WorldWideScience

Sample records for cast method

  1. Fabrication of sacrificial anode cathodic protection through casting method

    International Nuclear Information System (INIS)

    Aluminum is one of the few metals that can be cast by all of the processes used in casting metals. These processes consist of die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, investment casting, and continuous casting. Other processes such as lost foam, squeeze casting, and hot isostatic pressing are also used. Permanent mold casting method was selected in which used for fabricating of sacrificial anode cathodic protection. This product was ground for surface finished and fabricated in the cylindrical form and reinforced with carbon steel at a center of the anode. (Author)

  2. Fabrication of bulk metallic glasses by centrifugal casting method

    OpenAIRE

    R. Nowosielski; R. Babilas

    2007-01-01

    Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus andproduced amorphous materials, which are also known as bulk metallic glassesDesign/methodology/approach: The studied centrifugal casting system consists of two main parts: castingapparatus and injection system of molten alloy. The described centrifugal casting method was presented bypreparing a casting apparatus “CentriCast – 5”. The apparatus includes a cylindrical copper mold, which isrot...

  3. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    Science.gov (United States)

    Stoddard, Nathan G

    2014-01-14

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  4. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    Science.gov (United States)

    Stoddard, Nathan G.

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  5. Fabrication of bulk metallic glasses by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus andproduced amorphous materials, which are also known as bulk metallic glassesDesign/methodology/approach: The studied centrifugal casting system consists of two main parts: castingapparatus and injection system of molten alloy. The described centrifugal casting method was presented bypreparing a casting apparatus “CentriCast – 5”. The apparatus includes a cylindrical copper mold, which isrotated by a motor. The transmission allows to changing the speed of rotating mold.Findings: Bulk metallic glasses are a novel class of engineering materials, which exhibit excelent mechanical,thermal, magnetic and corrosion properties. Centrifugal casting is a useful method to produce bulk amorphousmaterials in form of rings, tubes or cylindrical parts. Presented centrifugal casting method and casting apparatushas been prepared to fabricate the samples of bulk metallic glass in form of rings with an outer diameter of 25mm and controlled thicknesses by changing the weight of the molten alloy.Research limitations/implications: Studied centrifugal casting method and casting apparatus has beenprepared to fabricate the samples of bulk metallic glass. For future research a characterization of microstructureand properties of prepared material will be performed.Practical implications: The centrifugal casting is a useful process to produce bulk amorphous materials in formof rings, tubes or graded amorphous matrix composites. It seems to be a very simple method, which allows toobtain BMG materials.Originality/value: The centrifugal casting method allows to produce bulk amorphous rings with thicknessabove 1-mm.

  6. Applying RP-FDM Technology to Produce Prototype Castings Using the Investment Casting Method

    Directory of Open Access Journals (Sweden)

    M. Macků

    2012-09-01

    Full Text Available The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to theproduction of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out whatdimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mouldproduction, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself.Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically.A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meetrequirements specified by a customer were the results.

  7. Reengineering of Permanent Mould Casting with Lean Manufacturing Methods

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2007-07-01

    Full Text Available At the work were introduced main areas of production system project of casts produced in permanent moulds, that constitutes reengineering of conventional production system according to Lean Manufacturing (LM methods. New resolution of cooling of dies with water mist was shown to casting of car wheels made from aluminium alloys in low pressure casting process. It was implemented as a part of goal-oriented project in R.H. Alurad Sp.z o.o. in Gorzyce. Its using intensifies solidification and self-cooling of casts shortening the time of casting cycle by the 30%. It was described reorganizing casting stations into multi-machines cells production and the process of their fast tool’s exchange with applying the SMED method. A project of the system was described controlling the production of the foundry with the computer aided light Kanban system. A visualization of the process was shown the production of casts with use the value stream mapping method. They proved that applying casting new method in the technology and LM methods allowed to eliminate down-times, to reduce the level of stocks, to increase the productivity and the flow of the castings production.

  8. Using finite difference method to simulate casting thermal stress

    OpenAIRE

    Liao Dunming; Zhang Bin; Zhou Jianxin

    2011-01-01

    Thermal stress simulation can provide a scientific reference to eliminate defects such as crack, residual stress centralization and deformation etc., caused by thermal stress during casting solidification. To study the thermal stress distribution during casting process, a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method (FDM), namely all the traditional thermal-elastic-plastic equations are numerically and differentially discre...

  9. Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available This work presents the research result of the temperature distribution and the microstructure in certain parts of the field-glass body frame casting made from silumin AlSi9 using the investment casting method in the ceramic mould. It was proved that the highest temperature of the silumin appears in the sprue in which the silumin is in the liquid-solid state, though the process of silumin crystallization in the casting is finished. It was stated that in certain elements of the casting the side opposite to the runner crystallizes and cools fastest. The differences in the rate of crystalline growth and cooling of certain casting elements cause differ- ent microstructure in them which can also influence the mechanic properties.It is necessary to state that the temperature of the initial heating of the ceramic mold equal to 60oC guarantees obtaining of the castings without defects and of little porosity. Incomplete modification of the silumin with strontium causes silica precipitation to appear close to the spherical ones.

  10. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  11. Application of particle method to the casting process simulation

    International Nuclear Information System (INIS)

    Casting processes involve many significant phenomena such as fluid flow, solidification, and deformation, and it is known that casting defects are strongly influenced by the phenomena. However the phenomena complexly interacts each other and it is difficult to observe them directly because the temperature of the melt and other apparatus components are quite high, and they are generally opaque; therefore, a computer simulation is expected to serve a lot of benefits to consider what happens in the processes. Recently, a particle method, which is one of fully Lagrangian methods, has attracted considerable attention. The particle methods based on Lagrangian methods involving no calculation lattice have been developed rapidly because of their applicability to multi-physics problems. In this study, we combined the fluid flow, heat transfer and solidification simulation programs, and tried to simulate various casting processes such as continuous casting, centrifugal casting and ingot making. As a result of continuous casting simulation, the powder flow could be calculated as well as the melt flow, and the subsequent shape of interface between the melt and the powder was calculated. In the centrifugal casting simulation, the mold was smoothly modeled along the shape of the real mold, and the fluid flow and the rotating mold are simulated directly. As a result, the flow of the melt dragged by the rotating mold was calculated well. The eccentric rotation and the influence of Coriolis force were also reproduced directly and naturally. For ingot making simulation, a shrinkage formation behavior was calculated and the shape of the shrinkage agreed well with the experimental result.

  12. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term to......Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... achieve a stable convergence. The heat transfer problem is reduced to 1-dimension to promote the practical application of the method. Thermo-physical properties such as the volumetric heat capacity tabulated in the calculation are introduced as a function of solidifying phases. Experimental equipment was...

  13. Evaluation of the Inertness of Investment Casting Molds Using Both Sessile Drop and Centrifugal Casting Methods

    Science.gov (United States)

    Cheng, Xu; Yuan, Chen; Green, Nick; Withey, Paul

    2013-02-01

    The investment casting process is an economic production method for engineering components in TiAl-based alloys and offers the benefits of a near net-shaped component with a good surface finish. An investigation was undertaken to develop three new face coat systems based on yttria, but with better sintering properties. These face coat systems were mainly based on an yttria-alumina-zirconia system (Y2O3-0.5 wt pct Al2O3-0.5 wt pct ZrO2), an yttria-fluoride system (Y2O3-0.15 wt pct YF3), and an yttria-boride system (Y2O3-0.15 wt pct B2O3). After sintering, the chemical inertness of the face coat was first tested and analyzed using a sessile drop test through the metal wetting behavioral change for each face coat surface. Then, the interactions between the shell and metal were studied by centrifugal investment casting TiAl bars. Although the sintering aids in yttria can decrease the chemical inertness of the face coat, the thickness of the interaction layer in the casting was less than 10 μm; therefore, these face coats still can be possible face coat materials for investment casting TiAl alloys.

  14. Tape-cast sensors and method of making

    Science.gov (United States)

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando H.

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  15. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    Science.gov (United States)

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  16. Slab Storage Calculation Method for Continuous Casting-Hot Rolling

    Institute of Scientific and Technical Information of China (English)

    PENG Qi-chun; LIU Qing; TIAN Nai-yuan

    2004-01-01

    Based on load-oriented manufacturing control theory, different combining modes and slab storage calculation method for continuous casting and hot rolling were discussed. The buffer capacity index of continuous casting-rolling was introduced, and the reasonable slab storage under different combining modes was calculated with buffer capacity index of 120.00 h for CCR, 79.20 h for HCR, 19.68 h for DHCR and 3.84 h for DR. Thin slab is 1.20 h, and the strip is zero. Theory gist was provided for steel enterprise to decrease storage.

  17. Bainitic nodular cast iron with carbides obtaining with use of Inmold method

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2009-07-01

    Full Text Available In these paper bainitic nodular cast iron with carbides as-cast obtaining has been presented. This cast iron has been obtained with use of Inmold method. It was shown, that there is the possibility of bainite and carbides obtaining in cast iron with Mo and Ni for studied chemical composition.

  18. Microstructure and Property of Hypereutectic High Chromium Cast Iron Prepared by Slope Cooling Body-Centrifugal Casting Method

    Institute of Scientific and Technical Information of China (English)

    Zhifu HUANG; Jiandong XING; Anfeng ZHANG

    2006-01-01

    In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138%more than that of the hypereutectic high Cr one prepared by conventional casting method.

  19. New method for diagnosing cast compactness based on laser ultrasonography

    Directory of Open Access Journals (Sweden)

    P. Swornowski

    2010-01-01

    Full Text Available Technologically advanced materials, such as alloys of aluminum, nickel or titanium are currently used increasingly often in significantly loaded components utilized in the aviation industry, among others in the construction of jet turbine engine blades. The article presents a method for diagnosing the condition of the inside of cast blades with the use of laser ultrasonography. The inspection is based on finding hidden flaws with a size of between 10 and 30μm. Laser ultrasonography offers a number of improvements over the non-destructive methods used so far, e.g. the possibility to diagnose the cast on a selected depth, high signal-to-noise ratio and good sensitivity. The article includes a brief overview of non-destructive inspection methods used in foundry engineering and sample results of inspecting the inner structure of a turbo jet engine blade using the method described in the article.

  20. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  1. COOLING METHOD OF SILUMINA CASTINGS AK15M3 AT VERTICAL CENTRIFUGAL CASTING

    OpenAIRE

    V. Yu. Stecenko; K. N. Baranov; A. P. Gutev

    2013-01-01

    The way of cooling of castings from silumin AK15M3 is developed at the vertical centrifugal casting, enabling to receive bimetallic blanks with high-disperse eutectic and hypereutectic microstructures and minimal allowance for machining.

  2. COOLING METHOD OF SILUMINA CASTINGS AK15M3 AT VERTICAL CENTRIFUGAL CASTING

    Directory of Open Access Journals (Sweden)

    V. Yu. Stecenko

    2013-01-01

    Full Text Available The way of cooling of castings from silumin AK15M3 is developed at the vertical centrifugal casting, enabling to receive bimetallic blanks with high-disperse eutectic and hypereutectic microstructures and minimal allowance for machining.

  3. High temperature strength of ceramic moulds applied in the investment casting method

    OpenAIRE

    J. Kolczyk; Zych, J.

    2011-01-01

    Ceramic casting moulds strength is an important factor, which influences the quality and properties of castings being produced by the investment casting method. It is especially important during mould pouring with liquid metal. Studies allowing determining the casting mould strength at high temperatures, that means at the ones at which the moulds are poured, are not numerous. None generally accepted (normalized) method for the assessment of such strength exists in practice. The new method of ...

  4. Optimizing casting parameters of steel ingot based on orthogonal method

    Institute of Scientific and Technical Information of China (English)

    张沛; 李学通; 臧新良; 杜凤山

    2008-01-01

    The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.

  5. Gradient method of cast iron latent heat identification

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2007-12-01

    Full Text Available In the paper the cast iron latent heat in the form of three components corresponding to solidification of austenite and eutectic phases is identified. The basic information concerning the form of adequate functions approximation has been taken on the basis of cooling curve and temperature derivative courses found by means of the TDA technique. On the stage of inverse problem solution the gradient method has been used. The numerical computations have been done using the finite difference method. In the final part of the paper the example of latent heat identification is shown.

  6. Biaxial casting method and apparatus for isolating radioactive waste

    International Nuclear Information System (INIS)

    Hazardous radioactive waste is compacted and cast into safely handled monolithic castings having a radiation barrier wall completely enclosing the radioactive waste by centrifugal casting processes in which the barrier wall may be either a pre-formed shell transported to the jobsite or it may be formed by biaxial centrifugal casting and curing of the barrier wall in a mold. When a pre-formed shell is used, means are provided for thickening the radiation barrier if necessary by biaxial casting of additional barrier material inside of the shell. Castable radioactive material is cast inside the barrier wall before removal of the casting mold from the finished cast monolith. The cast monolith is supported for rotation as the mold is removed therefrom so that additional impact resisting and radiation barrier material can also easily be applied to the exterior surface monolith if radiation leakage exceeds tolerance levels. (author) figs

  7. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  8. Effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Henry Kayode TALABI

    2014-11-01

    Full Text Available This study investigated the effects of selected casting methods on mechanical behaviour of Al-Mg-Si alloy. The casting methods used was spin, sand and die casting, these were done with a view to determine which of the casting methods will produce the best properties. The pure aluminium scrap, magnesium and silicon were subjected to chemical analysis using spectrometric analyzer, thereafter the charge calculation to determine the amount needed to be charged into the furnace was properly worked out and charged into the crucible furnace from which as-cast aluminium was obtained. The mechanical properties of the casting produced were assessed by hardness and impact toughness test. The optical microscopy and experimental density and porosity were also investigated. From the results it was observed that magnesium and silicon were well dispersed in aluminium matrix of the spin casting. It was observed from visual examination after machining that there were minimal defects. It was also observed that out of the three casting methods, spin casting possesses the best mechanical properties (hardness and impact toughness.

  9. New Approaches to Aluminum Integral Foam Production with Casting Methods

    OpenAIRE

    Ahmet Güner; Mustafa Merih Arıkan; Mehmet Nebioglu

    2015-01-01

    Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, m...

  10. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  11. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    Science.gov (United States)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-03-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  12. /Al-4Cu Composite Material Produced by Squeeze Casting Method

    Science.gov (United States)

    Ficici, Ferit

    2014-05-01

    The wear behavior of a weight fraction of particles with up to 30 wt.% in situ AlB2 flakes reinforced in Al-4Cu matrix alloy composites and fabricated by a squeeze casting method was investigated in a pin-on-disk abrasion test instrument against different SiC abrasives at room conditions. Wear tests were performed under the load of 10 N against SiC abrasive papers of 80, 100, and 120 mesh grits. The effects of sliding speed, AlB2 flake content, and abrasive grit sizes on the abrasive wear properties of the matrix alloy and composites have been evaluated. The main wear mechanisms were identified using an optical microscope. The results showed that in situ AlB2 flake reinforcement improved the abrasion resistance against all the abrasives used, and the abrasive wear resistance decreased with an increase in the sliding speed and the abrasive grit size. The wear resistances of the composites were considerably bigger than those of the matrix alloy and increased with increases in in situ AlB2 flake contents.

  13. METHODS OF RECEIVING OF FINE-GRAINED STRUCTURE OF CASTINGS AT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    N. K. Tolochko

    2012-01-01

    Full Text Available The article deals with methods for fine-grained structure of ingots during crystallization depending on the used foundry technologies. It is shown that by using modern scientific and technological advances may improve the traditional and the development of new casting processes, providing production of cast parts with over fine-grained structure and enhanced properties.

  14. Method of as-cast crack prediction within solidified layer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the numerical simulation of solidification of castings, a thermal stress formula and a thermal crack initiation criterion are proposed. Using these formulas, cast steel wheels with a diameter of 800 mm and aluminum alloy electromagnetic casting (EMC) slabs with a size of 1300 mm × 480 mm are employed to testify the positions of cracks through conventional thermal elastic-plastic analyses and low magnifying structure observations. The results show that the numerical prediction of cracks agrees with the measured results, and the cracks do not necessarily occur on the defects such as shrinkage holes (wheel) and porosity (EMC slab). It is also found that surface temperature control is an effective means to avoid the crack formation.

  15. Determination of a liquid core profile during continuous steel casting by the radiotracer method

    International Nuclear Information System (INIS)

    Knowledge of profile of liquid core is an important part of technological know-how of continuous casting of steel. Tracing methods are used for direct determination of profile and dimensions of the liquid core. Lead is used as inactive indicator, its presence in the cast semis is determined by the AAS method. More evidential information can be obtained by use of radioactive indicator antimony 124Sb, autoradiographic method is used for determination of its distribution in the cast semis. Realization of trial heats is subject to approval by the SUJB (State Office for Nuclear Safety), which stipulates also manner of liquidation of generated waste. (author)

  16. Investigation of Reusable Crucibles on Uranium Casting by Injection Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Slurry applied coatings must be recoated after every batch. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel. Plasma-sprayed coating can provide a crucible with a denser, more durable, coating layer, compared with the more friable coating layer formed by slurry-coating. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense from the heat applied by the plasma. Although the protective layer is more difficult in a dense coating than in a porous coating, the increased coating density is advantageous because it should not require frequent recoating or U-Zr melt penetration. In this study, we used a Vacuum Plasma Spray (VPS) method, which is suitable to prevent oxidization and has a number of advantages such as low defect density and excellent adhesion of the coating layer, to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel. After coatings, interaction studies between molten U-Zr alloys and the plasma sprayed coatings were also carried out. We summarized the results of the coating methods. All coated samples maintained good coating integrity in a U-Zr melt, but most of the coating method samples did not maintain integrity in the U-Zr-RE melt because of the cracks or microcracks of the coating layer, presumably formed from the thermal expansion difference. Only the TaC(100)-Y{sub 2}O{sub 3}(100) DL VPS coated rod survived the 2 cycles dipping test of U-Zr-RE melt. This is likely caused by good adhesion of the TaC coating onto the niobium rod and the chemical inertness of Y{sub 2}O{sub 3} coating material in the U-Zr-RE melt. Based on the results from the interactions with U-10Zr and U-10Zr-5RE melt, TaC(100)-Y{sub 2}O{sub 3}(100) plasma-sprayed coating methods have been applied to real graphite crucibles.

  17. Fabrication of rare-earth bearing fuel slug by injection casting method

    International Nuclear Information System (INIS)

    Herein, U.10wt%Zr fuel slugs containing 0, 3, and 7 wt%RE were prepared by an injection casting method and their characteristics were evaluated. The as-cast fuel slugs were generally sound and fabricated to the full length of the mold. However, the increased amount of the charged RE noticeably deteriorated the quality of the casting components such as melting crucible. Chemical analysis of the U.10Zr and U.10Zr.3RE slugs showed that the target composition was matched to within 1.0 wt%. In contrast, the composition of the U.10Zr.7RE fuel slug differed by as much as 4.6 wt% from the target. Therefore, more protective casting variables should be considered, when casting high RE-bearing fuel slugs. KAERI seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes in spent nuclear fuel into shorter-lived fission products

  18. Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Najib Souissi

    2014-04-01

    Full Text Available This study applies the Taguchi method to investigate the relationship between the ultimate tensile strength, hardness and process variables in a squeeze casting 2017 A wrought aluminium alloy. The effects of various casting parameters including squeeze pressure, melt temperature and die temperature were studied. Therefore, the objectives of the Taguchi method for the squeeze casting process are to establish the optimal combination of process parameters and to reduce the variation in quality between only a few experiments. The experimental results show that the squeeze pressure significantly affects the microstructure and the mechanical properties of 2017 A Al alloy.

  19. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    A. Trytek

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  20. Description of the particle distribution in the space of composite suspension casting by statistical methods

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2011-01-01

    Full Text Available This article presents a description of the reinforcement phase distribution in the space of composite suspension casting. The statistical methods used include Spearman’s rank correlation coefficient combined with the significance test, Chi-square test of independence and the test of contingency. The reinforcement phase consisted of SiC particles (15% by weight, and the matrix was AlSi11 alloy. Composites were made by mechanical stir casting method.

  1. Description of the particle distribution in the space of composite suspension casting by statistical methods

    OpenAIRE

    J. Grabian; K. Gawdzińska; W. Przetakiewicz; M. Pijanowski

    2011-01-01

    This article presents a description of the reinforcement phase distribution in the space of composite suspension casting. The statistical methods used include Spearman’s rank correlation coefficient combined with the significance test, Chi-square test of independence and the test of contingency. The reinforcement phase consisted of SiC particles (15% by weight, and the matrix was AlSi11 alloy). Composites were made by mechanical stir casting method.

  2. Prediction of useful casting structure applying Cellular Automaton method

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2009-07-01

    Full Text Available The results of simulation investigations of primary casting’s structure made of hypoeutectic Al-Si alloy using the Calcosoft system with CAFE 3D (Cellular Automaton Finite Element module are presented. CAFE 3-D module let to predict the structure formation of complete castings indicating the spatial distribution of columnar and equiaxed grains. That simplified model concerns only hypoeutectic phase. Simulation investigations of structure concern the useful casting of camshaft which solidified in high-insulation mould with properly chills distribution. These conditions let to apply the expedient locally different simplified the grains blocs geometry which are called by the authors as pseudo-crystals. The mechanical properties in selected cross-sections of casing are estimated.

  3. High temperature strength of ceramic moulds applied in the investment casting method

    Directory of Open Access Journals (Sweden)

    J. Kolczyk

    2011-07-01

    Full Text Available Ceramic casting moulds strength is an important factor, which influences the quality and properties of castings being produced by the investment casting method. It is especially important during mould pouring with liquid metal. Studies allowing determining the casting mould strength at high temperatures, that means at the ones at which the moulds are poured, are not numerous. None generally accepted (normalized method for the assessment of such strength exists in practice. The new method of the ceramic mouldso tensile strength investigation at high temperatures is described in the paper. Tests were performed at temperatures from 100 to 1100 C. The ceramic moulding sand was prepared of modern materials: colloidal silica – being a binder – and highly refractory ceramic materials.

  4. Die casting process assessment using single minute exchange of dies (SMED method

    Directory of Open Access Journals (Sweden)

    M. Perinić

    2009-07-01

    Full Text Available Die casting process uses high productive level machines. Machine capacity utilization is a key goal in achieving minimum time consumption. Changeover procedure during die casting process is recognized as possible area for reducing time consumption. The SMED method has been improved by additional procedures simultaneously applying the 5S method. Their contribution is evident in recognition of internal and external activities, particularly while transferring internal activities into external ones in as many numbers as possible, by minimizing at the same moment the internal ones. The validity of the method and procedures are verified by an example application of die casting foundry for casting automobile parts. Significant time savings have been achieved with minimum investment.

  5. Stress/strain Modelling of Casting Processes in the Framework of the Control-Volume Method

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Thorborg, Jesper; Andersen, Søren

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the need...... domain, which is highly convenient. The basis of the method is the control volume finite difference approach on structured meshes. The basic assumptions of the method are shortly reviewed and discussed. As for other methods which aim at application oriented analysis of casting deformations and stresses......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...

  6. Discussion on "proportional solidification technology" for nodular iron casting method

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gen

    2006-01-01

    The Proportional Solidification Technology believes that advancing the expansion of graphite precipitation is favorable for fully utilizing the expansion to offset the contraction and minimizing feeder size. But this author has proved that advancing the expansion is unfavorable for both feeding from the feeder and the self-feeding by expansion. On contrary, advancing the contraction is favorable for both kinds of feeding and favorable for avoiding shrinkage. The feeding efficiency of feeders cannot be increased by advancing the expansion of the casting, but can only be increased by accelerating cooling and contraction of the casting, and (or) by delaying the freezing of the feeders. In order to fully utilize the expansion to offset the contraction, it is a must to ensure that all inlets and outlets of a casting being poured are blocked rapidly at the moment when pouring is finished. It is pointed out that blocking at the earlier frozen feeder neck is unfavorable for both feeding from the feeder and the self-feeding by expansion; whereas blocking at earlier frozen ingates is favorable for both kinds of feeding.

  7. TDA method application to austenite transformation in nodular cast iron with carbides assessment

    OpenAIRE

    G. Gumienny

    2011-01-01

    In this paper the possibility of TDA method using to austenite transformation in nodular cast iron with carbides assessment is presented. Studies were conducted on cast iron with about 2% molybdenum and 0,70% to 4,50% nickel. On diagrams, where TDA curves are pre- sented, on time axis a logarithmic scale was applied. It has not been used up to now. It was found, that during cooling and crystallization of cast iron in TDA probe, on the derivative curve there is a slight thermal effect from aus...

  8. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  9. Thermal stress analysis method considering geometric effect of risers in sand mold casting process

    Institute of Scientific and Technical Information of China (English)

    S Y Kwak; HY Hwang; C Cho

    2014-01-01

    Solidification and fluid flow analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great influence on thermal phenomena. The analysis domain is dramatical y expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation difficult. However, it is difficult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.

  10. TDA method application to austenite transformation in nodular cast iron with carbides assessment

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper the possibility of TDA method using to austenite transformation in nodular cast iron with carbides assessment is presented. Studies were conducted on cast iron with about 2% molybdenum and 0,70% to 4,50% nickel. On diagrams, where TDA curves are pre- sented, on time axis a logarithmic scale was applied. It has not been used up to now. It was found, that during cooling and crystallization of cast iron in TDA probe, on the derivative curve there is a slight thermal effect from austenite to upper bainite or martensite transformation. Depending on nickel concentration austeniteupper bainite transformation start temperature changed (Bus, while MS temperature was independent of it. An influence of nickel on eutectic transformation temperature in nodular cast iron with carbides was determined too.

  11. A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting

    Science.gov (United States)

    Zhong, Honggang; Chen, Xiangru; Han, Qingyou; Han, Ke; Zhai, Qijie

    2016-07-01

    Eighty years after the invention of continuous cast of steels, reproducibility from few mm3 samples in the laboratory to m3 product in plants is still a challenge. We have engineered a thermal simulation method to simulate the continuous casting process. The temperature gradient (G L ) and dendritic growth rate (v) of the slab were reproduced by controlling temperature and cooling intensity at hot and chill end, respectively, in our simulation samples. To verify that our samples can simulate the cast slab in continuous casting process, the heat transfer, solidification structure, and macrosegregation of the simulating sample were compared to those of a much larger continuous casting slab. The morphology of solid/liquid interface, solidified shell thickness, and dendritic growth rate were also investigated by in situ quenching the solidifying sample. Shell thickness (δ) determined by our quenching experiment was related to solidification time (τ) by equation: δ = 4.27 × τ 0.38. The results indicated that our method closely simulated the solidification process of continuous casting.

  12. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  13. Accuracy and reliability of a novel method for fusion of digital dental casts and cone beam computed tomography scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Ewald M Bronkhorst; K Hero Breuning; Schols, Jan G. J. H.; Bergé, Stefaan J.; Anne Marie Kuijpers-Jagtman

    2013-01-01

    Several methods have been proposed to integrate digital models into Cone Beam Computed Tomography scans. Since all these methods have some drawbacks such as radiation exposure, soft tissue deformation and time-consuming digital handling processes, we propose a new method to integrate digital dental casts into Cone Beam Computed Tomography scans. Plaster casts of 10 patients were randomly selected and 5 titanium markers were glued to the upper and lower plaster cast. The plaster models were sc...

  14. A Rescheduling Method for Operation Time Delay Disturbance in Steelmaking and Continuous Casting Production Process

    Institute of Scientific and Technical Information of China (English)

    YU Sheng-ping; PAN Quan-ke

    2012-01-01

    In the steelmaking and continuous casting (SMCC) production process, operation time delay may lead to casting break or processing conflict so that the initial scheduling plan becomes unrealizable. Existing research meth- ods are difficult to guarantee the accuracy of the model and successful application to actual applications. The resched- uling problem in response to operation time delay is firstly analyzed. This is then followed by the establishment of a novel multi-obiective nonlinear programming model (MONPM). In specifications, a three-stage rescheduling method is proposed including the batches splitting (BS), forward scheduling method (FSM) and backward scheduling meth- od (BSM). As a result, the real-time application shows that the proposed rescheduling method efficiently ensures the continuous casting and dramatically shortens the redundant waiting time for molten steel in very short rescheduling time.

  15. A method for vertical electromagnetic moldless casting of steel

    International Nuclear Information System (INIS)

    Several approaches have been studied for the vertical casting of thin (3 mm-8 mm) sheets of steel. Each approach employs electromagnetic (EM) forces, avoids the need for contact between the solidifying steel and a solid mold. The most promising approach uses a high-frequency (HF:>100 kHz) oval solenoid magnet to provide containment of the liquid steel and a low-frequency (LF:/approximately/60 Hz) traveling field, similar to the double-sided linear induction pump, to provide levitation. The low field level of the solenoid and the low frequency of the levitation magnet result in acceptably low EM heating of the steel. The LF field penetrates the steel and provides a body force exactly counteracting the force of gravity everywhere except near the edges of the solidifying sheet. Additional HF traveling field magnets augment the levitation force near the edges but generate more EM heating. Other means of extending the levitating force to the edge and other approaches using stationary or traveling fields have also been studied. 4 refs., 4 figs

  16. To develop a quantitative method for predicting shrinkage porosity in squeeze casting

    Institute of Scientific and Technical Information of China (English)

    Shaomin Li; Kenichiro Mine; Shinji Sanakanishi; Koichi Anzai

    2009-01-01

    In order to secure high strength and high elongation of suspension parts, it is critical to predict shrinkage porosity quantitatively. A new simulation method for quantitative predic'don of shrinkage porosity when replenishing molten metal has been proposed for squeeze casting process. To examine the accuracy of the calculation model, the proposed method was applied to a plate model.

  17. Fe-based bulk metallic glasses prepared by centrifugal casting method

    OpenAIRE

    R. Babilas; R. Nowosielski

    2011-01-01

    Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. The crystallization...

  18. Preparation Of Deposited Sediment Sample By Casting Method For Environmental Study

    International Nuclear Information System (INIS)

    The preparation of deposited sediment sample by castingmethod for environmental study has been carried out. This method comprises separation of size fraction and casting process. The deposited sediment samples were wet sieved to separate the size fraction of >500 mum, (250-500) mum, (125-250) mum and (63-125) mum and settling procedures were followed for the separation of (40-63) mum, (20-40) mum, (10-20) mum and oC, ashed at 450oC, respectively. In the casting process of sample, it was used polyester rapid cure resin and methyl ethyl ketone peroxide (MEKP) hardener. The moulded sediment sample was poured onto caster, allow for 60 hours long. The aim of this method is to get the casted sample which can be used effectively, efficiently and to be avoided from contamination of each other samples. Before casting, samples were grinded up to be fine. The result shows that casting product is ready to be used for natural radionuclide analysis

  19. Design method of electromagnetic field applied to Al-alloy electromagnetic casting

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; DANG Jing-zhi; PENG You-gen; CHENG Jun

    2006-01-01

    The electromagnetic pump imposes the electromagnetic motive force (Lorentz force) on the liquid metal directly and makes it move along the definite direction by using the function of electric current and magnetic field in the conducting fluid.Compared with the traditional die casting, the system of counter-gravity casting can effectively control the speed of fillingto make Al-alloy liquid fill steadily by adjusting controlled-current. So the foundry defects can be decreased or avoided effectively by this system. Based on the theory of electromagnetic pump, the design method of electromagnetic field in electromagnetic pump was investigated emphatically. The rule of magnetic induction intensity B influenced by the divided electromagnet airgap's size was founded. Furthermore, the empirical formula of magnetic induction intensity B in a magnetic airgap for an open magnet in the saturated state was deduced by mathematics regression analysis. Counter-gravity casting applied to the Al-alloy electromagnetic filling was developed with this method. Besides, the electromagnetism filling counter-gravity casting process of the turbo-charge blade wheel was also fixed. The eligibility rate of blade wheel produced by such technique can be increased to 98%. The casts have compact structure and excellent capability.

  20. Discrepancy measurements of copings prepared by three casting methods and two different alloys, on ITI implants

    Directory of Open Access Journals (Sweden)

    Siadat H.

