WorldWideScience

Sample records for cast iron brake

  1. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  2. The mechanism of changes in the surface layer of grey cast iron automotive brake disc

    Directory of Open Access Journals (Sweden)

    Adam Polak

    2005-12-01

    Full Text Available The aim of the study was to create a model, describing the run of tribological processes in the surface layer of grey cast iron automotive brake discs. Grey cast iron discs mating with non-asbestos organic brake pads were chosen for the investigations, as the most widely used materials in car brakes. Samples for surface analysis were prepared from disc operating in stand and road conditions. Stand tests were pin-on-disc kind. Operating parameters for the stand tests were chosen on the basis of results of our earlier research. Topography of brake disc surface was evaluated by surface roughness measurements. The surface layer was examined with use of metallography and scanning electron microscopy. In order to differentiate structures of grey cast iron brake discs SE and BSE modes were used in scanning electron microscopy. Chemical investigations of samples were done by X-ray analysis linked with SEM. Studies showed influence of grey cast iron structures on tribological processes taking place in a brake friction pair. The surface layer of grey cast iron discs was described and features and functions of separated structures were presented. On the basis of the obtained results a physical model of friction mechanism was created. Special attention was paid to the influence of graphite on the run of tribological processes and mechanism of compaction and removal of wear debris.

  3. Development of compacted vermicular graphite cast iron for railway brake discs

    Science.gov (United States)

    Lim, Choong-Hwan; Goo, Byeong-Choon

    2011-04-01

    In the case of employing brake discs as a key component of mechanical brake equipment, the initiation of thermal cracking owing to repetitive thermal shock generated during braking may potentially lead to higher maintenance costs, worsened braking performance, and greater risk of railway accidents. The purpose of this study is to gain basic data to facilitate application of compacted vermicular (C. V.) graphite cast iron to brake discs in order to obtain high thermal crack resistance and improved lifetime. To this end, this study developed three types of C. V. graphite cast iron with differing content of key elements, including Ni, Cr, and Mo. Each test specimen underwent numerous tests for evaluation of materials characteristics, and the results were compared with those obtained for existing materials. The test results show that the thermal fatigue lifetime of material C is nearly double that of the conventional material. This demonstrates the suitability of material C as a material for brake discs in mid- to high-speed railway vehicles.

  4. Thermo-mechanical behavior and fatigue strength of a grey cast iron for automotive brake discs considering graphite flakes debonding

    Directory of Open Access Journals (Sweden)

    Augustins Louis

    2014-06-01

    Full Text Available This paper aims at developing an approach for thermo-mechanical fatigue design of automotive brake discs made of lamellar graphite (grey cast-iron. The first step consists of modelling the nonlinear cyclic behavior and tension/compression strong dissymmetry of grey cast iron. The proposed model is based on the introduction of a second-order induced damage tensor. From the analysis of the damage mechanisms, a fatigue criterion based on the dissipated energy per cycle is proposed.

  5. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  6. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

    Science.gov (United States)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-09-01

    The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

  7. Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description

    Science.gov (United States)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-07-01

    One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to {600^{circ}{C}}.

  8. Quality control of cast brake discs

    Directory of Open Access Journals (Sweden)

    M. Stawarz

    2008-04-01

    Full Text Available The largest industrial application so far have the gray cast irons which are characterized by low tensile and bending strength, while at the same time they have good ultimate comprehensive strength. Additionally, the fatigue strength of gray cast irons is comparatively low and they are only to some extend sensitive for the surface waters effects. Cast iron is the material, which is comparatively easy to be processed, and for this reason – it is not expensive. Brake discs are exploited in particularly hard conditions. They must be resistant both against the thermal fatigue and abrasion wearing (at dry friction as well as against seizing, corrosion and mechanical load [1-3]. The gray cast iron, better than other materials, fulfills all the requirements necessary for making the material for the casts resistant against such tough conditions. This work reflects the researches aiming to define the quality of cast brake discs (ventilated and non-ventilated ones upon a period of their exploitation in real conditions. The following researches were performed: evaluations of the disc surface condition, measurement of disc thickness, examination of run – out flank and metallographic analysis. In order to more detailed recognition of mechanisms and reasons of brake discs wearing in real conditions, one should conduct additional examinations: computer analysis of the microstructure, chemical composition analysis, etc., as well as study of the technology of their production in foundries, where they are manufactured [4]. By obtaining the full set of the mentioned above data one can draw final conclusions and remove causes of possible defects.

  9. Thermomechanical behavior of dry contacts in disc brake rotor with a grey cast iron composition

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2013-01-01

    Full Text Available The main purpose of this study is to analysis the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on the calculation code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

  10. Neutron scattering residual stress measurements on gray cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Spooner, S.; Payzant, E.A.; Hubbard, C.R. [and others

    1996-11-01

    Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

  11. Contact Pressure and Sliding Velocity Maps of the Friction, Wear and Emission from a Low-Metallic/Cast-Iron Disc Brake Contact Pair

    Directory of Open Access Journals (Sweden)

    J. Wahlström

    2017-12-01

    Full Text Available Particulate matter with an aerodynamic diameter less than 10 µm (PM10 from car disc brakes contribute up to 50% of the total non-exhaust emissions from road transport in the EU. These emissions come from the wear of the pad and rotor contact surfaces. Yet few studies have reported contact pressures and offered sliding speed maps of the friction, wear, and particle emission performance of disc brake materials at a material level. Such maps are crucial to understanding material behaviour at different loads and can be used as input data to numerical simulations. A low-metallic pad and grey cast-iron rotor contact pair commonly used today in passenger car disc brakes was studied using a pin-on-disc tribometer at twelve contact pressure and sliding speed combinations. Maps of the coefficient of friction, specific wear rate, particle number, and mass rate are presented and discussed.

  12. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  13. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  14. Thermal transport properties of grey cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, R.L. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

  15. Graphitized Cast Irons

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.

    2014-05-01

    An analytical review of data on general-purpose grayed cast iron with different forms of graphite (lamellar, vermicular, globular, flaked) is presented. Grades of cast iron, their compositions, special features of structure of the graphite, and properties of gray, high-strength and malleable irons are described. The data on the kinds of iron considered are compared with those stipulated in international and some national standards.

  16. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  17. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  18. Obtaining of High Cr Content Cast Iron Materials

    Science.gov (United States)

    Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.

    2017-06-01

    We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.

  19. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  20. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  1. Inoculation of chromium white cast iron

    OpenAIRE

    D. Kopyciński

    2009-01-01

    It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  2. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  3. CAST-IRONS AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2008-01-01

    Full Text Available The results of investigations of physical-mechanical characteristics of cast iron slugs, received by semicontinuos way of casting, at temperatures from 850 up to 1100^ С are given. 

  4. Coefficient of Friction of a Brake Disc-Brake Pad Friction Couple

    National Research Council Canada - National Science Library

    A.W. Orłowicz; M. Mróz; G. Wnuk; O. Markowska; W. Homik; B. Kolbusz

    2016-01-01

    The paper concerns evaluation of the coefficient of friction characterising a friction couple comprising a commercial brake disc cast of flake graphite grey iron and a typical brake pad for passenger motor car...

  5. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  6. COMPLEX MODIFICATION OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2017-01-01

    Full Text Available The influence of the complex modifier by chemical – active and surface-active additives of gray cast iron on the size of chill and on the width of molted iron zone was researched. The width of a chill zone and molted iron zones were measured at chank ends of various diameter cores. The cores were casted on a massive steel plate and also in standard chill tests. It was established that additional adding of surface-active bismuth in structure of various graphitizing modifiers promoted to reduce the width a chill zone and molted iron zones. It was established that the complex modifiers consisting of chemical – active and surfaceactive components are effective in fight with chill in cast iron castings and can be recommended for application in foundry shops of the entities of a machine-building profile for production of high-quality castings

  7. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  8. Vermicular graphite cast iron current state of the art

    OpenAIRE

    Murthy, VSR; Seshan, S; Seshan, K.

    1985-01-01

    Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probabl...

  9. MODIFYING OF CAST IRON WITH ULTRADISPERSE ADDITIVES

    Directory of Open Access Journals (Sweden)

    F. I. Rudnitsky

    2017-01-01

    Full Text Available The composition, structure, methods of receipt of ultradisperse materials (UDM and the prospect of their application in engineering procedures of foundry production are considered. Positive influence of UDM when entering in fusion on structure and properties of the gray cast iron intended for production of castings of motor group is established. 

  10. Carburizer Effect on Cast Iron Solidification

    Science.gov (United States)

    Janerka, Krzysztof; Kondracki, Marcin; Jezierski, Jan; Szajnar, Jan; Stawarz, Marcin

    2014-06-01

    This paper presents the effect of carburizing materials on cast iron solidification and crystallization. The studies consisted of cast iron preparation from steel scrap and different carburizers. For a comparison, pig iron was exclusively used in a solid charge. Crystallization analysis revealed the influence of the carburizer material on the crystallization curves as well as differences in the solidification paths of cast iron prepared with the use of different charge materials. The carburizers' influence on undercooling during the eutectic crystallization process was analyzed. The lowest undercooling rate was recorded for the melt with pig iron, then for synthetic graphite, natural graphite, anthracite, and petroleum coke (the highest undercooling rate). So a hypothesis was formulated that eutectic cells are created most effectively with the presence of carbon from pig iron (the highest nucleation potential), and then for the graphite materials (crystallographic similarity with the carbon precipitation in the cast iron). The most difficult eutectic crystallization is for anthracite and petroleum coke (higher undercooling is necessary). This knowledge can be crucial when the foundry plant is going to change the solid charge composition replacing the pig iron by steel scrap and the recarburization process.

  11. Heat distribution in disc brake

    Science.gov (United States)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  12. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  13. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  15. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  16. Temperature and Thermal Stresses of Vehicles Gray Cast Brake

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2013-10-01

    Full Text Available The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disc is actually used to identify the factor of geometric design of the disc to install the ventilation system in vehicles. The thermo-structural analysis is then used with coupling to determine the deformation established and the Von Mises stresses in the disc, the contact pressure distribution in pads. The results are satisfactory when compared to those found in previous studies.

  17. Reinforcing cast iron with composite insert

    Directory of Open Access Journals (Sweden)

    Dulska A.

    2017-03-01

    Full Text Available The paper presents a proprietary method of making composite cast iron (eutectic locally reinforced with ceramics. The research included making casts with a ceramic layer, its percentage of the surface was 30%. The research included abrasive wear resistance according to ASTM G 65-00. As a result of the research it has been found that the infiltration of the molten metal into the ceramic preform mainly affects the correct production of the cast with local reinforcement. The research results also have proven that the application of a lattice ceramic insert placed in the mould is the most appropriate option, due to the even distribution of the particles in the cast and obtaining a sound cast.

  18. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  19. 46 CFR 153.239 - Use of cast iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  20. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    Science.gov (United States)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-09-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  1. Application of numerical modelling in SSM automotive brake calliper castings

    CSIR Research Space (South Africa)

    Jahajeeah, N

    2006-01-01

    Full Text Available . Results from interrupted shot castings show excellent correlation with the fluid dynamics and flow pattern of the model. The level and location of porosity revealed by non-destructive X-rays and microscopic analyses showed good correlation with the model...

  2. Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common wet abrasion test and corrosion in aqueous solutions as previously reported in literature. The material loss rates to wear and corrosion were determined from the equations relating to wear and corrosion based on the ASTM designations. The results show that the combined actions of wear and corrosion contribute to the total loss of piston material immersed in brake oil. This is greater than either of their effects individually on cast Al alloy in the brake oil.

  3. Effect of Melting Techniques on Ductile Iron castings Properties

    OpenAIRE

    Bockus, S.; Dobrovolskis, A.

    2005-01-01

    The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-...

  4. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  5. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  6. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  7. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  8. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  9. Cast Iron And Mineral Cast Applied For Machine Tool Bed - Dynamic Behavior Analysis

    Directory of Open Access Journals (Sweden)

    Kępczak N.

    2015-06-01

    Full Text Available Cast iron and mineral cast are the materials most often used in the machine structural elements design (bodies, housings, machine tools beds etc.. The materials significantly differ in physical and mechanical properties. The ability to suppress vibration is one of the most important factors determining the dynamic properties of the machine and has a significant impact on the machining capabilities of a machine tool. Recent research and development trends show that there is a clear tendency to move away from the traditional iron casting to the mineral casting, due to better dynamic properties of the latter. However mineral cast as a structural material for the whole machine tools bed turns out to be insufficient due to its poor mechanical strength properties. The best solution should benefit from the advantages of the cast iron and mineral cast materials while minimizing their drawbacks. The paper presents numerical modal analysis of two lathe beds: the first one made of gray cast iron and the second one made of hybrid connection of cast iron and mineral cast. The analysis was conducted in order to determine the dynamic properties of two bodies of similar shapes made in the traditional (cast iron and innovative hybrid (cast iron and mineral cast technology. In addition, an analysis of the static structure rigidity of the two beds was performed. During the simulation studies it was found a significant increase in dynamic stiffness and static rigidity of the machine tool body made of hybrid connection of cast iron and mineral cast. The results of numerical simulations have confirmed the desirability of using hybrid construction because the dynamic properties of such a body are more advantageous in comparison with the conventional body made of cast iron.

  10. Costs Analysis of Iron Casts Manufacturing

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2012-04-01

    Full Text Available The article presents the issues of costs analysis of iron casts manufacturing using automated foundry lines. Particular attention was paid to departmental costs, conversion costs and costs of in-plant transport. After the Pareto analysis had been carried out, it was possible to set the model area of the process and focus on improving activities related to finishing of a chosen group of casts. In order to eliminate losses, the activities realised in this domain were divided into activities with added value, activities with partially added value and activities without added value. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

  11. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  12. EXPERIMENTAL INVESTIGATION OF EFFECTS OF CHEMICAL VARIABLES ON IRON CASTING

    OpenAIRE

    Pradeep Kumar*, Dr Lokendra Pal Singh and Romiyo Mclin Jojowar

    2017-01-01

    Cast iron is an alloy of iron containing more than 2% carbon as an alloying element. It has almost no ductility and must be formed by casting. Ductile iron structure is developed from the melt of cast iron. The presence of silicon in higher amount promotes the graphitization, inhibiting carbon to form carbides with carbide forming elements present. The carbon forms into spheres when Ce & Mg are added to the melt of iron with very low sulphur content. Due to this special microstructure contain...

  13. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed to be substitu.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron.......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed...... to be substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60...

  14. Colour Metallography of Cast Iron - Chapter 1: Introduction (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  15. Spall behavior of cast iron with varying microstructures

    Science.gov (United States)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  16. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    the unetched, colour-etched and deep-etched samples. It was confirmed that in irons with high sulphur content (0.12 wt%) nucleation of type-A and type-D graphite occurs on Mn sulphides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35% produced superfine interdendritic graphite...... (~10µm) at low (0.012 wt%) as well as at high S contents. Ti also caused increased segregation in the microstructure of the analysed irons and larger eutectic grains (cells). The inclusions have been identified in an effort to explain the nucleation of the phases of interest. The reasons for increase...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  17. Acoustic energy transmission in cast iron pipelines

    Science.gov (United States)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  18. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  19. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    Science.gov (United States)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  20. Microstructure Control of High-alloyed White Cast Iron

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2014-03-01

    Full Text Available This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.

  1. Microstructure and mechanical properties of synthetic nodular cast iron

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2010-01-01

    Full Text Available The contribution deals with comparing of microstructure, mechanical properties and micromechanisms of failure of synthetic nodular cast irons with graded amount of steel scrap in a charge. Chemical composition of individual meltages was regulated alternatively by ferrosilicon (FeSi and carburizer or metallurgical silicon carbide (SiC. The paper shows that SiC additive positively influences the microstructure, mechanical properties and micromechanisms of failure of nodular cast iron, especially in the meltages with higher ratio of steel scrap in the charge. Moreover, production of synthetic nodular cast irons with SiC additive is economically advantageous.

  2. The Abrasive Wear Resistance of Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2014-03-01

    Full Text Available The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe7C3 carbides characterised by hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight were approximated with a power curve and shown further in the study.

  3. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  4. INCREASE OF EFFICIENCY OF MODIFIERS FOR GRAY CAST-IRON

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available It is established that for the purpose of increase of modifying efficiency of the melt from gray cast iron it is possible to use mechanically alloyed aluminum powder with superdispersed particles of aluminum and graphite oxide.

  5. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses...

  6. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  7. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  8. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  9. IX - MR Control Chart as a Tool in Assessment of the Cast Iron Properties Stability

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-07-01

    Full Text Available The study offers a statistical assessment of the stability of a technological process of melting and pouring low-carbon grey iron assigned for casting of brake discs. Some specific characteristics were presented that should be taken into consideration when statistical methods are used for technology improvement. The stability of the cast iron melting process was evaluated using data read out from the thermal analysis curve and true data, i.e. the results of spectrometric analysis of the chemical composition and measured values of the mechanical properties. The method for assessment of process stability was discussed on the example of carbon content and Brinell hardness. The examined parameters of the technological process of grey iron melting and casting are independent of each other (the results of carbon content determination in successive melts, the results of hardness measurements, etc.. Therefore, for analysis, the IX - MR type charts were chosen, where single measurements of the selected property (n = 1 serve as a measure of location, while a measure of variability are the, so called, Moving Ranges (MR, which are an absolute value of the difference between the two successive measurements.

  10. Stereological Analysis of Carbides in Hypoeutectic Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Gromczyk M.

    2015-06-01

    Full Text Available The results of research on stereological parameters of carbides in modified hypoeutectic chromium cast iron were shown in the paper. The effect of distance the casting heat centre of casting to the carbide phase morphology was examined. The samples for metallographic examination were taken from various locations of the model casting prepared in a special tester. This model casting was designed to simulate the solidification of heavy castings. Using the proposed methodology the relation of the distance from the model mould and the size, perimeter, length, width and the shape factor of carbides was examined. During the analysis, the values of stereological parameters of carbides changed on various sections of the model casting.

  11. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-01-01

    Full Text Available In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis, which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to registration of data was used Crystaldigraph - PC.

  12. FORMATION OF WEAR-RESISTANT CHROMIUM CAST IRON CASTING INTO THE CHILL MOLD

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2013-01-01

    Full Text Available The analysis of thermal processes of formation of castings from wearproof chromic cast irons for replaceable details of centrifugal mills and crushers is carried out. Influence of protective and dividing coverings on intensity of heating of the chill mold is investigated.

  13. Stereological parameters of carbides on section of casting made from modified chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2011-07-01

    Full Text Available The analysis of stereological parameters of carbides on the section of the model castingmade from modified (the mixture FeNb+FeV+RE wear resistance chromium cast iron was introduced in the article. The jump change of some stereological parameters of carbides in certain distance from the surface of the casting was observed.

  14. RESOURCES-ECONOMY TECHNOLOGY OF CASTINGS PRODUCTION OF NICKEL-CONTAINING CAST-IRONS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2008-01-01

    Full Text Available The technological process of the cast-iron IChH28H2 alloying by means of insertion into burden composition of briquettes of dead nickel-chromic catalysts is developed. This technology allows to carry out recycling of expensive metals such as nickel, and in that way to decrease the cost price of castings

  15. EFFICIENCY CHARACTERISTICS OF MICROALLOYED AND MODIFIED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    M. M. Jamshinskiy

    2013-01-01

    Full Text Available Influencing of chrome and manganese in the wide range of their concentrations on wear proof of white cast-irons for making of the poured details working in the conditions of intensive abrasive and hydroabrasive wear is studied. It is set that at optimum correlation of these elements cast-irons have high hardness, wearproof and satisfactory casting properties, allowing to make the poured details of different mass, geometry and overall sizes. Influence of processes of микролегирования and modification is explored on operating properties of the recommended Cr-Mn cast-iron 290Х19Г4 and expedience of the use of these processes is set at production of the wearproof foundings taking into account concrete external environments.

  16. Optimization of casting conditions for heat and abrasion resistant large grey iron castings

    Directory of Open Access Journals (Sweden)

    C. C. Lee

    2007-05-01

    Full Text Available Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems of the previous casting conditions were analyzed and marked improvements for large cylinder liner parts were derived from these results. Especially the amount and positions of chills were optimized to increase the mechanical properties and to minimize the shrinkage and microporosity in the castings. Ultrasonic testing, penetration testing and mechanical property testing were carried out for the parts with the modified casting conditions. It showed that no defects in the castings were found and the productivity could be distinctly increased.The mechanical properties satisfied also the specification demanded.

  17. OPTIMIZATION OF THE COMPOSITION AND TECHNOLOGY OF THE ABRASION-RESISTANT CAST-IRONS MELTING

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2004-01-01

    Full Text Available Тhе methods of the service durability increase of wear resistant cast irons are analyzed. There are developed the compositions of economically-alloyed cast irons with low content of nickel and other deficient elements, being exploited both in cast and in thermotreated state. The composition of antifriction gray cast iron with increased exploitation characteristics is offered.

  18. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast–iron brake shoes manufacturing

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast–iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast–iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above–mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above–mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  19. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  20. Development of steel plate - cast iron hybrid casting process for recycling of low level radioactive metal waste

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Hirabayashi, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Akimoto, J.; Takahashi, K.; Shindo, H.; Sakurai, D. [Mitsubishi Materials Corp., Tokyo (Japan); Almansour, A.; Okane, T.; Umeda, T. [Univ. of Tokyo (Japan)

    2000-07-01

    For the purposes of recycling low-level radioactive waste arising from dismantling of nuclear reactors, applicability of steel plate - cast iron hybrid casting process has been investigated as a measure for producing a waste container using radioactive metal waste. This investigation consists of casting tests and analyses on the solidification and distortion of castings. This paper describes the concept of the casting process, casting test results, and understandings obtained from the analyses. (orig.)

  1. Continuous Modification of Cast Iron By the FLORET Method

    Directory of Open Access Journals (Sweden)

    Hanus A.

    2012-09-01

    Full Text Available Increasing demands on the utility properties of materials used for castings have led to the production of cast iron with a modified shape of graphite, where the required properties are achieved by a change in graphite shape, its size and layout, and a change in the basic structure of the metal. This paper is focused on the continuous method of producing spheroidal graphite FLOTRET.

  2. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  3. Cast Iron in The 19th Century Building Equipment

    Science.gov (United States)

    Kwasek, Michał; Piwek, Aleksander

    2017-10-01

    Cast iron is a material, characteristics of which enable to receive extremely artistic elements. It maintains good strength properties at the same time. That combination of these seemingly contrary traits makes it a commodity that was widely used in the 19th century industry and architecture. These usages were not only as decorative elements, technical and structural ones. The production of new household utilities started, which made people’s lives more comfortable. Cast iron allowed for fast and cheap production while maintaining high aesthetic qualities. Useful elements, which often were ornamental parts of buildings were created. The aim of the article is to characterise elements of interior equipment of the 19th century building that are made of cast iron. As it appears from performed bibliography, archival and field studies, the ways of exploitation are very broad. Some were mounted into the building; the others were a mobile equipment. As it occurred they were most commonly used as functional items. Cast iron was used to produce the minor elements, which were only parts of the bigger wooden or stone items. Notwithstanding, there were also bigger ones casted as a whole, and frequently ones that were assembled from many elements. Nowadays, elements of an interior feature are one of the subjects of study during the restoration work of the buildings. They can provide important information about the building and the way people lived and are considered as the essential part of historical objects.

  4. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  5. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  6. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  7. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  8. Effect of chill formation on the mechanical properties and microstructure of grey and nodular cast irons used in automotive industry

    Directory of Open Access Journals (Sweden)

    Halit SÜBÜTAY

    2016-02-01

    Full Text Available Cam shafts used in automobiles are produced by cast iron (grey cast iron, nodular cast iron or steel. In this study, effect of chill formation on the surface of grey and nodular cast irons is investigated on the wear behavior, hardness, impact toughness and microstructure of grey and nodular cast irons. For this purpose, four types cam shaft made of grey cast iron with and without chill on the surfaces and nodular cast iron with and without chill on the surfaces, were casted. Mechanical tests were conducted after the camshafts have been produced by casting method. Surface hardness and wear resistance of grey and nodular cast irons have been improved by chill formation on the surfaces and it is concluded that the amount of wear on the surfaces of grey cast iron with chill and nodular cast iron with chill is almost the same. Maximum hardness value was obtained on the surface of grey cast iron with chill. The impact toughness has been found to decrease by chill formation. Maximum impact toughness value was obtained on nodular cast iron. Microstructures of grey cast iron with and without chill and nodular cast iron with and without chill were examined under optical microscope and worn surfaces of cast irons were examined by scanning electron microscopy (SEM. Wear mechanisms of the four types of cast iron were evaluated by SEM examination.Keywords: Cam shafts, Cast irons, Chill formation, Mechanical properties, Microstructure

  9. The influence of solidification speed during heating on allotropic transformations of chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    M. Przybył

    2008-08-01

    Full Text Available The unique stand to founding dilatometric samples ("on ready” which solidify with different cooling speeds was presented. The dilatometric investigations, X-ray, metallographic they disclosed the occurrence in matrix of chromium cast iron of considerable quantity of austenite in dependence from concentration of chromium (18% and 23% and the speed of solidification. Castings these despite large part of austenite mark with high hardness in raw state.

  10. 75 FR 70900 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China...

    Science.gov (United States)

    2010-11-19

    ..., Canada, and the PRC and the CVD order on castings from Brazil. U.S. Customs and Border Protection will... International Trade Administration Certain Iron Construction Castings From Brazil, Canada, and the People's... certain iron construction castings (``castings'') from Brazil, Canada, and the People's Republic of China...

  11. Discussion on Usability of the Niyama Criterion for Porosity Predicting in Cast Iron Castings

    Directory of Open Access Journals (Sweden)

    Ignaszak Z.

    2017-09-01

    Full Text Available The paper refers to previous publications of the author, focused on criteria of casting feeding, including the thermal criterion proposed by Niyama. On the basis of this criterion, present in the post-processing of practically all the simulation codes, danger of casting compactness (in the sense of soundness in form of a microporosity, caused by the shrinkage phenomena, is predicted. The vast majority of publications in this field concerns shrinkage and feeding phenomena in the cast steel castings – these are the alloys, in which parallel expansion phenomenon does not occur as in the cast irons (graphite crystallization. The paper, basing on the simulation-experimental studies, presents problems of usability of a classic, definition-based approach to the Niyama criterion for the cast iron castings, especially of greater massiveness, for prediction of presence of zones of dispersed porosity, with relation to predictions of the shrinkage type defects. The graphite expansion and its influence on shrinkage compensation during solidification of eutectic is also discussed.

  12. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    Science.gov (United States)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  13. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative ...

  14. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  15. Ceramic port shields cast in an iron engine head

    Science.gov (United States)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  16. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern p...

  17. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  18. Graphite structure and magnetic parameters of flake graphite cast iron

    Science.gov (United States)

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, I.; Kage, H.

