolution and the mechanical properties of the nanocomposites during various CARB cycles were examined by the Archimedes method, X-ray defractometer, scanning electron microscopy and tensile testing. The results showed that the microstructure of the nanocomposite after eight cycles of CARB had an excellent distribution of alumina nanoparticles in aluminum matrix without any remarkable porosity. The X-ray diffraction results showed that the crystallite size of the nanocomposite was 71 nm by employing eight cycles of CARB technique. Mechanical experiment also indicated that the ultimate tensile strength and the elongation of the nanocomposite increased as the number of CARB cycles increased. After eight CARB cycles, ultimate tensile strength and the elongation values reached 344 MPa and 6.4%, which were 3.13 and 3.05 times greater than those of as-cast nanocomposites, respectively

  12. Effect of applied pressure on the quality of squeeze cast parts made from AlSi9Mg alloy

    Directory of Open Access Journals (Sweden)

    T. Reguła

    2011-07-01

    Full Text Available The results of the study of an influence of pressure in the direct squeeze casting process on the physical and mechanical properties of an AlSi9Mg alloy are presented. The specimens were made by casting the tested AlSi9Mg alloy under the conditions of variable squeeze pressure, using a PHM 160c type hydraulic press. Analyzing the results of the experiment, it has been found that, the applied pressure has an important impact on the quality of castings squeezed in liquid state. The effect of squeeze pressure proves the advisability of continuing the application of various liquid-phase methods using external pressure to improve the properties of castings produced.

  13. Microstructures and Properties of FeAl-Fe3AlC0.5 Composites Prepared by SHS Casting

    Institute of Scientific and Technical Information of China (English)

    Jun DINC; Jun YANG; Qinling BI; Jiqiang MA; Weimin LIU; Qunji XUE

    2008-01-01

    FeAl composites with 21, 37 and 50 wt pct Fe3AIC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microhardness and bending strength of the composites were measured. The composites with 21 and 50 wt pct Fe3AlCo.5 mainly consisted of FeAI and Fe3AlC0.5 phases, whereas the composite with 37 wt pct Fe3AIC0.5 was composed of FeAl, Fe3AlC0.5 and graphite phases. The bonding of the reinforcement and the matrix was good. Hardness and bending strength of the composite with 37 wt pct Fe3AlC0.5 was lower than those of the 21 and 50 wt pct composites owing to the presence of the soft graphite phase.

  14. High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium al-loy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa (1% Ce) and 105.5 MPa (2% Ce), respectively, at the number of cycles to failure, Nf = 1 × 107. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple.

  15. Impact of dilution on the microstructure and properties of Ni-based 625 alloy coatings

    Directory of Open Access Journals (Sweden)

    Tiago Jose Antoszczyszyn

    2014-06-01

    Full Text Available Nickel-based alloy IN 625 is used to protect components of aircrafts, power generation and oil refinery due to an association of toughness and high corrosion resistance. These properties are associated with the chemical composition and microstructure of coatings which depend on the processing parameters and the composition of the component being protected. This paper assessed impact of dilution on the microstructure and properties of the Ni alloy IN 625 deposited by Plasma Transferred Arc (PTA on two substrates: carbon steel API 5L and stainless steel AISI 316L. Differences due to the interaction with the substrate were maximized analyzing single layer coatings, processed with three deposition current: 120, 150 and 180 A. Correlation with a cast Nickel-based alloy sample contributed to assess the impact of dilution on coatings. Dilution was determined by the area ratio and Vickers hardness measured on the transverse section of coatings. Scanning electron and Laser confocal microscopy and X-ray diffraction analysis were carried out to characterize the microstructure. Results indicated the increasing dilution with the deposition current was deeply influenced by the substrate. Dilution ranging from 5 to 29% was measured on coatings processed on the API 5L steel and from 22 to 51% on the low thermal conductivity AISI 316L steel substrate. Differences on the microstructure and properties of coatings can be associated with the interaction with each substrate. Higher fraction of carbides account for the higher coating hardness when processing on API 5L whereas the low thermal conductivity of AISI 316L and the higher Fe content in solid solution contributed to the lower hardness of coatings.

