WorldWideScience

Sample records for cassava endophyte bacillus

  1. Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4a Composto antifúngico produzido pelo endófito de mandioca Bacillus pumilus MAIIIM4a

    Directory of Open Access Journals (Sweden)

    Flávia Mandolesi Pereira de Melo

    2009-10-01

    Full Text Available In the search for new organisms and new secondary metabolites, a study was conducted to evaluate the diversity of endophytic bacteria from ethnovarieties of cassava cultivated by Brazilian Amazon Indian tribes and also to study the secondary metabolites produced by a Bacillus pumilus strain. Sixty seven cassava endophytic bacteria were subjected to 16S rRNA sequencing and FAME analysis. The bacterial profile revealed that 25% of all endophytic isolates belonged to the genus Bacillus. The isolate B. pumilus MAIIIM4a showed a strong inhibitory activity against the fungi Rhizoctonia solani, Pythium aphanidermatum and Sclerotium rolfsii. Secondary metabolites of this strain were extracted using hexane, dichloromethane and ethyl acetate. Extracts were subjected to bioautography and LC/MS analysis, which allowed the identification of pumilacidin, an antifungal compound produced by B. pumilus MAIIIM4a. The bacterial endophytic localization was confirmed by cassava cell tissue examination using scanning electron microscopy.Na busca de novos organismos e novos metabólitos secundários, um estudo foi conduzido visando avaliar a diversidade de bactérias endofíticas de etnovariedades de mandioca cultivadas por tribos indígenas da Amazônia brasileira e também para estudar metabólitos secundários produzidos por Bacillus pumilus. Sessenta e sete bactérias endofíticas de mandioca foram identificadas através do seqüenciamento do gene 16S rRNA e por meio da análise de ácidos graxos (FAME. Essas análises revelaram que 25% de todos os endofíticos pertenciam ao gênero Bacillus. O isolado Bacillus pumilus MAIIIM4a apresentou forte ação inibitória contra os fitopatógenos Rhizoctonia solani, Pythium aphanidermatum e Sclerotium rolfsii. Os metabólitos secundários deste isolado foram extraídos do sobrenadante usando-se hexano, diclorometano e acetato de etila. Esses extratos foram utilizados nas análises de bioautografia e LC-MS, as quais

  2. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  3. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    Molecular detection of TasA gene in endophytic Bacillus species and characterization of the gene in Bacillus amyloliquefaciens. ... African Journal of Biotechnology ... in Bacillus amyloliquefaciens PEBA20 and 7 strains of Bacillus subtilis, ...

  4. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction. (PCR) amplification. In ten endophytic ... confer a competitive advantage to the spore from the onset of sporulation and later, ... possessing TasA gene (Chen et al., 2007; Gioia et al.,. 2007; Kunst et al., 1997; ...

  5. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    Science.gov (United States)

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  6. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09

    OpenAIRE

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-01-01

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B.?velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and vo...

  7. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09.

    Science.gov (United States)

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-09-29

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B. velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and volatile organic compound synthesis were identified in the genome. Copyright © 2016 Cai et al.

  8. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    Directory of Open Access Journals (Sweden)

    Henry eMueller

    2015-03-01

    Full Text Available Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in Eastern and Western areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant-microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated.

  9. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    Science.gov (United States)

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. © 2014 Wiley Periodicals, Inc.

  10. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  11. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    Science.gov (United States)

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  12. Characterization of New Bioactive Enzyme Inhibitors from Endophytic Bacillus amyloliquefaciens RWL-1

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Endophytic bacteria are known to produce a wide array of bioactive secondary metabolites with beneficial effects on human health. In the current study, a novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1, was isolated from the seeds of Oryza sativa. Initially, the crude extract of RWL-1 was assessed for potential biological effects of enzyme inhibition and cytotoxicity and was found to exhibit a broad spectrum inhibition for α-glucosidase (37 ± 0.09% and urease (49.4 ± 0.53%. The screening results were followed by bioassay-guided isolation of secondary metabolite(s from RWL-1. Extensive chromatographic and spectrophotometry analyses revealed the presence of compound 1 (S-2-hydroxy-N-((S-1-((S-8-hydroxy-1-oxoisochroman-3-yl-3-methylbutyl-2-((S-5-oxo-2,5-dihydrofuran-2-ylacetamide. Further bioassays of compound 1 showed significant inhibition of α-glucosidase (52.98 ± 0.8% and urease (51.27 ± 1.0%, compared with positive control values of 79.14 ± 1.9% and 88.24 ± 2.2%, and negative controls (0.08 ± 0.1% and 0.05 ± 0.01%, respectively. The current study suggests that bacterial endophytes are a rich source of novel bioactive compounds with high therapeutic value.

  13. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  14. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    Science.gov (United States)

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  15. The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation

    NARCIS (Netherlands)

    Wulff, E.G.; Vuurde, van J.W.L.; Hockenhull, J.

    2003-01-01

    The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and

  16. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    OpenAIRE

    Jnnifer A. Sánchez; Margarita M. Correa; Ángel E. Aceves Dies; Laura M. Castañeda Sandoval

    2014-01-01

    Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%), II: nheA, hbl...

  17. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    Directory of Open Access Journals (Sweden)

    Jnnifer A. Sánchez

    2014-05-01

    Full Text Available Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%, II: nheA, hblC (2%, III: hblC, cytK (41.2%, IV: hblC (47%. Of 75 cassava starch samples, 44% were contaminated with toxigenic B. cereus and four different toxigenic consortia were determined: I: nheA, hblC, cytK (48.5%, II: nheA, hblC, cytK, cesB (3%, III: hblC, cytK (30.3%, IV: hblC (18.2%. In general, in dietary complement for children only enterotoxigenic consortia were detected while in cassava starch the enterotoxigenic consortia predominated over the emetic. Multiplex PCR was useful to detect toxigenic B. cereus contamination allowing direct and imultaneous detection of all toxin genes in foods. This study is the first in Colombia to evaluate toxigenic B. cereus, providing information of importance for microbiological risk evaluation in dried foods.

  18. Antagonistic properties of microogranisms associated with cassava ...

    African Journals Online (AJOL)

    The antagonistic properties of indigenous microflora from cassava starch, flour and grated cassava were investigated using the conventional streak, novel ring and well diffusion methods. Antagonism was measured by zone of inhibition between the fungal plug and bacterial streak/ring. Bacillus species were more effective ...

  19. Assessment of Plant-Probiotic Performance of Novel Endophytic Bacillus sp. in Talc-Based Formulation.

    Science.gov (United States)

    Basheer, Jasim; Ravi, Aswani; Mathew, Jyothis; Krishnankutty, Radhakrishnan Edayileveettil

    2018-01-25

    Endophytic bacteria are considered to have a plethora of plant growth promoting and anti-phytopathogenic traits to live within the plants. Hence, they have immense promises for plant probiotic development. In the current study, plant probiotic endophytic Bacillus sp. CaB5 which has been previously isolated from Capsicum annuum was investigated for its performance in talc-based formulation. For this, CaB5 was made into formulation with sterile talc, calcium carbonate, and carboxymethyl cellulose. The viability analysis of the formulation by standard plate count and fluorescence methods has confirmed the stable microbial count up to 45 days. Plant probiotic performance of the prepared formulation was analyzed on cowpea (Vigna unguiculata) and lady's finger (Abelmoschus esculentus). The results showed the formulation treatment to have enhancement effect on seed germination as well as plant growth in both selected plants. The results highlight the potential of CaB5-based formulation for field application to enhance growth of economically important plants.

  20. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    Science.gov (United States)

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D D; Singh, P K; Pandey, Kapil D

    2016-06-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains produced siderophore (ECL3 and ECL5) during plant growth promoting trait analysis. All the endophytic strains utilized glucose, sucrose and yeast extract as a carbon source where as glycine, alanine, cystine and glutamine as nitrogen source. The strains were mostly sensitive to antibiotic chloramphenicol followed by erythromycin while resistant to polymixin B. The endophytic strains effectively inhibit the growth of Escherichia coli, Klebsiella pneumoniae and some of the fungal strain like Fusarium solani and Alterneria alternata. The strain ECL2 and ECL4 tolerated maximum 8 % of NaCl concentration where as strains ECL5 and ECL6 6 % in salinity tolerance.

  1. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth.

    Science.gov (United States)

    Leite, Hianna Almeida Câmara; Silva, Anderson Barbosa; Gomes, Fábio Pinto; Gramacho, Karina Peres; Faria, José Cláudio; de Souza, Jorge Teodoro; Loguercio, Leandro Lopes

    2013-03-01

    Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings

  2. Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP)

    International Nuclear Information System (INIS)

    Luo Shenglian; Xiao Xiao; Xi Qiang; Wan Yong; Chen Liang; Zeng Guangming; Liu Chengbin; Guo Hanjun; Chen Jueliang

    2011-01-01

    Bioremediations of cadmium by endophytic bacterium (EB) L14 (Bacillus sp.) in the presence of industrially used metabolic inhibitors (DCC or DNP) were investigated. In the presence of DCC or DNP, the biomass population of EB L14 was greatly inhibited. However, the cadmium removal of EB L14 increased from 73.6% (in the absence of DCC or DNP) to 93.7% and 80.8%, respectively. The analysis of total and intracellular cadmium concentrations during 24 h of incubation indicated that this enhanced cadmium removal was the inhibition effect of DCC or DNP on the cations export resistance system of EB L14. This unique property strongly indicated the superiority of this endophyte for practical application in cadmium bioremediation in the presence of industrially used metabolic inhibitors.

  3. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  4. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    OpenAIRE

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. v...

  5. Diversity and enzymatic characterization of Bacillus species isolated ...

    African Journals Online (AJOL)

    Fermentation plays an important role in the production of cassava-based foods in West Africa. In Côte ... microorganisms (lactic acid bacteria, yeast and moulds ..... Bacillus species isolated from solid substrate fermentation of cassava for.

  6. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  7. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Science.gov (United States)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  8. Detoxification of cyanides in cassava flour by linamarase of Bacillus ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... Full Length Research Paper. Detoxification of ... utilizing indigenous bacteria from cyanide rich cassava peel waste and exploited their potential for ... Figure 1. Enzyme catalyzed degradation of cyanogenic glycosides. pains ..... Linamarin - the toxic compound of cassava. J. Venom. Anim. Toxins. 2(1): 6-12.

  9. Potential of Endophytic Bacterial to Control Lesion Nematode (Pratylenchus brachyurus on Patchouli

    Directory of Open Access Journals (Sweden)

    RITA HARNI

    2007-03-01

    Full Text Available Root lesion nematode (Pratylenchus brachyurus is one of the most important pathogens of patchouli that caused significant losses. Studies on the potential of endophytic bacterial to control P. brachyurus on patchouli had been conducted. To evaluate the effectiveness of endophytic bacterial against to P. brachyurus on patchouli, nine isolates of bacteria ( NJ2, NJ25, NJ41, NJ46, NJ57, NA22, ERB21, ES32, and E26 were applied by deeping root seedling into bacterial suspension. A study of the physiological characteristics of nine isolates was conducted by using specific medium. The results showed that endophytic bacterial was significantly reduced the population of P. brachyurus and all isolates bacterial promoted growth of patchouli (shoot weight, root weight, and root length. Four isolates, i.e. Bacillus NJ46, Bacillus Na22, Bacillus NJ2, and Bacillus NJ57 were among the potential control agents that reduced nematode populations as much as 68.1-73.9%. Almost all of the isolated bacteria from patchouli roots were able to solubilizing phosphate, while some of them had the ability to produce chitinase, cellulase, protease, HCN, and fluorescency.