    2017-11-01

    Different matrix and graphite morphologies were generated by a special heat treatment in three chemically different series of flake graphite cast iron samples. As cast, furnace cooled and air cooled samples were investigated. The length of graphite particles and the pearlite volume of samples were determined by metallographic examination and these parameters were compared with the nondestructively measured magnetic parameters. Magnetic measurements were performed by the method of Magnetic Adaptive Testing, which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. It was shown that linear correlation existed between the magnetic quantities and the graphite length, and also between the magnetic quantities and the relative pearlite content in the investigated cast iron. A numerical expression was also determined between magnetic descriptors and relative pearlite content, which does not depend on the detailed experimental conditions.

  19. Development of volume deposition on cast iron by additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Suresh S. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition technique to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.

  20. Understanding Cast Iron Materials and Components: A Never Ending Story

    Science.gov (United States)

    Svensson, Ingvar L.; Olofsson, Jakob

    How can an in principal binary alloy of iron and carbon show so many fascinating phenomena and still today give surprises to users, foundrymen and researchers? This paper points out some critical steps in the understanding of the whole chain, from the melt to a cast iron product in service. The understanding of the material is gradually improved, assisted by the advances of other fields, e.g. analyzing methods and computational techniques. The heart in cast iron is the graphite, which is a highly difficult phase to understand but gives the material its unique properties. The linkage between understanding and modelling is necessary to calculate/simulate the processes occurring, where the precipitation, nucleation and growth of the different phases are the keys. Proper nucleation and growth models have been introduced to predict e.g. primary precipitation of austenite and graphite

  1. REDUCTION OF POWER CONSUMPTION AT ELECTRIC ARC INDUCTION CASTING OF CAST IRON AND STEEL

    Directory of Open Access Journals (Sweden)

    L. E. Rovin

    2005-01-01

    Full Text Available The analysis of efficiency and technological peculiarities of the ways of the electric power costs reduction at melting of cast iron and steel in electroarc and induction furnaces is presented. The most perspective for embedding in operating houses for conditions of RB is heating of burden due to natural gas in self-sufficient plants directly in loading bucket (baskets.

  2. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  3. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  4. Effect of carbon content on friction and wear of cast irons

    Science.gov (United States)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  5. Evaluation of producing technique factors affecting the matrix microstructure of as-cast ductile iron castings

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2011-01-01

    Full Text Available The objective of this paper was to investigate some important parameters related to ductile iron matrix microstructure. Ductile iron round bars of various diameters in order to achieve various cooling rates were obtained in different conditions. None heat treatment was used to obtain different pearlite contents in the microstructures. The correlation between kind of inoculants, specimens size, carbon equivalent, and matrix microstructure was investigated. The results demonstrated that the slow cooling rate, inoculants with rare earth elements, and relatively little residual magnesium content decreased the pearlite content. This study is of great importance for the development of new economical methods for production of ductile iron castings.

  6. Structure and mechanical properties of vermicular cast iron in cylinder head casting

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2009-01-01

    Full Text Available The paper discusses the problem of grain density and ferrite content in microstructure of vermicular graphite iron cast in bars of different section diameters and cylinder head casting. The experimental results regarding the section effect demonstrate that the nodule count, grain density and ferrite content are all function of the cast bar diameter in this particular case ranging from 0.6 to 8.0 cm and microstructure and mechanical properties in the cylinder head. The nodule count (or grain density has been reported to increase, while ferrite content was decreasing with decreasing casting diameter. The density number of the grains Nv has been related (by regression analysis to the undercooling degree

  7. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  8. THE RESULTS OF MAGNETIC CONTROL OF STRUCTURE OF THE WHITE CAST IRON INGOTS BEFORE ANNEALING FOR MALLEABLE

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskij

    2009-01-01

    Full Text Available Investigations of dependence of remanent flux in small-sized castings of white cast iron on content of areas with structure of grey cast iron are given. Solution of problem of non- allowance on extraction of castings with structure of grey cast iron is offered. Recommendations on using of control means are given.

  9. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  10. Nodular cast iron fatigue lifetime in cyclic plane bending

    Directory of Open Access Journals (Sweden)

    Marian Kokavec

    2012-05-01

    Full Text Available The fatigue behavior of a component is strongly dependent on the material and its surface condition. Therefore, the manner in which the surface is prepared during component manufacturing (surface roughness, residual stresses etc. has a decisive role in dictating the initiation time for fatigue cracks. The fatigue behavior of the same material, a nodular cast iron, with three different surface conditions (fine ground, sand blast and as-cast has been investigated under cyclic plane bending. The results show differences in fatigue strength, which are associated with the surface conditions. The characteristics of the surface layers of the different test specimens were examined by metallography.

  11. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  12. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  13. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  14. High temperature corrosion of cast irons and cast steels in dry air

    Energy Technology Data Exchange (ETDEWEB)

    Tholence, F.; Norell, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Engineering Metals

    2001-07-01

    The oxidation in dry air of four cast alloys intended for exhaust gas systems has been examined. Particular interest was directed to how the oxide growth was related to the microstructures. The examined alloys were two cast ductile irons, a SiMo alloy (Fe3,86Si0,6Mo3C) and a Ni-Resist alloy (Fe32Ni5,3Si2,1C), and two cast stainless steels, one ferritic (Fe18Cr2,1Mn0,32C) and one austenitic (Fe20Cr9Ni0,47C). Coupons were oxidised for 50 h at temperatures between 650 C and 1050 C. The samples were characterised by using XRD, SEM/EDX and AES. As expected, the overall oxide thickness increased with temperature and partial spallation occurred at the highest temperatures for all alloys. Porous Fe oxide nodules nucleate at the graphite nodules on the ductile irons. These Fe-oxide nodules formed above a continuous layer of Fe-Si-oxide for the SiMo and mixed Fe-Ni-Si oxides for the Ni-Resist. The total oxide thickness is about (60 {mu}m). Thick oxides at the interdendritic regions in the cast steels were attributed to non-Cr-carbides. Segregation of Cr directed the formation of iron oxide nodules to the centre of the dendrites in the austenitic alloy. (orig.)

  15. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  16. Quality and properties of the cast iron produced on the steel scrap base

    OpenAIRE

    K. Janerka; J. Jezierski; J. Szajnar

    2012-01-01

    Purpose: The goal of the article is to show the issue of the cast iron melting on the steel scrap base only (with no pig iron in charge). The particular interest was focused on the charging material chemical composition influence on the particular elements content in produced cast iron and its quality, too.Design/methodology/approach: The grey cast iron melting on the steel scrap base and recarburizers (anthracite, natural and synthetic graphite, petroleum coke) was conducted to achieve the g...

  17. Mechanism of silicon influence on the chill of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available In this work an analytical solution of general validity is used to explain mechanism of the silicon influence on the absolute chill tendency (CT and chill (w of cast iron. It is found that CT can be related to nucleation potential of graphite (Nv, growth parameter (μ of eutectic cells, temperature range (ΔTsc and the pre-eutectic austenite volume fraction (fγ. It has been shown that silicon additions: a impede the growth of graphite eutectic cells, μ, b expands the temperature range ΔTsc, c increases the nucleation potential of graphite Nv, d lowers the pre-eutectic austenite volume fraction, fγ. and in consequence the absolute chilling tendency, CT decreases. The minimum wall thicknesses for chilled castings, or chill widths (w in wedge shaped castings is related to CT and as silcon contents increases, the w value also increases.

  18. Age Strengthening of Gray Cast Iron Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Wayne Nicola

    2003-06-26

    The primary objective of this research is to identify the age strengthening mechanism in gray and ductile cast iron, and to quantify the parameters that control it. It is also to contribute to a new predictive model for gray and ductile iron strength and hardness. This work shows that age strengthening occurs on a sigmoidal-logarithmic scale in gray and ductile cast irons, to a statistically significant extent. This is similar to Avrami-Johnson-Mehl kinetics for phase transformations in metals. It occurs in both cupola-melted iron and induction melted iron. However, it does not happen in all compositions. We have developed some understanding of the process. Data suggests that nitrogen and nitride-forming trace elements have a significant role in the process, but that is yet not fully characterized. Also, the time dependence of the bulk hardness and strength increase, the nano-scale precipitation evidence from neutron scattering, differential scanning calorimetry results and matrix micro-hardness increase in ferrite all indicate that age strengthening occurs by a precipitation or pre-precipitate cluster formation mechanism.

  19. Application of welding technology TIG to cast iron repair

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-03-01

    Full Text Available Rcpnir nT cnst imn clcrncnts rcaEi7c in ordcr to cut out a sltpcrficial casting dcfcc~s, Dcrccis clccrcasc ;z usahiliny nt ca~rings torconsin~ciionaal pplication m d incrcasc a manufacturing costs. Thc pnpcr prcsclrls rcscarch rcsufts or itsc o r '1'IG - Tun~stcnI ncn Gas alsokncwn RS GTA - Gas Tunpstcn Arc surfacin: hy wclding on colt1 and half-hot to rcpnls chrninil~m cnsr iron EN-GJN-XCrlS withcliro~niurnc ontcnt nhout 3 5% and nodular ({vi~hF crritic-pcarli~ic matrix cast iron EN-GJS-500-7. Thc rcsttl~o r invcsiigations showpossibility of cns~ings rcpais hy put on derccts a good quality padding wclds, which havc compamhlc nr hcricr propcrtlcs than hnsc~naicrial.

  20. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  1. Performance characteristics of mill rolls from graphite chromium cast iron

    OpenAIRE

    Lecomte-Beckers, Jacqueline; Terziev, L.; Breyer, J. P.

    2000-01-01

    The main requirements for the development of a new grade for the later finishing section of the mill are : good oxidation and thermal behaviour, high wear resistance, good resistance to rolling incidents. The approach of Marichal Ketin to improve the rolling performances in the last finishing stands is presented. The Hi-Cr cast iron possesses excellent wear resistance due to the presence of hard chromium carbides, but its thermal conductivity and sticking properties are fairly low. A graphite...

  2. Composition and optical microstructure of good gray cast iron

    Science.gov (United States)

    Duraisamy, Nithyadevi; Veeravazhuthi, V.

    2013-02-01

    In this Project work, the microstructure and percentage composition of gray cast iron were studied for the given specimen. In microstructure analysis, the formations of structure after and before etching were analyzed and with the use of Optical emission spectrometer, the percentage of carbon, silicon, manganese, phosphorous, sulphur, chromium, copper and titanium are about 3.55%,2.17%,0.097%,0.085%,0.15%,0.462% and 0.021%.

  3. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren; Green, Nick; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...

  4. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  5. Electron Beam Welding Characteristics of Cast Iron and Bonding of Mild Steel to Cast Iron by using Iron-base Alloy of High Nickel Content

    Science.gov (United States)

    Hatate, Minoru; Shiota, Toshio; Nagasaki, Yoichi; Abe, Nobuyuki; Amano, Masaharu; Tanaka, Toshio

    Bonding characteristics of mild steel to cast iron using electron beam welding (EBW) process are investigated from the viewpoint of microstructure and mechanical properties. When the electron beam is radiated to a cast iron, remelting of the surface and corresponding rapid cooling take place, and it results in formation of brittle fine-cementite structure whose hardness is over 700 Hv. As Ni is an alloying element that may prevent formation of cementite, we compare two kinds of welding methods with Ni addition. One method is EBW process, radiating the electron beam to a thin plate made of spheroidal graphite cast iron with a high Ni content after the plate inserts between cast iron and steel, and other one is a metal active gas (MAG) welding process using a Fe-Ni wire. Bonding tensile strength by EBW process is higher than that by MAG welding process. In case of welding of cast iron and other metallic material, EBW process is found to be more advantageous than MAG welding process.

  6. Friction wear cast iron casting surface hardened by concentrated source of heat

    Directory of Open Access Journals (Sweden)

    W. Orlowicz

    2009-04-01

    Full Text Available In this study surface fusion by the GTAW (in argon atmosphere surfacing process on plate of cast iron with electric arc advance speedsfrom 200 to 800 mm/min and current range I=300A were performed. The geometry, microstructure, hardness, friction wear intensity weremeasured. A stepwise regression method was used to develop relationships between the electric arc advance speed, parameters of fusion geometry, microhardness and friction wear intensity.

  7. Effects of addition of iron (Fe) filings to green moulding sand on the microstructure of grey cast iron

    National Research Council Canada - National Science Library

    Adeleke Victor Adedayo

    2010-01-01

    .... To control cooling rate mould properties are important. This paper presents the report of a study of the effects of additions of iron filings to green moulding sand on the microstructure of grey cast iron...

  8. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  9. RECONSTRUCTION OF THE ANNEALED AND GRAY CAST IRON WORKSHOP AT GAG “MZGG”

    Directory of Open Access Journals (Sweden)

    V. A. Vershinin

    2005-01-01

    Full Text Available The advantages of moulding system DISA 230F (Denmark are given. It is shown that enterprise gets economic effect from reduction of net cost of 1 tone casting of annealed and gray cast iron.

  10. Heat Treatment in High Chromium White Cast Iron Ti Alloy

    Directory of Open Access Journals (Sweden)

    Khaled M. Ibrahim

    2014-01-01

    Full Text Available The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23 in a matrix of eutectic austenite and eutectic carbides (M7C3. At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.

  11. Effect of Chromium on the Solidification Process and Microstructure of Vermicular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2015-09-01

    Full Text Available The paper presents the results of studies of the effect of chromium concentration on the solidification process, microstructure and selected properties of cast iron with vermicular graphite. The vermicular graphite cast iron was obtained by an Inmold process. Studies covered the cast iron containing chromium in a concentration at which graphite is still able to preserve its vermicular form. The effect of chromium on the temperature of eutectic crystallization and on the temperature of the start and end of austenite transformation was discussed. The conditions under which, at a predetermined chromium concentration, the vermicular graphite cast iron of a pearlitic matrix is obtained were presented, and the limit concentration of chromium was calculated starting from which partial solidification of the cast iron in a metastable system takes place. The effect of chromium on the hardness of cast iron, microhardness of individual phases and surface fraction of carbides was disclosed.

  12. Influence of dust addition from cast iron production on bentonite sand mixture properties

    OpenAIRE

    P. Gengeľ; A. Pribulová

    2010-01-01

    In cast iron foundry operations like melting, casting, feetling, casts cleaning and grinding of a high amount of dusts are produced. Threekinds of dusts from different parts of cast iron foundry were analysed; chemical analyses, granulometric analyses and microscopic analyseswere carried out. The bentonite sand mixtures with different portion of dusts were prepared. Technological properties of prepared sandmixtures (compression strength, shearing strength and permeability) were measured.

  13. Influence of dust addition from cast iron production on bentonite sand mixture properties

    Directory of Open Access Journals (Sweden)

    P. Gengeľ

    2010-04-01

    Full Text Available In cast iron foundry operations like melting, casting, feetling, casts cleaning and grinding of a high amount of dusts are produced. Threekinds of dusts from different parts of cast iron foundry were analysed; chemical analyses, granulometric analyses and microscopic analyseswere carried out. The bentonite sand mixtures with different portion of dusts were prepared. Technological properties of prepared sandmixtures (compression strength, shearing strength and permeability were measured.

  14. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    OpenAIRE

    Yanling Ni

    2014-01-01

    This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out t...

  15. Study of properties of manual metal arc electrodes for gray cast iron defects repair works

    OpenAIRE

    A. Klimpel; D. Janicki; A.St. Klimpel

    2006-01-01

    Purpose: of these researches was to determine influence of MMA technique and surfacing parameters of gray cast iron using CASTOLIN 27 coated electrodes on quality of deposits.Design/methodology/approach: single layer weave bead deposits and one layer overlapped multi weave bead deposits were MMA surfaced on gray cast iron type GG25. All deposits were surfaced on no preheated gray cast iron plate. To determine quality of deposits hardness HRC measurements on the cross section of deposits, macr...

  16. Application of evolutionary algorithm for cast iron latent heat identification

    Directory of Open Access Journals (Sweden)

    J. Mendakiewicz

    2008-12-01

    Full Text Available In the paper the cast iron latent heat in the form of two components corresponding to the solidification of austenite and eutectic phases is assumed. The aim of investigations is to estimate the values of austenite and eutectic latent heats on the basis of cooling curve at the central point of the casting domain. This cooling curve has been obtained both on the basis of direct problem solution as well as from the experiment. To solve such inverse problem the evolutionary algorithm (EA has been applied. The numerical computations have been done using the finite element method by means of commercial software MSC MARC/MENTAT. In the final part of the paper the examples of identification are shown.

  17. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  18. Identification Trial of Crystallization Parameters of Modified Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2007-07-01

    Full Text Available In the paper results of researches of abrasion-resisting chromium cast iron inoculated with boron carbide B4C primary crystallization are presented. The main aim of work was make an attempt to identification of crystallization parameters that changed in reason of inoculation. Essential primary crystallization parameters, with the help of which, will be possible to evaluate the inoculation capacity were searched. It was found that in the result of inoculant actions characteristic temperatures were changed and time of primary crystallization was decreased. For tests the new broadened Derivative Thermal Analysis method, in which three samples with different solidification module were applied, was used. Thanks to this inoculation capacity in casts with significant diversified self-cooling ranges was possible to observe.

  19. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Truhan, Jr., John J [ORNL; Kenik, Edward A [ORNL

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  20. Effect of Electromagnetic Ruler Braking (EMBr) on Transient Turbulent Flow in Continuous Slab Casting using Large Eddy Simulations

    Science.gov (United States)

    Chaudhary, R.; Thomas, B. G.; Vanka, S. P.

    2012-06-01

    Static electromagnetic braking (EMBr) fields affect greatly the turbulent flow pattern in steel continuous casting, which leads to potential benefits such as decreasing flow instability, surface defects, and inclusion entrapment if applied correctly. To gain a fundamental understanding of how EMBr affects transient turbulent flow, the current work applies large eddy simulations (LES) to investigate the effect of three EMBr ruler brake configurations on transient turbulent flow through the bifurcated nozzle and mold of a liquid-metal GaInSn model of a typical steel slab-casting process, but with deep nozzle submergence and insulated walls with no solidifying shell. The LES calculations are performed using an in-house graphic-processing-unit-based computational-fluid-dynamics code (LES-CU-FLOW) on a mesh of ~7 million brick cells. The LES model is validated first via ultrasonic velocimetry measurements in this system. It is then applied to quantify the mean and instantaneous flow structures, Reynolds stresses, turbulent kinetic energy and its budgets, and proper orthogonal modes of four cases. Positioning the strongest part of the ruler magnetic field over the nozzle bottom suppresses turbulence in this region, thus reducing nozzle well swirl and its alternation. This process leads to strong and focused jets entering the mold cavity making large-scale and low-frequency (mold with detrimental surface velocity variations. Lowering the ruler below nozzle deflects the jets upward, leading to faster surface velocities than the other cases. The double-ruler and no-EMBr cases have the most stable flow. The magnetic field generates large-scale vortical structures tending toward two-dimensional (2-D) turbulence. To avoid detrimental large-scale, low-frequency flow variations, it is recommended to avoid strong magnetic fields across the nozzle well and port regions.

  1. Cast iron zinc galvanizing improved by high temperature oxidation process

    OpenAIRE

    D. Jędrzejczyk; M. Hajduga

    2010-01-01

    Purpose: To evaluate influence of the high-temperature oxidation, as the preliminary stage previous to coating with zinc on the change of surface layer structure as well as subsurface layer of cast iron with flake, vermicular and nodular graphite.Design/methodology/approach: The experiment was led in the temperature range: 850-1050ºC in ambient air. Samples have been taken out from the furnace separately after: 2-12 hours. After scale layer removal the hot dip zinc coating in industrial condi...

  2. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  3. Optimization of casting defects analysis with supply chain in cast iron foundry process

    Directory of Open Access Journals (Sweden)

    C. Narayanaswamy

    2016-10-01

    Full Text Available Some of the foundries are in need of meeting production targets and due to the urgency they ignore the rejections. The objective of this paper is to analyze the various defects, [1] from molding process in a cast iron foundry. The Failure Mode Effects Analysis (FMEA in quality control [2-6] with suitable supply chain for mold making process considering rejection rates are identified and analyzed in terms of Risk Priority Number (RPN to prioritize the attention for each of the problem. The optimum levels of selected parameters [7] are obtained in this analysis.

  4. Cast B2-phase iron-aluminum alloys with improved fluidity

    Science.gov (United States)

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  5. Graphite Nodule and Cell Count in Cast Iron

    Directory of Open Access Journals (Sweden)

    E Fraś

    2007-07-01

    Full Text Available In this work, a model is proposed for heterogeneous nucleation on substrates whose size distribution can be described by the Weibull statistics. It is found that the nuclei density, Nnuc can be given in terms of the maximum undercooling, ΔTm by Nnuc = Ns exp(-b/ΔTm; where Ns is the density of nucleation sites in the melt and b is the nucleation coefficient (b > 0 . When nucleation occurs on all the possible substrates, the graphite nodule density, NV,n or eutectic cell density NV after solidification equals Ns. In this work, measurements of NV,n and NV values were carried out on experimental nodular and flake graphite iron castings processed under various inoculation conditions. The volumetric nodule NV,,n or graphite eutectic cell NV count, were estimated from the area nodule count, NA,n or eutectic cell count NA on polished cast iron surface sections by stereological means. In addition, maximum undercoolings, ΔTm were measured using thermal analysis. The experimental outcome indicates that volumetric nodule NV,n or graphite eutectic cell NV count can be properly described by the proposed expression NV,,n = NV = Ns exp(-b/ΔTm. Moreover, the Ns and b values were experimentally determined. In particular, the proposed model suggests that the size distribution of nucleation sites is exponential in nature.

  6. Preiskave litih zavornih diskov iz kompozitov Al/SiC: Investigations of Al/SiC MMCs brake discs:

    OpenAIRE

    Breskvar, Bojan; Stadler, Zmago; Šuštaršič, Borivoj

    2000-01-01

    Sinter, Ljubljana, Slovenia is one of the world's largest producers of brake pads for go-karts. In high class and high price go-karts, the replacement of conventional grey cast-iron brake discs by lighter and frictionally more suitable brake discs based on Al/SiC MMCs is in progress. Besides the development of brake pads for the new disc mateial it was also necessary to develop a production technology for al/SiC brake discs. The characteristics of the new disc material, as well as the selecte...

  7. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  8. 77 FR 17119 - Pipeline Safety: Cast Iron Pipe (Supplementary Advisory Bulletin)

    Science.gov (United States)

    2012-03-23

    ... identifying the highest risk pipe. --Use rate adjustments and flexible rate recovery mechanisms to incentivize... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Cast Iron Pipe (Supplementary...; October 11, 1991 and ALN-92-02; June 26, 1992) covering the continued use of cast iron pipe in natural gas...

  9. Feasibility and practice of nodular iron casting feeder-less production

    Directory of Open Access Journals (Sweden)

    ZHOU Gen

    2006-02-01

    Full Text Available The volumetric changes of castings and dimension changes of mould cavity occurring during liquid cooling and solidification of nodular iron castings were described. The feasibility and prerequisites to realize feeder-less production of nodular iron castings was analyzed and proved with practical examples. It was pointed out that the feeder-less foundry method is by no means a feeding-less method, and it was emphasized that adopting high carbon equivalent, high rigidity mould, simultaneous and synchronous solidification, and intensifying cooling capacity of the mould to increase feeding effect of the gating system are important to successfully realize feeder-less production of nodular iron castings.

  10. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    ] with a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions......In the present paper modelling the solidification of cast iron parts is considered. Common for previous efforts in this field is that they have mainly considered thin walled to medium thickness castings. Hence, a numerical model combining the solidification model presented by Lesoultet al. [1...

  11. ''Ventilated brake discs manufactured in aluminium matrix composites and hypereutectic aluminium alloys''

    Energy Technology Data Exchange (ETDEWEB)

    Goni, J.; Coleto, J.; Eguizabal, P.; Rubio, A. [Fundacion INASMET, San Sebastian (Spain); Garcia, A.; Sanchez, J. [Inst. Univ. de investigacion del Automovil, Madrid (Spain)

    2003-07-01

    Two different aluminium alloy materials have been used to produce ventilated brake discs, on one hand, AS17G0.6 hypereutectic alloy and on the other hand, AS7G0.6 reinforced with 20% in wt. of SiC particles. The casting production technique used has been low pressure casting (LPC) and some of the brake discs have been heat treated using a T6 treatment. Once the ventilated brake discs were produced and machined, they were tested in a dynamometer in order to compare the performance under service conditions of the aluminium alloy and grey cast iron (GCI) discs currently used in the market. (orig.)

  12. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  13. Fiber laser cladding of nickel-based alloy on cast iron

    Science.gov (United States)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  14. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  15. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    OpenAIRE

    Pietrowski S.

    2012-01-01

    The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex”) cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainiti...

  16. Failure analysis of blistered organic coatings on gray iron castings

    Science.gov (United States)

    Tianen, Matthew N.

    This study investigates the blistering failure of a two part coating consisting of talc-filled polyester resin and polyurethane primer on large gray iron castings. Surface metallography was performed and failed coating was characterized by scanning electron microscopy. Corrosion products were found inside of coating blisters. The proposed blistering mechanism is osmosis as a result of soluble species produced by the corrosion. It was believed that excessively thin primer layers resulted in a poor barrier to permeation of water, leading to blisters, and that a basecoat containing a corrosion inhibitor like zinc phosphate would reduce blistering. These hypotheses were tested with designed experiments using environmental testing in humidity and submersion environments. Thicker primer layers resulted in significant reductions in blistering and prolonged the time required before blister formation. A basecoat containing zinc phosphate was not found to be effective at reducing blistering in this coating system.

  17. Obtaining Martensitic Structures during Thixoforming of Hypoeutectic Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Lucas Bertolino Ragazzo

    2015-01-01

    Full Text Available The control of parameters such as liquid fraction, holding time, and cooling rate during thixoforming can help control the final microstructure of the thixoformed part, thus improving its mechanical properties. This study intended to investigate conditions required to obtain martensite in hypoeutectic gray cast iron at 3.1% CE (carbon equivalent deformed in the semisolid state. Samples heated up to 1130, 1135, and 1145°C (liquid fractions of 10, 30, and 45% were compressed into platens without any holding time (0 s. If a sample presented a martensitic structure for 0 s holding time, new samples were retested at the same temperature for 30, 60, and 90 s holding times. The die casting process was simulated by allowing the platens to become locked after hot compression. Samples that cooled in the locked platens were submitted to higher cooling rates than samples that cooled with the platens open and presented martensite instead of the conventional ferrite and pearlite. Thus, the factor that had the greatest influence on the formation of martensite was the cooling rate rather than stress. The thixoforming process presented good morphological stability, which is highly desirable for industrial applications.

  18. Chromium and copper influence on the nodular cast iron with carbides microstructure

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2010-10-01

    Full Text Available In this paper chromium to 1,00% and copper to 1,50% influence at constant molybdenum content of about 1,50% on the nodular cast ironwith carbides microstructure has been presented. It was found, that as a result of synergic addition of above-mentioned elements there isthe possibility obtaining an ausferrite in nodular cast iron with carbides castings. Conditions have been given, when in nodular cast iron with carbides at cooling at first in the form, then air-cooling austenite transformation to upper bainite, its mixture with lower bainite, martensite or ausferrite takes place. Transformations proceed during cooling and the crystallization of cast iron have been determined and the casting hardness has been presented.