    2008-04-01

    Full Text Available Background and Aim: An important criterion for success assessment of implant-supported prostheses is marginal fit. Vertical and horizontal discrepancy can result in loosening of the prosthetic screw, crestal bone resorption, peri-implantitis and loss of osseointegration. Despite careful attention to waxing, investing, and casting, marginal discrepancies are inevitable. The aim of this study was to evaluate the marginal gap and overhang in three casting methods with two different alloys in ITI implants.Materials and Methods: In this experimental in vitro study 48 analog abutments were randomly divided into six groups as follows: 1 burn out cap + BegoStar, 2 impression cap + BegoStar, 3 conventional wax up + BegoStar, 4 burn out cap + Verabond2, 5 impression cap + Verabond2, 6 conventional wax up + Verabond2. Waxing was done in 0.7 mm thickness verified by a digital gauge and a putty index was made for all groups. Reamer was used for correction of the finish line after casting in all groups. Castings were seated on analog abutments and embedded in acrylic resin. Specimens were sectioned by isomet instrument and polished and cleaned by ultrasonic cleaner for 10 min. The marginal gap and overextended margins of castings were examined under a  Scanning Electron Microscope (SEM (X200. The mean gap and margin overextension were calculated for each group. Data were analyzed by multivariate analysis and Bonferroni post-hoc test with p<0.05 as the level of significance.Results: No significant difference in gap size was observed among the three casting methods with two alloys (P=0.056. The marginal gap was not different in the studied casting methods (P=0.092. Gold alloy crowns showed lower marginal gaps compared to base metal alloy crowns (P<0.001. No significant difference in overhang size was observed among casting methods with two alloys (P=0.093. Base metal alloy crowns showed less overhang compared to gold alloy crowns (P<0.001. There was a

  1. A Simple Method for Making Diagnostic Casts for Dental Implants Using Acrylic Abutments

    Directory of Open Access Journals (Sweden)

    H. Siadat

    2007-06-01

    Full Text Available The use of multiple implants in the same jaw requires a detailed knowledge of abutment angulation. The position and angulation of the abutments play an important role in treatment planning and fabrication of the custom tray. Therefore diagnostic casts thatcontain cover screws may cause problems during implant therapy.The current article describes a technique for making a preliminary cast with acrylic custom abutments in order to help the clinician select an appropriate impression technique and evaluate the location and angulations of the implant bodies. This method can also aid the technician to provide adequate and proper space for the fabrication of an open custom tray.

  2. Manufacture of centrifugal Castings

    OpenAIRE

    Minář, Martin

    2015-01-01

    The main goal of this bachelor thesis is to collect basic information related to the production of castings by centrifugal casting. It is focused on horizontal and vertical centrigugal casting, casting of various metals and their alloys, such as zinc, aluminum, iron, steel and silumin. This technology is compared with other casting methods in terms of specific characteristics, amount of usage, production economics, advantages, disadvantages, the resulting quality of castings and other factors.

  3. Diagnostic Value of Manual and Computerized Methods of Dental Casts Analysis

    Directory of Open Access Journals (Sweden)

    H. Rahimi

    2009-06-01

    Full Text Available Objective: The aim of this study was to evaluate the validity of computerized and manual methods of dental cast analysis.Materials and Methods: Twenty set-ups of upper and lower casts using artificial teeth corresponding to various malocclusions were created for a diagnostic in vitro study. Values of tooth size were calculated from the isolated artificial teeth out of the set-ups, results were considered as a gold standard for the tooth size. Arch width was calculated from the existing set-ups on the dentins.Impressions were taken of the casts with alginate and duplicated with dental stone. Models were measured with digital caliper manually. Then images were taken from the occlusal views of the casts by a digital camera. Measurements were done on digital images with the AutoCAD software.The results of the computerized and manual methods were compared with the gold standard.Intra class correlation coefficient of reliability was used to measure the accuracy ofthe methods and the Friedman technique used to evaluate the significance of differences.Results: Results indicated that all measurements were highly correlated, e.g. gold standard and manual (0.9613-0.9991, gold standard and computerized (0.7118-0.9883, manual and computerized (0.6734-0.9914. Statistically significant differences were present between these methods (P<0.05, but they proved not to be clinically significant.Conclusion: Manual measurement is still the most accurate method when compared to the computerized measurements and the results of measurement by computer should be interpreted with caution.

  4. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  5. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  6. Surface roughness characterization of cast components using 3D optical methods

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    scanning probe image processor (SPIP) software and the results of the surface roughness parameters obtained were subjected to statistical analyses. The bearing area ratio was introduced and applied to the surface roughness analysis. From the results, the surface quality of the standard comparators is......A novel method that applies a non-contact technique using a 3D optical system to measure the roughness of selected standard surface roughness comparators used in the foundry industry is presented. This method is described in detail in the paper. Profile and area analyses were performed using...... made in green sand moulds and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series...

  7. Research of estimation method of thermal aging embrittlement on cast austenitic stainless steel

    International Nuclear Information System (INIS)

    Thermal aging embrittlement of cast austenitic stainless steel components from the decommissioned Advanced Thermal prototype Reactor (ATR) Fugen power station has been characterized. Cast stainless steel materials were obtained from recirculation pump casing. The actual time at temperature for the materials was 138,000 h at 275°C. The Fugen serviced material show modest decrease in Charpy-impact properties and a small increase in micro-Vickers hardness in ferrite phase because of thermal aging at relatively low service temperatures. The fracture toughness prediction method (H3T model) predicts slightly lower values for Charpy-impact energy obtained from the Fugen material. The results from microstructural analysis suggest that the prediction method have the potential to provide higher accuracy by considering activation energy for embrittlement at low service temperatures. (author)

  8. Application of cored wire injection method to the producing of vermicular cast iron

    OpenAIRE

    E. Guzik; T. Kleingartner

    2008-01-01

    Thc rcsults of studies on thc use of magnesium alloy in modcrn cod wire injection method tor pmduction of vcrrniculnr ~rsphitcc astirons were described. The injection of Mg corcd wirc lcngth is a trcatmcnt rnczhod which can bc used lo pmcss iron mcltctl in an clcctricinduction fumacc. This paper describes the results of using a high-magnssiurn fcmsilicon alloy in corcd wire (Mg recovcry 45% ) Tor thcproduction OF vcrmicular graphite cast irons at Gicsserci Hcunisch GmbI I Foundry. Thc rcsulrs...

  9. Fe-based bulk metallic glasses prepared by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2011-10-01

    Full Text Available Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The crystallization behaviour of the studied alloys was examined by differential thermal analysis (DTA. The soft magnetic property examinations of tested materials contained initial magnetic permeability and measurements of magnetic permeability relaxation.Findings: The XRD and TEM investigations revealed that the studied as-cast bulk glassy samples in forms of ring were amorphous for all tested alloys. The SEM images showed that fractures of studied rings indicated two structurally different zones, which contained “river” patterns and “smooth” areas. The samples of studied alloys presented two stage crystallization process, which was observed for all tested rings with different thickness. The changes of crystallization temperatures versus the thickness of the glassy samples were stated. The magnetic permeability relaxation, which is directly proportional to the microvoids concentration in amorphous structure decreased with increase of sample thickness. These results could be assumed as the change of amorphous structure in function of thickness.Practical implications: The centrifugal casting method is very simple, useful and effective method to produce bulk amorphous materials in the form of rings or tubes.Originality/value: The preparation of bulk metallic glasses in the form of rings for three different Fe-based alloy systems is very important for the future progress in research and practical applications of iron-based bulk amorphous materials.

  10. Preparation and characterization of porous Si3N4 ceramics prepared by compression molding and slip casting methods

    Indian Academy of Sciences (India)

    Yu Fangli; Wang Huanrui; Bai Yu; Yang Jianfeng

    2010-10-01

    Porous silicon nitride (Si3N4) ceramics were fabricated by compression molding and slip casting methods using petroleum coke as pore forming agent, and Y2O3–Al2O3 as sintering additives. Microstructure, mechanical properties and gas permeability of porous Si3N4 ceramics were investigated. The mechanical properties and microstructure of porous Si3N4 ceramics prepared by compression molding were better than those which were prepared by slip casting method, whereas slip casting method is suitable for the preparation of porous Si3N4 ceramics with higher porosity and excellent gas permeability.

  11. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    Science.gov (United States)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  12. Solidification interface shape for continuous casting in an offset mold - Two analytical methods

    Science.gov (United States)

    Siegel, R.

    1984-02-01

    A solution method for finding the unknown solidification interface in manufacturing slab ingots as a continuous casting is presented, which involves a product solution in the potential plane and the use of conjugate harmonic functions. It is argued that the method may be more direct for some geometries than the Cauchy boundary value method. Moreover, the usefulness of the Cauchy boundary value method is demonstrated through the example of a nonsymmetric horizontal mold where the walls are offset to support the lower ingot boundary.

  13. Application of the homotopy perturbation method for calculation of the temperature distribution in the cast-mould heterogeneous domain

    OpenAIRE

    Grzymkowski, R.; E. Hetmaniok; D. Słota

    2010-01-01

    Purpose of this paper: In this paper an application of the new method for solving the heat conduction equation in the heterogeneous cast-mould system, with an assumption of the ideal contact at the cast-mould contact point, is introduced. An example illustrating the discussed approach and confirming its usefulness for solving problems of that kind is also presented in the paper.Design/methodology/approach: For solving the discussed problem the homotopy perturbation method is used, which consi...

  14. LOW-FREQUENCY PHASED-ARRAY METHODS FOR CRACK DETECTION IN CAST AUSTENITIC PIPING COMPONENTS

    International Nuclear Information System (INIS)

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examination (NDE) approaches for inspecting coarse-grained, austenitic stainless steel reactor components. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness, limitations, and reliability of advanced inspection techniques for application on safety-related components in commercial nuclear power plants. This paper describes results from recent assessments using a low-frequency phased-array methodology for detecting cracks in cast austenitic piping welds. Piping specimens that contain thermal and mechanical fatigue cracks located adjacent to welds were examined. The specimens have surface geometrical conditions and weld features that simulate portions of primary piping systems in many U.S. pressurized water reactors (PWRs). In addition, segments of vintage centrifugally cast piping were examined to assess inherent acoustic noise and scattering due to grain structures and determine consistency of ultrasonic (UT) responses from varied circumferential locations. The phased-array UT methods were applied from the outside surface of the specimens using automated scanning devices and water coupling, and employed a modified instrument operating between 500 kHz and 1.0 MHz. Composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection and sizing effectiveness are discussed, including acoustic parameters observed in centrifugally cast piping base materials

  15. The Application of the Method of Continuous Casting for Manufacturing of Welding Wire AMg6

    International Nuclear Information System (INIS)

    The method of manufacturing semifinished item of high alloyed of aluminum, silver and copper alloys has been investigated on the basis of the continuous casting method. The sample of aluminum alloy AMg6 consist of small grains with the vios-cut dimension ∼ 15 mkm and which are stretched in the direction of longitudinal axis of the sample Such microstructure is favourable for plastic deformation of the sample. Welding wire which meets the demands of standards of commercial welding wires of this brand has been produced by the drawing from the sample

  16. Finite Point Method for the Simulation of Solidification and Heat Transfer in Continuous Casting Mold

    Institute of Scientific and Technical Information of China (English)

    张雷; 康进武; 沈厚发; 黄天佑

    2004-01-01

    A 2-D finite point meshless model was used to simulate the heat transfer and solidification of steel in continuous casting molds to illustrate its use in metallurgy. The latent heat of the pure metal was treated using the temperature recovery method and the latent heat of the alloy was treated using an apparent heat capacity method. The model was validated by calculating the classical Stefan moving boundary problem. Analysis of the solid shell growth and temperature distribution of a billet in a mold shows that the solution by the finite point meshless model is quite reasonable, which indicates that the model has potential in metallurgical engineering applications.

  17. Application of the homotopy perturbation method for calculation of the temperature distribution in the cast-mould heterogeneous domain

    Directory of Open Access Journals (Sweden)

    R. Grzymkowski

    2010-11-01

    Full Text Available Purpose of this paper: In this paper an application of the new method for solving the heat conduction equation in the heterogeneous cast-mould system, with an assumption of the ideal contact at the cast-mould contact point, is introduced. An example illustrating the discussed approach and confirming its usefulness for solving problems of that kind is also presented in the paper.Design/methodology/approach: For solving the discussed problem the homotopy perturbation method is used, which consists in determining the series convergent to the exact solution or enabling to built the approximate solution of the problem.Findings: The paper shows that the homotopy perturbation method, effective in solving many technical problems, is successful also for examining the considered problem.Research limitations/implications: Solution of the problem is provided with the assumption of an ideal contact between the cast and the mould. In further, research of the discussed method shall be employed to solve problems involving the presence of thermal resistance at the cast-mould contactPractical implications: The method allows to determine the solution in form of the continuous function, which is significant for the analysis of the cast cooling in the mould, in order to avoid the defects formation in the cast.Originality/value: Application of the new method for solving the considered problem.

  18. Development of the fabrication technology of wide uranium foils for Mo-99 irradiation target by cooling-roll casting method

    International Nuclear Information System (INIS)

    An alternative fabrication method for polycrystalline uranium foils has been investigated using a cooling-roll casting method at KAERI since 2001, in order to produce a medical isotope 99Mo, the parent nuclide of 99mTc. The fabrication method of wide uranium foils produced by a cooling-roll casting was recently developed to improve the quality of the uranium foils and the economic efficiency of the foil fabrication with modifications of the casting apparatus and adjustments of the process parameters. A continuous polycrystalline LEU foil with a thickness range of 100 to 150 μm. and a width of about 50 mm, exceeding 5m in length for a batch procedure, could be fabricated with a better quality of the uranium foil and a higher yield of the foil fabrication, through improvements of the casting apparatus and variations of the process parameters. (author)

  19. Computer aided method for quality control of automotive Al-Si-Cu cast components

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-10-01

    Full Text Available Purpose: The technological progress in material engineering causes the continuous need to develop product testing methods providing comprehensive quality evaluation. In material engineering it is the images obtained by various methods that have become the source of information about materials.Design/methodology/approach: The presented methodology, making it possible to determine the types and classes of defects developed during casting the elements from aluminum alloys, making use photos obtained with the flaw detection method with the X-ray radiation. The tests indicate to the applicability of neural networks for this task. It is very important to prepare the neural network data in the appropriate way, including their standardization, carrying out the proper image analysis and correct selection and calculation of the geometrical coefficients of flaws in the X-ray images.Findings: In classical computer algorithms even a slight rotation or change in lightning can hinder the proper interpretation and alternation of variable input data. To eliminate this hindrance the programming can be converted by specifying such features of the structure element that remain most significant and affect the similarities of the analysed images. In neural networks this particular feature needs not to be specified – if necessary, the neural network spots it automatically.Practical implications: The computer aided methodology of the quality control of the light Al and Mg based alloys may be used by manufacturers of subassemblies and elements of car engines.Originality/value: The value of the applied methodology was to correct identify the casting effects that occurred during the casting process.

  20. A new method of fast measuring surface tension of melt cast iron and its application in graphite shape identification

    OpenAIRE

    Li, Dayong; Dequan SHI; Li, Feng

    2005-01-01

    Surface tension is one of important physical features of melt alloy. Many properties of melt alloy, such as graphite shape of cast iron and modified microstructure of aluminum alloy, can be evaluated by means of surface tension. In order to evaluate and control the melt quality in-situ melting operation, the authors advanced a new method and developed an automatic device for fast measuring surface tension of melt alloy and applied it to the practice of rapid identifying graphite shape of cast...

  1. Modeling Mechanical Properties of Aluminum Composite Produced Using Stir Casting Method

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available ANN (Artificial Neural Networks modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% Al2O3 particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580oC for half an hour and tempered at 120oC for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron feedforward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation.

  2. A magnetostatic force inspection method for monitoring the oscillation marks of continuous casting

    International Nuclear Information System (INIS)

    Based on the well-known fact that ferromagnetic materials can be significantly attracted by a permanent magnet (PM), we develop an innovative magnetostatic force inspection method to monitor the oscillating marks formed during continuous casting. A small PM produces a static magnetic field that penetrates into the ferromagnetic material slab formed via continuous casting. This magnet forms a localized magnetic sensing zone (MSZ) within the ferromagnetic material. The magnetostatic force acting on the ferromagnetic material can be expressed as the Maxwell tensor integral over the surface of the ferromagnetic material within the MSZ. This force provides local surface profile information. The reaction force of the magnetostatic force acting on the PM can be measured using a laser–cantilever system (a high force resolution method), and thus the profile features of the oscillation marks can be obtained. A measuring device with a laser–cantilever system is designed, constructed, and applied in a series of prototypes and a static experiment. A numerical model is simultaneously constructed to validate the measurement results. The differences between the actual and measured profiles are analyzed. An actual steel specimen with oscillation marks is measured using this device, and the accuracy is evaluated. In summary, the potential for the application of this method in the metallurgy industry is demonstrated. (paper)

  3. Application of the Adomian decomposition method for solving the heat equation in the cast-mould heterogeneous domain

    OpenAIRE

    Grzymkowski, R.; M. Pleszczyński; D. Słota

    2009-01-01

    The paper is focused on a method for solving the heat equation in a cast-mould heterogeneous domain. The discussed method makes use of the Adomian decomposition method. The derived calculations prove the effectiveness of the method for solving such types of problems.

  4. Application of the Adomian decomposition method for solving the heat equation in the cast-mould heterogeneous domain

    Directory of Open Access Journals (Sweden)

    R. Grzymkowski

    2009-10-01

    Full Text Available The paper is focused on a method for solving the heat equation in a cast-mould heterogeneous domain. The discussed method makes use of the Adomian decomposition method. The derived calculations prove the effectiveness of the method for solving such types of problems.

  5. Improvement in the DTVG detection method as applied to cast austeno-ferritic steels

    International Nuclear Information System (INIS)

    Initially, the so-called DTVG method was developed to improve detection and (lengthwise) dimensioning of cracks in austenitic steel assembly welds. The results obtained during the study and the structural similarity between austenitic and austeno-ferritic steels led us to carry out research into adapting the method on a sample the material of which is representative of the cast steels used in PWR primary circuit bends. The method was first adapted for use on thick-wall cast austeno-ferritic steel structures and was validated for zero ultrasonic beam incidence and for a flat sample with machine-finished reflectors. A second study was carried out notably to allow for non-zero ultrasonic beam incidence and to look at the method's validity when applied to a non-flat geometry. There were three principal goals to the research; adapting the process to take into account the special case of oblique ultrasonic beam incidence (B image handling), examining the effect of non-flat geometry on the detection method, and evaluating the performance of the method on actual defects (shrinkage cavities). We began by focusing on solving the problem of oblique incidence. Having decided on automatic refracted angle determination, the problem could only be solves by locking the algorithm on a representative image of the suspect material comprising an indicator. We then used a simple geometric model to quantify the deformation of the indicators on a B-scan image due to a non-flat translator/part interface. Finally, tests were carried out on measurements acquired from flat samples containing artificial and real defects so that the overall performance of the method after development could be assessed. This work has allowed the DTVG detection method to be adapted for use with B-scan images acquired with a non-zero ultrasonic beam incidence angle. Moreover, we have been able to show that for similar geometries to those of the cast bends and for deep defects the deformation of the indicators due

  6. Life cycle assessment as a method of limitation of a negative environment impact of castings

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-07-01

    Full Text Available Casting production constitutes environmental problems going far beyond the foundry plant area. Applying a notion of the life cycle the input (suppliers side and output factors (clients side can be identified. The foundry plant activities for the environment hazard mitigation can be situated on various stages of the casting life cycle. The environment impact of motorisation castings made of different materials – during the whole life cycle of castings – are discussed in the paper. It starts from the charge material production, then follows via the casting process, car assembly, car exploitation and ends at the car breaking up for scrap.

  7. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  8. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  9. Structure mechanical analysis of prestressed cast-steel pressure vessels with the finite-element-method

    International Nuclear Information System (INIS)

    The analytical pressure analysis is performed for a vessel with solid bottom and top. The basis of the Finite-Element-Method (FEM) and the criteria for the choice of a suitable element type for use in the computer model was investigated. To investigate the exactness of the FE-program a comparison between the analytical solution and the pressure claculated by FEM at a cylindrical vessel was made. For pressure analyses at the test vessel built of steel sections four different computer models (after FEM) were developed. The pressure analysis of a prestressed cast-steel pressure vessel for the transport and for the storage of burnt HTR fuel elements is performed with the aid of computed models after FEM. The method of developing simple computer models for the prestressed pressure vessel with large dimension is explained with an example. (orig.)

  10. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  11. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  12. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    International Nuclear Information System (INIS)

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping

  13. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    OpenAIRE

    E. Guzik; D. Wierzchowski

    2012-01-01

    The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron) with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describ...

  14. Development of the fabrication technology of wide uranium foils for Mo-99 irradiation target by cooling-roll casting method

    International Nuclear Information System (INIS)

    Full text: An alternative fabrication method for polycrystalline uranium foils has been investigated using a cooling-roll casting method in KAERI since 2001, in order to produce a medical isotope 99Mo, the parent nuclide of 99mTc. The fabrication method of wide uranium foils produced by cooling-roll casting has been optimized to improve the quality of uranium foils and the economic efficiency of the foil fabrication with the modifications of the casting apparatus and the variations of the various process parameters. The injection control device of the uranium melt was applied to cooling-roll casting apparatus, in order to stabilize the fabrication process and to increase the yield of uranium foils through the prevention of the melt leakage. As the uranium has a low thermal conductivity, the collection apparatus was modified to fabricate the uranium foils without great defects soundly, leaded to improve the quality and the yield of the uranium foils. The dimension and the surface state of the uranium foils were also adjusted with the revolution speed of cooling roll, the ejection pressure of melt, the gap distance between nozzle slot and cooling roll, the superheat of the metal, and the atmosphere of melting and casting. Then, continuous polycrystalline uranium foils with a thickness range of 100 to 150? and a width of about 50 mm were fabricated with a better quality of uranium foils and a higher economic efficiency of the foil fabrication, through the modifications of the casting apparatus and the variations of the various process parameters. (author)

  15. Solution of Macrosegregation in Continuously Cast Billets by a Meshless Method

    International Nuclear Information System (INIS)

    The main aim of this paper is to demonstrate the applicability and the advantages of a novel meshless method for simulation of macrosegregation in steel billets. The physical model is established on a set of macroscopic equations for mass, energy, momentum, species, turbulent kinetic energy, and dissipation rate in two dimensions. The mixture continuum model is used to treat the solidification system. The mushy zone is modelled as a Darcy porous media with Kozeny-Karman permeability relation, where the morphology of the porous media is modelled by a constant value. The incompressible turbulent flow of the molten steel is described by the Low-Reynolds-Number (LRN) k-epsilon turbulence model, closed by the Launder and Sharma closure coefficients and damping functions. The microsegregation equations rely on lever rule. The numerical method is established on explicit timestepping, and collocation with multiquadrics radial basis functions on non-uniform five-noded influence domains, and adaptive upwinding technique. The velocity-pressure coupling of the incompressible flow is resolved by the explicit Chorin's fractional step method, with the intermediate velocity field, calculated without the pressure term. A recently proposed standard continuous casting configuration with Fe-C system has been used for verification of the model. The advantages of the method are its simplicity and efficiency, since no polygonisation is involved, easy adaptation of the nodal points in areas with high gradients, almost the same formulation in two and three dimensions, high accuracy and low numerical diffusion.

  16. Method for Determining the Time Constants Characterizing the Intensity of Steel Mixing in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Pieprzyca J.

    2015-04-01

    Full Text Available A common method used in identification of hydrodynamics phenomena occurring in Continuous Casting (CC device's tundish is to determine the RTD curves of time. These curves allows to determine the way of the liquid steel flowing and mixing in the tundish. These can be identified either as the result of numerical simulation or by the experiments - as the result of researching the physical models. Special problem is to objectify it while conducting physical research. It is necessary to precisely determine the time constants which characterize researched phenomena basing on the data acquired in the measured change of the concentration of the tracer in model liquid's volume. The mathematical description of determined curves is based on the approximate differential equations formulated in the theory of fluid mechanics. Solving these equations to calculate the time constants requires a special software and it is very time-consuming. To improve the process a method was created to calculate the time constants with use of automation elements. It allows to solve problems using algebraic method, which improves interpretation of the research results of physical modeling.

  17. Assessment of ductile iron casting process with the use of the DRSA method

    OpenAIRE

    Kujawińska A.; Rogalewicz M.; Diering M.; Piłacińska M.; Hamrol A.; Kochańskib A.

    2016-01-01

    The paper introduces a concept of assessment of a ductile iron casting process with use of the rule-based approach, known as DRSA (dominance-based rough set approach). The research was conducted in a large Polish foundry. The collected data concern the chemical composition and mechanical properties of the used ductile cast iron. In the paper, a methodology of creating a rule-based moulding model for the tensile strength was proposed. The quality, sensitivit...

  18. Methods for the In-Situ Characterization of Cast Austenitic Stainless Steel Microstructures

    International Nuclear Information System (INIS)

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. Its engineering properties made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that make current ultrasonic in-service inspection of components quite challenging. To address inspection needs, new ultrasonic inspection approaches are being sought. However, overcoming the deleterious and variable effects of the microstructure on the interrogating ultrasonic beam may require knowledge of the microstructure, for potential optimization of inspection parameters to enhance the probability of detection (POD). The ability to classify microstructure type (e.g. polycrystalline or columnar) has the potential to guide selection of optimal NDE approaches. This paper discusses the application of ultrasonic and electromagnetic methods for classifying CASS microstructures, when making measurements from the outside surface of the component. Results to date demonstrate the potential of these measurements to discriminate between two consistent microstructures - equiaxed-grain material versus columnar-grain material. The potential for fusion of ultrasonic and electromagnetic measurements for in-situ microstructure characterization in CASS materials will be explored.

  19. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm2 obtained at aging temperature of 210oC for hours with homogenous dendritic microstructure

  20. Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration

    International Nuclear Information System (INIS)

    The use of ambient vibration tests to characterize the evolution of E-modulus of concrete right after casting is investigated in this paper. A new methodology is proposed, which starts by casting a concrete cylindrical beam inside a hollow acrylic formwork. This beam is then placed horizontally, simply supported at both extremities, and vertical accelerations resulting from ambient vibration are measured at mid-span. Processing these mid-span acceleration time series using power spectral density functions allows a continuous identification of the first flexural frequency of vibration of the composite beam, which in turn is correlated with the evolutive E-modulus of concrete since casting. Together with experiments conducted with the proposed methodology, a complementary validation campaign for concrete E-modulus determination was undertaken by static loading tests performed on the composite beam, as well as by standard compressive tests of concrete cylinders of the same batch loaded at different ages.

  1. The diffusion of sulphur from moulding sand to cast and methods of its elimination

    Directory of Open Access Journals (Sweden)

    M. Hosadyna

    2009-10-01

    Full Text Available The care of high quality castings requires taking into account the possible negative influence of decomposition products of moulding and core sands on the structure of castings produced. Such products are emitted both from the sands of I generation, meaning sands bound by bentonite, especially those containing carbon forming additives, as well as from the sands of II generation, meaning the sands with the binding materials or even the sands without any binders, such as the forms produced by using the LOST FOAM technology. The literature often refers to the negative effects of nitrogen emitted from the sands with the urea resins on the tendency to create surface defects. That is why the aim of this study was to assess the degree of sulphur diffusion to the ferroalloy castings and the proposal of its limitation.

  2. Assessment of ductile iron casting process with the use of the DRSA method

    Directory of Open Access Journals (Sweden)

    Kujawińska A.

    2016-01-01

    Full Text Available The paper introduces a concept of assessment of a ductile iron casting process with use of the rule-based approach, known as DRSA (dominance-based rough set approach. The research was conducted in a large Polish foundry. The collected data concern the chemical composition and mechanical properties of the used ductile cast iron. In the paper, a methodology of creating a rule-based moulding model for the tensile strength was proposed. The quality, sensitivity and accuracy of the model extracted from the data were examined. The studies proved its usefulness in the industrial practice and for aiding of the decision making process.

  3. Effect of Sr-modification on the bendability of cast aluminum alloy A356 using digital image correlation method

    International Nuclear Information System (INIS)

    The effect of cast microstructure on bendability of automotive cast aluminum alloy A356 has been studied by machining sheet specimens and conducting V-bend tests. Specimens in the loaded condition are observed from the through-thickness section using a CCD camera and also using a scanning electron microscope (SEM). The latter allowed recording of high magnification images from the through-thickness region of the bend to determine aspects of strain localization and particle induced damage in the microstructure. In addition, the initial microstructure is utilized as a speckle pattern for further analysis of through-thickness strain development in the bent region using digital image correlation (DIC) method. The method is applied to unmodified and Sr-modified A356 compositions. The results indicate superior bendability of Sr modified A356 alloy compared to the unmodified alloy. The differences in bendability are attributed to the size and morphology of eutectic Si phase particles that undergo significant cracking in the tensile region of specimen during bending. The results demonstrate that high magnification SEM imaging of bent specimens coupled with DIC based strain analysis offers a useful method of analyzing the effect of microstructure on bendability of cast materials

  4. Accuracy evaluation of a new three-dimensional reproduction method of edentulous dental casts, and wax occlusion rims with jaw relation

    OpenAIRE

    Yuan, Fu-Song; Sun, Yu-Chun; Wang, Yong; Lü, Pei-Jun

    2013-01-01

    The article introduces a new method for three-dimensional reproduction of edentulous dental casts, and wax occlusion rims with jaw relation by using a commercial high-speed line laser scanner and reverse engineering software and evaluates the method's accuracy in vitro. The method comprises three main steps: (i) acquisition of the three-dimensional stereolithography data of maxillary and mandibular edentulous dental casts and wax occlusion rims; (ii) acquisition of the three-dimensional stere...

  5. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  6. Investigations of Properties of Wax Mixtures Used in the Investment Casting Technology – New Investigation Methods

    Directory of Open Access Journals (Sweden)

    J. Zych

    2012-09-01

    Full Text Available The results of testing of the selected group of wax mixtures used in the investment casting technology, are presented in the paper. Themeasurements of the kinetics of the mixtures shrinkage and changes of viscous-plastic properties as a temperature function wereperformed. The temperature influence on bending strength of wax mixtures was determined.

  7. Transverse Crack Modeling of Continuously Casted Slabs through Finite Element Method in Roughing Rolling at Wide Strip Mill

    Science.gov (United States)

    Pesin, A.; Salganik, V.; Pustovoytov, D.

    2010-06-01

    In the pipe billet production at the wide strip mills of hot rolling big metal losses are caused by surface defects that affect most parts of the finished strips. The rolling surface defects are referred to the breach of steelmaking technology. Specialists mostly face defects of metal surface such as "scab" and "crack". The only area suffered from these defects is a slab edge. This area has the least surface temperature at the unbending of the continuous-casting machine, and together with deep buckles made by reciprocating motion of the crystallizer it is mostly subjected to transverse cracks that can be up to several millimeters. Each surface defect of the continuously casted slab will further turn into the surface defect of the strip bar. For some grade sets, mostly made of pipe steel grades the amount of strips with these defects can reach up to 60-70%. The area that is mostly prone to these defects is the edge of the strip. The work reveals investigation of the form change peculiarities in the transverse cracks of the continuously casted slab in roughing rolling in the horizontal rollers. The finite element method with software DEFORM 3D V6.1 has been applied in modeling. The work gives a form change mechanism of transverse cracks of slabs in deformation. Further crack growth in rolling is assessed due to Cockroft-Latham criteria.

  8. Strip casting of stainless steels

    OpenAIRE

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  9. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-12-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standardsample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters werecalculated as well.

  10. Improvement of ultrasonic testing methods of austeno-ferritic steel cast components

    International Nuclear Information System (INIS)

    Due to the low signal to noise ratio incountered in cast stainless steel components of P.W.R. reactor cooling system, usual ultrasonic testing aren't efficient. In order to enhance ultrasonics capabilities Electricite de France and C.E.A. have carried out a study main results of which are shown in this paper. These results include: Metallurgical structure effects: very high diffusion noise, beam distortion, low pass filter. Probe parameters that leed to examinations enhancement: focusing, aperture, damper. Efficient signal processing techniques: Split Spectrum, Image processing. Results of enhancement means on actual defects (shrinkage cavities). (authors). 2 refs., 9 figs

  11. Intelligent design of investment casting mold based on a hybrid reasoning method

    Institute of Scientific and Technical Information of China (English)

    Jiang Ruisong; Zhang Dinghua; Wang Wenhu; Bu Kun

    2009-01-01

    A hybrid reasoning model was proposed in which CBR (case-based reasoning) was applied to the conceptual design and RBR (rule-based reasoning) was applied to the detailed design after research of the design process and domain knowledge of the acre-engine turbine blade investment casting mold design field. In the conceptual design stage, the representation and retrieval technologies were researched which improve the retrieval efficiency. Meanwhile, RBR was used to modify the retrieval result. The experimentation shows that the approach in this study can be used to obtain a more satisfactory design result.