  16. Influence of beryllium content on the microstructure and mechanical properties of as-cast Zr–3Al–χBe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z.H.; Jiang, X.J.; Zhou, Y.K.; Zhong, H.; Xia, C.Q.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Tan, C.L. [Beijing Institute of Spacecraft System Engineering, Beijing 100094 (China); Ma, M.Z. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P., E-mail: riping@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-10-25

    The effect of different beryllium (Be) contents on the microstructure evolution and mechanical properties of as-cast Zr–3Al–χBe alloys (χ = 0, 0.4, 0.6, and 0.8 wt.%) was evaluated. X-ray diffraction and microscopic analysis showed that significant microstructural changes were caused due to the trace amount of Be in the as-cast Zr–3Al–χBe alloy. On one hand, with the Be increased gradually from 0 wt.% to 0.8 wt.%, the shape of prior-β grains gradually transformed from inerratic planar crystallization to irregular arborization. On the other hand, it would have an obvious effect on grain refinement with Be added. The average grain sizes of the prior-β and α (the average length) phases exceeded 1000 and 100 μm, respectively, in the as-cast Zr–3Al alloy. Dramatically, with the addition of 0.4 wt.% Be, the average grain sizes of the prior-β and α phases were decreased by more than 80% and 50%, respectively. Moreover, the average size of grain decreased with increased Be. The enhancement in nucleation rate and the growth restriction factor values of Zr–3Al–χBe alloys with Be addition were responsible for the refinement of the prior-β and α grains. In addition, the tensile strength and hardness of Zr–3Al–χBe alloys gradually increased with the increased Be content. The decrease in the α grain size and the presence of Be{sub 2}Zr particles played identically important roles in improving the tensile strength and hardness of alloys. - Highlights: • The content of Be{sub 2}Zr increases with the increase of Be. • With the increasing Be, the shapes of prior-β grain boundaries transformed. • The addition of Be plays a crucial role on the change of grain size. • The tensile strength and HRC are increased with decreasing grain size.

  17. Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites

    International Nuclear Information System (INIS)

    Research highlights: → ZA27 with 5% SiC, ZrO2 or C particles are synthesized by stirring then squeezed. → Particles refine the structure. 50 MPa decreases porosity% and increases density. → α and β nucleation temperatures of the composites are lower than those of the matrix. → Particles accelerate age hardening and increase peak hardness of the composites → Particles reduce the CTEs of composites compared to those of the matrix. - Abstract: ZA27 alloy based composites were synthesized by stirring method, followed by squeeze casting. Stir casting was employed successfully to incorporate 5 vol.% of various reinforcement particulates, namely, SiC, ZrO2 or C. The porosity in the composites was decreased by squeeze pressure. The presence of particles and/or application of squeeze pressure during solidification resulted in considerable refinement in the structure of the composites. The microstructures, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) results indicated that no significant reactions occurred at the interface between the SiC or C particles and ZA27 alloy. However, in case of ZrO2 reinforced ZA27, the ZrO2 reacted with Cu present in the molten ZA27 alloy, forming Cu5Zr. Thermal analysis showed that both α and β nucleation and growth temperatures of the composites were lower than those of the ZA27 alloy. The presence of particles in the as-cast or squeezed composites led to not only an accelerated age hardening response, but also an increase in the peak hardness of the composites. The values of coefficient of thermal expansion (CTE) of the composites were drastically lower as compared to those of the ZA27 alloy. The tensile properties of the composites decreased as a result of the addition of the particles. Scanning electron microscope (SEM) pictures of the composites indicated that cracks mainly initiated at particle-matrix interface, propagated through the matrix and linked up with other cracks leading to failure of the

  18. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wen-Fu, E-mail: fujiiwfho@yahoo.com.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Li, Yu-Chi [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2012-04-01

    The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal {alpha} Prime phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic {alpha} Double-Prime structure was found. When increased to 7.5 wt.% or greater, retention of the metastable {beta} phase began. The {omega} phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the {alpha} Double-Prime -phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4 Degree-Sign and 24.6 Degree-Sign , respectively) were much greater than those of c.p. Ti (2.7 Degree-Sign ). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of {alpha} Double-Prime phase Ti-10Zr-5Mo and {beta} phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates. - Highlights: Black-Right-Pointing-Pointer The effects of Mo on the structure

  19. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications

    International Nuclear Information System (INIS)