  19. New material technologies for brakes

    Energy Technology Data Exchange (ETDEWEB)

    Haug, T.; Rebstock, K.

    2000-07-01

    Brake discs made of grey cast iron are produced today in large quantities in seconds clock pulse. In spite of less tolerance and greater quality demands, extremely small unit costs are realised. On the one hand, the reason for this may be found in the low prices of the raw materials, refined production technology and large production numbers. On the other hand, the technical potential of grey cast-iron has essentially been exhausted. For further technical innovations in the area of brakes, new materials such as Al-MMC and CMC play an important role. The potential has already been demonstrated. In part an assembly installation has already been successful (see rail traffic) or will be shortly (see SLR at the IAA 99). The main hindrance to further assembly installation of a large number of items is the high installation costs. Therefore, in the future, along with the reduction of raw material costs (for example, C-Fibre) the main direction that will need to be taken to further reduce production costs, wil have to be in the realisation of a production technology with reliable processes suitable for large volumes. Otherwise, alternative brake disc material will only have a reduced significance. (orig.)

  20. Effect of Annealing on Nature of Corrosion Damages of Medium-nickel Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2017-09-01

    Full Text Available Within the presented research, effect of annealing on nature of corrosion damages of medium-nickel austenitic nodular cast iron castings, containing 5.5% to 10.3% Ni, was determined. Concentration of nickel, lower than in the Ni-Resist cast iron, was compensated with additions of other austenite-stabilising elements (manganese and copper. In consequence, raw castings with austenitic matrix structure and gravimetrically measured corrosion resistance increasing along with nickel equivalent value EquNi were obtained. Annealing of raw castings, aimed at obtaining nearly equilibrium structures, led to partial austenite-to-martensite transformation in the alloys with EquNi value of ca. 16%. However, corrosion resistance of the annealed alloys did not decrease in comparison to raw castings. Annealing of castings with EquNi value above 18% did not cause any structural changes, but resulted in higher corrosion resistance demonstrated by smaller depth of corrosion pits.

  1. COMPUTER MODELING OF CHARACTERISTICS OF CAST IRON FLOW FOR THE CASTINGS PRODUCED BY METHOD OF VACUUM AND FILM MOLDING

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available The computer simulation of the characteristics of manufacturing technology of the iron casting «body» for different correlations of feeder, slag traps and riser, recommended for the molds obtained by vacuum-film forming is carried out. The volume evolution of filling of the casting is calculated and dependences of speed instability and its projections on period of filling in assigned points of the mold are established.

  2. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  3. Analysis of reasons causing riser feeding failure in nodular iron castings production

    Directory of Open Access Journals (Sweden)

    ZHOU Gen

    2005-11-01

    Full Text Available In addition to mold rigidity and metallurgical quality of iron melting, the main reasons causing riser feeding failure in nodular iron castings production are: (a open and cold metal flowing-over risers were adopted; (b riser location was not proper; (c riser was too small or/and not enough high; (d ingates did not freeze up instantly as soon as pouring finished;(e there're isolated hot spots in the casting which are not connected with feeding channel of the riser; (f the feeding channel of castings with small size and thin sections is too narrow for feeding liquid to enter casting; and so on.

  4. INVESTIGATION OF EFFICIENCY OF GRAY CAST IRON GRAPHITIZING MODIFICATION BY DISPERSION-FILLED CONSUMABLE PATTERN

    Directory of Open Access Journals (Sweden)

    I. A. Nebozhak

    2015-01-01

    Full Text Available The key criteria of the process of graphitizing modification of matrix melt silicon concentration and silicon assimilation evaluated were on samples of gray cast iron grade СЧ20 State Standard 1412-85. These criteria of evaluation on the structure and properties of casting ingots proved an efficiency of intra-mold modification of molten gray cast iron by dispersed ferrosilicon grade ФС75 State Standard 1415-93 (ISO 5445-80 using lost-foam casting (LFC-process.

  5. Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

    Directory of Open Access Journals (Sweden)

    Mičian M.

    2017-09-01

    Full Text Available The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy. The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1 or aluminium bronze (CuAl10Fe. TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

  6. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC

    Science.gov (United States)

    Jing, Zhengjun; Zhou, Hong; Zhang, Peng; Wang, Chuanwei; Meng, Chao; Cong, Dalong

    2013-04-01

    Thermal fatigue and wear exist simultaneously during the service life of brake discs. Previous researchers only studied thermal fatigue resistance or abrasion resistance of compact graphite cast iron (CGI), rather than combining them together. In this paper, wear resistance after thermal fatigue of CGI was investigated basing on the principle of bionics, which was close to actual service condition of the brake discs. In the meanwhile, the effect of thermal fatigue on wear resistance was also discussed. Non-smooth bionic units were fabricated by laser cladding WC powder with different proportions (50 wt.%, 60 wt.%, 70 wt.%). Microstructure and microhardness of the units were investigated, and wear mass losses of the samples were also compared. The results indicate that thermal fatigue has a negative effect on the wear resistance. After the same thermal fatigue cycles times, the wear resistance of laser cladding WC samples is superior to that of laser remelting ones and their wear resistance enhances with the increase of WC content.

  7. Influence of Boron on Crystallization and Microstructure of Ductile Cast Iron

    OpenAIRE

    Dojka R.; Studnicki A.

    2017-01-01

    The objective of the research was to determine the influence of boron on the crystallization process and microstructure of ductile cast iron. In the case of ductile cast iron it is a vital issue because even as little as trace presence of boron changes the properties of ductile cast iron in a significant way. With the use of a new ATD-4 (TDA) tester and CRYSTALDIGRPAH converter it was possible to measure the crystallization process parameters of the same alloy with four different contents of ...

  8. The Initial Assessment of Effectiveness of the Impulse Method of Introducing an Inoculant into Cast Iron

    Directory of Open Access Journals (Sweden)

    Derda-Ślęzak A.

    2014-03-01

    Full Text Available An initial assessment of the effectiveness of cast iron inoculation, performed by the method of impulse introducing the master alloy into cast iron, is presented. The experiment was concerned with the hypoeutectic gray cast iron inoculated with either the Alinoc or the Barinoc master alloy by means of an experimental device for pneumatic transportation. Examinations involved pneumatic injection of the powdered inoculant carried in a stream of gaseous medium (argon into the metal bath held in the crucible of an induction furnace. It was found that the examined process is characterised by both high effectiveness and stability.

  9. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  10. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    Trytek A.

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  11. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    . This is important since the shapes of the graphite precipitates play a determining role for the properties of grey cast irons. However, to reach the full potential of cast irons and enable high-performance light-weight designs, more in-depth knowledge of the mechanisms controlling graphite growth and morphological...... cast iron it is important to estimate the density of nodules as well as the distribution of nodule shapes and sizes at room temperature. This emphasises the importance of models which can correctly describe the nucleation and growth of spheroidal graphite during solidification. In this thesis...... state growth presented in the present thesis. From the analysis it is clear that the presented data is of an unprecedented quality and that it represents a solid basis for validation of future models. Solidification simulations of a ductile cast iron component highlights the importance of the nucleation...

  12. Effect of Trace Elements (Boron and Lead) on the Properties of Gray Cast Iron

    Science.gov (United States)

    Ankamma, Kandula

    2014-04-01

    In the present work an effort has been made to correlate the "Effect of trace elements (B and Pb) on the tensile strength, hardness and microstructure of gray cast iron". These elements have a significant effect on the properties and microstructure of gray cast iron. These elements are deliberately added to study their effect on properties and microstructure. Boron up to 0.02 % in gray cast iron showed an improvement in tensile strength and hardness values. While beyond this amount it shows a decreasing trend, due to the formation of type B and type D graphitic structure. Lead in gray cast iron shows a decreasing trend in tensile strength and hardness values, even if present in trace amount, due to the formation of spiky or mesh type graphite.

  13. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-01-01

    The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials. PMID:28788193

  14. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  15. INVESTIGATION OF PHYSICOCHEMICAL AND MECHANICAL CHARACTERISTICS OF STEEL AND CAST IRON CHIPS

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2009-01-01

    Full Text Available The chemical and phase composition of steel and cast iron chips is studied, quantitative content of phases, including ferric oxides and other chemical elements chips, is determined.

  16. TDA method application to austenite transformation in nodular cast iron with carbides assessment

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper the possibility of TDA method using to austenite transformation in nodular cast iron with carbides assessment is presented. Studies were conducted on cast iron with about 2% molybdenum and 0,70% to 4,50% nickel. On diagrams, where TDA curves are pre- sented, on time axis a logarithmic scale was applied. It has not been used up to now. It was found, that during cooling and crystallization of cast iron in TDA probe, on the derivative curve there is a slight thermal effect from austenite to upper bainite or martensite transformation. Depending on nickel concentration austeniteupper bainite transformation start temperature changed (Bus, while MS temperature was independent of it. An influence of nickel on eutectic transformation temperature in nodular cast iron with carbides was determined too.

  17. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  18. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  19. Influence of selected modifiers on crystallization curve of chromium cast iron

    OpenAIRE

    A. Studnicki

    2009-01-01

    In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium). Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  20. Influence of selected modifiers on crystallization curve of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2009-07-01

    Full Text Available In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium. Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  1. PLASTIC FLOW OF CEMENTITE AND GRAPHITE IMPURITIES AT PROCESSING BY CAST IRON PRESSURE

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2013-01-01

    Full Text Available It is shown that the plastic deformation of cast irons with impurities of fragile phases of cement and graphite is an example of the general case of deformation of heterogeneous materials, in which fragile phase is located inside of the plastic base. It is confirmed that the most important factor is application of the deformation schemes close to uniform compression, what enables to deform plastically the fragile phases in the cast iron structure.

  2. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  3. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  4. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  5. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  6. Shape Accuracy of Iron Precision Castings in Terms of Ceramic Moulds Physical Properties Anisotropy

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2014-03-01

    Full Text Available While analyzing shape accuracy of ferroalloy precision castings in terms of ceramic moulds physical anisotropy, low-alloy steel castings ("cover" and cast iron ("plate" were included. The basic parameters in addition to the product linear shape accuracy are flatness deviations, especially due to the expanded flat surface which is cast plate. For mentioned castings surface micro-geometry analysis was also carried, favoring surface load capacity tp50 for Rmax = 50%. Surface load capacity tp50 obtained for the cast cover was compared with machined product, and casting plate surface was compared with wear part of the conveyor belt. The results were referred to anisotropy of ceramic moulds physical properties, which was evaluated by studying ceramic moulds samples in computer tomography equipment Metrotom 800

  7. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  8. Effect on Mechanical Properties of Heat Treated High Manganese Austenitic Cast Iron

    OpenAIRE

    Muzafar A.K.; Rashidi M.M.; Mahadzir I.; Shayfull Z.

    2016-01-01

    This work presents an attempt to study the effect of manganese addition and heat treatment on higher carbon austenitic cast iron to form high manganese austenitic cast iron with reduced nickel content (Mn-Ni-resist) on mechanical properties. The combination on microstructure (microsegregation), mechanical properties and the relationship of heat treatment on the alloy were analyzed. For this purpose Mn-Ni-resist (4.50C, 2.64Si, 6.0 Mn, 10 Ni) was melted and cast in the form of Y-block test pie...

  9. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of graphite...... nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  10. On the running-in of brake pads and discs for dyno bench tests

    OpenAIRE

    Matějka, V.; Metinöz, I.; Wahlström, Jens; Alemani, M.; PERRICONE G

    2017-01-01

    Running-in process of low metallic brake pads and cast iron discs are investigated using full scale inertia brake dynamometer designed for particle emission studies. The airborne particles are measured using ELPI+ and collected on filters. The pads and disc contact surfaces are studied using microscopy techniques. It is observed that the particle emissions from the new pads and discs are significantly higher compared with the used ones and indicates importance of proper running-in of the pads...

  11. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  12. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  13. The Althoff-Radtke Test Adapted for High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-12-01

    Full Text Available The paper presents results of the possibility of adapting the Althoff-Radtke test for High Chromium Cast Iron. The Althoff-Radtke test is a clump attempt used for steel. The Althoff-Radtke test has four different lengths of clamp which qualifies it as a test to quantitatively take into account different kinds of shrinkage ΔL. The length of the slot of the cracked corner and the length of each staple (50 - 350 mm are the parameters tendency to cast cracks. Castings of white cast iron have a high tendency to hot cracking due to the large range of solidification temperatures, unfavorable kinetics parameters of shrinkage, and especially a lack of expansion before shrinkage. Shrinkage of high chromium white cast iron is similar to the shrinkage of cast steel, and is approximately 2%. Therefore it is important to test susceptibility to hot cracks. Research was carried out under industrial conditions. Four melts were performed, one of the initial chemical composition and the other three modified by different amounts of Fe-Ti, respectively, 0.25%, 0.5% and 0.75% Fe-Ti. The propensity for hot cracking was based on the observation of the dark surface in the corner of the sample. The study shows that the Althoff-Radtke test can be adapted to determine the tendency for hot cracking of high chromium cast iron. It should however be noted that the test results cannot be compared with those for other alloys.

  14. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  15. Structure and properties of gray iron casted in the electromagnetic field

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-07-01

    Full Text Available In the national [1] and foreign [2] literature the methods of improving the homogeneity of the structure of castings using forced convection of the solidifying metal in the casting mould or the crystallizer are presented. This article presents the influence of chosen parameters of the rotating electromagnetic filed that is forcing the movement of melted metal in the mould on the morphology of graphite and the abrasive wear of the grey cast iron. The effect of this examination is the obtained modification of the flake graphite divisions morphology and a alteration of the abrasive wear resistance of the castings manufactured this way.

  16. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  17. RESEARCH OF INFLUENCE OF LIQUID ALUMINUM ON RESISTANCE OF THE STEEL AND CAST-IRON TOOL

    Directory of Open Access Journals (Sweden)

    S. S. Zhizhchenko

    2013-01-01

    Full Text Available The study of the interaction of steel and cast iron with aluminum was performed by immersion, and isothermal holding. By optical and electron microscopy, the microstructure of the reaction zone was investigated. The partial enthalpy of dissolution of iron, steel and cast iron in liquid aluminum has been investigated by high-temperature calorimetry at 1773 K. X-ray analysis and microhardness measurements was used to study the phase composition of the reaction zone. The thermodynamic descriptions of the system Al–Fe and Al–C–Fe are performed within the CALPHAD-method.

  18. The Formation of Gaseous Atmosphere in a Molten Cast Iron/Moulding Sand Contact System

    Directory of Open Access Journals (Sweden)

    Mocek J.

    2014-03-01

    Full Text Available Drops of molten cast iron were placed on moulding sand substrates. The composition of the forming gaseous atmosphere was examined. It was found that as a result of the cast iron contact with water vapour released from the sand, a significant amount of hydrogen was evolved. In all the examined moulding sands, including sands without carbon, a large amount of CO was formed. The source of carbon monoxide was carbon present in cast iron. In the case of bentonite moulding sand with seacoal and sand bonded with furan resin, in the composition of the gases, the trace amounts of hydrocarbons, i.e. benzene, toluene, styrene and naphthalene (BTX, appeared. As the formed studies indicate much higher content of BTX at lower temperature it was concluded that the hydrocarbons are unstable in contact with molten iron.

  19. Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Andersen, Uffa; Rasmussen, Niels

    and in thin sections have been made via videos of the metal flow. Conventional bottom filling gating systems are shown to give relatively low control over the melt flow. The result is flow patterns being able to change radically from mould to mould due to minor fluctuations in the pouring conditions...... casting thin walled parts, as thin plate shaped ingates are used for casting many parts. This is illustrated with a brake disc. 6 layouts have been made. The filling sequences have been recorded on video. The trials show the difficult task to design a bottom filling system generating no splash during...... of gating systems investigated in this work, cannot be recommended for castings with high demands to the quality, as the variation in the filling patterns can be very large from mould to mould and hence the stability of the quality will be affected....

  20. Initial Assessment of Abrasive Wear Resistance of Austempered Cast Iron with Vermicular Graphite

    Directory of Open Access Journals (Sweden)

    Soiński M. S.

    2014-10-01

    Full Text Available The work compares the abrasive wear resistance of cast iron containing vermicular graphite, measured in the as-cast state and after austempering carried out at 290°C, 340°C, or 390°C. Theexaminations were performed by means of the T-01M tribological tester using the pin-on-disc configuration. Specimens used for examinations were taken from the end tabs of the tensile specimens, these being cut out of the test walls of the double-leg keel block test castings. Examinations proved that the austempering process increases the abrasive wear resistance of vermicular cast iron by several times as compared with the as-cast material. A tendency for a slight decrease in abrasive wear with an increase in austempering temperature can be stated. The coefficient of friction took a little higher values for cast iron after thermal treatment than for the as-cast material. The work was completed with roughness examination by means of electron scanning microscopy.

  1. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  2. Selected Phenomena of the In-Mold Nodularization Process of Cast Iron That Influence the Quality of Cast Machine Parts

    Directory of Open Access Journals (Sweden)

    Marcin Stawarz

    2017-11-01

    Full Text Available This paper discusses a problem connected with the production process of ductile iron castings made using the in-mold method. The study results are presented showing that this method compromises the quality of the cast machine parts and of the equipment itself. Specifics of the nodularization process using the in-mold method do not provide the proper conditions for removal of chemical reaction products to the slag, i.e., the products stay in the mold cavity and they also decrease the quality of the casting. In this work, corrosion-type defects were diagnosed mostly on the surface of the casting and some compounds in the near-surface layer—i.e., fayalite (Fe2SiO4 and forsterite (Mg2SiO4—which cause discontinuities in the metal matrix. The results presented here were selected based on experimental melts of ductile iron. The elements of the mold used in this study, the shape of the mixing chamber, charge materials, method of melting, temperature of liquid metal, etc. were directly related to the production conditions. An analysis was conducted of the chemical composition using a Leco GDS500A spectrometer and a carbon and sulfur Leco CS125 analyzer. Metallographic examinations were conducted using a Phenom-ProX scanning electron microscope with an EDS system.

  3. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  4. Effects of cooling rate on vermicular graphite percentage in a brake drum produced by one-step cored wire injection

    Directory of Open Access Journals (Sweden)

    Yu-shuang Feng

    2015-09-01

    Full Text Available In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.

  5. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  6. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    Science.gov (United States)

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  7. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  8. Validation Tests of Prediction Modules of Shrinkage Defects in Cast Iron Sample

    Directory of Open Access Journals (Sweden)

    Hajkowski J.

    2017-03-01

    Full Text Available The paper presents the results of experimental-simulation tests of expansion-shrinkage phenomena occurring in cast iron castings. The tests were based on the standard test for inspecting the tendency of steel-carbon alloys to create compacted discontinuities of the pipe shrinkage type. The cast alloy was a high-silicone ductile iron of GJS - 600 - 10 grade. The validation regarding correctness of prognoses of the shrinkage defects was applied mostly to the simulation code (system NovaFlow & Solid CV (NFS CV. The obtained results were referred to the results obtained using the Procast system (macro- and micromodel. The analysis of sensitivity of the modules responsible for predicting the shrinkage discontinuities on selected pre-processing parameters was performed, focusing mostly on critical fractions concerning the feeding flows (mass and capillary and variation of initial temperature of the alloy in the mould and heat transfer coefficient (HTC on the casting - chill interface.

  9. Fabrication of High-Strength Gray Cast Iron Using Permanent Magnet Scrap

    Directory of Open Access Journals (Sweden)

    Park Seung-Yeon

    2017-06-01

    Full Text Available In this study, we have developed the manufacturing technology for high strength gray cast irons by using the spent permanent magnet scraps. The cast specimen inoculated by using a spent magnet scraps showed the excellent tensile strength up to 306MPa. This tensile strength value is 50MPa higher than that of the specimen cast without inoculation, and is similar to that of the specimen inoculated by using the expensive misch-metal. These superior mechanical properties are attributed to complex sulfides created during solidification that promote the formation and growth of Type-A graphite. It is therefore concluded that spent magnets scrap can provide an efficient and cost-effective inoculation agent for the fabrication of high-performance gray cast iron.

  10. Influence of Boron on Crystallization and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Dojka R.

    2017-06-01

    Full Text Available The objective of the research was to determine the influence of boron on the crystallization process and microstructure of ductile cast iron. In the case of ductile cast iron it is a vital issue because even as little as trace presence of boron changes the properties of ductile cast iron in a significant way. With the use of a new ATD-4 (TDA tester and CRYSTALDIGRPAH converter it was possible to measure the crystallization process parameters of the same alloy with four different contents of boron in one mould. Four samples with different boron contents were extracted, their microhardness was measured and quantitative analysis of microstructure was conducted. Obtained results allowed to state that with increasing content of boron the amount of graphite precipitates decreases, the amount of pearlite precipitates increases, the shape of graphite precipitates deteriorates and hardness increases. It is also planned to perform additional testings with boron contents between previously tested values.

  11. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu......A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500......-7) and a fully ferritic ductile iron (EN-GJS-450-10). The experiment showed that both the alloy composition and choice of feeder influenced the degreeof deformation measured in the finished casting. It was found that the deformation of the pearlitic alloy was influenced controllably by changing the feeder...

  12. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... was developed in order to investigate the thermal behaviour of the solidifying metal. Three cylindrically shaped cast samples surrounded by different cooling materials were introduced in the same mould allowing a common metallurgical background for samples solidifying at different cooling rates. The proposed...

  13. Age-Strengthening of Cast Iron and Its Effects on Machinability: Review of the Literature

    Science.gov (United States)

    Richards, Von L.

    This presentation is a review of the research performed over several years to characterize the age-strengthening behavior of graphitic cast iron alloys (gray iron, ductile iron and CG iron.) Nitrogen in metastable solid solution in ferrite is necessary for the age strengthening to occur, similar to quench aging of steels. The activation energy for age strengthening is similar to that for diffusion of nitrogen. Age-strengthening can occur even if the ferrite is present as a phase in pearlite. However, machinability benefits only occur when there is free ferrite in the microstructure.

  14. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  15. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  16. Grey cast iron as construction material of bridges from the 18th and 19th century

    Directory of Open Access Journals (Sweden)

    J. Rabiega

    2011-04-01

    Full Text Available Many bridges and railroad viaducts, which have been operated at the western and southern regions of Poland, were erected at the end ofthe 18th or beginning of the 19th century. In recent years they undergo overhauls and renovations requiring familiarity with the construction materials they have been made of. It is necessary for estimation of their load capacity (possible reinforcements and determining their suitability for further utilisation. Among the materials in the old bridges the puddled steels and cast irons predominate. Aim of the work is identification and documentation of microstructure and selected properties of the cast irons used for production of parts for the bridge in Łażany, the Old Mieszczański Bridge in Wrocław, the hanging bridge in Ozimek, as well as the columnar piers of the railroad viaduct in Wrocław. Using the methods of light microscopy and scanning electron microscopy, as well as the results of hardness measurements and chemical analysis, it has been shown that the objects have been built of grey cast iron with flake graphite having the ferritic-pearlitic or pearlitic matrix. The diversification of their chemical analysis resulting from the type, size and geometry of the cast parts was indicated.The tested materials fulfil requirements of the contemporary standards related to grey cast irons of the EN-GJL-100 and EN-GJL-150grades.

  17. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  18. Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners

    Science.gov (United States)

    Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.

    2017-01-01

    In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.

  19. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  20. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2013-03-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found that the traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  1. Effect of boron carbide on primary crystallization of chromium cast iron

    OpenAIRE

    A. Studnicki

    2008-01-01

    In the paper results of the influence of boron carbide (B4C ) as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium) on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of ...

  2. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Hassen, F. [Ecole des Mines de Paris - CGES, 77 - Fontainebleau (France); Bienvenu, Y. [Ecole des Mines de Paris, CM, 91 - Evry (France); Noirel, J.F. [Charbonnages de France, DTN, 57 - Freyming Merlebach (France); Metz, M. [charbonnages de France, ESA, 57 - Freyming Merlebach (France)

    2005-07-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  3. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  4. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...... rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed...

  5. Corrosion resistance study of grey cast iron implanted with C, N, Cr and Cu ions

    Science.gov (United States)

    Usanova, O. Yu; Maryushin, L. A.; Kazantsev, A. Yu; Dyukova, A. I.

    2017-10-01

    This article deals with the corrosion resistance of gray cast iron implanted with C, N, Cr and Cu ions in sodium chloride solution and sulfuric acid solution. The potentiodynamic research was conducted in atmosphere, simulating corrosion conditions: in 3% sodium chloride solution and in 0,1 N sulfuric acid solution. Potentiodynamic curves were obtained and surfaces of samples were observed. The research proves that the implantation of ions with N and Cr leads to an increase in the corrosion resistance of cast iron in sodium chloride solution, and the implantation of ions with N and Cu leads to increased corrosion resistance in sulfuric acid solution.

  6. The Optimization of Costs and the Carbon Content in Cast Iron

    Directory of Open Access Journals (Sweden)

    M. Grzybowska

    2007-07-01

    Full Text Available In the article was introduced the conceptions of the optimization of the cast-iron batch near the use the mathematical programmer MATLAB. The results of industrial tests were showed with the use of the batch from sheet metals. It was showed on the possibility of formulating the tasks of optimizing with the use of the programming linear. It was showed on more effective utilization the power of productive foundries and minimalizing losses coming into being in the result of the inappropriate selection of the raw material composition. The conduct of optimizing the intervention of the fusion of cast iron was talked over.

  7. 75 FR 54595 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China: Final...

    Science.gov (United States)

    2010-09-08

    ... convenience and customs purposes only. The written product description remains dispositive. Canada The... International Trade Administration Certain Iron Construction Castings From Brazil, Canada, and the People's... duty orders on certain iron construction castings from Brazil, Canada, and the People's Republic of...

  8. Effects of tungsten on erosion-corrosion behavior of high chromium white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi Anijdan, S.H. [Mining, Metals and Materials Engineering Department, McGill University, M.H. Wong Building, 3610 University Street, Montreal, H3A 2B2 (Canada); Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9944, Tehran (Iran, Islamic Republic of)], E-mail: hashem.mousavi@mail.mcgill.ca; Bahrami, A. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Varahram, N. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9944, Tehran (Iran, Islamic Republic of); Davami, P. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9944, Tehran (Iran, Islamic Republic of)

    2007-04-25

    In this study, effects of tungsten on wear resistance of high chromium white cast iron with and without tungsten in erosion-corrosion condition have been investigated. At the same time, the comparison between wear resistance of this grade of cast iron and low alloy steels with various contents of Cr which are used in industrial condition (in Sarcheshme Company, the greatest copper production company in the Middle East and with more than 4000 years historical cupper production background) was studied, while, copper concentrates have used for erosion particles. Results show that, because of higher hardness of matrix due to the tungsten, the wear resistance of high chromium cast iron increases. In addition to that, combine cutting and deformation wear mechanism and spalling mechanism were attributed in high chromium cast iron and low alloy steels, respectively. Subsequently, pitting mechanism in corrosion aspect was recognized because of inhomogeneity in chemical composition and sulfide inclusions content. Finally, the combine effects of erosion and corrosion (synergetic effect) were recognized in the high chromium white iron in industrial condition for the damaged samples.

