WorldWideScience

Sample records for cassava endophyte bacillus

  1. Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4a Composto antifúngico produzido pelo endófito de mandioca Bacillus pumilus MAIIIM4a

    Directory of Open Access Journals (Sweden)

    Flávia Mandolesi Pereira de Melo

    2009-10-01

    Full Text Available In the search for new organisms and new secondary metabolites, a study was conducted to evaluate the diversity of endophytic bacteria from ethnovarieties of cassava cultivated by Brazilian Amazon Indian tribes and also to study the secondary metabolites produced by a Bacillus pumilus strain. Sixty seven cassava endophytic bacteria were subjected to 16S rRNA sequencing and FAME analysis. The bacterial profile revealed that 25% of all endophytic isolates belonged to the genus Bacillus. The isolate B. pumilus MAIIIM4a showed a strong inhibitory activity against the fungi Rhizoctonia solani, Pythium aphanidermatum and Sclerotium rolfsii. Secondary metabolites of this strain were extracted using hexane, dichloromethane and ethyl acetate. Extracts were subjected to bioautography and LC/MS analysis, which allowed the identification of pumilacidin, an antifungal compound produced by B. pumilus MAIIIM4a. The bacterial endophytic localization was confirmed by cassava cell tissue examination using scanning electron microscopy.Na busca de novos organismos e novos metabólitos secundários, um estudo foi conduzido visando avaliar a diversidade de bactérias endofíticas de etnovariedades de mandioca cultivadas por tribos indígenas da Amazônia brasileira e também para estudar metabólitos secundários produzidos por Bacillus pumilus. Sessenta e sete bactérias endofíticas de mandioca foram identificadas através do seqüenciamento do gene 16S rRNA e por meio da análise de ácidos graxos (FAME. Essas análises revelaram que 25% de todos os endofíticos pertenciam ao gênero Bacillus. O isolado Bacillus pumilus MAIIIM4a apresentou forte ação inibitória contra os fitopatógenos Rhizoctonia solani, Pythium aphanidermatum e Sclerotium rolfsii. Os metabólitos secundários deste isolado foram extraídos do sobrenadante usando-se hexano, diclorometano e acetato de etila. Esses extratos foram utilizados nas análises de bioautografia e LC-MS, as quais

  2. Detection and expression of enterotoxin genes in endophytic strains of Bacillus cereus

    OpenAIRE

    Melnick, Rachel L; Testen, Anna L.; Poleatewich, A.M.; Backman, Paul A.; Bailey, B. A.

    2012-01-01

    The aim of this study was to determine whether endophytic Bacillus cereus isolates from agronomic crops possessed genes for the nonhaemolytic enterotoxin (Nhe) and haemolysin BL (HBL) and, therefore, have the potential to cause diarrheal illness in humans.

  3. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  4. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  5. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  6. A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour

    Directory of Open Access Journals (Sweden)

    Sheila Lorena de Araújo Coelho

    2016-03-01

    Full Text Available Abstract Cyclodextrin glycosyltransferase (CGTase catalyzes the conversion of starch into non-reducing cyclic sugars, cyclodextrins, which have several industrial applications. This study aimed to establish optimal culture conditions for β-CGTase production by Bacillus sp. SM-02, isolated from soil of cassava industries waste water lake. The optimization was performed by Central Composite Design (CCD 2, using cassava flour and corn steep liquor as substrates. The maximum production of 1087.9 U mL−1 was obtained with 25.0 g L−1 of cassava flour and 3.5 g L−1 of corn steep after 72 h by submerged fermentation. The enzyme showed optimum activity at pH 5.0 and temperature 55 °C, and maintained thermal stability at 55 °C for 3 h. The enzymatic activity was stimulated in the presence of Mg+2, Ca+2, EDTA, K+, Ba+2 and Na+ and inhibited in the presence of Hg+2, Cu+2, Fe+2 and Zn+2. The results showed that Bacillus sp. SM-02 have good potential for β-CGTase production.

  7. A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour

    Science.gov (United States)

    de Araújo Coelho, Sheila Lorena; Magalhães, Valter Cruz; Marbach, Phellippe Arthur Santos; Cazetta, Marcia Luciana

    2016-01-01

    Cyclodextrin glycosyltransferase (CGTase) catalyzes the conversion of starch into non-reducing cyclic sugars, cyclodextrins, which have several industrial applications. This study aimed to establish optimal culture conditions for β-CGTase production by Bacillus sp. SM-02, isolated from soil of cassava industries waste water lake. The optimization was performed by Central Composite Design (CCD) 2, using cassava flour and corn steep liquor as substrates. The maximum production of 1087.9 U mL−1 was obtained with 25.0 g L−1 of cassava flour and 3.5 g L−1 of corn steep after 72 h by submerged fermentation. The enzyme showed optimum activity at pH 5.0 and temperature 55 °C, and maintained thermal stability at 55 °C for 3 h. The enzymatic activity was stimulated in the presence of Mg+2, Ca+2, EDTA, K+, Ba+2 and Na+ and inhibited in the presence of Hg+2, Cu+2, Fe+2 and Zn+2. The results showed that Bacillus sp. SM-02 have good potential for β-CGTase production. PMID:26887234

  8. High-Quality Draft Genome Sequence of Bacillus amyloliquefaciens Strain 629, an Endophyte from Theobroma cacao.

    Science.gov (United States)

    SantAnna, Brena M M; Marbach, Phellippe P A; Rojas-Herrera, Marcelo; De Souza, Jorge T; Roque, Milton R A; Queiroz, Artur T L

    2015-01-01

    Bacillus amyloliquefaciens strain 629 is an endophyte isolated from Theobroma cacao L. Here, we report the draft genome sequence (3.9 Mb) of B. amyloliquefaciens strain 629 containing 16 contigs (3,903,367 bp), 3,912 coding sequences, and an average 46.5% G+C content. PMID:26586881

  9. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.

    Science.gov (United States)

    Gond, Surendra K; Bergen, Marshall S; Torres, Mónica S; White, James F

    2015-03-01

    Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500μg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance). PMID:25497916

  10. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusrium verticillioides

    Science.gov (United States)

    Here we report the whole genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides, and grows within maize tissue, suggesting potential as an endophytic biocontrol agent....

  11. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides.

    Science.gov (United States)

    Gold, S E; Blacutt, A A; Meinersmann, R J; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent. PMID:25359909

  12. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides

    OpenAIRE

    Gold, S. E.; Blacutt, A. A.; Meinersmann, R. J.; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent.

  13. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Institute of Scientific and Technical Information of China (English)

    Swetha Sunkar; C Valli Nachiyar

    2012-01-01

    Objective:To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods: The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results:The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions:The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity.

  14. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri.

    Science.gov (United States)

    Jasim, B; Sreelakshmi, K S; Mathew, Jyothis; Radhakrishnan, E K

    2016-07-01

    Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289). PMID:27021396

  15. Draft Genome Sequence of Bacillus amyloliquefaciens XK-4-1, a Plant Growth-Promoting Endophyte with Antifungal Activity.

    Science.gov (United States)

    Sun, Zhengxiang; Hsiang, Tom; Zhou, Yi; Zhou, Jinglong

    2015-01-01

    Here, we report the draft genome sequence of a bacterial plant-growth-promoting endophyte, Bacillus amyloliquefaciens XK-4-1, which consists of one circular chromosome of 3,941,805 bp with 3,702 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with its plant-beneficial characteristics. PMID:26564038

  16. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source.

    Science.gov (United States)

    Sia, Eliandra de Freitas; Marcon, Joelma; Luvizotto, Danice Mazzer; Quecine, Maria Carolina; Tsui, Sarina; Pereira, José Odair; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio

    2013-01-01

    Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium. PMID:25674409

  17. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal.

    Science.gov (United States)

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2016-10-01

    Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal. PMID:27362296

  18. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  19. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers

    Institute of Scientific and Technical Information of China (English)

    Shutong WANG; Tongle HU; Yanling JIAO; Jianjian WEI; Keqiang CAO

    2009-01-01

    The fungal pathogen Botrytis cinerea Pers. causes severe rotting on tomato fruits during storage and shelf life. As a biological control agent, endophytic bacterium was regarded as an effective alternative to chemical control. Out of 238 endophytic bacterial isolates, three strains (EB-15, EB-28, and EB-122) isolated from Lycopersicum esculentum Mill., Speranskia tuberculata (Bge.) Baill, and Dictamnus dasycarpus Turcz. respectively were found to be strongly antagonistic to the pathogen in vitro and were selected for further in vivo tests. One endophytic bacterium strain, encoded EB-28, was selected from the three in vivo tested isolates. The inhibitive rate of EB-28 reached 71.1% in vitro and 52.4% in vivo. EB-28 was identified as Bacillus subtilis according to its morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis.

  20. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  1. Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

    Directory of Open Access Journals (Sweden)

    Mohammad Tofajjal Hossain

    2016-06-01

    Full Text Available In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension (2.0 × 10⁷ cfu/ml to the rice rhizosphere reduced bakanae severity by 46–78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.

  2. Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007.

    Science.gov (United States)

    Hossain, Mohammad Tofajjal; Khan, Ajmal; Chung, Eu Jin; Rashid, Md Harun-Or; Chung, Young Ryun

    2016-06-01

    In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension (2.0 × 10(7) cfu/ml) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway. PMID:27298598

  3. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2011-06-01

    Full Text Available Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05 (the exception being for root fresh weight when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture.

  4. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  5. Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP)

    International Nuclear Information System (INIS)

    Bioremediations of cadmium by endophytic bacterium (EB) L14 (Bacillus sp.) in the presence of industrially used metabolic inhibitors (DCC or DNP) were investigated. In the presence of DCC or DNP, the biomass population of EB L14 was greatly inhibited. However, the cadmium removal of EB L14 increased from 73.6% (in the absence of DCC or DNP) to 93.7% and 80.8%, respectively. The analysis of total and intracellular cadmium concentrations during 24 h of incubation indicated that this enhanced cadmium removal was the inhibition effect of DCC or DNP on the cations export resistance system of EB L14. This unique property strongly indicated the superiority of this endophyte for practical application in cadmium bioremediation in the presence of industrially used metabolic inhibitors.

  6. Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP)

    Energy Technology Data Exchange (ETDEWEB)

    Luo Shenglian, E-mail: sllou@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang 330063 (China); Xiao Xiao [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xi Qiang [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wan Yong; Chen Liang; Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Liu Chengbin [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Guo Hanjun; Chen Jueliang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-06-15

    Bioremediations of cadmium by endophytic bacterium (EB) L14 (Bacillus sp.) in the presence of industrially used metabolic inhibitors (DCC or DNP) were investigated. In the presence of DCC or DNP, the biomass population of EB L14 was greatly inhibited. However, the cadmium removal of EB L14 increased from 73.6% (in the absence of DCC or DNP) to 93.7% and 80.8%, respectively. The analysis of total and intracellular cadmium concentrations during 24 h of incubation indicated that this enhanced cadmium removal was the inhibition effect of DCC or DNP on the cations export resistance system of EB L14. This unique property strongly indicated the superiority of this endophyte for practical application in cadmium bioremediation in the presence of industrially used metabolic inhibitors.

  7. The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, [i]Bacillus subtili[/i]s CaSUT007

    OpenAIRE

    Buensateai, Natthiya; Thumanu, Kanjana; Sompong, Mathukorn; Athinuwat, Dusit; Prathuangwong, Sutruedee

    2012-01-01

    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699 To evaluate the response of cassava stakes to plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007, the changes in cellular compositions and phytohormone were investigated using the fourier transform infrared (FTIR) and high-performance liquid chromatography (HPLC) appro...

  8. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis.

    Science.gov (United States)

    Bacon, Charles W; Hinton, Dorothy M

    2011-06-01

    Maize (Zea mays L.) is susceptible to infection by Fusarium verticillioides through autoinfection and alloinfection, resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria, and this includes bacterial endophytes, such as Bacillus mojavensis . In addition to producing fumonisins, which are phytotoxic and mycotoxic, F. verticillioides also produces fusaric acid, which acts both as a phytotoxin and as an antibiotic. The question now is Can B. mojavensis reduce lesion development in maize during the alloinfection process, simulated by internode injection of the fungus? Mutant strains of B. mojavensis that tolerate fusaric acid were used in a growth room study to determine the development of stalk lesions, indicative of maize seedling blight, by co-inoculations with a wild-type strain of F. verticillioides and with non-fusaric acid producing mutants of F. verticillioides. Lesions were measured on 14-day-old maize stalks consisting of treatment groups inoculated with and without mutants and wild-type strains of bacteria and fungi. The results indicate that the fusaric-acid-tolerant B. mojavensis mutant reduced stalk lesions, suggesting an in planta role for this substance as an antibiotic. Further, lesion development occurred in maize infected with F. verticillioides mutants that do not produce fusaric acid, indicating a role for other phytotoxins, such as the fumonisins. Thus, additional pathological components should be examined before strains of B. mojavensis can be identified as being effective as a biocontrol agent, particularly for the control of seedling disease of maize. PMID:21635192

  9. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  10. Propriedades emulsificantes e estabilidade do biossurfactante produzido por Bacillus subtilis em manipueira Studies of emulsifying properties and stability of the biosurfactant produced by Bacillus subtilis in cassava wastewater

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2008-12-01

    conditions often associated with of such processes and the maintenance of their properties. The aim of this work was to study the stability of the biosurfactant produced by Bacillus subtilis strain LB5a grown in cassava wastewater in a pilot process. Stability studies were carried out by varying the temperature, pH, and salt (NaCl concentration. Another study was the evaluation of their emulsifying index in mixtures of water with hydrocarbons and vegetable oils as well as the stability of the emulsions formed. The results showed that the biosurfactant was stable under all combination of temperature and time tested: 100 °C for 140 minutes and 121 °C for up to 60 minutes. It was also stable in concentrations of NaCl from 2.5 to 20%, and pH from 6 to 10. The biosurfactant showed higher values of emulsion index at 24 hours (EI24 to various cyclical and aliphatic hydrocarbons when compared with SDS. The vegetable oils emulsions were stable despite the fact that the profiles of fatty acid chain in the oils were different. All results described characterize these compounds as potential emulsifiers for different industrial applications.

  11. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  12. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  13. Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins

    Science.gov (United States)

    Pathak, Khyati V.; Keharia, Haresh; Gupta, Kallol; Thakur, Suman S.; Balaram, Padmanabhan

    2012-10-01

    Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus β-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln8/Glu8) in the fengycin variants.

  14. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases. PMID:26347324

  15. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    Directory of Open Access Journals (Sweden)

    Eu Jin Chung

    2015-06-01

    Full Text Available Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208 and Burkholderia glumae (KACC 44022, respectively, were also suppressed effectively by drenching a bacterial suspension (10⁷ cfu/ml of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%, Bacillus methylotrophicus KACC 13105T (99.65%, Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%, and Bacillus tequilensis KACC 15944T (99.45%. The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the

  16. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters.

    Science.gov (United States)

    Zhao, Longfei; Xu, Yajun; Lai, Xin-He; Shan, Changjuan; Deng, Zhenshan; Ji, Yuliang

    2015-01-01

    strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth. PMID:26691455

  17. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-12-01

    endophytic bacterial strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth.

  18. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Mi-Na; Shim, Jaehong; You, Youngnam [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Myung, Hyun [Department of Environment Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Bang, Keuk-Soo [Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Cho, Min [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Kamala-Kannan, Seralathan, E-mail: kannan@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752 (Korea, Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Endophytic Bacillus spp. have reduced the lead toxicity in Alnus firma plants. Black-Right-Pointing-Pointer The bacteria have sequestered the Pb molecules extracellularly. Black-Right-Pointing-Pointer The bacteria have increased the growth rate of plants in the presence of Pb. - Abstract: The aim of this study was to isolate and characterize endophytic bacteria from the roots of the metal hyperaccumulator plant Alnus firma. A total of 14 bacterial endophytes were isolated from root samples and assayed for tolerance to heavy metals. Isolate MN3-4 exhibited maximum bioremoval of Pb and was subsequently identified as Bacillus sp. based on 16S rRNA sequences. The pH and initial metal concentration highly influenced the Pb bioremoval rate. The growth of isolate MN3-4 was moderately altered in the presence of metals. Scanning electron microscopy, energy dispersive spectroscopy, biological-transmission electron microscopy, and Fourier transform infrared spectroscopy studies revealed that isolate MN3-4 had extracellularly sequestered the Pb molecules with little intracellular accumulation. Isolate MN3-4 did not harbor pbrA and pbrT genes. Moreover, isolate MN3-4 had the capacity to produce siderophores and indoleacetic acid. A root elongation assay demonstrated an increase (46.25%) in the root elongation of inoculated Brassica napus seedlings compared to that of the control plants. Obtained results pointed out that isolate MN3-4 could potentially reduce heavy metal phytotoxicity and increase Pb accumulation in A. firma plants.

  19. Effects of Dissolved Oxygen Tension and Ammonium Concentration on Polyhydroxybutyrate Synthesis from Cassava Starch by Bacillus cereus IFO 13690

    Directory of Open Access Journals (Sweden)

    Margono .

    2015-11-01

    Full Text Available generated by an Adobe application 11.5606 Attempting to get low price of raw material for producing polyhydroxybutyrate is always studied. Tapioca starch is one of the raw material with low price. The objective of this research was to study the effects of initial ammonium concentration and dissolved oxygen tension (doT on producing PHB by Bacillus cereus IFO 13690 with tapioca starch as the carbon source. This fermentation was carried out in 5 L fementors with a 2 L working volume, temperature of 30 oC, and agitation of 500 rpm. The pH medium was controlled at 5.6 after it came down from the initial pH of 6.8. Meanwhile, the initial doT was 100 % air saturation and also came down to and maintained at doT of experiment, i.e. 1 , 5 , or 10 % air saturation. The best result was obtained when the initial ammonium concentration was 5 g/L and the doT value maintained at 5 % air saturation. By this conditions, the cell growth reached 5,457 g cell dry weight/L containing PHB of 2.42 % cell dry weigh after 29 hours fermentation. Normal 0 36 false false false

  20. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites.

    Science.gov (United States)

    Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul

    2016-01-01

    Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation. PMID:26444299

  1. An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production

    OpenAIRE

    Zhang, Qin; Li, Yanbin; Xia, Liming

    2014-01-01

    Background Third generation biodiesel processing from microbial lipids using low-cost lignocellulosic feedstocks has attracted much attention. Endophytes isolated from oleaginous plants possibly have the capacity to accumulate lipids similar to the hosts. However, little work has been reported in terms of endophytic bacteria isolation from oleaginous plants and their lipid production using lignocellulosic hydrolysate as substrate. Results A new oleaginous endophyte HB1310 has been isolated fr...

  2. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants

    OpenAIRE

    Zhi-Cong eDai; Wei eFu; Ling-Yun eWan; Hong-Hong eCai; Ning eWang; Shanshan eQi; Daolin eDu

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of W. trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria,...

  3. Cassava Commercialization in Mozambique

    OpenAIRE

    Donovan, Cynthia; Haggblade, Steven; Salegua, Venancio Alexandre; Cuambe, Constantino; Mudema, Joao; Tomo, Alda

    2011-01-01

    Cassava supplies roughly 30% of all calories consumed in Mozambique, making it the country’s most important food security crop. Over the past several decades, growing urbanization and shifting demand patterns have led to growing opportunities for cassava processing and commercialization. This paper examines the commercial dynamics in Mozambique’s cassava value chain as well as the food security implications of growing cassava commercialization.

  4. Linamarase production by some microbial isolates and a comparison of the rate of degradation of cassava cyanide by microbial and cassava linamarases

    Directory of Open Access Journals (Sweden)

    Ogbonnaya Nwokoro

    2016-01-01

    Full Text Available Production of linamarase and the effects of media composition on enzyme production were studied. A total of eight linamarase-producing bacteria were isolated from fermenting cassava tubers and soil samples. Selection of the isolates was based on their high growth in media containing 800 mg/L potassium cyanide solution. Eight of the isolates which showed very high growth in the growth medium as demonstrated by increase in their optical density readings to at least 0.6 in the cyanide containing media were selected for further studies. The isolates were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus amylovorus, Lactobacillus cellobiosus, Leuconostoc mesenteroides, Pseudomonas stutzeri, Bacillus pumilus and Bacillus subtilis. All the isolates were grown in media containing Tween 80 solution and in control media without the surfactant. Best enzyme activity of 6.82 U/mL was obtained in the medium containing Tween 80 solution and Lactobacillus fermentum as the test bacterium. Comparatively, linamarase production by the isolates in media without Tween 80 showed lower enzyme productivity. Cassava endogenous and microbial enzymes were tested for their abilities to hydrolyze cyanide in cassava flour samples pretreated to either remove the endogenous or microbial enzyme. Residual cyanide in cassava flour samples treated with linamarase of Lactobacillus plantarum was undecteded in 30 h, while in contrast, the residual cyanide in cassava flour samples treated with endogenous linamarase was 0.39 mg/10g cassava flour after 80 h. Residual cyanide in the untreated control sample was 1.98 mg HCN /10g cassava flour after 80 h. The results from this finding demonstrated improved cassava cyanide degradation with microbial linamarase as compared to endogenous cassava linamarase. Massive inoculation of fermenting cassava tubers with the isolates reported in this study would enable better control of the cassava fermentation process and may

  5. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L. Análise molecular de bactérias endofíticas do gênero Bacillus isoladas de milho tropical (Zea mays L.

    Directory of Open Access Journals (Sweden)

    José Edson Fontes Figueiredo

    2009-09-01

    Full Text Available Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of wholecell protein extract of fortytwo isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively followed by B. licheniformes (7 isolates, B. cereus (5 isolates and B. amiloliquefascens (3 isolates. According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying interspecific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intraspecific variation among isolates with similar protein profile as well as for taxonomic studies.Bactérias endofíticas desempenham papel importante na agricultura, melhorando a performance e adaptação de plantas contra estresses bióticos e abióticos. No presente estudo, métodos moleculares foram empregados para identificar bactérias endofíticas do gênero Bacillus isoladas de cultivares de milho doce brasileiro. SDS-PAGE de extratos protéicos totais de quarenta e dois isolados revelaram elevado número de bandas escrutináveis. Vinte e quatro isolados formaram nove grupos diferentes de réplicas bactérianas e dezoito foram considerados como únicos. Entre os isolados, alguns polipeptídios, de tamanhos

  6. Cassava Commercialization in Malawi

    OpenAIRE

    Kambewa, Emma

    2010-01-01

    Malawi continues to rely on maize for household food security. Policies to enhance food security continue to target maize production. Traditionally production and use of cassava was localized in lakeshore areas until the past two decades when maize production was increasingly affected by rainfall variability. Cassava as an alternate food crop has rapidly gained popularity and commercialization of the cassava sector is steadily taking off. Policy and institutional support to diversify the food...

  7. Complete Genome Sequence of Bacillus subtilis BSn5, an Endophytic Bacterium of Amorphophallus konjac with Antimicrobial Activity for the Plant Pathogen Erwinia carotovora subsp. carotovora ▿

    OpenAIRE

    Deng, Yun; Zhu, Yiguang; Wang, Pengxia; Zhu, Lei; Zheng, Jinshui; Li, Rong; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2011-01-01

    Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.

  8. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR)

    OpenAIRE

    Pathak, Khyati V.; Keharia, Hareshkumar

    2013-01-01

    Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture su...

  9. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-01-01

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes. PMID:25374146

  10. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds

    Directory of Open Access Journals (Sweden)

    Meenu Katoch

    2014-10-01

    Full Text Available This study aimed to screen the endophytic fungal species of ethano-medicinal plant Bacopa monnieri (L. Pennell for their ability to produce antimicrobial substances against Bacillus subtilis, Pseudomonas aeroginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Candida albicans. Endophytes were also screened for their ability to produce amylase, cellulase, protease and lipase to evaluate their ecological role within the host plant. Twenty-six endophytes were isolated and seventeen were identified. All the isolated endophytes exhibited amylolytic activity. Lipolytic, cellulolytic, proteolytic activity was shown by 98, 28 and 31% isolates, respectively. Similarly, all the endophytes (100% exhibited significant antimicrobial activity against K. pneumonia, while seventeen endophytes (89.5% were active against S. aureus. Fourteen endophytes (78.9% showed significant antimicrobial activity against B. subtilis and C. albicans. Eleven (57.8%, nine (50%, four (21% endophytes were active against S. typhimurium, E. coli and P. aeruginosa, respectively.

  11. Electrotransformation of Bacillus mojavensis with fluorescent protein markers

    Science.gov (United States)

    Gram-positive endophytic bacteria are difficult to transform. To study endophytic interactions between Bacillus mojavensis and maize, a method was developed to transform this species by electroporation with three fluorescent protein expressing integrative plasmids: pSG1154, pSG1192, and pSG1193. The...

  12. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  13. Study of cassava starch enzymatic modification for maltodextrins obtention

    OpenAIRE

    Miguel Angel Díaz; María Isabel Filella; Velásquez, Mario E.

    2012-01-01

    It was pretended to investigate the effect of the most relevant variables in cassava starch enzymatic hydrolysis process, on laboratory scale, to determine appropriate industrial conditions for the obtention of different kinds of maltodextrins. An a-Amylase enzyme, from genetically modified strain of Bacillus lichenijormis, was used to hydrolize the starch. Once the variables were chosen, an experimental fractioned factorial design was established with two levels. The Dextrose Equivalent (DE)...

  14. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants

    Directory of Open Access Journals (Sweden)

    Zhi-Cong eDai

    2016-05-01

    Full Text Available The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP effects of endophytic bacteria Bacillus sp. on aseptic seedlings of W. trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion.

  15. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    Science.gov (United States)

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  16. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations.

    Science.gov (United States)

    Hu, Xiaojia; Roberts, Daniel P; Maul, Jude E; Emche, Sarah E; Liao, Xing; Guo, Xuelan; Liu, Yeying; McKenna, Laurie F; Buyer, Jeffrey S; Liu, Shengyi

    2011-07-01

    Sclerotinia sclerotiorum causes serious yield losses in crops in the People's Republic of China. Two formulations of oilseed rape seed containing the bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations. The pellet formulation significantly reduced disease (incidence and disease index) and increased plant dry mass, while the wrap formulation significantly reduced disease incidence and significantly increased plant dry mass at both field locations. Mean seed yield per 120 plants with both formulations of isolate Tu-100 was significantly greater than the appropriate controls, but at only one of the locations. Both formulations provided stable B. subtilis Tu-100 biomass (≥10(5) CFU·g(-1)) and seed germination (≥85%) over a 6 month period at room temperature. Polymerase chain reaction and DNA sequence analysis identified ituC and ituD, and bacAB and bacD in the genome of isolate Tu-100. These genes are involved in the biosynthesis of iturin and bacilysin. Iturin was detected in culture filtrates from isolate Tu-100, with thin layer chromatography. Detection of bacilysin was not attempted. Experiments reported here indicate the commercial viability of B. subtilis Tu-100 for suppression of S. sclerotiorum on oilseed rape. PMID:21767217

  17. Cassava For Space Diet

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  18. Recent growth in African cassava

    OpenAIRE

    Nweke, Felix; Haggblade, Steven; Zulu, Ballard

    2004-01-01

    According to the authors, "Cassava serves as a staple food for 200 million Africans, second only to maize in its calorie contribution. In response to a series of devastating attacks by cassava diseases and pests over the past several decades, the International Institute of Tropical Agriculture (IITA) and several national agricultural research services have launched successful cassava research programs... " This brief describes some of the programs, their impact and the drivers of change. It c...

  19. Feeding cassava foliage to sheep

    OpenAIRE

    Hue, Khuc Thi

    2012-01-01

    The potential of cassava foliage (Manihot esculenta Crantz) as a protein-rich feed in sheep production in Vietnam was examined by studying cassava foliage yield, hydrogen cyanide (HCN) content, toxicity and performance of lambs fed the foliage as a supplement. Cassava foliage fed ad libitum as a protein supplement to a basal diet of urea-treated rice straw gave similar lamb live weight gain (LWG) as diets supplemented with commercial concentrate or protein-rich foliage of stylosanthes (S...

  20. Resistant starch in cassava products

    OpenAIRE

    Bruna Letícia Buzati Pereira; Magali Leonel

    2014-01-01

    Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were...

  1. The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest.

    Science.gov (United States)

    Sorokan, Antonina V; Ben'kovskaya, Galina V; Maksimov, Igor' V

    2016-05-01

    Plants are exposed to pervasive attack by diverse attackers, such as pathogens and pests. But plants have their own endophytic microflora as well as the attacking insects. These microbiomes contact face to face in the nature. It has been found that the endophytic strain Bacillus subtilis 26D increases mortality of Colorado potato beetles, disturbing the development of insect microsymbionts Enterobacter ssp. and Acinetobacter ssp. PMID:26968115

  2. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  3. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  4. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld;

    2014-01-01

    imperative to investigate opportunities and barriers for expansion of cassava production. This paper investigates the potential for an expansion of cassava cultivation for bioethanol production in Southern Mali. It is based on a questionnaire survey with 65 households in 2 villages in Loulouni municipality......, which represent two major agro-ecological environments in the Soudan-zone in Mali. The results reveal that farmers are experienced cassava producers and are interested in an expansion of cassava cultivation for bioethanol production and that suitable areas are available, especially for an expansion of......Cassava based bioethanol production is a promising alternative to conventional fossil fuels and commercial production is already well established in several countries. A production based on small holder production may involve a transformation of the existing production system and it is therefore...

  5. Sensorial evolution of cassava flour (Manihot esculenta crantz) added to protein concentrate cassava leaves

    OpenAIRE

    Lima, Elaine C S; Feijo, Márcia B S; Freitas, Maria C J; dos Santos, Edna R; SABAA-SRUR Armando U. O.; Moura, Luciana S M

    2012-01-01

    Cassava is regarded as the nutritional base of populations in developing countries, and flour, product made of cassava, is the most consumed in the world. The cassava leaves are very rich in vegetable proteins, but a big amount is lost in processing the crop. The objective of this study was to do a sensory evaluation of cassava flour to which a protein concentrate obtained from cassava leaves (CPML) was added. The CPML was obtained from cassava leaves by isoelectric precipitation and added to...

  6. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  7. Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties Cyclodextrina glycosyltransferase de Bacillus licheniformis: otimização da produção e suas propriedades

    OpenAIRE

    Paulo Roberto Martins Bonilha; Vivian Menocci; Antonio José Goulart; Maria de Lourdes Teixeira de Moraes Polizeli; Rubens Monti

    2006-01-01

    Cyclodextrin glycosyltransferase (EC 2.4.1.19) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented...

  8. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera.

    Science.gov (United States)

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds. PMID:26454221

  9. Development of starter culture for improved processing of Lafun, an African fermented cassava food product

    DEFF Research Database (Denmark)

    Padonou, S.W.; Nielsen, Dennis Sandris; Akissoe, N.H.;

    2010-01-01

    AIMS: To select appropriate micro-organisms to be used as starter culture for reliable and reproducible fermentation of Lafun. METHODS AND RESULTS: A total of 22 cultures consisting of yeast, lactic acid bacteria (LAB) and Bacillus cereus strains predominant in traditionally fermented cassava...... during Lafun processing were tested as potential starter cultures. In an initial screening, Saccharomyces cerevisiae 2Y48P22, Lactobacillus fermentum 2L48P21, Lactobacillus plantarum 1L48P35 and B. cereus 2B24P31 were found to be the most promising of the cultures and were subsequently tested in...... different combinations as mixed starter cultures to ferment submerged cassava roots. Saccharomyces cerevisiae, inoculated singly or combined with B. cereus, gave the softest cassava root after 48 h of fermentation according to determination of compression profile and stress at fracture. Overall, sensory...

  10. Potential Endophytic Bacteria for Increasing Paddy Var Rojolele Productivity

    Directory of Open Access Journals (Sweden)

    Desriani Desriani

    2013-09-01

    Full Text Available Paddy var Rojoleleis asuperior paddy come from Klaten that released by Department of Agriculture in 2003. Its superior properties are resistant to pests leaf hoppers, fluffier, and fragrant. To increase the productivity of paddy that are of ten used by farmers is to use chemical-based fertilizers. The use of these chemicals will effect to adisruption of ecosystem balancing, reduction the amount of soil microflora which essential forplants. Endophytic bacteria are symbiotic microorganisms living within plant tissues, and does not cause negative effects on the host plant. Endophytic bacteria have a capability increasing crop productivity by producing growth hormone, contributes to plant health, and as bio-control agents. Some endophytic bacteria which contribute to plant growth are: Pseudomonas sp., Enterobacter sp., Staphylococcus sp., Azotobacter sp., And Azospirilum sp., Whereas endophytic bacteria that contribute to the health and plant protection several of them are: Pseudomonas sp., Serratia sp. ,Clavibacter sp., and Bacillus sp. This study was conducted to investigate potential of endophytic bacteria to increase Paddy var Rojolele productivity based on its ability to produce extracellular enzymes and resistance to multiple types of antibiotics. The method were endophytic bacteria isolation from three Paddy varRojolele plants, extracellular enzymes detection and antibiotic resistance testing to chloramfinekol, ampicillin and kanamycin. As the result, 43isolateswere isolated from Paddy var Rojolele. Four isolatesamong them havethe ability to produce extra cellular enzym esandresistant toampicillin, kanamycin, and chloramfinekol. Extra cellular enzyme production capability and resistance to antibiotics makes endophytic bacteria are potentialto improveplant health and also asbio-control agentwhich then willaffect to the productivity of rice. To further ensure its potential to plant, more research is needed.

  11. An Integrated Investment Appraisal of Cassava Starch Production in Rwanda: The Case of Kinazi Cassava Plant

    OpenAIRE

    Alice Nsenkyire; Glenn P. Jenkins; Mikhail Miklyaev; Octave Semwaga

    2015-01-01

    In April 2012, Kinazi Cassava Plant was established as a government initiative to produce high quality cassava flour, and other value added cassava products. After the successful establishment of the cassava flour plant in Ruhango district, KCP now plans to diversify into cassava starch production to feed the emerging manufacturing industries such as the pharmaceuticals, food processing, breweries, textiles etc. both domestically and for exportation. The study assesses the financial and econo...

  12. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    OpenAIRE

    Maria Eduardo; Ulf Svanberg; Jorge Oliveira; Lilia Ahrné

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with...

  13. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    Science.gov (United States)

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  14. Phenotypic Approaches to Drought in Cassava: Review

    OpenAIRE

    Emmanuel eOkogbenin; SETTER, TIM L.; Morag eFerguson; Rose eMutegi; Hernan eCeballos; Bunmi eOlasanmi; Martin eFregene

    2013-01-01

    Cassava is an important crop in Africa, Asia, Latin America and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitativ...

  15. Phenotypic approaches to drought in cassava: review

    OpenAIRE

    Okogbenin, Emmanuel; SETTER, TIM L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2013-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative...

  16. Cassava starch in the Brazilian food industry

    OpenAIRE

    Ivo Mottin Demiate; Valesca Kotovicz

    2011-01-01

    Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results ...

  17. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  18. Isolation of Endophyte and Screening for Antagonistic Bacteria in Solanaceae%茄类内生菌的分离及拮抗细菌的筛选

    Institute of Scientific and Technical Information of China (English)

    刘杰凤; 韩寒冰; 张进凤; 罗添喜; 詹加钦

    2009-01-01

    [Objective] The aim of this study was to isolate the endophyte of three solanaceae fruits and vegetables such as tomato, pepper and eggplant, to screen and identify the bacterial wilt antagonistic bacteria. [Method] According to the lapping liquid culture method, the endophyte of three plants was isolated by the selective medium and purified by the plate streaking method, so the purified endophyte was screened by the hyphal pieces confront culture method. Furthermore, the screened antagonistic and endophyteic bacteria was identified and classified through culture characteristics of isolates and morphological features of thallus, Gram stain as well as physiological and biochemical reactions. [Result] Fifty-three endophytic bacteria, fifty-three endophytic fungi and forty-four endophytic actinomycetes were separated from the endophyte of three plants. The screened fourteen endophytic bacteria with strong antagonistic effect on the bacterial wilt were classified to Bacillus, Escherichia, Klebsiella, Agromonas, Erwinia and Curto Bacterium respectively. Especially, Bacillus was the dominant species, which had the strongest antagonistic effect on the bacterial wilt. [Conclusion] This study provides an effective way for biological control of the bacterial wilt in solanaceae.