  10. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose.

    Science.gov (United States)

    Kim, Jeong Do; Jeon, Byeong Jun; Han, Jae Woo; Park, Min Young; Kang, Sin Ae; Kim, Beom Seok

    2016-08-01

    Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  12. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  13. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    OpenAIRE

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D. D.; Singh, P. K.; Pandey, Kapil D.

    2016-01-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains pr...

  14. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  15. Effects of Cassava Mill Effluent on Some Chemical and Micro ...

    African Journals Online (AJOL)

    user

    KEY WORDS: Cassava Mill Effluent, Soil Pollution, Soil Properties, Bacteria, Fungi. INTRODUCTION .... The hydrocarbon utilizing bacteria (HUB) were Bacillus substilis and ..... fermentative hydrogen production: A Review Int. J. Hydrogen ...

  16. Biodegradation Potentials of Cassava Mill Effluent (CME) by ...

    African Journals Online (AJOL)

    Bacillus, Pseudomonas, Aspergillus and Penicillium species which had the highest turbidity were used for bioremediation studies. The consortium of microorganisms demonstrated the highest efficacy. Bioremediation of cassava mill effluent by these microorganisms was manifested in the reduction of biological oxygen ...

  17. Unearthing Bacillus endophytes from desert plants that enhance growth of Arabidopsis thaliana under abiotic stress conditions

    KAUST Repository

    Bokhari, Ameerah M

    2018-04-01

    Here, we embarked a bioprospecting project that focuses on the isolation and characterization of plant root endophytes, collected from the Thar Desert. A total of 381 endophytes were isolated and based on their 16S rRNA gene sequences, genus Bacillus (58 strains) was identified as the major taxon and only endophytes from this genus were isolated from all plant types. Of the 58 Bacillus strains, only 16 strains were selected for screening of plant growth promotion traits such as P and Zn solubilization, indole-3-acetic acid and siderophore production, and antimicrobial activity. Based on the presence of specific plant growth promotion traits 10 strains were shortlisted for further in vitro screening with A. thaliana; to confirm that these bacteria can confer resilience to plants under salt stress conditions. B. circulans (PK3-15 and PK3-109), B. cereus (PK6-15) B. subtilis (PK3-9) and B. licheniformis (PK5-26) displayed the ability to increased the fresh weight of A. thaliana under salt stress conditions by more than 50 % compared to the uninoculated control. An interesting observation was that B. circulans (PK3-109) (shown to produce IAA exopolysaccharide) and B. circulans (PK3-138) (shown to produce IAA) in vitro results were substantially different as B. circulans (PK3-138) decreased the total fresh weight of A. thaliana by 47 %, whilst B. circulans (PK3-109) was one of the best performing strains. Thus, the genomes of these two strains were sequences to unravel the molecular versatility of B. circulans strains, specifically with respect to their interaction with plants. Most of the genome of these strains is identical but the most interesting feature was the presence of 1/ the DegS–DegU two-component system that is known to mediate the salt stress response and DegU also represses toxin wapA similar to antitoxin wapI, and 2/ YxiG, a gene in the unique orthogroup of PK3-109 was found to be linked to WapI. Thus, PK3-138 substantially decreasing the total fresh

  18. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-12-01

    endophytic bacterial strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth.

  19. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  20. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  1. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  3. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  4. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  5. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  6. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.

  7. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons

    Directory of Open Access Journals (Sweden)

    S. P Vasconcellos

    2009-12-01

    Full Text Available This study aimed at isolating and characterizing of microorganisms able to use linamarin as sole carbon source. Thirty one microbial strains were isolated from manipueira, a liquid effluent of cassava processing factories. Among these strains, Bacillus licheniformis (isolate 2_2 and Rhodotorulla glutinis (isolate L1 were able to degrade 71% and 95% of added linamarin, respectively, within 7 days, showing high biodegradation activity and great potential for detoxification of cassava processing wastewaters.

  8. Towards Added Value Attieke Production in Côte d’Ivoire Using Bacillus spp. as Starters

    Directory of Open Access Journals (Sweden)

    Charlotte Ayawovi Ehon

    2016-12-01

    Full Text Available In Côte d’Ivoire, the most fermented cassava food product is “attiéké”. Various microorganisms involved in this fermentation process. Bacillus spp. are well-known for their multi-potential enzymatic activities. In this study, Bacillus spp. strains were studied for their ability of growing in environmental stress as follow: NaCl (2 to 9% and lactic acid (0.1 to 1%. The growth of the studied strains was inhibited at 5% (1 strain, 7% (2 strains and 8% (7 strains for NaCl and beyond 0.25% for lactic acid. The ability of the isolated Bacillus strains to ferment cassava dough for “attiéké” production was also tested. The results of sensory tests showed that “attiéké” produced with Bacillus spp. strains was quite similar to “attiéké” control (traditional “attiéké” except for the brilliance and granulation for which the control obtained the highest scores. The present research indicated that cassava dough fermentation, initiated by the inoculation of Bacillus strains associated with or without lactic acid bacteria should be useful to improve and standardize the quality of “attiéké” produced in Côte d’Ivoire.

  9. Seasonal variation of bacterial endophytes in urban trees

    Directory of Open Access Journals (Sweden)

    Shu Yi eShen

    2015-05-01

    Full Text Available Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons. The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp.. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia and Sanguibacter spp.. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests investigations of the studies ofendophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.

  10. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  11. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    Science.gov (United States)

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  12. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  13. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    WIBOWO MANGUNWARDOYO

    2012-01-01

    Full Text Available Mangunwardoyo W, Suciatmih, Gandjar I. 2012. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity. Biodiversitas 13: 34-39. The aims of this research was to isolate and study the frequency of endophytic fungi from roots, bulbous, stems, and leaves of Dendrobium crumenatum Sw. (pigeon orchid collected from Tanah Baru housing area, Bogor Botanical Garden, and Herbarium Bogoriense; and to assess for antimicrobial activity against Candida albicans ATCC 2091, Candida tropicalis LIPIMC 203, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923. Twelve species of endophytic fungi were identified from 60 samples obtained from D. crumenatum. Guignardia endophyllicola (anamorph: Phyllosticta capitalensis were the dominant endophytic fungi. Screening of the anti-microorganism activity of the endophytic fungi revealed that Fusarium nivale inhibited C albicans and C. tropicalis. All specimens did not inhibit B. subtilis, E. coli, and S. aureus.

  14. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  15. Lama Penyimpanan, Karakterisasi Fisiologi, dan Viabilitas Bakteri Endofit Bacillus sp. dalam Formula Tepung

    Directory of Open Access Journals (Sweden)

    Diana putri

    2016-03-01

    Full Text Available Endophytic bacteria can be formulated to retain its ability as disease control agents. Three of endophytic bacteria which had the capability to suppress infection of Meloidogyne sp, and to enhance pepper growth were gained from the previous study. This research was aimed to evaluate the influence of storage time on the viability of endophytic bacteria, Bacillus sp. AA2, Bacillus sp. MER and MSJ, and to study its physiological charaterization during storage. The formulation evaluated in this study was : formulation 1 (50 g talc, 1 g pepton, 0.5 g CMC, and brown sugar 1.5 g, formulation 2 (50 g talc, 1 g pepton, 0.5 g CMC, and 1.5 g white sugar, formulation 3 (50 g talc, 1 g pepton, 0.5 g CMC, 1 g yeast extract, and 1.5 gwhite sugar and formulation 4 (50 g talc, 1 g pepton, 0.5 g CMC, 1 g yeast extract, 3 mL molasses, 1 gbentonite, 0.75 g calcium carbonate, and 1 g dextrose. The results of the bacterial characterization showed that Bacillus sp AA2 and Bacillus sp MER belongs to Gram positive, produced lipase and protease enzyme, as well as  IAA hormone. N2 fixation is only existed in Bacillussp. AA2 and MSJ isolate. The highest viability was shown on MSJ isolate with 2.5×106 cfu mL-1. in the fourth formulation, whereas Bacillus sp. AA2 and Bacillus sp. MER viability was 1.9×106 cfu mL-1. and 1.2×106 cfu mL-1. , respectively. 

  16. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  17. Phenanthrene and Pyrene Modify the Composition and Structure of the Cultivable Endophytic Bacterial Community in Ryegrass (Lolium multiflorum Lam

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-11-01

    Full Text Available This study provides new insights into the dynamics of bacterial community structure during phytoremediation. The communities of cultivable autochthonous endophytic bacteria in ryegrass exposed to polycyclic aromatic hydrocarbons (PAHs were investigated with regard to their potential to biodegrade PAHs. Bacterial counts and 16S rRNA gene sequence were used in the microbiological evaluation. A total of 33 endophytic bacterial strains were isolated from ryegrass plants, which represented 15 different genera and eight different classes, respectively. Moreover, PAH contamination modified the composition and structure of the endophytic bacterial community in the plants. Bacillus sp., Pantoea sp., Pseudomonas sp., Arthrobacter sp., Pedobacter sp. and Delftia sp. were only isolated from the seedlings exposed to PAHs. Furthermore, the dominant genera in roots shifted from Enterobacter sp. to Serratia sp., Bacillus sp., Pantoea sp., and Stenotrophomonas sp., which could highly biodegrade phenanthrene (PHE. However, the diversity of endophytic bacterial community was decreased by exposure to the mixture of PAHs, and increased by respective exposure to PHE and pyrene (PYR, while the abundance was increased by PAH exposure. The results clearly indicated that the exposure of plants to PAHs would be beneficial for improving the effectiveness of phytoremediation of PAHs.

  18. Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates.

    Science.gov (United States)

    Yi, Yanglei; de Jong, Anne; Frenzel, Elrike; Kuipers, Oscar P

    2017-01-01

    Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides , a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability

  19. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp. roots

    Directory of Open Access Journals (Sweden)

    Suzane A. Souza

    2013-01-01

    Full Text Available The genetic diversity of endophytic bacteria in banana 'Prata Anã' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX. Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.

  20. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  1. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics.

    Science.gov (United States)

    Dunlap, Christopher A; Kim, Soo-Jin; Kwon, Soon-Wo; Rooney, Alejandro P

    2016-03-01

    Bacillus velezensis was previously reported to be a later heterotypic synonym of Bacillus amyloliquefaciens , based primarily on DNA-DNA relatedness values. We have sequenced a draft genome of B. velezensis NRRL B-41580 T . Comparative genomics and DNA-DNA relatedness calculations show that it is not a synonym of B. amyloliquefaciens. It was instead synonymous with Bacillus methylotrophicus. ' Bacillus oryzicola ' is a recently described species that was isolated as an endophyte of rice ( Oryza sativa ). The strain was demonstrated to have plant-pathogen antagonist activity in greenhouse assays, and the 16S rRNA gene was reported to have 99.7 % sequence similarity with Bacillus siamensis and B. methylotrophicus , which are both known for their plant pathogen antagonism. To better understand the phylogenetics of these closely related strains, we sequenced the genome of ' B . oryzicola ' KACC 18228. Comparative genomic analysis showed only minor differences between this strain and the genomes of B. velezensis NRRL B-41580 T , B. methylotrophicus KACC 13015 T and Bacillus amyloliquefaciens subsp. plantarum FZB42 T . The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the strains were all greater than 84 %, which is well above the standard species threshold of 70 %. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the strains share phenotype and genotype coherence. Therefore, we propose that B. methylotrophicus KACC 13015 T , B. amyloliquefaciens subsp. plantarum FZB42 T , and ' B. oryzicola' KACC 18228 should be reclassified as later heterotypic synonyms of B. velezensis NRRL B-41580 T , since the valid publication date of B. velezensis precedes the other three strains.