  9. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  11. Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

    OpenAIRE

    Alan Vaško; Juraj Belan; Lenka Hurtalová; Eva Tillová

    2016-01-01

    The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and st...

  12. CLUSTER MECHANISM OF NUCLEUS FORMATION AND CONFORMITIES OF PRIMARY CRYSTALLIZATION OF CAST ALLOYS (AT THE EXAMPLE OF HIGH-CHROMIUM CAST IRONS

    Directory of Open Access Journals (Sweden)

    N. I. Bestuzhev

    2005-01-01

    Full Text Available The theoretical concepts on crystallization of cast alloys on the basis of cluster mechanism of nucleation and growth of initial crystals are given, the technological methods of receiving of fine-grained structure of high-chromium hypercutectic cast irons are outlined.

  13. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  14. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    Energy Technology Data Exchange (ETDEWEB)

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  15. Numerical and Experimental Study on Residual Stress in Gray Cast Iron Stress Lattice Shape Casting

    Science.gov (United States)

    Motoyama, Yuichi; Takahashi, Hiroki; Okane, Toshimitsu; Fukuda, Yoya; Yoshida, Makoto

    2013-07-01

    The prediction of residual stress in a stress lattice shape casting (stress lattice) has been conducted and discussed by some researchers via the Finite Element Method (FEM). However, most of the previous studies used the first-order tetrahedral element, which has poor analysis accuracy in problems including bending. The use of the first-order tetrahedral element makes the verification of these studies uncertain because the bending deformation essentially occurs in the stress lattice casting. This study first shows that the thermal stress analysis for the stress lattice should use the element that can represent the bending deformation in principle for bending of the thin parts. Second, the simulated residual stress was compared with the measured value. The thermal stress analysis successfully predicted the residual stress of the stress lattice casting with and 11 pct difference. In addition to the prediction of the residual stress, it is important from the viewpoint of the productivity of castings to reveal the effect of the shake-out temperature on the residual stress. However, in the previous studies, conclusions concerning the effect of the shake-out temperature on the residual stress were not consistent ( i.e., the one study said the higher shake-out temperature decreased the residual stress, and another study said a higher shake-out temperature increased the residual stress). Therefore, the current study first discusses the reason for the inconsistent conclusions in the previous studies. Second, stress lattice castings were cast and shaken out at various shake-out temperatures. Then, the current study validated the effect of the shake-out temperature on the residual stress. Consequently, the experimental results supported the conclusion of Kasch and Mikelonis that the shake-out at higher temperature contributed to the increase of the residual stress in the casting.

  16. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  17. Effect of Boronizing on Microhardness and Wear Resistance of Steel AISI 1050 and Chilled Cast Iron

    Science.gov (United States)

    Calik, Adnan; Simsek, Mithat; Karakas, Mustafa Serdar; Ucar, Nazim

    2014-05-01

    Steel AISI 1050 (steel 50) and chilled cast iron are studied after 5-h solid-phase boronizing from a powder environment at 900 °C. The surfaces of the boronized specimens are studied by x-ray and electron microscopic analyses and their Vickers microhardness is measured. The wear resistance is determined by the pin-on-disc method.

  18. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  19. COMPARATIVE RESEARCHES OF THE HIGH-STRENGTH CAST IRON MICROSTRUCTURE OF AFTER LASER AND PLASMA PROCESSING

    Directory of Open Access Journals (Sweden)

    V. I. Gurinovich

    2012-01-01

    Full Text Available The comparative researches of microstructure of highstrength cast iron after laser and plasma processing are carried out. It is shown that the peculiarity of plasma processing is formation of deeper layers with hardness 950010000 MPa. At laser processing the depth of the strengthened layers is less (about 0,5-0,8 mm, and their hardness is higher (to 11000 MPa.

  20. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  1. Influence of Titanium on Crystallization and Wear Resistance of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2016-03-01

    Full Text Available Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the samples were conducted using the modified pin-on-disk method.

  2. Influence of Titanium on Crystallization and Wear Resistance of High Chromium Cast Iron

    OpenAIRE

    Studnicki A.; Dojka R.; Gromczyk M.; Kondracki M.

    2016-01-01

    Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the samples were conducted using the modified pin-on-disk method.

  3. Microstructural Evolution During Laser Surface Alloying of Ductile Cast Iron with Titanium

    Directory of Open Access Journals (Sweden)

    Janicki D.

    2017-12-01

    Full Text Available Diode laser surface alloying process was used to the in-situ synthesis of TiC-reinforced composite surface layers on the ductile cast iron substrate. The obtained composite surface layers were investigated using optical and scanning electron microscopy, and XRD diffraction.

  4. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  5. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C...

  6. Corrosion Behavior of Cast Iron in Freely Aerated Stagnant Arabian Gulf Seawater

    Science.gov (United States)

    Sherif, El-Sayed M.; Abdo, Hany S.; Almajid, Abdulhakim A.

    2015-01-01

    In this work, the results obtained from studying the corrosion of cast iron in freely aerated stagnant Arabian Gulf seawater (AGS) at room temperature were reported. The study was carried out using weight-loss (WL), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. WL experiments between two and 10 days’ immersion in the test electrolyte indicated that the weight-loss the cast iron increases with increasing the time of immersion. CPP measurements after 1 h and 24 h exposure period showed that the increase of time decreases the corrosion via decreasing the anodic and cathodic currents, as well as decreasing the corrosion current and corrosion rate and increasing the polarization resistance of the cast iron. EIS data confirmed the ones obtained by WL and CPP that the increase of immersion time decreases the corrosion of cast iron by increasing its polarization resistance.

  7. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  8. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  9. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...

  10. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... solidification had only one main stage. The simulations reveal that the first stage of solidification can be explained by precipitation of off-eutectic austenite...

  11. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    Inoculation is an essential part of controlling material properties in grey cast iron. Inoculation practice has for decades been based on the addition to the melt of small amounts of elements with a strong affinity to O (and S) just before casting takes place. This method is proven—both in theory...... and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  12. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  13. Machinability of clean thin-wall gray and ductile iron castings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  14. Gas pressure in sand mould poured with cast iron

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2011-01-01

    Full Text Available The results of measurements of gas pressure in foundry moulds made from sands bonded with bentonite, sodium sil icate and furan resin were disclosed. It was found that the maximum pressure during pouring of mould with metal occurs in the case of bentonite sands, especially with the addition of coal dust. The effect of this pressure on the formation of surface defects in castings was examined.

  15. Thermal Microstructural Multiscale Simulation of Solidification and Eutectoid Transformation of Hypereutectic Gray Cast Iron

    Science.gov (United States)

    Urrutia, Alejandro; Celentano, Diego J.; Gunasegaram, Dayalan R.; Deeva, Natalia

    2014-08-01

    Although the gray cast iron solidification process has been the subject of several modeling studies, almost all available models appear to deal with only the more widely used hypoeutectic compositions. Models related to hypereutectic gray iron compositions with lamellar (or flake) graphite, and in particular for the proeutectic and eutectoid zones, are hard to find in the open literature. Hence, in the present work, a thermal microstructural multiscale model is proposed to describe the solidification and eutectoid transformation of a slightly hypereutectic composition leading to lamellar graphite gray iron morphology. The main predictions were: (a) temperature evolutions; (b) fractions of graphite, ferrite, and pearlite; (c) density; and (d) size of ferrite, pearlite, and gray eutectic grains; (e) average interlamellar graphite spacing; and (f) its thickness. The predicted cooling curves and fractions for castings with two different compositions and two different pouring temperatures were validated using experimental data. The differences between this model and existing models for hypoeutectic compositions are discussed.

  16. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  17. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  18. The Influence of Small Amounts of Aluminium on the Spheroidization of Cast Iron with Cerium Mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2012-04-01

    Full Text Available The influence of aluminium (added in quantity from about 0.6% to about 2.8% on both the alloy matrix and the shape of graphite precipitates in cast iron treated with a fixed amounts of cerium mischmetal (0.11% and ferrosilicon (1.29% is discussed in the paper. The metallographic examinations were carried out for specimens cut out of the separately cast rods of 20 mm diameter. It was found that the addition of aluminium in the amounts from about 0.6% to about 1.1% to the cast iron containing about 3% of carbon, about 3.7% of silicon (after graphitizing modification, and 0.1% of manganese leads to the occurrence of the ferrite-pearlite matrix containing cementite precipitates in the case of the treatment of the alloy with cerium mischmetal . The increase in the quantity of aluminium up to about 1.9% or up to about 2.8% results either in purely ferrite matrix in this first case or in ferrite matrix containing small amounts of pearlite in the latter one. Nodular graphite precipitates occurred only in cast iron containing 1.9% or 2.8% of aluminium, and the greater aluminium content resulted in the higher degree of graphite spheroidization. The noticeable amount of vermicular graphite precipitates accompanied the nodular graphite.

  19. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  20. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  1. Effect of electrode and weld current on the physical and mechanical properties of cast iron welding

    Science.gov (United States)

    Chamim, M.; Triyono, Diharjo, Kuncoro

    2017-01-01

    Metal casting industry will repair the products are defective. The repair process is often done using a Shielded Metal Arc Welding (SMAW). Preheat and post-weld heat treatment method can overcome the problem of welding cast iron. However, many of the local foundry industry does not use this method. The main problem of the method relates to the problem of cost and process. The results of testing Scanning Electron Microscopy (SEM), gray cast iron welding seen to have an important problem in the PMZ and HAZ. Hard and brittle phase formations during solidification process and after solidification formation eutectoid is carbide and martensite. The formation of martensite and carbides is caused by the high carbon content of cast iron. Consumable electrode with a nickel base material used for the welding process without preheating and PWHT methods. Nickel as an austenite stabilizer can pick up the carbon, so that the hard phase PMZ area can be reduced. Variations electric current used to get good heat input in the welding area so that nickel can diffuse well.

  2. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  3. The Effect of Addition of Titanium on The Structure and Properties of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-09-01

    Full Text Available The paper presents results of Ti-addition to High Chromium Cast Iron (HCCI on the structure and selected mechanical properties. For this study casted two sets of cylinders with dimensions ø20 mm, ø15 mm × 250 mm, for the High Chromium Cast Iron (HCCI and with the 4% by mass Ti-addition. Melts were performed in the induction furnace crucible capacity of 15 kg. During the heats the cup with installed S type thermocouple was poured to record the cooling curves. The cylinders were subjected to the static bending strength test. Samples for the test microstructure and Rockwell hardness were cut from the cylinders. The study shows that the addition of titanium had an impact on the structure and thus the properties of High Chromium Cast Iron (HCCI. In subsequent studies, through an appropriate choice of chemical composition and proper process control, it is planned to obtain in the structure the titanium carbides TiC and chromium carbides with type (Cr, Fe7C3.

  4. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  5. 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography

    Science.gov (United States)

    Yin, Yajun; Tu, Zhixin; Zhou, Jianxin; Zhang, Dongqiao; Wang, Min; Guo, Zhao; Liu, Changchang; Chen, Xiang

    2017-08-01

    In this article, X-ray microtomography and color metallographic techniques have been used to perform three-dimensional quantitative characterization of graphite nodule morphology in a step-shaped ductile cast iron casting. Statistical analyses of the graphite nodule count, diameter, sphericity, and spatial distribution have been processed for three samples in detail. The results reveal that graphite nodules in ductile cast iron can be categorized into two categories. The first types are nodules located in eutectic cells (NIECs), and the other one refers to nodules located between the eutectic cells (NBECs). The NIECs possess a larger average diameter but smaller sphericity compared with the NBECs, and the sphericity decreases along with the increasing of diameter. The increasing casting thickness results in an increasing count and percentage of NBECs. In addition, most nodules are NIECs in thin walls instead of NBECs in thick walls. Nonuniform spatial distributions of graphite nodules caused by the existence of NBECs have been found to become more obvious along with the increase of cast thickness.

  6. FEATURES OF CHROMIUM DOPING OF WEAR-RESISTANT CAST IRON

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2013-01-01

    Full Text Available The aim of this work analysis of the influence of chromium on the process of carbide formation, changes in chemical composition of the metal substrate in the areas adjacent to the carbides and at the hardness of iron while economy nickel and manganesealloying.

  7. MULTIPURPOSE (WEARPROOF AND ANTIFRICTIONAL COVERINGS ON PRODUCTS FROM CAST IRON

    Directory of Open Access Journals (Sweden)

    A. P. Laskovnev

    2015-01-01

    Full Text Available The basic elements of the new complex technologies providing effective receiving of the materials with the new level of properties are considered. Prospects of creation of new systems for alloying of constructional materials for mechanical engineering with management of their primary crystal structure, hardening mechanisms and resistance to fragile destruction are noted. The resource-saving method of direct surface alloying and modifying (using oxides is developed. Industrial wastes and semi-products of adjacent processes are used as modifying additives. The metals reduction is made by atomic hydrogen and carbon from the special coverings of a casting mold and cores containing high-polymeric connections.

  8. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...... to a level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained...

  9. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    OpenAIRE

    A. Janus; A. Kurzawa

    2011-01-01

    Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric) of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidifica...

  10. The structure and mechanical properties of pearlitic-ferritic vermicular cast iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-01-01

    Full Text Available The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

  11. Thermal Characterisation of Brake Pads

    DEFF Research Database (Denmark)

    Ramousse, Séverine; Høj, Jakob Weiland; Sørensen, O. T.

    2001-01-01

    The chemical-physical decomposition processes that occur in a brake pad heated to 1000degreesC have been studied. This temperature can be reached when a brake pad is applied. Thermogravimetry and differential thermal analysis were used in combination with evolved gas analysis, and image analysis...... using a scanning electron microscope.A brake pad is essentially a mixture of iron, carbon and binder. Combined techniques have been used, because of chemical reaction overlap, to determine how and at what temperature the binder decomposes, the coal and graphite combust and the iron oxidises.This work...... enables the development of brake pads that are stable at high temperature....

  12. INVESTIGATION OF DIFFUSED-ALLOYED WASTE OF STEEL AND CAST-IRON GRIT FOR PRODUCTION OF PROTECTIVE COATS

    OpenAIRE

    E. E. Panteleenko; V. G. Shcherbakov

    2009-01-01

    The article is dedicated to solving of actual problem on creation of inexpensive alloying materials in the form of composite powders of the steel and cast iron grit waste by means of their diffusion alloying by boron.

  13. INVESTIGATION OF DIFFUSED-ALLOYED WASTE OF STEEL AND CAST-IRON GRIT FOR PRODUCTION OF PROTECTIVE COATS

    Directory of Open Access Journals (Sweden)

    E. E. Panteleenko

    2009-01-01

    Full Text Available The article is dedicated to solving of actual problem on creation of inexpensive alloying materials in the form of composite powders of the steel and cast iron grit waste by means of their diffusion alloying by boron.

  14. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    National Research Council Canada - National Science Library

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    .... austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC...

  15. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    National Research Council Canada - National Science Library

    Edgar L. Castellanos-Leal; Ana E. Coy; Jaime A. González; Olga P. Vesga Rueda; David A. Miranda

    2017-01-01

    .... This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment...

  16. Thermodynamic Analysis of Cast Irons Solidification With Various Types of Graphite

    Directory of Open Access Journals (Sweden)

    Elbel T.

    2012-12-01

    Full Text Available The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

  17. Synergy of Practical Knowledge of Molding Sands Reclamation in Heavy Casting Foundry of Iron Alloys

    Directory of Open Access Journals (Sweden)

    Ignaszak Z.

    2013-09-01

    Full Text Available The paper summarizes research realized by the author in laboratory and industrial conditions (foundries of cast steel and cast iron, castings up to 50 tons on the effects of the chemically hardened molding sands regeneration using hard/soft rubbing in the dry reclamation. A reference was simultaneously made to advisability of application of the thermal regeneration in conditions, where chromite amount in the circulating (reclaimed molding sand goes as high as above ten percent. An advisability of connecting standard and specialized methods of examination of the reclaimed sands and molding sands made using it was pointed out. A way of application of studies with the Hot Distortion Plus® method modified by the author for validation of modeling of the thermo-dynamic phenomena in the mold was shown.

  18. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-04-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  19. Numerical modeling and experimental validation of microstructure in gray cast iron

    Science.gov (United States)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-10-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate ( R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed to correlate the phase volume fraction to hardness. The results are compared with experimental data and show reasonable agreement.

  20. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2015-06-01

    Full Text Available In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl. The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs. Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier.

  1. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    Science.gov (United States)

    Sherif, El-Sayed M.; Abdo, Hany S.; Zein El Abedin, Sherif

    2015-01-01

    In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier. PMID:28793413

  2. The forty years of vermicular graphite cast iron development in China (PartⅠ

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-05-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  3. An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW

    OpenAIRE

    Sadeghi, Alireza; Moloodi, Ahmad; Golestanipour, Masoud; Mahdavi Shahri, Meysam

    2017-01-01

    In this work, improving the abrasion–corrosion behavior of gray cast iron used in centrifugal pumps was studied. These pumps are usually made of gray cast iron (BS:1452Gr220) and are repaired by Shielded Metal Arc Welding (SMAW). Three different typical welding electrodes including Ni electrode (DIN8563), Carbon Steel electrode (DIN1913), and Hardening electrode (DIN8555) were used to compare the weldability of the base metal. Microstructural differences for three types of electrodes were stu...

  4. Shot peening induced phase transformations and residual stresses measurements on austempered cast irons by XRD

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. (DIMEG, Univ. di Padova (Italy)); Tiziani, A. (DIMEG, Univ. di Padova (Italy)); Giordano, L. (DIMEG, Univ. di Padova (Italy)); Bonollo, F. (DIMEG, Univ. di Padova (Italy)); Molinari, A. (Dip. Ing. Mater., Univ. di Trento (Italy))

    1994-01-01

    The present work is aimed at evaluating the effect on the residual stress pattern of two concurrent phenomena induced on austempered cast irons by Shot Peening: stresses due to the deformation and stresses produced by the transformation of the mechanically unstable retained austenite. According to XRD determinations of the amounts of the retained austenite variations and of the corresponding stress values, the leading phenomenon in the residual stresses settlment seems to be deformation related. (orig.)

  5. FATIGUE BEHAVIOR OF PEARLITIC S.G. CAST IRONS AFTER LASER SURFACE HEAT TREATMENTS

    OpenAIRE

    Guan, Y.; Pantelis, D.; Chambolle, D.; Parent-Simonin, S.; Poupeau, Ph.

    1991-01-01

    The laser transformation hardening does not improve the fatigue resistance of two pearlitic S.G. cast irons, using as surface preparation BN coating, sandblasting or phosphatation. On the treated surface, the initial pearlite is transformed into martensite. In the treated layer, further under the treated surface, a martensitic microstructure with traces of incompletely dissolved cementite can be observed. A bidimensional numerical heat transfer model has been developed for surface transformat...

  6. The influence of chosen modifiers on stereological parameters of carbides of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2011-07-01

    Full Text Available The results of investigations of stereological carbides in the modified wear resistance chromium cast iron resistant were introduced in the article. There were following elements: boron, niobium, vanadium, cerium and lanthanum (RE, nitrogen in the composition of modifiers. The influence of used modifiers on such stereological parameters of carbides as: size, perimeter, shape coefficient and volume fraction was showed in tables and on diagrams.

  7. Investigation on Microstructure of Heat Treated High Manganese Austenitic Cast Iron

    OpenAIRE

    Muzafar A.K.; Rashidi M.M.; Mahadzir I.; Shayfull Z.

    2016-01-01

    The effect of manganese addition and annealing heat treatment on microstructure of austenitic cast irons with high manganese content (Mn-Ni-resist) were investigated. The complex relationship between the development of the solidification microstructures and buildup of microsegregation in Mn-Ni-resist was obtained by using microstructure analysis and EDS analysis. The annealing heat treatment was applied at 700°C up to 1000°C to investigate the effect of the annealing temperature on the micros...

  8. Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases

    Science.gov (United States)

    Tholence, F.; Norell, M.

    2005-02-01

    Internal nitrides form in two ductile cast irons (SiMo and Ni-Resist) intended for exhaust systems in vehicles. Samples oxidised at 650 1050 °C for 50 h in modified synthetic exhaust gases were analysed by using AES and FEG-SEM. No nitrides formed in absence of NOx. In dry petrol gas coarse nitrides (Ni-Resist in both dry and normal petrol whereas no nitrides were observed in Ni-Resist exposed to diesel gases.

  9. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  10. Evaluation of the Mechanical Properties of Gray Cast Iron Using Electrical Resistivity Measurement

    Directory of Open Access Journals (Sweden)

    Bieroński M.

    2016-12-01

    Full Text Available In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ. The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.

  11. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  12. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  13. Effect on Mechanical Properties of Heat Treated High Manganese Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Muzafar A.K.

    2016-01-01

    Full Text Available This work presents an attempt to study the effect of manganese addition and heat treatment on higher carbon austenitic cast iron to form high manganese austenitic cast iron with reduced nickel content (Mn-Ni-resist on mechanical properties. The combination on microstructure (microsegregation, mechanical properties and the relationship of heat treatment on the alloy were analyzed. For this purpose Mn-Ni-resist (4.50C, 2.64Si, 6.0 Mn, 10 Ni was melted and cast in the form of Y-block test pieces. Four different heat treatment procedures were applied to the as-cast to investigate the effect of alloy modifications on Mn-Ni-resist. Optical and scanning electron microscopies were used for microstructure investigation. To determine the mechanical properties tensile test and hardness test were carried out. The result indicates both composition and heat treatment affect the performance of Mn-Ni-resist intensively. Microprobe analysis shows some silicon segregation near the graphite and practically little segregation of manganese. The increase in manganese contents developed some fractions of segregated carbide structures in LTF region located at austenite eutectic cell frame, which caused the tensile properties to drop in a small range. Application of annealing heat treatment gradually changed the carbide formation, so is the material’s strength.

  14. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  15. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  16. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    Science.gov (United States)

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  17. Laser surface texturing of gray cast iron for improving tribological behavior

    Science.gov (United States)

    Bathe, Ravi; Sai Krishna, V.; Nikumb, S. K.; Padmanabham, G.

    2014-10-01

    Laser surface texturing process involves creation of microfeatures, e.g., tiny dimples, usually distributed in a certain pattern, covering only a fraction of the surface of the material that is being treated. The process offers several advantages for tribological applications, including improved load capacity, wear resistance, lubrication lifetime, and reduced friction coefficient. In the present study, the surface modification of gray cast iron, using millisecond ( λ = 1,064 nm), nanosecond ( λ = 1,064 nm) and femtosecond ( λ = 800 nm) pulse duration laser irradiation, is adopted to establish a particular geometrical pattern with dimple features and dimensions, to improve wear and friction behavior. The effect of various laser processing parameters, including laser pulse energy, pulse duration and processing speed, on the performance characteristics of the laser-treated samples is investigated. The microtextured surfaces were produced on gray cast iron using different millisecond (0.5 ms), nanosecond (40 ns) and femtosecond (120 fs) laser source with the dimple depth between 3 and 15 μm. The coefficient of friction for the untextured surface was ~0.55, millisecond laser textured ~0.31, nanosecond laser textured ~0.02 and femtosecond laser ~0.01, under normal force of 50 N and sliding speed of 63 mm/s. Surface texturing of the gray cast iron surface using femtosecond pulse duration resulted in significant improvement in wear resistance in comparison to the untextured as well as millisecond and nanosecond laser-textured surface.

  18. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C

    2010-01-01

    New Sol-Gel coated sand cores made from coldbox and furan binder systems were investigated. The idea of the coating was to improve the surface quality of castings. Grey iron was cast on the cores in a sand casting process. The effect of the high temperature of the melt on the cores was assessed...... transport zone (VTZ) when in contact with the melt is larger than it is in a coldbox which means the furan cores have higher moisture content. The new sol-gel coating has the potential for improving the surface quality of castings without negative effects on the graphite distribution. The surface...... of castings made using the new sol-gel coated furan cores show better surface quality than those made using the coldbox....

  19. Selected aspects of the piece production of iron alloy castings in terms of their environmental impact

    Directory of Open Access Journals (Sweden)

    Z. Maniowski

    2010-07-01

    Full Text Available Problems of environmental protection are nowadays one of the top priorities in a policy programme adopted by the European Community.Reducing the negative impact of the domestic foundry industry on environment should result from complex and long-lasting activities,targeted not only at modernisation of the dust collecting units, but also at searches and implementation of alternative, innovative and more pro-ecology oriented means and techniques of casting manufacture. Reducing to minimum the level of emissions escaping to the environment should be considered at all stages of the casting manufacturing process. In this study, the discussion was restricted to the process of the manufacture of moulds and cores for piece production of the heavy castings. The environmental impact of the technology of making moulds and cores in sands with chemical binders, used most often in piece production of large castings poured from iron alloys, was highlighted. As an alternative technology of mould preparation for the piece production of castings, the ecological and economic aspects of the full mould process were presented.

  20. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  1. The problem organization processing of pouring the cast iron in the context of using the chain of deliveries

    Directory of Open Access Journals (Sweden)

    J. Sitko

    2009-07-01

    Full Text Available The article undertakes the attempt adaptation problems of the present logistics to requirements specialized casting works with the special regard problems to the founding of cast iron. On the job one presented chosen problems connected with the preparation and the realization processing in the foundry of the cast iron. Became introduced manner of administering resources of materials which to the state complex connection of the row technological elements in the chain of such deliveries as: the analysis quantity of orders and time limits of deliveries, qualifying to the quantity of elements given productive party, time limits of beginning production and the manner of working warehouse economy.

  2. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  3. Nano-scale orientation mapping of graphite in cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Theuwissen, Koenraad; Lacaze, Jacques [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France); Véron, Muriel [SIMAP, CNRS-Grenoble INP, BP 46 101 rue de la Physique, 38402 Saint Martin d' Hères (France); Laffont, Lydia, E-mail: lydia.laffont@ensiacet.fr [Institut CARNOT CIRIMAT, Université de Toulouse, ENSIACET, CS 44362, 31030 Toulouse Cedex 4 (France)

    2014-09-15

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains.

  4. An analysis of the friction mechanism on brake gear of railway rolling stock

    Directory of Open Access Journals (Sweden)

    J. H. Barnard

    1985-03-01

    Full Text Available Friction energy dissipation at an interface involves a wide range of interdisciplinary concepts. As the demand for higher operating speeds increased, the limitations of cast iron as the traditional friction material for rail transport brakes became more apparent. Only through an intensive analysis of the interfacial interaction between the brake block and brake path could the problems encountered with other promising friction materials be solved. The article deals with the difficulties pertaining to the early composite materials, and indicates how these were overcome by the understanding and implementation of new techniques not previously associated with conventional systems connected with railway braking. Two composite materials, that is 840/N for locomotives and freight wagons where mass oriented momentum dominates, and high friction composite 655/C for passenger vehicles with a predominantly speed-oriented momentum, are presently used.