  19. Exploiting the Combination of Natural and Genetically Engineered Resistance to Cassava Mosaic and Cassava Brown Streak Viruses Impacting Cassava Production in Africa

    OpenAIRE

    Hervé Vanderschuren; Isabel Moreno; Anjanappa, Ravi B.; Ima M Zainuddin; Wilhelm Gruissem

    2012-01-01

    Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV...

  20. Cassava is not a goitrogen in mice

    International Nuclear Information System (INIS)

    To examine the effect of cassava on the thyroid function of mice, the authors fed fresh cassava root to mice and compared this diet with low iodine diet and Purina. Cassava provided a low iodine intake and increased urine thiocyanate excretion and serum thiocyanate levels. Mice on cassava lost weight. The thyroid glands of mice on cassava were not enlarged, even when normalized for body weight. The 4- and 24-hr thyroid uptakes of mice on cassava were similar to those of mice on low iodine diets. Protein-bound [125I]iodine at 24 hr was high in mice on either the cassava or low iodine diets. The thyroid iodide trap (T/M) was similar in mice on cassava and low iodine diets. When thiocyanate was added in vitro to the incubation medium, T/M was reduced in all groups of mice; under these conditions, thiocyanate caused a dose-related inhibition of T/M. The serum thyroxine (T4) and triiodothyronine (T3) concentrations of mice on cassava were reduced compared with mice on Purina diet. Thyroid T4 and T3 contents of mice on cassava were relatively low compared with mice on Purina diet. Hepatic T3 content and T4 5'-monodeiodination in liver homogenates were reduced in mice on cassava compared with other groups. The data show that cassava does not cause goiter in mice. The thiocyanate formed from ingestation of cassava is insufficient to inhibit thyroid iodide transport or organification of iodide. The cassava diet leads to rapid turnover of hormonal iodine because it is a low iodine diet. It also impairs 5'-monodeiodination of T4 which may be related to nutritional deficiency. These data in mice do not support the concept that cassava per se has goitrogenic action in man

  1. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    OpenAIRE

    S. Rylo Sona Janarthine; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9  μ m wide by 1.7–2.0  μ m long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic ...

  2. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species

    Directory of Open Access Journals (Sweden)

    Subhash J Bhore

    2013-01-01

    Full Text Available Background: Resins and gums are used in traditional medicine and do have potential applications in pharmacy and medicine. Agarwood is the fragrant resinous wood, which is an important commodity from Aquilaria species and has been used as a sedative, analgesic, and digestive in traditional medicine. Endophytic bacteria are potentially important in producing pharmaceutical compounds found in the plants. Hence, it was important to understand which types of endophytic bacteria are associated with pharmaceutical agarwood-producing Aquilaria species. Objective: This study was undertaken to isolate and identify endophytic bacteria associated with agarwood-producing seven (7 Aquilaria species from Malaysia. Materials and Methods: Botanical samples of seven Aquilaria species were collected, and endophytic bacteria were isolated from surface-sterilized-tissue samples. The 16S rRNA gene fragments were amplified using PCR method, and endophytic bacterial isolates (EBIs were identified based on 16S rRNA gene sequence similarity based method. Results: Culturable, 77 EBIs were analyzed, and results of 16S rRNA gene sequences analysis suggest that 18 different types of endophytic bacteria are associated with (seven Aquilaria species. From 77 EBIs, majority (36.4% of the isolates were of Bacillus pumilus. Conclusion: These findings indicate that agarwood-producing Aquilaria species are harboring 18 different types of culturable endophytic bacteria.

  3. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  4. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  5. A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films

    Science.gov (United States)

    Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.

    Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.

  6. Sensorial evolution of cassava flour (Manihot esculenta crantz) added to protein concentrate cassava leaves.

    Science.gov (United States)

    Lima, Elaine C S; Feijo, Márcia B S; Freitas, Maria C J; Dos Santos, Edna R; Sabaa-Srur, Armando U O; Moura, Luciana S M

    2013-09-01

    Cassava is regarded as the nutritional base of populations in developing countries, and flour, product made of cassava, is the most consumed in the world. The cassava leaves are very rich in vegetable proteins, but a big amount is lost in processing the crop. The objective of this study was to do a sensory evaluation of cassava flour to which a protein concentrate obtained from cassava leaves (CPML) was added. The CPML was obtained from cassava leaves by isoelectric precipitation and added to cassava paste for preparation of flour in three parts 2.5, 5, and 10%. The acceptance test was done by 93 consumers of flour, using hedonic scale of 7 points to evaluate characteristics like color, scent, flavor, bitterness, texture, and overall score. By the method of quantitative descriptive analysis (QDA), eight trained tasters evaluated the following characteristics: whitish color, greenish color, cassava flavor, bitter flavor, characteristic flavor, lumpiness, raw texture, leaf scent, and cassava scent. The acceptability test indicated that flour cassava with 2.5 was preferred. Whitish color, greenish color, cassava flavor, bitter flavor, salty flavor, characteristic flavor, lumpiness texture, raw texture, and the smell of the leaves and cassava flour were the main descriptors defined for flour cassava with CPML has better characteristics. PMID:24804041

  7. Commercial Dynamics in Zambia’s Cassava Value Chain

    OpenAIRE

    Haggblade, Steven; Nyembe, Misheck

    2008-01-01

    Cassava production has grown rapidly in Zambia since the early 1990’s. Available evidence suggests that volumes of traded cassava have been increasing roughly twice as fast as production. Yet this cassava production boom could stall unless commercial markets for it develop. To help accelerate commercial development of cassava and cassava-based products at the national level, Zambia’s Agricultural Consultative Forum (ACF) initiated an Acceleration of Cassava Utilization (ACU) Task Force, begin...

  8. Solid Substrate Fermentation of Cassava Peel for Poultry Feed Ingredient

    OpenAIRE

    Stephanie; Purwadaria T

    2013-01-01

    Cassava peel which is not used during cassava starch extraction is one of potential resources for animal feed. However, cassava peel has low level protein content, high level crude fiber, and high level of toxic cyanogenic compound. These problems limit the utilization of cassava peel as feed. Solid substrate fermentation using mold may be a solution process to increase its nutritional value and decrease toxic level of cassava peel. In this paper, matters that related with cassava peel fermen...

  9. Cassava virus diseases: biology, epidemiology, and management.

    Science.gov (United States)

    Legg, James P; Lava Kumar, P; Makeshkumar, T; Tripathi, Leena; Ferguson, Morag; Kanju, Edward; Ntawuruhunga, Pheneas; Cuellar, Wilmer

    2015-01-01

    Cassava (Manihot esculenta Crantz.) is the most important vegetatively propagated food staple in Africa and a prominent industrial crop in Latin America and Asia. Its vegetative propagation through stem cuttings has many advantages, but deleteriously it means that pathogens are passed from one generation to the next and can easily accumulate, threatening cassava production. Cassava-growing continents are characterized by specific suites of viruses that affect cassava and pose particular threats. Of major concern, causing large and increasing economic impact in Africa and Asia are the cassava mosaic geminiviruses that cause cassava mosaic disease in Africa and Asia and cassava brown streak viruses causing cassava brown streak disease in Africa. Latin America, the center of origin and domestication of the crop, hosts a diverse set of virus species, of which the most economically important give rise to cassava frog skin disease syndrome. Here, we review current knowledge on the biology, epidemiology, and control of the most economically important groups of viruses in relation to both farming and cultural practices. Components of virus control strategies examined include: diagnostics and surveillance, prevention and control of infection using phytosanitation, and control of disease through the breeding and promotion of varieties that inhibit virus replication and/or movement. We highlight areas that need further research attention and conclude by examining the likely future global outlook for virus disease management in cassava. PMID:25591878

  10. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems. PMID:25110630

  11. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  12. Genetic modification of cassava enhances starch production

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Recently, a field test of transgenic cassava (Manihot esculenta Crantz) for enhanced starch production by the Shanghai Institute of Plant Physiology & Ecology (SIPPE), the CAS Shanghai Institutes for Biological Sciences, proved successful. Through application of transgenic technologies in cassava, the starch quality of this tropical root crop was largely improved. The new cassava cultivars are believed to have a tremendous potential for industrial application in the future.

  13. Cassava and corn starch in maltodextrin production

    OpenAIRE

    Geovana Rocha Plácido Moore; Luciana Rodrigues do Canto; Edna Regina Amante; Valdir Soldi

    2005-01-01

    Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE). DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC), and the analysis showed that maltodextrin production differs accordin...

  14. Grass fungal endophytes and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  15. Isolation of 12 Bacterial endophytes from some mangrove plants and determination of, antimicrobial properties of the isolates and the plant extracts

    OpenAIRE

    Ibrahim M.S Eldeen

    2014-01-01

    The mangrove designates a highly productive ecosystem with important economic and environmental functions. Endophytes are microorganisms that live in the intercellular spaces of plant tissue. This study aimed to isolate and identify bacterial endophytes from five mangrove plants and to determine, antimicrobial properties of the isolates and the plant extracts against four pathogenic bacteria: Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium using the deferr...

  16. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation.

    Science.gov (United States)

    Ramos, Cíntia L; de Sousa, Edinaira S O; Ribeiro, Jessimara; Almeida, Tayanny M M; Santos, Claudia Cristina A do A; Abegg, Maxwel A; Schwan, Rosane F

    2015-08-01

    The aim of this work was to identify and characterize the microbiota present during fermentation and in the final beverage, tarubá, by culture-dependent and -independent methods. In addition, target chemical compounds (carbohydrates, organic acids, and ethanol) were evaluated. Lactic acid bacteria (LAB) and mesophilic bacteria were the predominant microorganisms. Among them, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides, and Bacillus subtilis were frequently isolated and detected by DGGE analysis. Torulaspora delbrueckii was the dominant yeast species. Yeast isolates Pichia exigua, Candida rugosa, T. delbrueckii, Candida tropicalis, Pichia kudriavzevii, Wickerhamomyces anomalus, and Candida ethanolica and bacteria isolates Lb. plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus sp., and Chitinophaga terrae showed amylolytic activity. Only isolates of P. exigua and T. delbrueckii and all species of the genus Bacillus identified in this work exhibited proteolytic activity. All microbial isolates grew at 38 °C, and only the isolates belonging to Hanseniaspora uvarum species did not grow at 42 °C. These characteristics are important for further development of starter cultures; isolates of T. delbrueckii, P. exigua, and Bacillus species identified in this work displayed all of these properties and are potential strains for use as starter culture in cassava fermented food. PMID:25846929

  17. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    Directory of Open Access Journals (Sweden)

    Sujatha Kandasamy

    2015-09-01

    Full Text Available Ten bacterial strains that utilize cyanide (CN as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM and glucose (0.2% w/v. The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  18. Bemisia tabaci (Homoptera: Aleyrodidae) and Indian cassava mosaic virus transmission

    Science.gov (United States)

    Bemisia tabaci (Gennadius) adults from colonies reared on cassava or sweet potato plants were studied to determine their ability to transmit Indian cassava mosaic virus (ICMV) (Geminiviridae: Begomovirus) from cassava to cassava. Virus acquisition access (feeding) periods (AAP) of 48 h on ICMV-infec...

  19. Strategies for developing the cassava industry

    International Nuclear Information System (INIS)

    The centralization of the cassava industry in tropical (and especially African) countries should be considered as a very important part of general strategy directed to the provision of the population with nutritionally balanced cassava foods. The Irish model of the development of dairy industry during the last 45 years had been a classical example of small involved groups in dairy farming getting together to pool their resources and family requirements to make a common objective succeed. This model based on a co-operative concept could be recommended for the cassava producing areas in order to improve this industry. The identification of the research areas required to improve the quality of the cassava fermented food products is another important part of the cassava strategy. These areas should include (i) fundamental studies of the various bacterial groups involved in the fermentation process and identification of the key groups involved at the various stages of fermentation (ii) strain screening programmes of these identified bacteria to select those which are most important to the fermentation of cassava (iii) studies to determine the appropriate methods for the propagation and the storage of these strains and (iv) systems to distribute these strains to the industries/small farmers/local co-operatives in cassava processing. Other technological and research aspects of improvement of the traditional fermentation practice of cassava are discussed in the paper. (author)

  20. Cassava Mutation Breeding: Current Status and Trends

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta Crantz) is an important energy source in the diets of millions of people in the tropical and subtropical regions of the world, especially the poor. Also its industrial uses are steadily growing for starch, animal feed and bio-ethanol. Although it has high economic and social relevance, few major scientific efforts have been made to improve the crop until the 1970s. With the goals and objectives of cassava improvement through breeding, different strategies have been developed during the last several decades, such as evaluation and selection of the local landraces, introduced germplasm (as clones or segregating F1 population), hybridization (including inbreeding by both recurrent back-cross schemes and double haploids (DH)), interspecific hybridization, polyploidy breeding, genetic transformation, use of molecular markers and mutation breeding. Induced mutation breeding on cassava has been explored in the last several decades with few published papers. Yet, the production of novel genotypes, such as high amylose and small granule mutants and mutants with tolerance to post harvest physiological deterioration (PPD), has been reported. These results suggest that mutagenesis could be an effective alternative for cassava breeding. However, many drawbacks still exist in cassava mutation breeding, such as the occurrence of chimeras. Validated and developing protocols for different biotechnologies, such as TILLING protocol, cassava genome sequencing and cassava somatic embryogenesis, will significantly ameliorate the drawbacks to traditional mutation breeding, and consequently aid the routine application of induced mutation in both cassava improvement and in gene discovery and elucidation. (author)

  1. Isolation of bacterial endophytes from germinated maize kernels.

    Science.gov (United States)

    Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja

    2007-06-01

    The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro. PMID:17668041

  2. Fermented cassava waste and its utilization in broiler chickens rations

    OpenAIRE

    Supriyati,

    2003-01-01

    Cassava waste is a by-product of cassava flour industry and its amount is increasing following the increasing of cassava flour industry. Its utilization as a feedstuff, is limited by its low protein content. The cassava waste is only utilized as the energy source. One of the alternative technology in improving the utilization of cassava waste as a feedstuff, by improving the nutritive value through fermentation process. Fermentation was carried out by solid substrate fermentation using Asperg...

  3. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  4. Solid Substrate Fermentation of Cassava Peel for Poultry Feed Ingredient

    Directory of Open Access Journals (Sweden)

    Stephanie

    2013-03-01

    Full Text Available Cassava peel which is not used during cassava starch extraction is one of potential resources for animal feed. However, cassava peel has low level protein content, high level crude fiber, and high level of toxic cyanogenic compound. These problems limit the utilization of cassava peel as feed. Solid substrate fermentation using mold may be a solution process to increase its nutritional value and decrease toxic level of cassava peel. In this paper, matters that related with cassava peel fermentation process are subsequently described, namely: (i problems of cassava peel; (ii biodegradation and detoxification process; (iii solid state fermentation methods on cassava peel; (iv nutritional quality of fermented cassava peel; and (v application of fermented cassava peel in poultry feed. The fermented cassava peel application is compared with those of cassava root and waste (onggok. Addition of nitrogen inorganic in the fermentation process increases the mold growth and protein content of the product, while fiber and cyanogenic contents are decreased due to mold degradation activity. The fermentation process may be carried out using only the cassava peel as the substrate or mixed with wheat flour, using indigenous microbes, Aspergillus niger or a white rot fungus, Panus tigrinus as inoculum. As well as fermented cassava root and waste, fermented cassava peel can be used to substitute maize as poultry feed, although it is reported that the optimum substitution in broiler ration is only 10%.

  5. Cassava; African perspective on space agriculture

    Science.gov (United States)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  6. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity. PMID:26147743

  7. Cassava based diets for sustainable ruminant production

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta, Crantz) is an annual crop grown widely in the tropical regions of Africa, Asia and Latin America. It thrives in sandy-loam soils with low organic matter and in climate with low rainfall and high temperature. Cassava could also response more with manure fertilization. Cassava tubers contain high levels of energy and minimal levels of crude protein, have been used as readily fermentable energy in ruminant rations, and have been used extensively as a feed for livestock. Recent attempts have been made to develop new products using cassava chips as an energy source with urea as non-protein nitrogen (NPN). Two new cassava based products have been developed: cassarea and cassaya. Cassarea was formulated to contain the following ingredients: 57.1% Cassava chips + 9.9% urea and 3% tallow (Cassarea I, 30% CP); 83.6% Cassava chips + 13.4% urea and 3% tallow (Cassarea II, 40% CP); 80.2% Cassava chips + 16.8% urea and 3% tallow (Cassarea III, 50% CP). Cassarea was tested for rumen degradability using the nylon bag technique and was found to have a 46.2 to 56.7% effective DM degradability. Further investigations with Cassarea II (40% CP) showed that it could be used to replace SBM in the rations of lactating cows, but supplementation with a rumen by-pass protein such as cottonseed meal would be recommended. Cassaya (30% CP) is a product formulated using chopped whole cassava crop hay (85%) + soybean meal (5%) + cassava chips (5%) + urea (2%) + tallow (2%) + sulphur (1%), mixing with water, pressed through a pelleting machine and sun-dried to at least 85% DM. The use of Cassaya in lactating dairy cows as a protein source proved to be efficient in promoting rumen fermentation, improved milk yield and composition and providing an increased economical return. Moreover, cassava hay (CH) has been applied in ruminant nutrition as a high-quality protein supplement for dairy cattle, beef and buffalo production. CH consists of whole crop of cassava harvested at

  8. LINAMARIN: THE TOXIC COMPOUND OF CASSAVA

    Directory of Open Access Journals (Sweden)

    M. P. CEREDA

    1996-01-01

    Full Text Available Cassava is a widely grown root crop which accumulates two cyanogenic glucosides, linamarin and lotaustralin. Linamarin accounts for more than 80% of the cassava cyanogenic glucosides. It is a ß-glucoside of acetone cyanohydrin and ethyl-methyl-ketone-cyanohydrin. Linamarin ß-linkage can only be broken under high pressure, high temperature and use of mineral acids, while its enzymatic break occurs easily. Linamarase, an endogenous cassava enzyme, can break this ß-linkage. The enzymatic reaction occurs under optimum conditions at 25ºC, at pH 5.5 to 6.0. Linamarin is present in all parts of the cassava plant, being more concentrated on the root and leaves. If the enzyme and substrate are joined, a good detoxification can occur. All the cassava plant species are known to contain cyanide. Toxicity caused by free cyanide (CN¯ has already been reported, while toxicity caused by glucoside has not. The lethal dose of CN¯ is 1 mg/kg of live weight; hence, cassava root classification into toxic and non-toxic depending on the amount of cyanide in the root. Should the cyanide content be high enough to exceed such a dose, the root is regarded as toxic. Values from 15 to 400 ppm (mg CN¯/kg of fresh weight of hydrocyanic acid in cassava roots have been mentioned in the literature. However, more frequent values in the interval 30 to 150 ppm have been observed. Processed cassava food consumed in Brazil is safe in regard to cyanide toxicity.

  9. Habitat filters in fungal endophyte community assembly

    Science.gov (United States)

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  10. Electrical and absorption properties of fresh cassava tubers and cassava starch

    International Nuclear Information System (INIS)

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences

  11. The BioCassava Plus program: Biofortification of cassava for sub-Saharan Africa

    Science.gov (United States)

    More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10-20% of that for iron, zinc, and vitamin A. The BioCassav...

  12. Electrical and absorption properties of fresh cassava tubers and cassava starch

    Science.gov (United States)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  13. Consumer preferences for table cassava characteristics in Pernambuco, Brazil

    OpenAIRE

    Gonzalez, Carolina; Johnson, Nancy L.

    2009-01-01

    Cassava is a major source of carbohydrate for populations in the tropics; however, there is little information about the preferences of consumers toward the quality characteristics of this crop. This paper analyzes the demand for different cassava attributes, and applies the hedonic price method to estimate the values that consumers give to implicit attributes of cassava. The results show that ease of peeling, time of cooking and texture of cassava are the most important characteristics consu...

  14. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  15. Effects of disease control and growth promotion of Polygonum viviparum endophytic bacteria Bacillus mojavensis on potato%珠芽蓼内生菌 ZA1对马铃薯的防病促生研究

    Institute of Scientific and Technical Information of China (English)

    畅涛; 杨成德; 薛莉; 杨小利; 冯中红; 郝蓉蓉; 张振粉; 陈秀蓉

    2015-01-01

    This research was to study the effects of disease prevention,growth promotion and defense enzymes induction of Bacillus mojavensis ZA1 on potato,and provide a theoretical basis for microbial fungicide and fer-tilizer use.The abilities of IAA secretion,nitrogen fixation,phosphate solubilization and inhibition enzyme production of ZA1 have been researched qualitatively by general methods.The effects of controlling disease and growth promotion of ZA1 on potatoes were studied under the condition of indoors and fields.The concentration of IAA secreted by ZA1 in the King medium with and without tryptophan were 12.17 and 9.75 mg/L.ZA1 possessed the capacity of nitrogen fixation and extracellular proteases,chitinase and glucanase production,butwithout the ability of phosphate solubilization.The control efficiency of ZA1 was 85.9% by spraying 10 times diluting fermentation broth on potato tubes in storage-period against potato gangrene,and was 26.56% by seed dressing fermentation broth with diluting for 20 times on potato tubes under field condition against potato late blight.In field condition,the production ratios of commodity potato were increased by 36.29% and 33.88%per hectare,respectively.Pot experiments with the seed dressing potatoes showed that the content of roots, stems and chlorophyll were higher than the control group.After treatment by ZA1 20 times fermentation broth on potato tubes,the length of the root and wet and dry weight were increased by 8 cm,0.75 g and 5.07 g,re-spectively.In the same time,the plant height,stem diameter,stem wet and dry weight and the content of chlorophyll were increased by 2.74 cm,0.27 cm,0.52 g,5.73 g and 0.54 mg/g,respectively.The root-shoot ratios of wet and dry weight were increased by 0.214 and 0.094,respectively.When spraying diluting fermen-tation broth of ZA1 on potato leaves,the results indicated that the activity of catalase (CAT),polyphenol oxi-dase (PPO),phenylalanine ammonialyase (PAL),SOD and POD of potatoes were

  16. Bacillus coagulans

    Science.gov (United States)

    ... and, as a result, is often misclassified as lactic acid bacteria such as lactobacillus. In fact, some commercial products ... sporogenes or "spore-forming lactic acid bacterium." Unlike lactic acid bacteria such as lactobacillus or bifidobacteria, Bacillus coagulans forms ...

  17. Phenotypic approaches to drought in cassava: review.

    Science.gov (United States)

    Okogbenin, Emmanuel; Setter, Tim L; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2013-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12-18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  18. Phenotypic Approaches to Drought in Cassava: Review

    Directory of Open Access Journals (Sweden)

    Emmanuel eOkogbenin

    2013-05-01

    Full Text Available Cassava is an important crop in Africa, Asia, Latin America and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12 - 18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance

  19. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production. PMID:26925623

  20. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    Directory of Open Access Journals (Sweden)

    Alyssa Ann Carrell

    2015-09-01

    Full Text Available The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines, or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (Sequoia sempervirens populations and one giant sequoia (Sequoiadendron giganteum population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major OTUs occurred at a high relative abundance of 10-40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the coast redwood and giant sequoia foliage (e.g. Bacillus, Burkholderia, Actinomycetes are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria isolated from lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the coast redwood samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra

  1. Sequences enhancing cassava mosaic disease symptoms occur in the cassava genome and are associated with South African cassava mosaic virus infection.

    Science.gov (United States)

    Maredza, A T; Allie, F; Plata, G; Rey, M E C

    2016-06-01

    Cassava is an important food security crop in Sub-Saharan Africa. Two episomal begomovirus-associated sequences, named Sequences Enhancing Geminivirus Symptoms (SEGS1 and SEGS2), were identified in field cassava affected by the devastating cassava mosaic disease (CMD). The sequences reportedly exacerbated CMD symptoms in the tolerant cassava landrace TME3, and the model plants Arabidopsis thaliana and Nicotiana benthamiana, when biolistically co-inoculated with African cassava mosaic virus-Cameroon (ACMV-CM) or East African cassava mosaic virus-UG2 (EACMV-UG2). Following the identification of small SEGS fragments in the cassava EST database, the intention of this study was to confirm their presence in the genome, and investigate a possible role for these sequences in CMD. We report that multiple copies of varying lengths of both SEGS1 and SEGS2 are widely distributed in the sequenced cassava genome and are present in several other cassava accessions screened by PCR. The endogenous SEGS1 and SEGS2 are in close proximity or overlapping with cassava genes, suggesting a possible role in regulation of specific biological processes. We confirm the expression of SEGS in planta using EST data and RT-PCR. The sequence features of endogenous SEGS (iSEGS) are unique but resemble non-autonomous transposable elements (TEs) such as MITEs and helitrons. Furthermore, many SEGS-associated genes, some involved in virus-host interactions, are differentially expressed in susceptible (T200) and tolerant TME3) cassava landraces infected by South African cassava mosaic virus (SACMV) of susceptible (T200) and tolerant (TME3) cassava landraces. Abundant SEGS-derived small RNAs were also present in mock-inoculated and SACMV-infected T200 and TME3 leaves. Given the known role of TEs and associated genes in gene regulation and plant immune responses, our observations are consistent with a role of these DNA elements in the host's regulatory response to geminiviruses. PMID:25920485

  2. Improvement of cassava for resistance to insect pests and diseases

    International Nuclear Information System (INIS)

    The African cassava mosaic virus and cassava mealybug are devastating the cassava crop in Uganda. Because of the severe widespread occurrence of the virus and mealybug, in vitro cultured cassava plantlets instead of stem cuttings will be irradiated. In addition, the project has incorporated sweet potato. Installation of tissue culture laboratory at Namulonge was completed in early 1993. Work is in progress to establish efficient in vitro culture micropropagation techniques for the two crops. Small numbers of cassava plantlets of varieties 'TMS 30337' and 'TMS 4(2)1425' and sweet potato entry 30 are in vitro culture. Mass irradiation of plantlets is planned in future. (author). 4 refs

  3. Study of Products Distilled Spirits with Cassava Dregs

    Institute of Scientific and Technical Information of China (English)

    WANG le; WANG Jun-gao; LIU Wen-long

    2009-01-01

    In this paper, Cassava dregs are an outgrowth produced during starchy production which uses cassava as raw material. It is usually dropped out or used as cheap feedstuff. In order to make the best use of cassava dregs, increase industries' benefits and reduce castoff this study developed a new technique which used cassava dregs as raw material to produce distilled spirits based on cassava dregs characteristics. The technique adopt solid-ferment procedure. At first, the ferment is processed by solid-state distilling, and then rectification extra care refinement: at last the tequila was produced with characteristics of simple and elegant fragrance and mellow-tasting.

  4. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves.

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  5. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  6. Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials

    Directory of Open Access Journals (Sweden)

    Kumanand Tayung

    2012-10-01

    Full Text Available The aim of this work was to study the endophytic fungi associated with the tissues of Ipomoea carnea, a common invasive plant of India. A total of 69 isolates belonging to ten taxa comprising 1.45% Zygomycetes, 10.14% Coelomycetes, 62.32% Hypomycetes, 18.84% sterile mycelia and 7.25% unidentified species were obtained. Species of Curvularia, Aspergillus, Fusarium, Colletotrichum and sterile fungus were isolated as dominant endophytes. Colonization frequency of Curvularia (7.25% was highest which was isolated from all the tissues. The samples collected during the monsoon harbored more endophytes and showed higher species richness than the samples obtained in summer season. Of the total isolates, 15 isolates (21.74% displayed antimicrobial activity, inhibiting at least one of the test microorganisms that comprised of pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Pseudomonas fluorescens, Shigella dysentriae and fungi (Trichophyton rubrum, Aspergillus fumigatus, Trichophyton sp. The results provided promising baseline information on the endophytic fungal diversity associated with I. carnea tissues and their potential exploitation as antimicrobial agents.

  7. Antifungal and antibacterial activity of endophytic penicillium species isolated from salvadora species

    International Nuclear Information System (INIS)

    Salvadora persica and S. S.oleoides are facultative holophytic plants, well known as miswak, are traditionally used to ensure oral hygiene among Muslim people in Asian and African counties. Species of Salvadora have a number of proven pharmacological importance. Besides, terrestrial fungi endophytic fungi are also gaining importance for the isolation of bioactive compounds. In this study 74 samples (root, shoot and leaves) from S. persica and S. oleoides were examined for endophytic fungi, 22 samples showed presence of Penicillium spp., 48 were found positive for aspergilli, whereas 10 samples showed infection of Fusarium solani, 4 were found infected with Macrophomina phaseolina and one with Rhizoctonia solani. Most of the Penicillium isolated were identified as P. restrictum, P. citrinum and P. canescens. In dual culture plate assay out of four Penicillium isolates tested, P. citrinum and one isolate of P. restrictum caused growth inhibition of all four test root rotting fungi, Fusarium solani, F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani. Culture filtrates of Penicillium spp., were also evaluated against four common laboratory bacteria namely Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli and above mentioned root rotting fungi. Culture filtrates of endophytic Penicillium spp., also showed significant antibacterial and antifungal activity. Secondary metabolites of endophytic Penicillium spp., offer an exciting area of research for the discovery of novel antimicrobial compounds. (author)

  8. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.

    Science.gov (United States)

    Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

    2013-01-01

    Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes. PMID:22956211

  9. [Screening probiotic endophytic bacteria from medicinal plant flex cornuta and the phytopathogen-inhibiting effect].

    Science.gov (United States)

    Zhao, Long-fei; Xu, Ya-jun; Lai, Xin-he; Kou, Tian-chao; Yan, Jun-li; Zhou, Pei-pei; Fan, Shan-shan; Yan, Yong-feng

    2015-05-01

    Culturable endophytic bacteria were isolated from medicinal plant Ilex cornuta by plate-spreading method, strains with strong inhibitory effect on phytopathogen were screened by confrontation culture and fermentation filtrate culture methods, and the morphological changes of phytopathogen hyphae treated with endophytic bacteria were examined by microscopy and micrograph. Their phylogenetic relationships were determined by homology analysis of the 16S rDNA sequences of PCR products and the taxonomic status of the selected strains was determined based on their morphology, physiology, biochemical test results and 16S rDNA sequence analysis. A total of 85 endophytic bacteria were isolated from the healthy roots, stems, leaves and fruits of I. cornuta, and 10 strains of them showed strong inhibitory effect on Alternaria alternata, Magnaporthe grisea, Fusarium oxysporum, and were preliminarily identified belonging to four genera and seven species. Three strains with the strongest inhibitory effect, GG78 (60.3%), GG31 (48.1%) and GG13 (61.0%) belonged to Enterobacter cloacae, Enterobacter ludwigii and Bacillus cereus, respectively. Microscopic analyses showed that the inhibited phytopathogen hyphae became deformed, distorted, and partially expanded forming plasma concentration and hair-like branch on the hyphae base. These morphological changes could be caused by the extracellular metabolic substances secreted by the endophytic bacteria, such as antibiotics, hydrolytic enzymes, alkaloids and so on. PMID:26571677

  10. MOISTURE ISOTHERMS OF CASSAVA BAGASSE COMPOSITES IMPREGNATED WITH CASSAVA STARCH ACETATE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Kátia N. MATSUI

    2009-07-01

    Full Text Available

    The industrial processing of cassava to obtain starch generates a great variety of residues, with bagasse being the main solid residue produced. The improper disposal of this material represents an environmental problem and could be avoided by using this residue as a raw material to obtain biodegradable products. The bagasse produced during the process to obtain starch from cassava was used to prepare composites for disposable trays. Samples of the composites were impregnated with cassava starch acetate at atmospheric pressure and under vacuum condition. Moisture isotherms were determined and adjusted by GAB model. It was observed that the impregnation promoted an important decrease in sample higroscopicity, mainly at high relative humidities. These results suggest that starch acetate impregnation can be an alternative to water proofing biological materials like the composites obtained in this work. KEYWORDS: Cassava; bagasse; starch acetate; impregnation; isotherms.

  11. Fungal endophyte diversity in Sarracenia

    Science.gov (United States)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  12. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  13. MOISTURE ISOTHERMS OF CASSAVA BAGASSE COMPOSITES IMPREGNATED WITH CASSAVA STARCH ACETATE SOLUTIONS

    OpenAIRE

    KáTIA N. MATSUI; FáBIO D. S. LAROTONDA; Alfredo T. N. Pires; JOãO B. LAURINDO

    2009-01-01

    The industrial processing of cassava to obtain starch generates a great variety of residues, with bagasse being the main solid residue produced. The improper disposal of this material represents an environmental problem and could be avoided by using this residue as a raw material to obtain biodegradable products. The bagasse produced during the process to obtain starch from cassava was used to prepare composites for disposable trays. Samples of the composites were imp...

  14. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.).

    Science.gov (United States)

    Glassner, Hanoch; Zchori-Fein, Einat; Compant, Stéphane; Sessitsch, Angela; Katzir, Nurit; Portnoy, Vitaly; Yaron, Sima

    2015-07-01

    Endophytes are microorganisms that mainly colonize vegetative parts, but are also found in reproductive and disseminating organs, and may have beneficial characteristics. To identify microorganisms associated with the agriculturally important family, Cucurbitaceae, endophytes were initially determined in fruits of Cucumis melo Reticulatus Group 'Dulce' by a cultivation-independent approach based on fluorescence in situ hybridization using double labeling of oligonucleotide probes. Alpha-, Beta-, Gammaproteobacteria, Firmicutes and Actinobacteria were localized inside the fruits. Culturable bacteria were further isolated and identified from fruit tissues of 'Dulce', from fruits of other cultivated and wild-field-grown Cucurbitaceae, and from wild fruits growing under natural conditions. Low densities of culturable bacteria were detected in the investigated fruits, especially in four out of the five wild species, regardless of their growing environment. Substantial differences were observed between the wild and cultivated cucurbit taxa in regard to the number of colonized fruits as well as the type of endophytes. Bacillus was the most dominant genus of endophytes colonizing fruits of Cucurbitaceae. The antagonistic effects of isolated endophytes were assessed against cucurbit disease agents in dual-culture assays. Several bacterial isolates exhibited antagonistic properties against the tested plant pathogens. The identified bacteria may be useful for protecting plants not only in the field, but also for post-harvest. PMID:26183916

  15. Study of cassava starch enzymatic modification for maltodextrins obtention

    Directory of Open Access Journals (Sweden)

    Miguel Angel Díaz

    2012-05-01

    Full Text Available It was pretended to investigate the effect of the most relevant variables in cassava starch enzymatic hydrolysis process, on laboratory scale, to determine appropriate industrial conditions for the obtention of different kinds of maltodextrins. An a-Amylase enzyme, from genetically modified strain of Bacillus lichenijormis, was used to hydrolize the starch. Once the variables were chosen, an experimental fractioned factorial design was established with two levels. The Dextrose Equivalent (DE was taken as the response variable. The variables studied were: temperature (80-90°C, pH (5.5-6.5, dry-weight starch concentration (30-40% w/w, enzyme dosage (0.583-0.833 ul/g starch and calcium concentration (50-70 mgIL of CaClJ Some assays were settle in order to define the rheologic behavior and to determine the most relevant variables that affect the functional properties of the maltodextrin suspensions. Both, temperature and enzyme concentration were the variables that affect the most the initial convertion rate and the characteristics of the product convertion. For the interval of time considered, the highest DE obtained was 30 and the highest initial rate was 21.7 DE/hour. The functional properties of the maltodextrin solutions were affected by temperature and dry-weight starch concentration.

  16. Screening of endophytic bacteria against fungal plant pathogens.

    Science.gov (United States)

    Ohike, Tatsuya; Makuni, Kohei; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    Bacterial endophytes were found from 6 plant leaves among 35 plant leaves screened. Two of the isolated bacteria showed antagonistic activity against fungal plant pathogens. An isolate named KL1 showed the clear inihibition against plant pathogens, Fusarium oxysporum and Rhizoctonia solani, on PDA as well as TSA plate. Supernatant of the bacterial culture also showed the clear inhibition against the fungal growth on the plate and the antibiotic substance was identified as iturin A by HPLC analysis. KL1 was identified as Bacillus sp. from the 16S rRNA gene analysis. Very thin hyphae of R. solani was miccroscopically observed when the fungus was co-cultivated with KL1. PMID:25078813

  17. SCREENING OF CHEMICAL COMPOSITIONS OF CRUDE WATER EXTRACT OF DIFFERENT CASSAVA VARIETIES

    OpenAIRE

    Olajumoke Oke FAYINMINNU; Olubunmi Omowunmi FADINA; Alex Adeoluwa ADEDAPO

    2013-01-01

    Chemical composition of three sources of crude cassava water extract (CCWE) was evaluated in different varieties of cassava (MS6 Manihot Selection (local variety), TMS 30555 Tropical Manihot Selection (Improved variety) and Bulk (crude cassava water from cassava processing site). Crude cassava water extract from the pulp of cassava fresh roots was prepared and the chemical composition was determined in the analytical laboratory. The result of the analysis showed that, hydrocyanic acid (HCN) ...