  2. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  3. Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L. Cultivar Binjai

    Directory of Open Access Journals (Sweden)

    Sony Suhandono

    2016-01-01

    Full Text Available Interactions between plants and endophytic bacteria are mutualistic. Plant provides nutrient for bacteria, and bacteria will protect the plant from pathogen, help the phytohormone synthesis and nitrogen fixation, and also increase absorption of minerals. These bacteria called plant growth-promoting bacteria. The aim for this study is to identify endophytic bacteria on rambutan (Nephelium lappaceum L. cultivar Binjai with 16S rRNA. Sequencing results showed that the bacteria is derived from genus Corynebacterium, Bacillus, Chryseobacterium, Staphylococcus and Curtobacterium, which suspected play a role as plant growth-promoting bacteria.

  4. Determination of the microbiological quality and proximate composition of fermented cassava food products sold in Ilorin-west local government area, Nigeria

    Directory of Open Access Journals (Sweden)

    C.O. Adetunji

    2017-12-01

    Full Text Available In the present study, the microbiological safety and the proximate analyses of five urban markets within Ilorin-West Local Government Area, Kwara State, Nigeria were carried out using standard protocols. The bacterial load of fermented staple products from cassava ranged from 0.1 to 10.9×105 CFU/g while the fungi and yeast content ranged from 1.1 to 8.2×105 CFU/g. The isolates of bacteria from all the markets include the following; Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, Streptococus faecalis, Lactobacillus species, Acetobacter spp.., Bacillus cereus, Escherichia coli, Bacillus subtilis, Lactobacillus species while the isolated fungi include Fusarium oxysporium, Aspergillus niger, A.flavus, A. fumigatus, Saccharomyces cerevisae, Candida albicans, Penicillum spp., Rhizopus stolonifera, Mucor spp..The results of the proximate composition showed that moisture content of fermented staple products of cassava ranged from 6.21% (garri Ijebu from market A and lebu from market C to 72.25% (fufu from market C while dry matter content ranged between 27.75% (Fufu from market C to 93.79% (garri Ijebu market A and lebu from market C. Ash content ranged from 0.23% (Tapioca from market A to 1.96% (lebu from market A, crude fibre content ranged between 1.13% (Fufu from market C and 5.28% (Abacha from market D, and the carbohydrate content of the fermented staple products from cassava ranged from 18.61% (Fufu from market C to 81.44% (Tapioca from market A. Even though some potential pathogenic bacteria like E.coli and Bacillus were isolated from cassava fermented products, the minimum microbial load obtained could not impose any health risk.

  5. Development of starter culture for improved processing of Lafun, an African fermented cassava food product

    DEFF Research Database (Denmark)

    Padonou, S.W.; Nielsen, Dennis Sandris; Akissoe, N.H.

    2010-01-01

    AIMS: To select appropriate micro-organisms to be used as starter culture for reliable and reproducible fermentation of Lafun. METHODS AND RESULTS: A total of 22 cultures consisting of yeast, lactic acid bacteria (LAB) and Bacillus cereus strains predominant in traditionally fermented cassava...... during Lafun processing were tested as potential starter cultures. In an initial screening, Saccharomyces cerevisiae 2Y48P22, Lactobacillus fermentum 2L48P21, Lactobacillus plantarum 1L48P35 and B. cereus 2B24P31 were found to be the most promising of the cultures and were subsequently tested...... in different combinations as mixed starter cultures to ferment submerged cassava roots. Saccharomyces cerevisiae, inoculated singly or combined with B. cereus, gave the softest cassava root after 48 h of fermentation according to determination of compression profile and stress at fracture. Overall, sensory...

  6. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    Science.gov (United States)

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  7. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    Science.gov (United States)

    Ratnaweera, Pamoda B; de Silva, E Dilip; Williams, David E; Andersen, Raymond J

    2015-07-10

    Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC's for equisetin were 8 μg mL(-1) against Bacillus subtilis, 16 μg mL(-1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). O. dillenii, harbors several endophytic fungi capable of producing

  8. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  9. Characterization of a thermostable Bacillus subtilis β-amylase

    African Journals Online (AJOL)

    ... 70 0C respectively, and the thermal stability curve gave a maximum activity of 9.75 U at 70oC for 60 min of incubation. Bacillus subtilis â-amylase is valuable for maltose production, which can be hydrolyzed further by other groups of amylase for the production of high cassava glucose syrup used as sweeteners in the food ...

  10. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  11. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  12. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2013-01-01

    Full Text Available Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w was evaluated in combination with high-methylated pectin (HM-pectin added at levels of 1 to 3% (w/w according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  13. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types.

    Science.gov (United States)

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrné, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with high-methylated pectin (HM-pectin) added at levels of 1 to 3% (w/w) according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  14. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  15. Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina.

    Science.gov (United States)

    Kathiresan, Kandasamy; Saravanakumar, Kandasamy; Sahu, Sunil Kumar; Sivasankaran, Muthu

    2014-06-01

    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis.

  16. Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.

    Directory of Open Access Journals (Sweden)

    Subhadipa Sengupta

    2017-06-01

    Full Text Available This study reports the root endophytic microbial community profile in rice (Oryza sativa L., the largest food crop of Asia, using 16S rRNA gene amplicon sequencing. Metagenome of OS01 and OS04 consisted of 11,17,900 sequences with 300 Mbp size and average 55.6% G + C content. Data of this study are available at NCBI Bioproject (PRJNA360379. The taxonomic analysis of 843 OTU's showed that the sequences belonged to four major phyla revealing dominance of Proteobacteria, Firmicutes, Cyanobacteria and Actinobacteria. Results reveal the dominance of Bacillus as major endophytic genera in rice roots, probably playing a key role in Nitrogen fixation.

  17. Awareness of Cassava Peel Utilization Forms among Cassava ...

    African Journals Online (AJOL)

    hp

    processors were women (76.5%), married (75.0%), and members of cassava processing associations. (89.5%) ... products for mini-agricultural business include wafers .... Results and Discussion .... one or more cassava farmers' or processors'.

  18. POTENTIAL USE OF ENDOPHYTIC BACTERIA TO CONTROL Pratylenchus brachyurus ON PATCHOULI

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2012-10-01

    Full Text Available Pratylenchus brachyurus is an important parasitic nematode which significantly decreases quality and quantity of patchouli oil. One potential measure for controlling the nematode is by using endophytic bacteria. These bacteria also induce plant growth. This study aimed to evaluate the potential of endo-phytic bacteria to control P. brachyurus. The experiments were carried out in the Bacteriological Laboratory of the Plant Protection Department, Bogor Agricultural University, and the Laboratory and Greenhouse of the Indonesian Spice and Medicinal Crops Research Institute from April to December 2007. Endophytic bacteria were isolated from the roots of patchouli plants sampled from various locations in West Java. Antagonistic activity of the isolates were selected against P. brachyurus and their abilities to induce plant growth of patch-ouli plants. Isolates having ability to control P. brachyurus and promote plant growth were identified by molecular techniques using 16S rRNA universal primers. The results showed that a total of 257 isolates of endophytic bacteria were obtained from patchouli roots and their population density varied from 2.3 x 102 to 6.0 x 105 cfu g-1 fresh root. As many as 60 isolates (23.34% were antagonistic against P. brachyurus causing 70-100% mortality of the namatode, 72 isolates (28.01% stimu-lated plant growth, 32 isolates (12.47% inhibited plant growth, and 93 isolates (36.18% were neutral. Based on their antago-nistic and plant growth enhancer characters, five isolates of the bacteria, namely Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK, and Bacillus subtilis NJ57 suppressed 74.0-81.6% nema-tode population and increased 46.97-86.79% plant growth. The study implies that the endophytic bacteria isolated from patchouly roots are good candidates for controlling P. brachyurus on patchouly plants. Bahasa IndonesiaPratylenchus brachyurus adalah nematoda parasit pada

  19. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  20. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  1. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  2. A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films

    Science.gov (United States)

    Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.

    Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.

  3. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  4. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  5. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation.

    Science.gov (United States)

    Ramos, Cíntia L; de Sousa, Edinaira S O; Ribeiro, Jessimara; Almeida, Tayanny M M; Santos, Claudia Cristina A do A; Abegg, Maxwel A; Schwan, Rosane F

    2015-08-01

    The aim of this work was to identify and characterize the microbiota present during fermentation and in the final beverage, tarubá, by culture-dependent and -independent methods. In addition, target chemical compounds (carbohydrates, organic acids, and ethanol) were evaluated. Lactic acid bacteria (LAB) and mesophilic bacteria were the predominant microorganisms. Among them, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides, and Bacillus subtilis were frequently isolated and detected by DGGE analysis. Torulaspora delbrueckii was the dominant yeast species. Yeast isolates Pichia exigua, Candida rugosa, T. delbrueckii, Candida tropicalis, Pichia kudriavzevii, Wickerhamomyces anomalus, and Candida ethanolica and bacteria isolates Lb. plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus sp., and Chitinophaga terrae showed amylolytic activity. Only isolates of P. exigua and T. delbrueckii and all species of the genus Bacillus identified in this work exhibited proteolytic activity. All microbial isolates grew at 38 °C, and only the isolates belonging to Hanseniaspora uvarum species did not grow at 42 °C. These characteristics are important for further development of starter cultures; isolates of T. delbrueckii, P. exigua, and Bacillus species identified in this work displayed all of these properties and are potential strains for use as starter culture in cassava fermented food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antifungal and antibacterial activity of endophytic penicillium species isolated from salvadora species

    International Nuclear Information System (INIS)

    Korejo, F.; Shafique, H.A.; Haque, S.E.; Ali, S.A.

    2014-01-01

    Salvadora persica and S. S.oleoides are facultative holophytic plants, well known as miswak, are traditionally used to ensure oral hygiene among Muslim people in Asian and African counties. Species of Salvadora have a number of proven pharmacological importance. Besides, terrestrial fungi endophytic fungi are also gaining importance for the isolation of bioactive compounds. In this study 74 samples (root, shoot and leaves) from S. persica and S. oleoides were examined for endophytic fungi, 22 samples showed presence of Penicillium spp., 48 were found positive for aspergilli, whereas 10 samples showed infection of Fusarium solani, 4 were found infected with Macrophomina phaseolina and one with Rhizoctonia solani. Most of the Penicillium isolated were identified as P. restrictum, P. citrinum and P. canescens. In dual culture plate assay out of four Penicillium isolates tested, P. citrinum and one isolate of P. restrictum caused growth inhibition of all four test root rotting fungi, Fusarium solani, F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani. Culture filtrates of Penicillium spp., were also evaluated against four common laboratory bacteria namely Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli and above mentioned root rotting fungi. Culture filtrates of endophytic Penicillium spp., also showed significant antibacterial and antifungal activity. Secondary metabolites of endophytic Penicillium spp., offer an exciting area of research for the discovery of novel antimicrobial compounds. (author)

  7. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  8. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  9. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    OpenAIRE

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrn?, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with...