  12. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  13. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and compared...

  14. Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.

  15. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Longtao, E-mail: longtaojiang@163.com [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Pingping [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiu, Ziyang [Skate Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guoqin [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lin, Xiu [Heilongjiang Academy of Industrial Technology, Harbin 150001 (China); Dai, Chen; Wu, Gaohui [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  16. Optimization of Stir Casting Process Parameters to Minimize the Specific Wear of Al-SiC Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Sadi

    2015-02-01

    Full Text Available The aim of this research is to optimize of stir casting process parameters to minimize the specific wear of Al-SiC composites by Taguchi method. Composite material used in this research was Al- Si aluminum alloy as the matrix and SiC (silicon carbide particles size 400 mesh as the reinforcement. Experimental design used L16 orthogonal arrays Taguchi method standards. Experimental factors used in the making of composite samples were SiC content, melt temperature, rotation speed and stirring duration, each with 4 levels or variations. The microstructures of Al-SiC composite were observed by scanning electron microscope (SEM. Experimental result showed that the optimum of stir casting process parameters are SiC content of 15 wt.%, melt temperature of 740 oC, rotation speed of 300 rpm and stirring duration of 10 minutes. The most significant parameter which affected on specific wear was SiC content which contributes 88.67%. Adding content of SiC from 0 to 15 wt. % can decrease the specific wear of Al-SiC composites about 90.08 %.

  17. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    International Nuclear Information System (INIS)

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond(111)/Al interface was found to be devoid of reaction products. While at the diamond(100)/Al interface, large-sized aluminum carbides (Al4C3) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond(111)/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond(111)/aluminum. • The growth mechanism of Al4C3 was analyzed by crystallography theory

  18. Work Roll Materials For Hot Strip Milling and Casting Methods of Rolling Roll

    Directory of Open Access Journals (Sweden)

    Şadi KARAGÖZ

    2009-03-01

    Full Text Available The selection of materials for rolling, which is one of the powerful manufacturing process and the influence of these materials on the roll properties is an important factor. Also, the use of suitable material and various manufacturing technologies affect these characteristics. To understand that which roll grade is needed for which application, the rolling conditions, the roll grades and their properties should be known. In this work the evolution of roll materials from classical materials up to recently developed materials are presented and bimetallic roll technologies are investigated. Furthermore, experimentally cast pearlitic and martensitic roll microstructures were examined. The influence of microstructural phases on the roll properties were analyzed with the results of mechanical and microstructural observations.

  19. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    Science.gov (United States)

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  20. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    Science.gov (United States)

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy. PMID:352670

  1. Transient Turbulent Flow in a Liquid-Metal Model of Continuous Casting, Including Comparison of Six Different Methods

    Science.gov (United States)

    Chaudhary, R.; Ji, C.; Thomas, B. G.; Vanka, S. P.

    2011-10-01

    Computational modeling is an important tool to understand and stabilize transient turbulent fluid flow in the continuous casting of steel to minimize defects. The current work combines the predictions of two steady Reynolds-averaged Navier-Stokes (RANS) models, a "filtered" unsteady RANS model, and two large eddy simulation (LES) models with ultrasonic Doppler velocimetry (UDV) measurements in a small-scale liquid GaInSn model of the continuous casting mold region fed by a bifurcated well-bottom nozzle with horizontal ports. Both mean and transient features of the turbulent flow are investigated. LES outperformed all models while matching the measurements, except in locations where measurement problems are suspected. The LES model also captured high-frequency fluctuations, which the measurements could not detect. Steady RANS models were the least accurate methods. Turbulent velocity variation frequencies and energies decreased with distance from the nozzle port regions. Proper orthogonal decomposition analysis, instantaneous velocity patterns, and Reynolds stresses reveal that velocity fluctuations and flow structures associated with the alternating-direction swirl in the nozzle bottom lead to a wobbling jet exiting the ports into the mold. These turbulent flow structures are responsible for patterns observed in both the time average flow and the statistics of their fluctuations.

  2. Area Method Analysis and Thermodynamic Behavior of Nonmetallic Micro-Inclusions in Casting Slab of GCr15 Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hongli; MA Yitai; WANG Shuoming

    2009-01-01

    The distribution and characteristics of nonmetallic micro-inclusions of GCrI5 bearing steel were explored through metallographic area method in virtue of tracer method and electronic microscope.The results show that the micro-inclusions,of which the average value is 0.032%,are mainly the compounds formed via the adsorption/aggregation of multielement deoxidized compounds and secondarily deoxidized products on tundish liquid level.The micro-inclusions of diameters from 0 to 5 μm are 92.5% in total,which basically determines the characteristics of inclusions distribution in casting slab.The inclusions of diameters more than 10 μm only account for less than 1% in total,which have little influence on steel quality.The relationship between equilibrium compositions of the first deoxidation products and molten steel compositions was also calculated based on thermodynamic theory.

  3. An improved mathematical model to simulate mold filling process in high pressure die casting using CLSVOF method and CSF model

    Directory of Open Access Journals (Sweden)

    Cheng Bi

    2015-05-01

    Full Text Available A 3D mathematical model was proposed to simulate the mold filling process in high-pressure die casting (HPDC to improve accuracy considering the surface tension. Piecewise liner interface calculation (PLIC and volume of fluid (VOF methods were used to construct the pattern of the liquid interface. A coupled level-set and VOF method (CLSVOF was proposed to capture the interface pattern and obtain its normal vector. A continuum surface force (CSF model was used to consider the surface tension. Two water analogy experiments were carried out using the proposed model. Simulation and experimental results were analyzed and compared; and the effects of surface tension were also discussed. The simulation results agreed well with the experiments and the simulation accuracy was an improvement on interface geometries, liquid flows, and gas entrapments.

  4. Casting technique for light metal alloy

    International Nuclear Information System (INIS)

    Light metal alloys such as aluminum, magnesium, zinc and etc. can be produced in the various forms by casting technique. The casting technique for aluminum is classified as mold casting either using a sand mold or permanent mold; or both. Aluminum alloys casting are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum is adaptable to many of the commonly used casting methods and can be readily cast in metal molds. This work is attempted to investigate the availability and reliability of casting technique in obtaining of finish product. (Author)

  5. Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method

    Indian Academy of Sciences (India)

    Zhecun Wang; Chengdong Xiong; Qing Li

    2015-10-01

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the PPDO matrix. Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the nanocomposites were studied in detail. It shows that the overall crystallization rates are faster in the nanocomposites than in neat PPDO and increase with the increase in ome-POSS loadings; however, X-ray diffraction patterns, POM and the Avrami exponent suggest that the crystal structure and the crystallization mechanism do not change despite the presence of ome-POSS. The mechanical property of PPDO/ome-POSS nanocomposites was enhanced with respect to neat PPDO.

  6. Urinary casts

    Science.gov (United States)

    ... necrosis , viral disease (such as CMV nephritis ), and kidney transplant rejection . Waxy casts can be found in people with advanced kidney disease and chronic kidney failure . White blood cell ( ...

  7. Investigation on Structure and Properties of Brass Casting

    Institute of Scientific and Technical Information of China (English)

    M.M.Haque; A.A.Khan

    2008-01-01

    In this work, alpha (α) brass was poured in green sand mould and metallic chill mould at about 1050℃. Sand casting method and metallic chill casting method are representing the slow and fast cooling rates of the castings, respectively. The slow cooling rate in the sand mould produces larger grains, while the metallic chill mould produces smaller grains in the castings. As the grain size decreases, the strength of the cast brass increases; micro-porosity in the casting decreases and the tendency for the casting to fracture during solidification decreases. Thus, the faster cooling rate casting offers higher strength, density and hardness compared to the slow cooling rate casting.

  8. Hair casts

    Directory of Open Access Journals (Sweden)

    Sweta S Parmar

    2014-01-01

    Full Text Available Hair casts or pseudonits are circumferential concretions,which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  9. Research on the squeeze cast technology of the castings with large ratio of height to thickness

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; SAN Jing-chao; XU Na; CAO Liang; BAI Yan-hua; LI Rong-de

    2005-01-01

    The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thickness will broaden the applicable range of the advanced casting technology. This paper describes a study of the temperature distribution during solidification for castings with a ratio of height to thickness of 7 by the methods of experiment and computer simulation. The shrinkage porosity distribution in the castings and the mechanical properties of the castings were also researched. The experimental and simulated results show that increasing squeeze force, or enhancing mold temperature,cannot reduce the shrinkage porosities in the castings. When castings solidify in a sequential manner and the squeeze force effectively acts on the surface of the liquid metal, the shrinkage porosities in the castings are eliminated and mechanical properties are clearly improved.

  10. Short term outcome of treatment of femoral shaft fractures in children by two methods: traction plus casting, versus intramedullary pin fixation - a comparative study

    International Nuclear Information System (INIS)

    There is no consensus on treatment of closed femoral shaft fractures in children 6-12 years old. The aim of this study was to evaluate and compare the short term results of pediatric femoral shaft fractures at above ages with two different methods of treatment: skeletal traction followed by a hip spica cast and surgical treatment by intramedullary pin fixation and to determine which of these methods results in earlier union of fracture and independent ambulation of the patients. This study was performed prospectively at two hospitals during a period of 32 months from 2003 through 2006. Sixty six children with closed fractures of the femoral shaft were treated and followed at least through the time of fracture healing, spica cast removal and onset of unprotected walking in two separate groups: (A) skeletal traction by 90 - 90 technique followed by spica cast (n=30), (B) open reduction and internal fixation with intramedullary pin and cast (n=36). The length of hospital stay, casting period, union of fractures, time to start walking and the rate of complications was evaluated and compared using Chi-Square test. Mean age of all patients was 7.4 years old. Average follow-up was 6 months. Healing of the fractures was observed in all cases of both groups between 8 and 12 weeks. The length of immobilization was longer in traction versus surgery group. Average treatment duration from admission to hospital till independent walking was 75.3 days for the traction and 61.2 days for surgery group. Limb shortening and malrotation were more in traction versus intramedullary pin patients. Both methods of traction plus spica casting and intramedullary pinning can be used to treat femoral shaft fractures in 6-11 years old children. Intramedullary pin due to its less hospital stay, earlier walking and less complication rates can be used as the first choice in treatment of this fracture at school aged children. (author)

  11. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one or...... more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  12. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  13. DEVELOPMENTS IN THE FIELD OF STEEL AND CAST IRON

    OpenAIRE

    Ten, E. B.; V. D. Belov

    2015-01-01

    The article describes the use of a number of promising casting technologies applied to produce the castings of steel and cast iron with special properties. Such as, technology of centrifugal casting of large-size workpieces made of steel, forecasting method composition of slag in the smelting of high-manganese steels, method of complex modifying chromium cast irons, analysis of properties of perspective high-alloy aluminium cast iron.

  14. DEVELOPMENTS IN THE FIELD OF STEEL AND CAST IRON

    Directory of Open Access Journals (Sweden)

    E. B. Ten

    2015-05-01

    Full Text Available The article describes the use of a number of promising casting technologies applied to produce the castings of steel and cast iron with special properties. Such as, technology of centrifugal casting of large-size workpieces made of steel, forecasting method composition of slag in the smelting of high-manganese steels, method of complex modifying chromium cast irons, analysis of properties of perspective high-alloy aluminium cast iron.

  15. HYDROMODELLING OF CASTING PROCESSES

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2016-02-01

    Full Text Available The description of equipment for hydrodynamic experiments and methods of hydromodeling of foundry processes, allowing to carry out three-dimensional modeling of filling process, is given. This method can be used for identification of numerical models and development of casting technology of the new types of production.

  16. Accuracy evaluation of a new three-dimensional reproduction method of edentulous dental casts, and wax occlusion rims with jaw relation

    Institute of Scientific and Technical Information of China (English)

    Fu-Song Yuan; Yu-Chun Sun; Yong Wang; Pei-Jun Lu

    2013-01-01

    The article introduces a new method for three-dimensional reproduction of edentulous dental casts, and wax occlusion rims with jaw relation by using a commercial high-speed line laser scanner and reverse engineering software and evaluates the method’s accuracy in vitro. The method comprises three main steps:(i) acquisition of the three-dimensional stereolithography data of maxillary and mandibular edentulous dental casts and wax occlusion rims;(ii) acquisition of the three-dimensional stereolithography data of jaw relations;and (iii) registration of these data with the reverse engineering software and completing reconstruction. To evaluate the accuracy of this method, dental casts and wax occlusion rims of 10 edentulous patients were used. The lengths of eight lines between common anatomic landmarks were measured directly on the casts and occlusion rims by using a vernier caliper and on the three-dimensional computerized images by using the software measurement tool. The direct data were considered as the true values. The paired-samples t-test was used for statistical analysis. The mean differences between the direct and the computerized measurements were mostly less than 0.04 mm and were not significant (P.0.05). Statistical significance among 10 patients was assessed using one-way analysis of variance (P,0.05). The result showed that the 10 patients were considered statistically no significant. Therefore, accurate three-dimensional reproduction of the edentulous dental casts, wax occlusion rims, and jaw relations was achieved. The proposed method enables the visualization of occlusion from different views and would help to meet the demand for the computer-aided design of removable complete dentures.

  17. Fabrication of Al-based composites reinforced with Al2O3-Tib2 ceramic composite particulates using vortex-casting method

    Directory of Open Access Journals (Sweden)

    Roshan M.R.

    2013-01-01

    Full Text Available Vortex casting is one of the simplest methods of producing metal matrix composites (MMCs. However, this simple method does have some drawbacks, which reduce the mechanical properties of the produced composites. In this study, we tried to modify the process of composite production before, during, and after the casting procedure. Low-cost Al2O3-TiB2 ceramic composite particles, which produced after combustion synthesis, were used as reinforcement. These powders, which are thermodynamically stable with molten aluminum below 900°C, were mixed with aluminum and magnesium powders before casting using ball milling and the mixed powders were injected into the molten metal (pure Al. This process was applied to enhance the wettability of ceramic particles with molten aluminum. After casting, warm equal channel angular pressing (ECAP and hot extrusion processes were applied to investigate their effects on the mechanical properties of the final composites. It was revealed that both warm ECAP and hot extrusion have a strong influence on increasing the mechanical properties mainly due to decreasing the amount of porosities.

  18. METHODS OF PHYSICAL MODELING OF HYDRODYNAMIC PROCESSES AT CASTING OF ALLOYS

    OpenAIRE

    V. Ju. Stetsenko

    2012-01-01

    The method of physical modeling of hydrodynamic processes of alloys molding is developed. It is shown that as a liquid it is necessary to use water and diethyl ether at molding of steel, silumins, tin-base bronzes and waterglycerine solutions.

  19. A method for the realization of complex concrete gridshell structures in pre-cast concrete

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    This paper describes a method for the design and fabrication of complex funicular structures from discrete precast concrete elements. The research proposes that through the integration of digital form finding techniques, computational file-to-fabrication workflows and innovative sustainable concr...

  20. Comparison of Experimentally Measured Temperature Gradient and Finite-Element-Method Simulations for Two Continuously Cast Bloom Heating Strategies

    Science.gov (United States)

    Kvíčala, M.; Frydrýšek, K.; Štamborská, M.

    2015-03-01

    This paper deals with the comparison of experimentally measured temperature gradients and finite-element-method (FEM) simulations of two heating strategies that were used for continuously cast bloom soaking. The temperature gradient between the bloom surface and center was measured by two thermocouples incorporated directly into the bloom. Scanning electron microscopy equipped by energy dispersive X-ray spectroscopy analysis, hot tensile tests, and interdendritic solidification software was used for modeling of steel thermophysical properties with respect to the alloying-elements macrosegregation. The model of the bloom was programmed in the Fortran language. The FEM software MARC/MENTAT 2012 was used for simulation of two heating strategies (plane strain formulation). The first heating model was fitted to the commonly used heating strategy when internal defects grew above the critical limit. The second heating model was a newly proposed strategy that consisted of slower heating up to 1073 K when the first warming-through period occurred. The FEM simulations included determinations of the temperature gradient, the equivalent of stress, the equivalent of elastic strain, the equivalent of plastic strain, and the equivalent of total strain. The simulation results were in good agreement with experimental observations. The new heating strategy based on the FEM simulations led to significantly lower occurrence of internal defects in hot-rolled billets that are used for cylinder production.

  1. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  2. A study on NDE method of thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    To maintain the integrity of applications of the duplex stainless steels currently in service, a study was conducted to develop a method to nondestructively estimate their Charpy-impact energy at room temperature. It was found that hardness of the ferrite phase is a reliable indicator of the process of embrittlement during long-term heating of duplex stainless steels. However, further information on the ferrite phase and the austenite phase is required for the estimation of Charpy-impact energy. An equation composed of the hardness values of ferrite and austenite phases, the ferrite content and the average spacing of ferrite phase islands was presented as a method applicable to the nondestructive estimation of Charpy-impact energy at room temperature. (orig.)

  3. Problem of the Moving Boundary in Continuous Casting Solved by the Analytic-Numerical Method

    Directory of Open Access Journals (Sweden)

    R. Grzymkowski

    2013-01-01

    Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.

  4. Review of grain refinement methods for as-cast microstructure of magnesium alloy

    Directory of Open Access Journals (Sweden)

    Song Changjiang

    2009-05-01

    Full Text Available As the lightest structural metal, Mg and Mg-based alloys have great potential applications in the aerospace, automotive and nuclear industries. However, such applications have been limited by low ductility and strength. Theoretically, small grain sized structure can synchronously improve its ductility and strength. Yet, universally reliable grain refi nement techniques for the magnesium alloys are still under investigation and some are in strong debating. This paper presents a brief review of development of grain refi nement methods for magnesium alloys, which would contribute to a better understanding of the factors controlling grain refi nement and provide an outlook of future research in this field.

  5. FINITE ELEMENT NUMERICAL SIMULATION OF TEMPERATURE FIELD IN METAL PATTERN CASTING SYSTEM AND "REVERSE METHOD" OF DEFINING THE THERMAL PHYSICAL COEFFICIENT

    Institute of Scientific and Technical Information of China (English)

    L. Chen; P.L. Wang; P.N. Song; J.Y. Zhang

    2007-01-01

    With the technology support of virtual reality and ANSYS software, an example on the simulation of temperature distribution of casting system during the solidification process was provided, which took the latent heat of phase change, the conditions for convection, and the interface heat transfer coefficient into consideration. The result of ANSYS was found to agree well with the test data. This research offers an unorthodox way or "reverse method" of defining the relevant thermal physical coefficient.

  6. An introduction to coating materials and its application methods on graphite crucibles, and compilation of experiences on uranium melting and casting

    International Nuclear Information System (INIS)

    In order to melt and cast uranium ingots, it is necessary to use a graphite crucible or ceramic crucible. A graphite crucible is generally used for a uranium melting due to an economical purpose, but the graphite crucible is so reactive with uranium that it could not be used without coating with ceramic to protect the reaction. In this report, the various coating materials and coating methods are introduced for this purpose. In the second chapter, the authors' experiences for the uranium melting and casting at KAERI since 1998 are introduced, which were for the development of research reactor fuels, DU shields of radioactive isotopes transfer casks, alloying of U and Zr, reaction test of uranium and graphitic crucible, or various ceramic materials

  7. An evaluation of interface capturing methods in a VOF based model for multiphase flow of a non-Newtonian ceramic in tape casting

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri;

    2014-01-01

    The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface...... capturing, i.e. the Geometric Reconstruction Scheme (GRS), High Resolution Interface Capturing (HRIC) and Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM), are investigated for the advection of the VOF, both for Newtonian and non-Newtonian cases. The main purpose is to find the best...

  8. Usefulness of gel-casting method in the fabrication of nonstoichiometric CaZrO3-based electrolytes for high temperature application

    International Nuclear Information System (INIS)

    Hydrogels obtained from lower toxicity monomers of N-(hydroxymethyl)acrylamide and N,N'-methylenebisacrylamide were applied to form nonstoichiometric CaZrO3-based electrolytes. A coprecipitation-calcination method with ((NH4)2C2O4) in concentrated NH3 aqueous solution was used to synthesise CaZrO3 involving 51 mol.% CaO (CZ-51) powder. The gas-tight CaZrO3-based rods were prepared by the gel-casting method with 45 vol.% suspension and then sintered at 1500 deg. C-2 h. It was found that in low oxygen partial pressure, the nonstoichiometric CaZrO3 obtained by gel-casting method were pure oxide ion conductors. These samples exhibited comparable electrical conductivity values to isostatically compressed pellets starting from the same powder. The results of experiments on thermochemical stability of CZ-51 gel-cast shapes at high temperatures in air or gas mixtures involving 2-50 vol.% H2, as well as the corrosion resistance in exhaust gases from a self-ignition engine were also presented and discussed. The thermal resistance of CaZrO3 obtained rods against molten nickel or iron was also examined. Based upon these investigations, it is evident that only in hydrogen-rich gas atmospheres can the stability of CaZrO3 shapes be limited due to the presence of CaO precipitation as a second phase. The nonstoichiometric CaZrO3 (CZ-51) gel-cast materials were also tested in solid galvanic cells, designed to study thermodynamic properties of oxide materials, important for SOFC and energy technology devices. In this way, the Gibbs energy of NiM2O4, M = Cr, Fe, at 650-1000 deg. C was determined. The CaZrO3 involving 51 mol.% CaO gel-cast sintered shapes seems to be promising solid electrolytes for electrochemical oxygen probes in control of metal processing and thermodynamic studies of materials important for the development of the energy industry.

  9. Usefulness of gel-casting method in the fabrication of nonstoichiometric CaZrO{sub 3}-based electrolytes for high temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Magdalena [AGH - University of Science and Technology, Faculty of Energy and Fuels, 30-059 Cracow (Poland)

    2009-09-15

    Hydrogels obtained from lower toxicity monomers of N-(hydroxymethyl)acrylamide and N,N'-methylenebisacrylamide were applied to form nonstoichiometric CaZrO{sub 3}-based electrolytes. A coprecipitation-calcination method with ((NH{sub 4}){sub 2}C{sub 2}O{sub 4}) in concentrated NH{sub 3} aqueous solution was used to synthesise CaZrO{sub 3} involving 51 mol.% CaO (CZ-51) powder. The gas-tight CaZrO{sub 3}-based rods were prepared by the gel-casting method with 45 vol.% suspension and then sintered at 1500 deg. C-2 h. It was found that in low oxygen partial pressure, the nonstoichiometric CaZrO{sub 3} obtained by gel-casting method were pure oxide ion conductors. These samples exhibited comparable electrical conductivity values to isostatically compressed pellets starting from the same powder. The results of experiments on thermochemical stability of CZ-51 gel-cast shapes at high temperatures in air or gas mixtures involving 2-50 vol.% H{sub 2}, as well as the corrosion resistance in exhaust gases from a self-ignition engine were also presented and discussed. The thermal resistance of CaZrO{sub 3} obtained rods against molten nickel or iron was also examined. Based upon these investigations, it is evident that only in hydrogen-rich gas atmospheres can the stability of CaZrO{sub 3} shapes be limited due to the presence of CaO precipitation as a second phase. The nonstoichiometric CaZrO{sub 3} (CZ-51) gel-cast materials were also tested in solid galvanic cells, designed to study thermodynamic properties of oxide materials, important for SOFC and energy technology devices. In this way, the Gibbs energy of NiM{sub 2}O{sub 4}, M = Cr, Fe, at 650-1000 deg. C was determined. The CaZrO{sub 3} involving 51 mol.% CaO gel-cast sintered shapes seems to be promising solid electrolytes for electrochemical oxygen probes in control of metal processing and thermodynamic studies of materials important for the development of the energy industry.

  10. The UK Casting Industry

    Institute of Scientific and Technical Information of China (English)

    Jincheng Liu

    2006-01-01

    The casting production in the UK in 2004 is presented and analysed. The UK casting industry has played an important role in world casting and manufacturing production. However recent years the rapid development of some developing countries has been shifting the casting production from the western industrialized countries including the UK. The UK casting industry and associated research and technology organizations, universities have been working together very hard to face the serious competition to make the UK casting industry have a sustainable future. The UK casting industry remains strong and plays an important role in world casting and manufacturing production.

  11. Investigation of the structure and properties of Fe-Co-B-Si-Nb bulk amorphous alloy obtained by pressure die casting method

    Directory of Open Access Journals (Sweden)

    W. Pilarczyk

    2012-12-01

    Full Text Available Purpose: The main aim of this paper is investigation of the microstructure and thermal properties of selected Fe-Co-B-Si-Nb bulk amorphous alloy.Design/methodology/approach: The studies were performed on Fe-Co-B-Si-Nb alloy in form of rods with diameter of ø=1.5 and ø=2 mm. Master alloy ingot with compositions of Fe37.44Co34.56B19.2Si4.8Nb4 was prepared by induction melting of pure Fe, Co, B, Si and Nb elements in argon atmosphere. The structure analysis of the studied materials in as-cast state was carried out using X-ray diffraction (XRD. The thermal properties: glass transition temperature (Tg, onset crystallization temperature (Tx and peak crystallization temperature (Tp of the as-cast alloys were examined by differential scanning calorimetry (DSC method. The microscopic observation of the fracture morphology of studied amorphous materials in rods form with different diameter was carried out by means of scanning electron microscope (SEM, within different magnification.Findings: The Fe-based bulk metallic glasses in form of rod were successfully produced by die pressure casting method. The investigation revealed that the studied rods are amorphous. These materials exhibit good glassforming ability. These tested rods with diameter of 1.5 and 2 mm exhibit similar characteristic temperatures (Tg, Tx, Tp. The exothermic peaks describing crystallization process of studied bulk metallic glasses are observed Morphology of cross section rods is changing having contact with copper mould during casting from smooth fracture inside rod to fine narrow dense veins pattern near to rod surface. These rods have smooth surface and metallic luster. The presented fractures are characteristic for metallic glasses.Practical implications: The success of production of studied Fe-based bulk metallic glasses is important for future practical application of those materials as elements of magnetic circuits, sensors and precise current transformers

  12. CA Investment Casting Process of Complex Castings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment ...

  13. Prediction of Part Distortion in Die Casting

    Energy Technology Data Exchange (ETDEWEB)

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  14. The ancient Chinese casting techniques

    OpenAIRE

    Tan Derui; Lian Haiping

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  15. Simulation study on three casting processes for a marine propeller hub body

    OpenAIRE

    Wang Tongmin; Li Jia; Wu Li

    2013-01-01

    The mold filling and solidification process of a marine propeller hub were simulated using ProCAST? Three casting processes ?gravity casting, centrifugal casting and low pressure casting ?were compared in order to get the best process. The heat transfer coefficient of the casting/mold interface was determined using a reverse method. The simulated results of velocity, temperature and shrinkage porosity distribution were discussed in detail for the three casting processes. A smooth filling was ...

  16. Preparation and properties of gradient Al2O3-ZrO2 ceramic foam by centrifugal slip casting method

    OpenAIRE

    Li Qiang; Yu Jingyuan; Tang Ji

    2012-01-01

    The aim of the present research is to provide a novel technique for preparing gradient Al2O3-ZrO2 ceramic foams. This technique used epispastic polystyrene spheres to array templates and centrifugal slip casting to obtain cell struts with gradient distribution of Al2O3 and ZrO2 particles and high packing density. Aqueous Al2O3-20vol.% ZrO2 slurries with 20vol.% solid contents were prepared and the dispersion and rheological characteristics of the slurries were investigated. The settling veloc...

  17. Preparation of a bulk Fe83B17 soft magnetic alloy by undercooling and copper-mold casting methods

    International Nuclear Information System (INIS)

    Bulk Fe83B17 eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe2B phase and a metastable Fe3B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe3B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties. - Highlights: • Pure nano-lamellar eutectic structure was directly formed in the bulk Fe-B alloys. • The metastable Fe3B phase was directly formed in the bulk Fe-B alloys. • Undercooling solidification combined with Cu-mold casting was applied. • The information on bcc Fe, Fe2B and Fe3B-magnetism relationship was provided. • Nano-lamellar eutectic structures enhance the soft magnetic properties

  18. Simulation of Heat Flow in Computational Method and Its Verification on the Structure and Property of Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    S. K. Shaha

    2010-01-01

    Full Text Available Problem statement: The solidification of materials depends on the cooling rate of the materials which is governed by heat flow in the mould and alloy composition. Solidification rate also affects the structure and properties of the materials. Approach: In the present study, the heat flow of cold set resin bonded sand mould was simulated using JL Analyzer FEM analysis software. To verify the model, the gray cast iron was melted at 1350°C temperature and poured into a resin bonded sand mould at 1300°C. Results: It showed that most of the heat-reserve at the junction of the mould which was nearer to the source of liquid metal and the lowest heat-reserve at the end of the mould. So, the solidification rate was very high at the end of the mould wall whereas it was comparatively low near the sprue of the mould. Conclusion: Finally, depending on the heat-flow through the mould, the solidification rate changed the microstructure from chill, mottled and gray cast iron and hardness changed from 95.1 HRB-78.78 HRB.

  19. Vacuum-sealed casting process under pressure

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; GUO Tai-ming; WU Chun-jing; WANG Hong

    2006-01-01

    A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.

  20. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  1. Thermal gradient analysis of solidifying casting

    OpenAIRE

    J. Suchoń; M. Cholewa; M. Kondracki

    2008-01-01

    For description of casting solidification and crystallization process the thermal derivative analysis (TDA) is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  2. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2008-08-01

    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  3. Plans and Measures for Avoiding Casting-Air-Pollution

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian

    2003-01-01

    This article presents plans of preventing casting-air-pollution in practice, and some avoiding methods in detail. In modern times, environment protection is looked high upon day by day; green-casting thus becomes more and more important.

  4. A comparative study of the centrifugal and vacuum-pressure techniques of casting removable partial denture frameworks.

    Science.gov (United States)

    Shanley, J J; Ancowitz, S J; Fenster, R K; Pelleu, G B

    1981-01-01

    A study was undertaken to evaluate two techniques for casting accuracy on removable partial denture frameworks: centrifugal casting and vacuum-pressure casting. A standard metal die with predetermined reference points in a horizontal plane was duplicated in refractory investment. The casts were waxed, and castings of nickel-chrome alloy were fabricated by the two techniques. Both the casts and the castings were measured between the reference points with a measuring microscope. With both casting methods, the differences between the casts and the castings were significant, but no significant differences were found between castings produced by the two techniques. Vertical measurements at three designated points also showed no significant differences between the castings. Our findings indicate that dental laboratories should be able to use the vacuum-pressure method of casting removable partial denture frameworks and achieve accuracy similar to that obtained by the centrifugal method of casting. PMID:7007622

  5. High speed twin roll casting of 6061 alloy strips

    OpenAIRE

    T. Haga; H. Sakaguchi; Watari, H; S. Kumai

    2008-01-01

    Purpose: of this paper is to clear the possibility of high speed roll casting of thin strips of two aluminum alloys:6061 and recycled 6061. Mechanical properties of the roll cast 6061 and recycled 6061 strips were investigated inthe frame of this purpose.Design/methodology/approach: Methods used in the present study were high speed twin roll caster and lowtemperature casting. These methods were used to realize rapid solidification and increase the casting speed.Findings: are that 6061 and rec...

  6. Properties of PP/MWCNT-COOH /PP composites made by melt mixing versus solution cast /melt mixing methods

    Science.gov (United States)

    Reinholds, I.; Roja, Z.; Zicans, J.; Merijs Meri, R.; Bitenieks, J.

    2015-03-01

    An approach on improvement of the properties of polypropylene / carbon nanotube (PP/CNT) composites is reported. PP blend compositions with carboxylic acid functionalized multi-walled carbon nanotubes (MWCNT-COOH) at filler content 1.0 wt.% were researched. One part of the composites was manufactured by direct thermoplastic mixing PP with the filler, but the other one was made from solution casted masterbatch with the following thermoplastic mixing. An increase of mechanical properties (Young's modulus, storage modulus and tensile strength), compared to an increase of glass transition temperature indicated a reinforcement effect of CNTs on PP matrix, determined from the tensile tests and differential mechanical analysis (DMA), while the elongation was reduced, compared to PP matrix. By differential scanning calorimetry (DSC) analysis, the effect of nanofiller on the reorganization of PP crystallites was observed. A noticeable enhanced effect on increase of the crystallization temperature was indicated for masterbatch manufactured composite. An increase of thermal stability was also observed, compared to pristine PP and the composite made by direct thermoplastic mixing PP with the filler.