  18. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding

    Science.gov (United States)

    Cassava mosaic disease (CMD), caused by different species of cassava mosaic geminiviruses (CMGs), is the most important disease of cassava in Africa and the Indian sub-continent. The cultivated cassava species is protected from CMD by polygenic resistance introgressed from the wild species Manihot g...

  19. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    Science.gov (United States)

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots. PMID:27095454

  20. The Cassava Genome: Current Progress, Future Directions.

    Science.gov (United States)

    Prochnik, Simon; Marri, Pradeep Reddy; Desany, Brian; Rabinowicz, Pablo D; Kodira, Chinnappa; Mohiuddin, Mohammed; Rodriguez, Fausto; Fauquet, Claude; Tohme, Joseph; Harkins, Timothy; Rokhsar, Daniel S; Rounsley, Steve

    2012-03-01

    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance. PMID:22523606

  1. The Post-Genomic Era of Cassava

    Science.gov (United States)

    The genomics era revolutionized our efficiency at gathering and disseminating scientific information required for advancing our understanding of plant biology. In the case of cassava, the genomics revolution has not kept pace with other staple food and fiber crops important to global economies. As a...

  2. Recent advances in cassava pest management.

    Science.gov (United States)

    Bellotti, A C; Smith, L; Lapointe, S L

    1999-01-01

    Cassava (Manihot esculenta) occupies a uniquely important position as a food security crop for smallholder farmers in ares of the tropics where climate, soils, or societal stresses constrain production. Given its reliability and productivity, cassava is the most important locally produced food in a third of the world's low-income, food-deficit countries. It is the fourth most important source of carbohydrates for human consumption in the tropics, after rice, sugar, and maize. World production of cassava from 1994-1996 averaged 166 million tons/year grown on 16.6 million hectares (ha), for an average yield of 9.9 tons/ha. Approximately 57% is used for human consumption, 32% for animal feed and industrial purposes, and 11% is waste. Africa accounts for 51.3% of the production; Asia, 29.4%; and Latin America, 19.3%. The area planted to cassava in Africa, Asia, and Latin America is 10.3, 3.7, and 2.6 million ha, respectively. PMID:9990720

  3. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Directory of Open Access Journals (Sweden)

    Xuejian eYu

    2015-08-01

    Full Text Available The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3 % and Erwinia (7.2 % dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages.

  4. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    Science.gov (United States)

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-01-01

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants. PMID:26345903

  5. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  6. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene.

    Science.gov (United States)

    Coêlho, Mariza M; Ferreira-Nozawa, Monica S; Nozawa, Sérgio R; Santos, André L W

    2011-10-01

    Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species. PMID:22215973

  7. Economic Analysis of Cassava Production in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    I.U. Odoemenem

    2011-09-01

    Full Text Available The study was undertaken to analyze the economics of cassava production in Benue State. Data for this study were collected from a sample of one hundred and sixteen small-scale cassava farmers randomly selected. The objectives of the study were to determine and rank the cost elements of cassava production in the study area; determine the returns to cassava production; and evaluate the profitability of cassava production in the study area. Socio-economic factors include age, educational background, marital status, sex, sources of labour, awareness of extension services, method of weed control, and method of farm land acquisition were identified. Data collected for the study were analyzed using descriptive and inferential statistics. The coefficient of determination (R2 is 0.616, suggesting that the used model has a high goodness of fit. Furthermore, the result of the statistical analysis shows that investing in cassava production enterprise is profitable.

  8. Public attitudes towards genetically modified provitamin A Cassava in Brazil

    OpenAIRE

    Gonzalez Rojas, María Carolina

    2010-01-01

    Cassava is a basic staple food crop with worldwide distribution, mainly in developing countries. A fundamental source of energy for the poor, cassava grows well on marginal soils and resists pests and drought. In Latin America, Brazil is the largest cassava producer and consumer. The crop is especially important in the northeastern (NE) part of the country, where poverty and malnutrition rates are higher than in the rest of the country. However, despite the crop?s dietary importance, relative...

  9. New challenges in the cassava transformation in Nigeria and Ghana:

    OpenAIRE

    Nweke, Felix

    2004-01-01

    "This paper describes the dramatic cassava transformation that has taken place in Nigeria and Ghana over the past 50 years. From a rural subsistence crop, cassava has become a major cash crop sold in urban markets, a source of livestock feed, industrial starch and urban convenience foods. This paper documents the key factors driving the cassava transformation in Nigeria and Ghana. Differences in timing, promotional efforts and performance provide an instructive contrast which helps to identif...

  10. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization

    OpenAIRE

    Nurhidayah Mohamed Noor; Adilah Shariff; Nurhayati Abdullah

    2012-01-01

    Production of biochar from slow pyrolysis of biomass is a promising carbon negative procedure since it removes the net carbon dioxide in the atmosphere and produce recalcitrant carbon suitable for sequestration in soil. Biochar production can vary significantly with the pyrolysis parameter. This study investigated the impact of temperature and heating rate on the yield and properties of biochar derived from cassava plantations residues which are cassava stem (CS) and cassava rhizome (CR). The...

  11. Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149

    OpenAIRE

    Nisha V. Ramadas; Sudheer Kumar Singh; Carlos Ricardo Soccol; Ashok Pandey

    2009-01-01

    The aim of this work was to study the production of polyhydroxybutyrate (PHB) using agro- industrial residues as the carbon source. Seven substrates, viz., wheat bran, potato starch, sesame oil cake, groundnut oil cake, cassava powder, jackfruit seed powder and corn flour were hydrolyzed using commercial enzymes and the hydrolyzates assessed for selecting the best substrate for PHB production. Jackfruit seed powder gave the maximum production of PHB under submerged fermentation using Bacillus...

  12. Bacillus anthracis

    OpenAIRE

    2003-01-01

    The events of 11 September 2001 and the subsequent anthrax outbreaks have shown that the West needs to be prepared for an increasing number of terrorist attacks, which may include the use of biological warfare. Bacillus anthracis has long been considered a potential biological warfare agent, and this review will discuss the history of its use as such. It will also cover the biology of this organism and the clinical features of the three disease forms that it can produce: cutaneous, gastrointe...

  13. Bacillus anthracis

    OpenAIRE

    BOSERET, GÉRALDINE; Linden, Annick; Mainil, Jacques

    2002-01-01

    The literature describes several methods for detection of Bacillus anthracis based on application of specific bacteriophages. The following methods of pahoinpitely are used to identify the causative agent of anthrax: the reaction of bacteriophage titer growth (RBTG), the reaction of phage adsorption (RPA), fagoterapii method (FTM) and fluorescentserological method (FSM). The essence of RBTG consists in the following: if there is the researchform of bacteria presents in the test material, then...

  14. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  15. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L; Polara, A; Cielo, A; Cristini, C; Grande, P; Gentile, V; Grosso, G

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  16. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  17. Comparative petiole anatomy of cassava (Manihot) species.

    Science.gov (United States)

    Graciano-Ribeiro, D; Hashimoto-Freitas, D Y; Nassar, N M A

    2016-01-01

    In this study, we describe the petiole anatomy of six wild cassava (Manihot) species, one hybrid, and two cultivars of Manihot esculenta, in order to identify their dominant anatomical patterns and relate them to possible adaptations to abiotic factors in the Cerrado biome. The median parts of several petiole samples were transversally and longitudinally sectioned and stained. The results include data for the taxonomic classification of the genus, including distinctive anatomical characteristics of hybrid varieties of cassava and wild species, such as the presence/absence of trichomes and a hypodermis, layer type and number in the cortex, number of vascular bundles, cell types in the pith, and type of organization. Morphological analysis revealed differences in length and shape of the petiole insertion. The presence of trichomes, a hypodermis, the amount and type of supporting tissue in the cortex, as well as gelatinous fibers, may be related to drought tolerance. PMID:26909917

  18. Rehydration characteristics and modeling of cassava chips

    Directory of Open Access Journals (Sweden)

    Ajala, A.S

    2015-05-01

    Full Text Available Cassava chips with dimension 4x2x0.2cm were re-hydrated in distilled water at 200C, 300C and 400C in a laboratory water bath. Kinetics of re-hydration was investigated using three different re-hydration models namely Peleg, exponential and Weibull. The pattern of water absorption was observed to be faster at the initial period of soaking. Higher temperature induces faster moisture absorption in the chips. Non linear regression analysis was used to fit in the experimental data and the coefficient of determination was found to be greater than 0.72 for all the models. The values of R2 , RMSE, MBE and reduced chi square showed that Weibull model best described the re-hydrating behaviour of the cassava chips.

  19. Studies on the cryopreservation of cassava meristems

    International Nuclear Information System (INIS)

    Efforts toward improving the efficiency of the droplet freezing method for the cryopreservation of cassava meristems were undertaken. The use of 15% DMSO as a cryoprotectant resulted in a meristem survival rate ranging from 0 to 38% following retrieval from liquid nitrogen and culturing on solid OMS medium. A method using a freezing solution consisting of OMS medium with 1 M sorbitol, 9% sucrose and 5% DMSO resulted in the highest survival rates (up to 62%)

  20. Fermented cassava waste and its utilization in broiler chickens rations

    Directory of Open Access Journals (Sweden)

    Supriyati

    2003-10-01

    Full Text Available Cassava waste is a by-product of cassava flour industry and its amount is increasing following the increasing of cassava flour industry. Its utilization as a feedstuff, is limited by its low protein content. The cassava waste is only utilized as the energy source. One of the alternative technology in improving the utilization of cassava waste as a feedstuff, by improving the nutritive value through fermentation process. Fermentation was carried out by solid substrate fermentation using Aspergillus niger as an inoculant and mixing with urea and ammonium sulphate as inorganic nitrogen sources. The nutritive value of the product was evaluated by feeding trial using 144 “Shaver Stabro” strain 3 days old chicks with 3 treatments i.e. 0 (control, 5.0 and 10.0% fermented cassava waste. The results showed that the true protein content of fermented cassava increased from 2.2 to 18.4%. The inclusion of fermented cassava waste up to 10% in chicken broiler ration for 4 weeks feeding did not affect the feed consumption, bodyweight gain, FCR, weight of liver and gibblets. All parameter results from 10% inclusion were not significantly different (P>0.05 with the control (0% inclusion.

  1. Evaluation of cryogenic procedures for cryopreservation of Cassava genotypes

    Science.gov (United States)

    Cassava (Manihot esculent Crantz) is a perennial plant widely grown in many tropical countries as one of the most important commercial crops. The global cassava production in 2009 was at 242 million tons. Because of its economic importance to a large number of developing world, the application of ad...

  2. Examining cassava's potential to enhance food security under climate change

    Science.gov (United States)

    Recent advances in the biofortification of cassava, a substantial yield gap and cassava's potential for increased productivity and its inherent potential to respond positively to globally increasing CO2 are synergistic and encouraging in an otherwise bleak global view of the future of food security ...

  3. Cassava leaves as protein source for pigs in Central Vietnam

    NARCIS (Netherlands)

    2007-01-01

    The aim of the studies described in this thesis was to evaluate the use of cassava leaves as protein sources for pigs when used at high levels in the diet, either in fresh form or with simplified methods of processing. In twenty cassava varieties taken from the upper part of the plant at the root

  4. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  5. Properties of thermoplastic starch from cassave bagasse and cassava starch and their blends with poly (lactic acid).

    Science.gov (United States)

    Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-r...

  6. Aflatoxin-producing Aspergillus spp. and aflatoxin levels in stored cassava chips as affected by processing practices

    DEFF Research Database (Denmark)

    Essono, G.; Ayodele, M.; Akoa, A.;

    2009-01-01

    Cassava chips (cassava balls, and cassava pellets) are derived cassava products traditionally produced by farmers in sub-Saharan Africa following fermentation, and drying of fresh roots of cassava, and are widely consumed in Cameroon. Once produced, this food commodity can be stored for more than...

  7. Socio-economic Analysis of Cassava Marketing in Benue State, Nigeria

    OpenAIRE

    Benjamin C. Asogwa; J. A. C. Ezihe; Ater, P.I.

    2013-01-01

    The purpose of this study is to analyze the socio-economics of cassava marketing in Benue State, Nigeria. Data were collected from randomly sampled 107 cassava marketers in Benue State, using a structured questionnaire. The study revealed that most of the cassava marketers had secondary education (72.9%). The study also revealed that marketing of cassava is mostly undertaken by females (57%). The result showed that married people (59.8%) were mostly involved in the marketing of cassava. The s...

  8. Modelling potential β-carotene intake and cyanide exposure from consumption of biofortified cassava

    OpenAIRE

    Katz, Josh M.; La Frano, Michael R.; Winter, Carl K.; Burri, Betty J

    2013-01-01

    Vitamin A (VA) deficiency causes disability and mortality. Cassava can be crossbred to improve its β-carotene (BC) content; typical white cassava contains negligible amounts of BC. However, cassava contains cyanide and its continued consumption may lead to chronic disability. Our objective was to estimate the risk–benefit of consuming BC-enhanced cassava to increase VA intake. A total of ten American women were fed white and BC-enhanced cassava. BC and cyanide data from the feeding study were...

  9. Expanding the Application of Cassava Value Chain Technologies Through UPoCA Project

    OpenAIRE

    Braima Dama James; P. Bramel; E. Witte; R. Asiedu; D. Watson; R. Okechuckwu.

    2013-01-01

    Cassava can play a key role in rural economic growth in Africa, but are we there yet? Cassava varieties with 50% more yielding potential and technologies to boost processing and marketing of cassava are available. However, the sub-sector is constrained by low productivity and marketing difficulties. In 2008, USAID and IITA initiated the project “Unleashing the Power of Cassava in Response to Food Price Crisis (UPOCA) as a multi-country and inter-institutional partnership enabling cassava sub-...

  10. CASSAVA (Manihot esculenta crantz): AN AFFORDABLE ENERGY SOURCE IN DAIRY RATIONS

    OpenAIRE

    F.R., ANJOS; L. TIVANA; J. DA CRUZ FRANCISCO; S. M. KAGANDE

    2014-01-01

    The current paper explores the evidence that exists on the potential use of cassava plant (Manihot esculenta Crantz) as an energy source for dairy cattle. Several studies have proven cassava roots, leaves and processing residues to be an important ruminant animal feed resource. Cassava root chip and meal are a potentially good rumen fermentable energy for dairy cows in the tropics. The vegetative parts of cassava are considered to be wastes since human beings grow cassava for its tubers. Feed...

  11. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach.

    Science.gov (United States)

    Xiao, Jian; Zhang, Qiang; Gao, Yu-Qi; Shi, Xin-Wei; Gao, Jin-Ming

    2014-01-01

    Seven known metabolites, dianhydro-aurasperone C (1), isoaurasperone A (2), fonsecinone A (3), asperpyrone A (4), asperazine (5), rubrofusarin B (6) and (R)-3-hydroxybutanonitrile (7), were isolated from the culture of Aspergillus sp. KJ-9, a fungal endophyte isolated from Melia azedarach and identified by spectroscopic methods. All isolates were evaluated in vitro against several phytopathogenic fungi (Gibberella saubinetti, Magnaporthe grisea, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus). Compounds 3 and 7 were active against almost all phytopathogenic fungi tested with minimum inhibitory concentration (MIC) range of 6.25-50 μM. Moreover, compound 3 was active against all pathogenic bacteria with MIC in the range of 25-100 μM. Compound 7 is a rare new natural product isolated from a natural source for the first time, and the detailed NMR data of 1 were first assigned. PMID:24708541

  12. Study on the Rheological Property of Cassava Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-03-01

    Full Text Available The main goal of this study was to use cassava starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cassava starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cassava starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within cassava starch adhesives which was pseudo-plastic fluids. Cassava starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  13. Cassava Genetic Transformation and its Application in Breeding

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Qijie Zheng; Qiuxiang Ma; Kranthi Kumar Gadidasu; Peng Zhang

    2011-01-01

    As a major source of food, cassava (Manihot esculenta Crantz) is an important root crop in the tropics and subtropics of Africa and Latin America, and serves as raw material for the production of starches and bioethanol in tropical Asia. Cassava improvement through genetic engineering not only overcomes the high heterozygosity and serious trait separation that occurs in its traditional breeding, but also quickly achieves improved target traits. Since the first report on genetic transformation in cassava in 1996, the technology has gradually matured over almost 15 years of development and has overcome cassava genotype constraints, changing from mode cultivars to farmer-preferred ones.Significant progress has been made in terms of an increased resistance to pests and diseases, biofortification, and improved starch quality,building on the fundamental knowledge and technologies related to planting, nutrition, and the processing of this important food crop that has often been neglected. Therefore, cassava has great potential in food security and bioenergy development worldwide.

  14. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  15. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  16. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.

    Science.gov (United States)

    Wicklow, Donald T; Poling, Stephen M

    2009-01-01

    Acremonium zeae produces pyrrocidines A and B, which are polyketide-amino acid-derived antibiotics, and is recognized as a seedborne protective endophyte of maize which augments host defenses against microbial pathogens causing seedling blights and stalk rots. Pyrrocidine A displayed significant in vitro activity against Aspergillus flavus and Fusarium verticillioides in assays performed using conidia as inoculum, with pyrrocidine A being more active than B. In equivalent assays performed with conidia or hyphal cells as inoculum, pyrrocidine A revealed potent activity against major stalk and ear rot pathogens of maize, including F. graminearum, Nigrospora oryzae, Stenocarpella (Diplodia) maydis, and Rhizoctonia zeae. Pyrrocidine A displayed significant activity against seed-rotting saprophytes A. flavus and Eupenicillium ochrosalmoneum, as well as seed-infecting colonists of the phylloplane Alternaria alternata, Cladosporium cladosporioides, and Curvularia lunata, which produces a damaging leaf spot disease. Protective endophytes, including mycoparasites which grow asymptomatically within healthy maize tissues, show little sensitivity to pyrrocidines. Pyrrocidine A also exhibited potent activity against Clavibacter michiganense subsp. nebraskense, causal agent of Goss's bacterial wilt of maize, and Bacillus mojaviense and Pseudomonas fluorescens, maize endophytes applied as biocontrol agents, but were ineffective against the wilt-producing bacterium Pantoea stewartii. PMID:19055442

  17. Phylogenetic Investigation of Endophytic Fusarium Strain Producing Antimicrobial Metabolite Isolated From Himalayan Yew Bark

    Directory of Open Access Journals (Sweden)

    Tayung, K.

    2011-01-01

    Full Text Available An endophytic fungus, Fusarium sp. was isolated from yew bark of eastern Himalaya. Ethyl acetate extract from its fermentation broth displayed considerable antimicrobial activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis, three Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli and Shigella flexneri and two pathogenic fungi (Candida albicans and Candida tropicalis. The metabolite showed highest inhibition zone against K. pneumoniae (27 mm and lowest against C. albicans (10 mm. Based on BLAST search analysis of ITS rDNA sequence, the fungus was identified as Fusarium solani (Mart. Sacc. Phylogenetic trees were generated by four different methods. Phylogenetic tree generated by UPGMA method was used to establish possible phylogenetic relationships of the fungus with other F. solani isolates those exist as endophytes, pathogens and saprotrophs taken from database. The generated tree showed that all F. solani strains have a common endophytic ancestry which gave rise to six clades that radiate into four evolutionary lineages. The possible phylogenetic relationships of F. solani that exist in different lifestyle have been discussed in each clade.

  18. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis

    Institute of Scientific and Technical Information of China (English)

    Jin-long CUI; Shun-xing GUO; Pei-gen XIAO

    2011-01-01

    The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents.

  19. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings.

    Science.gov (United States)

    Chimwamurombe, Percy Maruwa; Grönemeyer, Jann Lasse; Reinhold-Hurek, Barbara

    2016-06-01

    Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread. PMID:27118727

  20. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians.

    Science.gov (United States)

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Abstract Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  1. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology

    Directory of Open Access Journals (Sweden)

    Mushafau Adewale Akinsanya

    2015-12-01

    Full Text Available Next generation sequencing (NGS enables rapid analysis of the composition and diversity of microbial communities in several habitats. We applied the high throughput techniques of NGS to the metagenomics study of endophytic bacteria in Aloe vera plant, by assessing its PCR amplicon of 16S rDNA sequences (V3–V4 regions with the Illumina metagenomics technique used to generate a total of 5,199,102 reads from the samples. The analyses revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes as the predominant genera. The roots have the largest composition with 23% not present in other tissues. The stems have more of the genus—Pseudomonas and the unclassified Pseudomonadaceae. The α-diversity analysis indicated the richness and inverse Simpson diversity index of the bacterial endophyte communities for the leaf, root and stem tissues to be 2.221, 6.603 and 1.491 respectively. In a similar study on culturable endophytic bacteria in the same A. vera plants (unpublished work, the dominance of Pseudomonas and Bacillus genera was similar, with equal proportion of four species each in root, stem and leaf tissues. It is evident that NGS technology captured effectively the metagenomics of microbiota in plant tissues and this can improve our understanding of the microbial–plant host interactions.

  2. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology.

    Science.gov (United States)

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Next generation sequencing (NGS) enables rapid analysis of the composition and diversity of microbial communities in several habitats. We applied the high throughput techniques of NGS to the metagenomics study of endophytic bacteria in Aloe vera plant, by assessing its PCR amplicon of 16S rDNA sequences (V3-V4 regions) with the Illumina metagenomics technique used to generate a total of 5,199,102 reads from the samples. The analyses revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes as the predominant genera. The roots have the largest composition with 23% not present in other tissues. The stems have more of the genus-Pseudomonas and the unclassified Pseudomonadaceae. The α-diversity analysis indicated the richness and inverse Simpson diversity index of the bacterial endophyte communities for the leaf, root and stem tissues to be 2.221, 6.603 and 1.491 respectively. In a similar study on culturable endophytic bacteria in the same A. vera plants (unpublished work), the dominance of Pseudomonas and Bacillus genera was similar, with equal proportion of four species each in root, stem and leaf tissues. It is evident that NGS technology captured effectively the metagenomics of microbiota in plant tissues and this can improve our understanding of the microbial-plant host interactions. PMID:26697361

  3. Unveiling the Micronome of Cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Rogans, Sarah Jane; Rey, Chrissie

    2016-01-01

    MicroRNAs (miRNAs) are an important class of endogenous non-coding single-stranded small RNAs (21-24 nt in length), which serve as post-transcriptional negative regulators of gene expression in plants. Despite the economic importance of Manihot esculenta Crantz (cassava) only 153 putative cassava miRNAs (from multiple germplasm) are available to date in miRBase (Version 21), and identification of a number of miRNAs from the cassava EST database have been limited to comparisons with Arabidopsis. In this study, mature sequences of all known plant miRNAs were used as a query for homologous searches against cassava EST and GSS databases, and additional identification of novel and conserved miRNAs were gleaned from next generation sequencing (NGS) of two cassava landraces (T200 from southern Africa and TME3 from West Africa) at three different stages post explant transplantation and acclimatization. EST and GSS derived data revealed 259 and 32 miRNAs in cassava, and one of the miRNA families (miR2118) from previous studies has not been reported in cassava. NGS data collectively displayed expression of 289 conserved miRNAs in leaf tissue, of which 230 had not been reported previously. Of the 289 conserved miRNAs identified in T200 and TME3, 208 were isomiRs. Thirty-nine novel cassava-specific miRNAs of low abundance, belonging to 29 families, were identified. Thirty-eight (98.6%) of the putative new miRNAs identified by NGS have not been previously reported in cassava. Several miRNA targets were identified in T200 and TME3, highlighting differential temporal miRNA expression between the two cassava landraces. This study contributes to the expanding knowledge base of the micronome of this important crop. PMID:26799216

  4. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae

    Directory of Open Access Journals (Sweden)

    Irene de Araújo Barros

    2010-12-01

    Full Text Available Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2% and 346 (64.2% were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. (B. cereus, B. megaterium, B. pumilus and B. subtilis, Paenibacillus sp., Amphibacillus sp., Gracilibacillus sp., Micrococcus sp. and Stenotrophomonas spp. (S. maltophilia and S. nitroreducens. B. pumilus was the most frequently isolated bacterial species. Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana, which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  5. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    OpenAIRE

    Coêlho, Mariza M.; Ferreira-Nozawa, Monica S.; Nozawa, Sérgio R.; Santos, André L.W.

    2011-01-01

    Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic...

  6. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp. roots

    Directory of Open Access Journals (Sweden)

    Suzane A. Souza

    2013-01-01

    Full Text Available The genetic diversity of endophytic bacteria in banana 'Prata Anã' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX. Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.

  7. Identification of Cassava MicroRNAs under Abiotic Stress.

    Science.gov (United States)

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  8. Identification of Cassava MicroRNAs under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Carolina Ballén-Taborda

    2013-01-01

    Full Text Available The study of microRNAs (miRNAs in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.

  9. Vertical Differentiation of Cassava Marketing Channels in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2008-01-01

    Full Text Available Farming systems in sub-Saharan Africa are inherently risky because they are fundamentally dependent on vagaries of weather. Sub-Saharan Africa is also a region in crises; poverty, civil strife and HIV/AIDS. Attention must therefore be focused on improving the production and marketing of crops that could thrive under these circumstances. Because of its tolerance of extreme drought and low input use conditions, Cassava is perhaps the best candidate in this regard. And cassava is a basic food staple and a major source of farm income for the people of the region. Efficiency in cassava marketing is a very important determinant of both consumers' living cost and producers' income in Africa. Vertical differentiation of marketing channels improves marketing efficiency. Identified in this paper are factors that drive vertical differentiation of cassava marketing channels. The paper is based on primary data collected within the framework of the Collaborative Study of Cassava in Africa. High population density, good market access conditions, availability of mechanized cassava processing technology and cassava price information stimulate vertical differentiation of the marketing channels.

  10. Melatonin attenuates postharvest physiological deterioration of cassava storage roots.

    Science.gov (United States)

    Ma, Qiuxiang; Zhang, Ting; Zhang, Peng; Wang, Zhen-Yu

    2016-05-01

    Melatonin reportedly increases abiotic and biotic stress tolerance in plants, but information on its in vivo effects during postharvest physiological deterioration (PPD) in cassava is limited. In this study, we investigated the effect of melatonin in regulating cassava PPD. Treatment with 500 mg/L melatonin significantly delayed cassava PPD and reduced the accumulation of hydrogen peroxide (H2 O2 ) while increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), but not ascorbate peroxidase (APX). Transcript analysis further showed that expression of copper/zinc SOD (MeCu/ZnSOD), MeCAT1, glutathione peroxidase (MeGPX), peroxidase 3 (MePX3), and glutathione S-transferases (MeGST) was higher in cassava roots sliced treated with 500 mg/L melatonin than in those not exposed to exogenous melatonin. These data demonstrate that melatonin delays cassava PPD by directly or indirectly maintaining homoeostasis of cellular reactive oxygen species (ROS). We also found that accumulation of endogenous melatonin and the transcript levels of melatonin biosynthesis genes changed dynamically during the PPD process. This finding suggested that endogenous melatonin acts as a signal modulator for maintaining cassava PPD progression and that manipulation of melatonin biosynthesis genes through genetic engineering might prevent cassava root deterioration. PMID:26989849

  11. An EST resource for cassava and other species of Euphorbiaceae.

    Science.gov (United States)

    Anderson, James V; Delseny, Michel; Fregene, Martin A; Jorge, Veronique; Mba, Chikelu; Lopez, Camilo; Restrepo, Silvia; Soto, Mauricio; Piegu, Benoit; Verdier, Valerie; Cooke, Richard; Tohme, Joe; Horvath, David P

    2004-11-01

    Cassava (Manihot esculenta) is a major food staple for nearly 600 million people in Africa, Asia, and Latin America. Major losses in yield result from biotic and abiotic stresses that include diseases such as Cassava Mosaic Disease (CMD) and Cassava Bacterial Blight (CBB), drought, and acid soils. Additional losses also occur from deterioration during the post-harvest storage of roots. To help cassava breeders overcome these obstacles, the scientific community has turned to modern genomics approaches to identify key genetic characteristics associated with resistance to these yield-limiting factors. One approach for developing a genomics program requires the development of ESTs (expressed sequence tags). To date, nearly 23,000 ESTs have been developed from various cassava tissues, and genotypes. Preliminary analysis indicates existing EST resources contain at least 6000-7000 unigenes. Data presented in this report indicate that the cassava ESTs will be a valuable resource for the study of genetic diversity, stress resistance, and growth and development, not only in cassava, but also other members of the Euphorbiaceae family. PMID:15630617

  12. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  13. Genetic compatibility determines endophyte-grass combinations.

    Science.gov (United States)

    Saikkonen, Kari; Wäli, Piippa R; Helander, Marjo

    2010-01-01

    Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds) transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1) and F(2) generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1) genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2) these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars. PMID:20614034

  14. Regulation of starch synthesis in cassava

    OpenAIRE

    Baguma, Yona

    2004-01-01

    Cassava (Manihot esculenta Crantz) is a root crop, one of the world’s most important but under-exploited staple food crops and source of income. It is a high starch producer with levels between 73.7 and 84.9% of its total storage root dry weight. Increasingly, there is a need for diverse novel starches for both food and non-food applications. In response, sbeII encoding starch branching enzyme II was cloned. The relationship between spatial-temporal expression patterns of starch synthesis gen...

  15. Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor

    OpenAIRE

    A.O. Ibeje

    2013-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...

  16. Utilization of cassava waste through fermentation technology

    International Nuclear Information System (INIS)

    Over 400 isolates of molds were screened for raw starch digesting enzymes and aspergillus J8 ad Rhizopus N37 were selected for further investigations. Crude enzymes obtained from wheat bran was higher than from rice bran. Crude enzymes from Aspergillus is active at pH 4.0, whereas that from Rhizopus is active at pH 5.0. Aspergillus J8 gave higher yield of silage fermentation. Selection of yeast strain was accomplished, it was found that Saccharomyces cerevisiae SC90, the local commercial strain (non-flocculent) performed best in fermentation of cassava mash. Another strain AM12, a flocculent fusant strain derived from fusion between flocculent strain and sake brewing strain was comparable to that of commercial strain at normal temperature but performed better at higher temperature up to 40 deg C. It is unlikely that fuel alcohol produced from raw cassava will be able to compete with petroleum fuel at this moment. However, silage fermentation to increase nutritional quality of the silage through selected strains of microorganisms has a good prospect to pursue. (author)

  17. Mathematical Modelling Of Cyanide Inhibition on Cassava Wastewater Treatment

    OpenAIRE

    E. Onukwugha

    2013-01-01

    Anaerobic Baffled Reactors (ABR) is used to evaluate the extent of cyanide inhibition of cassava wastewater treatment. The reactor has aspect ratio of 4:1:1. Kinetic analyses of specific growth rate μmax and half saturation constant

  18. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    Science.gov (United States)

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications. PMID:26572335

  19. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    OpenAIRE

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, todefinedesign/retro...

  20. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    OpenAIRE

    B. Budiyono; Tutuk Djoko Kusworo

    2011-01-01

    The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environ...

  1. Local domestication of lactic acid bacteria via cassava beer fermentation

    OpenAIRE

    Colehour, Alese M.; Meadow, James F.; Liebert, Melissa A.; Tara J. Cepon-Robins; Theresa E. Gildner; Urlacher, Samuel S.; Bohannan, Brendan J.M.; Snodgrass, J. Josh; Lawrence S. Sugiyama

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chic...

  2. In vitro Micropropagation of Cassava Through Low Cost Tissue Culture

    OpenAIRE

    Kwame O. Ogero; Gitonga N. Mburugu; Maina Mwangi; Omwoyo Ombori; Michael Ngugi

    2012-01-01

    Adoption of drought-tolerant crops such as cassava can help alleviate food insecurity in sub-Saharan Africa. However, production is constrained by lack of disease-free planting materials. This can be circumvented through tissue culture but the technology is costly limiting its adoption. There is therefore, need to put in place interventions that will reduce the cost of production hence making tissue culture products affordable. In this research, a low cost protocol for cassava tissue culture ...

  3. Cassava crop improvement through in vitro mutation techniques

    International Nuclear Information System (INIS)

    Cassava is of great economic significance in Zambia due to its increasing role as a food security crop in drought prone areas of the country.Studies to improve the quality of the cassava tuber and the quality and quantity of the planting material using in vitro techniques is being conducted in several areas of Zambia. The preliminary results are encouraging from the field trials conducted so far

  4. Corrosion of Steels in Steel Reinforced Concrete in Cassava Juice

    Science.gov (United States)

    Oluwadare, G. O.; Agbaje, O.

    The corrosion of two types of construction steels, ST60Mn and RST37-2♦, in a low cyanide concentration environment (cassava juice) and embedded in concrete had been studied. The ST60 Mn was found to be more corrosion resistant in both ordinary water and the cassava juice environment. The cyanide in cassava juice does not attack the steel but it provides an environment of lower pH around the steel in the concrete which leads to breakdown of the passivating film provided by hydroxyl ions from cement. Other factors such as the curing time of the concrete also affect the corrosion rates of the steel in the concrete. The corrosion rate of the steel directly exposed to cassava juice i.e., steel not embedded in concrete is about twice that in concrete. Long exposure of concrete structure to cassava processing effluent might result in deterioration of such structures. Careful attention should therefore be paid to disposal of cassava processing effluents, especially in a country like Nigeria where such processing is now on the increase.

  5. A unigene catalogue of 5700 expressed genes in cassava.

    Science.gov (United States)

    Lopez, Camilo; Jorge, Véronique; Piégu, Benoît; Mba, Chickelu; Cortes, Diego; Restrepo, Silvia; Soto, Mauricio; Laudié, Michèle; Berger, Christel; Cooke, Richard; Delseny, Michel; Tohme, Joe; Verdier, Valérie

    2004-11-01

    Two economically important characters, starch content and cassava bacterial blight resistance, were targeted to generate a large collection of cassava ESTs. Two libraries were constructed from cassava root tissues of varieties with high and low starch contents. Other libraries were constructed from plant tissues challenged by the pathogen Xanthomonas axonopodis pv.manihotis. We report here the single pass sequencing of 11,954 cDNA clones from the 5' ends, including 111 from the 3' ends. Cluster analysis permitted the identification of a unigene set of 5,700 sequences. Sequence analyses permitted the assignment of a putative functional category for 37% of sequences whereas approximately 16% sequences did not show any significant similarity with other proteins present in the database and therefore can be considered as cassava specific genes. A group of genes belonging to a large multigene family was identified. We characterize a set of genes detected only in infected libraries putatively involved in the defense response to pathogen infection. By comparing two libraries obtained from cultivars contrasting in their starch content a group of genes associated to starch biosynthesis and differentially expressed was identified. This is the first large cassava EST resource developed today and publicly available thus making a significant contribution to genomic knowledge of cassava. PMID:15630618

  6. Microbial population, chemical composition and silage fermentation of cassava residues.

    Science.gov (United States)

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage. PMID:25781881

  7. Yield and Properties of Ethanol Biofuel Produced from Different Whole Cassava Flours

    OpenAIRE

    Ademiluyi, F. T.; Mepba, H. D.

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash poi...

  8. Exploring the potential of cassava in promoting agricultural growth in Nigeria

    OpenAIRE

    Sanzidur Rahman; Brodrick O. Awerije

    2016-01-01

    Cassava is one of the major food crops in Nigeria, with multiple uses from human consumption to industrial applications. This study explores the potential of cassava in Nigerian agriculture based on a review of cassava development policies; performs a trend analysis of the cultivation area, production, productivity, and real price of cassava and other competing crops for the period 1961–2013; identifies the sources of growth in production; and examines the production constraints at the local ...