  10. Sunflower growth according to seed inoculation with endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Juliana Fernandes dos Santos

    2014-06-01

    Full Text Available The sunflower crop has a great importance worldwide, due to the oil of excellent quality extracted from its seeds and in natura grains that are consumed in various ways. However, drought is one of the main environmental factors that limit its yield. An experiment was carried out under controlled greenhouse conditions, in a completely randomized experimental design, in order to determine the effect of endophytic bacteria inoculation (Bacillus sp. and Enterobacter cloacae on the growth and contents of nutrients and organic solutes, in sunflower leaves and roots under water deficit. Plant height, stem diameter, fresh and dry biomass of shoot and roots, as well as contents of N, P, K, soluble carbohydrates, free proline, free amino acids and soluble proteins, were determined at 35 days after the plant emergence. The water deficit reduced plant growth regardless inoculation. However, under optimum conditions of soil moisture, the combination of both endophytic bacteria increased the sunflower growth. The water deficit also increased the N and K contents in leaves, as well as the organic solutes content in shoots, especially in inoculated plants. These results suggest that the inoculation of endophytic bacteria may increase the capacity of drought stressed plants to perform the osmotic adjustment through a higher accumulation of organic solutes, when compared to plants not inoculated.

  11. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  12. Endophytic bacterial community living in roots of healthy and 'Candidatus Phytoplasma mali'-infected apple (Malus domestica, Borkh.) trees.

    Science.gov (United States)

    Bulgari, Daniela; Bozkurt, Adem I; Casati, Paola; Cağlayan, Kadriye; Quaglino, Fabio; Bianco, Piero A

    2012-11-01

    'Candidatus Phytoplasma mali', the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and 'Ca. Phytoplasma mali'-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control 'Ca. Phytoplasma mali' in order to develop sustainable approaches for managing AP.

  13. of cassava in africa

    African Journals Online (AJOL)

    Cassava Colombian symptomless potexvirus. Cassava latent rhabdovirus .... densities of B. afer tend to occur on the lowest leaves of cassava, which are those that show the most conspicuous symptoms of CBSD (J.P. Legg, personal communication). ...... are used wherever possible to decrease the risks involved, although it ...

  14. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Directory of Open Access Journals (Sweden)

    Xuejian eYu

    2015-08-01

    Full Text Available The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3 % and Erwinia (7.2 % dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages.

  15. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  16. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  17. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  18. The effect of cassava and corn flour utilization on the physicochemical characteristics of cassava leaves snack

    Science.gov (United States)

    Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.

    2018-01-01

    Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.

  19. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  20. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  1. Cassava is not a goitrogen in mice

    International Nuclear Information System (INIS)

    Hershman, J.M.; Pekary, A.E.; Sugawara, M.; Adler, M.; Turner, L.; Demetriou, J.A.; Hershman, J.D.

    1985-01-01

    To examine the effect of cassava on the thyroid function of mice, the authors fed fresh cassava root to mice and compared this diet with low iodine diet and Purina. Cassava provided a low iodine intake and increased urine thiocyanate excretion and serum thiocyanate levels. Mice on cassava lost weight. The thyroid glands of mice on cassava were not enlarged, even when normalized for body weight. The 4- and 24-hr thyroid uptakes of mice on cassava were similar to those of mice on low iodine diets. Protein-bound [ 125 I]iodine at 24 hr was high in mice on either the cassava or low iodine diets. The thyroid iodide trap (T/M) was similar in mice on cassava and low iodine diets. When thiocyanate was added in vitro to the incubation medium, T/M was reduced in all groups of mice; under these conditions, thiocyanate caused a dose-related inhibition of T/M. The serum thyroxine (T4) and triiodothyronine (T3) concentrations of mice on cassava were reduced compared with mice on Purina diet. Thyroid T4 and T3 contents of mice on cassava were relatively low compared with mice on Purina diet. Hepatic T3 content and T4 5'-monodeiodination in liver homogenates were reduced in mice on cassava compared with other groups. The data show that cassava does not cause goiter in mice. The thiocyanate formed from ingestation of cassava is insufficient to inhibit thyroid iodide transport or organification of iodide. The cassava diet leads to rapid turnover of hormonal iodine because it is a low iodine diet. It also impairs 5'-monodeiodination of T4 which may be related to nutritional deficiency. These data in mice do not support the concept that cassava per se has goitrogenic action in man

  2. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  4. Cassava as a food.

    Science.gov (United States)

    Okezie, B O; Kosikowski, F V

    1982-01-01

    This review has attempted to examine information pertaining to the role of cassava (Manihot esculenta) as a major food source for a large part of the world population, particularly the countries of South America, Africa, and Asia, where it is primarily a major source of energy for 300 to 500 million people. Its cultivation, usually on small farms with little technology, is estimated to cover on an annual basis about 11 million hectares providing about 105 million tons, more than half of which is consumed by humans. The importance of cassava as an energy source can be seen by its growing demand in the European economic community countries where it forms up to 60% of the balanced diets for swine. Cassava is one of the crops that converts the greatest amount of solar energy into soluble carbohydrates per unit of area, thus 1 kg of moisture-free cassava meal may yield up to about 3750 kcal which would mean that a yearly production of 15 tons of cassava meal per hectare would yield some 56 million kcal. The major limitations of cassava as food appear to be its poor protein content and quality and the rapid post harvest deterioration of its roots which usually prevents their storage in the fresh state for more than a few days. However, in addition to its use for culinary purposes, cassava finds application in industrial products such as an adhesive for laundry purposes, for manufacturing paper, alcohol, butanol, dextrin, adhesive tape, textile sizing, and glue.

  5. Value chain analysis on cassava and cassava based - products in ...

    African Journals Online (AJOL)

    This study examined the value Chain analysis (production process and cost related to each element of production chain to add value) on cassava and cassava products in Imo State specifically to ascertain the farm size holdings of the respondents as well as the ownerships of the land used for production. It also identified` ...

  6. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria.

    Science.gov (United States)

    Esposito-Polesi, Natalia Pimentel; de Abreu-Tarazi, Monita Fiori; de Almeida, Cristina Vieira; Tsai, Siu Mui; de Almeida, Marcílio

    2017-01-01

    Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR-DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of "truly axenic plants."

  7. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  8. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn

  9. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  10. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    Science.gov (United States)

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  11. Isolation of Antagonistic Endophytes from Banana Roots against Meloidogyne javanica and Their Effects on Soil Nematode Community

    Directory of Open Access Journals (Sweden)

    Lanxi Su

    2017-10-01

    Full Text Available Banana production is seriously hindered by Meloidogyne spp. all over the world. Endophytes are ideal candidates compared to pesticides as an environmentally benign agent. In the present study, endophytes isolated from banana roots infected by Meloidogyne spp. with different disease levels were tested in vitro, and in sterile and nature banana monoculture soils against Meloidogyne javanica. The proportion of antagonistic endophytes were higher in the roots of middle and high disease levels. Among those, bacteria were dominant, and Pseudomonas spp., Bacillus spp. and Streptomyces spp. showed more abundant populations. One strain, named as SA, with definite root inner-colonization ability was isolated and identified as Streptomyces sp. This strain showed an inhibiting rate of >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against Meloidogyne javanica, compared to the control. Greenhouse experiment results showed that the strain SA exhibits excellent biological control ability for plant-parasites both in roots and in root-knot nematode infested soil. SA treatment showed a higher number of bacterivores, especially Mesorhabditis and Cephalobus. The maturity index was significantly lower, while enrichment index (EI was significantly higher in the SA treatment. In conclusion, this study presents an important potential application of the endophytic strain Streptomyces sp. for the control of plant-parasitic nematodes, especially Meloidogyne javanica, and presents the effects on the associated variation of the nematode community.

  12. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  13. Physicochemical Properties of Fungal Detoxified Cassava Mash and ...

    African Journals Online (AJOL)

    The physicochemical properties of fungal detoxified cassava mash and sensory characteristics of wheat-detoxified cassava composite doughnuts were investigated. Fungal isolates from soils collected at cassava processing sites were isolated, quantified and identified. Cassava mash from grated tuber was partially ...

  14. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture.

    Science.gov (United States)

    Szilagyi-Zecchin, Vivian Jaskiw; Ikeda, Angela Cristina; Hungria, Mariangela; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Glienke, Chirlei; Galli-Terasawa, Lygia Vitória

    2014-01-01

    Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn.

  15. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2016-09-01

    Full Text Available Endophytes form symbiotic relationships with plants and constitute an important source of phytohormones and bioactive secondary metabolites for their hosts. To date, most studies of endophytes have focused on the influence of these microorganisms on plant growth and physiology and their role in plant defenses against biotic and abiotic stressors; however, to the best of our knowledge, the ability of endophytes to produce melatonin has not been reported. In the present study, we isolated and identified root-dwelling bacteria from three grapevine varieties and found that, when cultured under laboratory conditions, some of the bacteria strains secreted melatonin and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-9 exhibited the highest level of in vitro melatonin secretion and also produced three intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin, and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets exhibited increased plant growth. Additionally, we found that, in grapevine plantlets exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased the upregulation of melatonin synthesis, as well as that of its intermediates, but reduced the upregulation of grapevine tryptophan decaboxylase genes (VvTDCs and a serotonin N-acetyltransferase gene (VvSNAT transcription, when compared to the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able to counteract the adverse effects of salt- and drought-induced stress by reducing the production of malondialdehyde and reactive oxygen species (H2O2 and O2− in roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in endophytic bacteria and provide evidence for a novel form of communication between beneficial endophytes and host plants via melatonin.

  16. Cassava; African perspective on space agriculture

    Science.gov (United States)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  17. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  18. Consumer’s market analysis of products based on cassava

    Science.gov (United States)

    Unteawati, Bina; Fitriani; Fatih, Cholid

    2018-03-01

    Cassava product has the important role for enhancing household's income in rural. Cassava as raw material food is plentiful as local food in Lampung. Cassava product is one of strategic value addition activities. Value additional activities are a key to create income source enrichment in rural. The household was product cassava as a snack or additional food. Their product cassava was operated in small-scale, traditional, and discontinuous production. They have been lacked in technology, capital, and market access. Measurement the sustainability of their business is important. The market has driven the business globally. This research aims to (1) describe the cassava demand to locally product cassava in rural and (2) analysis the consumer's perception of cassava product. Research take placed in Lampung Province, involved Bandar Lampung and Metro City, Pringsewu, Pesawaran, Central Lampung, and East Lampung district. It is held in February until April 2017. Data were analyzed by descriptive statistic and multidimensional scaling. Based on the analysis conclude that (1) the demand of product cassava from rural was massive in volume and regularity with the enormous transaction. This fact is very important to role business cycles. Consumers demand continuously will lead the production of cassava product sustain. Producers of product cassava will consume fresh cassava for the farmer. Consumption of fresh cassava for home industry regularly in rural will develop balancing in fresh cassava price in the farming gate (2) The consumer's perception on cassava product in the different market showed that they prefer much to consume cassava chips as cassava product products than other. Next are crackers, opak, and tiwul rice. Urban consumers prefer product products as snacks (chips, crumbs, and opak), with consumption frequency of 2-5 times per week and volume of 1-3 kg purchases. Consumers in rural were more frequent with daily consumption frequency. Multidimensional scaling

  19. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis.

    Science.gov (United States)

    Rashid, Md Harun-Or-; Khan, Ajmal; Hossain, Mohammad T; Chung, Young R

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae . Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 10 7 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 ( PAD4 ) while suppressing BOTRYTIS-INDUCED KINASE1 ( BIK1 ). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1 , resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis .

  20. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    Science.gov (United States)

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  1. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  2. Cassava For Space Diet

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  3. [A rare cause of optic neuropathy: Cassava].