  5. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, E.H. (INEEL POC); Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  6. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  7. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  8. Role of Alloying Additions in the Solidification Kinetics and Resultant Chilling Tendency and Chill of Cast Iron

    Directory of Open Access Journals (Sweden)

    Edward Fraś

    2015-03-01

    Full Text Available The present work describes the effect of the solidification processing and alloy chemistry on the chilling tendency index, CT, and the chill, w, of wedge-shaped castings made of cast iron. In this work, theoretical predictions were experimentally verified for the role of elements, such as C, Si, Mn, P and S, on the cast iron CT. In addition, inoculation and fading effects were considered in the experimental outcome. Accordingly, the graphite nucleation coefficients, Ns, b, the eutectic cell growth coefficient, μ, and the critical cooling rate, Qcr, for the development of eutectic cementite (chill were all determined as a function of the cast iron chemistry and time after inoculation. In particular, it was found that increasing the Mn and S contents, as well as the time after inoculation lowers the critical cooling rate, thus increasing the chilling tendency of the cast iron. In contrast, C, Si and P increase the critical cooling rate, and as a result, they reduce the cast iron CT and chill.

  9. 77 FR 22562 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Initiation and...

    Science.gov (United States)

    2012-04-16

    ... ``gray iron pipe fittings.'' These cast iron pipe fittings are normally produced to ASTM A-126 and ASME B.16.4 specifications and are threaded to ASME B1.20.1 specifications. Most building codes require that... which have the same physical characteristics and are produced to ASME B.16.3, ASME B.16.4, or ASTM A-395...

  10. POSSIBILITIES OF THE STRUCTURE CONTROL OF THE CAST-IRON AND STEEL ARTICLES BY DATA OF ULTRASONIC MEASURING

    Directory of Open Access Journals (Sweden)

    V. R. Bajev

    2004-01-01

    Full Text Available The article describes using of ultrasonic waves for determination of solid properties of cast iron and case hardened of steel objects. The possibility of evaluation of the gray iron type by indexes of speed of longitudinal and surface waves is shown. There is stable correlation dependence between surface speed, frequency and depth case hardened.

  11. Ductile iron castings fabricated using metallic moulds; Fabricacion de piezas de fundicion con grafito esferoidal en molde metalico

    Energy Technology Data Exchange (ETDEWEB)

    Urrestarazu, A.; Sertucha, J.; Suarez, R.; Alvarez-Ilzarbe, I.

    2013-07-01

    The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed. (Author)

  12. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  13. A Computational Study on the Use of an Aluminium Metal Matrix Composite and Aramid as Alternative Brake Disc and Brake Pad Material

    Directory of Open Access Journals (Sweden)

    Nosa Idusuyi

    2014-01-01

    Full Text Available A computational model for the heat generation and dissipation in a disk brake during braking and the following release period has been formulated. The model simulates the braking action by investigating the thermal behaviour occurring on the disc and pad surfaces during this period. A comparative study was made between grey cast iron (GCI, asbestos, Aluminium metal matrix composite (AMC, and aramid as brake pad and disc materials. The braking process and following release period were simulated for four material combinations, GCI disc and Asbestos pad, GCI disc and Aramid pad, AMC disc and Asbestos pad, AMC disc and Aramid pad using COMSOL Multiphysics software. The results show similarity in thermal behaviour at the contact surface for the asbestos and aramid brake pad materials with a temperature difference of 1.8 K after 10 seconds. For the brake disc materials, the thermal behaviour was close, with the highest temperature difference being 9.6 K. The GCI had a peak temperature of 489 K at 1.2 seconds and AMC was 465.5 K but cooling to 406.4 K at 10 seconds, while the GCI was 394.7 K.

  14. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    iron microstructure. Both graphite flake formation and matrix formation are influenced. However, the obtained effects differ considerably between different reported investigations. This investigation deals with the combined effect of nitrogen and boron and how it is possible to utilize this effect...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  15. Bond Strength of Multicomponent White Cast Iron Coatings Applied by HVOF Thermal Spray Process

    Science.gov (United States)

    Maranho, Ossimar; Rodrigues, Daniel; Boccalini, Mario; Sinatora, Amilton

    2009-12-01

    Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 °C and at room temperature were used to apply coatings with 200 and 400 μm nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 μm and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 ± 4 MPa.

  16. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  17. Cast Iron Inoculation Enhanced by Supplementary Oxy-sulfides Forming Elements

    Science.gov (United States)

    Riposan, Iulian; Stan, Stelian; Uta, Valentin; Stefan, Ion

    2017-09-01

    Inoculation is one of the most important metallurgical treatments applied to the molten cast iron immediately prior to casting, to promote solidification without excessive eutectic undercooling, which favors carbides formation usually with undesirable graphite morphologies. The paper focused on the separate addition of an inoculant enhancer alloy [S, O, oxy-sulfides forming elements] with a conventional Ca-FeSi alloy, in the production of gray and ductile cast irons. Carbides formation tendency decreased with improved graphite characteristics as an effect of the [Ca-FeSi + Enhancer] inoculation combination, when compared to other Ca/Ca, Ba/Ca, RE-FeSi alloy treatments. Adding an inoculant enhancer greatly enhances inoculation, lowers inoculant consumption up to 50% or more and avoids the need to use more costly inoculants, such as a rare earth bearing alloy. The Inoculation Specific Factor [ISF] was developed as a means to more realistically measure inoculant treatment efficiency. It compares the ratio between the improved characteristic level and total inoculant consumption for this effect. Addition of any of the commercial inoculants plus the inoculant enhancer offered outstanding inoculation power [increased ISF] even at higher solidification cooling rates, even though the total enhancer addition was at a small fraction of the amount of commercial inoculant used.

  18. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  19. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  20. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vazehrad, S., E-mail: vazehrad@kth.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Elfsberg, J., E-mail: jessica.elfsberg@scania.com [Scania CV AB, SE-151 87 Södertälje (Sweden); Diószegi, A., E-mail: attila.dioszegi@jth.hj.se [Dep. Materials Science and Engineering/Casting of Metals, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Dep. Mechanical Engineering/Materials and Manufacturing-Foundry Technology, Jönköping University, SE-551 11 Jönköping (Sweden)

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  1. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  2. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  3. Boric acid effect in phenolic composites on tribological properties in brake linings

    Energy Technology Data Exchange (ETDEWEB)

    Mutlu, I. [AKU Technical Education Faculty, Afyon (Turkey); Oner, C. [Firat University, Technical Education Faculty, Elazig (Turkey); Findik, F. [Sakarya University, Technical Education Faculty, Kampus, Adapazari (Turkey)]. E-mail: findik@sakarya.edu.tr

    2007-07-01

    In the present work, using a pad-on-disc-type wear tester, the tribological properties of the pad next to the disk made of cast iron were investigated with changing the substance of the components. As well, micro-structural characterisation of braking pads was performed using scanning electron microscopy and also temperature outcome of the pads was examined at the temperatures of 50-400 {sup o}C in the pressure of 1050 and 3000 kPa. Finally, the effect of environment to the pads was studied in water, salty water, oil and braking liquid media.

  4. Effect of Titanium Inoculation on Tribological Properties of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Siekaniec D.

    2017-12-01

    Full Text Available The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

  5. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  6. Prevention of Porosities in Insert-type Electron Beam Welding for Nodular Cast Iron

    OpenAIRE

    Fumio, SHIBATA; SEIICHI, ANDO; College of Science and Technology, Nihon University; College of Industrial Technology, Nihon University

    1983-01-01

    This paper reports about investigations in regard to the influences of the welding conditions mainly on porosities in insert-type electron beam welding for 50 Kgf/mm^2 class nodular cast iron (plate thickness: 6, 12, 18mm) with austenitic stainless steel SUS304 (thickness: 0.5 mm) as insert metal. Bead appearances, shape of fusion zone, porosities, state of weld cracks, and tensile test of weld joint have been carefully observed under the influences of welding conditions, that is, pretreatmen...

  7. FASHION THE KITCHEN: CAST IRON STOVES THE PROVINCE OF QUEBEC, 1900-1914

    Directory of Open Access Journals (Sweden)

    Lisa Baillargeon

    2010-01-01

    Full Text Available The role of aesthetics in the marketing strategies of Quebec’s foundries and retailers at the beginning of the 20th century is not well known. This qualitative analysis of published cast iron stove advertisements suggests that the use of aesthetics to market stoves was far more elaborate than the simple alignment with trendy or classic style categories. In fact, aesthetics were the cornerstone of advertising activities aimed at developing and capitalizing on various market segments at a time of burgeoning consumerism.

  8. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  9. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic...... strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...

  10. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    Science.gov (United States)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  11. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  12. Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging.

    Science.gov (United States)

    Llorca-Isern, N; Tartera, J; Espanol, M; Marsal, M; Bertran, G; Castel, S

    2002-01-01

    Spherulitic crystallisation is a mode of growth of crystals from the melt. Considerable attention has been given to spheroidal graphite formation, providing detailed information about the internal microstructure of the spherulites in spheroidal (SG irons) and compacted graphite irons (CG irons) (Stefanescu, D., 1990. Cast Irons. ASM Handbook, 10th ed., vol. 1). Nevertheless, the mechanisms responsible for this mode of crystallisation are not fully understood. This study deals with the inoculation mechanisms, with particular emphasis on the study of the inclusions for the heterogeneous nucleation of graphite. It is shown that the graphite nuclei are sulfide products of the nodularizing treatment. It has been observed that when rare-earth treatment is applied, the central nucleus consists of a core and an envelope from which the graphite grows. Confocal Scanning Laser Microscopy (CSLM), in reflection mode, was used to study the internal features of the spheroidal graphite growth. Confocal reflection imaging, which has a capacity for optical sectioning of the sample, provides high-resolution images of surface and subsurface regions of interest contained within a semi-transparent sample. Furthermore, three-dimensional reconstruction of these optical sections can provide insight into the mechanism of graphite growth mechanism interpretation. With CSLM the radial growth of graphite was seen. Other techniques, such as TEM, SEM-EDS, WDS, AES and SAM were also used to corroborate the results.

  13. The Use of Nitriding to Enhance Wear Resistance of Cast Irons and 4140 Steel

    Science.gov (United States)

    Yang, Zaidao

    This research is focused on using nitriding to enhance the wear resistance of austempered ductile iron (ADI), ductile iron (DI), and gray iron (GI), and 4140 steel. Three gas nitriding processes, namely "Gas nitriding + nitrogen cooled down to 800°F (Blue)", "Gas nitriding + cooled down to 300°F (Gray)", and "Gas nitriding + oil quenched (Oil)" were used for the cast irons. Three salt bath nitriding processes, namely Isonite, QP (Quench, Polish) and QPQ (Quench, Polish, Quench) were used for the 4140 steel. This study was carried out through optical metallography, roughness measurements, microhardness, and SEM. The ball-on-disc wear tests were conducted under lubricated conditions. It was found that COF for all materials in all nitrided conditions was small (Gray and Oil gas nitriding processes. For the 4140 steel, The surface microhardness of the ISONITE specimen was around 1400HV. QP and QPQ processes produce a surface microhardness of 2000-2200HV, which suggests that they may show improved wear behaviour compared to ISONITE- treated steels.

  14. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  15. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  16. Effect of tempering temperature on microstructure and mechanical properties of high boron white cast iron

    Directory of Open Access Journals (Sweden)

    Liu Zhongli

    2012-11-01

    Full Text Available The effect of different tempering temperatures on the microstructure and mechanical properties of air-quenched high boron white cast iron was studied. The results indicate that the high boron white cast iron comprises dendritic matrix and inter-dendritic M2B boride; and the matrix comprises martensite and pearlite. After quenching in the air, the matrix is changed into lath martensite; but only 1-μm-size second phase exists in the matrix. After tempering, another second phase of several tens of nanometers is found in the matrix, and the size and quantity increase with an increase in tempering temperature. The two kinds of second precipitation phase with different sizes in the matrix have the same chemical formula, but their forming stages are different. The precipitation phase with larger size forms during the austenitizing process, while the precipitation phase with smaller size forms during the tempering process. When tempered at different temperatures after quenching, the hardness decreases with an increase in the tempering temperature, but it increases a little at 450 ℃ due to the precipitation strengthening effect of the second phase, and it decreases greatly due to the martensite decomposition above 450 ℃. The impact toughness increases a little when tempered below 300 ℃, but it then decreases continuously owing to the increase in size and quantity of the secondary precipitate above 300 ℃. Considered comprehensively, the optimum tempering temperature is suggested at 300 ℃ to obtain a good combination of hardness and toughness.

  17. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  18. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  19. Wear of Spheroidal Graphite Cast Irons for Tractor Drive Train Components

    Energy Technology Data Exchange (ETDEWEB)

    Beltowski, Mark F [ORNL; Blau, Peter Julian [ORNL; Qu, Jun [ORNL

    2009-01-01

    The study was prompted by a desire to improve the wear resistance of power transmission components in rear axle drives on commercial farm tractors. Reciprocating wear tests were conducted under lubricated and non-lubricated conditions on three spheroidal cast irons which varied in strength and hardness (designated GGG450, GGG600, and GGG700). Hemispherically-tipped steel pins (designed 42CrMoS4/ 41CrS4) were used as the sliders. Except for the test duration, test procedures were similar to those described in ASTM Standard Test Method G133 for linearly-reciprocating sliding. Among the three cast irons tested, the harder and stronger the alloy, the lower was its wear rate. Wear factors were approximately four orders of magnitude lower for experiments lubricated in fresh, fully-formulated lubricating oil. There was a linear relationship between Brinell hardness of the alloys and the negative logarithm of the wear factors that were expressed in (mm3/N-m). Wear of lubricated test pins was not measurable due to the presence of deposits; however under non-lubricated sliding, the ratio of the wear of the flat specimen to that of the pin decreased as the hardness of the flat specimens approached that of the pin specimen.

  20. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  1. Relationship Between Inoculants and the Morphologies of MnS and Graphite in Gray Cast Iron

    Science.gov (United States)

    Muhmond, H. M.; Fredriksson, H.

    2013-04-01

    The influence of oxides and sulfides in gray cast iron on the growth morphologies of MnS and on the nucleation of graphite was experimentally investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) analysis with evidences that shows the possible nucleation sites for graphite nucleation. Thermodynamic studies have been done on the influence of varying sulfur concentrations on the nucleation of MnS in the melt and during solidification. The consumption of dissolved oxygen and sulfur in the melt during the cooling process was analyzed and we explored how this influenced the nucleation process of oxides and sulfides. A sequential nucleation concept of oxides and MnS is proposed in relation to the growth morphology of MnS and graphite with respect to the mechanical properties of cast iron. The nucleation of new oxides and sulfides was analyzed using thermodynamics and compared to our experimental results. Graphite nucleation on substrates other than MnS, such as MoS2 oxides and (Mo,Cr)S, was experimentally analyzed along with the influence of the substrates on graphite nucleation and growth morphology.

  2. Dynamic Coarsening of 3.3C-1.9Si Gray Cast Iron

    Science.gov (United States)

    Lora, Ruben; Diószegi, Attila

    2012-12-01

    The dynamic coarsening of primary austenite has been investigated by means of interrupted solidification in a hypoeutectic gray cast iron at three different cooling rates. The fundamental characteristic of the coarsening phenomenon, which is the reduction of the total interfacial area ( i.e., the primary austenite surface) over time, has been investigated along the solidification interval for the first time in gray cast iron. The primary austenite surface is confirmed to decrease with increasing solidification time. The relation between primary austenite surface reduction and the secondary dendrite arm spacing is reported as well as the time dependence of the inverse surface area of the primary phase per unit volume. The primary austenite surface has been determined via a stereological approach. The secondary dendrite arm spacing is observed to increase throughout the whole solidification range. A novel stereological relation, the modulus of primary dendrite, has been implemented on the calculation of the primary austenite surface. The size scale of the interdendritic phase has been determined by the hydraulic diameter of the interdendritic phase. The linear relations between secondary arm spacing and eutectic cells size and between secondary arm spacing and solidification time have been found to exist during solidification independently of cooling rate. The cooling rate dependence of the secondary dendrite arm spacing and the eutectic cells size is confirmed.

  3. Design and implementation of automatic opto-electrical detection system for spheroidal graphite cast iron metallographic phase

    Science.gov (United States)

    Meng, Qing-xin; Xiao, Ze-xin; Deng, Shi-chao

    2010-11-01

    Spheroidal graphite cast iron,with excellent mechanical properties,is widely used in manufacturing many advanced castings,such as crankshaft,gears,pistons,and a variety of machine parts.Its microstructure morphology reflects the quality performance of the products,which leads to an urgent need for a simple,accurate and automatic microstructure morphology detection technique for detecting the quality of spheroidal graphite cast iron.In this paper,opto-electrical detection technique is employed for designing a spheroidal graphite cast iron microstructure automatic detection system,in which the microstructure is imaged by optical microscopy system,and the digital images are obtained by industrial cameras and sent to the computer.A series of digital image processing algorithms,including gray transformation, binarization,edge detection,image morphology and seed filling etc,are adopted to calculate and analyze the microstructure images.The morphology and microstructure analysis methods are combined to obtain the characteristic parameters such as the size of the graphite,the ball classification,the number of graphite nodules and so on.The experiment results show that this method is simple,fast,and accurate and can be employed for assessment of the spheroidal graphite cast iron metallographic phase instead of manual detection.

  4. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  5. Verification of the Simulated Residual Stress in the Cross Section of Gray Cast Iron Stress Lattice Shape Casting via Thermal Stress Analysis

    Science.gov (United States)

    Motoyama, Yuichi; Inukai, Daiki; Okane, Toshimitsu; Yoshida, Makoto

    2014-04-01

    The residual stresses in the thick part of the stress lattice shape casting consist of the residual stress due to the temperature differential between the thick part and the thin part and the residual stress due to the temperature differential in the radial direction of the thick part. In this study, the gray cast iron stress lattice shape castings were cast and both types of the residual stresses were separately measured. Thermal stress analyses based on the casting experiment were conducted. Next, the measurements in this study were compared with both types of the simulated residual stresses. The thermal stress analyses estimated the residual stress due to the temperature difference in the radial direction of the thick part to be significantly higher than the measurement, although the residual stress due to the temperature difference between the thick part and the thin part was successfully predicted within a 10 pct error. Thus, this study suggested the introduction of the mechanical melting temperature, above which the very low yield stress is applied conveniently to describe the losses of the deformation resistance of the casting, to more accurately predict the residual stress due to the temperature difference in the radial direction of the thick part. From the verification of the suggested model, this study demonstrated that the conventional elasto-plastic model must introduce the mechanical melting temperature to predict the residual stress due to the temperature difference in the radial direction of the thick part and thus the overall residual stress in the stress lattice.

  6. Microstructure Aspects of a Newly Developed, Low Cost, Corrosion-Resistant White Cast Iron

    Science.gov (United States)

    Sain, P. K.; Sharma, C. P.; Bhargava, A. K.

    2013-04-01

    The purpose of this work is to study the influence of heat treatment on the corrosion resistance of a newly developed white cast iron, basically suitable for corrosion- and wear-resistant applications, and to attain a microstructure that is most suitable from the corrosion resistance point of view. The composition was selected with an aim to have austenitic matrix both in as-cast and heat-treated conditions. The difference in electrochemical potential between austenite and carbide is less in comparison to that between austenite and graphite. Additionally, graphitic corrosion which is frequently encountered in gray cast irons is absent in white cast irons. These basic facts encouraged us to undertake this work. Optical metallography, hardness testing, X-ray diffractometry, and SEM-EDX techniques were employed to identify the phases present in the as-cast and heat-treated specimens of the investigated alloy and to correlate microstructure with corrosion resistance and hardness. Corrosion testing was carried out in 5 pct NaCl solution (approximate chloride content of sea water) using the weight loss method. In the investigated alloy, austenite was retained the in as-cast and heat-treated conditions. The same was confirmed by X-ray and EDX analysis. The stability and volume fraction of austenite increased with an increase of heat-treated temperature/time with a simultaneous decrease in the volume fraction of massive carbides. The decrease in volume fraction of massive carbides resulted in the availability of alloying elements. These alloying elements, on increasing the heat treatment temperature or increasing the soaking period at certain temperatures, get dissolved in austenite. As a consequence, austenite gets enriched as well as becomes more stable. On cooling from lower soaking period/temperature, enriched austenite decomposes to lesser enriched austenite and to a dispersed phase due to decreasing solid solubility of alloying elements with decreasing temperature

  7. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  8. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  9. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  10. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  11. The Influence Of Temperature Gradient On Stereological Parameters Of Carbide Phase On Cross-Section Of Abrasive Wear Resistant Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-09-01

    Full Text Available In the paper analysis of temperature gradient and parameters of structure on casting cross-section of abrasive wear resistant chromium cast iron at carbon content of 2,5%wt. and chromium 17%wt. with nickel and molybdenum additives are presented. The castings were made with use of special tester ϕ100mm (method of temperature gradient and derivative analysis with temperature recording in many points from thermal centre to surface (to mould of casting. Registered cooling curves were used to describe the temperature gradient on cross-section of analyzed casting. On the basis of determined curves of temperature gradient measurement fields were selected to make the quantitative studies of structure. The results of studies show significant influence of temperature gradient on quantitative parameters of chromium cast iron structure. Moreover was affirmed that exists a critical temperature gradient for which is present rapid change of quantitative parameters of chromium cast iron structure.

  12. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  13. The Effect of Rotor Disc Material on Tribo Behavior of Automotive Brake Pad Materials

    Science.gov (United States)

    Liew, K. W.; El-Tayeb, N. S. M.

    This work aims to investigate the effect of two different counterdisc materials, i.e. gray cast iron (GCI) and ductile gray cast iron (DGCI) on tribo behavior of non-commercial frictional materials (NF1, NF2, NF4, and NF5) and two other chosen commercial brake pads (CMA and CMB) under dry sliding contact conditions. The four non-commercial frictional materials were fabricated with various percentages of phenolic binder resin (15 and 20 vol.%) and reinforced with steel fibers (15 and 20 vol.%) using hot press molding methods. Tribo tests were carried out using a small-scale tribo-tester of pad-on-disc type. Friction coefficient and wear of non-commercial and commercial brake pads were measured against each counterdisc (GCI and DGCI) and compared. Then, the friction and wear characteristic are discussed by comparing the experimental results obtained for each kind of cast iron. The results showed that maximum friction coefficient (0.4-0.5) of brake pad was attained at 2.22 MPa applied pressure and 2.1 m/s sliding speed when the frictional brake pad materials were tested against DGCI disc rotor. Meanwhile, similar wear rates for all frictional brake pad materials were sustained at higher applied pressure and sliding speed when tested against either type of rotor discs (GCI and DGCI). The results on the other hand, indicated that non-commercial materials NF1 and NF4, gave better wear resistance compared to other frictional pad materials. NF2 exhibited the lowest wear resistance when tested against GCI and DGCI rotor disc at all applied pressure and sliding speeds. The latter result is referred to the low percentage binder resin in the friction material NF2.

  14. Influence of wall thickness of spheroidal cast iron, manufactured in the foundry METAL-ODLEW Sp.J., on its graphite shape index and ultrasonic control index

    Directory of Open Access Journals (Sweden)

    W. Orłowicz

    2009-07-01

    Full Text Available This work presents the results of ultrasonic evaluation of the microstructure of spheroidal cast iron manufactured under production condi-tions at the foundry of Metal Odlew Sp.J. Evaluation of ultrasonic control index sensitiveness to changes of graphite shape index Ss of spheroidal cast iron (type 500-7, utilized modelled stepped castings. The relationship was determined between the shape index of graphite precipitation Ss and the velocity of longitudinal ultrasonic wave cL.

  15. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  17. Effect of graphite on folded metal occurrence in honed surfaces of grey and compacted cast irons

    Science.gov (United States)

    do Vale, João Luiz; da Silva, Carlos Henrique; Pintaúde, Giuseppe

    2017-09-01

    Grey cast iron (GCI) and compacted graphite iron (CGI) are the most employed materials to manufacture cylinder liners. The use of diamond tools to hone the surfaces resulted in an increase of the so-called folded metal occurrence. This irregularity can reduce the performance of engines and investigations to understand it have been made. In this sense, the current study aims to correlate the variation of graphite and the folded metal occurrence. Different samples of GCI and CGI were extracted directly of engine blocks, resulting in four metallurgical conditions. Topographical analysis was conducted in an optical interferometer and a dedicated routine to count the folded metal was developed using 3D images. Folded metal occurrence can be associated to a specific region of topography and to an increase in the graphite area fraction. Experimental evidences were provided revealing cross-sectional images of grooves using a scanning electron microscope. In addition, the present investigation shows that a larger amount of folded metal was related to the microstructure of thicker walls of compact graphite iron.

  18. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...

  19. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  20. Thick Co-based coating on cast iron by side laser cladding : Analysis of processing conditions and coating properties

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Th. M.

    2007-01-01

    The objective of this work was to create Co-based coatings (compositionally close to Stellite 6) on compacted graphite and gray cast iron,substrates with a high power laser (2 kW continuous Nd:YAG) cladding process. The relationships between the relevant laser cladding parameters (i.e. laser beam

  1. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  2. Coefficient of Friction of a Brake Disc-Brake Pad Friction Couple

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2016-12-01

    Full Text Available The paper concerns evaluation of the coefficient of friction characterising a friction couple comprising a commercial brake disc cast of flake graphite grey iron and a typical brake pad for passenger motor car. For the applied interaction conditions, the brake pressure of 0.53 MPa and the linear velocity measured on the pad-disc trace axis equalling 15 km/h, evolution of the friction coefficient μ values were observed. It turned out that after a period of 50 minutes, temperature reached the value 270°C and got stabilised. After this time interval, the friction coefficient value also got stabilised on the level of μ = 0.38. In case of a block in its original state, stabilisation of the friction coefficient value occurred after a stage in the course of which a continuous growth of its value was observed up to the level μ = 0.41 and then a decrease to the value μ = 0.38. It can be assumed that occurrence of this stage was an effect of an initial running-in of the friction couple. In consecutive abrasion tests on the same friction couple, the friction coefficient value stabilisation occurred after the stage of a steady increase of its value. It can be stated that the stage corresponded to a secondary running-in of the friction couple. The observed stages lasted for similar periods of time and ended with reaching the stabile level of temperature of the disc-pad contact surface.

  3. Effect of variable heat treatment modes on microstructures of Fe-Cr-B cast iron alloy

    Directory of Open Access Journals (Sweden)

    Guo Changqing

    2008-02-01

    Full Text Available The effect of heat treatment mode on the microstructure of Fe-Cr-B cast iron alloys was investigated in this paper by comparing the difference of precipitation patterns of secondary particles after thermal cycling treatment (TCT with those after normal heat treatment (NHT. No obvious differences were found in precipitation patterns of secondary particles between TCT and NHT when experimental temperature was below Ar1. However, when temperature was over Ar1, there were significant differences, with secondary particles prominently segregated at the grain boundaries under TCT, while the particles evenly distributed in the matrix under NHT. The reason for the microstructure differences could be associated with the development of non-equilibrium segregation of boron during TCT.