    The effects of molybdenum on the structure and mechanical properties of a Ti–10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti–10Zr and a series of Ti–10Zr–xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti–10Zr has a hexagonal α′ phase, and when 1 wt.% Mo was introduced into the Ti–10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic α″ structure was found. When increased to 7.5 wt.% or greater, retention of the metastable β phase began. The ω phase was observed only in the Ti–10Zr–7.5Mo alloy. Among all Ti–10Zr-xMo alloys, the α″-phase Ti–10Zr–5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti–10Zr and Ti–10Zr–xMo alloys had good ductility. In addition, the Ti–10Zr–5Mo and Ti–10Zr–12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4° and 24.6°, respectively) were much greater than those of c.p. Ti (2.7°). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of α″ phase Ti–10Zr–5Mo and β phase Ti–10Zr–12.5Mo alloys appear to make them promising candidates. - Highlights: ► The effects of Mo on the structure and mechanical properties of a Ti–10Zr-based system were investigated.

  20. Microstructure and Mechanical Properties of High-Alloyed 23Cr-5Mn-2Ni-3Mo Cast Steel / Mikrostruktura I Właściwości Mechaniczne Wysokostopowego Staliwa 23Cr-5Mn-2Ni-3Mo

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2015-12-01

    Full Text Available The article presents the microstructure and mechanical properties of cast duplex stainless steel type 23Cr-5Mn-2Ni-3Mo. It has been shown that the structure of the tested cast steel is composed of ferrite enriched in Cr, Mo and Si, and austenite enriched in Mn and Ni. In the initial state, at the interface, precipitates rich in Cr and Mo were present. A high carbon content (0.08%C in this cast steel indicates that probably those were complex carbides of the M23C6 type and/or σ phase. Studies have proved that the solution annealing conducted at 1060°C was not sufficient for their full dissolution, while at the solutioning temperature of 1150°C, the structure of the tested material was composed of ferrite and austenite.

  1. Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting

    International Nuclear Information System (INIS)

    Highlights: • A modified WE43 alloy, free of heavy rare earth elements, has been assessed. • The new alloy, Mg–4Y–3Nd–0.5Zr (wt.%), is stronger than WE43 up to 573 K. • The new alloy is more creep resistant than WE43 alloy at 473 K under 40–80 MPa. • It is promising to use neodymium to replace heavy rare earth elements in WE43. - Abstract: In order to save the invaluable heavy rare earth (HRE) elements for important functional applications, a modified version of the WE43 magnesium alloy, Mg–4Y–3Nd–0.5Zr (wt.%), free of the HRE elements, has been designed. As part of the alloy development program, a large complex component of the alloy (net product weight: 80 kg) was made via differential pressure casting. The large component was then subjected to the T6 treatment (solid solution and ageing) following established commercial practice for the T6 treatment of the WE43 alloy. A significant number of samples were prepared from the thickest section (58 mm) of the T6-treated component for both microstructural characterization and detailed property assessment. The alloy showed noticeably higher tensile strengths than did the HRE-containing WE43 alloy over the temperature range of 473–573 K. The creep resistance of the alloy was superior to that of the WE43 alloy at 473 K while being similar at 523 K. The microstructures of the alloy in the as-cast, solution treated and then aged states were characterized. The component-based detailed assessment suggests that the idea of using neodymium (Nd) to replace the HRE elements in the WE43 alloy is promising for structural applications at elevated temperatures

  2. Properties of Spheroidal Graphite Cast Ion Required for the Dryers of Paper Machine%造纸机械烘缸用球墨铸铁材料的性能及要求

    Institute of Scientific and Technical Information of China (English)

    张卫民; 陈巧花; 李峰; 严国乔; 张国华; 兰春林

    2013-01-01

    造纸机械用铸铁烘缸是一种特殊的承压设备,其主要选材是灰铸铁和球墨铸铁.由于我国特种设备法规文件和行业标准之间存在一些不兼容的条文,在应用中产生了一些问题.通过对比分析,研究了美国ASME锅炉及压力容器规范以及欧盟标准中有关条款的内容,讨论了铸铁特别是球墨铸铁的机械性能参数和要求,提出了对我国行业标准条款修定的建议.%The cast iron dryer used in paper machines is a special kind of pressure vessel and the main materials of the dryer are gray cast iron and spheroidal graphite cast iron.Due to some incompatibilities between the government' s regulation and the industry standards,there exist some practical problems in application.This paper compares the relevant rules of the ASME codes and EU standards,the mechanical properties parameters of cast iron,especially spheroidal graphite cast iron were discussed and some suggestions for the revision of the national standards were put forward.