  7. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    Science.gov (United States)

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm-2 and was greatly enhanced to the range from 308 to 1220 mW cm-2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm-2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.

  8. Detection of Cast Shadows in Surveillance Applications

    DEFF Research Database (Denmark)

    Erbou, Søren G.; Sørensen, Helge Bjarne Dissing; Stage, Bjarne

    2005-01-01

    Cast shadows from moving objects reduce the general ability of robust classification and tracking of these objects, in outdoor surveillance applications. A method for segmentation of cast shadows is proposed, combining statistical features with a new similarity feature, derived from a physics...

  9. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  10. Casting of Titanium and its Alloys

    Directory of Open Access Journals (Sweden)

    R. L. Saha

    1986-04-01

    Full Text Available Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  11. 14 CFR 23.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and..., seat, berth, safety belt, and fuel and oil tank supports and attachments, and cabin pressure valves. (d... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method;...

  12. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    relations and caste identities have overarching dimensions in the day-to-day politics of the study villages. Though caste almost ceases to operate in relation to strict religious strictures, under economic compulsion the division of labour largely coincides with caste division. In the cultural...

  13. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  14. Effects of cooling method after intercritical heat treatment on microstructural characteristics and mechanical properties of as-cast high-strength low-alloy steel

    International Nuclear Information System (INIS)

    Highlights: • The effect of cooling method after intercritical heat treatment on microstructure evolution was investigated. • Fracture mechanism of tensile and impact after different intercritical heat treatment has been analyzed. • The crack initiation and propagation after different intercritical heat treatment was compared in details. - Abstract: The effect of cooling method after intercritical heat treatment on the microstructures and mechanical properties of as-cast steel produced by electroslag casting was investigated. The microstructure characteristics were analyzed by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron back scatter diffraction (EBSD). The mechanical performance was evaluated by tensile testing at ambient temperature and Charp V-notch impact tests at various temperatures (−40 °C, −20 °C, 20 °C). The tensile and impact fracture micromechanisms were discussed in details. The results of microstructure investigation indicated that water cooling after intercritical heat treatment led to a mixed microstructure of ferrite and tempered martensite, while a composite microstructure of ferrite and tempered bainite was obtained after air cooling. The carbides of Cr, Mo and Nb in matrix after water quenching were finer than the ones after air cooling. Compared with water cooling, a good balance of strength and toughness was obtained after air cooling. The crack propagation path in the steel after water cooling can propagate along the long axis direction of ferrite bands, directly across the intersecting banded ferrite and martensite as well as along the interfaces between ferrite and martensite. However, the crack propagation path in the steel after air cooling depends on the shape, size and distribution of M/A islands

  15. Preparation and properties of gradient Al2O3-ZrO2 ceramic foam by centrifugal slip casting method

    Directory of Open Access Journals (Sweden)

    Li Qiang

    2012-11-01

    Full Text Available The aim of the present research is to provide a novel technique for preparing gradient Al2O3-ZrO2 ceramic foams. This technique used epispastic polystyrene spheres to array templates and centrifugal slip casting to obtain cell struts with gradient distribution of Al2O3 and ZrO2 particles and high packing density. Aqueous Al2O3-20vol.% ZrO2 slurries with 20vol.% solid contents were prepared and the dispersion and rheological characteristics of the slurries were investigated. The settling velocity and mass segregation of Al2O3 and ZrO2 particles at different centrifugal accelerations were calculated and studied. The drying behavior, macrostructure, microstructure, compressive property and resistance to thermal shock of the sintered products were also investigated. The results show that the difference of settling velocity of Al2O3 and ZrO2 particles increases and mass segregation becomes acute with an increase in centrifugal acceleration. The cell struts prepared at a centrifugal acceleration of 1,690 g have high sintered density (99.0% TD and continuous gradient distribution of Al2O3 and ZrO2 particles. When sintered at 1,550 oC for 2 h, the cell size of gradient Al2O3-ZrO2 foam is approximately uniform, about 1.1 mm. With the porosity of gradient Al2O3-ZrO2 ceramic foams increasing from 75.3% to 83.0%, the compressive strength decreases from 4.4 to 2.4 MPa, and the ceramic foams can resist 8-11 repeated thermal shock from 1,100 oC to room temperature.

  16. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  17. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    OpenAIRE

    A. Studnicki

    2010-01-01

    In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis), which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to ...

  18. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-01-01

    Full Text Available In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis, which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to registration of data was used Crystaldigraph - PC.

  19. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    Science.gov (United States)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  20. Simulation study on three casting processes for a marine propeller hub body

    Directory of Open Access Journals (Sweden)

    Wang Tongmin

    2013-11-01

    Full Text Available The mold filling and solidification process of a marine propeller hub were simulated using ProCAST? Three casting processes ?gravity casting, centrifugal casting and low pressure casting ?were compared in order to get the best process. The heat transfer coefficient of the casting/mold interface was determined using a reverse method. The simulated results of velocity, temperature and shrinkage porosity distribution were discussed in detail for the three casting processes. A smooth filling was found in all three casting processes, especially the low pressure casting exhibiting a better filling performance than the other two, but the solidification processes were different. The casting did not experience the sequential solidification, and the feeding paths were blocked, leading to shrinkage porosity defects in the riser and the bottom of the casting in gravity casting and in the upper zone of the casting in low pressure casting. While, the sequential solidification was well controlled in the solidification process of centrifugal casting, and majority of the shrinkage porosity defects can only be observed in the riser. It could be concluded that the centrifugal casting process is the most suitable casting process for the production of propeller hub body. The casting experiments verified the simulation results, and a defect-free propeller hub was obtained by centrifugal casting with a rotational speed of 150 r.in-1.

  1. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    OpenAIRE

    Olofsson, Jakob; Ingvar L. Svensson

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to...

  2. Segregation in cast products

    Indian Academy of Sciences (India)

    A Ghosh

    2001-02-01

    Microsegregation gets eliminated significantly if subsequent hot working and/or annealing are done on cast products. Macrosegregation however persists, causing problems in quality, and hence, has to be attended to. Microsegregation is a consequence of rejection of solutes by the solid into the interdendritic liquid. Scheil’s equation is mostly employed. However, other equations have been proposed, which take into account diffusion in solid phase and/or incomplete mixing in liquid. Macrosegregation results from movements of microsegregated regions over macroscopic distances due to motion of liquid and free crystals. Motion of impure interdendritic liquid causes regions of positive macrosegregation, whereas purer solid crystals yield negative macrosegregation. Flow of interdendritic liquid is primarily natural convection due to thermal and solutal buoyancy, and partly forced convection due to suction by shrinkage cavity formation etc. The present paper briefly deals with fundamentals of the above and contains some recent studies as well. Experimental investigations in molten alloys do not allow visualization of the complex flow pattern as well as other phenomena, such as dendrite-tip detachment. Experiments with room temperature analogues, and mathematical modelling have supplemented these efforts. However, the complexity of the phenomena demands simplifying assumptions. The agreement with experimental data is mostly qualitative. The paper also briefly discusses centreline macrosegregation during continuous casting of steel, methods to avoid it, and the, importance of early columnar-to-equiaxed transition (CET) as well as the fundamentals of CET.

  3. Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95tape cast layers: A comprehensive study on heuristic methods

    DEFF Research Database (Denmark)

    Ni, De Wei; Schmidt, Cristine Grings; Teocoli, Francesca;

    2013-01-01

    The sintering behavior of porous Ce0.9Gd0.1O1.95(CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine the domin...

  4. Yield Improvement in Steel Casting (Yield II)

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to

  5. Development of vacuum continuous casting technology for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, C. K.; Kim, K. H.; Lee, D. B.; Kim, J. D.; Jang, S. J.; Ahn, H. S.; Shin, Y. J

    2001-02-01

    The spent fuel disposal process of new dry storage concept has been developed in KAERI, in which the uranium metal abstracted by Li-reduction of spent fuel will be formed to long rods and then the rods will be arranged uniformly in canister. The objective of this study is to review the feasibility of applying the continuous casting method to cast a long rod with modifying the vacuum high-frequency induction furnace to vacuum continuous casting system, which was normally used to cast the uranium. The results are as follows. With the nozzle size of 3mm and the withdrawal speed of 3.5 mm/sec, the length of 160mm, diameter of 30 mm continuous casting uranium bar was successfully cast. This result shows there might be a possibility of continuous casting of uranium and helps the design and fabrication of new continuous casting equipment.

  6. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed to be.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  7. Development of vacuum continuous casting technology for uranium

    International Nuclear Information System (INIS)

    The spent fuel disposal process of new dry storage concept has been developed in KAERI, in which the uranium metal abstracted by Li-reduction of spent fuel will be formed to long rods and then the rods will be arranged uniformly in canister. The objective of this study is to review the feasibility of applying the continuous casting method to cast a long rod with modifying the vacuum high-frequency induction furnace to vacuum continuous casting system, which was normally used to cast the uranium. The results are as follows. With the nozzle size of 3mm and the withdrawal speed of 3.5 mm/sec, the length of 160mm, diameter of 30 mm continuous casting uranium bar was successfully cast. This result shows there might be a possibility of continuous casting of uranium and helps the design and fabrication of new continuous casting equipment

  8. Glovebox Advanced Casting System Casting Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  9. Quality improvement of continuously cast round billets

    Directory of Open Access Journals (Sweden)

    F. Chowaniec

    2008-07-01

    Full Text Available Paper is focused on the observation of the conditions causing defects origin in continuously cast billets in the first phase of solidification and shell formation in the mould. Work is also focused on the area of casting failures. Experiences were aimed at steel preparation for casting from the viewpoint of desoxidation and modification of inclusions, facility influence on solidification and formation of shell, influence of the taper of the mould, and on vibrations influence and origin within primary cooling system – oscillation mechanism – mould. The method of measurement was tested, incl. the analysis of acoustic spectrum for phenomena assessment within continuous casting. Conclusions resulted in modification and changes of shapes of moulds, incl. casting technology of round billets.

  10. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  11. Perspectives of single cast nanowires technology

    International Nuclear Information System (INIS)

    The paper is dedicated to production potential of glass-coated cast nanowire with metal-, semimetal- and semiconductor-based cores by means of Taylor-Ulitovsky method. Criteria of melted core-formative material penetration into a drawing capillary were analyzed. Theoretical preconditions of the reduction of cast microwire diameter up to nano-dimensions of core are reviewed and an improved method of cast nanowire manufacturing is proposed. Correctness of conclusions was experimentally proved and laboratory samples of micro- and nano-wires with core diameter of about 200-300 nanometers were produced, even in case of materials with poor adhesion.

  12. New casting coatings

    International Nuclear Information System (INIS)

    In this project the results of the researches about the influence of the four types of ceramic coatings of the evaporating patterns (on the basis of talc, mullite, zircon and cordierite) on the talc of the Lost Foam process and the castings quality are presented. For the valid evaluation of the results, some parallel examinations of the quality of castings obtained by casting in sand were carried out. (Original)

  13. Casting in Sport

    OpenAIRE

    DeCarlo, Mark; Malone, Kathy; Darmelio, John; Rettig, Arthur

    1994-01-01

    Attempts by sports medicine professionals to return high school athletes with hand and wrist injuries to competition quickly and safely have been the source of confusion and debate on many playing fields around the country. In addition to the differing views regarding the appropriateness of playing cast usage in high school football, a debate exists among sports medicine professionals as to which material is best suited for playing cast construction. Materials used in playing cast constructio...

  14. Modelling of Level Fluctuation in Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    Xiao LIU; Huanxin ZHANG; Rongjun XU; Yongquan LI; Houfa SHEN; Baicheng LIU

    2003-01-01

    The free surface profile and fluid flow in the mold of continuous casting have been calculated by the VOF method couplingthe SIMPLER algorithm. The SIMPLER-VOF model developed is validated by solving a classical experiment, broken damproblem. The calculat

  15. A New Method For Advanced Virtual Design Of Stamping Tools For Automotive Industry: Application To Nodular Cast Iron EN-GJS-600-3

    Science.gov (United States)

    Ben-Slima, Khalil; Penazzi, Luc; Mabru, Catherine; Ronde-Oustau, François; Rezaï-Aria, Farhad

    2011-05-01

    This contribution presents an approach combining the stamping numerical processing simulations and structure analysis in order to improve the design for optimizing the tool fatigue life. The method consists in simulating the stamping process via AutoForm® (or any FEM Code) by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis. The result of this analysis is used for life prediction of the tool using S-N fatigue curve. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This optimization method is applied for a cast iron EN-GJS-600-3 as candidate stamping tool materiel. The room temperature fatigue S-N curves of this alloy are established in laboratory under uniaxial push/pull cyclic experiments on cylindrical specimens under a load ratio of R (σmin/σmax) = -2.

  16. Texture evolution of continuous cast and direct chill cast AA 3003 aluminum alloys during cold rolling

    International Nuclear Information System (INIS)

    The texture evolution of continuous cast (CC) and direct chill cast (DC) AA 3003 aluminum alloys during cold rolling was investigated by X-ray diffraction. The relationship between texture volume fractions and rolling true strain was described quantitatively by mathematical formulae. The effect of processing method (CC vs. DC) on texture evolution was determined

  17. Casting and Mechanized Titanium Restorations

    OpenAIRE

    Madrigal, A.; Lopez, I; Suarez, MJ; Salido, MP.

    2002-01-01

    INTRODUCTION: New materials and methods for clinical dentistry are continuously being introduced. There is a growing interest in the use of titanium as a restorative material for several reasons: its relatively low cost, favorable physical properties and biocompatibility. However, titanium is technically more difficult to handle than conventional metal alloys. There are two fabrication methods for titanium restorations: casting and mechanized (a combination of machine duplication and spark er...

  18. Palatal Surface Area of Maxillary Plaster Casts

    DEFF Research Database (Denmark)

    Darvann, Tron Andre; Hermann, Nuno V.; Ersbøll, Bjarne Kjær;

    2007-01-01

    Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three-dimensional measu......Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three...

  19. 一种确立三维数字化牙颌模型咬合关系的新方法%A novel method for the 3D digital occlusion of dental casts

    Institute of Scientific and Technical Information of China (English)

    马俐丽; 徐宝华

    2011-01-01

    目的:建立一种新的确立三维数字化牙颌模型咬合关系的方法。方法:单独扫描上下颌模型,获得单独的数字化牙颌模型,扫描正中颌位的上下颌模型,获得三维数字化咬合记录,利用Rapidform2006软件中的三维配准方法将单独上下颌模型导入到咬合记录数据所在坐标系下。结果:上下颌单独数字化模型与数字化虚拟咬合记录重叠较好。结论:该方法较好地实现了在三维虚拟空间内上下颌咬合关系的确立。%Objective: To introduce a novel method,it be applied to establish the occlusion of 3D digital dental cast. Method: The upper and lower casts were scanned individually. The upper and lower casts were scanned together as the digital occlusion record. The upper and lower digital casts were overlapped on the digital occlusion record. Result: The upper and lower digital casts were overlapped with the digital occlusion record very well. Conclusion: The method was able to accurately established the digital occlusion.

  20. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Piwonka, T.S. [ed.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  1. Mathematical Modelling of the Thermical Regime in the Continous Casting Process

    OpenAIRE

    Monika Erika POPA; Kiss, Imre

    2005-01-01

    Continuous casting is one of the prominent methods of production of casts. Effective design and operation of continuous casting machines needs complete analysis of the continuous casting process. In this paper the basic principles of continuous casting and its heat transfer analysis using the finite element method are presented. In the analysis phase change is assumed to take place at constant temperature. A front tracking algorithm has been developed to predict the position of the solidifica...

  2. Optimization of casting process based on the theory of inventive problem solving

    OpenAIRE

    Liu Feng; Yang Yi; Li Xionglong

    2011-01-01

    Optimization of casting process involves the adjustment of parameters as well as the improvement of process schemes and measures. This paper proposes a new method based on the Theory of Inventive Problem Solving (TRIZ) for casting process optimization, and realizes the idea of applying TRIZ to optimize the casting process of a magnesium alloy intake manifold. By this method, the casting process is optimized so as to remove the shrinkage pores. The successful optimization of casting process de...

  3. Preferential dissolution behaviour in Ni–Cr dental cast alloy

    Indian Academy of Sciences (India)

    Viswanathan S Saji; Han Cheol Choe

    2010-08-01

    A Ni–Cr–Mo dental alloy was fabricated by three different casting methods, viz. centrifugal casting, high frequency induction casting and vacuum pressure casting. The dependence of cast microstructure on the electrochemical corrosion behaviour was investigated using potentiodynamic cyclic and potentiostatic polarization techniques, impedance spectroscopy and scanning electron microscopy. The experimental results were compared and discussed with those obtained for a Co–Cr–Mo counterpart. The results of the study showed that the variation in casting morphologies with casting methods has only marginal influence in the overall corrosion resistance of Ni–Cr and Co–Cr dental alloys. There was severe preferential dissolution of Ni rich, Cr and Mo depleted zones from the Ni–Cr–Mo alloy. The overall corrosion resistance property of the Co–Cr base alloy was better than that of the Ni–Cr base alloy.

  4. Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na-Titanate/TiO2 composites synthesized by solution casting method.

    Science.gov (United States)

    Habiba, Umma; Islam, Md Shariful; Siddique, Tawsif A; Afifi, Amalina M; Ang, Bee Chin

    2016-09-20

    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation. PMID:27261756

  5. Forming Mechanism of Gaseous Defect in Ti-48A1-2Cr-2Nb Exhaust Valves Formed with Permanent Mold Centrifugal Casting Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48AI-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance.The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.

  6. Analysis of Fly Fishing Rod Casting Dynamics

    OpenAIRE

    Gang Wang; Norman Wereley

    2011-01-01

    An analysis of fly fishing rod casting dynamics was developed comprising of a nonlinear finite element representation of the composite fly rod and a lumped parameter model for the fly line. A nonlinear finite element model was used to analyze the transient response of the fly rod, in which fly rod responses were simulated for a forward casting stroke. The lumped parameter method was used to discretize the fly line system. Fly line motions were simulated during a cast based on fly rod tip resp...

  7. Roll casting of 5182 aluminium alloy

    OpenAIRE

    Haga, T; M. Mtsuo; D. Kunigo; Hatanaka, Y; R. Nakamuta; H. Watari; S. Kumai

    2009-01-01

    Purpose: of this paper is investigation of the ability of the high speed roll casting of 5182 aluminium alloy. Appropriate twin roll caster to cast the 5182 strip was researched.Design/methodology/approach: Method used in the present study was an unequal diameter twin roll caster and a vertical type high speed twin roll caster equipped with mild steel rolls without parting material.Findings: are that the vertical type high speed twin roll caster was effective to cast 5182 strip at high speed....

  8. Cast iron - a predictable material

    OpenAIRE

    Jorg C. Sturm; Guido Busch

    2011-01-01

    High strength compacted graphite iron (CGI) or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process s...

  9. Comparison of phosphor bronze metal sheet produced by twin roll casting and horizontal continuous casting

    Science.gov (United States)

    Hwang, J. D.; Li, B. J.; Hwang, W. S.; Hu, C. T.

    1998-08-01

    Much effort recently has been expended to study the strip casting process used to produce thin metal strip with a near final thickness. This process eliminates the need for hot rolling, consumes less energy, and offers a feasible method of producing various hard-to-shape alloys. The finer microstructure that results from the high cooling rate used during the casting process enhances mechanical properties. In this study, strips of phosphor bronzes (Cu-Sn-P) metal were produced using a twin roll strip casting process as well as a conventional horizontal continuous casting (HCC) process. The microstructures, macrosegregations, textures, and mechanical properties of the as-cast and as-rolled metal sheet produced by these two methods were examined carefully for comparative purposes. The results indicate that cast strip produced by a twin roll caster exhibit significantly less inverse segregation of tin compared to that produced by the HCC process. The mechanical properties including tensile strength, elongation, and microhardness of the products produced by the twin roll strip casting process are comparable to those of the HCC processed sheet. These properties meet specifications JIS H3110 and ASTM B 103M for commercial phosphor bronze sheet. The texture of the as-rolled sheet from these two processes, as measured from XRD pole figures, were found to be virtually the same, even though a significant difference exists between them in the as-cast condition.

  10. Slip casting alumina with Na-CMC

    Energy Technology Data Exchange (ETDEWEB)

    Ruys, A.J.; Sorrell, C.C. [Univ. of New South Wales, Sydney, New South Wales (Australia)

    1996-11-01

    Many forming methods are in common use for engineering ceramics. Of these, slip casting is an ideal forming method because of its low cost, simplicity and flexibility, potential for uniform particle packing and suitability to the production of articles of intricate shape. Slip casting nonclay materials, such as alumina, requires the use of both a deflocculant and a binder. There are many commercially available deflocculants and binders that can be tested in alumina casting slips. However, determination of a suitable deflocculant/binder combination and quantification of the optimal additions of the deflocculant/binder pair can be time consuming. Certain deflocculants are capable of acting as binders. One such additive is sodium carboxymethylcellulose (Na-cmc), a cellulose ether. Na-cmc is a powerful binder. It is a member of the carbohydrate binder group--the binder group with the strongest binding power. It is capable of acting as a deflocculant in glazes and nonclay casting slips.

  11. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  12. 孕育方法对消失模铸造灰铸铁组织性能的影响%Influence of Inoculation Method on Microstructure and Performance of Gray Iron Produced via Lost Foam Casting

    Institute of Scientific and Technical Information of China (English)

    胡志君; 程和法; 解明国; 孙洪超; 金何

    2011-01-01

    Because of graphite morphology and matrix microstructure were unstable in the process of lost foam casting, influence of inoculation method on microstructure and performance of gray cast iron was studied by casting ladder samples and test bars attached to cast produced via lost foam casting. The results showed that graphite morphology, matrix microstructure were obviously improved and mechanical properties increased by instantly inoculating and controlling the suitable inoculation quantity. Instant inoculation of 0.25% ferrosilicon can eliminate undercooled graphite and refine matrix,tensile strength increase by 15 MPa than blast furnace inoculation.%针对消失模铸造灰铸铁过程中石墨形态及力学性能不稳定的问题,通过在生产条件下附铸阶梯试样及试棒的方法,研究了不同孕育处理方法对消失模铸造灰铸铁组织和性能的影响.结果表明,浇注过程中进行瞬时孕育并控制孕育量在一个适宜的范围内,可明显改善石墨形态和基体组织,同时力学性能得到提高.瞬时孕育量为0.25%时,可基本消除灰铸铁过冷石墨,同时细化基体,抗拉强度较炉前孕育试样提高15 MPa.

  13. A Method to Quantify Thermal Ageing Effect on Fracture Toughness of Cast Stainless Steel (CF8M)

    International Nuclear Information System (INIS)

    This paper proposes the methodology to predict thermal ageing effect on fracture toughness with sub-sized specimen tests using FE (damage) analyses. Section 2 summarizes the experiment in this study. Section 3 describes the methodology to predict tensile properties and fracture strain models for FE (damage) analyses. Simulated FE results applying the methodology in this paper are compared with experimental data in Section 4. Section 5 concludes the presented work. This paper suggests the methodology to quantify thermal ageing effect on fracture toughness using SP test data and FE damage analyses. In nuclear power plants, structural components are aged for operating time. To assess instability of these components, actual mechanical properties for component materials are required. There are several standard specimen test methods to obtain mechanical properties. However, sampling large amount of material from structural component would be dangerous causing damage to the structures. Virgin and three kinds of aged CF8M materials are considered, and the tensile properties for each material are predicted from SP test data. The multi-axial stress fracture strain models can be determined with thermal ageing constant. To validate the methodology in this paper, C(T) tests for each (non) aged materials are simulated using FE damage analyses. Simulated results are compared and agree well with test data

  14. Alternative genotyping method for the single nucleotide polymorphism A2959G (AF159246 of the bovine CAST gene Método alternativo de genotipagem do polimorfismo de nucleotídeo único A2959G (AF159246 do gene CAST bovino

    Directory of Open Access Journals (Sweden)

    Rogério Abdallah Curi

    2008-05-01

    Full Text Available The objective of this work was to genotype the single nucleotide polymorphism (SNP A2959G (AF159246 of bovine CAST gene by PCR-RFLP technique, and to report its use for the first time. For this, 147 Bos indicus and Bos taurus x Bos indicus animals were genotyped. The accuracy of the method was confirmed through the direct sequencing of PCR products of nine individuals. The lowest frequency of the meat tenderness favorable allele (A in Bos indicus was confirmed. The use of PCR-RFLP for the genotyping of the bovine CAST gene SNP was shown to be robust and inexpensive, which will greatly facilitate its analysis by laboratories with basic structure.O objetivo deste trabalho foi genotipar o polimorfismo de nucleotídeo único ("single nucleotide polymorphism" - SNP A2959G (AF159246 do gene CAST bovino, pela técnica de PCR-RFLP, e reportar a sua utilização pela primeira vez. Para tanto, 147 animais Bos indicus e Bos taurus x Bos indicus foram genotipados. A acurácia do método foi confirmada por meio do seqüenciamento direto de produtos de PCR de nove indivíduos. A menor freqüência do alelo A, favorável à maciez da carne, foi confirmada nos animais Bos indicus. O uso da PCR-RFLP, para a genotipagem do SNP do gene CAST bovino, mostrou-se consistente e de baixo custo, o que permite a sua análise por laboratórios dotados de estrutura básica.

  15. Evaluation and Comparison of High-Level Microwave Oven Disinfection with Chemical Disinfection of Dental Gypsum Casts

    OpenAIRE

    Meghashri, K; Kumar, Prasanna; Prasad, D. Krishna; Hegde, Rakshit

    2014-01-01

    Background: The aim of this study was to evaluate and compare microwave disinfection with chemical disinfection of dental gypsum casts. Materials and Methods: A total of 120 casts were prepared from a silicone mold using Type III dental stone. Of the 120 casts, 60 casts were contaminated with 1 ml suspension of Staphylococcus aureus and 60 casts were contaminated with 1 ml suspension of Pseudomonas aeruginosa. Then, the casts were disinfected with microwave irradiation...

  16. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  17. Casting in sport.

    Science.gov (United States)

    Decarlo, M; Malone, K; Darmelio, J; Rettig, A

    1994-03-01

    Attempts by sports medicine professionals to return high school athletes with hand and wrist injuries to competition quickly and safely have been the source of confusion and debate on many playing fields around the country. In addition to the differing views regarding the appropriateness of playing cast usage in high school football, a debate exists among sports medicine professionals as to which material is best suited for playing cast construction. Materials used in playing cast construction should be hard enough to provide sufficient stabilization to the injured area and include adequate padding to absorb blunt impact forces. The purpose of the biomechanical portion of this investigation was to attempt to determine the most appropriate materials for use in constructing playing casts for the hand and wrist by assessing different materials for: 1) hardness using a Shore durometer, and 2) ability to absorb impact using a force platform. Results revealed that RTV11 and Scotchcast were the "least hard" of the underlying casting materials and that Temper Stick foam greatly increased the ability of RTV11 to absorb impact. Assessment of the mechanical properties of playing cast materials and review of current developments in high school football rules are used to aid practitioners in choosing the most appropriate materials for playing cast construction. PMID:16558257

  18. The influence of cooling rate on the hardness of cast iron with nodular and vermicular graphite

    OpenAIRE

    M.S. Soiński; B. Zatoń; A. Skoczylas; A. Derda

    2008-01-01

    The paper presents hardness changes for cast iron with nodular and vermicular graphite, determined within the separately cast test blocks. Investigation has comprised cast irons with similar ferrite and pearlite fractions in the metal matrix. The hardness measurements have been performed by Brinell method for samples taken both from an edge and from the centre of a Y block (for nodular cast iron) or of a reversed U block (in the case of vermicular cast iron). Investigations have pertained bot...

  19. Utilization of heat treatment aimed to spheroidization of eutectic silicon for silumin castings produced by squeeze casting

    Directory of Open Access Journals (Sweden)

    B. Vanko

    2012-01-01

    Full Text Available This paper describes the possibility of using very short periods of solution annealing in the heat treatment of unmodified hypoeutectic silumin alloy AlSi7Mg0,3 casted by method of casting with crystallization under pressure with forced convection (direct squeeze casting process. Castings prepared at different casting parameters were subjected to special heat treatment called SST (Silicon Spheroidization Treatment, which were originally used only for the modified silumin alloys to spheroidization of eutectic silicon. Temperature holding time in solution annealing of T6 heat treatment is limited in the SST process to only a few minutes. It was studied the effect of casting parameters and periods of solution annealing on ultimate strength, yield strength, and especially ductility that in the unmodified silumin alloy castings is relatively low.

  20. Symptomatic stent cast.

    LENUS (Irish Health Repository)

    Keohane, John

    2012-02-03

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  1. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  2. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  3. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    White Cast Iron (Ⅰ) White cast iron or ‘white iron' refers to the type of cast iron in which all of the carbon exists as carbide;there is no graphite in the as-cast structure and the fractured surface shows a white colour.White cast iron can be divided in three classes:· Normal white cast iron — this iron contains only C,Si,Mn,P and S,with no other alloying elements.· Low-alloy white cast iron — the total mass fraction of alloying elements is less than 5%.

  4. Centrifugal casting process

    International Nuclear Information System (INIS)

    Centrifugal casting is not one of the most common metalforming techniques, but there are a few applications of great value, for example in gas cooled reactors. In this article a few examples of these applications are discussed

  5. Skeleton castings dynamic load resistance

    OpenAIRE

    M. Cholewa; J. Szajnar; T. Szuter

    2013-01-01

    Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of interna...

  6. (Continuous casting 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, R.A.

    1985-06-12

    The report covers the Continuous Casting '85 Conference including informal discussions with conference attendees. In general, the papers presented at the conference concerned an overview of continuous steel casting worldwide, state-of-the-art aspects of steel continuous casting technology including caster startup problems, modifications, control system strategies, energy use profiles, quality control aspects, steel chemistry control, refractories, operational aspects of continuous casters, etc. No papers were presented in the development of thin section or thin strip casting of steel. Informal discussions were held with several conference attendees including (1) Bernard Trentini, Executive Director of the Association Technique De La Siderurgie Francaise in Paris, France (similar to the American Iron and Steel Institute); (2) Dr. Wolfgang Reichelt and Dr. Peter Voss-Spilker both of Mannesmann Demag Huttentechnik -a continuous casting and other steel making machine builder in-lieu of meeting at their plant in Duisburg, FRG on May 31; (3) Ewan C. Hewitt of Devote McKee Corp., Sheffield, England; (4) Wilfried Heinemann, head of R D Dept. at Concast Standard AG in Zurich, Switzerland; and (5) Hideo Ueno, engineer of melting section, Mitsubishi Steel Mfg. Co. Ltd, Tokyo Japan. A visit was made to the Teesside Laboratories of British Steel Corp. for discussions of their thin section casting research program in particular and R D program in general.