  9. EFFECT OF PROCESSING ON THE CYANIDE CONTENT OF CASSAVA PRODUCTS IN FIJI

    OpenAIRE

    Chand Bandna

    2012-01-01

    In Fiji cassava (Manihot esculenta Crantz, Euphorbiaceae) is one of the most important root crops. According to the 2004 National Nutrition Survey, 59.2% of the Fijian population consumes cassava on a daily basis while 31% of the Indian population consumes cassava on a weekly basis. Substantial quantity of anti-nutrient factor cyanogenic glucoside, linamarine and a small amount of lotaustralin is also present in cassava that interferes with digestion and uptake of nutrients. This study was ai...

  10. Cost benefit analysis of cassava production in Sherpur district of Bangladesh

    OpenAIRE

    Afreen, N.; Haque, M.S.

    2014-01-01

    The present study was designed to analyze the cost, benefit and profitability of cassava production in selected areas of Sherpur district in Bangladesh. Data were collected by interviewing a representative sample of 100 practicing cassava farmers, taking each 50 sample from traditional farmers of Jhinaigati and commercial cassava farmers of Sreebardi Upazila. Analyses showed that per hectare cost incurred for cassava was BDT 41,417.22 in Jhinaigati whereas BDT 53,642.59 in Sreebardi Upazila. ...

  11. Correlation of Chemical Compositions of Cassava Varieties to Their Resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae)

    OpenAIRE

    Osipitan, Adebola A.; Sangowusi, Victoria T.; Lawal, Omoniyi I.; Popoola, Kehinde O.

    2015-01-01

    The preference of cassava as a major host by Prostephanus truncatus Horn is a major constraint to ample production of cassava, Manihot esculenta Crantz and storage. This study analyzed the nutritional and secondary metabolite compositions in 15 cassava varieties, evaluated levels of damage and reproduction by P. truncatus, and assessed their resistance to attack. One hundred grams of dried cassava chips in 250-ml Kilner jars were infested with 10 adult larger grain borerof 0–10 days old and h...

  12. PROCESSORS’ PERCEPTION OF THE EFFECTIVENESS OF SOME CASSAVA PROCESSING INNOVATIONS IN OGUN STATE, NIGERIA

    OpenAIRE

    Adebayo, K.; Sangosina, M.A.

    2005-01-01

    The current drive towards higher levels of commercialisation of cassava processing under the Presidential Initiative on Cassava requires that the scale of cassava processing be increased in Nigeria. Primary data obtained from 112 respondents selected from the 4 extension zones of Ogun State was used to examine the perception of effectiveness of innovations by cassava processors and the factors responsible for adoption of these innovations. The processors’ perception of effectiveness of cassav...

  13. Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces

    OpenAIRE

    Zainuddin Ima M; Schlegel Kim; Gruissem Wilhelm; Vanderschuren Hervé

    2012-01-01

    Abstract Recent progress in cassava transformation has allowed the robust production of transgenic cassava even under suboptimal plant tissue culture conditions. The transformation protocol has so far been used mostly for the cassava model cultivar 60444 because of its good regeneration capacity of embryogenic tissues. However, for deployment and adoption of transgenic cassava in the field it is important to develop robust transformation methods for farmer- and industry-preferred landraces an...

  14. CASSAVA PULP AS A BIOFUEL FEEDSTOCK OF AN ENZYMATIC HYDROLYSIS PROCESS

    OpenAIRE

    Wahono Sumaryono; Dyah Primarini; Sumarno; Nonot Soewarno; Djuma’ali

    2011-01-01

    Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12%w/v, particle size

  15. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J;

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... and the fungal community in sorghum, and the first report attempts to document endophytic fungal presence in Burkina Faso....

  16. 13. Evaluation of endophytic fungi extract for their antimicrobial activity from Sesbania grandiflora (L. Pers.

    Directory of Open Access Journals (Sweden)

    Pannapa Powthong

    2012-06-01

    Full Text Available A total of 69 endophytic fungi were isolated from Sesbania grandiflora (L. Pers. Their antimicrobial activities were already primary screened by agar diffusion assay and antagonistic activities. The ethyl acetate crude extracts of 28 selected endophytic fungi were further determined for Minimum Inhibitory Concentration (MIC and Minimum Bactericidal Concentration (MBC or Minimum Fungicidal Concentration (MFC against bacteria (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 278530, yeast (Candida albicans and Cryptococcus neoformans and mold (Rhizopus spp., Mucor spp., Aspergillus spp., Alternaria spp., Curvularia spp., and Penicillium spp. by using the standard broth microdilution method and a modified resazurin microtiter plate assay. It was found that 26 in 28 extracts exhibited high anti bacterial activity against B. subtilis with the susceptibility rate at 92.86% than P.aeruginosa (82.14%, S.aureus (42.86%, and E.coli (7.14% respectively. The MIC and MBC of this group were in the range of 0.49-250µg/mL and 1.95≥250µg/mL, respectively. Seventeen extracts (60.71% showed antifungal activity against C.neoformans than C.albicans (42.86% with the MIC and MFC were in the range of 31.25-250µg/mL and 250µg/mL, respectively, whereas 23 extracts (82.14% showed high antifungal activity against Mucor spp. than Rhizopus spp. (75%, Alternaria spp. (60.71%, Curvularia spp.(57.14%, Penicillium spp. (53.57% and Aspergillus spp. (3.57% respectively, with MIC and MFC in the range of 62.50-250µg/mL and 250µg/mL respectively. Study of macroscopic and microscopic examination of fungal morphology revealed that most of endophytic fungi are hyaline septate hyphae but 3 isolates are hyaline non-septate hyphae. Fusarium spp. and Acremonium spp. are the predominate species among selected endophytic fungi. These results of this study strongly suggested that metabolites of endophytic

  17. PHYTOPHARMACOLOGICAL ASPECTS OF MANIHOT ESCULENTA CRANTZ (CASSAVA

    Directory of Open Access Journals (Sweden)

    Bahekar S

    2013-01-01

    Full Text Available The plant kingdom has been the best source of remedies for curing a variety of diseases since ancient times. Plants continue to serve as possible sources for new drugs and chemicals derived from various parts of plants. Manihot esculenta Crantz, popularly known as cassava is one of the most neglected medicinal herbs found all over the world. It is not so commonly used in herbal medicine because of some of its potentially toxic components, but still various literatures have mentioned that this plant has numerous medicinal indications. Generally roots and leaves of this plant have been used in various parts of world for dietary as well as medicinal purposes. Though neglected, this is one of the most useful medicinal plants. In this review, we have tried to highlight various phytochemicals found and medicinal uses of this neglected plant.

  18. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  19. Developing GM super cassava for improved health and food security: future challenges in Africa

    Directory of Open Access Journals (Sweden)

    Adenle Ademola A

    2012-08-01

    Full Text Available Abstract Background There is an urgent need to solve the problem of micronutrient malnutrition that is prevalent among young children and women in Africa. Genetically modified (GM biofortified cassava has great potential to solve part of this problem, but controversy surrounding GM technology and lack of awareness, limited facilities, biased news and other factors may hinder the adoption of GM cassava in the future. Method Using semi-structured interviews in Ghana and Nigeria, this paper examines the perspectives of scientists, including the BioCassava Plus (BC+ team, on the potential adoption of GM cassava for improving health and food security in Africa. The article also examines issues around the regulatory system and transfer and acceptance of GM cassava among scientists. Results and discussion The result suggests that an overwhelming majority of scientists agree that GM biofortified cassava will benefit the health of millions in Africa, and that GM cassava conferred with disease and pest resistance will increase cassava production as it is currently plagued by cassava mosaic diseases (CMD. However, respondents are wary of long-term effects of GM cassava on the environment and lack of a regulatory framework to facilitate the adoption of GM cassava. Even though scientists expressed little or no concern about health risks of GM cassava, they were concerned that consumers may express such concerns given limited understanding of GM technology. Conclusion The article concludes with a summary of priorities for policy development with regard to adopting biofortified food products.

  20. Diversity in oil content and fatty acid profile in seeds of wild cassava germplasm

    Science.gov (United States)

    Cassava (Manihot esculenta) is the only commercial species of the Manihot genus, cultivated for its starchy tuber roots. However, cassava seeds are known to be rich in oils and fats, there are scant reports on the content and properties of oil from cassava seeds and its wild relatives. Wild Manihot ...

  1. Metabolites from mangrove endophytic fungus Dothiorella sp.

    Institute of Scientific and Technical Information of China (English)

    XUQingyan; WANGJianfeng; HUANGYaojian; ZHENGZhonghui; SONGSiyang; ZHANGYongmin; SUWenjin

    2004-01-01

    Mangroves are special woody plant communities in the intertidal zone of tropical and subtropical coasts. They prove to be a natural microorganisms and new metabolites storage. In the study of mangrove endophytic fungi metabolites, four new compounds, Compounds 1, 2, 3 and 4, as well as a known octaketide, cytosporone B (5), are isolated from an endophytic fungus, Dothiorella sp., HTF3. They all show cytotoxic activities. The elucidation of these structures is mainly based on 1D/2D NMR and ESI-MS spectral analyses.

  2. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization

    Directory of Open Access Journals (Sweden)

    Nurhidayah Mohamed Noor

    2012-01-01

    Full Text Available Production of biochar from slow pyrolysis of biomass is a promising carbon negative procedure since it removes the net carbon dioxide in the atmosphere and produce recalcitrant carbon suitable for sequestration in soil. Biochar production can vary significantly with the pyrolysis parameter. This study investigated the impact of temperature and heating rate on the yield and properties of biochar derived from cassava plantations residues which are cassava stem (CS and cassava rhizome (CR. The pyrolysis temperatures ranged from 400°C to 600°C while the heating rate parameter was varied from 5°C/min to 25°C/min. The experiment was conducted using the lab scale slow pyrolysis system. The increment of temperature and heating rate of slow pyrolysis for both cassava wastes had raised the fixed carbon content of the biochar but decreased the biochar yield. More biochar was produced at lower temperature and lower heating rate. Temperature gave more influence on the biochar yield as compared to the heating rate parameter. The highest biochar yield of more than 35 mf wt. % can be obtained from both CS and CR at 400°C and heating rate of 5°C/min. From the proximate analysis, the results showed that cassava wastes contain high percentage of volatile matter which is more than 80 mf wt. %. Meanwhile, the biochar produced from cassava wastes contain high percentage of fixed carbon which is about 5−8 times higher than their raw samples. This suggested that, it is a good step to convert CS and CR into high carbon biochar via slow pyrolysis process that can substantially yield more biochar, up to 37 mf wt. % in this study. Since the fixed carbon content for both CS and CR biochar produced in any studied parameter were found to be more than 75 mf wt. %, it is suggested that biochar from cassava wastes is suitable for carbon sequestration.

  3. Characterization of Brown Streak Virus-Resistant Cassava.

    Science.gov (United States)

    Anjanappa, Ravi B; Mehta, Devang; Maruthi, M N; Kanju, Edward; Gruissem, Wilhelm; Vanderschuren, Hervé

    2016-07-01

    Cassava brown streak disease (CBSD) has become a major constraint to cassava production in East and Central Africa. The identification of new sources of CBSD resistance is essential to deploy CBSD mitigation strategies, as the disease is progressing westwards to new geographical areas. A stringent infection method based on top cleft-grafting combined with precise virus titer quantitation was utilized to screen 14 cassava cultivars and elite breeding lines. When inoculated with mixed infections of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the scions of elite breeding lines KBH 2006/18 and KBH 2006/26 remained symptom-free during a 16-week period of virus graft inoculation, while susceptible varieties displayed typical CBSD infection symptoms at 4 weeks after grafting. The identified CBSD resistance was stable under the coinoculation of CBSV and UCBSV with cassava geminiviruses. Double-grafting experiments revealed that transmission of CBSV and UCBSV to CBSD-susceptible top scions was delayed when using intermediate scions of elite breeding lines KBH 2006/18 and KBH 2006/26. Nonetheless, comparison of virus systemic movement using scions from KBH2006/18 and a transgenic CBSD resistant 60444 line (60444-Hp9 line) showed that both CBSV and UCBSV move at undetectable levels through the stems. Further, protoplast-based assays of virus titers showed that the replication of CBSV is inhibited in the resistant line KBH2006/18, suggesting that the identified CBSD resistance is at least partially based on inhibition of virus replication. Our molecular characterization of CBSD resistance in cassava offers a robust virus-host system to further investigate the molecular determinants of CBSD resistance. PMID:27070326

  4. "Omics" tools for better understanding the plant-endophyte interactions

    Directory of Open Access Journals (Sweden)

    Sanjana eKaul

    2016-06-01

    Full Text Available Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unravelling the grey areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant endophyte relationship.The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights omics tools that can be explored for understanding the role of endophytes in the plant microbiome. Keywords: Endophytism, microbiome, endophytes, genomics, metagenomics

  5. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.

    Science.gov (United States)

    Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

    2014-07-01

    Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. PMID:24755300

  6. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    Science.gov (United States)

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-01-01

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region. PMID:26214435

  7. Nutritious value of co-products of the cassava Valor nutritivo de co-produtos da mandioca

    OpenAIRE

    André Luiz Rodrigues Magalhães; Elyzabeth da Cruz Cardoso; Ronaldo Lopes Oliveira; Geane Dias Gonçalves Ferreira; Elieldo Lameira Brito

    2007-01-01

    The present study evaluated the chemical composition, protein and total carbohydrates content, energy estimative of industrial co-products of cassava from the North of Brazil (cassava scraping, cassava co-products flower, cassava mass and the superior third of cassava silage STSRM). The results were evaluated by description of the statistical analysis. Highest mean values were found for STSRM Crude Protein (CP) and Neutral Detergent Fiber (NDF). Variation values occurred in protein content, t...

  8. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Bacillus subtilis Bacillus subtilis Bacillus_subtilis_L.png Bacillus_subtilis_NL.png Bacillus..._subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus

  9. Use of irradiation to extend shelf life of cassava tubers

    International Nuclear Information System (INIS)

    Fresh cassava tubers (manihot esculenta crantz) were gamma irradiated at 0, 0.2, 0.5 and 1.0 KGy doses using cobalt-60 source. A portion of the irradiated cassava tubers was stored at room temperature (25-30 degree C) and the rest was packed in polyethylene bags and stored in refrigerator (5 1 degree C). Samples were analyzed for moisture, crude protein, starch and fibers percentages. Rotting ratio and weight loss percentages were also determined. The results indicated that the irradiation with gamma-rays followed by refrigeration extended the shelf-life of cassava tubers being more than 21 days. The lowest value of weight loss of cassava tubers during storage was observed by gamma irradiation and cold storage. Moreover, the irradiation treatments had no effect on protein content of cassava tubers, while it decreased moisture, starch and fiber contents especially those subjected to 1 kGy. As for the interaction between gamma-irradiation doses and periods of storage the crude protein slightly increased while the moisture, starch and fibers showed a gradual decrease up to the end of storage period as compared to unirradiated ones. 4 tabs

  10. Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149

    Directory of Open Access Journals (Sweden)

    Nisha V. Ramadas

    2009-02-01

    Full Text Available The aim of this work was to study the production of polyhydroxybutyrate (PHB using agro- industrial residues as the carbon source. Seven substrates, viz., wheat bran, potato starch, sesame oil cake, groundnut oil cake, cassava powder, jackfruit seed powder and corn flour were hydrolyzed using commercial enzymes and the hydrolyzates assessed for selecting the best substrate for PHB production. Jackfruit seed powder gave the maximum production of PHB under submerged fermentation using Bacillus sphaericus (19% at the initial pH of 7.5.

  11. Chemical safety of cassava products in regions adopting cassava production and processing - experience from Southern Africa

    DEFF Research Database (Denmark)

    Nyirenda, D.B.; Chiwona-Karltun, L.; Chitundu, M.;

    2011-01-01

    perceptions concerning cassava and chemical food safety. Chips, mixed biscuits and flour, procured from households and markets in three regions of Zambia (Luapula-North, Western and Southern) as well as products from the Northern, Central and Southern regions of Malawi, were analyzed for total cyanogenic...... products commercially available on the market. Risk assessments disclose that effects harmful to the developing central nervous system (CNS) may be observed at a lower exposure than previously anticipated. We interviewed farmers in Zambia and Malawi about their cultivars, processing procedures and...

  12. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes.

    Directory of Open Access Journals (Sweden)

    Michael Weiss

    Full Text Available Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae, which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as 'endophytes' have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems.

  13. Phyllosticta capitalensis, a widespread endophyte of plants

    NARCIS (Netherlands)

    Wikee, S.; Lombard, L.; Crous, P.W.; Nakashima, C.; Motohashi, K.; Chukeatirote, E.; Alias, S.A.; McKenzie, E.H.C.; Hyde, K.D.

    2013-01-01

    Phyllosticta capitalensis is an endophyte and weak plant pathogen with a worldwide distribution presently known from 70 plant families. This study isolated P. capitalensis from different host plants in northern Thailand, and determined their different life modes. Thirty strains of P. capitalensis we

  14. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes.

    Science.gov (United States)

    Weiss, Michael; Sýkorová, Zuzana; Garnica, Sigisfredo; Riess, Kai; Martos, Florent; Krause, Cornelia; Oberwinkler, Franz; Bauer, Robert; Redecker, Dirk

    2011-01-01

    Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as 'endophytes' have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems. PMID:21347229

  15. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.

    Science.gov (United States)

    Tiwari, Sarita; Sarangi, Bijaya Ketan; Thul, Sanjog T

    2016-09-15

    Mitigation of arsenic (As) pollution is a topical environmental issue of high R&D priority. The present investigation was carried out to isolate As resistant endophytes from the roots of Indian ecotype Pteris vittata and characterize their As transformation and tolerance ability, plant growth promoting characteristics and their role to facilitate As uptake by the plant. A total of 8 root endophytes were isolated from plants grown in As amended soil (25 mg As kg(-1)). These isolates were studied for minimum inhibitory concentration (MIC), arsenite As(III) - arsenate As(V) transformation ability, plant growth promoting (PGP) characteristics through siderophore, indole acetic acid (IAA) production, phosphatase, ACC deaminase activity, and presence of arsenite oxidase (aox) and arsenite transporter (arsB) genes. On the basis of 16S rDNA sequence analysis, these isolates belong to Proteobacteria, Firmicutes and Bacteroidetes families under the genera Bacillus, Enterobacter, Stenotrophomonas and Rhizobium. All isolates were found As tolerant, of which one isolates showed highest tolerance up to 1000 mg L(-1) concentration in SLP medium. Five isolates were IAA positive with highest IAA production up to 60 mg/L and two isolates exhibited siderophore activity. Phosphatase activity was shown by only one isolate while ACC deaminase activity was absent in all the isolates. The As transformation study by silver nitrate test showed that only two strains had dual characteristics of As(III) oxidation and As (V) reduction, four strains exhibited either of the characteristics while other two didn't confirmed any of the two characteristics. Presence of aox gene was detected in two strains and arsB gene in six isolates. The strain with highest As tolerance also showed highest IAA production and occurrence of arsB gene. Present investigation may open up further scope of utilizing these endophytes for up gradation of phytoextraction process. PMID:27257820

  16. CASSAVA (Manihot esculenta crantz: AN AFFORDABLE ENERGY SOURCE IN DAIRY RATIONS

    Directory of Open Access Journals (Sweden)

    F.R., ANJOS

    2014-01-01

    Full Text Available The current paper explores the evidence that exists on the potential use of cassava plant (Manihot esculenta Crantz as an energy source for dairy cattle. Several studies have proven cassava roots, leaves and processing residues to be an important ruminant animal feed resource. Cassava root chip and meal are a potentially good rumen fermentable energy for dairy cows in the tropics. The vegetative parts of cassava are considered to be wastes since human beings grow cassava for its tubers. Feeding trials with cattle have shown cassava hay to have a dry matter intake levels DMI of around 3.2% of BW and a digestibility (71%. The hay also contains tannin-protein complexes that may be a good source of rumen un-degradable protein that will be available to the animal post-ruminally. It has also be shown that supplementing 1-2 kg/head/day of cassava to dairy cattle may go a long way in reducing feeding costs and significantly increasing milk quality and quantity produced. Cassava hay was also noted to be anthelminthic and therapeutic since it contains condensed tannins. Condensed tannins have been proven to reduce gastrointestinal nematodes. Use of cassava as a substitute of maize in dairy rations can significantly lower the feed costs in smallholder dairy farms in cassava producing countries like Mozambique. It was concluded that cassava is potentially an affordable substitute for conventional energy source for small scale dairy farmers.

  17. Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces

    Directory of Open Access Journals (Sweden)

    Zainuddin Ima M

    2012-07-01

    Full Text Available Abstract Recent progress in cassava transformation has allowed the robust production of transgenic cassava even under suboptimal plant tissue culture conditions. The transformation protocol has so far been used mostly for the cassava model cultivar 60444 because of its good regeneration capacity of embryogenic tissues. However, for deployment and adoption of transgenic cassava in the field it is important to develop robust transformation methods for farmer- and industry-preferred landraces and cultivars. Because dynamics of multiplication and regeneration of embryogenic tissues differ between cassava genotypes, it was necessary to adapt the efficient cv. 60444 transformation protocol to genotypes that are more recalcitrant to transformation. Here we demonstrate that an improved cassava transformation protocol for cv. 60444 could be successfully modified for production of transgenic farmer-preferred cassava landraces. The modified transformation method reports on procedures for optimization and is likely transferable to other cassava genotypes reportedly recalcitrant to transformation provided production of high quality FEC. Because the three farmer-preferred cassava landraces selected in this study have been identified as resistant or tolerant to cassava mosaic disease (CMD, the adapted protocol will be essential to mobilize improved traits into cassava genotypes suitable for regions where CMD limits production.

  18. Effects of Processing on the Chemical and Anti-nutritional Properties of Cassava Roots

    Directory of Open Access Journals (Sweden)

    Omosuli SV

    2014-06-01

    Full Text Available The nutritive and antinutritive composition of cassava roots (raw and boiled was investigated. The proximate composition of raw and boiled cassava tubers was not significantly different (P> 0.05, except in moisture, fat, carbohydrate and Energy value. High levels of the antinutrients in raw cassava tubers (20.56mg/100g Tannins; 1,16mg/100g oxalate and 3.36mg/100g phytate make them unsafe and unsuitable for human consumption except after processing. Mineral contents of cassava tubers were not affected significantly by boiling except in Iron. Calcium was the most abundant mineral present (0.33% and 0.26% for raw and boiled cassava roots and the low Ca/P ratio of 6.19 in boiled cassava roots will facilitate calcinations of calcium more than the raw cassava roots with a Ca/P ratio of 8.68.

  19. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness.

    Science.gov (United States)

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host's redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa's immediate confrontation with "foreign" reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa's microbiome to improve stress resistance in other plant species. PMID:26834724

  20. [Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng].

    Science.gov (United States)

    Jiang, Yun; Tian, Lei; Chen, Chang-qing; Zhang, Guan-jun; Li, Tong; Chen, Jing-xiu; Wang, Xue

    2015-01-01

    Endophytic bacteria which was producing indoleacetic acid was screened from Panax ginseng by using the Salkowski method. The active strain was also tested for its ability of nitrogen fixation by using the Ashby agar plates, the PKV plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry was used to measure its ability of phosphate solubilization, for its ability of potassium solubilization the silicate medium and flame spectrophotometry was used, for its ability of producing siderophores the method detecting CAS was used, for its ability of producing ACC deaminase the Alpha ketone butyric acid method was applied. And the effect on promoting growth of seed by active strain was tested. The results showed that the indoleacetic acid producing strain of JJ5-2 was obtained from 118 endophytes, which the content of indoleacetic acid was 10.2 mg x L(-1). The JJ5-2 strain also had characteristics of phosphate and potassium solubilization, nitrogen fixation, producing siderophores traits, and the promoting germination of ginseng seeds. The JJ5-2 strain was identified as Bacillus thuringiensis by analyzing morphology, physiological and biochemical properties and 16S rRNA gene sequences. PMID:26080547

  1. Impact of Endophytic Microorganisms on Plants, Environment and Humans

    OpenAIRE

    Nair, Dhanya N.; Padmavathy, S.

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They pr...

  2. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation

    OpenAIRE

    Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Stomeo, Francesca; Maina, Solomon; Djinkeng, Appolinaire; Kehoe, Monica; Boykin, Laura M

    2015-01-01

    Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa’s most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this re...

  3. Poplar and its bacterial endophytes: coexistence and harmony

    Energy Technology Data Exchange (ETDEWEB)

    van der Lelie, D.; Taghavi, S.; Monchy, S.; Schwender, J.; Miller, L.; Ferrieri, R.; Rogers, A.; Zhu, W.; Weyens, N.; Vangronsveld, J.; Newman, L.

    2009-09-01

    Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an improved understanding of the interaction between poplar and its endophytic bacteria has the potential to provide major breakthroughs that will improve the productivity of poplar. Endophytic bacteria can improve plant growth and development in a direct or indirect way. Direct plant growth promoting mechanisms may involve nitrogen fixation, production of plant growth regulators such as auxins, cytokinins and gibberellins, and suppression of stress ethylene synthesis by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Endophytic bacteria can indirectly benefit the plant by preventing the growth or activity of plant pathogens through competition for space and nutrients, antibiosis, production of hydrolytic enzymes, inhibition of pathogen-produced enzymes or toxins, and through systemic induction of plant defense mechanisms. Examples of applications for custom endophyte-host partnerships include improved productivity and establishment of poplar trees on marginal soils and the phytoremediation of contaminated soils and groundwater. A systems biology approach to understand the synergistic interactions between poplar and its beneficial endophytic bacteria represents an important field of research, which is facilitated by the recent sequencing of the genomes of poplar and several of its endophytic bacteria.

  4. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  5. Life cycle cost of ethanol production from cassava in Thailand

    International Nuclear Information System (INIS)

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  6. Life cycle cost of ethanol production from cassava in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  7. Cassava leaves as protein source for pigs in Central Vietnam

    OpenAIRE

    2007-01-01

    The aim of the studies described in this thesis was to evaluate the use of cassava leaves as protein sources for pigs when used at high levels in the diet, either in fresh form or with simplified methods of processing. In twenty cassava varieties taken from the upper part of the plant at the root harvesting, the crude protein varied from 23.7 to 29.5 % in DM and the HCN from 610 to 1840 mg/kg DM. Chopping, washing and wilting the leaves are simple ways to process the. There was a 58% reductio...

  8. Radiation processing of cassava starch hydrogel

    International Nuclear Information System (INIS)

    This paper consists of two topics on cassava starch (CS). The first paper deals with radiation-induced graft polymerization of 1-vinyl-2-pyrrolidinone (VP) onto CS. The results from PVP -grafted-starch were subsequently compared with those of PVP hydrogels and PVP-blended-starch hydrogels. It was found that the PVP-grafted-starch hydrogels, with gel fraction higher than 80%, could be prepared at the dose of 20 kGy, while PVP and PVP-blended-starch hydrogels require at least 30 kGy to obtain gels with more than 80% gel fraction. And at the same dose used for irradiation, the gel strength of the PVP-grafted-starch hydrogels is significantly higher than that of the PVP and PVP-blended-starch hydrogels. Radiation crosslinking of carboxymethyl CS is the second topic. CS was chemically modified by sodium monochloroacetate (SMCA) to yield carboxymethyl starch (CMS). The aqueous solution of CMS was irradiated and underwent radiation-induced crosslinking, resulting in a crosslinked CMS (XLCMS) hydrogel. The optimum condition for obtaining hydrogels with desirable properties is irradiation at low dose, 2 kGy. At higher doses, the gel fraction tends to diminish, due to the domination of degradation over crosslinking. (author)

  9. Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix.

    Science.gov (United States)

    Eş, Ismail; Ribeiro, Maycon Carvalho; Dos Santos Júnior, Samuel Rodrigues; Khaneghah, Amin Mousavi; Rodriguez, Armando Garcia; Amaral, André Corrêa

    2016-10-01

    The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol-sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml(-1) (36 h), 47.50 U ml(-1) (36 h) and 68.36 U ml(-1) (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml(-1) (18 h) on cassava, 79.17 U ml(-1) (12 h) on potato and 55.37 U ml(-1) (in 6 h and max 77.75 U ml(-1) in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells. PMID:27194141

  10. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses.

    Science.gov (United States)

    Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E C; Taylor, Nigel J

    2016-04-01

    Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5'-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD. PMID:26811902

  11. Socio-economic Analysis of Cassava Marketing in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Benjamin C. Asogwa

    2013-04-01

    Full Text Available The purpose of this study is to analyze the socio-economics of cassava marketing in Benue State, Nigeria. Data were collected from randomly sampled 107 cassava marketers in Benue State, using a structured questionnaire. The study revealed that most of the cassava marketers had secondary education (72.9%. The study also revealed that marketing of cassava is mostly undertaken by females (57%. The result showed that married people (59.8% were mostly involved in the marketing of cassava. The study revealed that cassava marketing is operated in a competitive market environment and the marketing margin obtained by an average cassava marketer is 31%. Cassava marketing is a profitable venture in the study area. It was also revealed that greater percentage of cassava traded in the study area was primarily obtained from the farmers. Majority of the respondents (92.5% belong to cassava marketing association. The most pressing problem (46.73% faced by the marketers is high taxes during transportation. Majority of the cassava marketers use the revenue generated from cassava business to train their children in schools and buildings of modern houses (57.0.There is the need to: open centralized cassava market in the study area; construct good network of feeder roads; establish processing companies/facilities; restructure the entire marketing system. Traders should be encouraged to form agricultural marketing cooperatives in order to eliminate the exploitative activities of the middlemen. Marketing agencies should be enforced by government to take care of the marketing problems that are associated with the speculative activities of the middlemen.

  12. Transcriptome response of cassava leaves under natural shade.

    Science.gov (United States)

    Ding, Zehong; Zhang, Yang; Xiao, Yi; Liu, Fangfang; Wang, Minghui; Zhu, Xinguang; Liu, Peng; Sun, Qi; Wang, Wenquan; Peng, Ming; Brutnell, Tom; Li, Pinghua

    2016-01-01

    Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement. PMID:27539510

  13. Mathematical Modelling Of Cyanide Inhibition on Cassava Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    E. Onukwugha

    2013-09-01

    Full Text Available Anaerobic Baffled Reactors (ABR is used to evaluate the extent of cyanide inhibition of cassava wastewater treatment. The reactor has aspect ratio of 4:1:1. Kinetic analyses of specific growth rate μmax and half saturation constant

  14. Functional genomic analysis of cassava proteins with TIR domains

    International Nuclear Information System (INIS)

    Proteins containing a TIR domain (toll interleukin receptor) are involved in plant and animal immunity. The aim of this work was to carry out an overall genomic analysis of cassava proteins with a TIR domain and discern their possible role in resistance to cassava bacterial blight. In total 46 proteins with a TIR domain were identified in the cassava proteome and were classed in four categories according the presence or absence of other domains: TIR (T), TIR -NB (TN), TIR - lRR (TL) and TIR - NB - lRR (TNL). 56.6 % of these 46 proteins have TIR, NB and lRR domains. Using multiple alignments it was possible to demonstrate that not all cassava TIR domains contain the AE region, involved in dimerization and activation of immune responses. Three of the four proteins categories (T, TNL and TN) presented a higher number of synonymous substitutions suggesting that they are not involved in recognition process. two TIR domains not presenting the ae region were analyzed by yeast two hybrid assays and by agro-infiltration, finding that both are able to form homo and heterodimers, but they do not trigger defense responses. With this study it was possible to conclude that TIR domains can function as adaptors in the signal transduction with other resistance proteins. In addition, it became clear that not always the AE region is important for TIR dimerization but it seems necessary to activate defense responses signals.

  15. Transcriptional response to petiole heat girdling in cassava

    Science.gov (United States)

    The heat-girdling technique, which is known to inhibit photoassimilate translocation, was performed on the petiole of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the ...

  16. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  17. Properties of Cassava Starch Modified by Amylomaltase from Corynebacterium glutamicum.

    Science.gov (United States)

    Suriyakul Na Ayudhaya, Pitcha; Pongsawasdi, Piamsook; Laohasongkram, Kalaya; Chaiwanichsiri, Saiwarun

    2016-06-01

    Amylomaltase (α-1,4-glucanotransferase, AM; EC 2.4.1.25) from Corynebacterium glutamicum expressed in Escherichia coli was used to prepare the enzyme-modified cassava starch for food application. About 5% to 15% (w/v) of cassava starch slurries were incubated with 1, 3, or 5 units of amylomaltase/g starch. Apparent amylose, amylopectin chain length distribution, thermal properties, freeze-thaw stability, thermo-reversibility, and gel strength of the obtained modified starches were measured. The apparent amylose content and retrogradation enthalpy were lower, whereas the retrogradation temperatures, freeze-thaw stability, and thermo-reversibility were higher than those of the native cassava starch. However, when amylomaltase content was increased to 20 units of amylomaltase/g starch and for 24 h, the modified starch showed an improvement in the thermo-reversibility property. When used in panna cotta, the gel strength of the sample using the 20 units/24 h modified cassava starch was similar to that of using gelatin. PMID:27105125

  18. Determination of aflatoxin in processed dried cassava root

    DEFF Research Database (Denmark)

    Gnonlonfin, Gbemenou Joselin Benoit; Katerere, David R.; Adjovi, Yann;

    2010-01-01

    A new method that uses HPLC with a photochemical reactor for enhanced detection was developed and validated for the determination of aflatoxins in cassava flour. Samples were spiked with a mixture of four aflatoxins at 5, 10, and 20 microg/kg mixed with either 1 or 5 g NaCI and extracted with...

  19. Sino-Swiss center for cassava technology launched in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Under the joint sponsorship of the Shanghai Institutes for Biological Sciences (SIBS) and Swiss Federal Institute of Technology (ETH Zurich), the Shanghai Center for Cassava Biotechnology (SCCB) has been established at the Shanghai Institute of Plant Physiology and Ecology(SIPE), SIBS.

  20. Cassava tissue culture and long-term preservation

    Science.gov (United States)

    Cassava (Manihot esculenta Crantz) is cultivated mainly for its starchy roots as an important staple food for the tropics. M. esculenta is the only cultivated species in the genus Manihot, which contains 98 species, mostly native to Brazil. In recent years several research groups have reported metho...

  1. Response of cassava genotypes to different micropropagation media

    Science.gov (United States)

    Cassava is one of the most important staple foods in the human diet in the tropics, where it ranks fourth as a source of energy, after rice, sugar cane and maize. Since it is a vegetative propagated crop, the use of in vitro propagation is very important to preserve the germplasm free of pest and di...

  2. Field experiment on transgenic cassava proves successful in South China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A pioneer study on field tests of transgenic cassava (Manihot esculenta Crantz) by a Sino-Swiss research consortium has proved successful. The experiment was carried out in 2006 at an experimental station in Haikou, capital of south China's Hainan Province.

  3. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.;

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed throug...

  4. Development of comprehensive medium for micropropagation of cultivated Cassava accessions

    Science.gov (United States)

    Cassava is one of the most important foods in the human diet in the tropics, where it ranks fifth as a source of energy, after rice, sugar cane, and maize. Since it is a vegetative propagated crop, the use of in vitro propagation is very important to preserve germplasm free of pest and diseases. M...

  5. Endophytic fungi associated with endogenous Boswellia sacra

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI

    2014-04-01

    Full Text Available El-Nagerabi SAF, Elshafie AE, AlKhanjari SS. 2014. Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas 15: 22-28. Endophytic fungi associated with leaves and stem tissues of Boswellia sacra growing in Dhofar Mountains of Oman were investigated from May 2008 through October 2011. The biological diversity, tissue-preference and seasonal variations of fungi were evaluated. Forty-three species and 3 varieties of fungi were recovered as new records from this plant. Of these isolates, 35 species are new reports to the mycoflora of Oman, whereas 12 species were added to the list of fungal flora of the Arabian Peninsula. The genus Alternaria (12 species is the most prevalent genus recovered from 12.5-83.3% of the screened leaves and stem samples, followed by Aspergillus (5 species, 3 varieties, 6.9-86.1%, Mycelia sterilia (76.4%, Rhizopus stolonifer (62.5%, Drechslera (3 species, 40.3-54.2%, Cladosporium (3 species, 20.8-52.8%, Curvularia lunata (38.8%, Chaetomium (2 species, 15.3-26.3%, Penicillim spp. (9.8-27.8%, Fusarium (9 species, 6.9-27.8%, Ulocladium consortiale (27.8%, Mucor hiemalis (19.5%, and the remaining species (Scytalidium thermophilum, Phoma solani, Taeniolella exilis, and Botryodiplodia theobromae exhibited very low levels of incidence (4.2-11.1%. Endophytic colonization of the leaf tissues was greater (43 species, 3 varieties comparable to stem tissues (25 species. This indicates heterogeneity and tissue-preference, with no evidence of seasonal variation. Therefore, the isolation of many fungal species and sterile mycelia supports the biodiversity of the endophytic fungi invading B. sacra and the high possibility of isolating more fungal species using advanced molecular techniques.