  4. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  5. Influences of single laser tracks' space on the rolling fatigue contact of gray cast iron

    Science.gov (United States)

    Chen, Zhi-kai; Zhou, Ti; Zhang, Peng; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong; Ren, Lu-quan

    2015-09-01

    To improve the fatigue wear resistance of gray cast iron, the surface is modified by Nd:YAG laser to imitate the unique surface of soil creatures (alternative soft and hard phases). After laser treatment, the remelting region is the named unit which is mainly characterized of compact and refinement grains. In the present work, the influence of the unit space on the fatigue wear resistance is experimentally studied. The optimum space is proven to be 2 mm according to the tested results and two kinds of delamination are observed on samples' worn surface. Subsequently, the mechanisms of fatigue wear resistance improvement are suggested: (i) for microscopic behavior, the bionic unit not only delays the initiation of microcracks, but also significantly obstructs the propagation of cracks; (ii) for macroscopic behavior, the hard phase resists the deformation and the soft phase releases the deformation.

  6. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    Science.gov (United States)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  7. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    Science.gov (United States)

    Zhang, Y. B.; Andriollo, T.; Fæster, S.; Liu, W.; Sturlason, A.; Barabash, R.

    2017-07-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, containing dislocations and dislocation boundaries. Each of the residual strain components in the matrix grains exhibits a complex pattern along the circumferential direction of the nodule. Along the radial direction of the nodule, strain gradients from the interface to the grain interior are seen for some strain components, but only in some matrix grains. The observed residual strain patterns have been analysed by finite element modelling, and a comparison between the simulation and experiments is given. The present study of local residual stress by both experimental characterization and simulation provide much needed information for understanding the mechanical properties of DCI, and represent an important contribution for the microstructural design of new DCI materials.

  8. Experimental Studies of Gray Cast Iron Solidification with Linear Variable Differential Transformer

    Science.gov (United States)

    Tadesse, Abel; Fredriksson, Hasse

    Expansion during the solidification of gray cast iron was studied by the help of Linear Variable Differential Transformer (LVDT). The chemical composition of the samples was altered by adding two types of inoculant; Superseed® (50% Si, 1% Sr and 0.5% Al) and SMZ® (69% Si, 1.9% Ca, 0.7% Ba, 5% Zr, 4.5% Mn and 1.3% Al). During the solidification, the melt shows hardly no shrinkage in the primary austenite formation region, but the eutectic region shows higher expansion. The expansion during the eutectic growth increase, when the inoculant weight percentage escalates. At the same time, the eutectic cells get smaller and increases in cells number. The micrograph reveals undercooled and interdendritic graphite transformed to homogenized flake graphite. The inoculation process reduces the solidification rate along with different stable oxide and sulfide nuclei's created prior to the solidification, as a result eutectic cell gets more sites to grow. The change in micrograph and solidification rate was believed to modify the mechanical property of the cast.

  9. Production of Selected Key Ductile Iron Castings Used in Large-Scale Windmills

    Science.gov (United States)

    Pan, Yung-Ning; Lin, Hsuan-Te; Lin, Chi-Chia; Chang, Re-Mo

    Both the optimal alloy design and microstructures that conform to the mechanical properties requirements of selected key components used in large-scale windmills have been established in this study. The target specifications in this study are EN-GJS-350-22U-LT, EN-GJS-350-22U-LT and EN-GJS-700-2U. In order to meet the impact requirement of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn't exceed 7.8%. On the other hand, Si content below 2.15% and pearlite content below 12.5% were registered for specification EN-GJS-400-18U-LT. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.6%Cu+0.05%Sn, 0.25%Mn+0.8%Cu+0.01%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with target specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.

  10. Oxygen-Diffused Titanium as a Candidate Brake Rotor Material

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Jolly, Brian C [ORNL

    2009-01-01

    Titanium alloys are one of several candidate materials for the next generation of truck disk brake rotors. Despite their advantages of lightweight relative to cast iron and good strength and corrosion resistance, titanium alloys are unlikely to be satisfactory brake rotor materials unless their friction and wear behavior can be significantly improved. In this study, a surface engineering process oxygen diffusion was applied to titanium rotors and has shown very encouraging results. The oxygen diffused Ti-6Al-4V (OD-Ti) was tested on a sub-scale brake tester against a flat block of commercial brake lining material and benchmarked against several other Ti-based materials, including untreated Ti-6Al-4V, ceramic particle-reinforced Ti composites (MMCs), and a thermal-spray-coated Ti alloy. With respect to friction, the OD-Ti outperformed all other candidate materials under the imposed test conditions with the friction coefficient remaining within a desirable range of 0.35-0.50, even under the harshest conditions when the disk surface temperature reached nearly 600 C. In addition, the OD-Ti showed significantly improved wear-resistance over the non-treated one and was even better than the Ti-based composite materials.

  11. Manufacturing and CMC component development for brake disks in automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Gadow, R.; Speicher, M. [Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart (Germany)

    2000-07-01

    Disk brake systems have been developed to high technical standards in the automotive industry since more than 40 years. Hydraulic brake systems for serial passenger cars as well as for trucks and trains include a disk made of cast iron in a variety of sophisticated designs. With appropriate friction properties its wear and corrosion resistance and its high temperature stability are insufficient. For light weight economy cars and improved comfort of vehicle suspension, the total and specific weight of brake components must be lowered. Based on first experiments in aeroplane brakes, carbon fiber composites (CFC) for disk brakes have been developed for competition cars in 2D and 3D design, mainly with metal wheel hub. The high temperature stability and friction behaviour perform superior retardation under extreme conditions. With respect to costs and insufficient all weather braking behaviour, CFC disks cannot be used in serial passenger cars. Their limited oxidation resistance, their critical and non comfortable low temperature retardation, the wear and unsteady friction coefficient show further limitations in industrial use. (orig.)

  12. Tribological properties of the disc brake friction couple materials in the range of small and very small speeds

    Science.gov (United States)

    Stoica, N. A.; Petrescu, A. M.; Tudor, A.; Predescu, A.

    2017-02-01

    The tribological properties of the friction couple materials have a major influence on the brake system operation and its failure. One of the main phenomena associated as a symptom of failure in the brake system are the noises and vibrations produced during braking. The stick-slip phenomenon is attributed as the cause of these noises and vibrations. The stick-slip phenomenon usually appears at low and very low sliding speeds and is described as intermittences in the friction process caused by the differences between the values of the kinetic and the static friction coefficients. The present paper addresses an investigation about the influence of the static and kinetic friction on the occurrence of above mentioned noises and vibrations in the disc brake system. For this, extensive experimental work was performed on a laboratory tribometer in the form of pin-on-disc tests, where the pin was manufactured out of an automotive brake pad and the disc was manufactured out of an automotive grey cast iron brake disc. The results highlight the effects of the sliding speed and contact pressure on the friction coefficient and its influence on the brake noises and vibrations caused by the stick-slip phenomenon.

  13. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquir...... of castings with different plate thicknesses....

  14. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben

    2010-01-01

    of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...... compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...

  15. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Velayutham [Department of Chemistry, Periyar University, Salem 636011 (India); Kesavan, Devarayan [Department of Chemistry, Dhirajlal Gandhi College of Technology, Salem 636309 (India); Gopiraman, Mayakrishnan [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Viswanathamurthi, Periasamy, E-mail: viswanathamurthi72@gmail.com [Department of Chemistry, Periyar University, Salem 636011 (India); Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan [Department of Bio-Chemistry, Periyar University, Salem 636011 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E{sub a} and ΔH{sup *} point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods.

  16. Comparing the Structure and Mechanical Properties of Welds on Ductile Cast Iron (700 MPa under Different Heat Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Ronny M. Gouveia

    2018-01-01

    Full Text Available The weldability of ductile iron, as widely known, is relatively poor, essentially due to its typical carbon equivalent value. The present study was developed surrounding the heat treatability of welded joints made with a high strength ductile cast iron detaining an ultimate tensile strength of 700 MPa, and aims to determine which heat treatment procedures promote the best results, in terms of microstructure and mechanical properties. These types of alloys are suitable for the automotive industry, as they allow engineers to reduce the thickness of parts while maintaining mechanical strength, decreasing the global weight of vehicles and providing a path for more sustainable development. The results allow us to conclude that heat treatment methodology has a large impact on the mechanical properties of welded joints created from the study material. However, the thermal cycles suffered during welding promote the formation of ledeburite areas near the weld joint. This situation could possibly be dealt through the implementation of post-welding heat treatments (PWHT with specific parameters. In contrast to a ductile cast iron tested in a previous work, the bull-eye ductile cast iron with 700 MPa ultimate tensile strength presented better results during the post-welding heat treatment than during preheating.

  17. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  18. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  19. Undercooling, Cooling Curves and Nodule Count for Hypo-, Hyper- and Eutectic Thin-Walled Ductile Iron Castings

    Science.gov (United States)

    Kapturkiewicz, Wojciech; Burbelko, Andriy

    Solidification model and numerical calculations are presented describing the solidification of a thin wall ductile iron with hypo-, hyper- and eutectic composition. The principal assumptions of the kinetic nature of growth, depending on undercooling in respect of the equilibrium lines, have been adopted, disregarding the diffusion processes, which was justified by the rapid course of the crystallization process in a thin-walled casting. This kinetic model was operating in a correct mode when it was completed with adjusted calculations of the carbon amount diffusing through the austenite film around the graphite nodules. The applied model of diffusion determined jointly with the kinetic model of the growth of graphite and austenite resulted in high-speed calculation program. Quite interesting are the results showing distinct differences in the kinetics of solidification and final structure of the cast iron with the same degree of eutectic saturation, but different content of C and Si.

  20. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  1. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  2. An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghi

    2017-01-01

    Full Text Available In this work, improving the abrasion–corrosion behavior of gray cast iron used in centrifugal pumps was studied. These pumps are usually made of gray cast iron (BS:1452Gr220 and are repaired by Shielded Metal Arc Welding (SMAW. Three different typical welding electrodes including Ni electrode (DIN8563, Carbon Steel electrode (DIN1913, and Hardening electrode (DIN8555 were used to compare the weldability of the base metal. Microstructural differences for three types of electrodes were studied and forming of different phases was analyzed. Corrosion and abrasion tests were conducted and related to welding conditions. Experimental results showed that using Ni substrate electrode reduce the unwanted phases (martensitic and carbides. Furthermore, in comparison with the base metal, the abrasion behavior of all weldments was improved. It was also determined that the carbon steel electrode has a higher corrosion resistance in zero-resistance ammeter (ZRA test compared to other electrodes.

  3. COMPUTER IMAGE PROCESSING OF MICROSTRUCTURES OF GRAY CAST IRON AS A TOOL FOR QUANTITATIVE ANALYSIS OF GRAPHITE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available Based on gray cast iron microstructure with different lengths of flaky graphite inclusions contained in GOST 3443-87 «Cast iron with various forms of graphite. Methods for determining the structure «shows the possibilities of classification of microstructures ПГд15, ПГд25, ПГд45, ПГд90, ПГд180, ПГд350, ПГд750 and ПГд1000 based on image processing techniques that allows to develop a methodology for the transition from qualitative scale of microstructures used for the analysis of the graphite phase, to quantify.

  4. DEVELOPMENT OF TECHNOLOGY OF THE HIGH-QUALITY CAST IRONS PRODUCTION BY MEANS OF GRAPHITIZING MODIFICATION BY THE HIGH-POLYMERIC AMALGAMATION WASTES

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2005-01-01

    Full Text Available The variant of graphitizing modification of gray cast irons by means of application of non-classic methods of processing, when unusable for regeneration high-polymeric compounds are uses as additives. There is noted the improvement of the cast iron structure: form of graphite impurities is varying from PGd 180 up to PGD 45, the character of graphite impurities from PGr up to PGr 3, perlitization of metallic base is observed.

  5. Effects of MC-Type Carbide Forming and Graphitizing Elements on Thermal Fatigue Behavior of Indefinite Chilled Cast Iron Rolls

    Science.gov (United States)

    Ahiale, Godwin Kwame; Choi, Won-Doo; Suh, Yongchan; Lee, Young-Kook; Oh, Yong-Jun

    2015-11-01

    The thermal fatigue behavior of indefinite chilled cast iron rolls with various V+Nb contents and Si/Cr ratios was evaluated. Increasing the ratio of Si/Cr prolonged the life of the rolls by reducing brittle cementites. Higher V+Nb addition also increased the life through the formation of carbides that refined and toughened the martensite matrix and reduced the thermal expansion mismatch in the microstructure.

  6. Transmission electron microscope studies of the chromium cast iron modified at use of B4C addition

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2010-10-01

    Full Text Available Results of studies of the high alloy chromium cast iron with boron addition in form of the B4C phase powder are presented in this paper.The main field of interest is the identification of phases based on the transmission electron microscope study, occurred in this alloy aftersolidification process. The structure mainly consists of the austenite matrix and M7C3 carbide identified as the Cr7C3 phase.

  7. INVESTIGATION OF HARDENING AND COOLING OF CHROMIC IRON CAST AT CASTING INTO CHILL, SAND AND COMBINATION MOLD

    Directory of Open Access Journals (Sweden)

    E. F. Baranovskiy

    2010-01-01

    Full Text Available The comparative analysis of hardening of ingot of abrasion-resistant chromic iron in chill, sand and combination molds is carried out according to the results of mathematical and computer calculations.

  8. Statistical analysis using the multiple regression research in areas of the indefinite chilled cast-iron rolls manufacturing

    Science.gov (United States)

    Kiss, I.; Alexa, V.; Cioată, V. G.

    2017-05-01

    To analyze the metallurgical processes is used, mainly, the statistical fundamental methods that permit to draw conclusions, from the observed values, about the repartition of the frequencies of various parameters, about their interaction, about verification validity of certain premises, and about the research of the dependencies among different parameters. In this sense, the realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties of the indefinite cast iron rolls. Now, using the multivariate research, we present some mathematical correlations and graphical interpretations between the hardness and the chemical composition. Using the double and triple correlations variation boundaries for the chemical composition, in view the obtaining the optimal values of the hardness of indefinite cast iron rolls, are obtained. The partial results and evidence obtained by actual experiments are presented. For the multiple regression equations, correlation coefficients and graphical representations the software MATLAB was used.

  9. Increasing the Surface Hardness of Cast Iron by Electrodeposition of Borides in Molten Salts

    Directory of Open Access Journals (Sweden)

    Al-Azzawi A.H.

    2017-06-01

    Full Text Available In this paper the electrodeposition of boron on the surface of cast iron as a coating is applied to increase the hardness and protect the substrate against abrasive wear. The boron containing coating was synthesized by electrodeposition process from a NaCl-KCl (1:1 mol-10 w%NaF-10w% KBF4 molten salt. The effect of electrolysis parameters (temperature and time on the hardness is presented; the current density varied in the range −37 – −4.5 mA/cm2, allowing perfect coverage of and respect for dimensions. The electrochemical process was carried out at different temperatures (750°C-900°C and for different periods of time (5-10 hours. Depending on the current density and duration of electrolysis, the deposits consist of FeB or Fe2B. Microhardness measurements across the boride layer indicated very high hardness values (between 1600 and 2100 HV0.05. The structure of the boride layer is linked to its boron content and thermal history: as-deposited coatings present very small grain sizes and can be considered as nearly amorphous.

  10. Measurement of the thickness of the sprayed nickel coatings on large-sized cast iron products

    Directory of Open Access Journals (Sweden)

    В. А. Сясько

    2016-11-01

    Full Text Available Modern industries increasingly use automatic spraying of heat-resistant Nickel  coating with a thickness  of      T = 1-3 mm for large-size parts made of cast iron with nodular graphite. The process of coating application is characterized by time-dependent behavior of its relative magnetic permeability, μс , that is a function of relaxation time, which can be as long as 24 hours, and by μс deviation from point to point on the surface. Aspects of eddy-current phase method for measuring the T value are considered. The structure of four- winding eddy current transformer transducers is described and results of calculation and optimization of their parameters are presented. The influence of controlled and interfering parameters is considered. Based  on the above results, a two-channel combined transducer is developed  providing measurement  error  of ΔТ ≤ ±(0.03T + 0.02 mm  in the shop environment in the process of coating application and in the final product check. Results of tests on reference specimens and of application in production processes are presented.

  11. Investigation on Microstructure of Heat Treated High Manganese Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Muzafar A.K.

    2016-01-01

    Full Text Available The effect of manganese addition and annealing heat treatment on microstructure of austenitic cast irons with high manganese content (Mn-Ni-resist were investigated. The complex relationship between the development of the solidification microstructures and buildup of microsegregation in Mn-Ni-resist was obtained by using microstructure analysis and EDS analysis. The annealing heat treatment was applied at 700°C up to 1000°C to investigate the effect of the annealing temperature on the microstructure. This experiment describes the characterization of microsegregation in Mn-Ni-reist was made by means of point counting microanalysis along the microstructure. With this method, the differences of silicon, manganese and nickel distribution in alloys solidified in the microstructure were clearly evidenced. The results show microstructure consists of flake graphite embedded in austenitic matrix and carbides. There is segregation of elements in the Late To Freeze (LTF region after solidification from melting. Manganese positively with high concentration detected in the LTF region. As for heat treatment, higher annealing temperature on the Mn-Ni-resist was reduced carbide formation. The higher annealing temperature shows carbide transformed into a smaller size and disperses through the austenitic matrix structure. The size of carbide decreased with increasing annealing temperature as observed in the microstructure.

  12. Thermal energy storage using Prestressed Cast Iron Vessels (PCIV). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gilli, P.V.; Beckmann, G.; Schilling, F.E.

    1977-06-01

    The wide-spread application of thermal energy and high-pressure air storage to electric power generation has so far been hampered by the lack of large high-pressure storage vessels of reasonable cost. Welded steel vessels are too expensive for this purpose. However, the Prestressed Cast Iron Vessel (PCIV), developed as a nuclear reactor pressure vessel by Siempelkamp Giesserei KG of Krefeld, FRG, has the potential of complying with these requirements. Applications of the PCIV include: high-pressure air storage for the quick start-up of open cycle gas turbines; pressurized high-temperature sensible heat storage by means of solids with a gaseous heat transfer medium for closed cycle gas turbines of future solar power stations; and pressurized hot water storage for nuclear, solar, or coal-fired steam power plants, employing either separate peaking turbines or overloadable main turbine sets. A reference PCIV of 8000 m/sup 3/, 275/sup 0/C, with hot going walls and cold going tendons was developed, designed, and stress-analysed. A parametric study showed that pressures between 4 and 8 MPa and L/D ratios larger than 4 should be optimal. Cost of the reference vessel is about $10,000,000 or 33 to 50 $/kWh electric energy stored. Cost of peak power will be from 30 to 100 mills/kWh, depending on many parameters.

  13. Improvements in the characteristics of nodular graphite cast iron for crankshafts

    Energy Technology Data Exchange (ETDEWEB)

    Balloy, D.; Tissier, J.C. [Pole Fonderie, Ecole Centrale de Lille, Villeneuve d' Ascq (France)

    2007-02-15

    This study deals with spheroidal graphite cast iron metallurgy for the mass production of engine crankshafts. Pieces have been made in three different grades under industrial conditions. CCT diagrams and micrographs show that it is possible to remove the undesirable ''bull's eye'' ferrite from the matrix as well as to improve the mechanical properties of series parts by only altering the chemical composition. A 100% pearlitic matrix and up to a 14% increase in the tensile strength have been obtained by lowering the amount of silicon and increasing the share of pearlitizing elements such as copper and manganese without altering the cooling speed of the parts. The effect of the cooling speed on the matrix microstructure and the mechanical features has also been revealed. For an ''improved'' grade, the matrix is 100% pearlitic, its hardness is about 390Hv30kg for a cooling speed of around 150 C/min. (orig.)

  14. Weldability of spheroidal graphite ductile cast iron using Ni / Ni-Fe electrodes

    Directory of Open Access Journals (Sweden)

    Pascual, M.

    2009-10-01

    Full Text Available Weldability of spheroidal graphite ductile cast iron was established using a cheap Ni-Fe and a high purity Ni electrode. A preheating treatment at 350 °C and an annealing treatment at 850 °C were carried out to improve mechanical properties of welded pieces. The pure Ni electrode showed graphite diffusion in the bead with a uniform distribution of phases, improving weldability and decreasing fragility. Preheating and annealing treatments increased ductility and improved weldability.

    Se establece la soldabilidad de funciones dúctiles de grafito según las características mecánicas alcanzadas, utilizando un electrodo puro de Ni mientras se compara con uno más económico de Ni-Fe. Diferentes tratamientos t��rmicos son propuestos y analizados. El electrodo de Ni puro mostró difusión de grafito desde el material original al cordón de soldadura, dando como resultado una fase homogénea que mejoró la soldabilidad y redujo la fragilidad. Un pre tratamiento a 350 °C y un recocido a 850 °C incrementaron la ductilidad y mejoró la soldabilidad.

  15. Examination of Electrical Resistance of Carburizers Used for Cast Iron Production

    Directory of Open Access Journals (Sweden)

    Książek D.

    2016-12-01

    Full Text Available The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar, each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.

  16. Performance of Water-Based Zinc Oxide Nanoparticle Coolant during Abrasive Grinding of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2014-01-01

    Full Text Available This paper presents the performance of ductile cast iron grinding machining using water-based zinc oxide nanoparticles as a coolant. The experimental data was utilized to develop the mathematical model for first- and second-order models. The second order gives worthy performance of the grinding. The results indicate that the optimum parameters for the grinding model are 20 m/min table speed and 42.43 μm depth of cut for single-pass grinding. For multiple-pass grinding, optimization is at a table speed equal to 35.11 m/min and a depth of cut equal to 29.78 μm. The model fit was adequate and acceptable for sustainable grinding using a 0.15% volume concentration of zinc oxide nanocoolant. This paper quantifies the impact of water-based ZnO nanoparticle coolant on the achieved surface quality. It is concluded that the surface quality is the most influenced by the depth of cut(s and table speed.

  17. Dissimilar joining of nickel aluminide intermetallic compound with spheroidal graphite cast iron by using combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kimata, T.; Uenishi, K.; Kobayashi, K.F. [Dept. of Manufacture Science, Osaka Univ., Osaka (Japan); Ikenaga, A. [Dept. of Metallurgy and Material Science, Osaka Prefecture Univ., Osaka (Japan)

    2004-07-01

    Nickel aluminide based intermetallic compounds were combustion synthesized from a powder mixture of elemental Al, Ni, and Si and were simultaneously bonded with spheroidal graphite cast iron substrate (FCD). Addition of Si to the elemental mixture of Al and Ni was confirmed to be effective both to the densification of combustion synthesized intermetallic compounds and to the joining between compounds and FCD. When the composition of precursor was Ni-69at%Al-9at%Si (Al/Si is the ratio of the eutectic composition), Al{sub 3}Ni and Al{sub 6}Ni{sub 3}Si were mainly combustion synthesized. In the interface between compounds and FCD, reaction layers were formed to the thickness of 10 {mu}m and the constitutent phases were identified as Al{sub 7}Fe{sub 2}Si, FeAl{sub 3} respectively. In the four point bending test of the dissimilar joints prepared by heating at 973 K for 300 s, the brittle fracture did not occurred around the joint interface but mainly in the inside of nickel aluminide coating. The interface of reaction layers with 10 {mu}m were chemically well bonded. The sample with Ni-69at%Al-9at%Si coating exhibited highest bonding strength of about 56 MPa because of the smallest void ratio of the obtained compounds. (orig.)

  18. The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Dong Mu

    2013-01-01

    Full Text Available Some properties of boride formed on gray cast iron (GCI have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.

  19. Growth Kinetics of In Situ Fabricated Dense NbC Coatings on Gray Cast Iron

    Science.gov (United States)

    Shen, Liuliu; Xu, Yunhua; Zhao, Nana; Zhao, Ziyuan; Zhong, Lisheng; Song, Ke; Cai, Xiaolong; Wang, Juan

    2017-01-01

    In the present study, dense niobium carbide (NbC) coatings are fabricated by in situ techniques on gray cast iron (Fe) substrates at 1150 °C for 5 min, followed by a heat treatment at 990, 1010 and 1030 °C for 5, 10, 15 and 20 min. The microstructure, element composition and metallographic phase of the coating are characterized by scanning electron microscope, energy dispersive spectral and x-ray diffraction, respectively. Results show that the coating consists of NbC and α-Fe phases. NbC coating thickness ranges from 12.51 ± 1.4 to 29.17 ± 2.0 µm depending on the heat treatment temperature and time. In addition, the growth kinetics of dense niobium carbide coatings are estimated. A diffusion model based on Fick's laws is used to explore the carbon diffusion coefficients of the dense NbC coating in the range of heat treatment temperatures in which the experimental results of the kinetics of the niobium carbide coating are in good agreement with those estimated using diffusion model.

  20. Effect of Silicon on Mechanical and Wear Properties of Aluminium-Alloyed Gray Cast Iron

    Science.gov (United States)

    Vadiraj, Aravind; Tiwari, Shashank

    2014-08-01

    Influence of Si on mechanical and wear properties of Al-alloyed gray cast iron has been investigated in this work. The Si content is varied from 1.27 to 2.1% in five different alloys with nearly 2% Al additions. Alloy with 2.1% Si and 1.9% Al shows maximum ferrite matrix with highest flake volume (17.3%). It also has the lowest hardness and strength. Rest of the alloys with Si content equal to or less than 1.7% and 2% Al content shows maximum pearlite matrix with higher hardness and strength. They have also shown a tendency for oxide formation and reduced wear during sliding probably due to higher friction heat and lower heat dissipation tendency due to lower flake volume and Al addition which reduces thermal conductivity of the matrix. The same oxide layer was not evident in alloy with 2.1% Si and 1.9% Al alloy having the highest flake volume (17.3%).

  1. Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available In many industrial areas the product quality can be unequivocally assigned to classes such as: “good”, “bad” or “to repair”. In case of casting processes, the product is approved to sales considering customer’s requirements. Except for common characteristics, such as structure, compactness and mechanical properties, physical state of the product is also important. This state is assessed by checking occurrence of specific kind of defects. They are often conditionally accepted by a customer if they do not have any influence on functionality of the product (e.g. negative adhesive and cohesive phenomena, fatigue strength, thermal shocks. Authors’ experience shows that current registering of the most frequently occurring defects and comparing them to customers’ requirements can be very useful and help a quality engineer to control the casting process. They suggest using the Demerit Control Chart (DCC, according to authors’ own methodology, in aspect of information about the castings accepted conditionally by a customer (DCC-recognition. DCC-recognition can be used to assess this quality by monitoring the value of just one aggregated measure for all kinds of defects instead of using a single attribute control chart for each of them. The test version of this tool considering severity of defects proved to be useful in one of the European foundries.

  2. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysis...... of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The influence...