  7. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  8. Casting AISI 316 steel by gel cast

    International Nuclear Information System (INIS)

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160oC to 1300oC under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  9. 声波透射法在灌注桩检测中的应用研究%Explore the Application of Acoustic Wave Transmission Method in the Cast-in-place Pile Detection

    Institute of Scientific and Technical Information of China (English)

    郑育成

    2014-01-01

    The acoustic wave transmission method use the acoustic principle, which means through the spread of acoustic wave at enuation degree in concrete to determine if the cast-i-n-place pile is complete or not, so as to determine the constr-uction quality of cast-in-place pile. Therefore, this article carr-ies on the detailed research and analysis of the application of acoustic wave transmission method in the cast-in-place pile de-tection.%声波透射法利用声学原理,也就是通过声波在混凝土这种介质中传播的衰减程度来确定灌注桩的桩身是否完整,从而确定灌注桩的施工质量。因此,本文就对声波透射法在灌注桩检测中的应用进行了详细的研究和分析。

  10. V法铸造在高压电器铝筒体生产上的应用%Application of V Method Casting in High Voltage Electric Apparatus Aluminum Cylinder Production

    Institute of Scientific and Technical Information of China (English)

    王赏; 谷喜秀

    2014-01-01

    Introduction was made to that the high voltage electrical apparatus large-sized aluminum cylinder was produced by using V method casting technology , melting in medium frequency induction oven plus fining oven and adopting bottom pouring open type double pouring path pouring system. Analysis was made to the impacts of different technological parameters on casting aluminum cylinder. Batch production test verification has passed, which provides technical support for using V method to cast aluminum cylin-der in the future.%介绍了利用V法铸造工艺,使用中频感应炉加精炼炉熔炼,采用底注开放式双浇道的浇注系统,来生产高压电器大型铝筒体,分析了不同工艺参数对铸造铝筒体的影响。通过批量生产试验验证,为今后使用V法铸造生产铝筒体提供了技术支持。

  11. Examples of material solutions in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  12. Method of evaluation of radiant heat transfers for geometries having cast shadows; Methode d`evaluation des echanges radiatifs pour des geometries comportant des ombres portees

    Energy Technology Data Exchange (ETDEWEB)

    Lair, P.; Millan, P. [ONERA-CERT/DERMES, 31 - Toulouse (France); Dumoulin, J. [INSA-UPS, LETHEM, 31 - Toulouse (France)

    1996-12-31

    Experimental studies on aero-thermal characterization of various flows are carried out by the CERT/DERMES centre of the French national office of aerospace studies and research (ONERA). The measurement is based on the infrared thermography method which requires a correction of surface fluxes. This correction is necessarily based on a radiative statement of the cell where the flow takes place. A numerical method of form factors calculation in complex geometrical configuration has been developed. This method is applicable to surfaces (flat or not) and takes into account the shadow phenomena as they can exist inside an experimental test path. Two methods of radiative statements have been developed and compared. The influence of form factors calculation on the radiative statement is also analyzed and the problem of the sensitivity of the methods with respect to possible measurement errors is evoked. (J.S.) 8 refs.

  13. Virtualisation of casting engineering

    Directory of Open Access Journals (Sweden)

    J.S. Suchy

    2007-09-01

    Full Text Available Purpose: Fast response to an enquiry, minimization of costs of identification of best-suited process solution, as well as a capacity to tackle new challenges is the shortest description of the requirements posed by the contemporary market of machines and equipment. These, in consequence, called for making use of mathematical models and their solution by means of simulation algorithms.Design/methodology/approach: The notable effectiveness of numerical methods streamlined the production preparation process. Maintaining competitiveness, even more tough because of economic factors, is only possible due to cost-effective operation, high quality and well-timed order completion. These, on the other hand, can be facilitated by a broad application of IT tools aiding production management and preparation.Findings: Integration of systems aiding design processes, systems used for simulating selected elements of technologies, as well as of systems supporting instrumentation manufacturing calls for a need to solve a number of complex problems related to IT, mathematical modelling, logistics and knowledge management. Software packages for a simulation of processes that are indispensable in order to achieve the designed distribution of matter structures and condition are of particular importance.Research limitations/implications: Despite the fact that there is a wide range of software for these purposes available on the market, there is a need to build and integrate into IT systems new purpose-developed solutions customised to technologies applied and non-standard problems.Originality/value: Virtualization of casting engineering

  14. Solvent casting flow from slot die

    Science.gov (United States)

    Lee, Semi; Nam, Jaewook

    2015-11-01

    A continuous solvent casting method using a slot die can precisely control the film thickness by adjusting the operating conditions, such as the belt speed and pumping rate, not the liquid property. Therefore, it is a suitable method for high precision continuous film production. In this particular method, the dope, or casting solution, is pumped through the feed slot to form a short curtain between the die and the moving belt. Although this method is widely used in producing films for various applications, it is difficult to find indepth analyses of such flow. In this study, we developed a finite element computational model for the steady-state two-dimensional sovent casting flow from the slot die. The effect of die configurations, rheological properties and operating conditions on the behavior and shape of the gas/liquid interfaces and the location of the dynamic contact line, which is the place where the dope meets the moving belt, were investigated.

  15. The potential of centrifugal casting for the production of near net shape uranium parts

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E. [United States Air Force Academy, Colorado Springs, CO (US). Dept. of Engineering Mechanics

    1993-09-01

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting.

  16. The potential of centrifugal casting for the production of near net shape uranium parts

    International Nuclear Information System (INIS)

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting

  17. Wear resistance of chromium cast iron – research and application

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2006-04-01

    Full Text Available Purpose: A short characteristic of wear resistance chromium cast iron has been presented as well as possibilities of this material researches realization in Foundry Department have been discussed.Design/methodology/approach: Main attention was given on research process of crystallization and analysis of chromium cast iron microstructure and its resistance on erosion wears. Separate part of paper was devoted to discuss the bimetallic castings with chromium cast iron layer as well as typical applications of chromium cast iron castings in minig, proccesing, metallurgical and power industry.Findings: The new method of crystallization process research with three testers (DTA-K3 was found in the work. The method makes possible to characterize sensitivity of chromium cast iron on cooling kinetic.Research limitations/implications: DTA-K3 method can be used for research of crystallization proccess of cast materials particularly for abrasion-resisting alloy.Practical implications: Wide scope researches of chromium cast iron in Foundry Department enable extending applications its material in many industries.Originality/value: Value of the paper is the presentation of researches possibilities which undertaken in Foundry Department within the range of wear resistant materials.

  18. An assessment of the linear damage summation method for creep-fatigue failure with reference to a cast of type 316 stainless steel tested at 570 deg. C

    International Nuclear Information System (INIS)

    This paper presents preliminary results from the programme for hold period tests on a cast BQ of type 316 stainless steel at 570 deg. C. The results of tensile hold period tests on a relatively low ductility cast of type 316 stainless steel have indicated that the failure mechanism changes from a creep-fatigue interaction failure to a creep dominated failure at low strain levels. An assessment of the linear damage summation approach for failure prediction indicates that it is inappropriate for creep-fatigue interaction failures. For creep dominated fracture, failure occurs when the accumulation relaxation strain exhausts the material ductility i.e. Nsub(f epsilon R)=D. The failure criterion based on a creep summation in terms of time to fracture underestimates life

  19. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  20. The CAST experiment

    International Nuclear Information System (INIS)

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset and therefore three X-ray detectors are mounted on both ends of the magnet waiting for a photon from axion-to-photon conversion due to the Primakoff effect. During its first phase, which concluded in 2004, CAST has been looking for axions with masses up to 0.02 eV. CAST's second phase manages to re-establish the coherence needed to scan for axions with masses up to 1.16 eV by using a buffer gas. This technique enables the experiment to look into the theoretical regions for axions. During the years 2005 and 2006, the use of 4He in CAST has already provided coherence in order to look for axions with masses up to 0.4 eV

  1. Determination of silicon and chromium content in gray cast iron by the Van der Pauw method; Determinacion del contenido de silicio y cromo en fundiciones grises mediante el metodo de Van der Pauw

    Energy Technology Data Exchange (ETDEWEB)

    Tremps, E.; Enrique, J. L.; Moron, C.; Garcia, A.; Gomez, A.

    2013-07-01

    In this paper we show a system based on the resistivity measurement of samples of gray cast iron by the Van der Pauw method to calculate the silicon content in the samples. Twenty five trials have been carried out, studying resistive and metallographic characteristics of the samples. This has demonstrated that it is possible to obtain, by this method, the silicon content in molten flat with low content of alloying elements, also the content of chromium in series smelters where the rate of silicon remains constant. (Author)

  2. Investment casting or powder metallurgy – the ecological aspect

    Directory of Open Access Journals (Sweden)

    J. Tomasik

    2009-04-01

    Full Text Available The paper presents an analysis of manufacturing methods of material-saving products in relation to investment castings and sinteredpowder technology. Surface microgeometry, shape accuracy, performance parameters, manufacturing costs and energy consumption weretaken into account to make the optimal choice. The analysis was conducted by comparing test results for sintered powder products basedon Distaloy AB alloy that consists of 0.55% C, 1.5% Cu, 1.75% Ni and 0.5% Mo and investment castings made of high alloy cast steel andnodular cast iron. The analysis made it possible to choose the best technology, considering also the ecological aspect.

  3. THE THERMAL PROCESSES’ MATHEMATICAL SIMULATION DURING CASTING INTO METAL MOULD OF THE SHORT HOLLOW CYLINDRICFL CASTING

    OpenAIRE

    Клименко, Леонід Павлович; Дихта, Леонід Михайлович; Андреєв, В’ячеслав Іванович

    2015-01-01

    Mathematical simulation is made for thermal processes associated with the removal overheat melt, solidification and subsequent cooling of the short hollow cylindrical casting during its manufacturing by the method of centrifugal casting in metal mould. In the paper the mentioned processes’ mathematical simulation is reduced to the solution of a number of boundary-value problems of heat conductivity theory. Some significant mathematical difficulties caused by the presence of liquid core and mo...

  4. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  5. 选择性激光熔覆技术与铸造法制作全冠适合性的比较研究%Comoarative adaptation of crowns of selective laser melting and wax-lost-casting method

    Institute of Scientific and Technical Information of China (English)

    李国强; 沈晴昳; 高建华; 邬雪颖; 陈骊; 戴文安

    2012-01-01

    目的 比较选择性激光熔覆技术( selective laser melting,SLM)与铸造法制作的全冠适合性差异,以期为临床提供依据.方法 通过切削技术制作铝合金试件,设计3种试件直径:切牙8.6 mm,前磨牙7.2 mm,磨牙11.2 mm,每种16件.将试件分为SLM组和铸造组,分别制作钴铬合金全冠并用磷酸锌粘接剂粘接.扫描电镜下观察粘接面各测量点粘接剂厚度.结果 SLM组牙冠颈缘、试件下1/3区、轴面角处和(稔)面中央点间隙[分别为(36.51±2.94)、(49.36±3.31)、(56.48±3.35)和(42.20±3.60)μm]小于铸造组相应部位[分别为(68.86±5.41)、(58.86±6.10)、(70.62±5.79)和(69.90±6.00) μm],两组差异均有统计学意义(P<0.05).结论 铸造法和SLM制作的全冠适合性均在临床可接受的范围内,但SLM法更接近美国牙科协会的标准,值得推广应用.%Objective To investigate the marginal adaptation of crowns fabricated by selective laser melting( SLM ) and wax-lost-casting method,so as to provide an experimental basis for clinic.Methods Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group.All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine.The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope( SEM ). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically.Results The gap between SLM crowns were (36.51 ±2.94),(49.36 ±3.31 ),( 56.48 ± 3.35 ),( 42.20 ± 3.60) μm,and wax-lost-casting crowns were ( 68.86 ± 5.41 ),( 58.86 ±6.10),(70.62 ±5.79),(69.90 ±6.00) μm.There were significant difference between two groups( P <0.05). Conclusions Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic,and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  6. A Study of the Microstructure and Mechanical Properties of Continuously Cast Iron Products

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The horizontal continuous casting has a lot of advantages in comparison with traditional casting methods. But it has a few disadvantages and unsolved problems. The objective of this research was the experimental investigation of the effect of chemical composition of cast iron and the casting conditions on the microstructure and properties of continuously cast ingots. As a result, tensile strength, Brinell hardness, and pearlite content increased with increasing Cr, Cu, and Sb additions and decreasing carbon equivalent. As for microstructure of graphite, higher silicon to carbon ratio and lower solidification rate decreased a zone of interdendritic graphite. Nomograph of continuously cast iron structure was made.

  7. Study on Compatibility between Converters and Casting Machines for Daily Steelmaking and Continuous Casting Scheduling

    Institute of Scientific and Technical Information of China (English)

    MA Feng-cai; ZHANG Qun

    2009-01-01

    In this paper, daily production scheduling is studied based on the Third Steelmaking Plant of Wuhan Iron and steel corporation (WISCO). To make sure the daily production plan is feasible, method of casting gToup is established, and the compatibility between two converters and three continuous casting devices in the Third Steelmaking Plant of WISCO is analyzed. The process flow chart of daily production scheduling is given in this paper. Then, algorithms and procedures for the simulation of daily production plan is developed. Using the actual data from the Third Steelmaking Plant, the feasible daily steelmaking plan and cast plan are given. The plan contains 7 groups of cast plan, figured out 54 converters, and a- bout 13,500 tons steel.

  8. Scheduled Caste Women: Problems And Challenges

    OpenAIRE

    Vijayakumar Murthy; Jaikishan Thakur

    2013-01-01

    The paper analyzed the Caste system based on Varnas during the ancient India. It also examined the demerits of caste attached to the present scheduled castes in general and scheduled caste women in particular. The scheduled caste women are disadvantaged by their caste and gender and as such they are subject to exploitation and discrimination by their family members, by their caste people and by forward castes. Hence, there is increase in exploitation, discrimination and violence against the s...

  9. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Ph.D Liu Jincheng

    2010-01-01

    @@ Note: This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Spheroidal Graphite Cast Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishes this book in several parts serially, starting from the first issue of 2009.

  10. Extrusion cast explosive

    Science.gov (United States)

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  11. Evaluation of an improved centrifugal casting machine.

    Science.gov (United States)

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines. PMID:3889295

  12. Influence of starch type on characteristics of porous 3Y-ZrO2 prepared from a direct consolidation casting method

    OpenAIRE

    Liliana Beatriz Garrido; Maria Patricia Albano; Luis Antonio Genova; Kevin Paul Plucknett

    2011-01-01

    Starch consolidation casting has been successfully used to produce porous ceramics with complex shapes at a relatively low producing cost. In this work, porous 3Y-ZrO2 ceramics were produced using two types of starch (corn and potato). Concentrated (50-52 vol. (%)) aqueous suspensions of the different 3Y-ZrO2-starch mixtures (i.e. starch to zirconia weight ratios between 0.20 and 0.52) were thermally consolidated and the effect of the type and amount of added starch on properties of resultant...

  13. Bulk metallic glass tube casting

    International Nuclear Information System (INIS)

    Research highlights: → Tubular specimens of Zr55Cu30Al10Ni5 cast in custom arc-melting furnace. → Tilt casting supplemented by suction casting. → Bulk metallic glass formed only with optimized processing parameters. → Fully amorphous tubes with 1.8 mm wall thickness and 25 mm diameter. - Abstract: Tubular bulk metallic glass specimens were produced, using a custom-built combined arc-melting tilt-casting furnace. Zr55Cu30Al10Ni5 tubes with outer diameter of 25 mm and 0.8-3 mm wall thicknesses were cast, with both tilt and suction casting to ensure mold filling. Tilt casting was found to fill one side of the tube mold first, with the rest of the tube circumference filled subsequently by suction casting. Optimized casting parameters were required to fully fill the mold and ensure glass formation. Too small melt mass and too low arc power filled the mold only partially. However, too large melt mass and higher arc power which lead to the best mold filling also lead to partial crystallization. Variations in processing parameters were explored, until a glassy ring with 1.8 mm thickness was produced. Different sections of the as-cast ring were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and instrumented indentation to ensure amorphous microstructure. Atomic force microscopy (AFM) was used to compare the surface qualities of the first- and last-filled sections. These measurements confirmed the glassy structure of the cast ring, and that, the tilt cast tube section consistently showed better surface quality than the suction cast section. Optimized casting parameters are required to fully realize the potential of directly manufacturing complex shapes out of high-purity bulk metallic glasses by tilt casting.

  14. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  15. Preparation of a bulk Fe{sub 83}B{sub 17} soft magnetic alloy by undercooling and copper-mold casting methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changlin, E-mail: ycl@nwpu.edu.cn; Sheng, Gang; Chen, Guiyun; Liu, Feng

    2013-11-15

    Bulk Fe{sub 83}B{sub 17} eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe{sub 2}B phase and a metastable Fe{sub 3}B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe{sub 3}B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties. - Highlights: • Pure nano-lamellar eutectic structure was directly formed in the bulk Fe-B alloys. • The metastable Fe{sub 3}B phase was directly formed in the bulk Fe-B alloys. • Undercooling solidification combined with Cu-mold casting was applied. • The information on bcc Fe, Fe{sub 2}B and Fe{sub 3}B-magnetism relationship was provided. • Nano-lamellar eutectic structures enhance the soft magnetic properties.

  16. High speed twin roll casting of 6061 alloy strips

    Directory of Open Access Journals (Sweden)

    T. Haga

    2008-05-01

    Full Text Available Purpose: of this paper is to clear the possibility of high speed roll casting of thin strips of two aluminum alloys:6061 and recycled 6061. Mechanical properties of the roll cast 6061 and recycled 6061 strips were investigated inthe frame of this purpose.Design/methodology/approach: Methods used in the present study were high speed twin roll caster and lowtemperature casting. These methods were used to realize rapid solidification and increase the casting speed.Findings: are that 6061 and recycled 6061 could be cast at speed of 60 m/min. Casted strips were about 3 mmthick. As cast strip could be cold-rolled down to sheet of 1 mm thick. 180 degrees bending test was operated on thesheet after T4 heat treatment and crack was not worse than 6022 which is typical aluminum alloy for sheet of theautomobile. This result means the roll cast 6061 can be used as a sheet for body of the automobile instead of 6022.Research limitations/implications: Research limitation is that the width of the strip was 100 mm andinvestigation of the properties were enough for practical use. Wider strip must be cast using the twin roll caster ofthe size for production.Originality/value: The economy sheet of the 6061 for the auto mobile can be produced by the high speed twinroll caster. 6061 is typical wrought aluminum alloy of 6000 series. Therefore, the sheet of 6061 will becomeeconomy. 6061 can be recycled at two times when the 6061 is cast into strip by the high speed roll casting.

  17. Combining the casting and punching technology

    Directory of Open Access Journals (Sweden)

    Zh. Ashkeyev

    2016-07-01

    Full Text Available In the article there are presented the results of studying the microstructure of metals obtained by the method of casting and punching in equal-channel step matrixes (ECSM. The analysis of the microstructure of metals obtained on the scanning and transmission microscope showed that owing to realization of intensive shift deformations on the inclined portion of ECSM there emerge shear bands which extend practically in parallel to zones of the matrix channels connection and influence positively closing and sealing all internal defects of cast blanks.

  18. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  19. Correlation Between Surface Roughness and Rheological Properties of Liquid Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2012-12-01

    Full Text Available The investigation of filling process of ductile cast iron flow in sand mould was showed the correlation between casting roughness surface and rheological properties of metal. Evidently of castings surface roughness was state of distance, from a few to a dozen diameters of vertical channel inlet. The method of rod fluidity test permit to study of rheological properties of metal and the roughness surface of castings.

  20. Factors contributing to the temperature beneath plaster or fiberglass cast material

    OpenAIRE

    Hutchinson Mark R; Hutchinson Michael J

    2008-01-01

    Abstract Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thicknes...

  1. EFFECT OF CASTING MOULD ON MECHANICAL PROPERTIES OF 6063 ALUMINUM ALLOY

    OpenAIRE

    WASIU AJIBOLA AYOOLA; SAMSON OLUROPO ADEOSUN; OLUJIDE SAMUEL SANNI; AKINLABI OYETUNJI

    2012-01-01

    Modern production methods for casting articles include the use of sand- mould, metal-mould, die, and centrifugal castings. Castings produced using sand mould is known to have peculiar microstructures depending on average size, distribution and shape of the moulding sand grains and the chemical composition of the alloy. These affect the surface finish, permeability and refractoriness of all the castings. In this paper, the effect of using CO2 process, metal mould, cement-bonded sand mould and ...

  2. Numerical simulation for thermal flow filling process of casting

    Institute of Scientific and Technical Information of China (English)

    CHEN Ye; ZHAO Yu-hong; HOU Hua

    2006-01-01

    The solution algorithm (SOLA) method was used to solve the velocity and pressure field of the thermal flow filling process, and the volume of fluid (VOF) method for the free surface problem. Since the "donor-acceptor" rule often results in the free interface vague, the explicit difference method was adopted, and a method describing the free surface state at 0<F<1 was proposed to deal with this problem. In order to raise the computation efficiency, such algorithms were investigated and invalidated as: 1) internal and external area separation simplification algorithm; 2) the reducing necessary search area method. With the improved algorithms, the filling processes of the valve cover castings with gravity cast and an up cylinder block casting with low-pressure cast were simulated, the simulation results are believable and the computation efficiency is greatly improved. The SOLA-VOF model and its difference method for thermal fluid flow filling process were introduced.

  3. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad J.M.PAPIS; Joerg F.LOEFFLER; Peter J.UGGOWITZER

    2009-01-01

    'Compound casting'simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, 'compound casting' of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu-ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and AI12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protec-tive coating to the substrate.

  4. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  5. Technetium Getters to Improve Cast Stone Performance

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey; Asmussen, Robert M.; Qafoku, Nikolla

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most to the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.

  6. Bioinspired Design: Magnetic Freeze Casting

    Science.gov (United States)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  7. Integration of CAD/CAE System for Casting Process Design

    Institute of Scientific and Technical Information of China (English)

    周舰; 荆涛

    2003-01-01

    Concurrent engineering is needed to modernize the foundry industry and to reduce the scrap from castings and thus increase the economic profit. This paper presents an integrated 3-D CAD/CAE system for a foundry using concurrent engineering which considers casting structure, casting type, and manufacturing properties in the CAD module to design the pouring system, the riser, the chill core and so on. A visualized solid model is developed for the casting component with the model design enhanced by CAE analysis. Heat transfer and fluid flow simulation are used to analyze the initial design. The whole product development process is analyzed using concurrent engineering methods. The application shows that the integrated system can improve the efficiency of the design and manufacturing process of die casting.

  8. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2013-07-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  9. The effect of cast-to-cast variations on the quality of thin section nickel alloy welded joints

    International Nuclear Information System (INIS)

    The welding behaviour of 26 commercial casts of Alloy 800 has been quantified for mechanised, autogenous, full penetration, bead-on-strip tungsten inert gas welding tests. Weld front and back widths have been measured and correlated with minor element variations. Casts with similar welding responses have been sorted into groups. The behaviour of the weld pool, surface slags and arc have been compared and a convection controlled model has been used to account for differences between the groups of casts. The main factors governing laboratory process control variability have been identified and a statistical method has been used to identify all the components of weld variance. An optimum size of welding test matrix has been proposed to determine typical cast-to-cast variations at high significance levels. (author)

  10. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. Skeleton castings dynamic load resistance

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2013-06-01

    Full Text Available Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of internal topology of skeleton casting was based on numerical simulations of stress distribution.Findings: The possibility of manufacturing of geometrically complex skeleton castings without use of advanced techniques was confirmed.Research limitations/implications: With use of computer tomography, analysis of deformation mechanisms was carried out. Different levels of impact energies were usedPractical implications: Spatial skeleton casting with octahedron elementary cell confirmed their usefulness as impact energy absorbers.Originality/value: The overall aim of presented research was to determine the mechanisms of skeleton castings deformation processes. Thanks to CT data next step will be to create accurate numerical model for further simulation and design optimization.

  12. Managament quality of tools in the planned housing casting

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2007-01-01

    Full Text Available The Kaizen method of housing casting designing was presented in the paper. Algorithm making possibility of identification of tools limiting efficienty of tooling process was formulated. The system of tool management consisting of various was shown.

  13. Fused Cast Alumina Refractory Products for Glass Tank Furnace

    Institute of Scientific and Technical Information of China (English)

    SHEN Keyin

    2006-01-01

    @@ 1 Subject and Scope The standard specifies the requirement, testing method, inspection rule and requirements for the labeling, packing, shipping and storing of the fused cast alumina refractory products for glass tanks.

  14. Design and Test of Fuzzy-PI Controller for Copper Disc Casting Machine Casting Electronic Balance

    OpenAIRE

    Fanzhi Kong; Qun Sun; Chong Wang; Chengqiang Yin; Song Hu

    2015-01-01

    Casting electronic scale is the key part of copper casting machine; its control precision directly affects the quality of casting. For this problem, this paper analyzes 16 casting machine casting structures and control principles. According to the movement characteristics of casting, a cast Fuzzy-PI composite controller of electronic scale was designed. On this basis, the hardware system based on PLC and the expansion modules were developed, and casting electronic control programs were design...

  15. Efficient Runner Networks for Investment Castings

    Energy Technology Data Exchange (ETDEWEB)

    GIVLER,RICHARD C.; SAYLORS,DAVID B.

    2000-07-18

    We present a computational method that finds an efficient runner network for an investment casting, once the gate locations have been established. The method seeks to minimize a cost function that is based on total network volume. The runner segments are restricted to lie in the space not occupied by the part itself. The collection of algorithms has been coded in C and runner designs have been computed for several real parts, demonstrating substantial reductions in rigging volume.

  16. Tribological Aspects of Cast Iron Investigated Via Fracture Toughness

    OpenAIRE

    C. Fragassa; Minak, G; A. Pavlovic

    2016-01-01

    Linear-elastic plane-strain fracture toughness of metallic materials is a method which covers the determination of the strain fracture toughness (KIC) of metallic materials by increasing-force test of fatigue precracked specimens. This method has been applied for investigating the fracture behaviour of cast iron. Two groups of cast alloys, Compacted Graphite Iron (CGI) and Spheroidal Graphite Iron (SGI) have been investigated. While SGI benefits of a wide scientific literature, CGI is a relat...

  17. Soft magnetic properties and thermal stability of bulk Fe83B17 alloy prepared by undercooling and Cu-mold casting methods

    International Nuclear Information System (INIS)

    The thermal stability and soft magnetic properties of bulk Fe83B17 rods with nano-lamellar eutectic structures and metastable Fe3B phases were investigated by annealing at 973–1273 K for 1.5 h. Samples with a diameter of 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The decomposition of Fe3B and the transformation of nano-lamellar eutectic structures were finished after annealing at 1173 K for 1.5 h. Increasing annealing temperature showed that the soft magnetic properties of the sample were kept relatively stable. The saturation magnetization and retentivity were decreased only slightly, while the coercivity was decreased significantly. - Highlights: • Thermal stability of the nano-lamellar eutectic structure was obtained. • Thermal stability of the metastable Fe3B phase was obtained. • The soft magnetic properties of the sample remain stability by annealing. • Nano-lamellar eutectic structures enhance the soft magnetic properties

  18. Solidification modeling of continuous casting process

    Science.gov (United States)

    Lerner, V. S.; Lerner, Y. S.

    2005-04-01

    The aim of the present work was to utilize a new systematic mathematical-informational approach based on informational macrodynamics (IMD) to model and optimize the casting process, taking as an example horizontal continuous casting (HCC). The IMD model takes into account the interrelated thermal, diffusion, kinetic, hydrodynamic, and mechanical effects that are essential for the given casting process. The optimum technological process parameters are determined by the simultaneous solution of problems of identification and optimal control. The control functions of the synthesized optimal model are found from the extremum of the entropy functional having a particular sense of an integrated assessment of the continuous cast bar physicochemical properties. For the physical system considered, the IMD structures of the optimal model are connected with controllable equations of nonequilibrium thermodynamics. This approach was applied to the HCC of ductile iron, and the results were compared with experimental data and numerical simulation. Good agreement was confirmed between the predicted and practical data, as well as between new and traditional methods.

  19. The influence of cooling rate on the hardness of cast iron with nodular and vermicular graphite

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-12-01

    Full Text Available The paper presents hardness changes for cast iron with nodular and vermicular graphite, determined within the separately cast test blocks. Investigation has comprised cast irons with similar ferrite and pearlite fractions in the metal matrix. The hardness measurements have been performed by Brinell method for samples taken both from an edge and from the centre of a Y block (for nodular cast iron or of a reversed U block (in the case of vermicular cast iron. Investigations have pertained both to the test parts and to the sinkheads of the test blocks. Hardness measurements have been completed with metallographic examination.

  20. Geometrical precision of 3DP casting form for founding gears

    Directory of Open Access Journals (Sweden)

    T. Markowski

    2010-01-01

    Full Text Available The article presents analysis of geometrical precision of casting form made by means of 3DP method. Three dimentional printing is a universal method of rapid prototyping which can be used to make tools – castings forms as a Rapid Tooling method. By means of this method in direct incremental process a casting form of spur gear was created. Precision of creating the form by 3DP method depends on different factors. Technological factors depending on machine operator include: the thickness of the layer and placing the model in working space. The precision of creating the model also depends on preparing the printer for work: the condition and calibration of printing heads, the condition of the printing unit slide guides and preparing the working space. Three dimentional printer Z510 Spectrum was prepared for work in a way assuring the greatest precision of created models. Technological parameters responsible for precision were set on maximum values. The aim of the research was defining the precision of casting form generated by 3DP Rapid Prototyping Method. The research was made by means of coordinate measuring machine Wenzel LH87. The measuring machine software was used to compare the outcome of the measurement to nominal model 3D-CAD. The problem of tool precision of casting forms generated by Rapid Tooling is rarely considered in literature covering rapid prototyping and casting technologies. That is why the research presented in this article isan original work in the technological and practical aspect.

  1. Development of Refractories for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    TIAN Shouxin; JIN Congjin; YAO Jinfu; LI Zeya

    2004-01-01

    The paper introduces refractories for continuous casting, especially, refractories for continuous casting for clean steel in baosteel. Developing direction of refractories for continuous casting has been pointed out to satisfy the new metallurgical operating practice.

  2. Scheduled Caste Women: Problems And Challenges

    Directory of Open Access Journals (Sweden)

    Vijayakumar Murthy

    2013-12-01

    Full Text Available The paper analyzed the Caste system based on Varnas during the ancient India. It also examined the demerits of caste attached to the present scheduled castes in general and scheduled caste women in particular. The scheduled caste women are disadvantaged by their caste and gender and as such they are subject to exploitation and discrimination by their family members, by their caste people and by forward castes. Hence, there is increase in exploitation, discrimination and violence against the scheduled caste women. The female feticide, illiteracy, gender inequality, Devadasi, Jogini practice, Nude Service to Deity, different types of violence, dowry, child marriage, etc are few of the problems faced by scheduled caste women in present society. Statistics of the violence acts against the scheduled caste women is discussed in the paper and there is need to strictly enforce the legislations passed to protect the violence against scheduled caste women. For this purpose, there is need of enquiry from lady police officials.

  3. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  4. A New Method for Evaluating Fatigue Property of A713 Cast Aluminum Alloy%评价铸造A713铝合金疲劳性能的新方法

    Institute of Scientific and Technical Information of China (English)

    张元彬; 罗辉; 霍玉双; 刘鹏; 翟同广

    2012-01-01

    在材料试验机上对铸造A713铝合金进行四点弯曲疲劳试验,并通过一种评价疲劳性能的新方法获得了该合金的疲劳弱点密度和强度曲线。结果表明:试验获得的铸造A713铝合金的疲劳强度为94.5MPa;该合金的疲劳弱点密度符合Weibull分布方程,疲劳弱点强度在应力水平为65%时最大;与气孔尺寸分布相比,疲劳弱点密度和强度的分布更适合作为材料疲劳性能的评价指标。%The four points bending fatigue test was applied to A713 cast aluminum alloy by a material tester,and the curves of the density and strength of fatigue weakest link of the alloy were obtained by a new method of evaluating fatigue property.The results show that the fatigue strength of A713 cast aluminum alloy obtained by this method was 94.5 MPa.The fatigue weakest link density corresponded with Weibull distribution equation,and the fatigue weakest link strength was maximum when the stress level was 65%.Compared with pore size distribution,the distribution of density and strength of fatigue weakest link was more suitable to be used as the evaluation index of fatigue property of materials.

  5. Steel castings Ultrasonic examination, Part 2: Steel castings for highly stressed components

    CERN Document Server

    International Organization for Standardization. Geneva

    2004-01-01

    This European Standard specifies the requirements for the ultrasonic examination of steel castings (with ferritic structure) for highly stressed components and the methods for determining internal discontinuities by the pulse echo technique. This European Standard applies to the ultrasonic examination of steel castings which have usually received a grain refining heat treatment and which have wall thicknesses up to and including 600 mm. For greater wall thicknesses, special agreements apply with respect to test procedure and recording levels. This European Standard does not apply to austenitic steels and joint welds.

  6. Finger printing of medieval investment cast idols by radiography

    International Nuclear Information System (INIS)

    Among the various methods, radiography is an important technique that can be used to fingerprint an idol. This is because, these idols are cast structures, and radiography is the most reliable technique for the detection of internal features like casting defects. This paper presents the radiographic methodology adopted and the results of the studies to characterise radiographically three medieval cast idols belonging to different periods 9th, 13th, and 16th century obtained from the government museum Madras. (author). 2 refs., 1 fig., 2 tabs

  7. Stochastic simulation of grain growth during continuous casting

    International Nuclear Information System (INIS)

    The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  9. CONTINUOUS HORIZONTAL CASTING OF PIPE BRONZE BILLET

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2015-05-01

    Full Text Available An experimental and calculated thermal analysis of the continuous casting of bronze tube billets is developed. Calculated allowable thermal conditions of drawing for stable casting.