  3. Microstructure modification by La2O3 and its effect on wear resistance properties of as-cast ZL107 alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Diqing

    2010-01-01

    Modification of ZL107 aluminum alloy has been successfully achieved by using La2O3. The different casting parameters, including casting temperature as well as holding time and modifier content, were carried out to investigate the modification effects. The results show that the best modifier content is 1.0 wt.%, and the casting temperature has little effect. In addition, the wear behavior of modified and unmodified ZL107 has been compared. The wear resistance of as-cast ZL107 aluminum alloy can be significantly improved after modification.

  4. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    Science.gov (United States)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-04-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  5. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    Science.gov (United States)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  6. Bending Deformation and Fatigue Properties of Precision-Casted TiNi Shape-Memory Alloy Brain Spatula

    OpenAIRE

    Tobushi, Hisaaki; KITAMURA, KAZUHIRO; Yoshimi, Yukiharu; Date, Kousuke

    2010-01-01

    In order to develop the SMA-brain spatula, the mechanical characteristics of the TiNi castand rolled-SMAs and the copper used for the brain spatula were compared based on the tensile deformation properties, and the characteristics of the SMA-brain spatula were discussed. The fatigue properties of these materials were also investigated by the pulsating-

  7. Advanced Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  8. Studies of aged cast stainless steel from the Shippingport reactor

    International Nuclear Information System (INIS)

    The cast stainless steels used for primary coolant piping in many pressurized water reactors and for valve bodies, fittings, and coolant pump casings in most light water reactors are subject to embrittlement after extended service at reactor operating temperatures. Most studies pertaining to embrittlement of cast stainless steels involve simulation of end-of-life reactor conditions by accelerated aging at ≥400 degrees C since the time period for operation of a power plant is far longer than can generally be considered for laboratory studies. Thus, an assessment of the end-of-life mechanical properties is almost always based on an extrapolation of the accelerated test data. Because the embrittlement mechanisms and kinetics are complex, microstructural studies and mechanical testing of actual component materials that have completed long in-reactor service are needed to ensure that the mechanisms observed in accelerated aging experiments are the same as those occurring in reactor. Cast stainless steel materials from the decommissioned Shippingport reactor offered a unique opportunity to validate and benchmark the laboratory studies. Cast stainless steel materials were obtained from four primary coolant system check valves, two manual hot-leg isolation valves, and two pump volutes. Microstructural examination of the cast materials indicates that the primary mechanism of thermal embrittlement is the same as that of laboratory-aged materials, i.e., spinodal decomposition of the ferrite to form chromium-rich α' phase. Other phases, such as nickel- and silicon-rich G phase precipitated in the ferrite, and the presence of carbides at the austenite/ferrite phase boundary also contribute to embrittlement. Charpy-impact, tensile, and J-R curve tests were conducted on several cast stainless steels from the Shippingport reactor

  9. Comparison of Impact Properties for Carbon and Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    O.H. Ibrahim

    2011-01-01

    The impact properties of hot rolled carbon steel (used for the manufacture of reinforcement steel bars) and the quenched & tempered (Q&T) low alloy steel (used in the pressure vessel industry) were determined. The microstructure of the hot rolled carbon steel contained ferrite/pearlite phases, while that of the quenched and tempered low alloy steel contained bainite structure. Impact properties were determined for both steels by instrumented impact testing at temperatures between -150 and 200℃. The impact properties comprised total impact energy, ductile to brittle transition temperature, crack initiation and propagation energy, brittleness transition temperature and cleavage fracture stress. The Q&T low alloy steel displayed much higher resistance to ductile fracture at high test temperatures, while its resistance to brittle fracture at low test temperatures was a little higher than that of the hot rolled carbon steel. The results were discussed in relation to the difference in the chemical composition and microstructure for the two steels.