    Science.gov (United States)

    Zeboulon, P; Vignal-Clermont, C; Baudouin, C; Labbé, A

    2016-06-01

    Cassava root is a staple food for almost 500 million people worldwide. Excessive consumption of it is a rare cause of optic neuropathy. Ten patients diagnosed with cassava root related optic neuropathy were included in this retrospective study. Diagnostic criteria were a bilateral optic neuropathy preceded by significant cassava root consumption. Differential diagnoses were excluded through a neuro-ophthalmic examination, blood tests and a brain MRI. All patients had visual field examination and OCT retinal nerve fiber layer (RNFL) analysis as well as an evaluation of their cassava consumption. All patients had a bilateral optic nerve head atrophy or pallor predominantly located into the temporal sector. Visual field defects consisted of a central or cecocentral scotoma for all patients. RNFL showed lower values only in the temporal sector. Mean duration of cassava consumption prior to the appearance of visual symptoms was 22.7±11.2 years with a mean of 2.57±0.53 cassava-based meals per week. Cassava related optic neuropathy is possibly due to its high cyanide content and enabled by a specific amino-acid deficiency. Cassava root chronic consumption is a rare, underappreciated cause of optic neuropathy and its exact mechanism is still uncertain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Fenella Mary War Nongkhlaw

    2014-12-01

    Full Text Available The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC gene, nitrogen fixation, cellulose digestion, chitin and pectin degradation were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests could be explored for use as plant growth promoters while practising the cultivation and conservation of ethnomedicinal plants. Rev. Biol. Trop. 62 (4: 1295-1308. Epub 2014 December 01.

  5. Beauveria bassiana as an endophyte

    DEFF Research Database (Denmark)

    McKinnon, Aimee C.; Saari, Susanna Talvikki; Moran-Diez, Maria E.

    2017-01-01

    In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported...... for the detection of B. bassiana as endophytes following experimental inoculation. In light of the methodology, we further review the effects of endophytic B. bassiana on insect herbivores. Our review indicated the need for stringent protocols for surface sterilisation including thorough experimental controls....... For molecular detection protocols by PCR, residual DNA from surface inocula must also be considered. The biocontrol potential of B. bassiana endophytes appears promising although both negative and neutral effects on insect herbivores were reported and there remains ambiguity with respect to the location...

  6. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    Science.gov (United States)

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  7. Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity.

    Science.gov (United States)

    Pinheiro, Eduardo A A; Carvalho, Josiwander M; Santos, Diellem C P dos; Feitosa, André O; Marinho, Patrícia S B; Guilhon, Giselle Maria S P; Santos, Lourivaldo S; Souza, Afonso L D de; Marinho, Andrey M R

    2013-01-01

    The present work reports the isolation of five compounds from Aspergillus sp EJC08 isolated as endophytic from Bauhinia guianensis, a tipical plant of the Amazon. The compounds ergosterol (1), ergosterol peroxide (2), mevalolactone (3), monomethylsulochrin (4) and trypacidin A (5) were isolated by chromatographic procedures and identified by spectral methods of 1D and 2D NMR and MS. Compounds 3, 4 and 5 were tested against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus and showed good activity.

  8. SELEKSI DAN IDENTIFIKASI BAKTERI ENDOFIT POTENSIAL PENGHASIL ENZIM PROTEASE DARI TAMAN NASIONAL GUNUNG HALIMUN - (The Selection and Identification of Potential Endophyte Bacteria as Protease Enzyme Producer from Halimun Mount National Park

    Directory of Open Access Journals (Sweden)

    Ruth Melliawati

    2016-12-01

    Full Text Available Endophytic bacteria have an equal chance to bacteria that live outside the plant tissue as potential bacteria. The selection has done towards 326 bacterial endophyte isolates. This research aimed to find and identify proteolytic potential isolates. The proteolytic selection of endophytic bacteria had done using solid skim milk. The capability of endophytic bacteria to agglomerate milk was tested using liquid skim milk which incubated for 7 days at room temperature. Enzyme production of four selected isolates was made through fermentation in GYS medium. The results showed that 86 isolates have proteolytic potential. Isolate HL.29B.63 had highest protease enzymes activity (65.918 U/mL. Medium optimization was able to increase the enzyme activity into 89.94% (125.04 U/mL. The analysis used 16s rDNA showed that isolate HL.29B.63 was Bacillus amyloliquefacient subs. plantarum strain FZB42.Keywords: endophytic bacteria, fermentation, identification, protease, selection ABSTRAKBakteri endofit mempunyai peluang yang sama dengan bakteri yang hidup diluar jaringan tanaman sebagai bakteri potensial. Seleksi dilakukan terhadap 326 isolat bakteri endofit. Tujuan penelitian ini adalah mencari isolat yang berpotensi proteolitik dan mengidentifikasinya. Seleksi proteolitik terhadap bakteri endofitik menggunakan skim milk padat. Uji kemampuan bakteri endofitik dalam menggumpalkan susu menggunakan medium skim milk cair yang diinkubasi selama 7 hari pada suhu ruang. Produksi enzim terhadap empat isolat terseleksi dilakukan melalui fermentasi dalam medium GYS. Hasilnya menunjukkan bahwa 86 isolat mempunyai potensi proteolitik. Isolat HL.29B.63 mempunyai aktif enzim protease tertinggi (65,918 U/mL. Optimasi medium dapat meningkatkan aktivitas enzim sebesar 89,94% (125,04 U/mL. Analisis menggunakan 16s rDNA menunjukkan bahwa isolat HL.29B.63 adalah Bacillus amyloliquefaciens subs. plantarum strain FZB42.Kata kunci: bakteri endofit, fermentasi, identifikasi, protease

  9. Determinants Of Adoption Of Improved Cassava Production ...

    African Journals Online (AJOL)

    Descriptive statistics and multiple regression analysis were used to analyse the field data The identified cassava production technologies at different stages of adoption by the respondents are use of improved cassava cuttings, use of herbicides/pesticides, Alternate row/crop geometry in a cassava /maize/yam intercrop, ...

  10. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Design and fabrication of a cassava peeling machine | Akintunde ...

    African Journals Online (AJOL)

    Design and fabrication of a cassava peeling machine. ... Journal Home > Vol 23, No 1 (2005) > ... The varying shapes and sizes of cassava tubers have made cassava peeling to be one of the major problems in the mechanization of cassava ...

  12. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  13. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    Science.gov (United States)

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  14. Bioprospecting endophytic bacteria for biological control of coffee leaf rust Bioprospecção de bactérias endofíticas como agentes de biocontrole da ferrugem do cafeeiro

    Directory of Open Access Journals (Sweden)

    Humberto Franco Shiomi

    2006-02-01

    Full Text Available Suppression of plant diseases due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving endophytic bacteria isolated from leaves and branches of Coffea arabica L and Coffea robusta L were conducted with the objective of evaluating the inhibition of germination of Hemileia vastatrix Berk. & Br., race II, urediniospores and the control of coffee leaf rust development in tests with leaf discs, detached leaves, and on potted seedling of cv. Mundo Novo. The endophytic bacterial isolates tested proved to be effective in inhibiting urediniospore germination and/or rust development, with values above 50%, although the results obtained in urediniospore germination tests were inferior to the treatment with fungicide propiconazole. Endophytic isolates TG4-Ia, TF2-IIc, TF9-Ia, TG11-IIa, and TF7-IIa, demonstrated better coffee leaf rust control in leaf discs, detached leaves, and coffee plant tests. The endophytic isolates TG4-Ia and TF9-Ia were identified as Bacillus lentimorbus Dutky and Bacillus cereus Frank. & Frank., respectively. Some endophytic bacterial isolates were effective in controlling the coffee leaf rust, although some increased the severity of the disease. Even though a relatively small number of endophytic bacteria were tested, promising results were obtained regarding the efficiency of coffee leaf rust biocontrol. These selected agents appears to be an alternative for future replacement of chemical fungicide.Supressão de doenças de plantas por microrganismos endofíticos tem sido demonstrada em diversos patossistemas. Neste trabalho foram selecionados isolados de bactérias endofíticas de folhas e ramos de cafeeiro com potencial para o controle biológico da ferrugem do cafeeiro, pois é conhecido que esses microrganismos podem possuir essa característica. Bactérias endofíticas isoladas previamente de folhas e ramos de Coffea arabica L e Coffea

  15. A Process Technology For Conversion Of Dried Cassava Chips Into ...

    African Journals Online (AJOL)

    “Gari”, made from fermented bitter Cassava roots (Manihot esculenta crantz) were successfully processed from already dried Cassava chips at 7% moisture level. Cassava mash at 67% moisture was prepared from dried Cassava chips. This was seeded severally with fresh cassava mash and fermented for 72hours.

  16. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Bacillus subtilis UBTn7, a potential producer of L - Methioninase isolated from mangrove, Rhizophora mucronata

    Science.gov (United States)

    Prihanto, A. A.

    2018-04-01

    L-methioninase is an enzyme that degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols. L-methioninase could be found in plants, bacteria, and fungi. The aims of this study was to obtain L-methioninase-producing endophytic bacteria isolated from mangrove Rhizophora mucronata. The mangrove was collected from Jenu Beach, Tuban, East Java, Indonesia. The samples were roots, stems, and leaves of Rhizophora mucronata. Endophytic bacteria were pure isolated using LB agar medium. Each bacteria were screened its capability to produce L-methioninase using selective media namely modified Czapek Dox agar. The best producer of enzyme was further identified with morphological and biochemical analysis. The result showed that three bacteria produced L-methioninase. Based on the result of morphological and biochemical analysis, the best producer was Bacillus subtilis UBTn7.

  18. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae

    Directory of Open Access Journals (Sweden)

    Irene de Araújo Barros

    2010-12-01

    Full Text Available Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2% and 346 (64.2% were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. (B. cereus, B. megaterium, B. pumilus and B. subtilis, Paenibacillus sp., Amphibacillus sp., Gracilibacillus sp., Micrococcus sp. and Stenotrophomonas spp. (S. maltophilia and S. nitroreducens. B. pumilus was the most frequently isolated bacterial species. Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana, which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  19. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    Science.gov (United States)

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  20. Bacterial Endophyte Colonization and Distribution within Plants

    Directory of Open Access Journals (Sweden)

    Shyam L. Kandel

    2017-11-01

    Full Text Available The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

  1. Limitations of Cassava Bacterial Blight: New Advances

    Directory of Open Access Journals (Sweden)

    Camilo López

    2006-07-01

    genomics. The acquired knowledge in the last years for this pathosystem will help to establish better disease control strategies and generate, in a short term, resistant cassava varieties contributing to solve one of the main problems of poor cassava farmers and this effort will open a new horizon to the cassava crop in the world.

  2. Extrusion of blends of cassava leaves and cassava flour: physical characteristics of extrudates

    Directory of Open Access Journals (Sweden)

    Cristiane da Cunha Salata

    2014-09-01

    Full Text Available A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture and the process parameters (extrusion temperature and screw speed on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*, and hardness. Under conditions of low moisture content (12 to 14%, low percentage of cassava leaf flour (2 to 4%, and intermediate conditions of extrusion temperature (100°C and screw speed (230rpm, it was possible to obtain puffed snack products with desirable characteristics.