  10. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV0.1±52 HV0.1 to 505 HV0.1±87 HV0.1. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  11. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  12. Possibilities of obtaining and controlling high-quality pressure castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available The paper presents the influence of the type of furnace charging melting, refining and modification silumins 226 and 231 on the porosity and microstructure of castings. It was shown that in order to reduce or eliminate the porosity of the castings is necessary to the refining ECOSAL-AL113 of liquid silumin both in the melting furnace, and in the ladle and an additional nitrogen, in the heat furnace modified and refining with nitrogen. To control the effects of refining and modifying the TDA method was used. It was found that based on crystal- lization curve can be qualitatively assess the gas porosity of the castings. In order to control and quality control silumins author developed a computer program using the method of TDA, which sets out: Rm, A5, HB and casting porosity P and the concentration of hydrogen in them. The program also informs the technological procedures to be performed for liquid silumin improper preparation.

  13. Effect of Ablation Casting on Microstructure and Casting Properties of A356 Aluminium Casting Alloy

    Institute of Scientific and Technical Information of China (English)

    V.Bohlooli; M.Shabani Mahalli; S.M.A.Boutorabi

    2013-01-01

    Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality.In this study,the effects of processing variables on the porosity content,microstructure and feedability of A356 casting alloy were investigated.Secondary dendrite arm spacing (SDAS) and eutectic silicon morphologies were studied to evaluate the influence of Ablation Casting on the microstructure.Casting density was measured in order to identify porosity content and feedability of ablated and non-ablated specimens.In addition,solidification behavior of the samples was investigated by using thermal analysis technique.The cooling curves and the first derivative curves were plotted and compared with each other.Results showed the ablation process could increase solidification rate significantly.In addition,the microstructural evidences revealed that Ablation Casting process results in more fine and homogeneous structure compared to the nonablated casting.The feedability improved,SDAS reduced to 35% and porosity content decreased to 3.84 vol.% by implementing this process.It concluded the Ablation Casting is an effective process to gain higher quality in aluminum foundry.

  14. Al - BASED CAST COMPOSITES

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Yadav

    2011-08-01

    Full Text Available The economy is very important feature nowadays in themarket. The researches are playing an important role inengineering field to increase the life of machine parts /components and decrease the cost. The compositematerials have the potential to replace widely used steeland aluminium due to their good characteristics withbetter performance. The Al-based composites have foundextensive applications in automobile industries andaerospace industries due to their increased stiffness,strength, thermal conductivity and wear resistanceproperties. A number of particulate phases have beenemployed in the Al-alloy matrix. The cast aluminiumceramicparticulate composites are finding applications inpistons, connecting rods, cylinder liner, engine cylinderblock, electrical contacts etc.The present investigation isbased on study of the effect of particulate phase on theSEM study, micro-hardness, elastic modulus, tensilestrength and the wear behaviour of Al-5 % SiC-7 % Fe,Al-10 % SiC-6 % Fe and Al-15 % SiC-5 % Fe composites.

  15. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    Science.gov (United States)

    Huang, Guojie; Xie, Shuisheng; Cheng, Lei; Cheng, Zhenkang

    2007-05-01

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K˜1463K, the casting speed is between 7.2m/h˜10.8m/h and the speed of cooling water is between 3.6m/s˜4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.

  16. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    International Nuclear Information System (INIS)

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K∼1463K, the casting speed is between 7.2m/h∼10.8m/h and the speed of cooling water is between 3.6m/s∼4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments

  17. DEVELOPMENTS IN THE FIELD OF PRODUCTION OF CONTINUOUSLY CAST SLUGS OF COMPOUND CROSS-SECTION OF GREY AND HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    V. S. Shumihin

    2016-02-01

    Full Text Available The joint works within the period of 1980–1985 of ITM NAN of Belarus, Institute of casting problems of AN Ukraine and Kaunas works «Tsentrolit» in the field of grey and high-strength cast iron hardening, developments of crystallizers constructions and technologies of production of ingots of compound cross- section by method of horizontal continuous casting, are described.

  18. The prediction of bubble defects in castings

    OpenAIRE

    Lawrence, James Andrew

    2004-01-01

    Objective of this research was to develop models that capture the entrainment, breakup and transport of gas bubbles in solidifying TiAl castings. The candidate has reviewed the literature, programmed in FORTRAN code, and validated a number of competing techniques for two phase flow relevant to the filling of moulds. He has developed a hybrid (Donor-acceptor/ Level Set) method, which captures the characteristics of gas bubbles based on the surface tension —fluid inertia balance on the free sur...

  19. Investment casting or powder metallurgy – the ecological aspect

    OpenAIRE

    J. Tomasik; R. Haratym; R. Biernacki

    2009-01-01

    The paper presents an analysis of manufacturing methods of material-saving products in relation to investment castings and sinteredpowder technology. Surface microgeometry, shape accuracy, performance parameters, manufacturing costs and energy consumption weretaken into account to make the optimal choice. The analysis was conducted by comparing test results for sintered powder products basedon Distaloy AB alloy that consists of 0.55% C, 1.5% Cu, 1.75% Ni and 0.5% Mo and investment castings ma...

  20. 考虑传搁能耗的304不锈钢电炉冶炼流程最优连浇炉数计算方法%Computational method of continuous casting heats for the 304 stainless steel smelting flow in EAF by considering transport energy

    Institute of Scientific and Technical Information of China (English)

    冯凯; 徐安军; 汪红兵; 田乃媛

    2012-01-01

    Both transport time and temperature drop in transport processes were analyzed for the 304 stainless steel smelting flow in an electric arc furnace ( EAF). The relationship between the temperature schedule in each process and continuous casting heats was es- tablished. In the existing temperature schedule the number of continuous casting heats was two. The temperature schedule with different continuous casting heats was presented by taking the process of six continuous casting heats for example. The transport energy during transport processes was calculated so as to analyze the relationship between continuous casting heats and different types of transport en- ergy. A method for determining the optimum number of continuous casting heats was proposed which takes the transport energy into ac- count. When the transport energy of increasing the continuous casting heats is less than the consumables' energy consumption of a new casting, the most number of continuous casting heats is the optimum.%分析了304不锈钢电炉冶炼流程的传搁时间和传搁过程温降情况,建立各个工序冶炼温度制度与连浇炉数的关系,得知已有温度制度下的连浇炉数仅为2炉,并以6炉连浇为例给出不同连浇炉数情况下温度制度.通过计算流程中传搁能耗,讨论了连浇炉数与浇次总传搁能耗和平均传搁能耗的关系.提出了一种考虑传搁能耗确定最优连浇炉数的方法.对比发现,当增加连浇炉数的传搁能耗小于开浇一次耗材消耗的能耗时,最大连浇炉数为最为合理的连浇炉数.

  1. Centrifugally cast for top performance

    International Nuclear Information System (INIS)

    Centrifugally cast nickel-chromium alloy components, supplied by Fahralloy-Wisconsin Ltd. are being used for the lattice tubes in CANDU reactors. Horizontal centrifugal casting facilities enable tubular shapes to be made with outside diameters of 3 to 23 in.; lengths of up to 162 in. A unique feature of horizontal casting is that the mechanical properties are the same in all directions. The structure is also completely homogeneous and combines characteristically high resistance to heat and corrosion with enhanced physical and mechanical properties. (R.A.)

  2. Influence of casting velocity on surface resistivity of epoxy-hard coal graded composites

    OpenAIRE

    J. Stabik; M. Chomiak

    2011-01-01

    Purpose: of this paper was to describe electrical properties of epoxy-hard coal functionally gradient polymeric materials. The experimental part describes preparation of the cylindrical samples of the polymeric gradient material by centrifugal casting method. Influence of casting velocity on electrical surface resistance and surface resistivity was measured and analysed.Design/methodology/approach: The specimens were prepared using centrifugal casting method. Composites with epoxy resin as a ...

  3. 一种固体发动机光线投射体绘制加速方法%A Ray Casting Volumn Rendering Accelerated Method for Solid Motor

    Institute of Scientific and Technical Information of China (English)

    马强; 朱敏; 卢洪义; 于光辉; 李朋

    2011-01-01

    The size of volume data field which be made up of solid motor ICT images is big, and empty voxels in the volume data field occupy little ratio. The effect of existing ray casting accelerated methods is not distinct. In 3D visualization fault diagnosis of large-scale war industry product, not all the information in the volume data field can help surveyor check out fault inside it. Computational complexity is greatly increased if all volume data is 3D reconstructed. So a new ray casting accelerated method based on solid motor segmented volume data was put forward. In the method, segmented information volume data field was built making use of segmented result. Consulting the conformation method of existing hierarchical volume data structures,hierarchical volume data structure on the base of segmented information was constructed. According as the structure, the construction parts which defined by user were identified automatically in ray casting. The other parts were regarded as empty voxels, hence the sampling step was adjusted dynamically, the sampling point amount was decreased, and the volume rendering speed was improved. Experimental results finally revealed the high efficiency and good display performance or the proposed method.%固体发动机ICT断层图像构成的体数据场规模大、空体素比例小,现有的光线投射加速方法效果不明显,并且在其三维可视化故障诊断中,不是体数据场中的所有信息都对内部故障检测有意义,三维重建出所有体数据大大增加了计算量.为此,提出一种在同体发动机体数据分割基础上的光线投射加速方法.该方法利用分割结果,建立分割信息体数据场,结合现有的分层体数据结构构造方法,构建出基于分割信息的分层体数据结构.依据此结构,光线投射中自动识别用户定义的重建组成部分,将其他组成部分当作空体素跳过,动态调整采样步长,减少了采样点数目,提高了

  4. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M. [and others

    1996-01-31

    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  5. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

  6. A Methodology to Predict Uniform Material Fatigue Life of Cast Iron: Law for Cast Iron%A Methodology to Predict Uniform Material Fatigue Life of Cast Iron: Law for Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Sinan Korkmaz

    2011-01-01

    Mechanical, physical and manufacturing properties of east iron make it attractive for many fields of application, such as cranks and cylinder holds. As in design of all metals, fatigue life prediction is an intrinsic part of the design process of structural sections that are made of cast iron. A methodology to predict high-cycle fatigue life of cast iron is proposed. Stress amplitude-strain amplitude, strain amplitude-number of loading cycles relationships of cast iron are investigated. Also, fatigue life prediction in terms of Smith, Watson and Topper parameter is carried out using the proposed method. Results indicate that the analytical outcomes of the proposed methodology are in good accordance with the experimental data for the two studied types of cast iron: EN-GJS-400 and EN-GJS-600.

  7. Manufacturing technology of high-quality pressure castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-10-01

    Full Text Available The paper presents manufacturing technology of pressure castings made of Al-Si alloy without porosity or with low microporosity of castings. It has been shown that the greatest impact on the porosity of the castings and the concentration of hydrogen has had the charge to the melting furnace. Liquidation or occurrence of a small microporosity of castings provides refining with solid refiners, nitrogen and modification of liquid alloy after various operations of preparing process. The liquid alloy stored in holding furnace should be refined once every 2 h with nitrogen. Authors developed a computer program of Al-Si alloys inspection with using of TDA method. The developed technology was verified under production conditions.

  8. Sub-pixel Measuring Method for Defects of Railway Casting Digital Radiography Image%铁路铸件DR图像缺陷的亚像素测量方法

    Institute of Scientific and Technical Information of China (English)

    许会洋; 曾理

    2011-01-01

    Aiming at the problem that Digital Radiography(DR) images have blurred edges and low contrast, this paper uses a method combining wavelet multi-scale decomposition and Chan-Vese(CV) model to expedite the active contour converges to the defect edges. The edge reaches sub-pixel accuracy combining with the improved linear interpolation and the sub-pixel measurement of defects is obtained. Simulation results show that the measuring accuracy of the method is superior to the traditional methods. Experiment on real casting DR images indicates it is feasible and efficient.%根据DR图像目标边缘模糊、对比度低的特点,将小波多尺度分解与基于水平集演化的CV模型相结合,由此加快主动轮廓线向缺陷边缘收敛的速度,通过改进亚像素线性插值方法,使分割精度从整像素级提高到亚像素级,从而实现缺陷的亚像素测量.仿真结果表明,该方法的测量精度优于传统方法,对实际铸件DR图像的实验结果验证了其高效性.

  9. Level measurement in electromagnetic continuous casting

    International Nuclear Information System (INIS)

    Level measurement method of molten metal have been investigated to apply in the electromagnetic continuous casting. The level measuring principle was based on the electromagnetic induction and search coil type of magnetic sensor was chosen as a level sensor, Before construct the level meter, the artificial cold charges was used to characterize the sensor output according to the level, the coil current, and the aging. Considering the results of basic experiments, we constructed a level measurement system and applied it to electromagnetic continuous casting at a billet caster of POSCO works. The developed level meter showed that the resolution of the level was within ±0.3 mm, the dynamic range of sensing was from the top of the mold to 300 mm below the top of the mold. It worked well with the existing control device in supplying the molten steel to the mold.

  10. Weldments and castings for liquid helium service

    International Nuclear Information System (INIS)

    The FY 81 results of the NBS program to evaluate weldments and castings for liquid helium service are reviewed. The tensile properties and fracture toughness of a series of five CF8M castings with delta-ferrite contents ranging from 0 to 28% were measured at 4 K. Work is continuing on a study to relate metallographic observations of duplex austenite delta-ferrite microstructures to the deformation and fracture of stainless steel welds and castings. The fracture toughness and fatigue crack growth rates of a 25Mn-5Cr-1Ni alloy, plate and welds, were measured at 4 K. Two 316L stainless steel weldments were tested at 4 K in support of the LCP program. The elastic properties of 316L stainless steel welds have been related to the texture in the weldment. An improved method of ultrasonic testing of stainless steel weldments was conceived and demonstrated; the method uses electromagnetic acoustic transducers (EMATs) to inspect the weldments with horizontal shear (SH) waves that are inherently less sensitive to the anisotropy of stainless steel welds. The research planned for FY 82 is also described

  11. Surface hardening of two cast irons by friction stir processing

    International Nuclear Information System (INIS)

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  12. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author)

  13. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang

    2009-01-01

    @@ Preface Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc.

  14. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    @@ Vermicular graphite cast iron(VG iron for short in the following sections)is a type of cast iron in which the graphite is intermediate in shape between flake and spheroidal.Compared with the normal flake graphite in grey iron, the graphite in VG iron is shorter and thicker and shows a curved, more rounded shape.Because its outer contour is exactly like a worm, hence it is called vermicular graphite.

  15. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  16. Inoculation of chromium white cast iron

    OpenAIRE

    D. Kopyciński

    2009-01-01

    It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  17. Modelling of flow phenomena during DC casting

    OpenAIRE

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instantaneous transformation, but occurs in temperature interval. In the casting process the latent heat is moved away by convection and conduction. A number of problems may occur during solidification, beca...

  18. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad; J.; M.; PAPIS; Joerg; F.; LOEFFLER; Peter; J.; UGGOWITZER

    2009-01-01

    ‘Compound casting’simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, ‘compound casting’ of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu- ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and Al12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protective coating to the substrate.

  19. STUDY ON NUMERICAL SIMULATION OF MOLD-FILLING AND SOLIDIFICATION PROCESSES OF SHAPED CASTING

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The latest progress on the study of numerical simulation of mold-filling and solidification process of shaped casting is reviewed. In mold-filling process simulation of castings, the SOLA-VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S.G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro-structure and prediction of mechanical properties of S.G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings.

  20. Study of the Effect of Shrinkage Porosity on Strength Low Carbon Cast Steel

    Science.gov (United States)

    Ol'khovik, E.

    2015-09-01

    Today there are many computer systems for modeling of the casting technology processes. All of them allow calculating the availability and distribution of the shrinkage porosity in the test casting, but this information allows only making changes in existing casting technology. In this paper you obtain the information about changes in the local and structural mechanical properties of the casting in the presence of its volume shrinkage porosity. Article presents the results of direct experimental studies of technological defects (shrinkage and gas porosity) impact on the mechanical properties of low carbon steel castings. Methods of investigation are also disclosed, including the methods for producing of molded samples obtained at different process conditions and the crystallization apparatus which is described for the measuring of the density of the samples. There are the mathematical relationship for the elastic modulus, yield stress, elongation and fatigue characteristics fracture cast steel with low carbon content in the presence of the volumetric shrinkage porosity.

  1. Application of 3D stereoscopic visualization technology in casting aspect

    Institute of Scientific and Technical Information of China (English)

    Kang Jinwu; Zhang Xiaopeng; Zhang Chi; Liu Baicheng

    2014-01-01

    3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment, and this technology is also beginning to cut a striking ifgure in casting industry and scientiifc research. The history, fundamental principle, and devices of 3D stereoscopic visualization technology are reviewed in this paper. The authors’ research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented. This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidiifcation processes such as temperature, lfuid lfow, displacement, stress strain and microstructure, as wel as the predicted defects such as shrinkage/porosity, cracks, and deformation. It can also be used for other areas relating to 3D models, such as assembling of dies, cores, etc. Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images. The spatial shape is observed better by the new method. The prospect of 3D stereoscopic visualization in the casting aspect is discussed as wel. The need for aided-viewing devices is stil the most prominent problem of 3D stereoscopic visualization technology. However, 3D stereoscopic visualization represents the tendency of visualization technology in the future; and as the problem is solved in the years ahead, great breakthroughs wil certainly be made for its application in casting design and modeling and simulation of the casting processes.

  2. Role of the preliminary heat treatment in anisothermic eutectoid change of the cast iron

    OpenAIRE

    T. Szykowny; T. Giętka; M. Trepczyńska - Łent

    2011-01-01

    Preliminary heat treatment, preceding continuous cooling of the iron casting, assumed in the research, complies with the applied in prac- tice single normalization, double normalization or normalization with slow cooling. In each of these cases continuous cast iron cooling has been begun from the same temperature 925°C. CCT diagrams have been made with use of metallographic method. The mechanism, kinet- ics and the final structure of eutectoid change of the cast iron after such treatment have...

  3. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance,steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.

  4. Rapid precision casting for complex thin-walled aluminum alloy parts

    OpenAIRE

    Xuanpu DONG; Naiyu HUANG; Zitian FAN

    2004-01-01

    Based on Vacuum Differential Pressure Casting (VDPC) precision forming technology and the Selective Laser Sintering (SLS) Rapid Prototyping (RP) technology, a rapid manufacturing method called Rapid Precision Casting (RPC) process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but a...

  5. Casting of Brake Disc and Impeller from Aluminium Scrap Using Silica Sand

    OpenAIRE

    Oladeji A. OGUNWOLE; Oluwafemi A. OLUGBOJI; Matthew S. ABOLARIN

    2007-01-01

    The impeller blade and the brake disc were produced using sand casting method. Wooden patterns of the two castings were constructed incorporating the necessary allowances. Green and moulding technique utilizing locally available materials were used for preparing the moulds. Aluminium scraps were used as the casting material. Melting of the Aluminium scraps was obtained using a crucible furnace and finally pouring the molten metal into the sand mould to obtain the impeller and the brake disc.A...

  6. Artificial intelligence-based control system for the analysis of metal casting properties

    OpenAIRE

    E. Mares; J.H. Sokolowski

    2010-01-01

    Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (...

  7. Artificial intelligence-based control system for the analysis of metal casting properties

    Directory of Open Access Journals (Sweden)

    E. Mares

    2010-06-01

    Full Text Available Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (Case-Based Reasoning into Thermal Analysis Data Acquisition Software (NI LabView was developed to analyze casting component properties. The thermal data was tested in terms of accuracy, reliability and timeliness in order to secure metal casting process effectiveness.Findings: Quantitative values were defined as “Low”, “Medium” and “High” to assess the level of improvement in the metal casting analysis by means of the Artificial Intelligence-Based Control System (AIBCS. The traditional process was used as a reference to measure such improvement. As a result, the accuracy, reliability and timeliness were significantly increased to the “High” level.Research limitations/implications: Presently, the AIBCS predicts a limited number of casting properties. Due to its flexible design more properties could be added.Practical implications: The AIBCS has been successfully used at the Ford/Nemak Windsor Aluminum Plant (WAP to analyze Al casting properties of the engine blocks.Originality/value: The metal casting research community has immensely benefited from these developed information technologies that support the metal casting process.

  8. Solidification microstructure of M2 high speed steel by different casting technologies

    Directory of Open Access Journals (Sweden)

    Zhou Xuefeng

    2011-08-01

    Full Text Available The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.

  9. A description of particle shape homogeneity in the space of composite suspension casting

    OpenAIRE

    K. Gawdzińska; S. Berczyński; R. Chylińska; J. Grabian

    2011-01-01

    The presented analysis of the particle shape homogeneity of the reinforcement phase in the space of composite casting is made by meansof the descriptive statistics method and the analysis of variance. The reinforcement phase consisted of SiC particles with 15% content,while the matrix was an AlSi11 alloy. The composites were made by the mechanical stir casting method.

  10. Untouchable castes of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Kharinin Artem Igorevich

    2015-04-01

    Full Text Available The Untouchable Castes of Uttar Pradesh are examined in this article. This region is one of the most populated in India. Also it is one of the most social mixed-composed in whole State. That’s why main conclusions which were made on this material can be extrapolated to all social space of country. The authors choose four ethno-caste groups, which represent the majority in untouchables and the three smallest in jaties. Their positions in regional hierarchy and economic specialization are analyzed in detail. There are a lot of information about their number, social structure, literacy rating, endogamy, day-to-day practices, customs and other features. Special accents were pointed on mind orientation of their elites toward integration in modern society or, conversely, toward the conservation of traditional forms of existence. The issues of origin and social evolution of untouchable castes of Uttar Pradesh are examined. There is assessment of castes’ sanskritization or other forms of social selfdevelopment. The quality of “scheduled” castes social environment is analyzed. As a marks of its positiveness the data about discrimination untouchables from other social groups and degree of political representativeness of “scheduled” castes, accessibility of education and labour were chosen. The conclusions were made about development degree of some castes. The factors that play role in positive changes in contemporary conditions were determined. The authors put forward their own hypothesis of future development of untouchable castes in Uttar Pradesh. Empiric base of this article was established on sources that have Indian origin and historical and social research of outstanding western indologies.

  11. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  12. Fillability of Thin-Wall Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  13. Instant Casting Movie Theater: The Future Cast System

    Science.gov (United States)

    Maejima, Akinobu; Wemler, Shuhei; Machida, Tamotsu; Takebayashi, Masao; Morishima, Shigeo

    We have developed a visual entertainment system called “Future Cast” which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  14. Research progress on squeeze casting in China

    Institute of Scientific and Technical Information of China (English)

    Li Yuanyuan; Zhang Weiwen; Zhao Haidong; You Dongdong; Zhang Datong; Shao Ming; Zhang Wen

    2014-01-01

    Squeeze casting is a technology with short route, high efficiency and precise forming, possessing features of casting and plastic processing. It is widely used to produce high performance metallic structural parts. As energy conservation and environmental protection concerns have risen, lightweight and high performance metal parts are urgently needed, which accelerated the development of squeeze casting technology over the past two decades in China. In this paper, research progress on squeeze casting aloys, typical parts manufacturing and development of squeeze casting equipment in China are introduced. The future trend and development priorities of squeeze casting are discussed.

  15. Shape-Simplification Analysis Model for Fatigue Life Prediction of Casting Products Considering Internal Defects

    International Nuclear Information System (INIS)

    Internal defects are a major concern in the casting process because they have a significant influence on the strength and fatigue life of casting products. In general, they cause stress concentration and can be a starting point of cracks. Therefore, it is important to understand the effects of internal defects on mechanical properties such as fatigue life. In this study, fatigue experiments on tensile specimens with internal defects were performed. The internal defects in the casting product were scanned by an industrial CT scanner, and its shape was simplified by ellipsoidal primitives for the structural and fatigue analysis. The analysis results were compared with experimental results for casting products with internal defects. It was demonstrated that it is possible to consider internal defects of casting products in stress and fatigue analysis. The proposed method provides a tool for the prediction of the fatigue life of casting products and the investigation of the effects of internal defects on mechanical performance

  16. Casting of Brake Disc and Impeller from Aluminium Scrap Using Silica Sand

    Directory of Open Access Journals (Sweden)

    Oladeji A. OGUNWOLE

    2007-01-01

    Full Text Available The impeller blade and the brake disc were produced using sand casting method. Wooden patterns of the two castings were constructed incorporating the necessary allowances. Green and moulding technique utilizing locally available materials were used for preparing the moulds. Aluminium scraps were used as the casting material. Melting of the Aluminium scraps was obtained using a crucible furnace and finally pouring the molten metal into the sand mould to obtain the impeller and the brake disc.After fettling and cleaning, the two casting were found to be good. The casting yield was found to be 73.59% for the impeller blade and 85.1% for the brake disc which indicate that sound casting was achieved.

  17. Experimental confirmation of physical metal penetration generation and press casting production considering molten metal's pressure control

    Directory of Open Access Journals (Sweden)

    Ryosuke Tasaki

    2012-02-01

    Full Text Available This paper presents a technique for controlling the pressure of a molten metal when using a new type of iron casting method called sand mold press casting to realize high productivity and obtain high-quality products. The past test results using this method showed a casting yield of 90% to 95%, while conventional methods only show a casting yield of 60% to 70%. Although the press casting method does not require a sprue cup or runner channel casting defects such as metal penetration are often caused by the high pressure in the high-velocity pressing part of this casting process. Therefore, we proposed a pressure control method with a mathematical model of molten metal pressure, and with it we achieved experimental confirmation of the successful production of brake drums at different pressing temperatures. Results show that the proposed pressing control method can realize sound, penetration-free casting production. However, the theoretical analysis and design of this pressing process had not previously been studied sufficiently, and therefore this paper presents the theoretical design algorithm for the process as well as its experimental confirmation.

  18. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    International Nuclear Information System (INIS)

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  19. Possibility of reconstruction of dental plaster cast from 3D digital study models

    OpenAIRE

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova, Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from th...

  20. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  1. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    Science.gov (United States)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  2. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification of...

  3. Basic properties of 3D cast skeleton structures

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2011-12-01

    Full Text Available Purpose: of this paper is to present recent achievements in field of skeleton structures. The aim of this work is to show results of searching for mechanically and technologically advantageous micro- and macrostructures. Methods of microstructure controlling were described. Most important parameters of the manufacturing process were identified.Design/methodology/approach: The influence of internal topology to stress distribution was described with the use of computer simulations. Simulations of the mold filling processes were also carried out. Real experiments were performed to prove the simulation results. The Qualitative and quantitative metallographic analysis were also carried out.Findings: It was found that the octahedron shape of internal cell causes best stress distribution and that the skeleton castings are a good alternative for cellular materials such as metal foams, lattice structures and sandwich panels. Their structured arranged topology allows precise design of properties.Research limitations/implications: Casting methods used to manufacture materials such as described skeleton castings confirmed their usefulness. Not well known and used yet rheological properties of liquid metals allow obtaining shape complicated structures near to metallic foams but structured arranged.Practical implications: Technological parameters of the skeleton castings manufacturing process were developed. Without use of advanced techniques there is a possibility to manufacture cheap skeleton structures in a typical foundry. With use of advanced technology like 3D printing there are almost unlimited possibilities of the skeleton castings internal topologies.Originality/value: Three dimensional cast skeleton structures with internal topology of octahedron confirmed their usefulness as elements used for energy dissipation. Obtaining the homogenous microstructure in the whole volume of complicated shape castings can be achieved.

  4. Modelling of Mould Filling and Solidification of Castings

    Institute of Scientific and Technical Information of China (English)

    Xu Zhian

    2000-01-01

    An experimental casting for validation has been designed. The casting is composed of two 50×600×2.5 (width×length×thick) thin-wall pieces. One downsprue is located in the middle. A pouring cup with a stopper is used. This design allows to using two different types of moulds simultaneously. An Al-10%Si alloy has been poured at different temperatures. Two effects have been studied: one is the pouring temperature and the other is the moulding method (namely by machine or manually). The filling length is proportional to the pouring temperature. The influence of different moulding methods on mould filling is more complicated. The filling length in the manual-made mould is 1.5 times as long as the one in the machine-made mould due to the different thermal conductivities. Vents have little influence. A finite volume based computer code which can simulate fluid flow during mould filling coupled with heat transfer as well as solidification has been developed in WTCM Foundry Center.. The code can predict cold shut during mould filling and shrinkage defects during solidification. The simulated results are in good agreement with the experiments.In the second part of the paper, an example is given which illustrates how to use computer simulation to aid designing the casting system. The final computational result is compared with the industrial casting. The process of designing castings by using simulation is completely different from the traditional way. The computer aided casting design offers the possibility to obtain a sound casting from the first time.

  5. Centrifugal slip casting of components

    International Nuclear Information System (INIS)

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag

  6. Search for chameleons with CAST

    OpenAIRE

    Anastassopoulos, V.; Arik, M.; Aune, S.(IRFU, Centre d' Etudes Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France); Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Christensen, F.; J. I. Collar; T. Dafni; Davenport, M.; K. Desch; Dermenev, A.

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\\\\beta_{\\\\rm m}$) and to photons ($\\\\beta_{\\\\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\\\\,$keV to 400$\\\\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\\\\,$eV. Even t...

  7. Now-casting Irish GDP

    OpenAIRE

    D'Agostino, Antonello; McQuinn, Kieran; O'Brien, Derry

    2008-01-01

    In this paper we present "now-casts" of Irish GDP using timely data from a panel data set of 41 different variables. The approach seeks to resolve two issues which commonly confront forecastors of GDP - how to parsimoniously avail of the many different series, which can potentially influence GDP and how to reconcile the within-quarterly release of many of these series with the quarterly estimates of GDP? The now-casts in this paper are generated by firstly, using dynamic factor analysis to ex...

  8. Cementite Solidification in Cast Iron

    Science.gov (United States)

    Coronado, J. J.; Sinatora, A.; Albertin, E.

    2014-06-01

    Two hypereutectic cast irons (5.01 pct Cr and 5.19 pct V) were cast and the polished surfaces of test pieces were deep-etched and analyzed via scanning electron microscopy. The results show that graphite lamellae intersect the cementite and a thin austenite film nucleates and grows on the cementite plates. For both compositions, graphite and cementite can coexist as equilibrium phases, with the former always nucleating and growing first. The eutectic carbides grow from the austenite dendrites in a direction perpendicular to the primary plates.

  9. Casting behavior of titanium alloys in a centrifugal casting machine.

    Science.gov (United States)

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity. PMID:12593955

  10. Factors contributing to the temperature beneath plaster or fiberglass cast material

    Directory of Open Access Journals (Sweden)

    Hutchinson Mark R

    2008-02-01

    Full Text Available Abstract Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints, brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period. Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of

  11. Sharing casting technological data on web site

    Institute of Scientific and Technical Information of China (English)

    Sun Xun; Li Hailan; Wang Junqing; Piao Dongxue; Hou Gang; Guan Yang; Wang Penghua; Zhu Qiang; Xle Huasheng

    2008-01-01

    Based on database and asp.net technologies, a web platform of scientific data in the casting technology field has been developed. This paper presents the relevant data system structure, the approaches to the data collection, the applying methods and policy in data sharing, and depicts the collected and shared data recently finished. Statistics showed that there are about 20,000 visitors in China every day visiting the related data through the web, proving that many engineers or other relevant persons are interested in the data.

  12. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  13. The heat treatment of Fermanal cast steel

    OpenAIRE

    F. Binczyk; A. Smoliński; J. Szymszal

    2007-01-01

    The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite) is the content of aluminium. The matrix totally austenitic is p...

  14. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  15. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  16. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  17. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  18. Chimerical categories: caste, race, and genetics.

    Science.gov (United States)

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa. PMID:14768649

  19. Pressure distribution in centrifugal dental casting.

    Science.gov (United States)

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing. PMID:355283

  20. Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid-solid composite casting process

    Institute of Scientific and Technical Information of China (English)

    V Javaheri; H Rastegari; M Naseri

    2015-01-01

    High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement indus-tries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain car-bon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The inves-tigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCS/HCWCI bimetal. The interfacial microstructure comprised two distinct lay-ers:a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.