  3. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  4. APPLICATION OF MODIFYING ALLOYING ALLOY CONTAINING NANOSIZED POWDERS OF ACTIVE ELEMENTS IN PRODUCTION OF HIGH-STRENGTH CAST IRON WITH GLOBULAR GRAPHITE

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2015-01-01

    Full Text Available Scientific and practical interest is the application of alloying alloy-modifiers for secondary treatment of high-strength cast iron to stabilize the process of spheroidization graphite and achieving higher physical-mechanical properties of castings. The peculiarity of the high-strength cast irons manufacturing technology is their tendency to supercooling during solidification in the mold. This leads to the formation of shrinkage defects and structurally free cementite, especially in thin-walled sections of the finished castings. To minimize these effects in foundry practice during production of ductile iron the secondary inoculation is widely used. In this regard, the question of the choice of the additives with effective impact not only on the graphitization process but also on the formation of the metallic base of ductile iron is relevant. The aim of the present work is to study the peculiarities of structure formation in cast iron with nodular graphite when alloying alloy-modifier based on tin with additions of nanoparticles of titanium carbide, yttrium oxide and graphite nano-pipes is used for secondary treatment. Melting of iron in laboratory conditions was performed in crucible induction furnace IST-006 with an acid lining held. Spheroidizing treatment of melt was realized with magnesium containing alloying alloy FeSiMg7 by means of ladle method. Secondary treatment of high strength cast iron was carried out by addition of alloying alloy-modifier in an amount of 0.1% to the bottom of the pouring ladle. Cast samples for chemical composition analysis, study of microstructure, technological and mechanical properties of the resultant alloy were made. Studies have shown that the secondary treatment of high strength cast iron with developed modifier-alloying alloy results in formation of the perlite metallic base due to the tin impact and nodular graphite with regular shape under the influence of titanium carbide, yttrium oxide and graphite nano

  5. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  6. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  7. Effect of Ti, Nb, Cr and B on Structure and Mechanical Properties of High Aluminium Cast Iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2013-01-01

    Full Text Available In this work, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a high-aluminium alloys, and thusimprove the production process. The melting conditions employed in this work enabled the formation of a Fe-Al-C liquid solution.Moreover, titanium additions into the liquid allowed the precipitation of TiC. According to this reaction, the extent of carbon removal from the melt is strongly influenced by the amount of Ti additions. Hence, proper titanium levels can result in total removal of carbon from the liquid. Notice from this figure that Ti additions above 4.5%, totally eliminate the undesirable Al4C3 precipitates. Making Cr, Ti, B additions reduces size of FeAl alloys grains. In addition, this work indicates that the high-aluminium cast iron posses high oxidation resistance, exceeding that of high-chromium cast iron and chromium cast steels. Finally, the alloy ductility can be enhanced by additions of dopants such as B and Cr. Hence, additions of 0.03% B and 0.03%B-5% Cr combined with a heat treatment were implemented. As a result, the alloy ductility was significantly improved, where the strain of up to 5.3%, (B alone or 15% (B-Cr were obtained.

  8. Effect of Ti, Nb, Cr and B on Structure and Mechanical Properties of High Aluminium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2013-03-01

    Full Text Available In this work, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a high-aluminium alloys, and thus improve the production process. The melting conditions employed in this work enabled the formation of a Fe-Al-C liquid solution. Moreover, titanium additions into the liquid allowed the precipitation of TiC. According to this reaction, the extent of carbon removal from the melt is strongly influenced by the amount of Ti additions. Hence, proper titanium levels can result in total removal of carbon from the liquid. Notice from this figure that Ti additions above 4.5%, totally eliminate the undesirable Al4C3 precipitates. Making Cr, Ti, B additions reduces size of FeAl alloys grains. In addition, this work indicates that the high-aluminium cast iron posses high oxidation resistance, exceeding that of high-chromium cast iron and chromium cast steels. Finally, the alloy ductility can be enhanced by additions of dopants such as B and Cr. Hence, additions of 0.03% B and 0.03%B-5% Cr combined with a heat treatment were implemented. As a result, the alloy ductility was significantly improved, where the strain of up to 5.3%, (B alone or 15% (B-Cr were obtained.

  9. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  10. Effect of alloying elements on branching of primary austenite dendrites in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of influence of individual alloying elements on branching degree of primary austenite dendrites in austenitic cast iron Ni-Mn-Cu. 30 cast shafts dia. 20 mm were analysed. Chemical composition of the alloywas as follows: 2.0 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.5 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S.Analysis was performed separately for the dendrites solidifying in directional and volumetric way. The average distance "x" between the2nd order arms was accepted as the criterion of branching degree. It was found that influence of C, Si, Ni, Mn and Cu on the parameter "x"is statistically significant. Intensity of carbon influence is decidedly higher than that of other elements, and the influence is more intensive in the directionally solidifying dendrites. However, in the case of the alloyed cast iron Ni-Mn-Cu, combined influence of the alloying elements on solidification course of primary austenite can be significant.

  11. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  12. The efect of cooling rate on the properties of alloyed cast-iron sizing roll

    Directory of Open Access Journals (Sweden)

    P. Jelić

    2010-01-01

    Full Text Available Directional heat transfer was investigated by temperature measurements in the casting and in the mould using thermocouples. Measurements were performed in operating conditions during pouring, solidification, and cooling of the casting. Total measurement time was 35,5 hours. After cutting, specimens were extracted for metallographic and hardness testing. Test results provided confirmation of directional heat transfer (directional cooling that would ensure acquirement of a desired casting structure and mechanical properties.

  13. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Y., E-mail: yuematsu@gifu-u.ac.jp [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Kakiuchi, T.; Tokaji, K. [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Nishigaki, K. [Okamoto Co. Ltd., 5 Nawate-cho, Gifu 500-8743 (Japan); Ogasawara, M. [MEIRA Co. Ltd., 17-15 Tsubaki-cho, Nakamura-ku, Nagoya City, Aichi 453-0015 (Japan)

    2013-01-20

    Four-point bending fatigue tests had been performed using high speed steel and cast iron with vanadium carbides (VCs) dispersed within the martensitic-matrix microstructure. Shot peening or shot blast was applied to both the materials and the effect of surface treatments on fatigue behavior was investigated. The fatigue strengths of the high speed steel were improved by both shot peening and shot blast processes due to the high hardness near the specimen surface and residual compressive stress. Although the hardness of cast iron was enhanced by both treatments, the fatigue strengths were not improved by the shot blast because of the existence of large casting defects. Shot peening with higher shot energy could induce the transition of crack initiation mechanism of cast iron, where crack initiated from the cluster of VCs. However the shot peening had small effect on the fatigue strengths of the cast iron because large casting defects were not removed by the shot peening due to the high hardness of the martensitic matrix.

  14. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  15. Quantification of Feeding Effects of Spot Feeding Ductile Iron Castings made in Vertically Parted Moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat; Sällström, J.

    in castings made in vertically parted molds and it gives directions towards the effectiveness of this technology. The casting examined is a disc-shaped casting with an inner boss and an outer ring, separated by a thin walled section. Thus, both boss and ring are prone to porosities. The experimental work......In vertically parted molds it is traditionally difficult to feed heavy sections that cannot be reached by traditional side/top feeders or other conventional methods. This project aims at quantifying the effects of using molded-in ram-up spot feeders as a means of feeding isolated sections...... be cast successfully without the use of both a top and a spot feeder. Leaving out one or both feeders, results in porosities and surface shrinkage. For EN-GJS-500-7 any combination with both feeders present produced sound castings. For the more demanding EN-GJS-450-10 the exothermic spot feeder produced...

  16. Iron casting skin management in no-bake mould – Effects of magnesium residual level and mould coating

    Directory of Open Access Journals (Sweden)

    Mihai Chisamera

    2015-05-01

    Full Text Available The relative performance of coatings for furan resin sand moulds [P-toluol sulphonic acid (PTSA as hardener] [FRS-PTSA moulds], was compared by analyzing the surface layer for degenerated graphite in Mg treated iron with 0.020wt.% to 0.054wt.% Mgres. It was found that the iron nodularising potential (Mg, Ce, La content and whether the mould coatings contained S, or were capable of desulphurizing were important factors. These moulds have S in the PTSA binder, which aggravates graphite degeneration in the surface layer, depending strongly on the Mgres with lower Mgres increasing the layer thickness. The application of a mould coating strongly influenced graphite deterioration in the surface layer of castings. It either promoted graphite degeneration to less compact morphologies when using S-bearing coatings, or conversely, limited the surface layer thickness using desulphurization type coatings. Independently of the S-source at the metal – mould interface, the presence of sulphur had an adverse effect on graphite quality at the surface of Mg-treated irons, but its negative effect could also reach the graphite phase within the casting section. If the coatings employed desulphurization materials, such as MgO, or a mixture (CaO + MgO + Talc or Mg-bearing FeSi, they protected the graphite shape, improving graphite nodularity, at the metal – mould interface, and so decreased the average layer thickness in FRS-PTSA moulds. FeSiMg was highly efficient in minimizing the casting skin by improving graphite nodularity. It is presumed that the MgO or (MgO + CaO + Talc based coatings acted to remove any S released by the mould media. The Mg-FeSi coatings also reacted with S from the mould but additionally supplemented the Mg nodularising potential prior to solidification. This dual activity is achievable with coatings containing active magnesium derived from fine Mg-FeSi materials.

  17. An innovative approach to sampling complex industrial emissions for use in animal toxicity tests: application to iron casting operations.

    Science.gov (United States)

    Palmer, W G; Scholz, R C; Moorman, W J

    1983-03-01

    Sampling of complex mixtures of airborne contaminants for chronic animal toxicity tests often involves numerous sampling devices, requires extensive sampling time, and yields forms of collected materials unsuitable for administration to animals. A method is described which used a high volume, wet venturi scrubber for collection of respirable fractions of emissions from iron foundry casting operations. The construction and operation of the sampler are presented along with collection efficiency data and its application to the preparation of large quantities of samples to be administered to animals by intratracheal instillation.

  18. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component....... First, a ma terial equivalent to the ductile cast iron matrix is manufactured and subjected to dilato- metric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between...... structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale....

  19. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 3. Mathematical model – pressure inside the gas gap

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work mathematical model describing changes of pressure inside the gas gap was shown during manufacturing gray cast iron castings with use of lost foam process. Authors analyzed the results of numerical simulation enclosing influence of foamed polystyrene pattern density, permeability and thickness of refractory coating on pressure changes in the gap. Studies have shown, that all these parameters have significant influence on pressure inside the gas gap.

  20. Archaeometallurgical Investigations of the Early Iron Age Casting Workshop at Kamieniec. A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Garbacz-Klempka A.

    2016-09-01

    Full Text Available This preliminary study characterizes the bronze metalworking on a defensive settlement of the Lusatian culture in former Kamieniec (Chełmno land, Poland as it is reflected through casting workshop recovered during recent excavations. Among ready products, the ones giving evidence of local metallurgy (e.g. casting moulds and main runners were also identified. With the shrinkage cavities and dendritic microstructures revealed, the artifacts prove the implementing a casting method by the Lusatian culture metalworkers. The elemental composition indicates application of two main types of bronzes: Cu-Sn and Cu-Pb. Aside these main alloying additions, some natural impurities such as silver, arsenic, antimony and nickel were found which may be attributed to the origin of the ore and casting technology.

  1. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  2. Effects of Heat-Treatment on the Microstructure and Wear Resistance of a High-Chromium Cast Iron for Rolls

    Directory of Open Access Journals (Sweden)

    Zhi-hong Guo

    2016-01-01

    Full Text Available The variations of microstructure and mechanical properties of a high-chromium cast iron for rolls were studied from as-cast to the final heat treatments. Results show that the as-cast microstructure of the HCCI consists of M7C3 carbide, M23C6 carbide, martensite matrix, and retained austenite. The large dendritic M7C3 carbide surrounds the matrix, and the M23C6 carbide is mainly distributed in the matrix. Part of M23C6 carbide transforms to M7C3 carbide and is dissolved in austenite during austenization at 1020°C. Thus, the amount of M23C6 carbide decreases, whereas that of M7C3 carbide increases after quenching; the highest hardness is also obtained. After tempering, the martensite transforms to a tempered martensite, and some carbide precipitates in the martensite matrix. The hardness also changes from HRC62.1, which corresponds to quenching, to HRC55.2 and HRC56.3, which correspond to once and twice tempering, respectively. However, tempering could improve the impact toughness and wear resistance of the HCCI.

  3. High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere

    Science.gov (United States)

    Efremenko, V. G.; Chabak, Yu. G.; Lekatou, A.; Karantzalis, A. E.; Efremenko, A. V.

    2016-04-01

    The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.

  4. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  5. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline.

    Science.gov (United States)

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad

    2018-02-25

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  6. Effect of Austenite Transformation on Abrasive Wear and Corrosion Resistance of Spheroidal Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2016-09-01

    Full Text Available Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.

  7. Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners

    Science.gov (United States)

    Lombardi, Anthony; Ravindran, Comondore; Sediako, Dimitry; MacKay, Robert

    2014-12-01

    In recent years, stringent government legislation on vehicle fuel efficiency has pushed the automotive industry to replace steel and cast iron power train components with light weight Al alloys. However, unlike their ferrous-based equivalents, Al-Si alloy engine blocks are prone to permanent dimensional distortion in critical locations such as the cylinder bore regions. Understanding the mechanisms that cause distortion will promote the use of Al alloys over ferrous alloys for power train applications and enable automotive manufacturers to meet emission standards and reduce fuel consumption. In this study, neutron diffraction was used to evaluate residual stress along the Al cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. Microstructural analysis was carried out using OM, SEM, and TEM, while mechanical testing was accomplished via ambient and elevated temperature [~453 K (180 °C)] tensile testing. The results suggest that the distorted engine block had high tensile residual stress in the Al cylinder bridge, reaching a maximum of 170 MPa in the hoop direction, which triggered permanent dimensional distortion in the cylinders when exposed to service conditions. In addition, the middle of the cylinder had the highest magnitude of distortion since this region had a combination of high tensile residual stress (hoop stress of 150 MPa) and reduced strength compared with the bottom of the cylinder.

  8. Defining the relation between mechanical properties and ultrasonic wave velocity in spheroidal cast iron manufactured in the foundry Metal-Odlew s.c.

    Directory of Open Access Journals (Sweden)

    W. Orłowicz

    2009-01-01

    Full Text Available This work presents results of ultrasonic evaluation of mechanical properties of spheroidal cast iron manufactured under the productionconditions of Metal-Odlew s.c. Tests were conducted on wedge casts which were used as samples for tensile tests, a map of distribution of longitudinal ultrasound wave velocity was determined for the cast wedges. The tensile tests were conducted and values of longitudinalultrasound wave velocity were determined in the place where the sample was broken. Relations between the mechanical properties and the velocity of longitudinal ultrasonic wave cL were determined.

  9. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  10. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  11. Optimisation of the cooling channel design of carbon-ceramic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Guether, H.M.; Wuellner, A. [SGL Brakes GmbH, Meitingen (Germany)

    2005-07-01

    Carbon-Ceramic Brake Discs are more and more applied in upper class limousines or high performance vehicles. Normally, a larger brake disc diameter is necessary because of a lower specific heat of carbon ceramic materials as far as the mass is concerned, compared to the specific heat of grey cast iron. A thermal and for production suitable design may represent a remedy for this extension of the brake disc. A suitable optimisation of the cooling channel design represents the most efficient possibility of thermal optimisation. Therefore an improvement of the convective heat transfer in the cooling channels by the help of optimised geometry is realised. Within the scope of a development project at SGL Brakes, several calculation and simulation models have been developed, which make the construction of optimised, highly complex cooling channel geometry possible. The model calculations were checked at the dynamometer by the help of prototype parts. The result is an optimised cooling channel design, which can be realised by the help of the 'lost cores' technology. The validation of the results for optimising the cooling channel design took part within the Bugatti Veyron project. (orig.)

  12. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  13. APPLICATION OF SECONDARY MATERIALS AT PRODUCTION OF DETAILS FROM CHROME CAST IRONS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2012-01-01

    Full Text Available The groups of alloy steel scrap. suitable for wear-resistant synthetic chromium and iron grades ich18VN ich18VM are studied and defined. Found that the number of alloyed steel scrap in the charge for these irons can be more than 85%, and the price of the charge decreases from 30 to 45%.

  14. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  15. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  16. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    influence the soundness of different sections of the castings. Moreover, the microstructural changes due to variations in thermal gradients are classified, and the variations in the mushy zone described. The paper discusses how solidification and segregation influence porosity and microstructure of ductile...

  17. Factorial Analysis of Welding Current Influence on Heat Affected Zone Hardness of Cast Iron, Aluminium, and Mild Steel Weldments Cooled in Palm Oil

    Directory of Open Access Journals (Sweden)

    C. I. Nwoye

    2013-01-01

    Full Text Available Factorial analysis of heat affected zone hardness of some metals was evaluated. Three models were derived and used as tools for evaluating the welding current influence on the predictability of HAZ hardness in aluminium, cast iron, and mild steel weldments similarly cooled in palm oil. It was discovered that on welding these materials, and similarly cooling their respective weldments in palm oil, the model predicts aluminium weldment HAZ hardness by multiplying the determined general current product rule (GCPR with the ratio: HAZ hardness product of cast iron and mild steel/HAZ hardness sum of cast iron and mild steel . Computational analysis of experimental and model-predicted results indicates that aluminium, cast iron, and mild steel weldment HAZ hardness per unit welding current as evaluated from experiment and derived model are 3.3917, 4.8333, and 2.7944 and 3.3915, 4.8335, and 2.7946 (VHN A−1, respectively. Deviational analysis shows that the maximum deviation of model-predicted HAZ hardness from the experimental results is less than 0.007%. This invariably implies over 99.99 % confidence level for the derived models.

  18. ACCELERATION OF CEMENTITE DECOMPOSITION IN CAST IRON DUE TO PRELIMINARY HOT PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskij

    2011-01-01

    Full Text Available The experimental investigation of graphitization of preliminary deformed mottled iron is given and the development of valuation system for analysis of graphitization acceleration mechanism is given.

  19. 3D analysis of micro-deformation in VHCF-loaded nodular cast iron by μCT

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G., E-mail: gottfried.fischer@lqw.mb.uni-dortmund.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Nellesen, J., E-mail: Jens.Nellesen@rif-ev.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Anar, N.B., E-mail: nadeembabar.anar@tu-dortmund.de [RIF e.V. Institut für Forschung und Transfer, Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund (Germany); Ehrig, K., E-mail: Karsten.Ehrig@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Riesemeier, H., E-mail: Heinrich.Riesemeier@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Tillmann, W., E-mail: Wolfgang.Tillmann@udo.edu [Technische Universität Dortmund, Fakultät Maschinenbau, Lehrstuhl für Werkstofftechnologie, D-44221 Dortmund (Germany)

    2013-08-10

    The impact of very high cycle fatigue (VHCF) load conditions on the microstructure of specimens consisting of nodular cast iron is analyzed by means of micro-computed tomography (μCT) utilizing both monochromatic synchrotron radiation and polychromatic X-ray tube radiation. Using 3D μCT, the microstructure in the region of the smallest cross-sections of shouldered round specimens is imaged in different stages of the VHCF loading. By digital image correlation (DIC) of these tomograms strain fields are analyzed three-dimensionally. Strain levels in the range of a few percent were detected. It is proven that a localization of strain allows to predict the site of the crack which precedes and induces the macroscopic failure of the specimens.

  20. Characterization of surface chromium and molybdenum alloying on gray cast iron obtained by the plasma-transferred arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, L.; Tiziani, A.; Zambon, A. (DIMEG, Univ. Padua (Italy)); Antolotti, N. (FLAMETAL Spa, Parma (Italy))

    1991-07-07

    Chromium and molybdenum alloying of gray cast iron to obtain surface wear-resistance coatings by means of the plasma-transferred arc (PTA) technique has been studied. Disk-shaped specimens for mounting on a pin-on-disk wear-testing machine were obtained. The disks were then heat treated to develop different hardness values and wear resistance behavior. Besides an untreated sample, samples treated at 900degC for 10 min, at 1000degC for 10 min and at 1100degC for 20 min were studied. The specimens showed defect-free coatings with the complete absence of porosity, cracks and segregation. The obtained coatings were stable as regards thermal cycles, which could affect workpieces subject to wear conditions. Microhardness profile, optical microscopy and scanning electron microscopy observations were performed together with qualitative and quantitative energy-dispersive spectroscopy microanalysis, as well as X-ray diffraction on the extracted carbides. (orig.).

  1. Influence Of The Triple Spheroidization On Surface Hardness From Drilling Resistance Behavior Of Powder Coated Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Subhakij Khaonetr

    2015-08-01

    Full Text Available The objective of this study on the influence of the triple spheroidization on surface hardness from drilling resistance Dry drilling of powder coated gray cast iron using universal testing machine Compressive mode the surface hardness in powder coating areas normal hardness and Charpy impact resistance were considered. The spheroidizing temperatures were 300amp61616C 450amp61616C and 600amp61616C the spheroidizing time spanned the range of 6 hours and cooled down in the furnace to room temperature for 24 hours. The drilling resistance test the high-speed twist drill diameter of 3 mm the rotating speed of 1000 revmin and the crosshead speed of 5-25 mmmin were investigated. It was found that the surface hardness from drilling resistance normal hardness and Charpy impact resistance increased as the spheroidizing temperatures increased. The maximum surface hardness was found at the third spheroidization.

  2. Optimization of pulsed Nd:YAG laser melting of gray cast iron at different spot sizes for enhanced surface properties

    Science.gov (United States)

    Zulhishamuddin, A. R.; Aqida, S. N.; Rahim, E. A.

    2016-10-01

    This paper presents a laser surface modification process of gray cast iron using different laser spot size with an aims to eliminate graphite phase and achieve minimum surface roughness and maximum depth of molten zone and microhardness properties. The laser processing was conducted using JK300HPS Nd:YAG twin lamp laser source pulse TEM00 mode, 50 W average power, 1064 nm wavelength and different laser spot sizes of 1.0 mm, 1.2 mm, 1.4 mm and 1.7 mm. Three controlled parameter were peak power (Pp), pulse repetition frequency (PRF) and traverse speed (v). Increasing spot size the parameter setting where peak power is increased and pulse repetition frequency and traverse speed is decreased. The modified surface of laser surface melting was characterized for metallographic study, surface roughness and hardness. Metallographic study and surface morphology were conducted using optical microscope while hardness properties were measured using Vickers scale. Surface roughness was measured using a 2D stylus profilometer. From metallographic study, the graphite phase was totally eliminated from the molten zone and formed white zone. This phenomenon affected hardness properties of the modified surface where maximum hardness of 955.8 HV0.1 achieved. Optimization of laser surface modification was conducted for minimum surface roughness and maximum depth of modified layer and hardness properties. From the optimization, the higher desirability is 0.902. The highest depth of molten zone obtain from spot size 1.4 mm at 132 µm and the highest hardness is 989 HV0.1 at laser's spot size 1.0 mm. The surface roughness increased when the spot size increased from 3.10 µm to 7.31 µm. These finding indicate potential application of enhanced gray cast iron in high wear resistance automotive components such as cylinder liner and break disc.

  3. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  4. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas

    or veining and metal penetration defects. The use of refractory coatings on cores is fundamental to obtaining acceptable casting surface quality and is used on resin bonded cores in production foundries. In this study new sol gel-coated sand cores made from coldbox and furan binder systems were investigated......Expansion defects on the surface of the castings include sand burn-in, metal penetration and/or veining, finning or scab. Veining or finning and metal penetration are of interest. These defects are associated with silica sand and result from the penetration of liquid metal into cracks formed during...... differential expansion of the core during heating. The rapid expansion of silica sand up to 600 oC and especially at 573 oC, where the α – β phase transformation occurs, is the cause of stresses in the core system. These stresses cause crack formation and metal melt flows into these cracks causing finning...

  5. Tribological Behavior of TiAl Metal Matrix Composite Brake Disk with TiC Reinforcement Under Dry Sliding Conditions

    Science.gov (United States)

    Liaquat, Hassan; Shi, Xiaoliang; Yang, Kang; Huang, Yuchun; Liu, Xiyao; Wang, Zhihai

    2017-07-01

    In this investigation, the effect of TiC particulate reinforcement and sintering parameters on tribological behavior of TiAl metal matrix composite (TMMC) has been studied and compared with commercially conventional gray cast iron to evaluate the use of TMMC as brake disk material in an automobile. Three sample disks of TMMC containing TiC particulate reinforcement (D1-5 wt.%, D2 and D3-10 wt.%) were produced by the spark plasma sintering process. D3 compared with D2 was sintered at a higher temperature to evaluate the effect of SPS parameters on the wear characteristics of TMMC. All experiments were performed on pin-on-disk tribotester under a dry sliding condition with different loads (10-11.5 N) and sliding velocities (0.2-0.9 m/s). It is found that higher content of TiC increased TMMC hardness and density. XRD technique has been used to analyze the phase composition. Owing to the high sintering temperature, α-2 Ti3Al phase was formed which further enhanced the matrix anti-wear capability. Scanning electron microscope (SEM) was used to capture the wear track and observe wear mechanism. Energy-dispersive spectroscopy (EDS) has been used to analyze the tribofilm and wear debris. The results showed that the tribofilm for TMMC was mainly composed of metal oxides. Oxidation of Al and Ti due to frictional heat provides wear-resistant protective layer. Under almost all sliding conditions, TMMC, especially disk D3, exhibited minimum wear rate and stable friction coefficient, whereas gray cast iron exhibited lower and unstable friction coefficient as well as higher wear rate. TMMC has shown superior tribological characteristics over gray cast iron in terms of low wear rate along with stable and adequate friction coefficient which is necessary for braking operation and life of brake disk. However, further investigation on full-scale automobile conditions is needed for its practical application.

  6. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  7. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  8. Graphene Coating via Chemical Vapor Deposition for Improving Friction and Wear of Gray Cast Iron at Interfaces.

    Science.gov (United States)

    Tripathi, Khagendra; Gyawali, Gobinda; Lee, Soo Wohn

    2017-09-20

    This study reports the influence of CVD-graphene on the tribological performance of gray cast iron (GCI) from the internal combustion engine (ICE) cylinder liners by performing a ball-on-disk friction tests. The graphene-coated specimen exhibited a significant reduction (∼53%) of friction as compared to that of the uncoated specimen, whereas wear resistance increased by 2- and 5-fold regarding the wear of specimen and ball, respectively. Extremely low shear strength and highly lubricating nature of graphene contribute to the formation of a lubricative film between the sliding surfaces and decreases the interaction between surfaces in the dry environment. Under the applied load, a uniform film of iron oxides such as Fe2O3, Fe3O4, and FeOOH is found to be formed between the surfaces. It is proposed that the graphene encapsulation with the metal debris and oxides formed between the specimens increases the lubricity and decreases the shear force. The transformation of graphene/graphite into nanocrystalline graphites across the contact interfaces following the amorphization trajectory further increases the lubricity of the film that ultimately reduces friction and wear of the material.

  9. 75 FR 23295 - Iron Construction Castings From Brazil, Canada, and China

    Science.gov (United States)

    2010-05-03

    ... uses and applications; the existence and availability of substitute products; and the level of... Brazil, Canada, and China. (3) The Domestic Like Product is the domestically produced product or products... China, the Commission found two separate Domestic Like Products: ``heavy'' and ``light'' iron...

  10. Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    This paper presents a micro-mechanical approach to model the intrinsic elastic anisotropy of the graphite particles in ductile iron. Contrary to most of the published works in the field, the constitutive behavior is directly derived on the basis of the nodule characteristic internal structure, co...

  11. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  12. BRAKE DISC PRODUCTION IS OPTIMIZATION POSSIBLE?