  3. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    Science.gov (United States)

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  4. Vertical Differentiation of Cassava Marketing Channels in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2008-01-01

    Full Text Available Farming systems in sub-Saharan Africa are inherently risky because they are fundamentally dependent on vagaries of weather. Sub-Saharan Africa is also a region in crises; poverty, civil strife and HIV/AIDS. Attention must therefore be focused on improving the production and marketing of crops that could thrive under these circumstances. Because of its tolerance of extreme drought and low input use conditions, Cassava is perhaps the best candidate in this regard. And cassava is a basic food staple and a major source of farm income for the people of the region. Efficiency in cassava marketing is a very important determinant of both consumers' living cost and producers' income in Africa. Vertical differentiation of marketing channels improves marketing efficiency. Identified in this paper are factors that drive vertical differentiation of cassava marketing channels. The paper is based on primary data collected within the framework of the Collaborative Study of Cassava in Africa. High population density, good market access conditions, availability of mechanized cassava processing technology and cassava price information stimulate vertical differentiation of the marketing channels.

  5. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves.

    Science.gov (United States)

    Ma, Li; Xi, Jia-Qin; Cao, Yong-Hong; Wang, Xiao-Yan; Zheng, Shuai-Chao; Yang, Cheng-Gang; Yang, Ling-Ling; Mi, Qi-Li; Li, Xue-Mei; Zhu, Ming-Liang; Mo, Ming-He

    2017-10-01

    A Gram-stain-positive, rod-shaped, motile bacterium, designated as 1404 T , was isolated from leaves of Chinese red pepper (Huajiao) (Zanthoxylum bungeanum Maxim) collected from Gansu, north-west China. Spores were not observed under a range of conditions. Strain 1404 T was observed to grow at 15-45 °C and pH 6.0-10.0 and in presence of 0-5 % (w/v) NaCl concentration. The cell wall of strain 1404 T was found to contain meso-diaminopimelic acid, and the predominant respiratory quinone was identified as MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as well as three unidentified polar lipids. The major fatty acids profile of strain 1404 T consisted of iso-C15 : 0 (25.6 %), anteiso-C15 : 0 (18.4 %) and iso-C14 : 0 (12.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1404 T was affiliated to the genus Bacillus and was closely related to Bacillusoryzisoli 1DS3-10 T , Bacillusbenzoevorans DSM 5391 T and Bacilluscirculans DSM 11 T with sequence similarity of 98.3, 98.2 and 96.9 %, respectively. The G+C content of the genomic DNA was determined to be 39.4 mol%. DNA-DNA hybridization values indicated that relatedness between strain 1404 T and the type strains of closely related species of the genus Bacillus was below 41 %. Therefore, on the basis of the data from the polyphasic taxonomic study presented, strain 1404 T represents a novel species of the genus Bacillus, for which the name proposed is Bacillus endozanthoxylicus sp. nov. The type strain is 1404 T (=CCTCC AB 2017021 T =KCTC 33827 T ).

  6. Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149

    Directory of Open Access Journals (Sweden)

    Nisha V. Ramadas

    2009-02-01

    Full Text Available The aim of this work was to study the production of polyhydroxybutyrate (PHB using agro- industrial residues as the carbon source. Seven substrates, viz., wheat bran, potato starch, sesame oil cake, groundnut oil cake, cassava powder, jackfruit seed powder and corn flour were hydrolyzed using commercial enzymes and the hydrolyzates assessed for selecting the best substrate for PHB production. Jackfruit seed powder gave the maximum production of PHB under submerged fermentation using Bacillus sphaericus (19% at the initial pH of 7.5.

  7. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides

    Science.gov (United States)

    Perez, Karla J.; Viana, Jaime dos Santos; Lopes, Fernanda C.; Pereira, Jamile Q.; dos Santos, Daniel M.; Oliveira, Jamil S.; Velho, Renata V.; Crispim, Silvia M.; Nicoli, Jacques R.; Brandelli, Adriano; Nardi, Regina M. D.

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances. PMID:28197131

  8. Development of an electrically operated cassava slicing machine

    Directory of Open Access Journals (Sweden)

    I. S. Aji

    2013-08-01

    Full Text Available Labor input in manual cassava chips processing is very high and product quality is low. This paper presents the design and construction of an electrically operated cassava slicing machine that requires only one person to operate. Efficiency, portability, ease of operation, corrosion prevention of slicing component of the machine, force required to slice a cassava tuber, capacity of 10 kg/min and uniformity in the size of the cassava chips were considered in the design and fabrication of the machine. The performance of the machine was evaluated with cassava of average length and diameter of 253 mm and 60 mm respectively at an average speed of 154 rpm. The machine produced 5.3 kg of chips of 10 mm length and 60 mm diameter in 1 minute. The efficiency of the machine was 95.6% with respect to the quantity of the input cassava. The chips were found to be well chipped to the designed thickness, shape and of generally similar size. Galvanized steel sheets were used in the cutting section to avoid corrosion of components. The machine is portable and easy to operate which can be adopted for cassava processing in a medium size industry.

  9. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  10. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  11. Cassava: Nutrient composition and nutritive value in poultry diets

    Directory of Open Access Journals (Sweden)

    Natalie K. Morgan

    2016-12-01

    Full Text Available Insufficient supply, high prices and competition with the human food and biofuel industries means there is a continuous demand for alternative energy sources for poultry. As a result, cassava is becoming an increasingly important ingredient in poultry diets, largely due to its high availability. Efficient use of cassava products has been shown to reduce feed costs of poultry production. The utilisation of cassava is, however, limited by a number of factors, including its high fibre and low energy content and the presence of anti-nutritional factors, primarily hydrocyanic acid (HCN. With correct processing the inclusion level of cassava in poultry diets could be increased. Extensive research has been conducted on cassava products for poultry, but there is still a lack of consistency amongst the measured nutritive values for cassava and its products, hence variation exists in results from poultry studies. This paper reviews the nutrient composition of cassava products and its value as an alternative energy source in poultry diets.

  12. Tracking the movement and colonization of biocontrol agent Bacillus subtilis using radiolabelling and tracer techniques

    International Nuclear Information System (INIS)

    Kavitha, P.G.; Jonathan, E.I.; Nakkeeran, S.

    2017-01-01

    Bacillus subtilis, an endophytic bacteria that lives inside the plant system is viewed as a potential source of novel genes with antimicrobial activity. B. subtilis strain Bs5 isolated from noni was found to be antagonistic to root knot nematode, Meloidogyne incognitainvitro. The endophytic nature of the bacteria was ascertained by labeling the bacteria with radioactive 32 P and introduced in to the plant system. Autoradiograph of young noni seedlings was developed 28 days after exposure period in the X-ray film. The work was carried out in the Radioisotope Laboratory, Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore. Autoradiography indicated a difference in intensity of darkening of photographic emulsion. A closer scrutiny of the autoradiograph showed intensity of the film darkening to be accentuated in the top leaves. It revealed that the radio labelled bacteria effectively translocated from root to shoot and colonized the stem, mid ribs and actively growing regions. From the study it becomes evident that the radio labelling and tracer analysis is an effective tool for tracking the movement and colonization of endophytic bacteria which are potential candidates for combating plant pathogens including plant parasitic nematodes. (author)

  13. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  14. Development of Wet Noodles Based on Cassava Flour

    Directory of Open Access Journals (Sweden)

    Akhmad Z. Abidin

    2013-04-01

    Full Text Available Cassava is one of Indonesia’s original commodities and contains good nutrition and has high productivity and a relatively low price. Cassava flour has a high potential as a substitute for imported wheat flour that is widely used in noodle production. The main purpose of this research was to develop wet noodles from cassava flour that can compete with wet noodles from wheat flour. The research consisted of experiments with several variations of composition and production method for producing cassava flour-based wet noodles. The best result was then examined for its nutritional value, economical value, and market response, and also a comparison was made between the prepared wet noodles and the standard noodles made from wheat flour. The analysis was based on five characteristics: taste, texture, chewiness, aroma, and appearance. Relations between these characteristics with composition, materials used, and methods applied are discussed. The developed cassava flour-based wet noodle meets physical, nutritional, and economical standards. Raw materials of the noodle were cassava flour and a wheat flour composite with a 5:1 ratio, egg, gluten, soda-ash, water, and vegetable oil, while the process was completed in multiple stages. Market response showed that the cassava flour-based wet noodles were 80% similar to wheat-flour noodles.

  15. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  16. Origin and management of neotropical cassava arthropod pests ...

    African Journals Online (AJOL)

    Cassava, one of the worlds major food crops is grown throughout the tropical regions of the world. Cassava originated in the neotropics; it was introduced into West Africa from Brazil by slave traders in the 1500's, and taken to Asia during the 17th century. Consequently the greatest diversity of cassava pests, as well as their ...

  17. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae.

    Science.gov (United States)

    Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary

    2013-01-01

    A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.

  18. Effect of Drying Method and Variety on Quality of Cassava Starch ...

    African Journals Online (AJOL)

    Effect of Drying Method and Variety on Quality of Cassava Starch Extracts. ... Cassava starch is one of the main industrial products of cassava processing. ... Also, cassava starch samples dried at lower temperature have better functional and ...

  19. Economic Analysis Of Cassava Production In Akwa Ibom State ...

    African Journals Online (AJOL)

    ... encourage farmers to use recommended rate of fertilizer application, improved varieties of cassava stem for increased efficiency and increased cassava production in the country since there is availability of markets for Nigeria cassava products( chips/pellets) in China, Netherlands, Germany, Belgium and Luxembourg.

  20. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  1. Field Performance of Cassava (Manihot esculenta Crantz ...

    African Journals Online (AJOL)

    Field Performance of Cassava (Manihot esculenta. Crantz) ... Keywords: Tissue culture-derived plantlets, Field plant growth, Yield, Root tuber characteristics,. Cassava ..... Micro-propagation of ... Roca, W.M.; Henry, G., Angel, F. and Sarria, R.

  2. Approaches to diagnosis and detection of cassava brown streak ...

    African Journals Online (AJOL)

    Cassava brown streak disease (CBSD) has been a problem in the East African coastal cassava growing areas for more than 70 years. The disease is caused by successful infection with Cassava Brown Streak Virus (CBSV) (Family, Potyviridae: Genus, Ipomovirus). Diagnosis of CBSD has for long been primarily leaf ...

  3. Value chain and marketing margins of cassava: An assessment of ...

    African Journals Online (AJOL)

    Value chain and marketing margins of cassava: An assessment of cassava marketing in ... African Journal of Food, Agriculture, Nutrition and Development ... Cassava is one of the emerging market oriented agricultural commodities with ...

  4. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  5. A MANUALLY OPERATED CASSAVA GRATING MACHINE

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... substantial losses arising from the inability of the person to hold small pieces of cassava roots for grating. Happily, there now exist various. Versions of mechanical graters which are driven by electric motors or small internal combustion engines. In fact, it may be said that cassava grating has been effectively.

  6. Soaking and drying of cassava roots reduced cyanogenic potential ...

    African Journals Online (AJOL)

    Detoxification of three cassava varieties (NR-44/72, NW-45/72 and NW-44/72) by traditional methods of processing to produce cassava flour was investigated at the college of agriculture, Jimma University during February to May, 2007. The total hydrogen cyanide (HCN) quantitative determination in cassava flour was ...

  7. Controlled transmission of African cassava mosaic virus (ACMV) by ...

    African Journals Online (AJOL)

    Jatropha curcas, a plant with great biodiesel potential is also used to reduce the population of whiteflies, Bemisia tabaci on cassava fields when planted as a hedge. We therefore, investigated the transmission of African cassava mosaic virus (ACMV) by the whitefly vector from cassava to seedlings of 10 accessions of J.

  8. Phenotypic Approaches to Drought in Cassava: Review

    Directory of Open Access Journals (Sweden)

    Emmanuel eOkogbenin

    2013-05-01

    Full Text Available Cassava is an important crop in Africa, Asia, Latin America and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12 - 18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance

  9. socio-economic determinants of production of pro-vitamin a cassava

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    vitamin A ... development facilities should be provided for cassava farmers in the rural ..... farmers sell their farm products early, easily and faster. ... Farmers for sustainable Cassava production in ... Annual report of new cassava varieties released.