  1. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  2. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  3. Search for chameleons with CAST

    DEFF Research Database (Denmark)

    Anastassopoulos, V.; Arik, M.; Aune, S.;

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm) and to photons (βΥ) via the Primako eect. By reducing the X-ray detectio...

  4. Advanced Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  5. CENTRIFUGAL CASTING OF ANTIFRICTION SILUMIN

    OpenAIRE

    V. Ju. Stetsenko; A. I. Rivkin; A. P. Gutev

    2016-01-01

    It is shown that the way of centrifugal casting into water-cooled mould with vertical rotation axis enables to receive hollow slugs with diameter 100–250 mm, with height under 200 mm with wall thickness under 15 mm of antifriction silumin АК15М3, which will replace expensive antifriction bronze.

  6. CENTRIFUGAL CASTING OF ANTIFRICTION SILUMIN

    Directory of Open Access Journals (Sweden)

    V. Ju. Stetsenko

    2016-02-01

    Full Text Available It is shown that the way of centrifugal casting into water-cooled mould with vertical rotation axis enables to receive hollow slugs with diameter 100–250 mm, with height under 200 mm with wall thickness under 15 mm of antifriction silumin АК15М3, which will replace expensive antifriction bronze.

  7. CastML – a language for description of casting products and processes

    OpenAIRE

    A. Stawowy; R. Wrona; A. Macioł

    2008-01-01

    This work presents CastML – an XML dialect for description of casting products and processes. CastML is extension of MatML which is an extensible markup language designed specifically for the exchange of materials information. The set of CastML tags allows to describe materials’ information as well as technological processes, engineering drawings, products classifications and products manufacturers. CastML is simple, understandable and flexible language which makes it attractive for the speci...

  8. Studies of the transition zone in steel – chromium cast iron bimetallic casting

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2010-01-01

    Full Text Available In this work authors presented the results of transition zone studies on steel – cast iron interface in bimetallic casting. During the investigations cylindrical castings with different diameter were prepared of cast iron with steel rods placed in the center. From each bimetallic casting a microsection was prepared for microhardness tests and metalographic analysis, consisting of transition zone measurement, point and linear analysis as well as quantitative analysis.

  9. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author)

  10. Effect of Stone Cast Type on Complete Denture Base Adaptation

    Directory of Open Access Journals (Sweden)

    Salman Hamdan

    2016-06-01

    Full Text Available Introduction: Few researches have been conducted researches on the influence of the type of dental stone used for fabrication of casts on the adaptation of denture bases. The purpose of this study was to compare the effect of two types of stone casts on the accuracy of fit in complete denture bases. Methods: Using sixty fully replicated master casts obtained by duplicating a metal die representing an edentulous maxillary arch, 30 casts were poured in type III dental stone and 30 made from type V dental stone. All dentures were completely waxed using a same thickness of base plate wax and teeth were made for the purpose of accuracy. Following polymerization in the same working conditions, dentures were trimmed. After silicone injection between each denture and metal die was performed, weighing the elastomeric silicone layer was performed to study adaptation of dentures. Metal die was used both before copying the casts and   after storing them in water for two months. Results: The values ​​for silicone layer weight (in grams in the group with dental stone type III were greater than the values in type V  regardless of the studied period (both after polymerization and after water immersion for a period of two months in the sample (p

  11. Sensitivity analysis for casting process under stochastic modelling

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2015-09-01

    Full Text Available The present paper studies the reliability analysis of the casting process in foundry work using a probabilistic approach. As foundry industries in many developing countries suffer from poor quality of casting due to improper management, lack of resources and wrong working methods followed, which results in the decrement of productivity. Hence, to ensure the quality and productivity, favorable steps must be taken. The considered casting system has four main types of defects; namely mold shift, shrinkage, cold shut and blowholes. The complete casting system can fail due to the misalignment of the mold and combination of defects such as shrinkage and blow holes and can also fail by defects of shrinkage, blow holes and cold shut, simultaneously. The system is analyzed with the help of the supplementary variable technique and Laplace transformation. The availability, reliability, mean time to failure, sensitivity analysis and cost-effectiveness have been evaluated for the considered system. The results have been shown with the help of graphs, which predicts the behavior of the casting process system when any one of the defect or more than one defect appears.

  12. Metal-matrix interpenetrating phasecomposites produced by squeeze casting

    Institute of Scientific and Technical Information of China (English)

    沈彬; 胡文彬; 刘磊; 周伟; 张荻

    2002-01-01

    On the basis of the proposition and manufacture of a new type of metal-matrix interpenetrating phase composites (MMIPCs) by vacuum high-pressure infiltration, squeeze casting method was chosen for further study on this new type of MMIPCs. By employing the highly porous ceramic perform made from SHS reaction of Al-TiO2-C system, squeeze casting process was studied in detail. By means of OM, SEM and TEM, the obtained highly porous SHS reaction products and the resulting MMIPCs for further understanding were closely examined and analyzed.

  13. Numerical Analysis of Secondary Cooling in Continuous Slab Casting

    Institute of Scientific and Technical Information of China (English)

    Kee-Hyeon Cho; Byung-Moon Kim

    2008-01-01

    In the present study, a numerical optimization program has been developed for predicting the optimal secondary cooling patterns in a continuous slab caster. Optimization strategy using Broydon-Fletcher-Goldfarb-Shanno (BFGS) method is carried out by determining the constant heat transfer coefficients in each spray zone, which could satisfy the casting conditions and metallurgical criteria specified by the engineer. From the present results, it is found that even a slight variation in the pouring temperature, allowable surface temperature, and casting speed could give rise to the changes in the cooling pattern throughout the spray zones.

  14. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  15. Modeling fluid-solid thermomechanical interactions in casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Cruchaga, M.A.; Celentano, D.J.; Lewis, R.W.

    2004-02-01

    An integrated formulation for the analysis of casting processes is presented In this work. This model involves the description of the evolution and the coupled interactions of the flow, thermal and mechanical fields occurring during the liquid-solid transformation of the solidifying metal. The corresponding discretized formulation is solved in the context of a fixed-mesh finite element method. Numerical results applying this methodology in two cylindrical casting specimens are first presented to assess the Influence of different phenomena occurring during the process. Moreover, these simulations are compared with available experimental data. (author)

  16. Numerical simulation of low pressure die-casting aluminum wheel

    Institute of Scientific and Technical Information of China (English)

    Mi Guofa; Liu Xiangyu; Wang Kuangfei; Fu Hengzhi

    2009-01-01

    The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC) of an aluminum wheel. By analyzing the mold-filling and solidification stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  17. Plaster mould casting process of AlSi11 alloy

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2009-07-01

    Full Text Available The paper presents the results of the crystallization and cooling process of AlSi11 silumin in the plaster mould with TDA method and describes the impact of the preparation of plaster mould and liquid silumin on received microstructure and quality of casting. The effect of the pouring temperature of silumin on porosity and filling of mould cavity was investigated. The nature and rate of change of temperature in casting and the formation of the microstructure was shown by means thermal and derivative curves. Through the use of control samples in range of a thickness of 0.5 ÷ 4 mm confirmed the possibility of obtaining thin-walled silumin castings in pre-heated before plaster moulds. It has been proved that changing the parameters of pre-treatment moulds of gypsum, the pouring temperature and modification of silumin you can control the crystallization process, obtained microstructure and properties Rm, RP02 and HB.

  18. Hot-top electromagnetic casting research of Al thin slab

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The hot-top EMC (electromagnetic casting) method was put forward, namely, the shape of top liquid column was formed by the hot-top in the screen and the semi-suspended liquid column was formed by the electromagnetic force nearby the liquid-solid interface frontier. Using the numerical simulating technique, the temperature distribution was discussed, the effect of parameters such as upper-conduct distance (UCD), cool ing water rate of flow, pouring temperature and liquid column height on casting velocity were studied, the relationship among them was confirmed finally. According to the calculated results, the hot-top EMC shaping system was designed and a lot of experiments were performed. The pure Al thin slabs of 480 mm × 20 mm × 850 mm were made successfully. The result showed that the casting velocity curve obtained experimentally almost coincides to the calculated one.

  19. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2009-02-01

    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  20. Technical parameters in electromagnetic continuous casting of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    李玉梅; 张兴国; 贾非; 姚山; 金俊泽

    2003-01-01

    The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temperature as well as induction heat on casting speed, were studied. The results show that among the technical parameters the distance from the position of the cooling water holes to the bottom of the mold is the most important factor, whose change from 20mm to 15mm and from 15mm to 10mm causes the setting rate increasing respectively by 0.14mm/s and 0.3mm/s.The calculated results also agree with the experiment well. The simulation program can be used to determine technical parameters of electromagnetic casting of aluminum ingot effectively.

  1. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    Science.gov (United States)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  2. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  3. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  4. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  5. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  6. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  7. Phase transformations in cast duplex stainless steels

    Science.gov (United States)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  8. Contribute to quantitative identification of casting defects based on computer analysis of X-ray images

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2007-12-01

    Full Text Available The forecast of structure and properties of casting is based on results of computer simulation of physical processes which are carried out during the casting processes. For the effective using of simulation system it is necessary to validate mathematica-physical models describing process of casting formation and the creation of local discontinues, witch determinate the casting properties.In the paper the proposition for quantitative validation of VP system using solidification casting defects by information sources of II group (methods of NDT was introduced. It was named the VP/RT validation (virtual prototyping/radiographic testing validation. Nowadays identification of casting defects noticeable on X-ray images bases on comparison of X-ray image of casting with relates to the ASTM. The results of this comparison are often not conclusive because based on operator’s subjective assessment. In the paper the system of quantitative identification of iron casting defects on X-ray images and classification this defects to ASTM class is presented. The methods of pattern recognition and machine learning were applied.

  9. Recent developments of InteCAST software and its applications on special castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    with the development of computer technology, foundry CAE technology has made rapid progress. Commercial software packages of casting process simulation, therefore, have become more and more practical. This paper introduces both the recent developments and some applications of InteCAST software, a commercial numerical simulation software package for foundry industry, with more than 120 customers all over the world. The function modules of InteCAST8.0 and some new techniques, such as uneven mesh technology for mold filling simulation and numerical mouse technology for data visualization, were introduced. Several applications on special castings such as investment casting, low pressure die casting, and high pressure die casting, were given. These applications showed that the software can help engineers to optimize casting process by forecasting casting defect.

  10. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    Science.gov (United States)

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used. PMID:7012322

  11. Search for chameleons with CAST

    CERN Document Server

    Anastassopoulos, V; Aune, S; Barth, K; Belov, A; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Christensen, F; Collar, J I; Dafni, T; Davenport, M; Desch, K; Dermenev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Giomataris, I; Hailey, C; Haug, F; Hasinoff, M D; Hofmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakobsen, A; Jakovčić, K; Kaminski, J; Karuza, M; Kavuk, M; Krčmar, M; Krieger, C; Krüger, A; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Ortega, I; Papaevangelou, T; Pivovarov, M J; Raffelt, G; Riege, H; Rosu, M; Ruz, J; Savvidis, I; Solanki, S K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K; Brax, P; Lavrentyev, I; Upadhye, A

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\\beta_{\\rm m}$) and to photons ($\\beta_{\\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\\,$keV to 400$\\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\\,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $\\beta_{\\gamma}\\!\\lesssim\\!10^{11}$ for $1<\\beta_{\\rm m}<10^6$.

  12. Search for chameleons with CAST

    Directory of Open Access Journals (Sweden)

    V. Anastassopoulos

    2015-10-01

    Full Text Available In this work we present a search for (solar chameleons with the CERN Axion Solar Telescope (CAST. This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm and to photons (βγ via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βγ≲1011 for 1<βm<106.

  13. Casting routes for porous metals production

    Directory of Open Access Journals (Sweden)

    P. Lichy

    2012-01-01

    Full Text Available The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.

  14. Al-Al compound casting

    Energy Technology Data Exchange (ETDEWEB)

    Papis, Konrad; Uggowitzer, Peter; Loeffler, Joerg [ETH Zurich, Laboratory of Metal Physics and Technology, Zurich (Switzerland)

    2007-07-01

    'Compound casting' is a process where a melt is cast onto or around a solid metallic 'insert'. It is the realization of a simple joining procedure for light metals aimed at weight-saving. Difficulties inherent in joining aluminium are its natural oxide layer and the formation of intermetallic phases. In this project, both the solid substrate and the melt used are aluminium alloys containing various alloying elements (Cu, Si, Zn in the melt, Mg in the substrate). Compounds with flawless interfaces (no contraction defects, no oxides) were successfully produced by replacing the oxide layer with a zinc layer. This was accomplished by pickling the substrate in a solution containing zincate ions, implying a redox reaction by which zinc is deposited in its metallic form. The composition and mechanical properties of the compounds' interfacial regions were investigated by SEM/EDX and microhardness measurements following the 'compound casting' process and successive heat treatments. DICTRA calculations were carried out to simulate the diffusion processes at the interface. The results from the mechanical characterization were compared to the simulations, the conclusion being that diffusion of alloying elements led to precipitation hardening of the compound.

  15. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  16. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    Directory of Open Access Journals (Sweden)

    Daming XU

    2004-08-01

    Full Text Available Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section prcision castings.

  17. Microstructural characterization of second phase regions in cast stainless steels

    International Nuclear Information System (INIS)

    in the microstructure and thinning them using the focused-ion beam method. Details of this preparation method and the results of the phase analysis in the cast stainless steel by TEM will be presented. Comparison of the experimental results with thermodynamic and kinetic models of phase stability and composition will help explain the observations and help predict possible processing routes to achieve improved properties. This work was supported by the US-TIER program. (authors)

  18. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  19. Vascular corrosion casting of human heart

    Directory of Open Access Journals (Sweden)

    J. Vasudeva Reddy

    2013-06-01

    Full Text Available Variation in the morphological pattern of coronary arteries and their major branches is an important factor in the assessment and treatment of coronary heart disease. Detailed knowledge of the blood supply of the heart is necessary today because of the wider practice of cardiac surgery, and also for better understanding of the anomalous branches, anastomosis and dominance pattern in circulation caused by coronary vasculature. We utilized 80 human heart specimens and found right dominance in 69 specimens, left dominance in 9 specimens and balanced type of circulation in 2 specimens. We observed anastomosis between the major arteries in arteriogram but in vascular corrosion method we did not found because cast substance interpretation to minor vessels is too difficult. The present study acknowledges about Coronary vascular pattern, circulatory dominance of the arteries and by using the vascular corrosion method. [Int J Res Med Sci 2013; 1(3.000: 237-239

  20. Acoustic energy transmission in cast iron pipelines

    Science.gov (United States)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  1. Integration of digital dental casts in cone-beam computed tomography scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Stefaan J. Bergé; Anne Marie Kuijpers-Jagtman

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic ...

  2. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu; Fæster, Søren; Sturlason, Asger

    2014-01-01

    components. The defect distribution is usually affected by the manufacturing process. In this paper, two methods of casting, sand casting and chill casting are considered. These are compared in statistical analyses of a large number of representative test samples using two basic stochastic models for the......Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...

  3. Development of continuous ingot casting process for uranium dendrites in pyroprocess

    International Nuclear Information System (INIS)

    A continuous ingot casting process was developed to improve the productivity of ingot fabrication. A supplemental charge method in which uranium dendrites were additionally added into molten uranium was introduced for the first time, and a tilting system of a melting crucible to mold was developed. The feasibility of these processes was confirmed by a uranium melting test at the laboratory scale, successfully obtaining a uranium ingot in about 4.6 kg. Based on the results, we scaled up the ingot casting processes at the engineering scale. A rotating continuous feeder was installed for the ceaseless feeding of the dendrites into molten uranium. The tilting system and eight mold crucibles on a turn-table were adopted. The operability of the continuous ingot casting process at the engineering scale was successfully confirmed by a melting test of copper. We consider that the engineering scale equipment can cast above a 50 kg U/batch with the continuous casting processes. (author)

  4. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Directory of Open Access Journals (Sweden)

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  5. New Technique of Casting-rolling Strips for Semi-solid Magnesium Alloys

    Institute of Scientific and Technical Information of China (English)

    Shuisheng XIE; Maopeng GENG; Xinmin ZHOU; Ying ZHANG; Songyang ZHANG; Yanchun WANG; Guojie HUANG

    2005-01-01

    The conjugation of semi-solid process technique and casting-rolling technique applied to produce the magnesium strips was studied. The semi-solid slurry hasbeen prepared continuously by the mechanical method and its temperature was controlled strictly at the same time. AZ91D and AZ31 casting magnesium alloys were applied to the experiment.The casting-rolling strips with non-dendritic structure were obtained and its main mechanical property is better. The process ability of the casting-rolling strips was studied. It is significative to link the semi-solid process techniques and casting-rolling techniques, through which we can get high quality magnesium alloy strips with non- dendritic structure and improve the overall properties of the products.

  6. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-liang; LIU Rui-xiang; C. Beckermann

    2006-01-01

    The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately,numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  7. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  8. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  9. Chilling Tendency and Chill of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    E. Fra(s); M. Górny; W. Kapturkiewicz; H. López

    2008-01-01

    An analytical expression is presented for the susceptibility of liquid cast iron to solidify according tothe Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT). The analysis incorpo-rates the nucleation and growth processes associated with the eutectic transformation. The CT is related tothe physicochemical state of the liquid, the eutectic cells in the flake graphite, and the number of nodules innodular cast iron. In particular, the CT can be related to the critical wall thickness, Scr, or the chill width, Wcr,in wedge shaped castings. Finally, this work serves as a guide for understanding the effect of technical fac-tors such as the melt chemistry, the spheroidizing and inoculation practice, and the holding time and tam-perature on the resultant CT and chill of the cast iron. Theoretical calculations of Scr and Wcr compare wellwith experimental data for flake graphite and nodular cast iron.

  10. Plastic-casting intrinsic-surface unique identifier (tag)

    International Nuclear Information System (INIS)

    This report describes the development of an authenticated intrinsic-surf ace tagging method for unique- identification of controlled items. Although developed for control of items limited by an arms control treaty, this method has other potential applications to keep track of critical or high-value items. Each tag (unique-identifier) consists of the intrinsic, microscopic surface topography of a small designated area on a controlled item. It is implemented by making a baseline plastic casting of the designated tag area and usually placing a cover (for example, a bar-code label) over this area to protect the surface from environmental alteration. The plastic casting is returned to a laboratory and prepared for high-resolution scanning electron microscope imaging. Several images are digitized and stored for use as a standard for authentication of castings taken during future inspections. Authentication is determined by numerically comparing digital images. Commercially available hardware and software are used for this tag. Tag parameters are optimized, so unique casting images are obtained from original surfaces, and images obtained from attempted duplicate surfaces are detected. This optimization uses the modulation transfer function, a first principle of image analysis, to determine the parameters. Surface duplication experiments confirmed the optimization

  11. The effect of thermohydrogen treatment on the structure and properties of casts obtained from titanium alloys

    International Nuclear Information System (INIS)

    The method based on the combination of high temperature gas-static and thermal hydrogen treatments is suggested to increase mechanical properties of cast pseudo-α and (α+β)-titanium alloys. The study is carried out using alloys VT20L, VT23L and alloy Ti-6%Al-2%Mo-4%Zr-2%Sn. It is shown that the method proposed provides the change in a cast structure, an increase in density of castings, an increase of strength properties by 10-20% and fatigue by a factor of 1.5-2 at satisfactory ductility and impact strength

  12. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of...... the unetched, colour-etched and deep-etched samples. It was confirmed that in irons with high sulphur content (0.12 wt%) nucleation of type-A and type-D graphite occurs on Mn sulphides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35% produced superfine interdendritic...

  13. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  14. Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings

    Directory of Open Access Journals (Sweden)

    Xuanpu DONG

    2005-05-01

    Full Text Available The newly designed vacuum differential pressure casting (VDPC unit was introduced, by which the capability of the VDPC process to produce thin-walled complicated Al-alloy castings, that are free from oxides, gas pore and shrinkage cavity and thus enhance overall part quality, was studied. Experimental results were compared with those of traditional gravity pouring and vacuum suction casting. The first series of experiments were focused on investigating thecastability of thin section Al-alloy casting. In the second series of experiments the metallographic evidence, casting strength and soundness were examined. Finally, case studies of very interesting thin walled complicated casting applications were described. The advantages of the described technique have made possible to produce thin walled complicated Al-alloy casting (up to a section thickness of 1 mm, which is not practical for gravity pouring and vacuum suction casting.

  15. Physiology as a caste-defining feature

    OpenAIRE

    Robinson, E. J. H.

    2009-01-01

    Division of labour is a key factor in the ecological success of social insects. Groups of individuals specializing on a particular behaviour are known as castes and are usually distinguished by morphology or age. Physiology plays a key role in both these types of caste, in either the developmental physiology which determines morphology, or the temporal changes in physiology over an insect's life. Physiological correlates of morphological or temporal caste include differences in gland structur...

  16. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  17. Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network

    International Nuclear Information System (INIS)

    The effect of the heat transfer coefficient at the casting-mold interface is of prime importance to improve the casting quality, especially for castings in metal molds. However, it is difficult to determine the values of heat transfer coefficient from experiments due to the influence of various factors, such as contacting pressure, oxides on surfaces, roughness of surfaces, coating material, coating thickness and gap formation caused by the deformation of casting and mold, etc. In the present paper, the interfacial heat transfer coefficient (IHTC) between the casting and metal mold is identified by using the method of inverse analysis based on measured temperatures, neural network with back-propagation algorithm and numerical simulation. Then, by applying the identified IHTC in finite element analysis, the comparison between numerical calculated and experimental results is made to verify the correctness of method. The results show that the numerical calculated temperatures are in good agreement with experimental ones. These demonstrate that the method of inverse analysis is a feasible and effective tool for determination of the casting-mold IHTC. In addition, it is found that the identified IHTC varies with time during the casting solidification and varies in the range of about 100-3200 Wm-2K-1. The characteristics of the time-varying IHTC have also been discussed.

  18. The improvement of aluminium casting process control by application of the new CRIMSON process

    International Nuclear Information System (INIS)

    All The traditional foundry usually not only uses batch melting where the aluminium alloys are melted and held in a furnace for long time, but also uses the gravity filling method in both Sand Casting Process (SCP) and Investment Casting Process (ICP). In the gravity filling operation, the turbulent behaviour of the liquid metal causes substantial entrainment of the surface oxide films which are subsequently trapped into the liquid and generate micro cracks and casting defects. In this paper a new CRIMSON process is introduced which features instead of gravity filling method, using the single shot up-casting method to realize the rapid melting and rapid filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage of the new process is the drastic reduction of energy consumption due to shortened melting and filling time. Two types of casting samples from SCP and ICP were compared with the new process. The commercial software was used to simulate the filling and solidification processes of the casting samples. The results show that the new process has a more improved behaviour during filling a mould and solidification than the two conventional casting processes.

  19. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    OpenAIRE

    Xu, Daming; LI, XIN; Geving AN

    2004-01-01

    Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force fi...

  20. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for...

  1. Aluminium Alloy Cast Shell Development for Torpedoes

    Directory of Open Access Journals (Sweden)

    Vijaya Singh

    2005-01-01

    Full Text Available The sand-cast aluminium alloy cylindrical shells were developed for the advanced experimental torpedo applications. The components had intricate geometry, thin-walled sections, and stringent property requirements. The casting defects, such as shrinkage, porosity, incomplete filling of thin sections, cold shuts, inclusions and dimensional eccentricity, etc were found inthe initial castings trials. improvements in casting quality were achieved through modified methodology, selective chilling, risering, and by introducing ceramic-foam filters in the gatingsystem. The heat-treated and machined components met radiographic class I grade C/E standards, mechanical properties to BS1490 specifications, and leakage and hydraulic pressure testrequirements relevant for such applications.

  2. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  3. Cast functional accessories for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2010-10-01

    Full Text Available The study gives examples of the cast functional accessories operating in furnaces for the heat treatment of metals and alloys. The describeddesign solutions of castings and their respective assemblies are used for charge preparation and handling. They were put in systematicorder depending on furnace design and the technological purpose of heat treatment. Basic grades of austenitic cast steel, used for castings of this type, were enumerated, and examples of general guidelines formulated for their use were stated. The functional accessories described in this study were designed and made by the Foundry Research Laboratory of West Pomeranian University of Technology.

  4. Ductile iron castings fabricated using metallic moulds

    International Nuclear Information System (INIS)

    The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed. (Author)

  5. Casting made simple using modified sprue design: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Eswaran Baskaran

    2014-01-01

    Conclusion: The new sprue technique can be an alternative and convenient method for casting which would minimize metal wasting and less time consuming. However, further studies with same technique on various parameters are to be conducted for its broad acceptance.

  6. Fused Cast Alumina Refractory Products for Glass Melting Furnace JC/T 494-92(96)

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2008-01-01

    @@ 1 Scope This standard specifies the technical require-ments, test methods, inspection rules, marking, pack-ing, transportation, and storage of fused cast alumina refractory products for glass melting furnace.

  7. GAS-CREATION OF SEPARATING COVERINGS FOR MOULDS FOR DIE CASTING OF ALUMINIUM ALLOYS

    OpenAIRE

    A. M. Mihaltsov; A. A. Pivovarchik; A. A. Subota

    2016-01-01

    The methods of experiments on determination of gascreating ability of different separating coverings for the moulds of aluminium alloys die casting are given and described in the article, and the results of investigation are given as well.

  8. Spray casting project final report

    International Nuclear Information System (INIS)

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  9. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  10. Microdefects in cast multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.; Klinger, D.; Bergmann, S. [Inst. of Crystal Growth Berlin (Germany)

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  11. Control of Cast Iron Microstructure

    Science.gov (United States)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  12. Thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CR8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties have been investigated using Charpy impact specimens and fracture toughness specimens aged at 300∼400 C up to 40,000 hours. As the results, effects of thermal aging on mechanical properties of these stainless steels were identified and a good relationship between Charpy impact energy and fracture toughness was obtained. In addition, prediction method for Charpy absorbed energy and fracture toughness was established

  13. Fractal structures in casting films from chlorophyll

    Science.gov (United States)

    Pedro, G. C.; Gorza, F. D. S.; de Souza, N. C.; Silva, J. R.

    2014-04-01

    Chlorophyll (Chl) molecules are important because they can act as natural light-harvesting devices during the photosynthesis. In addition, they have potential for application as component of solar cell. In this work, we have prepared casting films from chlorophyll (Chl) and demonstrated the occurrence of fractal structures when the films were submitted to different concentrations. By using optical microscopy and the box-count method, we have found that the fractal dimension is Df = 1.55. This value is close to predicted by the diffusion-limited aggregation (DLA) model. This suggests that the major mechanism - which determines the growth of the fractal structures from Chl molecules - is the molecular diffusion. Since the efficiencies of solar cells depend on the morphology of their interfaces, these finds can be useful to improve this kind of device.

  14. Methodology of analysis of casting defects

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-08-01

    Full Text Available Purpose: The goal of this publication is to present the methodology of the automatic supervision and controlof the technological process of manufacturing the elements from aluminium alloys and of the methodology ofthe automatic quality assessment of these elements basing on analysis of images obtained with the X-ray defectdetection, employing the artificial intelligence tools. The methodologies developed will make identification andclassification of defects possible and the appropriate process control will make it possible to reduce them andto eliminate them - at least in part.Design/methodology/approach: The methodology is presented in the paper, making it possible to determine thetypes and classes of defects developed during casting the elements from aluminium alloys, making use photosobtained with the flaw detection method with the X-ray radiation. It is very important to prepare the neuralnetwork data in the appropriate way, including their standardization, carrying out the proper image analysis andcorrect selection and calculation of the geometrical coefficients of flaws in the X-ray images. The computersoftware was developed for this task.Findings: Combining of all methods making use of image analysis, geometrical shape coefficients, and neuralnetworks will make it possible to achieve the better efficiency of class recognition of flaws developed in thematerial.Practical implications: The presented issues may be essential, among others, for manufacturers of carsubassemblies from light alloys, where meeting the stringent quality requirements ensures the demanded servicelife of the manufactured products.Originality/value: The correctly specified number of products enables such technological process control thatthe number of castings defects can be reduced by means of the proper correction of the process.

  15. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  16. Detonation Initiation of Heterogeneous Melt-Cast High Explosives

    Science.gov (United States)

    Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent

    2015-06-01

    The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.

  17. Temperature field and failure analysis of die-casting die

    Directory of Open Access Journals (Sweden)

    M. Soković

    2007-03-01

    Full Text Available Purpose: Dies for aluminium alloys die-casting fail because of a great number of a different and simultaneously operating factors. Some of them may be controlled to some extent by the die-casting experts.Design/methodology/approach: In the experimental part of our work the failures on the working surface of the fixed half of the testing die for die-casting of aluminium alloys were observed with the use of non-destructive testing methods: such as thermographic analysis, penetrants, and metallographic examination of polymeric replicas.Findings: In the process of the die-casting the primary source of loading is cyclic variation of the temperature; the influence of other loads is relatively insignificant.Research limitations/implications: For economical production of aluminium and aluminium alloys die-castings it is important that the dies have a long working life. The replacement of a die is expensive in both: money and production time.Practical implications: Beside, the die design, the material selection and the process thermal stress fatigue course, which is the consequence of the working conditions, the inhomogeneous and to low initial temperature of the die, contribute to the cracks formation.Originality/value: It is clearly seen from the presented thermographs, that the required temperatures and homogeneity of the temperature field of the discussed case are not possible to reach without the changing both: the heating method and the die design. Therefore in the first stage a solution of the problem should be in changing of the position of heating and/or cooling channels, i.e. their closer shifting to the working surface of the die.

  18. Clean cast steel technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  19. Corrosion resistance of various bio-films deposited on austenitic cast steel casted by lost-wax process and in gypsum mould

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2010-01-01

    Full Text Available This work is the next of a series concerning the improvement of austenitic cast steel utility predicted for use in implantology for complicated long term implants casted by lost-wax process and in gypsum mould. Austenitic cast steel possess chemical composition of AISI 316L medical steel used for implants. In further part of present work investigated cast steel indicated as AISI 316L medical steel. Below a results of electrochemical corrosion resistance of carbon layer and bi-layer of carbon/HAp deposited on AISI 316L researches are presented. Coatings were manufactured by RF PACVD and PLD methods respectively. Obtained results, unequivocally indicates on the improvement of this type of corrosion resistance by substrate material with as deposited carbon layer. While bi-layer of carbon/HAp are characterized by very low corrosion resistance.

  20. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  1. Efficacy of Microwave Disinfection on Moist and Dry Dental Stone Casts with Different Irradiation Times

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2015-07-01

    Full Text Available Objectives: Dental practice contains the use of instruments and multiuse items that should be sterilized or disinfected properly. The aim of the current study was to investigate the effect of microwave irradiation on dental stone cast disinfection in moist and dry condition.Materials and Methods: In this in vitro study, 76 stone casts were prepared by a sterile method. The casts were contaminated by Pseudomonas aeruginosa (ATCC 9027, Staphylococcus aureus (ATCC 6538, Enterococcus faecalis (ATCC 29212 as well as Candida albicans (ATCC 10231. Half the samples were dried for two hours and the other half was studied while still moist. The samples were irradiated by a household microwave at 600 W for 3, 5 and 7 minutes. The microorganisms on the samples were extracted by immersion in tryptic soy broth and .001 ml of that was cultured in nutrient agar media, incubated overnight and counted and recorded as colony forming unit per milliliter (CFU/mL.Results: The findings showed that microorganisms reduced to 4.87 logarithm of CFU/mL value on dental cast within seven minutes in comparison with positive control. Although microbial count reduction was observed as a result of exposure time increase, comparison between moist and dried samples showed no significant difference.Conclusions: Seven-minute microwave irradiation at 600 W can effectively reduce the microbial load of dental stone casts. Wetting the casts does not seem to alter the efficacy of irradiation. Keywords: Microwave Disinfection; Dental Stone Casts; Irradiation Times

  2. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    Science.gov (United States)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  3. Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large- sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings.Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.

  4. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 508-514, 2016. PMID:25939800

  5. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  6. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  7. Laboratory grey cast iron continuous casting line with electromagnetic forced convection support

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-07-01

    Full Text Available The article describes the construction of a 20 mm diameter grey cast iron ingots continuous casting laboratory line. This line is made ofthree main units: melting unit (induction furnace, casting unit and the pulling unit. In order to improve the homogeneity of themicrostructure of ingots (by applying forced convection of liquid metal during the crystallization process in this case a crystallizer system generating the forced movement of liquid metal based on a system of electrical power windings of the AC specific frequency. Thissolution allowed to obtain a homogeneous microstructure of the continuous casting of cast iron EN-GJL-200 species.