  6. Biodiversity of Dominant Cultivable Endophytic Bacteria Inhabiting Tissues of Six Different Cultivars of Maize (Zea mays L. ssp. mays) Cropped under Field Conditions.

    Science.gov (United States)

    Pisarska, Katarzyna; Pietr, Stanisław Jerzy

    2015-01-01

    Endophytic bacteria (EnB) play a crucial role in plant development. This study was an attempt to isolate and identify dominant cultivable EnB inhabiting young seedlings germinated in vitro and leaves of six maize cultivars grown under field conditions at temperate climate zone with culture-dependent approach. We isolated bacteria from field cropped maize only. Strains were identified based on 16S rRNA gene sequencing. In particular, members of Actinobacteria, Bacteroidetes, Firmicutes and α- and γ-Proteobacteria were found. Species of two genus Pseudomonas and Bacillus were dominant among them. Higher diversity of EnB was found in plants collected from Kobierzyce, where we identified 35 species from 16 genera with 22 species uniquely found at this field. On the contrary, from maize leaves collected at Smolice we identified 24 species representing 10 genera with 10 species uniquely isolated from this field. However, none of species was common for all cultivars at both locations. Among isolated EnB six species only, Pseudomonas clemancea, Pseudomonasfluorescens, Bacillus megaterium, Bacillus simplex, Arthrobacter nicotinovorans and Arthrobacter nitroguajacolicus, were found in aboveground parts of the same cultivar grown on both tested fields. The fact that the same cultivars, sown from the same lots of seeds, under field conditions on two different locations were colonized with noticeably different associations of cultivable EnB suggest that cultivar genotype is an important factor selecting endophytic bacteria from local agro-environment. To our knowledge this is first report about the significant variation of diversity of cultivable endophytic bacteria inhabiting aboveground parts of the same maize cultivars grown at different locations. PMID:26373177

  7. "Omics" Tools for Better Understanding the Plant-Endophyte Interactions.

    Science.gov (United States)

    Kaul, Sanjana; Sharma, Tanwi; K Dhar, Manoj

    2016-01-01

    Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unraveling the gray areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant-endophyte relationship. The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights "omics" tools that can be explored for understanding the role of endophytes in the plant microbiome. PMID:27446181

  8. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies. PMID:23575013

  9. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica

    Directory of Open Access Journals (Sweden)

    Neus eGarcias-Bonet

    2012-09-01

    Full Text Available Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes and leaves by DGGE. A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ and δ subclasses and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

  10. Genome-wide association and prediction analysis in African cassava (Manihot esculenta) reveals the genetic architecture of resistance to cassava mosaic disease and prospects for rapid genetic improvement

    Science.gov (United States)

    Cassava (Manihot esculenta) is a crucial, under-researched crop feeding millions worldwide, especially in Africa. Cassava mosaic disease (CMD) has plagued production in Africa for over a century. Bi-parental mapping studies suggest primarily a single major gene mediates resistance. To be certain and...

  11. A native plant growth promoting bacterium, Bacillus megaterium B55, rescues growth performance of an ethylene insensitive plant genotype in nature

    OpenAIRE

    Dorothea Gertrud Meldau; Hoang Hoa Long; Ian Thomas Baldwin

    2012-01-01

    Many plants have intimate relationships with soil microbes that through a variety of mechanisms improve the plant’s growth and fitness. Bacillus megaterium is a natural endophyte isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate (B55), was found to have dramatic plant growth promoting (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacteria was first isolated. B55 not ...

  12. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry

    OpenAIRE

    Pathak, Khyati V.; Keharia, Hareshkumar

    2013-01-01

    The banyan endophyte, Bacillus subtilis K1, produces a complex mixture of lipopeptides exhibiting potent antifungal activity. These lipopeptides were purified by high-performance liquid chromatography and analyzed using MALDI-TOF-MS as well as liquid chromatography coupled with ESI-MS. A heterogenous mixture of lipopeptides belonging to three different families of cyclic lipopeptides, viz., fengycins, iturins and surfactins, was detected in the cell-free extracellular extract of B. subtilis K...

  13. Physiological characterization of sugarcane's endophytic microbial community

    Directory of Open Access Journals (Sweden)

    Anar Janet Rodríguez Cheang

    2007-02-01

    Full Text Available Excessive application of chemical nitrogen fertilisers and pesticides has badly affected the environment. This has led to great interest being shown in studying a crop's native microbial community and its benefit for plants. This paper was thus aimed at characterising sugarcane's endophytic microbial community. 5 sugar cane strains and 50 isolates were used. Gas chromatography was used for measuring nitrogenase activity and the influence of carbon and nitrogen sources and pH on cultures. Indol acetic (IAA production was detected by Dot-Immunobinding and Salkowski's method. These results show that 19 strains and isolates had nitrogenase activity, values ranging from 100 to SOOO/zg/mL; 6 of them produced IAA (values ranging from 1,7 to 2,5 //g/mL: Gluconacetobacter diazotrophicus PAl-5, Gluconacetobacter diazotrophicus 1-05, Gluconacetobacter diazotrophicus 4-02,17,30 and 305. It was demonstrated that culture medium nutrient sources and pH affected the nitrogenase activity of the strains representing the endophytic community. Key words: endophytic community, sugarcane, nitrogenase activity, indolacetic acid.

  14. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  15. Phytoremediation: plant-endophyte partnerships take the challenge

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Vangronsveld, J.

    2009-04-01

    A promising field to exploit plant-endophyte partnerships is the remediation of contaminated soils and (ground) water. Many plant growth promoting endophytes can assist their host plant to overcome contaminant-induced stress responses, thus providing improved plant growth. During phytoremediation of organic contaminants, plants can further benefit from endophytes possessing appropriate degradation pathways and metabolic capabilities, leading to more efficient contaminant degradation and reduction of both phytotoxicity and evapotranspiration of volatile contaminants. For phytoremediation of toxic metals, endophytes possessing a metal-resistance/sequestration system can lower metal phytotoxicity and affect metal translocation to the above-ground plant parts. Furthermore, endophytes that can degrade organic contaminants and deal with or, even better, improve extraction of the metals offer promising ways to improve phytoremediation of mixed pollution.

  16. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    Science.gov (United States)

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties. PMID:24689302

  17. Labour Arrangements in Cassava Production in Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Abila, N.

    2012-01-01

    Full Text Available The study examined the effects of labour arrangements on the profitability of cassava enterprises in Oyo North Area of Oyo State, Nigeria. A multi-stage sampling technique was adopted for data collection, while data were analysed using descriptive statistics and budgetary analysis. The results show that the prevalent labour arrangements for cassava enterprises are: a combination of Family, Hired and Contract labour (38.9%; Family-Hired labour (27.8%; Family-Contract labour (31.1%. The gross margin per hectares across labour arrangements are N279481.99 (all-labour, N286044.24 (family-hired, N216940.10 (familycontract, and N235000.00 (family only. The returns on a naira invested on variable costs across different labour arrangements for cassava enterprises are N2.04 (all-labour, N3.66 (family-hired, N2.37 (familycontract, and N2.61 (family only. This implies that a unit (N1 variable cost in the various labour arrangements of all-labour, family/hired, family/contract and family only in cassava production will yield a marginal return of N3.04, N3.66, N2.37 and N2.61 respectively. Family-hired labour arrangement yields higher marginal return per unit of manday and one naira spent than all other arrangements. The study recommends among others the application of laboursaving technologies and an optimum combination of various labour arrangements to reduce the cost of labour used in cassava production.

  18. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation.

    Directory of Open Access Journals (Sweden)

    Joseph Ndunguru

    Full Text Available Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV and Ugandan cassava brown streak virus (UCBSV which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production.

  19. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation.

    Science.gov (United States)

    Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Stomeo, Francesca; Maina, Solomon; Djikeng, Appolinaire; Djinkeng, Appolinaire; Kehoe, Monica; Boykin, Laura M

    2015-01-01

    Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production. PMID:26439260

  20. Uncertainty in life cycle economical analysis of cassava-based ethanol fuel

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    Biomass ethanol fuel is not only renewable but also environmental-friendly. Guangxi Zhuang Autonomous Region is developing the cassava-based ethanol fuel. Economical performance of the project is the key issue.The traditional life cycle economical analysis is just a static calculation process. Uncertainty is the character of cassava yield, cost of cassava plant, cassava price, tax rate and gasoline price, and the economical performance of the project is determined by these aspects. This study proposes an economical model of cassava-based ethanol fuel. The method of Monte Carol is used to simulate the economical performance. This method conquers the shortage of the traditional way. The results show that cassava-based ethanol fuel can get survived when the tax is exempted. Finally, the study also evaluates the potential of the economical performance.

  1. Induced mutation breeding in Cassava (Manihot esculenta Crantz) cultivar 'Bosom Nsia'

    International Nuclear Information System (INIS)

    Cassava is one of the most important staple food crops in the lowland tropics. In most cassava producing countries, it is mainly utilized for human consumption. Cassava leaves are a good source of protein and vitamins, and are used as food in Africa. In Ghana, 'Bosom Nsia' is one of the most widely grown cultivars probably because of its good cooking quality and fast maturation in six months. However, this cultivar is highly susceptible to cassava mosaic virus disease (CMV), hence the need to improve its resistance to the disease. Various in vitro techniques have been developed for cassava research, Klu and Lamptey reported irradiation doses of 25 and 30 Gy to be ideal for in vitro mutagenesis of cassava. These doses were applied to in vivo and in vitro mutation for breeding CMV resistance in the cultivar 'Bosom Nsia'. 6 refs

  2. Isolation of 12 Bacterial endophytes from some mangrove plants and determination of, antimicrobial properties of the isolates and the plant extracts

    Directory of Open Access Journals (Sweden)

    Ibrahim M.S Eldeen

    2014-10-01

    Full Text Available Diarrhoea is a common disease which causes pain and may be deadly, especially in developing countries. In Bangladesh, diarrhoeal diseases affect thousands of people every year, and children are especially vulnerable. Bacterial toxins or viral infections a Helle Wangensteen, Line Klarpås, Mahiuddin Alamgir, Anne B. C. Samuelsen, Karl E. Malterud diarrhoea; Bangladesh; traditional medicine; mangrove plants; Diospyros peregrina; Heritiera littoralis; Ixora coccinea; Pongamia pinnata; Rhizophora mucronata; Xylocarpus granatum; Xylocarpus moluccensis 15.00 800x600 The mangrove designates a highly productive ecosystem with important economic and environmental functions. Endophytes are microorganisms that live in the intercellular spaces of plant tissue. This study aimed to isolate and identify bacterial endophytes from five mangrove plants and to determine, antimicrobial properties of the isolates and the plant extracts against four pathogenic bacteria: Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium using the deferred antagonism and the microdilution assays. Of the total 33 endophytic bacteria isolated, 18 strains showed antagonistic effects. Twelve of these inhibitors were identified using VITEK 2. Crude protein from each of the producer strains were precipitated and tested for minimum inhibitory concentration (MIC against the pathogenic bacteria using the microdilution assay. Best activities were recorded for Staphylococcus intermedius and Bacillus licheniformis (19 µl/ml against B. cereus. The S. intermedius also inhibited growth of both S. aureus and S. typhimurium (39 µl/ml. Staphylococcus lentus, Bacillus pumilus and Bacillus coagulans possessed activities against S.typhimurium with an MIC value of 78 µg/ml. For the plant extract, the lowest MIC value (9.7 µg/ml was obtained by Aviecenna lanata and Sonneratia caseolaris against B.cereus. S.caseolaris also showed significant inhibitory effects against E

  3. Relationship of Soilborne Mycoflora of Cassava Growing Fields to Incidence of Postharvest Rots of Cassava Tubers in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Maccido Ibrahim

    2014-11-01

    Full Text Available In this study the fungi associated with cassava growing fields in Sokoto were isolated and identified using soil dilution technique. A total of 215 fungal colonies from 9 fungal species were isolated from soil samples of different cassava fields between the month of June and August, 2012. It was observed that soil samples from Lambara recorded the highest number (64 of fungal species followed by Damba and the least number (44 of fungal species was observed in Wamakko.The fungi isolated were Alternaria species, Aspergillus niger, Aspergillus fumigatus, Cylindrocarpon lichenicola, Fusarium oxysporum, Geotrichum candidum, Mucor hiemalis, Rhizopus orgyzae and Scopulariopsis candida.The highest percentage frequency of occurrence was observed in Aspergillus niger (39.5% seconded by Fusarium oxysporum (18.2% and the least was seen in Rhizopus oryzae ( 2.3%. The pathogenicity test indicated that all the fungal isolates were pathogenic on cassava tubers.The fungus M. hiemalis is the most pathogenic followed by F. oxysporum and the least was recorded by R. oryzae. Therefore, it would be concluded that there is relationship between soilborne fungi and incidence of postharvest rots of cassava tubers.

  4. Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels

    Science.gov (United States)

    The potential for tuber crops such as cassava, yams and potatoes to enhance food security in the future is underestimated. In tuber crops there is the potential for a much higher ratio of edible to non-edible components than in above ground grain and bean crops such as rice, wheat, maize or soybean....

  5. Ipomoviruses: Squash vein yellowing virus, Cucumber vein yellowing virus, Cassava brown streak virus, and Ugandan cassava brown streak virus

    Science.gov (United States)

    Ipomoviruses including Squash vein yellowing virus, Cucumber vein yellowing virus and Cassava brown streak virus are currently causing significant economic impact on crop production in several regions of the world. Only recently have results of detailed characterization of their whitefly transmissi...

  6. BacillusRegNet

    DEFF Research Database (Denmark)

    Misirli, Goksel; Hallinan, Jennifer; Röttger, Richard;

    2014-01-01

    interactions. There is a need to develop new platform technologies that can be applied to the investigation of whole-genome datasets in an efficient and cost-effective manner. One such approach is the transfer of existing knowledge from well-studied organisms to closely-related organisms. In this paper, we...... associated BacillusRegNet website (http://bacillus.ncl.ac.uk)....

  7. VIGOR OF PLANTLET FROM MICROPLANTLET TREATED BY FILTRATE AND CELL SUSPENSION OF SOME ISOLATES OF BACILLUS AND RESISTANCE TO BANANA WILT PATHOGEN AFTER ACCLIMATIZATION

    Directory of Open Access Journals (Sweden)

    Hadi wiyono

    2013-08-01

    Full Text Available Blood Disease Bacterium (BDB and Fusarium oxysporum f.sp. cubense (FOC is a couple wilt pathogen  of  banana.  These pathogens are the most important constraint in cultivation of banana in Indonesia.  In the integrated control strategy of the disease, the use of healthy seedlings produced from tissue culture technique is recommended.  The seedling produced by tissue culture technique however leads to lower vigor and susceptibility to the disease due to the aseptic work in vitro causing the beneficial bacterial endophytic to be eliminated. Therefore, the utility of the beneficial endophytic bacteria should be studied for recovering the vigor and resistance of the seedling.     Three isolates of endophytic Bacillus (B04, B05, B10 have been effective as growth promoter of microplantlet and antagonist of BDB and FOC in vitro.   Here then, this article reports the study results of the vigor of the plantlet (treated microplantlet by filtrate or cell suspension of the Bacillus after 3 months in acclimatization. The results were similar to the previous results on microplantlet in vitro, that Bacillus isolates B04, B05, and B10 were capable of promoting the growth and inducing the resistance to wilt pathogens on banana plantlets.  The treatments with bacterial cell inoculums were more effective than those bacterial filtrate. Isolate B10 was most potential followed by B05 and B04 respectively.

  8. Limitations of Cassava Bacterial Blight: New Advances Limitaciones de la bacteriosis vascular de yuca: Nuevos avances

    OpenAIRE

    Verdier Valérie; López Camilo; Restrepo Silvia

    2006-01-01

    Cassava (Manihot esculenta), a starchy root crop, constitutes the source of alimentation for over 600 million people worldwide. Cassava Bacterial Blight (CBB) is caused bythe bacterium Xanthomonas axonopodis pv. manihotis (Xam). This review will focus on the current knowledge on the molecular cassava-Xam interaction. We will present the different molecular techniques developed to assess the genetic diversity and dynamics of Xam populations. We will also present different methods developed for...

  9. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    OpenAIRE

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-p...

  10. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    OpenAIRE

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Jagger J W Harvey; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of droug...

  11. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    OpenAIRE

    I Nyoman Widiasa; I Gede Wenten

    2012-01-01

    This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR). Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L). The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E). By using the developed process sc...

  12. Thermoanalytical and starch content evaluation of cassava bagasse as agro-industrial residue

    OpenAIRE

    Luiz Gustavo Lacerda; Rafael Ramires Almeida; Ivo Mottin Demiate; Marco Aurélio Silva Carvalho Filho; Eliane Carvalho Vasconcelos; Adenise Lorenci Woiciechowski; Gilbert Bannach; Egon Schnitzler; Carlos Ricardo Soccol

    2009-01-01

    Starch nutritional fractions as well as thermal properties and other analysis are essential for food and industrial application. Cassava bagasse is an important agro-industrial residue and its starch content was evaluated using two alternative methods. Thermal characterization and microscopy analyses helped to understand how hydrolysis digests starchy fraction of cassava bagasse. The melting point of cassava starch occurred at 169.2ºC. Regarding TG analyses, after moisture content, there were...

  13. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    OpenAIRE

    Sriburi Pensiri; Wongruong Sasitorn; Mauer Lisa J; Tongdeesoontorn Wirongrong; Rachtanapun Pornchai

    2011-01-01

    Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v) based films plasticized with glycerol (30 g/100 g starch) were characterized with respect to the effect of carboxymethyl cellu...

  14. False beliefs on the socio-economic drivers of cassava cropping

    OpenAIRE

    Fermont, van, A.M.; Babirye, A.; Obiero, H.M.; Abele, S; Giller, K.E.

    2010-01-01

    General belief has it that cassava is (i) a subsistence crop, grown to avoid hunger (ii) by poor farmers, (iii) predominantly as an intercrop, (iv) requiring less labour than other crops and (v) no inputs. These beliefs influence policy, project development and implementation, and if wrong, may have far-reaching consequences for the success and sustainability of interventions. This study examines five beliefs about cassava and discusses consequences for interventions targeting cassava. From 2...

  15. A crop of one's own? Women’s experiences of cassava commercialization in Nigeria and Malawi

    OpenAIRE

    Forsythe, Lora; Posthumus, Helena; Martin, Adrienne

    2016-01-01

    Improving the effectiveness of agricultural markets for economic growth and poverty reduction has been a central focus for development initiatives, particularly in Sub-Saharan Africa. Staple crops with low input requirements and drought tolerance, such as cassava, are being promoted for market development due to their accessibility for poor smallholder farmers. Narratives often equate commercialization of cassava to benefits for women, as cassava is commonly labelled a ‘women’s crop’. However...

  16. Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis

    OpenAIRE

    Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; LEBEAULT, Jean Michel

    1980-01-01

    Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either a...

  17. Kinetics of the solid state fermentation of raw cassava flour by Rhizopus formosa 28422

    OpenAIRE

    Rodriguez-Leon, J.A.; Stertz, S.C.; Soccol, S.R.; Raimbault, Maurice

    1998-01-01

    The strain #Rhizopus formosa$ 28422 was selected from the stock of ten strains from genera #Rhizopus$, for their capacity to attack raw cassava starch by solid substrate fermentation and showed the highest growth in this substrate. The optimal substrate composition, estimated by surface response design experiments, was 10% cassava bagasse, 10% soybean flour and 80% cassava flour. Optimal fermentation conditions were temperature, 32°C, moisture, 64%, initial pH, 6.5 and inoculum rate, 10exp6 s...

  18. Effects of Processing on the Chemical and Anti-nutritional Properties of Cassava Roots

    OpenAIRE

    Omosuli SV

    2014-01-01

    The nutritive and antinutritive composition of cassava roots (raw and boiled) was investigated. The proximate composition of raw and boiled cassava tubers was not significantly different (P> 0.05), except in moisture, fat, carbohydrate and Energy value. High levels of the antinutrients in raw cassava tubers (20.56mg/100g Tannins; 1,16mg/100g oxalate and 3.36mg/100g phytate) make them unsafe and unsuitable for human consumption except after processing. Mineral contents of cassava tubers were n...

  19. Promoting Cassava as an Industrial Crop in Ghana: Effects on Soil Fertility and Farming System Sustainability

    OpenAIRE

    Adjei-Nsiah, S.; Owuraku Sakyi-Dawson

    2012-01-01

    Cassava is an important starchy staple crop in Ghana with per capita consumption of 152.9 kg/year. Besides being a staple food crop, cassava can be used as raw material for the production of industrial starch and ethanol. The potential of cassava as an industrial commercial crop has not been exploited to a large extent because of perceptions that cassava depletes soils. Recent finding from field studies in the forest/savannah transitional agroecological zone of Ghana indicates that when integ...

  20. Bacillus thuringiensis and Bacillus sphaericus biopesticides production.

    Science.gov (United States)

    el-Bendary, Magda A

    2006-01-01

    The long residual action and toxicity of the chemical insecticides have brought about serious environmental problems such as the emergence and spread of insecticide resistance in many species of vectors, mammalian toxicity, and accumulation of pesticide residues in the food chain. All these problems have highlighted the need for alternative biological control agents. Entomo-pathogenic Bacillus thuringiensis (Bt) and Bacillus sphaericus (Bs) are two safe biological control agents. They have attracted considerable interest as possible replacements for the chemical insecticides. Although microbial insecticides based on Bt and Bs are available for use, their high cost makes large-scale application impracticable in developing countries. This review focuses on the economic production of these two microorganisms by submerged fermentation and solid state fermentation using agro-industrial by-products and other wastes. PMID:16598830

  1. Molecular Evidence for the Association of a Strain of Uganda Variant of East African Cassava Mosaic Virus to Symptom Severity in Cassava (Manihot esculenta Crantz) Fields in Togo

    OpenAIRE

    K. D. Adjata; Muller, E; Peterschmitt, M.; Traore, O; Y. M.D. Gumedzoe

    2009-01-01

    Problem statement: This study was carried out to demonstrate that the severity of Cassava Mosaic Disease (CMD) in Togo, is not only influenced by synergism between cassava Begomoviruses in presence, but essentially by recombination between the different Begomoviruses infecting cassava. Approach: Foliar samples presenting typical biological features of Begomoviruses infection were collected from cassava and wild infected plants from different regions of Togo and analysed by PCR targeting the C...

  2. Natural variation in expression of genes associated with biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root

    Science.gov (United States)

    Several groups have reported on massive accumulation of total carotenoids in cassava storage root (CSR). Naturally occurring color variation associated with carotenoid accumulation was observed in cassava (Manihot esculenta Crantz) storage root of landraces from Amazon. Here carotenoid profiles from...

  3. Effects of Climate Change on the Production and Profitability of Cassava in the Niger Delta Region of Nigeria

    OpenAIRE

    Ajayi, J. O.

    2015-01-01

    Nigeria is the single largest producer of cassava in the world with the bulk of the cassava coming out from the Niger Delta region. Human, economic and agricultural activities are currently threatened in the region by vagaries in climatic factors. These vagaries affect the production and profitability of cassava. The study was therefore conducted to assess the effects of climate change on the production and profitability of cassava in the Niger Delta region of Nigeria. The study made use of a...

  4. Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight

    OpenAIRE

    Luiz Filipe Pereira; Goodwin, Paul H.; Larry Erickson

    2003-01-01

    Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis, is considered one of the most important bacterial diseases of cassava (Manihot esculenta Crantz). In order to characterize the cassava genes involved in resistance to this disease, a genomic clone of a cationic peroxidase gene, MEPX1, was isolated by PCR from cassava cultivar MCOL 22. The DNA sequence of MEPX1 showed high homology with other plant peroxidase genes and contained a large intron typical of peroxidase...

  5. Transcriptome Analysis Using a High-Density Oligomicroarray under Drought Stress in Various Genotypes of Cassava: An Important Tropical Crop

    OpenAIRE

    Utsumi, Yoshinori; Tanaka, Maho; Morosawa, Taeko; Kurotani, Atsushi; Yoshida, Takuhiro; Mochida, Keiichi; Matsui, Akihiro; Umemura, Yoshimi; Ishitani, Manabu; Shinozaki, Kazuo; Sakurai, Tetsuya; Seki, Motoaki

    2012-01-01

    Cassava is an important crop that provides food security and income generation in many tropical countries and is known for its adaptability to various environmental conditions. Despite its global importance, the development of cassava microarray tools has not been well established. Here, we describe the development of a 60-mer oligonucleotide Agilent microarray representing ∼20 000 cassava genes and how it can be applied to expression profiling under drought stress using three cassava genotyp...

  6. RESOURCE UTILIZATION BEHAVIOUR OF CASSAVA PRODUCERS IN EPE AREA OF LAGOS STATE: STOCHASTIC FRONTIER PRODUCTION FUNCTION APPROACH

    OpenAIRE

    Ogunbameru, A.; Okeowo, T.A.

    2013-01-01

    The Stochastic frontier production function was used to assess the technical efficiency of cassava production in Epe Area of Lagos State, Nigeria. Results show that cassava farmers in the study area experienced increasing positive return-to-scale (2.2675. The study also reveals that a significant relationship exists between farm size, labour, planting materials, cost of other input and cassava output in the study area. Cassava farmers with large farmers are found to have higher net farm incom...

  7. Effects of endophytic fungi on the ash dieback pathogen.

    Science.gov (United States)

    Schlegel, Markus; Dubach, Vivanne; von Buol, Larissa; Sieber, Thomas N

    2016-09-01

    While Hymenoscyphus fraxineus causes dieback of the European ash (Fraxinus excelsior), flowering ash (F. ornus) appears resistant to the pathogen. To date, contributions of endophytic fungi to host resistance are unknown. The following hypotheses were tested: (i) endophytic fungi enhance the resistance of F. excelsior to the pathogen; (ii) resistance of F. ornus relies on its community of endophytic fungi. Two experiments were performed. (i) The effect of exudates of ash endophytes on the germination rate of H. fraxineus ascospores was studied in vitro Isolates of abundant Fraxinus leaf endophytes, such as Venturia fraxini, Paraconiothyrium sp., Boeremia exigua, Kretzschmaria deusta and Neofabraea alba inhibited ascospore germination. (ii) Ash seedlings inoculated in a climate chamber, with fungi sporulating on the previous year's leaf litter, were exposed to natural infections by the pathogen present in the forest. Non-inoculated seedlings were used as controls. Venturia spp. dominated the inoculated endophyte 'communities'. Subsequent exposure to H. fraxineus led to infection of F. excelsior leaves by the pathogen, but no differences in health status between pre-inoculated and non-inoculated seedlings were detected. Fraxinus ornus leaves experienced a low infection rate, independent of their colonization by endophytic fungi. These results did not support either hypothesis. PMID:27364360

  8. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  9. Endophytes are hidden producers of maytansine in Putterlickia roots.

    Science.gov (United States)

    Kusari, Souvik; Lamshöft, Marc; Kusari, Parijat; Gottfried, Sebastian; Zühlke, Sebastian; Louven, Kathrin; Hentschel, Ute; Kayser, Oliver; Spiteller, Michael

    2014-12-26

    Several recent studies have lent evidence to the fact that certain so-called plant metabolites are actually biosynthesized by associated microorganisms. In this work, we show that the original source organism(s) responsible for the biosynthesis of the important anticancer and cytotoxic compound maytansine is the endophytic bacterial community harbored specifically within the roots of Putterlickia verrucosa and P. retrospinosa plants. Evaluation of the root endophytic community by chemical characterization of their fermentation products using HPLC-HRMS(n), along with a selective microbiological assay using the maytansine-sensitive type strain Hamigera avellanea revealed the endophytic production of maytansine. This was further confirmed by the presence of AHBA synthase genes in the root endophytic communities. Finally, MALDI-imaging-HRMS was used to demonstrate that maytansine produced by the endophytes is typically accumulated mainly in the root cortex of both plants. Our study, thus, reveals that maytansine is actually a biosynthetic product of root-associated endophytic microorganisms. The knowledge gained from this study provides fundamental insights on the biosynthesis of so-called plant metabolites by endophytes residing in distinct ecological niches. PMID:25478947

  10. Comparison of three cyanogen assays for total cyanogens in cassava (Manihot esculenta Crantz)

    DEFF Research Database (Denmark)

    Saka, J.D.K.; Mhone, A.R.K.; Brimer, Leon

    1997-01-01

    The sensitivity and reproducibility of three methods for determining the total cyanogenic potential (CNp) of 7 fresh and processed cassava varieties were determined and compared. The total cyanogen content of fresh cassava roots and three cassava products (kondowole, makaka, and starch) were anal...

  11. Factors Influencing Rural Women Cassava Processors' Intention to Participate in an Agricultural Extension Education Program. Summary of Research 80.

    Science.gov (United States)

    Ojomo, Christian O.; McCaslin, N. L.

    A study examined factors influencing female cassava processors' intentions regarding participation in an extension education program on cassava processing in rural Nigeria. Interviews were conducted with 224 women who were purposely selected from areas of zone 3 of Ondo State, Nigeria, which has large concentrations of cassava processors.…

  12. Assessing the potential of biofortified cassava for improving indices of vitamin A status: Update on human studies

    Science.gov (United States)

    Cassava usually contains essentially no beta-carotene (BC). However, cassava is being bred to increase its BC content. Our objective was to test how effective biofortified cassava is at increasing serum BC and vitamin A (VA) concentrations in healthy adult women. Ten American women participated in ...

  13. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  14. Endophytic fungi associated with endogenous Boswellia sacra

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI1,♥,

    2014-11-01

    Full Text Available Endophytic fungi associated with leaves and stem tissues of Boswellia sacra growing in Dhofar Mountains of Oman were investigated from May 2008 through October 2011. The biological diversity, tissue-preference and seasonal variations of fungi were evaluated. Forty-three species and 3 varieties of fungi were recovered as new records from this plant. Of these isolates, 35 species are new reports to the mycoflora of Oman, whereas 12 species were added to the list of fungal flora of the Arabian Peninsula. The genus Alternaria (12 species is the most prevalent genus recovered from 12.5-83.3% of the screened leaves and stem samples, followed by Aspergillus (5 species, 3 varieties, 6.9-86.1%, Mycelia sterilia (76.4%, Rhizopus stolonifer (62.5%, Drechslera (3 species, 40.3-54.2%, Cladosporium (3 species, 20.8-52.8%, Curvularia lunata (38.8%, Chaetomium (2 species, 15.3-26.3%, Penicillim spp. (9.8-27.8%, Fusarium (9 species, 6.9-27.8%, Ulocladium consortiale (27.8%, Mucor hiemalis (19.5%, and the remaining species (Scytalidium thermophilum, Phoma solani, Taeniolella exilis, and Botryodiplodia theobromae exhibited very low levels of incidence (4.2-11.1%. Endophytic colonization of the leaf tissues was greater (43 species, 3 varieties comparable to stem tissues (25 species. This indicates heterogeneity and tissue-preference, with no evidence of seasonal variation. Therefore, the isolation of many fungal species and sterile mycelia supports the biodiversity of the endophytic fungi invading B. sacra and the high possibility of isolating more fungal species using advanced molecular techniques.

  15. Do foliar endophytic bacteria fix nitrogen?

    Science.gov (United States)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  16. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses

    Science.gov (United States)

    Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E.C.; Taylor, Nigel J.

    2016-01-01

    Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21–24 nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21 nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5′-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD. PMID:26811902

  17. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Zapparoli, Giacomo; Angelini, Elisa; Vallini, Giovanni

    2016-02-01

    This study represents the first investigation on ecology of endophytic bacteria isolated from 3 and 15 year-old vine stems of Vitis vinifera cv. Corvina. The analysis was performed by means of culture-dependent techniques. The obtained results showed that new grapevine endophytic genera are being discovered. Moreover, Bacilli and Actinobacteria are frequently isolated from 3 year-old plants, whereas Alpha- and Gamma- Proteobacteria classes are more prevalent in the 15 year-old plants. Shannon-Wiener (H) index and analysis of rarefaction curves revealed greater genus richness in young grapevine plants. Furthermore, results evidenced an increase of genotypic group number within specific genera (e.g., Rhizobium and Pantoea). Among isolated strains from 3 and 15 year-old stems, respectively, 34 and 39% produce siderophores; 22 and 15% secrete ammonia; 22 and 21% produce indole-3-acetic acid; 8.7 and 41% solubilize phosphate. Besides, two strains isolated from 15 year-old grapevines showed 1-aminocyclopropane-1-carboxylate deaminase activity. Antifungal activity analysis evidenced that two Bacillus strains possess growth antagonistic effect toward all the tested fungal strains. Therefore, the present study extends our knowledge of the diversity of the endophytic bacteria by providing new insights into the complexity of the grapevine microbiome. PMID:26805617

  18. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. PMID:24268182

  19. NOTE - Genetic variability among cassava accessions based on SSR markers

    Directory of Open Access Journals (Sweden)

    Márcia de Nazaré Oliveira Ribeiro

    2011-01-01

    Full Text Available The aim of this study was to characterize and estimate the genetic similarity among 93 cassava accessions. The DNAamplification was performed with 14 microsatellite primers. The amplification products were separated by a polyacrylamide gelelectrophoresis, showing a polymorphism formation, through which the accessions were discriminated against. The genetic similarityamong accessions of cassava was estimated by the Dice coefficient. Cluster analysis was carried out using the UPGMA method. Thepolymorphic primers amplified a total of 26 alleles with 2-4 alleles per loci. The genetic similarity ranged from 0.16 to 0.96. Theaverage values for observed and expected heterozygosity were 0.18 and 0.46, respectively. Twenty genetic similarity clusters weredetermined, demonstrating diversity among accessions, suggesting the possibility of heterotic hybrid generation.

  20. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...... of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, to definedesign/retrofit targets for process improvements. Economic analysis is performed to evaluate the profitability of the process...

  1. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta from Hainan

    Directory of Open Access Journals (Sweden)

    Haofu Dai

    2011-12-01

    Full Text Available An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1, isovanillin (2, 6-deoxyjacareubin (3, scopoletin (4, syringaldehyde (5, pinoresinol (6, p-coumaric acid (7, ficusol (8, balanophonin (9 and ethamivan (10, which possess significant antioxidant activities. The relative order of DPPH· scavenging capacity for these compounds was ascorbic acid (reference > 6 > 1 > 8 > 10 > 9 > 3 > 4 > 7 > 5 > 2, and that of ABTS·+ scavenging capacity was 5 > 7 > 1 > 10 > 4 > 6 > 8 > 2 > Trolox (reference compound > 3 > 9. The results showed that these phenolic compounds contributed to the antioxidant activity of cassava.

  2. Fermentation protocols for the nutritive upgrading and detoxification of cassava

    International Nuclear Information System (INIS)

    The paper outlines common recommended procedures to be followed by those working in the area to facilitate the comparison of the results obtained. The report contains the wide spectrum of recommendations towards (i) the methods of preliminary preparation fo the cassava root for further fermentation reprocessing; (ii) optimization of the environmental parameters of the fermentation process, including pretreatment manipulations, moisture content, pH, temperature, aeration, form/size of inoculum, etc., (iii) optimization of the incubation time and selecting the fermentation systems and (iv) the analytical and quality control aspects. Some problems connected with the use of exogenous nitrogen sources to enhance the protein/aminoacid synthesis (supplementation of the fermenting mash with inorganic nitrogen salts, yeast extracts, indigenous sources of vegetable/animal nature, nitrogen fixing bacteria, etc.) are discussed and considered depending on their cost and effectiveness. Concerns about the safety aspects possibly arising from the alteration of the traditional practice of the cassava fermentation are also reported. (author)

  3. Improvement of cassava cooking quality through mutation breeding

    International Nuclear Information System (INIS)

    Many high-yielding cassava varieties do not have the desired cooking quality. The objective of this project was to induce mutations to produce varieties with improved cooking quality while maintaining the disease-resistance and high-yielding characteristics. A cassava mutant (ISU-W) was obtained after irradiation of a variety from IITA with gamma rays and selection. Cuttings of the mutant were grown for 12 months in a field trial and investigated for tuber yield and cooking quality. Pest and disease incidence were monitored during the entire growth period. The results showed that the mutant retained the high-yield and disease resistant characters of the parent, and had improved cooking quality based on increased smoothness, mealiness and elasticity of the flour. (author). 7 refs, 5 tabs

  4. Use of Cassava Starch Waste as Adjoined of Covering Mortar

    OpenAIRE

    Eliane Hermes; Patrícia Gracieli Zembrzuski Pelissari; Djuliano Paz; Luana Boron; Carlos Alberto Mucelin

    2010-01-01

    This work aimed to study the reuse of the residual fiber of the cassava as material excels in civil construction, as adjoined of covering mortar. The waste used was obtained from an industry located in Missal - Paraná. Four different treatments were applied with 0, 10, 20 and 30% of fiber adding, assessing the mechanical and physical performance with respect to compression resistance, water retention, mass density, incorporated air content and retraction test. The compression resistance test ...