  10. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  11. Improvement in the nutritive quality of cassava and its by-products ...

    African Journals Online (AJOL)

    A review of the extent of fermentation of cassava and its by-products was made in order to highlight the role played by fermentation on the bio-conversion of cassava and cassava by-products for improved nutrient quality. The reasons for cassava products fermentation mentioned were synonymous with the reasons ...

  12. Utilization Of Cassava and Pawpaw Diets By Growing Snails ...

    African Journals Online (AJOL)

    kg M. E). The treatments were T1, T2, T3, T4 and T5. The rations had 10% inclusion of pawpaw leaf (T2) Unripe Pawpaw fruit (T3), Cassava peel (T4) cassava leaf (T5). The treatment without the inclusion of pawpaw and cassava meal served as ...

  13. Challenges of Women in Cassava Production and Processing: A ...

    African Journals Online (AJOL)

    Information about cassava was sourced from friends (40.0%) often and they hardly use or see extension agent (70%) for research information on cassava production and processing. Despite the poor storage life of cassava, 80.5% of the respondents reported a poor knowledge on the possible ways of storage. The study ...

  14. Protein enrichment of cassava peel by submerged fermentation with ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta Crantz) peel is one of the solid wastes produced as a consequence of cassava processing. It is low in protein but contains a large amount of carbohydrate, causing an environmental problem with disposal. In order to add-value to this major cassava processing waste and also reduce its resultant ...

  15. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  16. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  17. Middlemen and Smallholder Farmers in Cassava Marketing in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2009-01-01

    Full Text Available Cassava is a basic food staple and a major source of farm income in Africa. Efficiency in cassava marketing is therefore a very important determinant of consumers living cost and producers' income. Exploitation of one marketing agent by another in the course of product distribution could contribute to increased marketing costs and hence inefficiency. The paper examines the extent to which the widely held view that middlemen exploit farmers through monopsony purchases and usury apply to cassava farmers. The paper is based on primary data collected within the framework of the collaborative study of cassava in Africa (COSCA. The result of the analysis fails to support the view that middlemen generally engage in monopsony purchases of cassava products, because farmers had on average, higher volume of cassava products for sale in the market than middlemen. Prices of cassava products appeared more stable in Nigeria than in the other countries, because of the more elaborate involvement of middlemen, which encouraged competition. The intermediaries between the farmer and the consumer were at most three in each of the countries – the processor, the semi-wholesaler and the retailer. Cassava farmers and traders combined the role of the processor apparently because of the low development stage of mechanized processing technology. For both farmers and middlemen, transactions in cash were the predominant practice, followed by delayed payments. Advanced payment was non-existent except in Uganda. Marketing margins, though generally high, decline with good market access conditions. And the margins for granules were substantially lower than those of dried roots not only because of substantial differences in processing resource demand but also because of differences in marketing costs. This suggests that investments towards improving market access conditions, and in cost saving processing technologies for the production of granules are needed for the improvement

  18. Quality of fermented cassava flour processed into placali | Koko ...

    African Journals Online (AJOL)

    Fermented cassava flour was obtained from Yace variety. Cassava roots were washed, peeled and ground. After adding cassava inoculums at 8% (m/m), the pulp was allowed to ferment for 72 hours at ambient temperature. The fermented dough was removed, squeezed and oven-dried for 48 hours at 55 °C. The dried ...

  19. Improvement of cassava for resistance to insect pests and diseases

    International Nuclear Information System (INIS)

    Mwanga, R.O.M.

    1997-01-01

    The African cassava mosaic virus and cassava mealybug are devastating the cassava crop in Uganda. Because of the severe widespread occurrence of the virus and mealybug, in vitro cultured cassava plantlets instead of stem cuttings will be irradiated. In addition, the project has incorporated sweet potato. Installation of tissue culture laboratory at Namulonge was completed in early 1993. Work is in progress to establish efficient in vitro culture micropropagation techniques for the two crops. Small numbers of cassava plantlets of varieties 'TMS 30337' and 'TMS 4(2)1425' and sweet potato entry 30 are in vitro culture. Mass irradiation of plantlets is planned in future. (author). 4 refs

  20. Improvement of cassava for resistance to insect pests and diseases

    Energy Technology Data Exchange (ETDEWEB)

    Mwanga, R O.M. [Namulonge Agricultural and Animal Production Research Inst., Kampala (Uganda)

    1997-12-01

    The African cassava mosaic virus and cassava mealybug are devastating the cassava crop in Uganda. Because of the severe widespread occurrence of the virus and mealybug, in vitro cultured cassava plantlets instead of stem cuttings will be irradiated. In addition, the project has incorporated sweet potato. Installation of tissue culture laboratory at Namulonge was completed in early 1993. Work is in progress to establish efficient in vitro culture micropropagation techniques for the two crops. Small numbers of cassava plantlets of varieties `TMS 30337` and `TMS 4(2)1425` and sweet potato entry 30 are in vitro culture. Mass irradiation of plantlets is planned in future. (author). 4 refs.

  1. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  2. Effect of lactic acid bacteria starter culture fermentation of cassava ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... of cassava on chemical and sensory characteristics of fufu flour ... cassava fufu flour has the highest protein content; this shows the influence of fermentation in .... 24, 48, 72, and 96 h, during the natural fermentation of cassava ...

  3. Development of putative transgenic lines of cassava variety H-226 ...

    African Journals Online (AJOL)

    CMD) caused by the Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV). An attempt was done to develop transgenic cassava lines resistant to SLCMV through RNAi vector targeting a conserved 440 bp of 5' end ...

  4. 181 Farmers Adoption Scenarios for the Control of Cassava Mosaic ...

    African Journals Online (AJOL)

    Journal Seek, Scientific Commons, http://journal.aesonnigeria. ... the Cassava Enterprise Development Project in Enugu State, Nigeria ... emptive management of the cassava mosaic disease in the eleven cassava growing states of the ..... facilitators. Therefore, for farmers to adopt this innovation, adequate sustainable plan.

  5. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa.

    Science.gov (United States)

    Legg, J P; Jeremiah, S C; Obiero, H M; Maruthi, M N; Ndyetabula, I; Okao-Okuja, G; Bouwmeester, H; Bigirimana, S; Tata-Hangy, W; Gashaka, G; Mkamilo, G; Alicai, T; Lava Kumar, P

    2011-08-01

    The rapid geographical expansion of the cassava mosaic disease (CMD) pandemic, caused by cassava mosaic geminiviruses, has devastated cassava crops in 12 countries of East and Central Africa since the late 1980s. Region-level surveys have revealed a continuing pattern of annual spread westward and southward along a contiguous 'front'. More recently, outbreaks of cassava brown streak disease (CBSD) were reported from Uganda and other parts of East Africa that had been hitherto unaffected by the disease. Recent survey data reveal several significant contrasts between the regional epidemiology of these two pandemics: (i) severe CMD radiates out from an initial centre of origin, whilst CBSD seems to be spreading from independent 'hot-spots'; (ii) the severe CMD pandemic has arisen from recombination and synergy between virus species, whilst the CBSD pandemic seems to be a 'new encounter' situation between host and pathogen; (iii) CMD pandemic spread has been tightly linked with the appearance of super-abundant Bemisia tabaci whitefly vector populations, in contrast to CBSD, where outbreaks have occurred 3-12 years after whitefly population increases; (iv) the CMGs causing CMD are transmitted in a persistent manner, whilst the two cassava brown streak viruses appear to be semi-persistently transmitted; and (v) different patterns of symptom expression mean that phytosanitary measures could be implemented easily for CMD but have limited effectiveness, whereas similar measures are difficult to apply for CBSD but are potentially very effective. An important similarity between the pandemics is that the viruses occurring in pandemic-affected areas are also found elsewhere, indicating that contrary to earlier published conclusions, the viruses per se are unlikely to be the key factors driving the two pandemics. A diagrammatic representation illustrates the temporal relationship between B. tabaci abundance and changing incidences of both CMD and CBSD in the Great Lakes region

  6. Yield and properties of ethanol biofuel produced from different whole cassava flours.

    Science.gov (United States)

    Ademiluyi, F T; Mepba, H D

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber.

  7. Development of Wet Noodles Based on Cassava Flour

    OpenAIRE

    Akhmad Z. Abidin; Cinantya Devi; Adeline

    2013-01-01

    Cassava is one of Indonesia's original commodities and contains good nutrition and has high productivity and a relatively low price. Cassava flour has a high potential as a substitute for imported wheat flour that is widely used in noodle production. The main purpose of this research was to develop wet noodles from cassava flour that can compete with wet noodles from wheat flour. The research consisted of experiments with several variations of composition and production method for producing c...

  8. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  9. Chemical safety of cassava products in regions adopting cassava production and processing - experience from Southern Africa

    DEFF Research Database (Denmark)

    Nyirenda, D.B.; Chiwona-Karltun, L.; Chitundu, M.

    2011-01-01

    and perceptions concerning cassava and chemical food safety. Chips, mixed biscuits and flour, procured from households and markets in three regions of Zambia (Luapula-North, Western and Southern) as well as products from the Northern, Central and Southern regions of Malawi, were analyzed for total cyanogenic...... of products commercially available on the market. Risk assessments disclose that effects harmful to the developing central nervous system (CNS) may be observed at a lower exposure than previously anticipated. We interviewed farmers in Zambia and Malawi about their cultivars, processing procedures......The cassava belt area in Southern Africa is experiencing an unforeseen surge in cassava production, processing and consumption. Little documentation exists on the effects of this surge on processing procedures, the prevailing levels of cyanogenic glucosides of products consumed and the levels...

  10. Etude microbiologique des feuilles fermentées de manioc: "Ntoba Mbodi"

    Directory of Open Access Journals (Sweden)

    Bouanga Kalou, G.

    2003-01-01

    Full Text Available Microbiological Study of "Ntoba-Mbodi", Fermented Cassava Leaves. Some families and small processing units proceed by way of fermentation of the cassava leaves to make "ntoba mbodi", a dish with a particular taste and flavor. The fermentation process lastes 4 days and after that the product undergoes significant alteration. During fermentation, about 70% of the cyanogenic glucosides are eliminated compared to 82 to 94% by blanching, vapor cooking or sun drying. Thus fermentation can be considered as good in eliminating cyanide as these other methods. Contrary to other plant material whose fermentation leads to an increase in acidity, fermentation of cassava leaves leads to alkalinization, with the pH rising from 6.2 to 8.9. Microbiological analyses of the fermented cassava leaves reveal the unusual presence of Micrococcus varians, Bacillus macerans, Bacillus subtilis, Staphylococcus sciuri and Staphylococcus xylosus among the other usual microorganisms; however yeasts and Leuconostoc strains are not present. Among this micro-organisms, Bacillus macerans, Bacillus subtilis, Bacillus cereus, Staphylococcus xylosus and Erwinia spp. play an important role in with their polysaccharolytic enzymes.

  11. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  12. The use of biolistic inoculation of cassava mosaic begomoviruses in ...

    African Journals Online (AJOL)

    These cassava cultivars were challenged with both DNA A and B components of the infectious clones named above using particle gun bombardment. The cassava cultivars showed varying degrees of susceptibility/resistance to the two infectious clones used. All symptoms of Cassava Mosaic Disease (CMD) observed were ...