  8. Casting defects in low-pressure die-cast aluminum alloy wheels

    Science.gov (United States)

    Zhang, B.; Cockcroft, S. L.; Maijer, D. M.; Zhu, J. D.; Phillion, A. B.

    2005-11-01

    Defects in automotive aluminum alloy casting continue to challenge metallurgists and production engineers as greater emphasis is placed on product quality and production cost. A range of casting-related defects found in low-pressure die-cast aluminum wheels were examined metallographically in samples taken from several industrial wheel-casting facilities. The defects examined include macro- and micro- porosity, entrained oxide films, and exogenous oxide inclusions. Particular emphasis is placed on the impact of these defects with respect to the three main casting-related criteria by which automotive wheel quality are judged: wheel cosmetics, air-tightness, and wheel mechanical performance.

  9. Analysis of influence of chemical composition of Al-Si-Cu casting alloy on formation of casting defects

    Directory of Open Access Journals (Sweden)

    R. Maniara

    2007-04-01

    Full Text Available Purpose: A methodology of the computer-aided determining relationship between chemical composition of aluminum alloy and castings quality was presented in the paper.Design/methodology/approach: To resolve the problem artificial neural networks were used. Classification problems were evaluated by the consideration mainly the values of mistakes and correct answers of networks for test data. On the basis of data analyzed by the neural network, which has the best quality classification of chemical composition of tested material, the concentration of alloying elements range, which have an effect on formation casting defects, were developed to eliminate them in the future.Findings: Combining of all methods making use of chemical composition of aluminium alloy and neural networks will make it possible to achieve a better casting quality.Research limitations/implications: The presented issues may be use, among others, for manufacturers of car subassemblies from light alloys, where meeting the stringent quality requirements ensures the demanded service life of the manufactured products.Originality/value: The correctly specified number of chemical composition of aluminum alloy enables such technological process control where the number of castings defects can be reduced by means of the proper correction of the process.

  10. The effect of tape casting operational parameters on the quality of adjacently graded ceramic film

    DEFF Research Database (Denmark)

    Bulatova, Regina; Gudik-Sørensen, Mads; Della Negra, Michela;

    2016-01-01

    For small length tape casting of ceramic slurries varying green film thickness is often a problem. To optimise this, the following parameters were investigated: single blade, double blade, using a pump system and a modelled speed change mode have been analysed. Advantages and limitations of every...... method are described here. The tape casting experiments were built to be generic in order to allow the control of various processing conditions. From these results, the single-blade technique was chosen for a study of side-by-side tape casting. The influence of the geometric parameters of partitioning...

  11. Influence of cast surface finishing process on metal-ceramic bond strength

    OpenAIRE

    Denis Vojvodić,; Zdravko Schauperl,; Martina Lauš-Šošić,; Ketij Mehulić,; Sanja Štefančić

    2009-01-01

    Aim To investigate the influence of different cast surface finishingprocess on metal-ceramics bond strength.Methods Six Co-Cr alloy sample groups were cast (Wirobond C,BEGO, Bremen, Germany) and randomly selected for use in oneof the six different final processing of the casting surface (oxidation,sandblasting with 110 and 250 µm Al2O3, bonding agent,hydrochloric acid solution) prior to application of feldspathic ceramic(Duceram Kiss, DeguDent, Hanau-Wolfgang, Germany).The testing was carried...

  12. Corrosion Behavior of the As-cast and Heat-treated ZA27 Alloy

    OpenAIRE

    B. Bobic; Mitrovic, S.; M. Babic; A. Vencl; I. Bobic

    2011-01-01

    Corrosion behaviour of the as-cast and heat-treated ZA27 alloy was examined. The alloy was prepared by conventional melting and casting route and then thermally processed by applying T4 heat treatment regime (solutionizing at 370 °C for 3 hours followed by water quenching and natural aging). Corrosion rate of the as-cast and heat-treated ZA27 alloy was determined in 3.5 wt. % NaCl solution through immersion test using both weight loss method and polarization resistance measurements. It was sh...

  13. Design and Fabrication of a Stir Casting Furnace Set-Up

    Directory of Open Access Journals (Sweden)

    Manabhanjan Sahoo

    2015-07-01

    Full Text Available Now-a-days a large variety of heating techniques/furnaces are available. There may be many method for supplying heat to the work but heat is produced either by combustion of fuel or electric resistance heating. Taking into consideration the effect of cost, safety, simplicity and ease of construction we are going for an electrical resistance heating furnace with indirect heating provisions. The stir casting furnace has two main parts that enable to perform all its operations, they are: Furnace Elements and Control Panel. This paper shows the design and fabrication of stir-casting furnace and aluminium melted and casted to form.

  14. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  15. Heat transfer in the continuous casting of steels. Part 2. Secondary cooling

    International Nuclear Information System (INIS)

    Once the strand leaves the mold, the solidification of steel progresses due to the heat extracted in the secondary cooling zone of the continuous casting machine. In this zone, heat is extracted mainly by: the incidence of water from sprays, radiation to surroundings contact with rolls and run out water accumulated between rolls and strand. In this work, all these mechanisms are evaluated and, when it is possible, they are quantified. Methods which are usually employed to measures solidification profiles in the continuous casting machine are also reviewed. Finally, the incidence of secondary cooling on the quality of cast products is discussed. (Author) 90 refs

  16. The heat treatment of Fermanal cast steel

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-12-01

    Full Text Available The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite is the content of aluminium. The matrix totally austenitic is present in cast steel containing from 0,8 to 0,9% C, from 22 to 24% Mn, and from 4,5 to 5,5% Al. The magnetic properties examined on samples of the Fermanal cast steel were determined by spectroscopy of the Mössbauer effect with isotope 57Fe. The magnetic properties represented by a mean value of the hyperfine magnetic field Bhf and relative magnetic permeability were determined. It has been stated that the level of magnetic properties of the Fermanal cast steel depends on the content of ferrite. The effect of the parameters of solutioning and ageing on the cast steel microstructure and hardness after modification with additions of B, Ti and Nb was investigated.

  17. Low-alloy constructional cast steel

    Directory of Open Access Journals (Sweden)

    D. Bartocha

    2011-07-01

    Full Text Available Production of constructional casting competitive for welded structure of high-strength steel first of all required high metallurgical quality of cast steel. Assumptions, methodology and results of investigation which the aim was determination of the most advantageous: configuration and parameters of metallurgical treatments and ways to modify, in aspects of reach the low-alloy cast steel of the highest quality as possible, are presented. A series of low-alloy cast steel melts modeled on cast steel L20HGSNM was performed, the way of argoning in laboratory induction furnace with a capacity of 50kg was worked out, modifications with additions of FeNb, FeV and master alloy MgCe were performed. During each melts samples of cast steel direct from metal bath were get and series of experimental casting was made. Chemical compositions of melted cast steel, contents of O, N and H were determined as well as influence of additions on structure and nature of impact strength samples fracture were estimated.

  18. Advanced metrology of surface defects measurement for aluminum die casting

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The scientific objective of the research is to develop a strategy to build computer based vision systems for inspection of surface defects inproducts, especially discontinuities which appear in castings after machining. In addition to the proposed vision inspection method theauthors demonstrates the development of the advanced computer techniques based on the methods of scanning to measure topography ofsurface defect in offline process control. This method allow to identify a mechanism responsible for the formation of casting defects. Also,the method allow investigating if the, developed vision inspection system for identification of surface defects have been correctlyimplemented for an online inspection. Finally, in order to make casting samples with gas and shrinkage porosity defects type, the LGT gas meter was used . For this task a special camera for a semi-quantitative assessment of the gas content in aluminum alloy melts, using a Straube-Pfeiffer method was used. The results demonstrate that applied solution is excellent tool in preparing for various aluminum alloysthe reference porosity samples, identified next by the computer inspection system.

  19. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  20. Possible segregation caused by centrifugal titanium casting.

    Science.gov (United States)

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy. PMID:9550020

  1. High speed twin roll casting of Al-3Si-0.6Mg strip

    Directory of Open Access Journals (Sweden)

    T. Haga

    2006-04-01

    Full Text Available Purpose: Purpose of this paper is to clear the possibility of high speed roll casting of thin strip of Al-3%Si-0.6%Mg alloy. Investigation of the mechanical properties of the roll cast Al-3%Si-0.6%Mg strip was purpose, too.Design/methodology/approach: Method used in the present study was high speed twin roll caster and low temperature casting. These methods were used to realize rapid solidification, and increase of casting speed.Findings: Findings are that Al-3%Si-0.6%Mg was could be cast at speed of 60 m/min. This strip was 3.1 mm-thick. As cast strip could be cold-rolled down to sheet of 1 mm-thick. 180 degrees bending test was operated on the sheet after T4 heat treatment and crack was not occurred at the outer surface.Research limitations/implications: Research limitation is that the width of the strip was 100 mm and investigation of the properties was not enough for practical use. Wider strip must be cast using the twin roll caster of the size for production.Practical implications: Practical implications are as below. The economy sheet for the auto mobile can be produced by the high speed twin roll caster. Al-3%Si-0.6%Mg can be used both the casting and plastic forming. Therefore, fractionation in the recycle of the aluminum alloy will becomes easy. The content of Fe in the recycled aluminum alloy increases. Fe becomes intermetallic of AlSiFe. Si for Mg2Si becomes deficient. 3%Si was enough for Mg2Si if AlSiFe was precipitated. Al-3%Si-0.6%Mg is suitable for recycle.Originality/value: The result means the roll cast Al-3%Si-0.6%Mg has ability to be used as the body sheet of the auto mobile.

  2. Lead casting process of shielding container for transporting nuclear assembly

    International Nuclear Information System (INIS)

    The main radiation shielding of transporting container for the reactor coolant pump hydraulic assembly is a lead casting Layer. The authors investigate in detail the lead casting process. In order to assure casting quality, the different technical design for different parts is adopted. The shielding case is completed on its first cast by bottom casting, sequential solidify etc. But the lead layer of chassis base is cast at first, then pressed, followed by machining to the right size. Casting system assure the realization of technical design. Two parts cast finally prove that the performance is in accord with requirement through NDT

  3. Connection between hot tearing and cold cracking in DC-casting of AA7050: Experiments and computer simulations

    NARCIS (Netherlands)

    Sosro Subroto, T.A.

    2014-01-01

    Direct-chill (DC) casting is one of the most common methods to produce ingots of high-strength aluminum alloys such as an AA7050. Despite of its superior mechanical properties, this alloy is prone to both hot tearing (HT) and cold cracking (CC) during DC casting. HT form above the solidus while CC o

  4. Investigation of Oxide Bifilms in Investment Cast Superalloy IN100: Part I. Mechanical Properties

    Science.gov (United States)

    Fuchs, Gerhard E.; Kaplan, Max A.

    2016-05-01

    Oxide bifilms are a proposed casting inclusion reported to have been observed in vacuum investment cast polycrystalline Ni-based superalloys. Ongoing research seeks to determine if current superalloy casting practices can result in the formation of oxide bifilms, and subsequently if it is possible to observe and characterize this phenomenon. The effects of casting atmosphere, turbulence, filtering, hot isostatic pressing (HIP), and heat treatment have been investigated to identify the critical parameters that have been reported to result in bifilm formation in Ni-based superalloys. Room temperature tensile and room temperature fatigue testing are used to identify the effects of each casting and processing parameter on casting defect formation and the resultant effects on mechanical properties. Characterization of mechanical test specimens seeks to identify the role of casting defects and microstructural features on the fracture mechanisms of the specimen conditions analyzed, and in particular, evidence of bifilm formation and the chemical composition(s) of oxide bifilms. Analyzed tensile and fatigue data did not indicate an influence of bifilms on the tensile or fatigue strength of vacuum processed IN100. Bifilms were not observed, via the characterization methods utilized, to be an active mechanism in tensile or fatigue fracture.

  5. Analysis of key technologies and development of integrated digital processing system for cast blasting design

    Institute of Scientific and Technical Information of China (English)

    丁小华; 李克民; 肖双双; 狐为民

    2015-01-01

    Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.

  6. Microstructure and interface reaction of investment casting TiAl alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-yong; XIAO Shu-long; KONG Fan-tao; WANG Xue

    2006-01-01

    In order to research the microstructure of TiAl alloy and TiAl-mould reaction between TiAl and ceramic mould shells prepared with the low cost binder in investment casting, the ceramic mould shells were prepared with low cost binder and refractory materials. Using two kinds of casting methods (gravity casting and centrifugal casting), the titanium aluminum alloys with rare earth element (Ti-47.5Al-2Cr-2Nb-0.3Y and Ti-45Al-5Nb-0.3Y) were cast into the mould shells. The microstructures of investment casting titanium aluminum alloys were observed by optical microscope (OM). The distributions of elements of topping investment on the surfaces of titanium aluminum alloys castings were analyzed by the means of electron probe micro-analysis (EPMA), and the mechanical properties were studied. The results show that the microstructures of two kinds of titanium aluminum alloys are both lamella shape, and lamella is thin. The thickness of reaction and diffusing layer of Ti-47.5Al-2Cr-2Nb-0.3Y alloy is about 80 μm, and that of Ti-45Al-5Nb-0.3Y is less than 30 μm.

  7. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    Directory of Open Access Journals (Sweden)

    Delfim SOARES

    2012-08-01

    Full Text Available Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc as well as fatigue properties (fatigue life are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables affected by the casting technique is the cooling rate which is well known to strongly restrict the microstructure. In the present research has been done a comparison of fatigue properties of two aluminum silicon alloys obtained by two casting techniques. It was observed that the fatigue life is increasing with 24% for Al12Si and 31% for AL18Si by using centrifugal casting process instead of gravity casting. This increasing in fatigue life means that a component tailored from materials obtained by centrifugal casting will stay longer in service. It was made an estimation of the time required to recover the costs of technology in order to use the centrifuge process that will allow to obtain materials with improved properties. The amortization can be achieved by using two different marketing techniques: through the release of the product at the old price and with much longer life of the component which means "same price - longer life", or increasing price, by highlighting new product performance which means "higher price - higher properties".

  8. Modelling of horizontal centrifugal casting of work roll

    Science.gov (United States)

    Xu, Zhian; Song, Nannan; Tol, Rob Val; Luan, Yikun; Li, Dianzhong

    2012-07-01

    A numerical model to simulate horizontal centrifugal roll castings is presented in this paper. In order to simulate the flow fluid and solidification of horizontal centrifugal roll casting correctly, the model uses a body fitted mesh technique to represent the geometry. This new method maps a plate layer mesh to a circular mesh. The smooth body fitted mesh method gives more accurate calculation results for cylindrical geometries. A velocity depending on the angular velocity and inner radius of the mould is set up as a velocity boundary condition. The fluid flow coupled with heat transfer and solidification in a rapidly rotating roll is simulated. A gravity free falling method is applied as a pouring condition. A moveable pouring system is also used in the simulations. High speed steel is used to produce the work roll. Two different gating positions and a moveable gating system are simulated in this paper. Results show that the position of pouring system has a significant influence on the temperature distribution. The temperature distribution at a fixed central pouring system is more favourable than the distribution from a side pouring system. A moving gating system method is a better way to obtain a uniform temperature field in centrifugal casting and offers an alternative for existing techniques.

  9. Modelling of horizontal centrifugal casting of work roll

    International Nuclear Information System (INIS)

    A numerical model to simulate horizontal centrifugal roll castings is presented in this paper. In order to simulate the flow fluid and solidification of horizontal centrifugal roll casting correctly, the model uses a body fitted mesh technique to represent the geometry. This new method maps a plate layer mesh to a circular mesh. The smooth body fitted mesh method gives more accurate calculation results for cylindrical geometries. A velocity depending on the angular velocity and inner radius of the mould is set up as a velocity boundary condition. The fluid flow coupled with heat transfer and solidification in a rapidly rotating roll is simulated. A gravity free falling method is applied as a pouring condition. A moveable pouring system is also used in the simulations. High speed steel is used to produce the work roll. Two different gating positions and a moveable gating system are simulated in this paper. Results show that the position of pouring system has a significant influence on the temperature distribution. The temperature distribution at a fixed central pouring system is more favourable than the distribution from a side pouring system. A moving gating system method is a better way to obtain a uniform temperature field in centrifugal casting and offers an alternative for existing techniques.

  10. Characteristics of low nickel ferritic-austenitic corrosion resistant cast steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2014-10-01

    Full Text Available The article presents the results of microscopic examinations of corrosion resistant cast steel with reduced nickel content obtained in a test casting with varying wall thickness. Investigations were carried out in as-cast condition and after heat treatment. Regardless of the casting wall thickness, increasing the manganese and nitrogen content to about 5 % and 2 500 ppm, respectively, yields the material with a two-phase microstructure containing ferrite in an amount of 55,6 ÷ 57,2 % (magnetic method and 52,3 ÷ 55,2 % (analytical method. Based on the results of metallographic examinations, total elimination of the secondary austenite from the microstructure was observed. Microhardness measurements showed average values of 352,3 μHV20 and 267 μHV20 for the chromium ferrite and austenite, respectively.

  11. Microstructural and Statistical Study of Semisolid Casting of 6061 Alloy Using a Miniature Cooling Slope

    Science.gov (United States)

    Hajihashemi, Mahdi; Niroumand, Behzad; Shamanian, Morteza

    2014-10-01

    Preparation of metallic semisolid slurries using the cooling slope method is increasingly becoming popular because of the simplicity of design and control of the process. Microstructural features of the resultant semisolid castings such as size and sphericity of the primary particles are affected by several processing parameters such as pouring rate, cooling slope surface angle and length as well as the melt superheat. In this work, a miniature cooling slope for semisolid casting of small parts was built and attempts were made to develop an empirical relationship showing the correlation between the sphericity of the microstructure of semisolid cast 6061-aluminum alloy and the processing variables. The relationships were developed by a two-level factorial method. The results showed that the interaction of cooling slope length and pouring rate factors had the most effect on the sphericity of the final semisolid cast microstructure.

  12. Microstructure design and heat treatment selection for casting alloys using the quality index

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, C.H.

    2000-04-01

    The ductility of casting allows is usually low and it is thus important to simultaneously assess the effect of changes to the microstructure and heat treatment on both ductility and strength of the material. The use for this purpose of the quality index charts is common in the casting industry with regard to the Al-Si-Mg casting alloys A356 and A357. An analytical method of generating quality index charts for any alloy system is presented. Applications of the method are illustrated with case studies involving Al-Si-Mg, Mg-Al-Zn, and Al-Si-Cu-Mg casting alloys. The analytically determined charts indicate the limits to microstructural improvement available for each material. The possibility of using the charts to optimize the relation between mechanical performance, chemical composition, solidification conditions, and temper is discussed.

  13. Application of Silicon Carbide Chills in Controlling the Solidification Process of Casts Made of IN-713C Nickel Superalloy

    Directory of Open Access Journals (Sweden)

    D. Szeliga

    2012-12-01

    Full Text Available The paper presents the method of manufacturing casts made of the IN-713C nickel superalloy using the wax lost investment castingprocess and silicon carbide chills. The authors designed experimental casts, the gating system and selected the chills material. Wax pattern,ceramic shell mould and experimental casts were prepared for the purposes of research. On the basis of the temperature distributionmeasurements, the kinetics of the solidification process was determined in the thickened part of the plate cast. This allowed to establish thequantity of phase transitions which occurred during cast cooling process and the approximate values of liquidus, eutectic, solidus andsolvus temperatures as well as the solidification time and the average value of cast cooling rate. Non-destructive testing and macroscopicanalysis were applied to determine the location and size of shrinkage defects. The authors present the mechanism of solidification andformation of shrinkage defects in casts with and without chills. It was found that the applied chills influence significantly the hot spots andthe remaining part of the cast. Their presence allows to create conditions for solidification of IN-713C nickel superalloy cast withoutshrinkage defects.

  14. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  15. The Influence Of Temperature Gradient On Stereological Parameters Of Carbide Phase On Cross-Section Of Abrasive Wear Resistant Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-09-01

    Full Text Available In the paper analysis of temperature gradient and parameters of structure on casting cross-section of abrasive wear resistant chromium cast iron at carbon content of 2,5%wt. and chromium 17%wt. with nickel and molybdenum additives are presented. The castings were made with use of special tester ϕ100mm (method of temperature gradient and derivative analysis with temperature recording in many points from thermal centre to surface (to mould of casting. Registered cooling curves were used to describe the temperature gradient on cross-section of analyzed casting. On the basis of determined curves of temperature gradient measurement fields were selected to make the quantitative studies of structure. The results of studies show significant influence of temperature gradient on quantitative parameters of chromium cast iron structure. Moreover was affirmed that exists a critical temperature gradient for which is present rapid change of quantitative parameters of chromium cast iron structure.

  16. Non-metallic inclusions in billets casted using horizontal type continuous-casting machine

    International Nuclear Information System (INIS)

    The distribution of non-metallic inclusions in billets of carbon steels, alloyed steels (Kh18N9T) and heat-resistant nickel alloys (EhI437B, EhP109) has been studied. Billets of square and round cross sections have been casted using horisontal continuous-casting machines. Methods of chemical, metallographic, petrographic and X-ray analyses have been applied in investigations. A rise in the content of non-metallic inclusions has been observed in the upper zones of billet cross sections. Inclusions in carbon steels are mainly represented by α-A2O3 in stainless steels - by TiO and TiN, in nickel alloys - by TiN and AlN. Investigations into nitrogen and oxygen distribution have proved the data obtained. Inclusions and gases have been distributed evenly over billet length. Liquid metal blowing with argon and the application of coper-graphite dies have permitted to obtain a metal with an uniform oxide and nitride distribution over billet cross section and lentgh

  17. Application of Integrated Database to the Casting Design

    Institute of Scientific and Technical Information of China (English)

    In-Sung Cho; Seung-Mok Yoo; Chae-Ho Lim; Jeong-Kil Choi

    2008-01-01

    Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for .the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.

  18. Simulation of Stir Casting Process Using Computational Fluid Dynamics

    OpenAIRE

    M. V. S. Pavan Kumar; M. V. Sekhar Babu

    2015-01-01

    Stir casting process is one of the methods to produce Metal Matrix Composites (MMCs). But the Particle Distribution of Non-Homogenous material is the greatest problem facing now days to produce MMCs. The present simulations were conducted how the speed of the stirrer effects the Particle Distribution of NonHomogenous material. The Simulations were performed using Computational Fluid Dynamics. In this experiment Copper is used as Semi Solid Metal (SSM) and Silicon-Carbide is used a...

  19. Replica casting technique for micro Fresnel lenses characterization

    OpenAIRE

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard; Albajez, J.A.

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated surface. The aim of this paper is to investigate the replica technique when applied to micro structured specimens such as moulds for injection moulding of Fresnel lenses. Stability studies, replication fi...

  20. Effect of inter-critical quenching on mechanical properties of casting low-alloy steel

    OpenAIRE

    Liu Zhongli; Shang Yong

    2013-01-01

    For some casting low-alloy steels, traditional quenching and tempering heat treatments can improve the strength; however, sometimes the ductility is not satisfied. Therefore, some kind of effective heat treatment method seems necessary; one which could improve the ductility, but not seriously affect the strength. In this paper, the effect of inter-critical quenching (IQ) on the mechanical properties of casting low-alloy steel was studied. IQ was added between quenching and tempering heat trea...

  1. Changes of gas pressure in sand mould during cast iron pouring

    OpenAIRE

    J. Mocek; J. Samsonowicz

    2011-01-01

    The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binde...

  2. Elemental assay of Roman silver and copper coins and associated casting items by XRF

    International Nuclear Information System (INIS)

    Energy-dispersive X-ray fluorescence (XRF) was employed for the determination of chemical element abundances in silver and copper coins and associated casting items of a hoard discovered in an antique minting facility. The precise and accurate results obtained lead to conclusions about material batches used in the casting, and about concentration variation phenomena occurring at the coin surfaces. The validity of the present method was checked by participating in an intercomparison. (author)

  3. Rapid Manufacturing Technology for Precision Casting MouldBased on Selective Laser Sintering

    Institute of Scientific and Technical Information of China (English)

    白培康; 程军; 王建宏; 刘斌

    2004-01-01

    The selective laser sintering (SLS) technique is introduced. A new type of rapid prototyping material (PCPI) has been developed, which can be used to produce precision casting mould directly and rapidly from a CAD model by the selective sintering of successive layers of PCPI with a laser beam. In comparison with conventional manufacturing methods, prominent features of this technique include high forming rate, low development cost and good flexibility. The rapid manufacturing process of precision casting mould based on SLS is discussed.

  4. The reliability of assessing rotation of teeth on photographed study casts

    OpenAIRE

    Vermeulen, F.M.J.; Aartman, I.H.A.; Kuitert, R.; Zentner, A.

    2012-01-01

    Objective: To examine the intra- and interexaminer reliability of assessing rotation of teeth on photographed study casts. In addition, the reliability parameters of two examiners scoring in mutual consultation were compared with the reliability parameters by one observer. Materials and Methods: Standardized photographs of sets of maxillary and mandibular plaster casts of 10 patients before treatment (T1), after treatment (T2), and a long time after retention (T3) were digitized. Tooth rotati...

  5. Strain gauges′s analysis on implant-retained prosthesis′ cast accuracy

    OpenAIRE

    Mariana A Rodrigues; Leonardo F Luthi; Jessica MFK Takahashi; Mauro AA Nobilo; Guilherme EP Henriques

    2014-01-01

    Introduction: A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. Aims: The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. Materials and Methods: A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were fi...

  6. Influence of selected modifiers on crystallization curve of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2009-07-01

    Full Text Available In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium. Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  7. Validity and reliability of a three-dimensional dental cast simulator for arch dimension measurements

    OpenAIRE

    Mahtab Nouri; Sohrab Asefi; Alireza Akbarzadeh Baghban; Amin Aminian; Mohammad Shamsa; Reza Massudi

    2014-01-01

    Background: The accuracy and reproducibility of measurements in a locally made three dimensional (3D) simulator was assessed and compared with manual caliper measurements. Materials and Methods: A total of 20 casts were scanned by our laser scanner. Software capabilities included dimensional measurements, transformation and rotation of the cast as a whole, separation and rotation of each tooth and clip far. Two orthodontists measured the intercanine width, intermolar width and canine, mol...

  8. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    OpenAIRE

    Soares, Delfim; Mioara CHIRITA; George CHIRITA; Silva, Samuel

    2012-01-01

    Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc) as well as fatigue properties (fatigue life) are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables...

  9. Thermo-mechanical properties and cracking during solidification of thin slab cast steel

    OpenAIRE

    Santillana, M.B.

    2013-01-01

    Nowadays a vast majority of the steel produced worldwide is via the continuous casting process route because this is the most low-cost, efficient and high quality method to mass produce metal products in a variety of sizes and shapes. Most of the continuous casters are the initial manufacturing step of a product which is very close to the final shape, reducing the need for further finishing. During continuous casting the liquid steel is solidified under controlled conditions of heat extractio...

  10. Potential spread of forest soil-borne fungi through earthworm consumption and casting

    OpenAIRE

    Montecchio L; Scattolin L; Squartini A; Butt KR

    2015-01-01

    To test if forest soil-borne fungi concerned with plant health can be selectively dispersed by earthworms, 10 fungal species isolated from 5 forests were presented, at 2 concentrations, to 3 ecologically distinct earthworm species in laboratory trials. Between 5 and 13 days after introduction, casts were collected, where possible, from each earthworm species fed with a different fungus. These casts were analysed, using molecular methods, for the presence of the given fungus and its vitality v...

  11. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    Science.gov (United States)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  12. Characterization of Technetium Speciation in Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  13. Fatigue Properties of Cast Magnesium Wheels

    Science.gov (United States)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-05-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  14. Cast composites with Al-matrix reinforced with intermetallic carbide phases

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2010-10-01

    Full Text Available In this work authors presented collected results from studies concerning the manufacturing of metal matrix composites with reinforcement of intermetallic phases, mainly carbides, with use of different casting techniques. For composite matrix different Al-Si alloys were used. Presented results include microstructural studies, quantitative analysis, phases description and their chemical composition. In this part of the work authors characterized the transition zone between the reinforcing particles and metal matrix, showing the possibilities of controlling the properties of the transition zone and type of occurring transition phases.During the studies two casting methods were used: permanent mould casting and lost wax casting. Authors indicated restrictions and possibilities of these methods in dispersive composite elements reinforced with metallic particles. The characteristic feature of such particles is their physical and chemical reactivity, which deteriorates the rheological properties of the liquid dispersion. Selection of technological parameters for manufacturing and casting was aimed on proper filling of the mould with liquid dispersion.Both methods of casting were used for manufacturing of elements which technical application requires special tribological properties, eg. brake discs. Operating properties of all obtained composites were studied and analyzed. Authors showed the analysis of tribological studies connected with the composite structure and type and quantity of the reinforcement used.

  15. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    Science.gov (United States)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  16. Cracks in high-manganese cast steel

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2009-10-01

    Full Text Available The reasons which account for the formation of in service cracks in castings made from Hadfield steel were discussed. To explain the source of existence of the nuclei of brittle fractures, the properties of cast steel were examined within the range of solidification temperatures, remembering that feeding of this material is specially difficult, causing microporosity in hot spots. This creates conditions promoting the formation of microcracks which tend to propagate during service conditions involving high dynamic stresses, and explains why the cracks are mainly characterized by a brittle nature. The reason for crack formation in service are micro-porosities formed during casting solidification.

  17. PHYSICAL SIMULATION OF CONTINUOUS ROLL CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    L.H. Zhan; J. Zhong; X.Q. Li; M.H. Huang

    2005-01-01

    A series of simulating experimental studies on the rheological behavior and its influential factors of aluminum alloy in continuous roll-casting process have been explored in this paper with a Gleeble-1500 Thermal-Mechanical Simulation Tester and a set of special clamp system. Relevant rheological rules in the process of coupling transient solidification and continuous deformation of roll-casting conditions are obtained. Experimental results indicate that four different characteristic stages exist in the whole rheological process, and relative constitutive models suitable for the given conditions of continuous roll casting process have been established through multivariable linear regression analysis of the experimental data.

  18. The X-ray Telescope of CAST

    OpenAIRE

    M. Kuster(Technische Universität Darmstadt); Bräuninger, H.; Cébrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D H H; Hoffmeister, G.; Joux, J. N.; Kang, D.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and...

  19. Influence of physical data and cooling conditions on the solidification of magnesium die castings

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    As the simulation quality increases, the determination of hot spots is not enough to foundry engineers anymore. The simulation results have to fit in a quality way into the real foundry world. More and more results of the simulation will be used to optimise the casting process. Here it is necessary to have a very precise knowledge of the physical data. as well as the description of the geometry. To make use of the simulation in especially the magnesium-casting development it is necessary to work with precise geometrical, physical and numerical models. In this paper we describe the development of physical data concerning the heat transfer during filling and solidification by different casting methods. The low pressure as well as the gravity die casting method are used to get real data to find out the right conditions in the simulation in order to simulate the real behaviour during production. Practical tests are done under different test conditions to develop the right physical data as well as the right conditions in the metal-mould interface. The different surface conditions and the influence of the die and the molten metal temperatures are important for the layout of the die casting process. Three different shapes were applied to different mould materials and casting methods. The cooling conditions are tested on specific items. The cooling shape is not restricted by the drilling conditions. The effect of different cooling conditions are generated and measured. The results form the basis for the heat transfer conditions. These results are applied to real castings, cellular phone housings by low-pressure die casting process. The use of the new conditions leads to a good process description.

  20. Optimization of the Chemical Composition of Cast Iron Used for Casting Ball Bearing Grinding Disks

    Institute of Scientific and Technical Information of China (English)

    Aurel Crisan; Sorin Ion; Munteanu; Ioan Ciobanu; Iulian Riposan

    2008-01-01

    The chemical composition of cast iron used for casting ball bearing machining disks was varied to optimize the properties such as castability, hardenability, and durability in ball machining. The cast iron characteristics were most strongly dependent on the Ni content and the carbon saturation degree, So. This paper describes the types of test specimens, the working conditions, and the experimental results. The in-crease of the degree of carbon saturation reduces the tendency to form shrinkholes in the castings. The de-crease in the Ni content negatively affects the final hardening treatment. A way to control solidification de-fects in cast iron, by reducing the Ni content, has been verified on cast disks.