  10. High speed twin roll casting of 6061 alloy strips

    OpenAIRE

    T. Haga; H. Sakaguchi; Watari, H; S. Kumai

    2008-01-01

    Purpose: of this paper is to clear the possibility of high speed roll casting of thin strips of two aluminum alloys:6061 and recycled 6061. Mechanical properties of the roll cast 6061 and recycled 6061 strips were investigated inthe frame of this purpose.Design/methodology/approach: Methods used in the present study were high speed twin roll caster and lowtemperature casting. These methods were used to realize rapid solidification and increase the casting speed.Findings: are that 6061 and rec...

  11. Effect of carbon content on carbide morphology and mechanical properties of A.R. white cast iron with 10-12% tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Skandani, A. Alipour [Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Al Haik, M., E-mail: alhaik@vt.edu [Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2012-04-30

    remained unchanged. X-ray diffraction, EDS, and electron microscopy identified the coarse GA zones microstructure to be mainly dendritic chromium carbide together with tungsten carbide and austenite phase residing in-between the chromium dendrites. After carrying out the proper heat treatment protocols, the chromium carbide in the coarse GA zones in the as-cast structure dissolved into tungsten carbide and martensite that were dispersed within the chromium carbide with island appearance (IA). Mechanical wear and hardness tests showed that the samples with higher IA volume fraction attained better wear resistance and higher hardness after heat treatment. The enhancement in the mechanical properties could be attributed to (i) the precipitation of chromium carbide in the form of IA morphology inhibited the crack propagation in the matrix. (ii) The precipitation of tungsten carbide both improved the matrix wear tolerance and promoted the transformation of austenite to a more wear-resistant and harder martensite phase.

  12. The influence of martensitic transformation on mechanical properties of cast high alloyed CrMnNi-steel under various strain rates and temperatures

    International Nuclear Information System (INIS)

    Metastable austenitic steels show excellent mechanical properties, such as high strength combined with excellent ductility and toughness due to martensitic transformation under mechanical loading (transformation induced plasticity effect). A good energy consumption, and, in the case of high-alloyed metastable austenitic steels, a high corrosion resistance, increase the potential of these materials for diverse applications, also in regard of safety requirements. Up to now, numerous wrought alloys were investigated concerning mechanical behaviour, TRIP-effect, martensitic transformation behaviour and modelling of transformation kinetics or stress-strain behaviour. New high alloyed cast CrMnNi-steels, developed at Technical University Bergakademie Freiberg, provide the chance to reduce processing steps, production time and costs. In order to understand the influence of temperature on the martensitic phase transformation behaviour and therefore on mechanical properties and failure, the mechanical response under tensile loading in a temperature range between -700C and 2000C was investigated. The mechanical behaviour under compressive loading was also examined in a wide range of strain rates between 10-4 s-1 and 103 s-1 to obtain information about the strain rate effect on stress-strain behaviour and microstructural changes.

  13. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite

    International Nuclear Information System (INIS)

    This study was undertaken to investigate the effect of different concentrations of strontium (0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 1%) on the microstructure, porosity content and tensile properties of A356-10%B4C particulate metal matrix composite. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with EDS and XRD. The composite ingots were made by stir casting process. The results showed that the addition of 0.03%Sr strongly modified silicon eutectic phase in A356 monolithic alloy, but 0.5%Sr was needed to complete the modification of A356-10%B4C composite. Results also demonstrated that Sr addition increases shrinkage porosity and generates new intermetallics in the microstructure. Further investigations on tensile tests revealed optimum strontium levels for improving tensile properties. In the point of fracture behavior of the composite, modified specimens with 0.2%Sr showed broken B4C particles and acceptable cohesion between B4C and matrix.

  14. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    Science.gov (United States)

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements. PMID:21853618

  15. Influence of delivery state quality on microstructure and mechanical properties of as cast AZ91 Mg alloy

    Directory of Open Access Journals (Sweden)

    Roskosz S.

    2007-01-01

    Full Text Available In the work evaluation of influence of porosity and microstructure on mechanical properties of AZ91 alloy coming from three suppliers was done. It was found that the structural factors influence the AZ91 alloy’s strength properties are: the pores’ area fraction, the area fraction of the Mg17Al12 phase of massive and lamellar morphologies, and the Mg2Si phase’s area fraction.