  5. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta) from Hainan

    OpenAIRE

    Haofu Dai; Ying Luo; Hui Wang; Kaibing Zhou; Wenli Mei; Bo Yi; Lifei Hu; Xiaoyi Wei

    2011-01-01

    An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1), isovanillin (2), 6-deoxyjacareubin (3), scopoletin (4), syringaldehyde (5), pinoresinol (6), p-coumaric acid (7), fic...

  6. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One Species on the Basis of Genetic Evidence

    OpenAIRE

    Helgason, Erlendur; Økstad, Ole Andreas; Dominique A. Caugant; Johansen, Henning A.; Fouet, Agnes; Mock, Michéle; Hegna, Ida; Kolstø, Anne-Brit

    2000-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous so...

  7. Modification of Foamed Articles Based on Cassava Starch

    International Nuclear Information System (INIS)

    This work reports the influence of radiation, plasticizers and poly vinyl alcohol (PVA) on the barrier properties [water vapour permeability (WVP)) and mechanical properties (tensile strength and elongation; compression resistance and flexibility) of foamed articles based on cassava starch. The starch foam was obtained by thermopressing process. Poly ethylene glycol (PEG, 300) was selected as plasticizer and water was necessary for the preparation of the foams. The foamed articles based on cassava starch were irradiated at low doses of 2 and 5 kGy, commonly used in food irradiation. The mechanical properties of starch foams are influenced by the plasticizer concentration and by irradiation dose. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the foams; also increase the permeability of the foams in water. After irradiation, the barrier properties and mechanical properties of the foams were improved due to chemical reactions among polymer molecules. Irradiated starch cassava foams with poly vinyl alcohol (PVA) have good flexibility and low water permeability. WVP can be reduced by low doses of gamma radiation

  8. Acid whey powder modification of gari from cassava

    Energy Technology Data Exchange (ETDEWEB)

    Okezie, B.O.; Kosikowski, F.V.

    1981-01-01

    Gari, a staple food consumed in Nigeria, is made from peeled and ground cassava tubers. The ground material is pressed with a stone slab for 2-4 days to remove moisture, and the partially fermented product is then baked over an open fire. Since gari mainly contributes energy to the diet, attempts were made to develop a more nutritious product without altering organoleptic and textural properties. In laboratory tests, ground cassava was fermented in stainless steel cheese vats for 4 days (to produce gari flavour) and then partially dehydrated by pressing in cheese cloth. A reduction in HCN content from 6.2 to 3.4 mg/100 g resulted. Various combinations of spray-dried acid whey, soya protein and freeze-dried Candida tropicalis were added to the fermented cassava, which was then pressure-cooked for 10 minutes at 121 degrees Celcius, dried and ground in a hammer mill. Product (i), made with gari fortified with 15% soya concentrate and 5% dried acid whey, was as acceptable as traditional gari and had a protein score of 75.8 vs. 9.91 for traditional gari. Product (ii), gari fortified with 20% yeast and 10% dried acid whey, had significantly lower scores for flavour and texture than traditional gari and the protein score was only 29.45. Supplementing gari with relatively inexpensive whey concentrates appears to be a means of overcoming protein energy malnutrition in children.

  9. Stability of cassava flour-based food bars

    Directory of Open Access Journals (Sweden)

    Erica Caroline da Silva

    2013-03-01

    Full Text Available The consumption of Brazilian cassava has been reduced due to a lack of adjustment to the modern lifestyle. To reverse this trend, new products could be developed specifically targeted to high-value niche markets. Cereal bars stand out as fast food high in nutritional value. A bar formula mimicking cereal bars was prepared using a mixture of Brazilian cassava flour, hydrogenated vegetable fat, dried bananas, ground cashew nuts, and glucose syrup. After being pressed, the bars were dried for 1 hour at 65 °C, packaged in films, and stored under ambient conditions. Its stability was continuously monitored for 210 days in order to ensure its safety and enable its introduction to the market. Texture loss was observed in the packed bars after 90 days of storage, but the sensory characteristics allowed the testers to perceive this tendency after only 30 days of storage. However, chemical, physical, and microbial analyses confirmed that the bars were safe for consumption for 180 days. The results showed that a 45 g cassava flour-based bar enriched with nuts and dried fruits can meet 6% of the recommended daily fiber intake with a caloric value between that of the common cereal bar and that of an energy bar. Adapting the formula with ingredients (fruits, nuts from different regions of Brazil may add value to this traditional product as a fast food.

  10. Cassava Market Participation Decisions of Producing Households in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2009-01-01

    Full Text Available Cassava is a basic staple and a major source of farm income for the people of sub-Saharan Africa. Efficiency in cassava marketing therefore becomes a very important determinant of both consumer's living cost and producer's income. At the farmer's level, which is the beginning of the marketing chain, food must produced in reasonable quantity to attract enough market participants that will make for efficient distribution. The use of food price policy to stimulate short-run marketed surplus of producing households has often been questioned. This is because some households are deficit producers who purchase crops they also produce. Increasing producer prices will therefore have adverse distributional effects on food buying, while bypassing autarkic households. An alternative would therefore be to find non-price strategic variables that motivate farm households to participate in commodity markets. This is the objective of this paper. The paper is based on primary data collected within the framework by the collaborative study of cassava in Africa (COSCA. Good market access conditions, improved market information especially on prices, the production of granules instead of dried roots or pastes increased market participation for sellers, while rising grain prices, younger and less educated heads of households encouraged participation for buyers.

  11. Emergy analysis of cassava-based fuel ethanol in China

    International Nuclear Information System (INIS)

    Emergy analysis considers both energy quality and energy used in the past, and compensates for the inability of money to value non-market inputs in an objective manner. Its common unit allows all resources to be compared on a fair basis. As feedstock for fuel ethanol, cassava has some advantages over other feedstocks. The production system of cassava-based fuel ethanol (CFE) was evaluated by emergy analysis. The emergy indices for the system of cassava-based fuel ethanol (CFE) are as follows: transformity is 1.10 E + 5 sej/J, EYR is 1.07, ELR is 2.55, RER is 0.28, and ESI is 0.42. Compared with the emergy indices of wheat ethanol and corn ethanol, CFE is the most sustainable. CFE is a good alternative to substitute for oil in China. Non-renewable purchased emergy accounts for 71.15% of the whole input emergy. The dependence on non-renewable energy increases environmental degradation, making the system less sustainable relative to systems more dependent on renewable energies. For sustainable development, it is vital to reduce the consumption of non-renewable energy in the production of CFE. (author)

  12. Characters related to higher starch accumulation in cassava storage roots.

    Science.gov (United States)

    Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan

    2016-01-01

    Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed. PMID:26892156

  13. Emergy analysis of cassava-based fuel ethanol in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Chen, Li; Yan, Zongcheng; Wang, Honglin [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2011-01-15

    Emergy analysis considers both energy quality and energy used in the past, and compensates for the inability of money to value non-market inputs in an objective manner. Its common unit allows all resources to be compared on a fair basis. As feedstock for fuel ethanol, cassava has some advantages over other feedstocks. The production system of cassava-based fuel ethanol (CFE) was evaluated by emergy analysis. The emergy indices for the system of cassava-based fuel ethanol (CFE) are as follows: transformity is 1.10 E + 5 sej/J, EYR is 1.07, ELR is 2.55, RER is 0.28, and ESI is 0.42. Compared with the emergy indices of wheat ethanol and corn ethanol, CFE is the most sustainable. CFE is a good alternative to substitute for oil in China. Non-renewable purchased emergy accounts for 71.15% of the whole input emergy. The dependence on non-renewable energy increases environmental degradation, making the system less sustainable relative to systems more dependent on renewable energies. For sustainable development, it is vital to reduce the consumption of non-renewable energy in the production of CFE. (author)

  14. Characterization of different cassava samples by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Cassava root (Manihot esculenta Crantz) is grown in all Brazilian states, being an important product in the diet of Brazilians. For many families of the North and Northeast states, it may represent the main energy source. The cassava root flour has high levels of starch, in addition to containing fiber, lipids and some minerals. There is, however, great genetic variability, which results in differentiation in its chemical composition and structural aspect. Motivated by the economic, nutritional and pharmacological importance of this product, this work is aimed at characterizing six cassava flour samples by NMR spectroscopy. The spectra revealed the main chemical groups. Furthermore, the results confirmed differences on chemical and structural aspect of the samples. For instance, the F1 sample is richer in carbohydrates, while the F4 sample has higher proportion of glycolipids, the F2 sample has higher amylose content and the F6 sample exhibits a greater diversity of glycolipid types. Regarding the molecular structure, the NMR spectra indicated that the F1 sample is more organized at the molecular level, while the F3 and F5 samples are similar in amorphicity and in the molecular packing. (author)

  15. Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars

    Institute of Scientific and Technical Information of China (English)

    Renata M. COLLARES; Luiza V. S. MIKLASEVICIUS; Mariana M. BASSACO; Nina P. G. SALAU; Marcio A. MAZUTTI; Dilson A. BISOGNIN; Lisiane M. TERRA

    2012-01-01

    This work evaluates the enzymatic hydrolysis of starch from cassava using pectinase,α-amylase,and amyloglucosidase.A central composite rotational design (CCRD) was carried out to evaluate the effects of amyloglucosidase,pectinase,reaction time,and solid to liquid ratio.All the experiments were carried out in a bioreactor with working volume of 2 L.Approximately 98% efficiency hydrolysis was obtained,resulting in a concentration of total reducing sugar released of 160 g/L.It was concluded that pectinase improved the hydrolysis of starch from cassava.Reaction time was found to be significant until 7 h of reaction.A solid to liquid ratio of 1.0 was considered suitable for hydrolysis of starch from cassava.Amyloglucosidase was a significant variable in the process:after its addition to the reaction media,a 30%-50% increase in the amount of total reducing sugar released was observed.At optimal conditions the maximum productivity obtained was 22.9 g/(L·h).

  16. Optimizing the culture conditions and determining the stability of antibiotic secretion by Polygonum viviparum of the endophytic bacteria Bacillus mojavensis%珠芽蓼内生细菌 ZA1的抑菌物质产生条件的优化及其稳定性测定

    Institute of Scientific and Technical Information of China (English)

    杨成德; 畅涛; 薛莉; 冯中红; 姚玉玲; 李婷; 陈秀蓉

    2015-01-01

    One strain of Bacillus mojavensis (ZA1 )is known to have a strong antibacterial effect against the pathogen of potato gangrene (Phomafoveata ).In this study,P .foveata was isolated as a fungal pathogen and the method of petri dish confrontation was used to determine culture conditions for optimizing and stabilizing production of the antibiotic secreted by ZA1.The results showed that the optimum culture medium for ZA1 consisted of 200 g potato,10 g peptone,20 g sucrose and 1000 mL distilled water.The optimum fermentation temperature of ZA1 was 17.8℃.The optimum pH value of ZA1’s culture medium was 6.9.The optimum 150 mL triangle bottle volume of ZA1 was 20 mL.The optimum culture mode of ZA1 was shaking cultivation in the dark for 96 hours.Results showed that the EC50 =0.1228 μL/mL against P .foveata after optimization was 37 times higher than the EC50 =4.5888 μL/mL against P .foveata before optimization.Crude extracting of bac-teriostatic from ZA1 showed that the characteristics of high temperature resistance and relative activity could reach 76.62% after it was treated at 90℃ for 2 hours.Relative activity was stable and could not be destroyed under UV irradiation for 30 minutes.The bacteriostatic extract of ZA1 had good acid and alkali resistance. When it was treated by pH=3 and pH=11,the relative activity was 92.87% and 85.11% respectively.It was not sensitive to protease and heavy metal ions such as Ag+ ,Cu2 + ,Zn2 + and Fe3 + .Relative activity remained at 86.93% after Ag+ treatment.%从珠芽蓼中分离的内生细菌 ZA1对马铃薯坏疽病菌具有良好的抑菌效果,鉴定为莫海威芽孢杆菌。本文通过平板对峙法对 ZA1分泌物抑制马铃薯坏疽病菌的培养条件进行了优化,并对 ZA1抑菌粗提物的稳定性进行了测定。结果表明,ZA1的最佳培养基为 B 培养液,最佳发酵温度为17.8℃,培养基的最佳 pH 是6.9,150 mL 三角瓶的最佳装液量为20 mL,最佳培养

  17. Exploring the potential of cassava in promoting agricultural growth in Nigeria

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2016-05-01

    Full Text Available Cassava is one of the major food crops in Nigeria, with multiple uses from human consumption to industrial applications. This study explores the potential of cassava in Nigerian agriculture based on a review of cassava development policies; performs a trend analysis of the cultivation area, production, productivity, and real price of cassava and other competing crops for the period 1961–2013; identifies the sources of growth in production; and examines the production constraints at the local level based on a survey of 315 farmers/processors and 105 marketers from Delta State. The results revealed that several policies and programmes were implemented to develop the cassava sector with mixed outcomes. Although cassava productivity grew at 1.5% per annum (p.a. during the post-structural adjustment programme period (1993–2013, its real price declined at a rate of 3.5% p.a. The effect of yield is the main source of growth in production, contributing 76.4% of the total growth followed by the area effect (28.2%. The cassava sector is constrained by inadequate market infrastructure, processing facilities, and lack of information and unstable prices at the local level. The widespread diffusion of improved tropical manioc selection technologies and investments in market and marketing infrastructure, processing technologies, irrigation/water provision and information dissemination are recommended to enhance the potential of the cassava sector to support agricultural growth in Nigeria.

  18. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz).

    NARCIS (Netherlands)

    Munyikwa, T.R.I.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the paper and textile industries amon

  19. Expanding the Application of Cassava Value Chain Technologies Through UPoCA Project

    Directory of Open Access Journals (Sweden)

    Braima Dama James

    2013-05-01

    Full Text Available Cassava can play a key role in rural economic growth in Africa, but are we there yet? Cassava varieties with 50% more yielding potential and technologies to boost processing and marketing of cassava are available. However, the sub-sector is constrained by low productivity and marketing difficulties. In 2008, USAID and IITA initiated the project “Unleashing the Power of Cassava in Response to Food Price Crisis (UPOCA as a multi-country and inter-institutional partnership enabling cassava sub-sectors to realize their full potential in rural economies. By end 2009, small holder beneficiaries associated with 55 partner organizations and 11 agricultural related firms established 306 community cassava stem multiplication sites and root production farms totalling 10,097ha with 58 improved varieties. Through experiential learning, 345 men and 142 women learnt improved techniques in cassava production, processing, product development, and packaging/labelling. The evolving achievements show that a longer-term cassava R4D partnership platform of this nature will enable the sub-sector to contribute significantly to rural economic growth in Africa.

  20. Genetic mapping using genotyping-by-sequencing in the clonally-propagated cassava

    Science.gov (United States)

    Cassava (Manihot esculenta L.) is one of the most important food crops in the tropics, but yields are far below their potential. The gene-pool of cassava contains natural genetic diversity relevant to many important breeding goals, but breeding progress has been slow, partly due to insufficient geno...

  1. The retail market for fresh cassava root tubers in the European Union (EU)

    DEFF Research Database (Denmark)

    Kolind-Hansen, Lotte; Brimer, Leon

    2010-01-01

    A number of retail shops in Copenhagen sell fresh cassava roots. Cassava roots contain the toxic cyanogenic glucoside linamarin. A survey was made of the shop characteristics, origin of the roots, buyers, shop owner's knowledge of toxicity levels, and actual toxicity levels....

  2. Gene-based Microsatellites for Cassava (Manihot esculenta Crantz): Prevalence, Polymorphisms, and Cross-taxa Utility

    Science.gov (United States)

    Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a large...

  3. Developmental peculiarities and seed-borne endophytes in quinoa: Omnipresent, robust bacilli contribute to plant fitness.

    Directory of Open Access Journals (Sweden)

    Andrea ePitzschke

    2016-01-01

    Full Text Available Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa, a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. A seed-borne microbiome was discovered and its potential role in early development and stress resistance investigated.Methods involved germination and drought exposure assays, histochemical detection of reactive oxygen species, and diverse tests with seed(ling material to assess microbial occurrence, release and proliferation. Quinoa´s microbial partners were biochemically, microscopically and taxonomically characterized.Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by bacteria of the genus Bacillus. These endophytes are mobile and reside in all seedling organs, indicating vertical transmission. Owing to their strong catalase activity and high superoxide contents they can modify host redox properties. One outcome is cell expansion, enabling quinoa to overcome a critical period in development, seedling establishment.Quinoa´s immediate confrontation with foreign ROS and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase and cosmetics (catalase industry. An exciting question arising from this work is: Can quinoa´s microbiome be transferred to improve stress resistance in other plant species?

  4. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. PMID:26946375

  5. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  6. Microbiological and Biochemical Characterization of Cassava Retting, a Traditional Lactic Acid Fermentation for Foo-Foo (Cassava Flour) Production

    OpenAIRE

    Brauman, A.; Keleke, S.; Malonga, M.; Miambi, E.; Ampe, F

    1996-01-01

    The overall kinetics of retting, a spontaneous fermentation of cassava roots performed in central Africa, was investigated in terms of microbial-population evolution and biochemical and physicochemical parameters. During the traditional process, endogenous cyanogens were almost totally degraded, plant cell walls were lysed by the simultaneous action of pectin methylesterase and pectate lysate, and organic acids (C2 to C4) were produced. Most microorganisms identified were found to be facultat...

  7. Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum:biological activity and structure

    Institute of Scientific and Technical Information of China (English)

    Carolina Santiago; Lin Sun; Murray Herbert Gibson Munro; Jacinta Santhanam

    2014-01-01

    Objective:To study bioactivity and compounds produced by an endophytic Phoma sp. fungus isolated from the medicinal plant Cinnamomum mollissimum. Methods: Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate. This was followed by bioactivity profiling of the crude extract fractions obtained via high performance liquid chromatography. The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi. Compounds purified from active fractions which showed antibacterial, antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis, mass spectrometry and admission to AntiMarin database. Results: Three known compounds, namely 4-hydroxymellein, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one and 1-(2,6-dihydroxyphenyl) ethanone, were isolated from the fungus. The polyketide compound 4-hydroxymellein showed high inhibitory activity against P388 murine leukemic cells (94.6%) and the bacteria Bacillus subtilis (97.3%). Meanwhile, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one, a benzopyran compound, demonstrated moderate inhibitory activity against P388 murine leukemic cells (48.8%) and the fungus Aspergillus niger (56.1%). The second polyketide compound, 1 (2,6-dihydroxyphenyl) ethanone was inactive against the tested targets. Conclusions: These findings demonstrate the potential of endophytes as producers of pharmacologically important compounds, including polyketides which are major secondary metabolites in fungi.

  8. Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China.

    Science.gov (United States)

    Xu, Lin; Zhang, Yong; Wang, Li; Chen, Weimin; Wei, Gehong

    2014-09-01

    A total of 201 endophytic root nodule-associated bacteria collected from two legumes indigenous to different Qilian Mountain altitudes (Hexi Corridor) were characterized through 16S rDNA polymerase chain reaction (PCR)-restriction fragment length polymorphism, 16S rRNA gene sequence analysis, and enterobacterial repetitive intergenic consensus-PCR clustering. The isolates phylogenetically belonged to 35 species in the Phyllobacterium, Ensifer, Rhizobium, Microvirga, Sphingomonas, Paracoccus, Mycobacterium, Paenibacillus, Cohnella, Sporosarcina, Bacillus, Staphylococcus, Brevibacterium, Xenophilus, Erwinia, Leclercia, Acinetobacter, and Pseudomonas genera. Phylogenetic nodA sequence analysis showed higher similarity to Sinorhizobium meliloti with strains related to the Rhizobium, Sinorhizobium, and Acinetobacter genera. Sequence analysis of the nifH gene revealed that the strains belonging to Xenophilus, Acinetobacter, Phyllobacterium, and Rhizobium had genes similar to those of Mesorhizobium and Sinorhizobium. The results indicated that horizontal gene transfer could have occurred between rhizobia and non-rhizobial endophytes. Canonical correspondence analysis revealed that altitude and host plant species contributed more to the bacterial endosymbiont separation than other ecological factors. This study provided valuable information on the interactions between symbiotic bacteria, non-symbiotic bacteria and their habitats, and thus provided knowledge on their genetic diversity and ecology. PMID:24985194

  9. Isolation of Endophytic Streptomyces Strains from Surface-Sterilized Roots

    OpenAIRE

    Sardi, P.; Saracchi, M.; Quaroni, S.; Petrolini, B.; Borgonovi, G. E.; Merli, S.

    1992-01-01

    When the roots of 28 plant species were surface sterilized and incubated on agar medium, endophytic actinomycetes in the root cortex were observed by direct microscopic observation and pure culture techniques.

  10. Some endophytes of Juncus trifidus from Tatra Mts. in Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Chlebicki

    2013-12-01

    Full Text Available This is a first part of work devoted highland rush endophytes: Penicillium expansum, Cladosporium oxysporum, Arthrinium state of Apiospora montagnei and Aureobasidium pullulans. The basidiomycete strain, possibly Lagarobasidium detriticum was also isolated.

  11. Antimicrobial chemical constituents from endophytic fungus Phomasp.

    Institute of Scientific and Technical Information of China (English)

    Hidayat Hussain; Siegfried Draeger; Barbara Schulz; Karsten Krohn; Ines Kock; Ahmed Al-Harrasi; Ahmed Al-Rawahi; Ghulam Abbas; Ivan R Green; Afzal Shah; Amin Badshah; Muhammad Saleem

    2014-01-01

    Objective:To evaluate the antimicrobial potential of different extracts of the endophytic fungus Phomasp. and the tentative identification of their active constituents.Methods:The extract and compounds were screened for antimicrobial activity using theAgarWellDiffusionMethod. Four compounds were purified using column chromatography and their structures were assigned using1H and13CNMR spectra,DEPT,2DCOSY,HMQC andHMBC experiments.Results:The ethyl acetate fraction ofPhomasp. showed good antifungal, antibacterial, and algicidal properties.One new dihydrofuran derivative, named phomafuranol(1), together with three known compounds, phomalacton(2),(3R)-5-hydroxymellein(3) and emodin(4) were isolated from the ethyl acetate fraction ofPhomasp.Preliminary studies indicated that phomalacton(2) displayed strong antibacterial, good antifungal and antialgal activities.Similarly(3R)-5-hydroxymellein (3) and emodin(4) showed good antifungal, antibacterial and algicidal properties.Conclusions:Antimicrobial activities of the ethyl acetate fraction of the endophytic fungusPhomasp. and isolated compounds clearly demonstrate thatPhomasp. and its active compounds represent a great potential for the food, cosmetic and pharmaceutical industries.

  12. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities.

    Science.gov (United States)

    Zhang, Ming; Xie, Li; Yin, Zhixuan; Khanal, Samir Kumar; Zhou, Qi

    2016-09-01

    Cassava, an important food crop, has been extensively employed as raw materials for various agri-industries to produce starch, bioethanol and other biobased products/chemicals. These cassava-based industries also generate large quantities of wastes/residues, rich in organic matter and suspended solids, and pose significant environmental issues. Their complex biochemical composition with high organic content endows them with a great potential for bioconversion into value-added products via biorefinery thereby providing economic and environmental sustainability to cassava industries. This state-of-the-art review covers the source, composition and characteristics of cassava industrial wastes and residues, and their bioconversion into value-added products, mainly biofuels (ethanol and butanol), biogas, biosurfactant, organic acids and other valuable biochemicals among others. This paper also outlines future perspectives with respect to developing more effective and efficient bioconversion processes for converting the cassava wastes and residues into high-value products. PMID:27117291

  13. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111.

    Science.gov (United States)

    Chen, Cuixia; Ding, Shaopeng; Wang, Dezheng; Li, Zhimin; Ye, Qin

    2014-07-01

    In this study, the production of succinic acid from cassava starch and raw cassava instead of glucose by Escherichia coli NZN111 was investigated. During the two-stage fermentation, simultaneous saccharification and fermentation (SSF) was applied in the anaerobic stage. The results showed that both the productivity and specific productivity in the process conducted at 40°C were higher than those in the cultivation conducted at 37°C. The yield of succinic acid based on the amount of added starch reached the highest level 0.86 g/g and cassava starch was almost totally hydrolyzed in the SSF process. With the improved cell density, 127.13 g/L of succinic acid was obtained. When the liquefied crude cassava powder was used directly in SSF, 106.17 g/L of succinic acid was formed. The result showed that crude cassava powder could be another cheap raw material for succinic acid formation. PMID:24787322

  14. Optimizing The Use of Cassava Plant and its Byproduct as Ruminant Feed

    Directory of Open Access Journals (Sweden)

    Risa Antari

    2009-12-01

    Full Text Available An alternative to overcome the lack of feed is to use local feed resources. Cassava (Manihot utilissima is a tropical plant that grows easily in all types of soil. At the time of harvest, the price is relatively cheap. Cassava has a low nutritive value, especially in crude protein, but it is a potential source of energy. The research to optimize the use of cassava as feed is by enrichment of its nutritional value, production of single cell protein or supplementation with other feed ingredient. Cassava leaves or hay contain high protein level so that it can be used as protein source. However, its utilization is limited by anti nutritive compounds, such as cyanide acid and linamarin. It can be overcome by physical, chemical and biological treatments as detoxification. The use of cassava in livestock feed requires a formulation strategy to obtain the optimal productivity.

  15. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  16. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    Science.gov (United States)

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-01-01

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  17. Bioprospecting endophytic bacteria for biological control of coffee leaf rust

    OpenAIRE

    Shiomi Humberto Franco; Silva Harllen Sandro Alves; Melo Itamar Soares de; Nunes Flávia Vieira; Bettiol Wagner

    2006-01-01

    Suppression of plant diseases due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving endophytic bacteria isolated from leaves and branches of Coffea arabica L and Coffea robusta L were conducted with the objective of evaluating the inhibition of germination of Hemileia vastatrix Berk. & Br., race II, urediniospores and the control of coffee leaf rust development in tests with leaf discs, detached leaves, ...

  18. Interactions among endophytic bacteria and fungi: effects and potentials

    Indian Academy of Sciences (India)

    W M M S Bandara; Gamini Seneviratne; S A Kulasooriya

    2006-12-01

    Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As such in vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.

  19. Comparison of Bacillus thuringiensis and Bacillus cereus

    International Nuclear Information System (INIS)

    Bacillus cereus and Bacillus thuringiensis are closely related, spore forming soil bacteria. B. thuringiensis produces insecticidal crystal proteins during sporulation and these toxins are the most important biopesticides in the world today. Genomes of the B. thuringiensis and B. cereus strains were analysed by pulsed field gel electrophoresis after treatment of the DNA with the restriction enzyme NotI. The NotI fingerprint patterns varied both within the B. thuringiensis and the B. cereus strains. The size of the fragments varied between 15 and 1350 kb. When physical maps of the B. thuringiensis and B. cereus strains were compared, B. thuringiensis appeared to be as closely related to B. cereus as the B. cereus strains were to each other. Nine out of 12 B. thuringiensis strains and 18 out of 25 B. cereus strains produced enterotoxins. The close relationship between B. thuringiensis and B. cereus should be taken into consideration when B. thuringiensis is used as a biopesticide. (author). 10 refs, 4 figs, 1 tab

  20. Marker-assisted selection in common beans and cassava

    International Nuclear Information System (INIS)

    Marker-assisted selection (MAS) in common beans (Phaseolus vulgaris L.) and cassava (Manihot esculenta) is reviewed in relation to the breeding system of each crop and the breeding goals of International Agricultural Research Centres (IARCs) and National Agricultural Research Systems (NARS). The importance of each crop is highlighted and examples of successful use of molecular markers within selection cycles and breeding programmes are given for each. For common beans, examples are given of gene tagging for several traits that are important for bean breeding for tropical environments and aspects considered that contribute to successful application of MAS. Simple traits that are tagged with easy-to-use markers are discussed first as they were the first traits prioritized for breeding at the International Center for Tropical Agriculture (CIAT) and with NARS partners in Central America, Colombia and eastern Africa. The specific genes for MAS selection were the bgm-1 gene for bean golden yellow mosaic virus (BGYMV) resistance and the bc-3 gene for bean common mosaic virus (BCMV) resistance. MAS was efficient for reducing breeding costs under both circumstances as land and labour savings resulted from eliminating susceptible individuals. The use of markers for other simply inherited traits in marker-assisted backcrossing and introgression across Andean and Mesoamerican gene pools is suggested. The possibility of using MAS for quantitative traits such as low soil phosphorus adaptation is also discussed as are the advantages and disadvantages of MAS in a breeding programme. For cassava, the use of multiple flanking markers for selection of a dominant gene, CMD2 for cassava mosaic virus (CMV) resistance at CIAT and the International Institute of Tropical Agriculture (IITA) as well as with NARS partners in the United Republic of Tanzania using a participatory plant breeding scheme are reviewed. MAS for the same gene is important during introgression of cassava green mite

  1. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Science.gov (United States)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  2. Biodiversity in Bacillus cereus

    NARCIS (Netherlands)

    Pielaat A; Fricker M; Nauta MJ; Leusden FM van; MGB

    2006-01-01

    Experiments have been performed by different partners to identify variability in properties of Bacillus cereus strains that contribute to the extent of their virulence as part of an EU project. To this end, 100 B. cereus strains were selected and screened for biological properties, such as toxin pro

  3. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes

    Science.gov (United States)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  4. Characterization of an endophytic bacterial community associated with Eucalyptus spp.

    Science.gov (United States)

    Procópio, R E L; Araújo, W L; Maccheroni, W; Azevedo, J L

    2009-01-01

    Endophytic bacteria were isolated from stems of Eucalyptus spp (Eucalyptus citriodora, E. grandis, E. urophylla, E. camaldulensis, E. torelliana, E. pellita, and a hybrid of E. grandis and E. urophylla) cultivated at two sites; they were characterized by RAPD and amplified rDNA restriction analysis (ARDRA). Endophytic bacteria were more frequently isolated from E. grandis and E. pellita. The 76 isolates were identified by 16S rDNA sequencing as Erwinia/Pantoea (45%), Agrobacterium sp (21%), Curtobacterium sp (9%), Brevibacillus sp (8%), Pseudomonas sp (8%), Acinetobacter sp (4%), Burkholderia cepacia (2.6%), and Lactococcus lactis (2.6%). Genetic characterization of these endophytic bacteria isolates showed at least eight ARDRA haplotypes. The genetic diversity of 32 Erwinia/Pantoea and 16 Agrobacterium sp isolates was assessed with the RAPD technique. There was a high level of genetic polymorphism among all the isolates and there was positive correlation between the clusters and the geographic origin of the strains. These endophytic bacteria were further analyzed for in vitro interaction with endophytic fungi from Eucalyptus spp. We found that metabolites secreted by Erwinia/Pantoea and B. cepacia isolates had an inhibitory growth effect on some endophytic fungi, suggesting that these metabolites play a role in bacterial-fungal interactions inside the host plant. Apparently, these bacteria could have an important role in plant development; in the future they may be useful for biological control of diseases and plant growth promotion, as well as for the production of new metabolites and enzymes. PMID:19937585

  5. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    Science.gov (United States)

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot. PMID:20012108

  6. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  7. ENDOPHYTIC FUNGI FROM JATROPHA CURCUS: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2013-04-01

    Full Text Available Fungal endophytes are ubiquitously reported from the living tissues of healthy plant parts from every host studied so far. These microbes attributed significantly in upraising the caliber of the host to counteract against the different stresses and herbivores, and also some times to improve the host fitness. This study presenting here the endophytic mycoflora of Jatropha curcus, which remain less explored. A total of eighteen species of fungi were isolated from leaf, stem, and roots of Jatropha curcus. The root was heavily colonized by the genera like Alternaria, Cladosporium, and Aspergillus spp. The leaf tissues however showed somewhat greater diversity of endophytic colonization. Drechslera, Curvularia, Bipolaris, Alternaria, and Aspergillus sp. were dominant in to the leaf tissues with strong presence of an unidentified genus. The species richness as well as frequency of colonization of endophytic fungi was more pronounced in the leaf tissues rather than the root and stem. This study reaffirms the fact that endophytes are host and tissues specific. In this regard, the endophytic fungi received in this study, may represent a unique source of one or more of the interesting and useful bioactive compounds similar to those of vinca alkaloid group.

  8. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    OpenAIRE

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice ...

  9. Diversity and species composition of fungal endophytes in Avenella flexuosa under different sheep grazing regimes

    OpenAIRE

    2010-01-01

    Fungal endophytes have been shown to be extremely widespread and abundant in terrestrial plants. It is also known that fungal endophytes may affect the grazing intensity of the host plant. In this study the occurrence of fungal endophytes in the perennial grass Avenella flexuosa was investigated under different grazing regimes in a field site in Norway. The main aim was to reveal to what degree the grazing influenced the fungal diversity and species composition. The fungal endophytes were ana...

  10. Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

    OpenAIRE

    Park, Young-Hwan; Kim, Young-Chang; Park, Sang Un; Lim, Hyoun-Sub; Kim, Joon Bum; Cho, Byoung-Kwan; Bae, Hanhong

    2012-01-01

    Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-yea...

  11. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  12. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Science.gov (United States)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  13. Leaf endophyte load and fungal garden development in leaf-cutting ants

    Science.gov (United States)

    Previous work has shown that leaf-cutting ants prefer to cut leaf material that is relatively low in fungal endophyte content. Such a preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in thei...

  14. Endophytes as in vitro production platforms of high value plant secondary metabolites.

    Science.gov (United States)

    Venugopalan, Aarthi; Srivastava, Smita

    2015-11-01

    Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes. PMID:26225453

  15. Endophytic fungi: a reservoir of antibacterials.

    Science.gov (United States)

    Deshmukh, Sunil K; Verekar, Shilpa A; Bhave, Sarita V

    2014-01-01

    Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as "handed down data" in family generations. May need a second, third and more "in-depth investigations?" PMID:25620957

  16. Endophytic Fungi: A Reservoir of Antibacterials

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Deshmukh

    2015-01-01

    Full Text Available Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the undeveloped countries of the world. The most important microorganisms that have seen a geometric rise in are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relavent to the problem. New, very specific and effective antibiotics are needed but also at the affordable price!!!. Herculean task for researcher all over the world. In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda that has been effective as ‘handed down data’ in family generations. May need a second, third and more in-depth investigations?

  17. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  18. Cassava: The Drought, War and Famine Crop in a Changing World

    Directory of Open Access Journals (Sweden)

    Anna Burns

    2010-11-01

    Full Text Available Cassava is the sixth most important crop, in terms of global annual production. Cassava is grown primarily for its starchy tuberous roots, which are an important staple for more than 800 million people, mostly in sub-Saharan Africa, but also in other parts of Africa, Asia, the Pacific and South America. Cassava is important for both small-scale farmers and larger-scale plantations due to its low requirement for nutrients, ability to tolerate dry conditions and easy low-cost propagation. It is sometimes referred to as the “drought, war and famine crop of the developing world” and reliance upon this crop is expected to increase in the coming years as the global climate changes. As with all crops, cassava presents some challenges which need to be addressed, especially if its production is to continue to expand. We highlight here a number of key issues around the continued and increased reliance upon cassava as a staple food crop. Cassava contains cyanogenic glycosides that release hydrogen cyanide and many cultivars are toxic if not processed before consumption. The degree of toxicity is altered by plant breeding, agricultural practice, environmental conditions and methods of food preparation. We conclude that use of cassava has the potential to help many countries achieve food security in a sustainable manner, in the face of significant environmental change, but that its introduction should be accompanied by appropriate education about its toxicity.