    Directory of Open Access Journals (Sweden)

    M. Colditz

    2015-01-01

    Full Text Available The article compares different aspects of brake disc production using vertically parted flaskless molding lines and horizontal parted tight flask molding lines. In the first section the vertical molding process demonstrates advantages in terms of investment costs. Furthermore, annual energy consumption of the molding lines in relation to castings produced is discussed, again demonstrating clear benefits from the Disamatic-technology. In the second section a comparison between two molding technologies for the production of brake discs is made on the basis of production data from the South Korean foundry Hyundai Sungwoo. The Disamatic molding process, however, offers advantages in terms of tooling costs and energy consumption.

  13. TGV disc brake squeal

    Science.gov (United States)

    Lorang, X.; Foy-Margiocchi, F.; Nguyen, Q. S.; Gautier, P. E.

    2006-06-01

    The discomfort generated by the noise emission of braking systems in trains has aroused recently many studies on the mechanical modelling of brake noise in France. A theoretical and numerical discussion on the phenomenon of brake squeal is given in this paper in relation with some experimental data. This study is based upon a flutter instability analysis giving unstable modes of the brake system under the contact and Coulomb friction.

  14. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  15. Ergonomic analysis of workplaces in the iron casting industrial pole in Claudio, Minas Gerais--Brazil.

    Science.gov (United States)

    Mottin, Artur Caron; de Miranda, Carlos A Silva; Pagnan, Caroline Salvan; Monken, Olavo Pena

    2012-01-01

    Brazil is currently recognized as the 10th largest producer of castings, and the city of Cláudio, MG is known worldwide as the "Greatest foundry and metallurgical pole in Latin America", with more than 80 companies. However, this large number of enterprises and increasing investments in product development has demanded an increase in manpower and working hours of workers in the sector, proportionally increasing the incidence of occupational related health problems like RSI (repetitive strain injury), WMSDs (work-related musculoskeletal disorders) and industrial accidents. This article aims to characterize the industry from previously conducted case studies to relate the main causes of occupational diseases and outline possible interventions through design, showing how this tool can contribute to improve the working environment, workplace, tools and equipment through ergonomics adjustments.

  16. Performance evaluation of cast iron pipe for crude oil and salt water transportation; Avaliacao e desempenho de duto de aco fundido no transporte de petroleo com aguas salgadas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Alexandre Martins da [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Mainier, Fernando B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    The present paper aims to study and to evaluate the performance of casting iron pipe for transportation of salty and produced waters, presented in the oil industry, where salt contents ranging on very large values. The cast iron above mentioned has an yield strength of 23 kg/mm{sup 2}, tensile strength of de 46 kg/mm{sup 2} (minimum) and an elongation of 15%, and contents of some chemical alloys, such as Cr (0,8 -1,3 %), Mn (1,5 % max) and Si (1,%). Nevertheless it is an exploratory study, the dynamic tests of weight loss carried out in laboratory, with specimens machined from a used pipe piece, with salty solution (3,5 % NaCl) aerated media, has shown very promising results, enabling to qualify, satisfactorily, such material for using in transportation and transferring operations of fluids with a high salty contents, such as crude oil. (author)

  17. Residual Stress, Structure and Other Properties Formation by Combined Thermo-Hardening Processing of Surface Layer of Gray Cast Iron Parts

    Science.gov (United States)

    Rakhimyanov, Kh M.; Nikitin, Yu V.; Semenova, Yu S.; Eremina, A. S.

    2016-04-01

    The proposed combined thermo-hardening processing of gray cast iron enables to control the surface layer structure and mechanical properties formation. The processing includes high-speed heating by low-temperature plasma source and ultrasonic surface plastic deformation. The algorithm of calculation the stress-strain state of a surface layer at combined processing of gray cast iron is developed. This algorithm is based on method of sections. The ultrasonic surface deformation contribution is determined during formation of residual stresses. It is established that the combination of the thermal and deformation effects on the material provides an additional increment of microhardness and increase of surface layer thickness. Experimental results shows that the features of structural and phase transformations in a surface layer are revealed without a surface melting by energy of low-temperature plasma. The top of a layer does not contain inclusions of graphite that testifies to change of structural transformations in conditions of combined processing.

  18. Investigation of Cast Austempered Ductile Iron (CADI) Trackshoes in T- 158 Configuration

    Science.gov (United States)

    1992-01-03

    Alumina refractory was used throughout. The base charge consisted of a minimum of 20percent pig iron with the balance composed of a combination of wrought...was quickly superheated to 28000 F and tapped into a 2000 pound treatment 9 I ladle . The ladle was designed with a height to diameter ratio of 3:1...Prior to tap, magnesium bearing nickel alloy was placed in the bottom of the treatment ladle (16 lbs. Inco Mag #4). final chemistry is shown at Table I

  19. Investigation of the machining process of spheroidal cast iron using cubic boron nitride (CBN tools

    Directory of Open Access Journals (Sweden)

    W. Grzesik

    2014-01-01

    Full Text Available This paper presents the experimental results of the turning of spheroidal iron (EN-GJS-500-7 grade using L-CBN tools. The cutting process can be classified as a High Performance Cutting (HPC due to a relatively high material removal rate of about 190 cm3/min. The investigations performed include fundamental process quantities and machined surface characteristics, i.e. componential cutting forces, specific cutting energy, average and maximum values of cutting temperature as well as temperature distribution in the cutting zone, tool wear progress visualized by appropriate wear curves and 2D/3D surface roughness parameters.

  20. Thermal shock removal of defective glass-enamel coating from cast-iron products

    OpenAIRE

    Aleutdinov, Alexander Dmitrievich; Gyngazov, Sergey Anatolievich; Mylnikova, Tatyana Stepanovna; Luchnikov, P. A.

    2015-01-01

    A setup for light beam exposure has been developed. The setup was used to consider the technology of thermal shock destruction of the coating by pulsed-periodic exposure to powerful focused light from the xenon arc lamp DKsShRB-10000. It is shown that this type of exposure can effectively remove the glass-enamel coating from iron products. The optimal mode of setup operation to efficiently remove the defective glass-enamel coating is found: the diameter of the focused light beams is 2.5-3.5 c...

  1. Studies of Gas Atmosphere Near the Metalmould Interface During Casting and Solidification of Ductile Iron

    Directory of Open Access Journals (Sweden)

    Mocek J.

    2012-12-01

    Full Text Available In sand moulds, at a distance of 3 mm from the metal- mould interface, the sensors of temperature, and of oxygen and hydrogen content were installed. Temperature and the evolution of partial gas pressure have been analysed in moulds bonded with bentonite with or without the addition of seacoal, water glass or furan resin. Moulds were poured with ductile iron. For comparison, also tests with the grey iron have been executed. It was found that the gas atmosphere near the interface depends mainly on the content of a carbonaceous substance in the mould. In the green sand moulds with 5% of seacoal or bonded with furan resin, after the mould filling, a sudden increase in the hydrogen content and the drop of oxygen is observed. This gas evolution results from the oxidation of carbon and reduction of water vapour in the mould material, and also from the reduction of water vapour and alloy reoxidation. In carbon-free sand, the evolution in the gas composition is slower because water vapour is reduced only at the interface. Changes of oxygen and hydrogen content in the controlled zone are determined by the transport phenomena.

  2. Control of Carbides and Graphite in Cast Irons Type Alloy’s Microstructures for Hot Strip Mills

    Directory of Open Access Journals (Sweden)

    Sergio Villanueva Bravo

    2012-01-01

    Full Text Available The carbide and graphite formation and redistribution of alloy elements during solidification were investigated on high-speed steel (HS and Ni-hard type cast irons with Nb and V. The crystallization of hypereutectic HSS proceeds in the order of primary MC, γ + MC, γ + M6C, γ + M7C3, and γ +  graphite eutectic, in hypoeutectic alloys proceeds in the order of primary γ, γ + MC, γ + graphite, γ + M6C, and γ + M7C3 eutectic, and in Ni-hard proceeds in the order of primary γ, γ + MC, γ + M3C, and γ +  graphite eutectic. The γ +  graphite eutectic solidifies with the decrease of V, Nb, and Cr and the increase of Si and C contents in residual liquid during solidification. The behavior in graphite forming tendency in the residual liquid is estimated by the parameter ∑CLimi′. The eutectic graphite crystallizes at the solid fraction when ∑CLimi′ takes a minimum value. The amount of graphite increases with the decrease in ∑CLimi′ of initial alloy content in both specimens. Inoculation with ferrosilicon effectively increases the graphite content in both specimens.

  3. EXPERIMENTAL INVESTIGATION OF EROSIVE WEAR ON THE HIGH CHROME CAST IRON IMPELLER OF SLURRY DISPOSAL PUMP USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Jasbir Singh Ratol

    2012-07-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behaviour of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  4. Experimental Investigation of Erosive Wear on the High Chrome Cast Iron Impeller of Slurry Disposal Pump Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-05-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behavior of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  5. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  6. On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rubaie, Kassim S.; Preti, Orlando [Centro Universitario SOCIESC, Joinville (Brazil). Engenharia Mecanica; Pohl, Michael [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2016-09-15

    The abrasion behaviour of heat-treated 2.8C21Cr1Mo cast iron was studied. The specimens were destabilised at two temperatures, 980 and 1050 C, for 4 h, air hardened, and then tempered at five temperatures, 220, 320, 400, 500, and 620 C, for 2 h followed by air cooling. Using a pin-on-plate abrasion apparatus, the specimens were abraded on four types of bonded abrasives (silicon carbide, corundum, flint, and glass). The effect of work hardening on the abrasion resistance was investigated. It was found that the increase in alloy hardness produced by heat treatment had little effect on the abrasion resistance against silicon carbide or corundum; the inverse was true against flint or glass. The as-hardened structure containing 40% retained austenite gave the best abrasion resistance, whereas the hardened and tempered at 620 C showed the worst. Both bulk hardness and matrix hardness before wear correlated poorly with the abrasion resistance. Therefore, a general model ''equivalent hardness'' was developed, in which the hardness of the abraded matrix was considered. With this model, the abrasion behaviour can be clearly analysed.

  7. Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface

    Directory of Open Access Journals (Sweden)

    Юлія Геннадіївна Чабак

    2016-11-01

    Full Text Available The article presents an analysis of the cathode material and the pulse plasma treatment mode influence on the surface microstructure and microhardness of high chrome (15% Cr cast iron. The methods of metallographic analysis and microhardness measurements were used. It has been shown that pulsed plasma treatment at 4 kV voltage with the use of the electro-axial thermal accelerator results in surface modification with high microhardness 950-1050 HV50, and in the formation of the coating due to the transfer of the electrodes material. The specific features of using different cathode materials have been systematized. It has been found that graphite electrodes are not recommended to be used due to their low strength and fracture under plasma pulses. In case of using tungsten cathode a coating of small thickness (20-30 microns and having cracks has been formed on the specimen surface. The most expedient is to apply the electrodes with low melting point (such as killed St.3, which provides a high-quality state of treated surface and formation the protective crack-free coating of 80-100 microns thick. It has been found that as a result of the plasma pulsed treatment the enrichment of coating with carbon is likely to occur that results in microhardness increase. The prospects of this technology as well as its shortcomings have been described

  8. Impact analysis of the thermal mechanical coupling characteristics of graphite morphologies during laser cladding of gray cast iron

    Science.gov (United States)

    Yi, Peng; Liu, Yancong; Fan, Changfeng; Zhan, Xianghua; Xu, Pengyun; Liu, Tuo

    2017-05-01

    Cladding and numerical experiments on thermodynamic coupling were conducted to determine the thermal response features and microcracks of graphite and environment phases during surface laser cladding of gray cast iron. A micromodel of graphite-environment phase was established using numerical methods. On the basis of this model, a quantitative analysis on the thermal mechanical coupling characteristics of microstructures was realized, the relationship with microcracks at tip of graphite was established, and the influence of morphological difference on local stress concentration was obtained. Results showed considerable stress concentration at the tip of graphite during cooling stage, and on the whole, the stress concentration at both ends of graphite was in direct proportion to the length of the graphite. Moreover, sufficiently short graphite resulted in further increase in stress concentration. The influence caused by tip angle was more considerable than that of length, and sharpness was in direct proportion to stress concentration. For stress fields at both ends of dimer graphite, collinear distribution easily caused stress concentration, and more obvious stress concentration was observed when the two tips were closer. The interactive effect was weak and the influence on stress concentration was minimal when two graphite pieces were in parallel or vertical distribution.

  9. Effects of different inoculants on the microstructural characteristics of gray cast iron gg-25, hardness and useful life of tools

    Directory of Open Access Journals (Sweden)

    Diego Ruben Martin

    2015-10-01

    Full Text Available Current study evaluated the machinability characteristics of parts, microstructure and mechanical properties when three different inoculants (IM-22 with FeSi-Ba/Zr; G-20 and FeSi-Ba; IMSR 75 with FeSi-Sr were added in experiments carried out in a foundry. The research methodology was mailly based on the analysis of the machinability by the milling process of the specimens in gray cast iron GG-25, name according to DIN EN 1561.Evaluation of results is based on a thorough analysis of tool wear, surface finish, microstructural analysis, chemical composition and mechanical properties of the material. Results showed that among the studied inoculants strontium sulfide (SrS was thermodynamically more stable than the others, because it leds towards a more negative free energy change of Gibbs and therefore more favorable to the formation of nuclei having greater critical radius (rc, solidification with heterogeneous nucleation. Its inoculant was also more efficient in forming a more favorable microstructure, greater amounts of eutectic cells and, longer life of the insert when machined.

  10. Influence of Orientations of Bionic Unit Fabricated by Laser Remelting on Fatigue Wear Resistance of Gray Cast Iron

    Science.gov (United States)

    Chen, Zhi-Kai; Zhou, Ti; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong

    2015-06-01

    Fatigue wear resistance improvements were researched by studying experimental samples with gray cast iron fabricated with bionic units in different orientations. Experimental samples were modified by laser surface remelting, including parallel, vertical, and gradient units to the wear direction. The remelting pool was then studied to determine the micro-hardness, microstructure, alteration of phase, and etc. Lab-control fatigue wear test method was applied with the treated and untreated samples tested under the laboratorial conditions. Wear resistance result was considered as the rolling contact fatigue (RCF) resistance and mechanisms of the modified samples were experimentally investigated and discussed. Results suggested that all treated samples demonstrated the beneficial effect on the RCF improvement due to lack of graphite and reinforcement of treated region. Results also indicated the sample with fastigiated units was more effective than that with vertical units or parallel units to the wear direction. Influence of the sample unit's angle which intensely depended on the conditions of actual application, however, was not identified.

  11. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    Science.gov (United States)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  12. Comparison of Microstructural and Tribological Effects of Low Vanadium-Low Titanium Additions to a Gray Cast Iron

    Science.gov (United States)

    Hassani, A.; Habibolahzadeh, A.; Sadeghinejad, S.

    2013-01-01

    Effects of low amounts of vanadium and titanium additions on the microstructure, tribological properties of a gray cast iron were studied and an overall comparison was made between these two alloys. Pin-on-disk tests were performed on the specimens at three different loads and two sliding speeds. SEM was utilized to study the worn surfaces and the mechanisms under which wear occurred. Local chemical analyses were conducted on the specific spots in the wear tracks by EDX. Wear mechanisms were determined and the quantitative amounts of the elements in the tribochemical films formed on the wear tracks were evaluated. Both vanadium-treated and untreated samples exhibited oxidative wear mechanism under mild regimes and adhesive wear mechanism under severe wear regime. The wear rate was reduced up to 85% when the vanadium-treated sample was tested; it showed the best wear resistance. The alloy having titanium, however, showed the least wear resistance compared to the others. It could be due to the formation of type-D graphite in its microstructure.

  13. Sclero-topometry Metrology in Valorisation of Waste Oil for Micro-machining of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Eymard S.

    2013-12-01

    Full Text Available During the time, the specific characteristics and the efficient lifetime of oil progressively decrease, due to complex pollution, ultimately making the oil unsuitable for the initial applications. The strategy to regenerate and to valorise waste oils is investigated using improved combinations of sclerometric and topometric tests on ductile nodular cast iron. Tribo-abrasive tests are performed in critical conditions, with base oil, waste oil and regenerated oil, of similar viscosities in order to discriminate their interfacial performances. The forms of the scratch traces indicate wear resistance and tendency to elasto-plastic deformation. The mechanisms of deformation and frictional behaviours were evaluated using optical and Scanning Electron Microscopy and measured for various tribological conditions with tactile and optical profilometry. The Energy Dispersive X ray Spectroscopy completes the chemical superficial distribution of pertinent elements. The surface topography metrology is used to characterize the scratch profiles and to determine the volume of the displaced and removed material, as well as maximum pit height. The originality of this paper is that it is a unique approach specifically devoted to transformer oil concerning tribological conditions.

  14. The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2007-12-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent E = (Si+2.5P.103, and coating thickness dependences were obtained.

  15. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  16. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  17. Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

    Directory of Open Access Journals (Sweden)

    Mola R.

    2014-03-01

    Full Text Available Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5. The study aimed at determining the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner layer and the cast iron substrate was the most

  18. Thermal and structural studies about the solidification process of grey cast irons; Estudio termico y estructural del proceso de solidificacion de funciones de hierro con grafito laminar

    Energy Technology Data Exchange (ETDEWEB)

    Larranaga, P.; Sertucha, J.

    2010-07-01

    The grey iron casting manufacture is an industrial process extendly used today. Therefore, the study of the solidification features obtained from this iron and the factors that have influence on such transition becomes a powerful tool in order to support the technological development of this type of material. In the present work, three inoculated alloys with different chemical compositions (hypo eutectic, eutectic and hyper eutectic) have been selected so as to comparatively analyse the structural characteristics of the irons during the liquid-solid transformation. The behaviour of the samples has been controlled recording the cooling curves and then they have been quenched in order to study the structural characteristics at different stages of the solidification. The selected alloys show different solidification features as a function of the chemical composition and the corresponding nucleation potential. The obtained results have been discussed in terms of a comparative analysis, establishing a solidification model that explains the industrial behaviour of the alloys. (Author)

  19. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    Science.gov (United States)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  20. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    National Research Council Canada - National Science Library

    Dalimus, Zaini

    2014-01-01

    .... If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature...

  1. Dissolution of copper and iron from automotive brake pad wear debris enhances growth and accumulation by the invasive macrophyte Salvinia molesta Mitchell.

    Science.gov (United States)

    Shupert, Lindsay A; Ebbs, Stephen D; Lawrence, John; Gibson, David J; Filip, Peter

    2013-06-01

    Automotive vehicles release particulate matter into the environment when their brakes are applied. The environmental effects of this automotive brake pad wear debris (BPWD) on the environment is a matter of growing debate yet the effects on plants have been largely untested. In this study, the effect of BPWD on the growth of the aquatic invasive Salvinia molesta Mitchell was examined. Salvinia molesta, plants were grown hydroponically in distilled water or in a distilled water extract containing BPWD. Growth of floating leaves, submerged leaves, and leaf nodes were measured over 20 d at 4-d intervals. At the conclusion of the study the amount of BPWD present in solutions and plant tissues was quantified using atomic absorption spectrometry (AAS). Cultivation of S. molesta in the water containing BPWD resulted in greater dissolution of Cu and Fe than occurred in the absence of plants. The tissue Cu and Fe concentrations of plants cultivated in the BPWD were significantly higher than plants grown in the absence of BPWD. Growth of S. molesta significantly increased when cultivated in the BPWD solutions in comparison to the distilled water. The results suggest that S. molesta and similar aquatic plants may be capable of increasing the dissolution of metal micronutrients from BPWD and utilizing those micronutrients to increase growth. Such growth responses could indicate that BPWD may interact with invasive floating macrophytes to more rapidly degrade the quality and stability of aquatic communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Study of the effect of solidification on graphite flakes microstructure and mechanical properties of an ASTM a-48 gray cast iron using steel molds

    Directory of Open Access Journals (Sweden)

    Ganwarich Pluphrach

    2010-12-01

    Full Text Available The analysis of heat conduction is a widely used technique for control of metallurgical process and solidified eutecticalloy investigation. The objectives of this research are studies about the effect of solidification on graphite flakes microstructureand mechanical properties of an ASTM A-48 gray cast iron using SKD 11 tool steel, S45C medium carbon steel andSS400 hot-rolled steel molds. These three steel molds are important for heat conduction and different from other works. Thisanalysis involving thermocouples immersed in the molten cast alloy is convenient to quickly obtain solidified ingot data onthe behavior of solidification processing. This research intends to describe the thermal analysis using thermocouples, shapeof thermal field and the experimental boundary conditions. The Newtonian thermal analysis and the Fourier thermal analysisdiffer because of the number of used thermocouples. Mechanical properties of structural ASTM A-48 gray cast iron materialsstrongly depend on their microstructure. Metallographic sections are observed to quantitatively measure the relevant microstructuralparameters, as graphite lamellas morphology, eutectic cell size and inclusions content. Results are correlated tothe measured mechanical properties: reduced graphite content increases the tensile strength.

  3. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Science.gov (United States)

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-01-01

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911

  4. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  5. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  6. Wind Braking of Magnetars

    Science.gov (United States)

    Tong, H.; Xu, R. X.; Song, L. M.; Qiao, G. J.

    2013-05-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L_x{<}-\\dot{E}_rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  7. Assessment of the influence of magnesium content on the shape and amount of graphite precipitation in spheroidal cast iron manufactured by Metal-Odlew s.c.

    Directory of Open Access Journals (Sweden)

    W. Orłowicz

    2009-01-01

    Full Text Available The study presents the influence of time on cast iron spheroidisation, modification of the magnesium content in the alloy, and the influence of the magnesium content on the shape and number of graphite precipitations. For one particular set of production conditions, it was observed that 17 minutes after completing the modification and spheroidisation procedure, the magnesium content had decreased from 0.070% to 0.040%. This resulted in a decrease in the graphite precipitation shape index Ss from 0.081 to 0.067, as well as a decrease in the average number of graphite precipitations NA from 568 mm-2 to 305 mm-2.

  8. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded...... sizes of the dynamic and braking forces in the gating system.......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...

  9. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  10. Determination of vanadium in refractory metals, steel, cast iron, alloys and silicates by extraction of an NBPHA complex from a sulphuric-hydrofluoric acid medium.

    Science.gov (United States)

    Donaldson, E M

    1970-07-01

    A method for determining up to 0.15% of vanadium in high-purity niobium and tantalum metals, cast iron, steel, non-ferrous alloys and silicates is described. The proposed method is based on the extraction of a red vanadium(V)-N-benzoyl-N-phenylhydroxylamine complex into chloroform from a sulphuric-hydrofluoric acid medium containing excess of ammonium persulphate as oxidant. The molar absorptivity of the complex is 428 l.mole(-1).mm(-5) at 475 nm, the wavelength of maximum absorption. Interference from chromium(VI) and cerium(IV) is eliminated by reduction with iron(II). Common ions, including large amounts of titanium, zirconium, molybdenum and tungsten, do not interfere.

  11. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  12. Continuous cooling transformation behavior for heat treatment of spheroidal graphite cast iron. Kyujo kokuen chutetsu no netsushoriji ni okeru renzoku reikyaku hentai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T.; Matsumoto, H. (Shibaura Institute of Technology, Tokyo (Japan)); Kasugai, T. (National Research Institute for Metals, Tsukuba (Japan)); Koyama, M. (Automobile Foundry Co. Ltd., Yokohama (Japan))

    1992-08-25

    In order to study basic heat treatment properties of spheroidal graphite cast iron, the continuous cooling transformation(CCT) diagrams for the material equivallent to FCD700 under various austenitized conditions were obtained. There were 4 kinds of austenitized conditions varying from 1123K and 420s to 1323K and 1,800s. Eight kinds of cooling time from the austenitized temperature to 773K ranged from 6s to 4,000s. The transformation temperature was measured by a thermal expansion method. When the austenitized temperature was increased from 1123K to 1323K, ferrite and pearlite transformation regions moved a little in the CCT diagrams and the martensite transformation temperature decreased from 493K to 458K. The bainite region in the CCT diagrams disappeared at the austenite temperatures above 1223K. The nucleation sites of ferrite and pearlite in the spheroidal graphite cast iron were generated at grain boundary between austenite and graphite but not at grain boundary between austenites. The reason of such phenomena was also studied. 10 refs., 8 figs., 2 tabs.

  13. An Analysis of the Weldability of Ductile Cast Iron Using Inconel 625 for the Root Weld and Electrodes Coated in 97.6% Nickel for the Filler Welds

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Cárcel-Carrasco

    2016-11-01

    Full Text Available This article examines the weldability of ductile cast iron when the root weld is applied with a tungsten inert gas (TIG welding process employing an Inconel 625 source rod, and when the filler welds are applied with electrodes coated with 97.6% Ni. The welds were performed on ductile cast iron specimen test plates sized 300 mm × 90 mm × 10 mm with edges tapered at angles of 60°. The plates were subjected to two heat treatments. This article analyzes the influence on weldability of the various types of electrodes and the effect of preheat treatments. Finally, a microstructure analysis is made of the material next to the weld in the metal-weld interface and in the weld itself. The microstructure produced is correlated with the strength of the welds. We treat an alloy with 97.6% Ni, which prevents the formation of carbides. With a heat treatment at 900 °C and 97.6% Ni, there is a dissolution of all carbides, forming nodules in ferritic matrix graphite.

  14. Effect of Curved Surface Shape and Feed Velocity on Microstructure and Mechanical Performance of Gray Cast Iron After Spot Continual Induction Hardening

    Science.gov (United States)

    Gao, Kai; Qin, Xunpeng; Chen, Xuliang; Wang, Zhou; Zhu, Zhenhua; Cheng, Man

    2017-05-01

    Spot continual induction hardening (SCIH) is a surface heat treatment process, which can strengthen more than one small area or relative large area on complicated component surface. In order to investigate the microstructure and mechanical properties of gray cast iron with curved surface after SCIH, the microstructure, microhardness and residual stresses were analyzed under different process conditions. The results showed that the martensite grain in hardened region of concave surface was larger than that of convex surface. The domain sizes of concave and convex surfaces were smaller than that of matrix region due to the high heating rate in SCIH process. The phase transformation depth increased with the increasing of convex surface radius but decreased with the increasing of concave surface radius. The maximum values of residual tensile and compressive stresses increased with the increasing of feed velocity for convex and concave surfaces, respectively. The appearance positions of maximum tensile and compressive stresses were closer to center for convex and concave surfaces, respectively, when feed velocity increased from 1 to 5 mm/s. The achieved results indicated that the SCIH with relatively low feed velocity was more suitable for improving the mechanical properties of gray cast iron. Compared with convex surface, the concave surface of workpiece can obtain better mechanical properties under the same feed velocity of inductor.

  15. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  17. Braking, Wheeled Vehicles. Test Operations Procedure (TOP)

    National Research Council Canada - National Science Library

    2008-01-01

    .... Major factors to be considered in the evaluation of vehicle braking systems are stopping and grade holding ability, vehicle stability and control during brake applications, and individual braking...

  18. 76 FR 5333 - Non-Malleable Cast Iron Pipe Fittings from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-01-31

    ... specifications. Most building codes require that these products are Underwriters Laboratories (UL) certified. The...., pig iron, antirust, scrap steel, ferrosilicon) and packing materials using April 2009 through March...

  19. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  20. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.