  16. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April 1990 to September 1990. A procedure and correlations are presented for predicting fracture toughness J-R curves and impact strength of aged cast stainless steels from known material information. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature ''normalized'' Charpy impact energy. A correlation for the extent of embrittlement at ''saturation,'' i.e., the minimum impact energy that would be achieved by the material after long-term aging, is given is terms of a material parameter, φ, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are determined from chemical composition. A common ''lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are described. Mechanical-property degradation suffered by cast stainless steel components from the decommissioned Shippingport reactor has been characterized. The results are used to validate the correlations and benchmark the laboratory studies. Charpy-impact, tensile, and fracture toughness data for materials from the hot-leg shutoff valve and cold-leg check valves and pump volute are presented. 37 refs., 53 figs., 9 tabs

  17. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate

    Directory of Open Access Journals (Sweden)

    Sánchez-Roldán, Z.

    2016-03-01

    Full Text Available Recycled aggregate (RA from construction and demolition waste is traditionally used for the manufacture of concrete for different applications. Due primarily to high water content required by RA, the quality of the concrete is determined by the amount of replacement RA. The aim of this study is to determine if RA pre-soaking enhances the properties of pre-cast concrete for street furniture, with low mechanical and structural requirements, in which 100% of the coarse fraction is replaced. The results of physical and mechanical tests performed on concrete specimens in which the RA was pre-soaked using five different methods applied are compared with a reference concrete sample and a concrete sample made with non-pre-soaked RA. The results show that non-pre-soaked RA offers improved physical-mechanical properties for pre-cast concrete, except for the workability; problems arising from poorer workability could be improved with the use of plasticizers, which can be easily included in the production process.El árido reciclado (AR procedente de residuos de construcción y demolición se utiliza tradicionalmente en la elaboración de hormigón para diferentes aplicaciones. Debido principalmente al mayor contenido en agua requerido por el AR, la calidad del hormigón está determinada por la cantidad de AR reemplazado. El objetivo de este estudio es determinar si el AR premojado mejora las propiedades del hormigón prefabricado para mobiliario urbano, con bajas exigencias mecánicas y estructurales, en el que se sustituye el 100% de la fracción gruesa. Los resultados de los ensayos físicos y mecánicos realizados sobre muestras de hormigón en las cuales el AR se ha premojado usando cinco métodos diferentes se han comparado con una muestra de hormigón de referencia y una muestra de hormigón fabricada con AR no premojado. Los resultados muestran que el AR no premojado proporciona propiedades físico-mecánicas mejoradas en el hormigón prefabricado

  18. Heat treatment of long term serviced Cr – Mo cast steel

    Directory of Open Access Journals (Sweden)

    G. Golanski

    2010-01-01

    Full Text Available The paper presents results of research on the influence of heat treatment on the structure and properties of L20HM cast steel after long term operation at elevated temperature. Investigated cast steel was taken out from an outer frame of a steam turbine serviced for 167 424 hours at the temp. of 535 oC and pressure 12.75 MPa. In post-operating condition the investigated cast steel was characterized by mechanical properties below the required minimum and by high brittleness. Performed research on the influence of austenitizing parameters has revealed that the range of austenitizing temperatures for the examined cast steel: Ac3 + 30 ÷ 60 oC ensures obtaining of a fine austenite grain, homogeneous in size. It has been proved that tempering of bainititc – ferritic structure above 680 ÷ 690 oC causes an increase of impact energy along with a decrease of mechanical properties below the required minimum. Moreover, it has been noticed that applying of under-annealing instead of tempering, after full-annealing, guarantees the required impact energy of KV > 27J, with the mechanical properties similar to those after service.

  19. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  20. Socio-economic Impacts of Acid Mine Drainage: A Caste Study of the San Sebastian Mine in Eastern El Salvador

    DEFF Research Database (Denmark)

    Pacheco Cueva, Vladimir

    , when compared to the average water household expenditure in El Salvador, in order to satisfy their daily water requirements. The book also provides policy recommendations to government, resource extraction companies and NGOs to help them calculate and integrate the costs of water replacement in socio-economic...... negative environmental legacies but one that is rarely analyzed in terms of its socio-economic impacts. To contribute to this body of knowledge the current book documents the methods used to measure the socio-economic effects of AMD and provides results from a study carried in the community of San...... Sebastian in eastern El Salvador. Using an ecosystems services approach, the book estimates the costs of having to replace water that would otherwise have been obtained from local natural sources at little or no charge. The results show that households in San Sebastian use a high proportion of their incomes...