  19. Evaluation of synergistic effect in vacuum pack, refrigeration and irradiated treatments of minimally processed cassava

    International Nuclear Information System (INIS)

    Cassava is cultivated almost all over the world and it is considered one of the most important nutritious sources of calories in the human diet. Cassava is a viable food against starvation in several poor areas of the world because it is an extremely resistant culture and may reach satisfactory economical yield. We utilized vacuum packed industrialized cassava irradiated with 0,1 kGy, 3kGy and 5kGy and stored under refrigeration for 1, 21, 30 and 50 days. Our objective was to analyse the synergistic effect of vacuum packing, irradiation and refrigeration on the preservation of minimally processed cassava. The samples were analyzed for pH, acidity, weight, humidity, texture and color. The irradiation did not affect the chemical characteristics of the cassava. Neither the pH nor the acidity, the most relevant variables to verify deterioration in cassava, presented significant alterations during the period of storage. Comparing the irradiated treatments, the dose of 1kGy and 3kGy affected the physic-chemical characteristics of the cassava the least during the period of storage and refrigeration for 50 days; the doses of 1kGy,3kGy and 5kGy scored the highest rates the sensorial analysis during the period of storage for 21 days. (author)

  20. Milk production and economic assessment of cassava bagasse in the feed of dairy cows

    Directory of Open Access Journals (Sweden)

    Leandro Pereira Lima

    2015-08-01

    Full Text Available The addition of 0; 5; 10 and 15% cassava bagasse, based on the dry matter of the total diet of crossbred Holstein v. Zebu cows, was evaluated on milk production and composition and on the impacts of diet costs. The animals, weighing an average of 478.5 kg, were in the middle third lactation period. Diet with 15% cassava bagasse provided a 13.2% increase in production when compared to control. Feed conversion had a quadratic effect with minimum point at 4.2% of cassava bagasse inclusion. Crude protein, the only milk component that changed, increased linearly with the inclusion of cassava bagasse levels. Treatment with 15% cassava bagasse caused a more effective operational cost (42.8% higher when compared to control and the highest leveling point for milk production and price. The lowest leveling points were treatments with 5 and 10% inclusion of cassava bagasse, which had the best economic results. Concentrates caused cost increase, particularly when roughage : concentrate ratio decreased due to higher cassava bagasse inclusion levels.

  1. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity.

    Science.gov (United States)

    Bredeson, Jessen V; Lyons, Jessica B; Prochnik, Simon E; Wu, G Albert; Ha, Cindy M; Edsinger-Gonzales, Eric; Grimwood, Jane; Schmutz, Jeremy; Rabbi, Ismail Y; Egesi, Chiedozie; Nauluvula, Poasa; Lebot, Vincent; Ndunguru, Joseph; Mkamilo, Geoffrey; Bart, Rebecca S; Setter, Tim L; Gleadow, Roslyn M; Kulakow, Peter; Ferguson, Morag E; Rounsley, Steve; Rokhsar, Daniel S

    2016-05-01

    Cassava (Manihot esculenta) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp. flabellifolia and is now grown in tropical regions worldwide. Here we provide a high-quality genome assembly for cassava with improved contiguity, linkage, and completeness; almost 97% of genes are anchored to chromosomes. We find that paleotetraploidy in cassava is shared with the related rubber tree Hevea, providing a resource for comparative studies. We also sequence a global collection of 58 Manihot accessions, including cultivated and wild cassava accessions and related species such as Ceará or India rubber (M. glaziovii), and genotype 268 African cassava varieties. We find widespread interspecific admixture, and detect the genetic signature of past cassava breeding programs. As a clonally propagated crop, cassava is especially vulnerable to pathogens and abiotic stresses. This genomic resource will inform future genome-enabled breeding efforts to improve this staple crop. PMID:27088722

  2. Improvement of the nutrient qualities of cassava fermented end-products

    International Nuclear Information System (INIS)

    The yeast strains Saccharomycopsis fibuliger NRRL (Y-2388), Saccharomyces diastaticus NRRL (Y-2416 and Y-4238), Schwaniomyces occidentalis NRRLY-2477 as well as nor-leucine resistant and amylase-overproducing mutants of NRRL-Y-2338 (obtained with the help of NTG-mutagenesis) were used to study their abilities to increase the yield of protein into the cassava fermenting pulp. Their growth kinetics, amylase activity and biomass production initially studied on 2% MYPS medium. S. fibuliger (Y-2388) gave the highest biomass concentration (13,4 g/e) and was found to be superior to other wild strains for protein enrichment of cassava through fermentation. The optimization of the condition for fermentation revealed that 5% w/v of the cassava pulp at pH 6 with an addition of the yeast extract increased the protein content of cassava from 2.8% to 5.6%. The use of amylase overproducing mutants of S. fibuliger Y-2388 inoculated singly or in combination with others did not promote the enrichment of cassava, whereas nor-leucine resistant mutants considerable increased the protein content in the cassava pulp and no supplementation of the pulp with any nutrients is required. Hence, both S. fibuligera Y-2388 wild and its nor-leucine resistant mutant should be considered as a potential inocula with respect to protein enrichment of the cassava fermented end-product. (author). 3 figs, 9 tabs

  3. Production and Purification of Bioethanol from Molasses and Cassava

    Science.gov (United States)

    Maryana, Roni; Wahono, Satriyo Krido

    2009-09-01

    This research aim to analysis bioethanol purification process. Bioethanol from cassava has been produced in previous research and the ethanol from molasses was taken from Bekonang region. The production of bioethanol from cassava was carried out through several processes such as homogenization, adding of α-amylase, β-amylase and yeast (Saccharomyces c). Two types of laboratory scale distillator have been used, the first type is 50 cm length and 4 cm diameter. The second type distillator is 30 cm length and 9 cm diameter. Both types have been used to distill bioethanol The initial concentration after the fermentation process is 15% for bioethanol from cassava and 20-30% ethanol from molasses. The results of first type distillator are 90% of bioethanol at 50° C and yield 2.5%; 70% of bioethanol at 60° C and yield 11.2%. 32% of bioethanol at 70° C and yield 42%. Meanwhile the second distillator results are 84% of bioethanol at 50° C with yield 12%; 51% of bioethanol at 60° C with yield 35.5%; 20% of bioethanol at 70° C with yield 78.8%; 16% of bioethanol at 80° C with yield 81.6%. The ethanol from molasses has been distillated once times in Bekonang after the fermentation process, the yield was about 20%. In this research first type distillator and the initial concentration is 20% has been used. The results are 95% of bioethanol at 75° C with yield 8%; 94% of bioethanol at 85° C with yield 13% when vacuum pump was used. And 94% of bioethanol at 90° C with yield 3.7% and 94% of bioethanol at 96° C with yield 10.27% without vacuum pump. The bioethanol purification use second type distillator more effective than first type distillator.

  4. Analysis of in vitro regenerated cassava plants using RAPD technology

    International Nuclear Information System (INIS)

    Cassava is an important tuber crop grown in tropical and subtropical regions. Protocols for regeneration from tissue culture are very genotype dependent and in many cultivars quite ineffective, therefore improvement programmes through genetic engineering are restricted. Recently, protocols were developed for efficient somatic embryogenesis and/or organogenesis using zygotic embryos and nodal axillary meristems to minimize genotype dependency. Buds were regenerated directly from the exercised explants after a two step culture procedure. In the embryo explants, profilic shoot formation occurred within 2-3 weeks on a medium containing 0.5 mg I-1 BAP alone, or in combination with 0.1 mg I-1 NAA. Nodal explants with an axillary meristem were used to initiate a round, compact, 'bulb like' structure in the high cytokinin containing medium. In the presence of NAA (0.1 mg I-1), BAP (1 mg I-1) and GA3 (0.1 mg I-1), these structures produced multiple shoots. Efficient somatic embryogenesis was obtained from the cotyledon explants. Plants were obtained from all the African genotypes tested, although at different frequencies. The rooting of regenerated shoots exceeded 95% in phytohormone free medium. The polidy of the regenerants was examined using flow cytometry; no change in their ploidy level was observed. The random amplified polymorphic DAN (RAPD)-polymerase chain reaction (PCR) technique was employed to investigate molecular differences and also to generate polymorphic DNA markers in the in vitro regenerated Cassava plants. Twenty primers were used to generate patterns from several regenerants of two Cassava cultivars. The validity of using RAPD markers in such studies is discussed. (author). 3 refs, 1 tab

  5. Density Equation of Cassava-Stalk Briquettes Under Moderate Die-Pressure

    Directory of Open Access Journals (Sweden)

    Patomsok Wilaipon

    2010-01-01

    Full Text Available Problem statement: Agricultural residues seem to be the most promising energy resources for developing countries. However, the majority of them have low energy density. One of the favorable technologies for enhancing that property is briquetting. For the case of Phitsanulok, a province in Northern Thailand, cassava is one of the most important crops. Therefore, a large amount of cassava stalk is left in the field after harvest. This study was aimed to investigate the quantity of cassava stalk in this province and to study cassava stalk briquette production. Approach: The potential energy from cassava stalk was calculated based on the productivity, residue-to-product ratio, residue returned to soil ratio and its heating value. Besides, the effects of moderate-range compression pressure, 70-110 bar, and the binder ratio, 10-20%, on briquette density were investigated. An empirical model was also developed and validated. Results: Base on the estimation, the quantity of usable cassava stalk in this area was approximately 18 kton year-1. The heating value of cassava stalk was found to be 16.39 MJ kg-1. Therefore, the total energy over 289 TJ year-1 can be obtained from this agricultural waste. According to the experiment, briquette density was in the range of 0.40-0.77 g cm-3. The coefficient of multiple determination for prediction of the proposed model was about 94.7%. Conclusion: It appeared that cassava stalk has high potential as energy source for this area. The density of cassava stalk briquette was increased with an increase in compaction pressure. Besides, it was found that the proposed model can be used for density prediction over the studied range.

  6. Genotype × environment interaction effects on early fresh storage root yield and related traits in cassava

    Directory of Open Access Journals (Sweden)

    Robooni Tumuhimbise

    2014-10-01

    Full Text Available Cassava (Manihot esculenta Crantz is an important root crop worldwide. It exhibits substantial differential genotypic responses to varying environmental conditions, a phenomenon termed genotype × environment interaction (GEI. A significant GEI presents challenges in the selection of superior genotypes. The objective of this study was to examine the effect of genotype, environment and GEI on early fresh storage root yield (FSRY and related traits in cassava. Accordingly, 12 cassava genotypes were evaluated in a randomised complete block design at three contrasting locations (Jinja, Nakasongola and Namulonge in Uganda. Trials were harvested nine months after planting and the data collected were analysed using the additive main effects and multiplicative interaction (AMMI model. The AMMI analysis of variance showed significant variation among genotypes for early FSRY and all other traits assessed. Locations were significantly different for all traits except for cassava brown streak disease root necrosis. The GEI effect was non-significant for early FSRY, but significant for other traits. For early FSRY, 48.5% of the treatment sum of squares was attributable to genotypes, 27.3% to environments, and 24.1% to GEI, indicating a predominance of genotypic variation for this trait. Predominance of genotypic variation was also observed for all the other traits. A majority of the genotypes (67% had low interaction effects with locations for early FSRY, with Akena, CT2, CT4 and NASE14 being the most stable genotypes for the trait. Significant negative correlation was observed between cassava mosaic disease severity and early FSRY and storage root number, indicating significant negative effects of cassava mosaic disease on early FSRY and stability in cassava. The information generated will inform future selection initiatives for superior early-yielding cassava genotypes combining resistance to cassava mosaic and brown streak diseases in Uganda.

  7. Genotype × environment interaction effects on early fresh storage root yield and related traits in cassava

    Institute of Scientific and Technical Information of China (English)

    Robooni; Tumuhimbise; Rob; Melis; Paul; Shanahan; Robert; Kawuki

    2014-01-01

    Cassava(Manihot esculenta Crantz) is an important root crop worldwide. It exhibits substantial differential genotypic responses to varying environmental conditions, a phenomenon termed genotype × environment interaction(GEI). A significant GEI presents challenges in the selection of superior genotypes. The objective of this study was to examine the effect of genotype,environment and GEI on early fresh storage root yield(FSRY) and related traits in cassava.Accordingly, 12 cassava genotypes were evaluated in a randomised complete block design at three contrasting locations(Jinja, Nakasongola and Namulonge) in Uganda. Trials were harvested nine months after planting and the data collected were analysed using the additive main effects and multiplicative interaction(AMMI) model. The AMMI analysis of variance showed significant variation among genotypes for early FSRY and all other traits assessed.Locations were significantly different for all traits except for cassava brown streak disease root necrosis. The GEI effect was non-significant for early FSRY, but significant for other traits. For early FSRY, 48.5% of the treatment sum of squares was attributable to genotypes, 27.3% to environments, and 24.1% to GEI, indicating a predominance of genotypic variation for this trait.Predominance of genotypic variation was also observed for all the other traits. A majority of the genotypes(67%) had low interaction effects with locations for early FSRY, with Akena, CT2, CT4 and NASE14 being the most stable genotypes for the trait. Significant negative correlation was observed between cassava mosaic disease severity and early FSRY and storage root number,indicating significant negative effects of cassava mosaic disease on early FSRY and stability in cassava. The information generated will inform future selection initiatives for superior early-yielding cassava genotypes combining resistance to cassava mosaic and brown streak diseases in Uganda.

  8. Cassava root meal as substitute for maize in layers ration

    OpenAIRE

    M Anaeto; LC Adighibe

    2011-01-01

    The effect of replacing maize with graded levels of cassava root meal (CRM) as energy source in the diet of laying hens was evaluated during the eight weeks of feeding experiment on performance and cost benefits on layers. Forty-five Nera black laying hens of 24 weeks of age were allocated to five dietary treatments, with nine birds per treatment in a completely randomized design. CRM was used to formulate the diets at 0, 25, 50, 75, and 100%. The result showed that the feed intake of birds i...

  9. Energy and greenhouse gas balances of cassava-based ethanol

    International Nuclear Information System (INIS)

    Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses. -- Highlights: ► Cassava-based ethanol substitution for gasoline in form of E5 could save 1.4 MJ km−1 ► Ethanol substitution for gasoline in form of E5 reduces a CO2e emission of 156 g km−1 ► We examined changes in fuel efficiency of blends affecting energy and GHG balances. ► LUC and change in soil management lead to a CO2e emission of 942 g L−1 of ethanol. ► LUC effects, energy inputs, yields, and by-products explain results among studies

  10. Cassava flour and starch : progress in research and development

    OpenAIRE

    Giraud, Eric; Brauman, Alain; Kéléke, S.; Gosselin, Laurent; Raimbault, Maurice

    1996-01-01

    An amylolytic lactic acid bacterium, identified as #Lactobacillus plantarum$, was isolated from cassava roots (#Manihot esculenta$ var. Ngansa) during retting. Cultured on starch, the strain displayed a growth rate of 0.43 per hour, a biomass yield of 0.19 g/g, and a lactate yield of 0.81 g/g. The growth kinetics were similar on starch and glucose. Enough enzyme was synthesized, and starch hydrolysis was not a limiting factor for growth. The synthesized amylolytic enzyme was purified by fract...

  11. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    OpenAIRE

    Sujatha Kandasamy; Balachandar Dananjeyan; Kumar Krishnamurthy; Gero Benckiser

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the in...

  12. Alterations of reproduction system in a polyploidized cassava interspecific hybrid.

    Science.gov (United States)

    Nassar, Nagib M A; Graciano-Ribeiro, Dalva; Gomes, Paula F; Hashimoto, Danielle Y C

    2010-04-01

    The objective of this research was to examine how much polyploidy may affect seed and root formation in cassava interspecific hybrids Manihot esculenta Crantz xM. oligantha Pax. A polyploid type was induced by colchicine treatment to lateral buds followed by propagating vegetatively arising stems. Cytogenetic and anatomical analyses were made on both polyploid and diploid types. The polyploid type showed extensive chromosome pairing and pollen viability. Multiembryonic ovule frequency increased in polyploid plants. Stalks became woody and propagation through roots difficult, the edible roots increased, however, in size. PMID:20536543

  13. Water Quality Changes Associated with Cassava Production: Case Study of White Volta Bain.

    Science.gov (United States)

    Awotwi, Alfred; Bediako, Michael Asare; Harris, Emmanuel; Forkuo, Eric Kwabena

    2016-08-01

    The outcome reveal that as the land use in the catchment areas change from mixed agricultural to cassava cultivation, the simulated loads and concentrations of nitrogen species from cassava land-use scenario recorded reduction. The resultant concentrations of nitrate and nitrite for both current and future land-use scenarios are all below the daily limit suggested by the WHO, (World Health Organization). For the phosphate concentration, an increase of 4.21% was depicted under cassava land-use scenario. The results show that SWAT is a reliable water quality model, capable of simulating accurate information for developing environmental management plans. PMID:27626092

  14. Cassava: The Drought, War and Famine Crop in a Changing World

    OpenAIRE

    Anna Burns; Roslyn Gleadow; Julie Cliff; Anabela Zacarias; Timothy Cavagnaro

    2010-01-01

    Cassava is the sixth most important crop, in terms of global annual production. Cassava is grown primarily for its starchy tuberous roots, which are an important staple for more than 800 million people, mostly in sub-Saharan Africa, but also in other parts of Africa, Asia, the Pacific and South America. Cassava is important for both small-scale farmers and larger-scale plantations due to its low requirement for nutrients, ability to tolerate dry conditions and easy low-cost propagation. It is...

  15. Effect of processing conditions on the texture of reconstituted cassava dough

    Directory of Open Access Journals (Sweden)

    E. Rodríguez-Sandoval

    2008-12-01

    Full Text Available Deformability modulus, hardness, cohesiveness and adhesiveness of cassava dough reconstituted from precooked flour were evaluated using a lubricated compression test and texture profile analysis. Cassava parenchyma processed under different cooking conditions and left at either -5ºC or -20ºC for 24 h was used to make flour, which was reconstituted into dough. As temperature decreased to -20ºC during the storage period of cooked parenchyma, deformability modulus, hardness and cohesiveness of dough increased significantly. The temperature during the storage period was the most important factor affecting the textural properties of cassava dough.

  16. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li;

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed...... highest hydrogen production of 434 mL, 67% higher than raw cassava stillage....

  17. Isolation of endophytic fungi from Coscinium fenestratum- a red listed endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Santhosh Wilson Goveas

    2011-08-01

    Full Text Available Enumeration of the endophytic fungi from the red listed, critically endangered medicinal plant, Coscinium fenestratum was investigated for the first time. The ubiquitous presence of 41 endophytic fungi belonging to sixteen different taxa was identified from 195 samples of healthy leaves and stem using traditional morphological methods. The overall colonization rate of endophytes in both the leaf and the stem was found to be 21.02%.The stem showed low percentage frequency of colonization of the endophytic fungi when compared to leaf segments. Among the endophytic flora, Phomopsis jacquiniana was found to be the core-group fungus with a colonization frequency of 4.6%.

  18. Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in Genetically Engineered Cassava cv. KU50 through RNA Silencing

    KAUST Repository

    Ntui, Valentine Otang

    2015-04-22

    Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV). The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi) in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  19. Resistance to Sri Lankan cassava mosaic virus (SLCMV in genetically engineered cassava cv. KU50 through RNA silencing.

    Directory of Open Access Journals (Sweden)

    Valentine Otang Ntui

    Full Text Available Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV. The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  20. Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Isolates

    OpenAIRE

    Hill, Karen K.; Ticknor, Lawrence O.; Okinaka, Richard T.; Asay, Michelle; Blair, Heather; Bliss, Katherine A.; Laker, Mariam; Pardington, Paige E.; Richardson, Amber P.; Tonks, Melinda; Beecher, Douglas J.; Kemp, John D.; Kolstø, Anne-Brit; Wong, Amy C. Lee; Keim, Paul

    2004-01-01

    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. D...

  1. Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis

    OpenAIRE

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, Michael R.; Bhotika, Smriti S.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana

    2006-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian sero...

  2. Epichloë grass endophytes in sustainable agriculture.

    Science.gov (United States)

    Kauppinen, Miia; Saikkonen, Kari; Helander, Marjo; Pirttilä, Anna Maria; Wäli, Piippa R

    2016-01-01

    There is an urgent need to create new solutions for sustainable agricultural practices that circumvent the heavy use of fertilizers and pesticides and increase the resilience of agricultural systems to environmental change. Beneficial microbial symbionts of plants are expected to play an important role in integrated pest management schemes over the coming decades. Epichloë endophytes, symbiotic fungi of many grass species, can protect plants against several stressors, and could therefore help to increase the productivity of forage grasses and the hardiness of turf grasses while reducing the use of synthetic pesticides. Indeed, Epichloë endophytes have successfully been developed and commercialized for agricultural use in the USA, Australia and New Zealand. Many of the host grass species originate from Europe, which is a biodiversity hotspot for both grasses and endophytes. However, intentional use of endophyte-enhanced grasses in Europe is virtually non-existent. We suggest that the diversity of European Epichloë endophytes and their host grasses should be exploited for the development of sustainable agricultural, horticultural and landscaping practices, and potentially for bioremediation and bioenergy purposes, and for environmental improvement. PMID:27249195

  3. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    Science.gov (United States)

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production. PMID:23274988

  4. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae

    Directory of Open Access Journals (Sweden)

    Liang Hanqiao

    2012-11-01

    Full Text Available Abstract Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC and fermentation broth (FB were tested for antimicrobial activity using peptide deformylase (PDF inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC and 33.33% of the fermentation broths (FB displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  5. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.

    Science.gov (United States)

    Ali, Shimaila; Duan, Jin; Charles, Trevor C; Glick, Bernard R

    2014-02-21

    The vast majority of plants harbor endophytic bacteria that colonize a portion of the plant's interior tissues without harming the plant. Like plant pathogens, endophytes gain entry into their plants hosts through various mechanisms. Bacterial endophytes display a broad range of symbiotic interactions with their host plants. The molecular bases of these plant-endophyte interactions are currently not fully understood. In the present study, a set of genes possibly responsible for endophytic behavior for genus Burkholderia was predicted and then compared and contrasted with a number (nine endophytes from different genera) of endophytes by comparative genome analysis. The nine endophytes included Burkholderia phytofirmans PsJN, Burkholderia spp. strain JK006, Azospirillum lipoferum 4B, Enterobacter cloacae ENHKU01, Klebsiella pneumoniae 342, Pseudomonas putida W619, Enterobacter spp. 638, Azoarcus spp. BH72, and Serratia proteamaculans 568. From the genomes of the analyzed bacterial strains, a set of bacterial genes orthologs was identified that are predicted to be involved in determining the endophytic behavior of Burkholderia spp. The genes and their possible functions were then investigated to establish a potential connection between their presence and the role they play in bacterial endophytic behavior. Nearly all of the genes identified by this bioinformatics procedure encode function previously suggested in other studies to be involved in endophytic behavior. PMID:24513137

  6. Endophytic fungi in Scots pine needles: Spatial variation and consequences of simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Helander, M.L.; Neuvonen, S. (Turku Univ., Turku (F)); Sieber, T.N.; Petrini, O. (Swiss Federal Inst. of Technology, Zurich (Switzerland))

    1994-01-01

    Within- and among-tree variation in assemblages of endophytic fungi in Scots pine (Pinus sylvestris) needles were studied in a subarctic area where background pollution values are low; the effects of tree density and prolonged simulated acid rain on the occurrence of endophytic fungi were investigated. The needle endophyte most frequently isolated was Cenangium ferruginosum, accounting for 64% of all fungal individuals, followed by Cyclaneusma minus (12% of all individuals). Old needles were colonized more frequently by endophytes than young ones. In young needles the colonization by endophytes increased during the summer, whereas in old ones no seasonal variation was detected. Endophyte colonization was positively correlated with stand density and was reduced on pines treated with spring water acidified with either sulphuric acid alone or in combination with nitric acid. In contrast, nitric acid alone did not affect endophyte colonization. 37 refs., 2 figs., 5 tabs.

  7. Bioprospecting endophytic bacteria for biological control of coffee leaf rust Bioprospecção de bactérias endofíticas como agentes de biocontrole da ferrugem do cafeeiro

    Directory of Open Access Journals (Sweden)

    Humberto Franco Shiomi

    2006-02-01

    Full Text Available Suppression of plant diseases due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving endophytic bacteria isolated from leaves and branches of Coffea arabica L and Coffea robusta L were conducted with the objective of evaluating the inhibition of germination of Hemileia vastatrix Berk. & Br., race II, urediniospores and the control of coffee leaf rust development in tests with leaf discs, detached leaves, and on potted seedling of cv. Mundo Novo. The endophytic bacterial isolates tested proved to be effective in inhibiting urediniospore germination and/or rust development, with values above 50%, although the results obtained in urediniospore germination tests were inferior to the treatment with fungicide propiconazole. Endophytic isolates TG4-Ia, TF2-IIc, TF9-Ia, TG11-IIa, and TF7-IIa, demonstrated better coffee leaf rust control in leaf discs, detached leaves, and coffee plant tests. The endophytic isolates TG4-Ia and TF9-Ia were identified as Bacillus lentimorbus Dutky and Bacillus cereus Frank. & Frank., respectively. Some endophytic bacterial isolates were effective in controlling the coffee leaf rust, although some increased the severity of the disease. Even though a relatively small number of endophytic bacteria were tested, promising results were obtained regarding the efficiency of coffee leaf rust biocontrol. These selected agents appears to be an alternative for future replacement of chemical fungicide.Supressão de doenças de plantas por microrganismos endofíticos tem sido demonstrada em diversos patossistemas. Neste trabalho foram selecionados isolados de bactérias endofíticas de folhas e ramos de cafeeiro com potencial para o controle biológico da ferrugem do cafeeiro, pois é conhecido que esses microrganismos podem possuir essa característica. Bactérias endofíticas isoladas previamente de folhas e ramos de Coffea arabica L e Coffea

  8. Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants.

    Science.gov (United States)

    Lacava, P T; Li, W B; Araújo, W L; Azevedo, J L; Hartung, J S

    2006-06-01

    Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis disease in sweet orange. There is evidence that X. fastidiosa interacts with endophytic bacteria present in the xylem of sweet orange, and that these interactions, particularly with Methylobacterium mesophilicum, may affect disease progress. However, these interactions cannot be evaluated in detail until efficient methods for detection and enumeration of these bacteria in planta are developed. We have previously developed standard and quantitative PCR-based assays specific for X. fastidiosa using the LightCycler system [Li, W.B., Pria Jr., L.P.M.W.D., X. Qin, and J.S. Hartung, 2003. Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93:953-958.], and now report the development of both standard and quantitative PCR assays for M. mesophilicum. The assays are specific for M. mesophilicum and do not amplify DNA from other species of Methylobacterium or other bacteria commonly associated with citrus or plant tissue. Other bacteria tested included Curtobacterium flaccumfaciens, Pantoea agglomerans, Enterobacter cloacae, Bacillus sp., X. fastidiosa, Xanthomonas axonopodis pv. citri, and Candidatus Liberibacter asiaticus. We have demonstrated that with these methods we can quantitatively monitor the colonization of xylem by M. mesophilicum during the course of disease development in plants artificially inoculated with both bacteria. PMID:16266765

  9. Cytotoxic and Antibiotic Cyclic Pentapeptide from an Endophytic Aspergillus tamarii of Ficus carica.

    Science.gov (United States)

    Ma, Yang-Min; Liang, Xi-Ai; Zhang, Hong-Chi; Liu, Rui

    2016-05-18

    A new cyclic pentapeptide, disulfide cyclo-(Leu-Val-Ile-Cys-Cys) (1), named malformin E, together with 13 known cyclic dipeptides, was isolated from the culture broth of endophytic fungus FR02 from the roots of Ficus carica. The strain FR02 was identified as Aspergillus tamarii on the basis of morphological characteristics and molecular analyses of internal transcribed spacer (ITS). Their structures were determined by the combination of 1D and 2D NMR spectroscopy, HRMS (ESI), UV, and Marfey's analysis. Compound 1 exhibited strong cytotoxic activities against human cancer cell strains MCF-7 and A549 with IC50 values of 0.65 and 2.42 μM, respectively. It also displayed remarkable antimicrobial activities against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Penicillium chrysogenum, Candida albicans, and Fusarium solani with MIC values of 0.91, 0.45, 1.82, 0.91, 3.62, 7.24, and 7.24 μM, respectively. PMID:27147299

  10. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    Science.gov (United States)

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. PMID:26809052

  11. Endophytic Bacillus Spp. of Theobroma cacao: Ecology and potential for biological control of cacao diseases

    OpenAIRE

    Melnick, Rachel L

    2010-01-01

    In South America, there are three key diseases that affect the yield of Theobroma cacao: black pod, caused by Phytophthora spp.; frosty pod, caused by Moniliophthora roreri; and witches' broom, caused by Moniliophthora perniciosa. Although chemical control options exist, farmers typically only use cultural disease management such as phytosanitary pruning. Agrochemical use can be problematic in the developing countries where cacao is grown due to large risks to human health and the environment...

  12. Cassava root meal as substitute for maize in layers ration

    Directory of Open Access Journals (Sweden)

    M Anaeto

    2011-06-01

    Full Text Available The effect of replacing maize with graded levels of cassava root meal (CRM as energy source in the diet of laying hens was evaluated during the eight weeks of feeding experiment on performance and cost benefits on layers. Forty-five Nera black laying hens of 24 weeks of age were allocated to five dietary treatments, with nine birds per treatment in a completely randomized design. CRM was used to formulate the diets at 0, 25, 50, 75, and 100%. The result showed that the feed intake of birds in the control group was significantly (p<0.05 different from those fed the CRM diets. The average weight gain of layers receiving up to 50% CRM was similar to the control birds, but significantly different from layers fed 75 and 100% CRM. No mortality was recorded. Egg production per hen per day and average egg weight were significantly different (p<0.05 for birds consuming more than 50% CRM in T4 and T5. Layer feed ration was made cheaper by the replacement of maize with cassava root meal in the diets.

  13. Local domestication of lactic acid bacteria via cassava beer fermentation.

    Science.gov (United States)

    Colehour, Alese M; Meadow, James F; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Urlacher, Samuel S; Bohannan, Brendan J M; Snodgrass, J Josh; Sugiyama, Lawrence S

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  14. Local domestication of lactic acid bacteria via cassava beer fermentation

    Directory of Open Access Journals (Sweden)

    Alese M. Colehour

    2014-07-01

    Full Text Available Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.

  15. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscript reviews the current state of biofuels worldwide and at the national level,and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  16. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscrip reviews the current state of biofuels worldwide and at the national level, and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  17. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion.

    Science.gov (United States)

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; Lorenzetii, Emi Rainildes; Souza, Thiago Pereira; Schwan, Rosane Freitas

    2012-02-01

    This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves

  18. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  19. 76 FR 14289 - Bacillus thuringiensis

    Science.gov (United States)

    2011-03-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption From the... permissible level for residues of Bacillus thuringiensis eCry3.1Ab protein in corn. The temporary tolerance... Register of January 21, 2011 (76 FR 3885) (FRL-8855- 4), EPA issued a notice pursuant to section...

  20. 75 FR 34040 - Bacillus thuringiensis

    Science.gov (United States)

    2010-06-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption from the... Bacillus thuringiensis eCry3.1Ab protein in corn under the FFDCA. The temporary tolerance exemption expires...) 305-5805. II. Background and Statutory Findings In the Federal Register of September 30, 2009 (74...

  1. Enzyme activities and substrate degradation by fungal isolates on cassava waste during solid state fermentation.

    Science.gov (United States)

    Pothiraj, C; Eyini, M

    2007-12-01

    The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively. PMID:24015097

  2. CONTRIBUTIONS OF MICROFINANCE INSTITUTIONS TO ECONOMIC EFFICIENCY OF CASSAVA FARMERS IN ABIA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Kingsley Chukwuemeka OBIKE

    2014-10-01

    Full Text Available The study examined contributions of microfinance institutions to economic efficiency of cassava farmers in Abia state, Nigeria. A multistage random sampling technique was adopted in collecting cross sectional data on a sample size of 240 respondents (120 MFI beneficiaries and 120 non beneficiaries. Primary Data was collected by administering questionnaire on cassava farmers. The result showed that economic efficiency of MFI beneficiaries was influenced by wage rate, price of fertilizer and adjusted Y (output, while wage rate, price of fertilizer and price of cassava cutting s are variables that influenced economic efficiency of non beneficiaries. The t – test analysis confirmed that MFI beneficiaries had higher economic efficiency advantage compared with non beneficiaries. It is recommended that government agricultural policy should take positive steps to reduce interest rate to encourage MFI efforts in providing the necessary platform to encourage higher efficiency in cassava production in Abia state, Nigeria.

  3. The sustainability of cassava-based bioethanol production in southern Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Birch-Thomsen, Torben; Bruun, Thilde Bech;

    2015-01-01

    The demand for biofuels has been rising, which has led developing countries to focus on production of feedstocks for biodiesel and bioethanol production. This has caused concerns for the impacts on food security, food prices and environmental sustainability. This paper examines a hypothetical case...... of cassava-based bioethanol production in southern Mali, assessing its environmental, economic and social sustainability. Results demonstrate that environmental sustainability of cassava-based bioethanol production depends on the ‘baseline’ chosen: Compared to the situation before the decline in cotton...... of labour input. Analysis of the significance of current cassava production for food security shows that bioethanol production should be based on the attiéké variety of cassava, thereby avoiding interference with the important role of the bonouma in assuring food security in northern Mali. The key factor...

  4. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. PMID:23073093

  5. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-01

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. PMID:25498641

  6. Application of pure strains to standardize the acidification process and the amylolytic activity in cassava fermentation

    International Nuclear Information System (INIS)

    The report describes some aspects of the optimization of the traditional fermentation of cassava and potential role of the acidification process in the development of microflora at the different stages of the fermentation. It was shown that the inoculation of the cassava fermenting pulp by pure cultures of lactic acid bacteria such as Lactobacillus cellobiosus and L. plantarum had resulted in sufficient acceleration of the fermentation process and the desired condition of the fermented end-product could reach in 7-24 hours instead of 72 hours (natural fermentation). The effects similar to these were obtained in the experiments on inoculation of cassava with the fermented mass (or with drained liquor) from the previous bath. The optimal condition for the exhibition of the amylolytic activity in fresh cassava was: pH 6,0 at 40 deg. C, out of this range the activity falls down sharply. (author). 22 figs, 3 tabs

  7. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis of...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  8. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  9. Vincamine-producing endophytic fungus isolated from Vinca minor.

    Science.gov (United States)

    Yin, Hong; Sun, Yu-Hong

    2011-06-15

    Vinca minor is a plant containing the alkaloid vincamine, which is used in the pharmaceutical industry as a cerebral stimulant and vasodilator. The objective of this study was to determine whether endophytic fungi isolated from V. minor produce vincamine. Primary screening was carried out using Dragendorff's and Mayer's reactions, and strain re-selection was made by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strain. We isolated 10 endophytic fungal strains from V. minor. An extract from one (Vm-J2), showed positive reactions with both Dragendorff's and Mayer's reagents. The strain had a component with the same TLC R(f) value and HPLC retention time as authentic vincamine. Therefore, the fungus appeared to produce the same bioactive ingredient, vincamine, as the host plant. The prospect of using endophytic fungi to produce the phytoactive compound by fungal fermentation is discussed. PMID:21315568

  10. Endophytic degrader bacteria for improving phytoremediation of organic xenobiotics

    DEFF Research Database (Denmark)

    Karlson, U.; Trapp, Stefan; Lelie, D, van der;

    2003-01-01

    This project represented a completely new approach towards improving the technology of phytoremediation of soil and groundwater contaminated with water soluble and volatile compounds. It endeavoured to tackle the problem of inefficient degradation of these compounds during phytoremediation...... bacteria, and the isolation of a large number of natural endophytic strains. The project delivered on this goal by providing a large collection of 150 novel characterized endophytic bacteria from poplar and willow, two plant species commonly used for phytoremediation, and from Flag Iris, a plant used...... for the novel technology of constructed wetlands. Several of these bacteria were engineered to degrade specific organic contaminants, including BTEX, TCE, 2,4-D and naphthalene. Central to the whole project was the goal to reveal the potential of endophytic inoculants for improving phytoremediation in terms...

  11. Research Progress on the Comprehensive Utilization of Cassava Waste%木薯废弃物综合利用研究进展

    Institute of Scientific and Technical Information of China (English)

    刘倩; 刘光华; 李月仙; 严炜; 娄予强; 郭容琦; 张林辉; 段春芳

    2012-01-01

    木薯在种植、收获、加工过程中会产生木薯叶、木薯杆、木薯渣、术薯皮等废弃物,其中,木薯叶可食用、饲用;木薯杆、小薯渣均可作为栽培食用菌的基质,木薯杆还可粉碎还田作为肥料,木薯渣也可生产肥料、饲料、沼气:木薯皮则能制成表面活性炭或作为有机生态无土栽培的主要基质。%Cassava waste materials such as cassava leaf, cassava stem, cassava bagasse, cassava bark, etc. resulted from cassava planting, harvesting and processing. Comprehensive utilization of cassava waste materials was discussed in this paper. Cassava leaf can be used for food and feed. Cassava stem, cassava bagasse can be used for matrix of cultivating edible fungi. Crushed cassava stem also can be used as fertilizer. Fertilizer, feed and biogas can be produced from cassava bagasse. Cassava bark can be used for surface active carbon and matrix of eco-organic type soiUess culture system.

  12. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  13. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia

    OpenAIRE

    Koehorst-van Putten, H. J. J.; Sudarmonowati, E.; Herman, M; Pereira-Bertram, I. J.; Wolters, A. M. A.; Meima, H.; Vetten, de, N.; Raemakers, C.J.J.M.; Visser, R. G. F.

    2012-01-01

    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of g...

  14. Biological implications in cassava for the production of amylose-free starch: impact on root yield and related traits.

    OpenAIRE

    Amanda eKarlström; Sandra eSalazar; Fernando eCalle; Nelson eMorante; Dominique eDufour; Hernán eCeballos

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develo...

  15. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    OpenAIRE

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develo...

  16. Determinants Of Export-Led Cassava Production Intensification Among Small-Holder Farmers in Delta State, Nigeria

    OpenAIRE

    Achoja, F. O.; Idoge, D. E.; Ukwuaba, S. I.; Esowhode, A.E.

    2012-01-01

    Determinants of export-led cassava production intensification among small-holder farmers were investigated. Primary data collected with structured questionnaire from randomly selected 60 respondents, were analysed using appropriate statistics. The result showed a slow increasing trend in response to export opportunities. Farm size, credit availability, cassava product domestic prices, labour and frequency of extension contact had positive effect on cassava output while existence of efficient ...

  17. Perception of Infestation Problems on Cassava Farms and Preference for Weed Management Practices in Humid Agro- Ecological Zone of Nigeria

    OpenAIRE

    Anthony Agumagu; Olufemi Martins Adesope; Edna Chioma Matthews-Njoku

    2008-01-01

    The problem of weed infestation on cassava farms is a major factor for low crop yield. This problem has caused untold hardship on the small-scale cassava farms where production at the subsistence level and where farmers still manage to produce some quantity for sale. The study examines cassava farmers’ perception of problems of infestation and preference for weed management practices in the humid agro-ecological zone of Nigeria. Data was collected with the aid of questionnaire and interviews....

  18. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz)

    OpenAIRE

    Moresco, Rodolfo; Uarrota, Virgílio Gavicho; Pereira, Aline; Tomazzoli, Maíra Maciel; Nunes, Eduardo da C.; Peruch, Luiz Augusto Martins; Gazzola, Jussara; Costa, Christopher Borges; Rocha, Miguel; Maraschin, Marcelo

    2015-01-01

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in -carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalenc...

  19. Infochemical use by predatory mites of the cassava green mite in a multitrophic context

    OpenAIRE

    Gnanvossou, D.

    2002-01-01

    This thesis describes research on multitrophic interactions in a system consisting of (1) cassava plants ( Manihot esculenta ), (2) three herbivorous mites, i.e. the cassava green mite Mononychellus tanajoa, the red spider mite Oligonychus gossypii and the two-spotted spider mite Tetranychus urticae and (3) two exotic predatory mites Typhlodromalus manihoti and T. aripo , in Africa. The objectives are to understand how the two exotic predators (i) exploit chemical information to locate the ta...

  20. Production of freeze-dried lactic acid bacteria starter culture for cassava fermentation into gari.

    OpenAIRE

    Yao, Amenan Anastasie; Dortu, Carine; Egounlety, Moutairu; Pinto, Cristina; Vinodh, A. Edward; Huch, Melanie; Franz, Charles M. A. P.; Holzapfel, Willhelm; Mbugua, Samuel; Mengu, Moses; Thonart, Philippe

    2009-01-01

    Sixteen lactic acid bacteria, eight Lactobacillus plantarum, three L. pentosus, 2 Weissella paramesenteroides, two L. fermemtum and one Leuconostoc mesenteroides ssp. mesenteroides were previously isolated from cassava fermentation and selected on the basis of their biochemical properties with a view to selecting appropriate starter cultures during cassava fermentation for gari production. In this study, the potential of these pre-selected strains as suitable freeze-dried cultures was eval...

  1. Factors affecting the relative competitiveness of cassava production in southwestern Trinidad

    OpenAIRE

    Patterson-Andrews, Hazel; Pemberton, Carlisle

    2010-01-01

    This study sought to determine the factors affecting the relative competitiveness (RC) measured as the normalized profit per acre, of cassava farmers in South Western Trinidad through a determination of the factors affecting the mean and variance of the RC inefficiency term of the farmers. A sample of 112 small farmers growing cassava as their main crop provided the data for the study. A normalized translog stochastic RC frontier model was estimated. The model also determined the factors affe...

  2. Developing GM super cassava for improved health and food security: future challenges in Africa

    OpenAIRE

    Adenle Ademola A; Aworh Ogugua C; Akromah Richard; Parayil Govindan

    2012-01-01

    Abstract Background There is an urgent need to solve the problem of micronutrient malnutrition that is prevalent among young children and women in Africa. Genetically modified (GM) biofortified cassava has great potential to solve part of this problem, but controversy surrounding GM technology and lack of awareness, limited facilities, biased news and other factors may hinder the adoption of GM cassava in the future. Method Using semi-structured interviews in Ghana and Nigeria, this paper exa...

  3. Determinants of profitability among small scale cassava processors in South Western Nigeria

    OpenAIRE

    EHINMOWO O.O.; AFOLABI J.A.; FATUASE A.I.

    2015-01-01

    This study empirically analyzed the determinants of profitability among small scale cassava processors in Southwest, Nigeria. Three States were considered for the study which was Ogun, Oyo and Ondo. A multistage sampling technique was employed to randomly select 373 respondents. The data collected were analyzed using descriptive statistics and multiple regression models. The findings revealed that the cassava processing business was profitable in the study area given the value of gross margin...

  4. Effect of the improved fermentation on physicochemical properties and sensorial acceptability of sour cassava starch

    OpenAIRE

    Maria Janete Angeloni Marcon; Gisele Cristina Netto Vieira; Karina Nunes de Simas; Karina Santos; Manoela Alano Vieira; Renata Dias de Mello Castanho Amboni; Edna Regina Amante

    2007-01-01

    The aim of this work was to study the effect of improved fermentation on sour cassava starch, aiming to reduce its fermentation time and to enhance its expansion capacity as well as its viscoamylographic properties and its sensorial acceptability. Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced starches with different viscoamylographic properties, which compared favoura...

  5. Physicochemical and microbiological characterization of cassava flower honey samples produced by africanized honeybees

    OpenAIRE

    Lucimar Peres de Moura Pontara; Edmar Clemente; Dalany Menezes Oliveira; Angela Kwiatkowski; Cássia Inês Lourenzi Franco Rosa; Valter Eugênio Saia

    2012-01-01

    Cassava producers in the region of Marília-São Paulo are integrating their farming activity with beekeeping to diversify their income. The aim of this study was to evaluate the physicochemical and microbiological quality of honey samples produced by Africanized honeybees Apis mellifera from cassava flower in 2008. Analysis were carried out for pH, total soluble solids (TSS), acidity, moisture, reducing and total sugars, apparent sucrose, hydroxymethylfurfural, color, ash, proteins, water inso...

  6. Effects of Contract Farming Scheme on Cassava Production Enterprise in Oyo State, Nigeria

    OpenAIRE

    Fawole, Pippy; Thomas, Kehinde A.

    2011-01-01

    There are indications that the domestic demand for cassava particularly as staple food may in no time outweigh that of the industrial sector, except contract and non-contract farming entrepreneurs operate within the framework of sustainable agriculture. The study thus examines the effects of contract farming scheme on cassava production in Oyo State, Nigeria. Multistage sampling technique was used. Oyo and Ibadan/Ibarapa zones were randomly selected from the four Agricultural Development Proj...

  7. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz).

    OpenAIRE

    Munyikwa, T.R.I.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the paper and textile industries amongst others. This thesis describes research on the cloning of the genes encoding ADP-glucose pyrophosphorylase small and large subunits (AGPase B and S, respectively) and granule bound starch syntha...

  8. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan

    OpenAIRE

    Raquel P Campos; Angela Kwiatkowski; Edmar Clemente

    2011-01-01

    The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a) control; b) 2% cassava starch; c) 1% chitosan; and d) 2% cassava starch + 1% chitosan. Physical and chemical characteristics of f...

  9. Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

    OpenAIRE

    Pothiraj, C.; Eyini, M.

    2007-01-01

    The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 m...

  10. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    OpenAIRE

    Lili Fu; Zehong Ding; Bingying Han; Wei Hu; Yajun Li; Jiaming Zhang

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) act...

  11. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  12. Cassava Processing and Marketing by Rural Women in the Central Region of Cameroon

    OpenAIRE

    SHIOYA, Akiyo

    2013-01-01

    This study examines the development of rural women's commercial activities in Central Cameroon, particularly the Department of Lekié, which is adjacent to Yaoundé, the capital of Cameroon. I focused on cassava processing technologies and the sale of cassavabased processed foods undertaken by women in a suburban farming village. Cassava is one of the main staple foods in central Cameroon, including in urban areas. One of its characteristics is that it keeps for a long period in the ground but ...

  13. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    OpenAIRE

    Juliane Mascarenhas Pereira; Ana Carolina Moura de Sena Aquino; Daiana Cardoso de Oliveira; Gabriela Rocha; Alícia de Francisco; Pedro Luiz Manique Barreto; Edna Regina Amante

    2016-01-01

    ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the s...

  14. Effects of Simulated Acid Rain on Growth and Yield of Cassava Manihot esculenta (Crantz)

    OpenAIRE

    B. O. ODIYI; J. J. F. Bamidele

    2013-01-01

    Southern Nigeria is a major cassava producing area that has been subjected to air pollution from increasing industrial activities and population explosion in the coastal towns and cities. The level of pollution is not expected to change drastically in the immediate future. Investigations were carried out to study the changes in the morphology, survival, growth and yield of TMS 96/1672 cultivar of cassava Manihot esculenta (Crantz) to simulated acid rain. The plants were exposed to simulated a...

  15. Effects of sweet cassava polysaccharide extracts on endurance exercise in rats

    OpenAIRE

    Yen, Chia Hung; Tsao, Te Hung; Huang, Cheng Uan; Yang, Chang Bin; Kuo, Chung Sheng

    2013-01-01

    Background Sweet cassava tubers have abundant carbohydrates consisting of monosaccharides and polysaccharides. In addition, polysaccharides extracted from plants improve sports performance, according to recent studies. We therefore examined whether the administration of sweet cassava polysaccharides (SCPs) benefited endurance performance in rats Methods Male Sprague–Dawley rats (n = 30, 7 weeks old) were divided into three groups: control (C), exercise (Ex), and exercise plus SCPs administrat...

  16. Radiosensitivity of the reproductive organs exposed to the flow of cassava mixed neutron/gamma

    International Nuclear Information System (INIS)

    A preliminary study of seeds and cuttings radiosensitivity for Cassava mutation breeding was performed. Three Cassava clones were irradiated at different times morder to determine the maximum mutagenic treatment. Data obtained show that treatments of which irradiated time is greater than 6 seconds are lethals for cutting regeneration. Duration inferior or equal to 6 seconds have no negative effect. The cutting regeneration is maximum for 3 seconds treatment and decreases with irradiation time. For irradiated seeds, germination has been completely inhibited.

  17. Technical Efficiency Analysis of Nigerian Cassava Farmers: A Guide for Food Security Policy

    OpenAIRE

    B.C. Asogwa; Umeh, Joseph Chinedu; P.I. Ater

    2006-01-01

    This study analyzed relationship between techn ical efficiency and socio-economic variables of cassava farmers in Nigeria. Data were collected from randomly sampled 360 cassava farmers in Nigeria using a structured questionnaire. The data were analyzed using descriptive statistics comprising mean, minimum value, maximum value and standard deviation, as well as inferential statistics, which comprised correlation and regression. The findings of the s tudy indicated that a significant relationsh...

  18. Molecular genetic tools to modulate post-harvest physiology in cassava

    International Nuclear Information System (INIS)

    Within 24-72 hours of harvest the starchy storage roots of cassava deteriorate rapidly depending on variety and environmental conditions. This post-harvest physiological deterioration (PPD) necessitates their prompt consumption or processing. In traditional village society, cassava roots are left in the ground until required; but, with increased urbanisation and the entry of cassava into the cash economy, distances have increased and PPD has become a major constraint to the development of this important crop, which impacts on farmers, processors and consumers alike. Improvement of cassava with respect to its PPD response via breeding is fraught with difficulties due to the high heterozygosity of the crop, a strong association between PPD and high dry matter content, and a high genetic X environment interaction. Molecular genetic tools may offer alternative approaches via insights into the PPD response itself, the provision of molecular markers for use in marker assisted selection and via the direct manipulation of the cassava genome. cDNA microarrays identify 73 genes whose expression changes significantly during the time-course of PPD; these clones are available to the cassava community for mapping or other research. These data support the hypothesis that reactive oxygen species mediated programmed cell death is at the heart of the PPD response. Currently we are further testing this hypothesis through the genetic modification of cassava using genes with the ability to alter the reactive oxygen defence status of the roots or to enhance the root's antiprogrammed cell death response. These modifications have the potential to extend the shelf-life of the cassava roots and ultimately to benefit resource-poor farmers. (author)

  19. Carotenoid analysis of Cassava genotypes roots (Manihot Esculenta Crantz) cultivated in Southern Brazil using chemometric tools

    OpenAIRE

    Moresco, Rodolfo; Uarrota, Virgílio Gavicho; Pereira, Aline; Tomazzoli, M. M.; Nunes, Eduardo da Costa; Peruch, Luiz Augusto Martins; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-01-01

    Manihot esculenta roots rich in -carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin, In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromat...

  20. Profitability and Value Addition in Cassava Processing in Buton District of Southeast Sulawesi Province, Indonesia

    OpenAIRE

    Haji Saediman; Asmiati Amini; Rosmawaty Basiru; La Ode Nafiu

    2015-01-01

    This study was carried out to examine profitability of and value addition from cassava processing into kaopi based on the type of graters being used. A two-stage random sampling technique was employed to obtain primary data from 53 respondents selected for this study. Data were analyzed using cost and return analysis, R/C ratio, Break Even Point, and production structure. The study revealed that cassava processing into kaopi is profitable and a significant value adding process, but the level ...

  1. Batch and Continuous Lactic Acid Production from Cassava by Streptococcus bovis

    OpenAIRE

    Fachrul Razi; S D Yuwono

    2006-01-01

    Process variables were optimized for the production of lactic acid from cassava by Streptococcus bovis for batch and continuous fermentations. In the batch fermentation, maximum yield 82.5% and maximum lactic acid productivity 2.43 was achieved at 39 oC, pH 5.5 with 50 g/l cassava concentration. In the continuous fermentation maximum productivity lactic acid 1.25 g/l.h was obtained at dilution rate 0.05 /h.

  2. Beef production based on cassava products and legume foliage in Vietnam

    OpenAIRE

    Chu Manh, Thang

    2010-01-01

    The overall aim of this thesis was to determine the associative effects of supplemental sources of protein, or protein and energy, using cassava products and legume foliage on rumen degradability, in vivo digestibility, feed intake and growth rate of crossbred growing cattle. First it was hypothesized that the substitution of a part of a conventional concentrate with mixed cassava and legume foliage will positively influence rumen degradability and improve the performance of growing cattle. T...

  3. Qualidade microbiológica na obtenção de farinha e fécula de mandioca em unidades tradicionais e modelo Microbiological quality in the flour and starch cassava processing in traditional and model unit

    Directory of Open Access Journals (Sweden)

    Raquel Resende Dósea

    2010-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade microbiológica de farinha e fécula durante as diferentes etapas do processamento de mandioca, em unidades tradicionais e em uma unidade modelo. Foram determinados índices de coliformes totais e termotolerantes, Bacillus cereus, Salmonela spp., bactérias e fungos nas farinhas e féculas. Não foram observadas presenças de B. cereus e Salmonella spp. na farinha e fécula de mandioca produzidas nas unidades estudadas. A incidência microbiana diminui com o avanço da etapa do processamento para obtenção de farinha e foi menor na unidade modelo. Após o processo de torra, a carga microbiana estava de acordo com os valores preconizados pela legislação brasileira, concluindo-se que essa etapa pode ser considerada como crítica na obtenção de farinha. Na obtenção de fécula, a carga microbiana nas unidades tradicionais são maiores que na modelo, e o aumento do número de extrações promove o aumento da incidência de microrganismos, sendo recomendadas apenas quatro extrações.The objective of this research was to evaluate microbiological contamination in the flour and starch during cassava processing in traditional and model units. The total and fecal coliforms indexes, Bacillus cereus, Salmonella, bacteria, yeast and fungi were determined. Bacillus cereus and Salmonella were not detected in any sample. The incidence of microorganisms decreased along the processing to obtain cassava flour, and is lower in model unit. After the roasting process, the microbial load was below the values established by the Brazilian legislation, and can be regarded as a critical step in obtaining cassava flour. Concerning starch production, the microbial load in the traditional units was higher than in the model units, and the increase of the extraction steps has promoted the growth of microorganisms. It's recommended the used of only 4 extractions.

  4. Microbiological and biochemical characterization of cassava retting, a traditional lactic Acid fermentation for foo-foo (cassava flour) production.

    Science.gov (United States)

    Brauman, A; Keleke, S; Malonga, M; Miambi, E; Ampe, F

    1996-08-01

    The overall kinetics of retting, a spontaneous fermentation of cassava roots performed in central Africa, was investigated in terms of microbial-population evolution and biochemical and physicochemical parameters. During the traditional process, endogenous cyanogens were almost totally degraded, plant cell walls were lysed by the simultaneous action of pectin methylesterase and pectate lyase, and organic acids (C(inf2) to C(inf4)) were produced. Most microorganisms identified were found to be facultative anaerobes which used the sugars (sucrose, glucose, and fructose) present in the roots as carbon sources. After 24 h of retting, the fermentation reached an equilibrium that was reproducible in all the spontaneous fermentations studied. Lactic acid bacteria were largely predominant (over 99% of the total flora after 48 h) and governed the fermentation. The epiphytic flora was first replaced by Lactococcus lactis, then by Leuconostoc mesenteroides, and finally, at the end of the process, by Lactobacillus plantarum. These organisms produced ethanol and high concentrations of lactate, which strongly acidified the retting juice. In addition, the rapid decrease in partial oxygen pressure rendered the process anaerobic. Strict anaerobes, such as Clostridium spp., developed and produced the volatile fatty acids (mainly butyrate) responsible, together with lactate, for the typical flavor of retted cassava. Yeasts (mostly Candida spp.) did not seem to play a significant role in the process, but their increasing numbers in the last stage of the process might influence the flavor and the preservation of the end products. PMID:16535378

  5. Isolation and Characterisation of Endophytic Nitrogen Fixing Bacteria in Sugarcane

    OpenAIRE

    Muangthong, Ampiga; Youpensuk, Somchit; Rerkasem, Benjavan

    2015-01-01

    Endophytic nitrogen fixing bacteria were isolated from the leaves, stems and roots of industrial variety (cv. U-Thong 3; UT3), wild and chewing sugarcane plants grown for 6 weeks in nitrogen (N)-free sand. Eighty nine isolates of endophytic bacteria were obtained on N-free agar. An acetylene reduction assay (ARA) detected nitrogenase activity in all 89 isolates. Three isolates from the chewing (C2HL2, C7HL1 and C34MR1) sugarcane and one isolate from the industrial sugarcane (UT3R1) varieties ...

  6. Antioxident activity of the mangrove endophytic fungus (Trichoderma sp.)

    Institute of Scientific and Technical Information of China (English)

    Saravanakumar Kandasamy; Kathiresan Kandasamy

    2014-01-01

    Objective: To test antioxidant property of the endophytic Trichoderma species isolated from the leaves of 12 mangroves of Andaman Nicobar Islands. Methods: Eight strains of Trichoderma species were found predominant and their crude extracts were assessed for antioxidant activity by using seven assays.Results:EMFCAS8 and other strains also showed considerable activity. Total antioxidant activity varied with the strains and it was maximum in Trichoderma Conclusions: This work concluded that mangroves are rich in endophytic Trichoderma species with potential for antioxidant activity.

  7. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa.

    Science.gov (United States)

    Legg, James P; Shirima, Rudolph; Tajebe, Lensa S; Guastella, Devid; Boniface, Simon; Jeremiah, Simon; Nsami, Elibariki; Chikoti, Patrick; Rapisarda, Carmelo

    2014-10-01

    Cassava mosaic disease and cassava brown streak disease are caused by viruses transmitted by Bemisia tabaci and affect approximately half of all cassava plants in Africa, resulting in annual production losses of more than $US 1 billion. A historical and current bias towards virus rather than vector control means that these diseases continue to spread, and high Bemisia populations threaten future virus spread even if the extant strains and species are controlled. Progress has been made in parts of Africa in replicating some of the successes of integrated Bemisia control programmes in the south-western United States. However, these management efforts, which utilise chemical insecticides that conserve the Bemisia natural enemy fauna, are only suitable for commercial agriculture, which presently excludes most cassava cultivation in Africa. Initiatives to strengthen the control of B. tabaci on cassava in Africa need to be aware of this limitation, and to focus primarily on control methods that are cheap, effective, sustainable and readily disseminated, such as host-plant resistance and biological control. A framework based on the application of force multipliers is proposed as a means of prioritising elements of future Bemisia control strategies for cassava in Africa. PMID:24706604

  8. Cassava leaves in combination with sera onggok and rice bran as supplements in buffaloes ration

    International Nuclear Information System (INIS)

    Two experiments have been undertaken to evaluate the utilization of cassava leaves in combination with sera onggok or rice bran as supplements in buffalo ration under traditional village condition. In experiment 1, 16 buffaloes were divided in four groups, each receiving a different ration ranging from mixed forage alone to mixed forage supplemented with a combination of cassava leaves and sera onggok or rice bran. Changes in dry metter consumption, daily weight gain, feed convertion ratio and incom over feed cost were assesed. Experiments 2 covered an in vitro study on the changes in rumen fermentation as affected by different rations. The results of experiment 1 indicated the lack of differences in dry matter consumption. However, the daily weight gain, feed convertion ratio and income over feed cost (IOFC) higher in animal receiving mixed forage suplement with cassava leaves in combination with either sera onggok or rice bran as compared to those of animal receiving mixed forage or mixed forage supplemented with cassava leaves. Experiment 2 revealed that amonia concentration and volatile fatty acid production were able to support a higher microbil activity supplemented with cassava leaves in combination with either sera onggok or rice bran as compared to those receiving the other two rations. In conclusion it is obvious that cassava leaves in combination with either sera onggok or rice bran used as supplements could promote a better production in animal in the villages. (author). 7 refs, 1 fig, 5 tabs

  9. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  10. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz cultivar NZ199 diploid and autotetraploid genotypes.

    Directory of Open Access Journals (Sweden)

    Feifei An

    Full Text Available Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.

  11. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    Science.gov (United States)

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases. PMID:25017309

  12. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26

    Science.gov (United States)

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A.; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  13. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    Science.gov (United States)

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. PMID:25078615

  14. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei. PMID:25345060

  15. Instant blend from cassava derivatives produced by extrusion

    Directory of Open Access Journals (Sweden)

    Fernanda Rossi Moretti Trombini

    2016-03-01

    Full Text Available ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*, water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%, extrusion temperature (60 to 100ºC, screw speed (175 to 231rpm and moisture (20 to 30%. Extrusion conditions affect color, water absorption and water solubility indexes and paste properties of blends. The intermediate tested conditions of variable parameters lead to obtain extruded products with higher cold viscosity and water absorption index and light color, desirable qualities for rapid preparation products.

  16. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    OpenAIRE

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri

    2005-01-01

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  17. Study of the reproductive characteristics of nine cassava accessions

    International Nuclear Information System (INIS)

    Reproductive behaviour of two cultivars (AF and AN) and seven breeding lines (BA, AS, LA, BS-1, HO-008, ME and SE) of cassava (Manihot esculenta Crantz) was studied to obtain information pertaining to flowering habits and other reproductive characteristics of these potential parents required for future hybridization programmes. The accessions were grown on the Research Farm of the Biotechnology and Nuclear Agriculture Research Institute in the coastal savannah agro-ecological zone of Ghana between April 2008 and December 2009. For each accession, 40 stem cuttings, each bearing five to eight nodes, were prepared from the mid-section of healthy cassava stems and planted at a spacing of 1.5 m × 1.0 m while accessions were separated by a distance of 2 m. Ten plants were tagged per accession for the collection of data on key reproductive characteristics. All accessions flowered, suggesting that flower production may not be a limiting factor under the prevailing climatic conditions. Light microscopy revealed that one accession (BA) produced dysfunctional male flowers which were devoid of pollen. Mean days to flowering and fruiting varied significantly (P < 0.05) among the accessions, indicating the need to use different planting dates for different accessions to ensure synchronization of flowering. The accessions also differed significantly (P < 0.05) with respect to plant height at various levels of branching, as well as number of inflorescences, staminate and pistillate flowers, and fruit produced per branching level. There was also variation in percent seed set, embryo formation and fruit drop. The extensive variability observed among the accessions provides breeders with immense opportunities for carrying out cross combinations to generate new genotypes to meet specific objectives. (au)

  18. Radiation induced mutants in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Full text: Stem cuttings and true seeds of three promising cultivars of cassava were exposed respectively to 1 to 5 kR and 10 to 50 kR acute gamma rays from a 60Co source. Treatments of stem cuttings beyond 5 kR and seeds beyond 50 kR were lethal. One mutant each in the cultivars M4, H-165 and H-2304 was obtained from the stem irradiated populations. Another mutant was found in the seed irradiated progeny of H-2304. The mutant of M4 is characterised by light green (chlorina) leaves. The mutant of H-165 shows significantly shorter petiole (22,5 against 35.2 cm) and narrow leaf lobes, while the H-2304 mutant shows speckled leaves, branching and early flowering. The mutant found in the seed irradiated progeny of H-2304 is having yellow tuber flesh indicating the presence of carotene. The mutants may be useful in studies related to basic information as well as in practical breeding. The chlorina mutant in M4 showed slow growth and high HCN content in leaves. Late branching may be a useful trait in the traditionally non-branching clones of cassava to maintain the desirable leaf area index during high leaf fall period. Early flowering could be useful in a recombinant breeding programme. The tuber yield of the short petiole mutant in H-165 increased by 20% - 25% through closer planting. The narrow leaf lobes of this mutant permit better light penetration to lower leaves. (author)

  19. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Artois, T.; Smeets, K.; Taghavi, S.; Newman, L.; Carleer, R.; Vangronsveld, J.

    2009-12-01

    Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in plant degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.

  20. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  1. Impact of endophytic microorganisms on plants, environment and humans.

    Science.gov (United States)

    Nair, Dhanya N; Padmavathy, S

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  2. Extracellular Hemicellulolytic Enzymes from the Maize Endophyte Acremonium zeae

    Science.gov (United States)

    The maize endophyte Acremonium zeae was examined for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture media from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude co...

  3. Endophytic Phomopsis species: host range and implications for diversity estimates.

    Science.gov (United States)

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined. PMID:16917524

  4. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan;

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated...

  5. Relationship between plant lipid bodies and fungal endophytes

    Science.gov (United States)

    Lipid bodies are universal components of plant cells and provide a mobilized carbon source for essential biological processes. Plant oils harvested for food and fuel often reside in these lipid bodies. Plants also host diverse populations of endophytic fungi, which easily escape microscopic detect...

  6. Dark septate endophytic pleosporalean genera from semiarid areas

    NARCIS (Netherlands)

    Knapp, D G; Kovács, G M; Zajta, E; Groenewald, J Z; Crous, P W

    2015-01-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages

  7. Dark septate endophytic pleosporalean genera from semiarid areas

    NARCIS (Netherlands)

    Knapp, D.G.; Kovács, G.M.; Zajta, E.; Groenwald, J.Z.; Crous, P.W.

    2015-01-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages b

  8. Cytosporones O, P and Q from an endophytic Cytospora sp

    DEFF Research Database (Denmark)

    Abreu, L.M.; Phipps, Richard Kerry; Pfenning, L.H.;

    2010-01-01

    Cytosporones O, P and Q, together with the known compounds cytosporones B, C, D, E and dothiorelones A, 13, C. and H were isolated from the ascomycete fungus Cytospora sp. during a chemotaxonomic study Of fungal endophytes belonging to the related genera Cytospora and Phomopsis from Brazil...

  9. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  10. 7 CFR 201.58d - Fungal endophyte test.

    Science.gov (United States)

    2010-01-01

    ... compound microscope at 100-400x magnification, scoring a seed as positive if any identifiable hyphae are... thoroughly in running tap water. (4) De-glume seeds and place on a microscope slide in a drop of endophyte... sheath approximately 3-5 mm in width. (5) Place the section on a microscope slide with the epidermis...

  11. Endophytic bacteria in potato tubers affected by zebra chip disease

    Science.gov (United States)

    Potato zebra chip disease (ZCD) could drastically reduce quality and value of all market classes of potato, costing growers and processors millions of dollars in losses in North America. Endophytic bacteria colonize the internal tissue and could have both positive and negative effects on host plants...

  12. Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains

    OpenAIRE

    Carlson, Cathrine Rein; Caugant, Dominique A; Kolstø, Anne-Brit

    1994-01-01

    Twenty-four strains of Bacillus cereus were analyzed by pulsed-field gel electrophoresis (PFGE) and compared with 12 Bacillus thuringiensis strains. In addition, the 36 strains were examined for variation in 15 chromosomal genes encoding enzymes (by multilocus enzyme electrophoresis [MEE]). The genome of each strain had a distinct NotI restriction enzyme digestion profile by PFGE, and the 36 strains could be assigned to 27 multilocus genotypes by MEE. However, neither PFGE nor MEE analysis co...

  13. Integrative Cloning, Expression, and Stability of the cryIA(c) Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacter xyli subsp. cynodontis

    OpenAIRE

    Lampel, Jay S.; Canter, Gayle L.; Dimock, Michael B.; Kelly, Jeffrey L.; Anderson, James J.; Uratani, Brenda B.; Foulke, James S.; Turner, John T.

    1994-01-01

    A bacterial endophyte was engineered for insecticidal activity against the European corn borer. The cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki was introduced into the chromosome of Clavibacter xyli subsp. cynodontis by using an integrative plasmid vector. The integration vectors pCG740 and pCG741 included the replicon pGEM5Zf(+), which is maintained in Escherichia coli but not in C. xyli subsp. cynodontis; tetM as a marker for selection in C. xyli subsp. cynodontis; and a chrom...

  14. polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum:biological activity and structure

    Institute of Scientific and Technical Information of China (English)

    Carolina; Santiago; Lin; Sun; Murray; Herbert; Gibson; Munro; Jacinta; Santhanam

    2014-01-01

    Objective:To study bioactivity and compounds produced by an endophytic Phoma sp.fungus isolated from the medicinal plant Cinnamomum mollissimum.Methods:Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate.This was followed by hioaclivity profiling of the crude extract fractions obtained via high performance liquid chromatography.The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi.Compounds purified from active fractions which showed antibacterial,antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis,mass spectrometry and admission to AntiMarin database.Results:Three known compounds,namely 4—hydroxymellein,4,8—dihydroxy—6—melhoxy—3—methyl—3,4-dihydro—1H-isochromen-1—one and 1—(2,6-dihydroxyphenyl) ethanone,were isolated from the fungus.The polyketide compound 4—hydroxymellein showed high inhibitory activity against P388 murine leukemic cells(94.6%) and the bacteria Bacillus sublilis(97.3%).Meanwhile.4,8—dihydroxy-6—melhoxy—3—meth) 1—3,4-dihydro—1H—isochromen—1-one,a benzopyran compound,demonstrated moderate inhibitory activity against P388 murine leukemic cells(48.8%)and the fungus Aspergillus niger(56.1%).The second polyketide compound.1(2,6—dihydroxyphenyl)ethanone was inactive against the tested targets.Conclusions:These findings demonstrate the potential of endophytes as producers ol pharmacologically important compounds,including polyketides which are major secondary metabolites in fungi.

  15. ISOLATION OF ENDOPHYTIC ACTINOMYCETES FROM MEDICINAL PLANTS AND ITS MUTATIONAL EFFECT IN BIOCONTROL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Hema Shenpagam N.*, D. Kanchana Devi ** and Sinduja G.

    2012-11-01

    Full Text Available In the present study, the endophytic actinomycetes were collected from three medicinal plants Azadiracta indica, Ocimum sanctum and Phyllanthus amarus. Endophytic actinomycetes were isolated using different media like Starch casein agar, Starch casein nitrate agar, Actinomycetes isolation agar and Soyabean agar, while it showed more colonies in Starch casein agar. The endophytic actinomycetes were stained and biochemical tests were performed. Antimicrobial compound was purified from the filtrate by ethanol extraction method. Antagonistic activities of endophytic actinomycetes isolates were tested against bacterial pathogens (Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa and the fungi Rhizopus. For the selected isolates antibiotic resistance was checked using various antibiotic discs like Amoxycillin, Penicillin, Rifampicin and Ampicillin. The strains which showed efficient antibacterial activity were selected to study the effect of mutation by physical and chemical method. In this study, UV mutated endophytic actinomycetes increase antibiotic production than non-mutated endophytic Actinomycetes, whereas in chemical mutation it does not increase the antibiotic production.

  16. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  17. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.;

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to...... cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  18. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG-Induced Dehydration Stress in Cassava

    Directory of Open Access Journals (Sweden)

    Lili Fu

    2016-02-01

    Full Text Available Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG treatments. Five traits, including peroxidase (POD activity, proline content, malondialdehyde (MDA, soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.

  19. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    Science.gov (United States)

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  20. Utilization of cassava leaf (Manihot esculenta, Crantz) in concentrate mixtures for swamp buffaloes in Thailand

    International Nuclear Information System (INIS)

    A study was made to evaluate dried cassava leaf (Manihot esculenta, Crantz) as a protein supplement in diets for buffaloes. Five swamp buffaloes aged 2.5 years (average liveweight 249 ± 6.1 kg) were randomly allotted to five concentrate mixture containing 0, 7.5, 15, 22.5 and 30g/kg dry matter (DM) dried cassava leaf containing 11.8-13.9% crude protein, 11.3-13.0 MJ metabolisable energy/kg DM, 9.7-18.4% neutral detergent fibre acid, 6.9-13.9% acid detergent fibre. The buffaloes were given urea-treated rice straw (UTS) ad libitum and one of the concentrate mixtures during each of five measurement periods according to a 5 x 5 Latin square design. Each period had a 21-d preliminary interval followed by a 7-d collection interval while the animals were in metabolic crates. Digestibilities of nutrients and N-balances were higher when cassava leaf was present in the concentrate mixtures, being highest for the 7.5% cassava leaf mixture. The ammonia and total VFA concentrations in rumen fluid and total volatile fatty acids (TVFA) and blood urea concentrations did not differ significantly between treatments. As the level of dried cassava leaf increased, the price of the mixtures decreased markedly. Dried cassava leaf therefore proved to be a good supplement for ruminants during seasonal dry periods when other feed supplies were not abundant. Incorporation of the dried cassava leaf in the concentrate up to 30% DM, and possible higher, could reduce the cost of diets for buffaloes relative to diets containing other protein sources such as soyabean meal. (author). 17 refs, 4 tabs