  13. Status of cassava mosaic disease and whitefly population in Zambia ...

    African Journals Online (AJOL)

    Cassava mosaic disease is the most important disease affecting cassava in Zambia. A study was conducted through a survey to determine the status of cassava mosaic disease incidence, severity and whitefly abundance in farmers' fields in six provinces: Lusaka, Northern, North-Western, Luapula, Eastern and Western ...

  14. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    Science.gov (United States)

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  15. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  16. Bioactive endophytes warrant intensified exploration and conservation.

    Science.gov (United States)

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  17. Bioactive endophytes warrant intensified exploration and conservation.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    2008-08-01

    Full Text Available A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  18. determinants of contact farmers adoption of improved cassava

    African Journals Online (AJOL)

    iya beji

    ADP contact farmer's adoption of improved cassava production technologies in Imo. State of Nigeria under the Ecologically Sustainable Cassava production project ..... 120. Source: Computer Analysis of the Field Survey Data, 2003/2004. 18 ...

  19. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  20. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  1. Cassava household expenditure and anthropometric indices of ...

    African Journals Online (AJOL)

    In an attempt to verify the myth associated with cassava, that high consumption causes malnutrition, anthropometric measurements of 445 preschool children aged 0 - 5 years in 90 randomly selected farm households of cassava growing areas of Imo State were undertaken. Growth deviations (Z – scores) were calculated ...

  2. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  3. Cassava chips quality as influenced by cultivar, blanching time and ...

    African Journals Online (AJOL)

    Currently, fried cassava chips and crisps are increasingly being consumed as snacks; and fried cassava chips are produced by street processors. The quality and safety of these products is not known, therefore, the current study was to establish the influence of cassava cultivar, blanching time and slice thickness on quality ...

  4. comparative analysis of type 3 and type 4 cassava peeling machines

    African Journals Online (AJOL)

    HOME

    and Government interest in cassava research is also increasing with strong ... The study seeks ... 2.4 Determination of Tuber Size. Cassava ..... Utilization” In: Handbook of Tropical Foods, New ... of a Double Action Self-fed Cassava Peeling.

  5. An atlas of cassava in Africa : historical, agroecological and demographic aspects of crop distribution

    NARCIS (Netherlands)

    Carter, S.; Fresco, L.O.; Jones, P.

    1992-01-01

    This book contains 6 chapters covering: the dynamics of cassava in Africa; the introduction and diffusion of cassava in Africa; current distribution of cassava in Africa; the relationship of cassava distribution to environment and population; distribution and change in cassava production in Nigeria,

  6. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant.

    Science.gov (United States)

    Murali, M; Mahendra, C; Hema, P; Rajashekar, N; Nataraju, A; Sudarshana, M S; Amruthesh, K N

    2017-12-01

    Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases. No fungal endophytes of S. acuta are reported. Isolation, identification and evaluation of antibacterial, antioxidant, anticancer and haemolytic potential of fungal endophytes from the ethnomedcinal plant S. acuta. Sida acuta stem segments were placed on PDA medium to isolate endophytic fungi. The fungus was identified by genomic DNA analysis and phylogenetic tree was constructed using ITS sequences (GenBank) to confirm species. The antibacterial efficacy of Aspergillus sulphureus MME12 ethyl acetate extract was tested against Gram-positive and Gram-negative pathogenic bacteria. DPPH free radical scavenging activity, anticancer and DNA fragmentation against EAC cells, and direct haemolytic activity (100-500 μg/mL) using human erythrocytes were determined. The ethyl acetate extract of A. sulphureus (Fresen.) Wehmer (Trichocomaceae) demonstrated significant antibacterial potential against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi compared to streptomycin. MIC against test pathogens was in the range of 15.6-62.5 μg/mL. The antioxidant results revealed significant RSA from 12.43% to 62.02% (IC 50  = 350.4 μg/mL, p ≤ 0.05). MME12 offered considerable inhibition of EAC proliferation (23% to 84%, IC 50  = 216.7 μg/mL, p ≤ 0.05) supported by DNA fragmentation studies. The extract also offered insignificant haemolysis (5.6%) compared to Triton X-100. A single endophytic fungus, A. sulphureus MME12 was isolated and identified using molecular profiling. The above-mentioned findings support the pharmacological application of A. sulphureus MME12 extract and demand for purification of the active principle(s).

  7. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  8. The influence of root rot incidence on cassava genotype on ...

    African Journals Online (AJOL)

    In Nigeria cassava root rot causes serious yield losses in cassava tuber production every year. However, the influence of root rot incidence on cassava genotype at harvest on consumers' acceptability of the gari produced from it has not been studied. A sensory evaluation was conducted on gari processed from the tuberous ...

  9. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Das, Gitishree; Park, Seonjoo; Baek, Kwang-Hyun

    2017-05-01

    The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 μg/mL and 500-100 μg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.

  10. optimization of the ethanol fermentation of cassava wastewater

    African Journals Online (AJOL)

    Umo

    production would improve the ethanol yield, and thereby reduce the cost of production. KEYWORDS: Ethanol, cassava ... biomass sources are receiving attention globally. .... HYDROLYZED CASSAVA WASTEWATER. A blank solution ..... A Global Overview of Biomass Potentials ... Pretreatment of Lignocellulosic Wastes.

  11. Induced mutation breeding in Cassava (Manihot esculenta Crantz) cultivar 'Bosom Nsia'

    International Nuclear Information System (INIS)

    Ahiabu, R.K.A.; Klu, G.Y.P.

    1997-01-01

    Cassava is one of the most important staple food crops in the lowland tropics. In most cassava producing countries, it is mainly utilized for human consumption. Cassava leaves are a good source of protein and vitamins, and are used as food in Africa. In Ghana, 'Bosom Nsia' is one of the most widely grown cultivars probably because of its good cooking quality and fast maturation in six months. However, this cultivar is highly susceptible to cassava mosaic virus disease (CMV), hence the need to improve its resistance to the disease. Various in vitro techniques have been developed for cassava research, Klu and Lamptey reported irradiation doses of 25 and 30 Gy to be ideal for in vitro mutagenesis of cassava. These doses were applied to in vivo and in vitro mutation for breeding CMV resistance in the cultivar 'Bosom Nsia'. 6 refs

  12. Induced mutation breeding in Cassava (Manihot esculenta Crantz) cultivar `Bosom Nsia`

    Energy Technology Data Exchange (ETDEWEB)

    Ahiabu, R K.A.; Klu, G Y.P. [Biotechnology and Nuclear Agricultural Research Inst., Ghana Atomic Energy Commission, Legon (Ghana)

    1997-12-01

    Cassava is one of the most important staple food crops in the lowland tropics. In most cassava producing countries, it is mainly utilized for human consumption. Cassava leaves are a good source of protein and vitamins, and are used as food in Africa. In Ghana, `Bosom Nsia` is one of the most widely grown cultivars probably because of its good cooking quality and fast maturation in six months. However, this cultivar is highly susceptible to cassava mosaic virus disease (CMV), hence the need to improve its resistance to the disease. Various in vitro techniques have been developed for cassava research, Klu and Lamptey reported irradiation doses of 25 and 30 Gy to be ideal for in vitro mutagenesis of cassava. These doses were applied to in vivo and in vitro mutation for breeding CMV resistance in the cultivar `Bosom Nsia`. 6 refs.

  13. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis.

    Science.gov (United States)

    Shen, Zhenyu; Mustapha, Azlin; Lin, Mengshi; Zheng, Guolu

    2017-06-05

    Internalization of Salmonella enterica and enterohaemorrhagic Escherichia coli (EHEC) in seed sprouts poses a health risk to consumers, and the conventional sanitization methods are not always effective to reduce this risk. This study initiated a biocontrol approach to limit the internalization using endophytic Bacillus subtilis strains, which were isolated from the inner tissue of mung bean seeds or lettuce stems. By using the deferred agar method, 12 strains of B. subtilis out of 94 putative Bacillus isolates displayed inhibitory activity against at least one of the pathogenic indicators, S. enterica Typhimurium ATCC 14028 and E. coli O157:H7 505B. Two B. subtilis isolates (LCA1 and M24) showed a broad inhibitory spectrum against multiple strains of S. enterica and EHEC, Staphylococcus aureus sp., Klebsiella pneumoniae ATCC 700603, and Listeria monocytogenes Scott A, while the laboratory B. subtilis strain 168 was only moderately inhibitory against L. monocytogenes. To facilitate the tracking of the three B. subtilis strains (LCA1, M24, and 168) in the mung bean sprouts, the three strains were genetically engineered to carry the chloramphenicol acetyltransferase (cat), generating the strains LCA1-cat, M24-cat, and 168-cat, respectively. Data of the study using the cat-tagged strains demonstrated that both the two vegetable-associated and the laboratory B. subtilis strains could internalize in mung bean sprouts during the sprouting, but the latter displayed about 1.2 lg CFU/g of seeds lower in internalization. Overall, the presence of the three B. subtilis strains could significantly reduce the internalization of S. enterica or EHEC cocktail in mung bean sprouts during the sprouting. Among them, LCA1 showed the greatest inhibition against the EHEC cocktails with a reduction of about 2.0lg CFU/g of seeds by the end of sprouting (day 5), while 168 had the smallest reduction at about 0.6lg CFU/g of seeds. In addition, the three strains demonstrated a similar

  14. SCREENING OF CHEMICAL COMPOSITIONS OF CRUDE WATER EXTRACT OF DIFFERENT CASSAVA VARIETIES

    Directory of Open Access Journals (Sweden)

    Olajumoke Oke FAYINMINNU

    2013-06-01

    Full Text Available Chemical composition of three sources of crude cassava water extract (CCWE was evaluated in different varieties of cassava (MS6 Manihot Selection (local variety, TMS 30555 Tropical Manihot Selection (Improved variety and Bulk (crude cassava water from cassava processing site. Crude cassava water extract from the pulp of cassava fresh roots was prepared and the chemical composition was determined in the analytical laboratory. The result of the analysis showed that, hydrocyanic acid (HCN and with elements such as Magnesium (Mg, Manganese (Mn, Iron (Fe, Sulphur (S, Copper (Cu and Zinc (Zn. Nitrogen (N, Phosphorous (P and Potassium (K were found in the extract. The study showed that due to the presence of hydrocyanic acid in the extract, this waste found around the cassava processing sites possesses phytotoxic effects on weeds/vegetation in form of leaf decoloration (yellowing, wilting and eventually death. Crude cassava water extract showed a probable natural herbicide which can be used by the peasant farmers because it is environmental friendly and easily biodegradable into harmless compounds in the environment

  15. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  16. Evaluation of Starch Biodegradable Plastics Derived from Cassava ...

    African Journals Online (AJOL)

    BSN

    bioplastics produced from cassava does not depend on the level of amylose and amylopectin in the starch per se ... cassava starch is a pure, natural biopolymer that is suitable for ... enzymatic action of microorganisms when disposed, is thus ...

  17. Cassava chip (Manihot esculenta Crantz as an energy source for ruminant feeding

    Directory of Open Access Journals (Sweden)

    Metha Wanapat

    2015-12-01

    Full Text Available Cassava (Manihot esculenta Crantz is widely grown in sub-tropical and tropical areas, producing roots as an energy source while the top biomass including leaves and immature stems can be sun-dried and used as cassava hay. Cassava roots can be processed as dried chip or pellet. It is rich in soluble carbohydrate (75 to 85% but low in crude protein (2 to 3%. Its energy value is comparable to corn meal but has a relatively higher rate of rumen degradation. Higher levels of non-protein nitrogen especially urea (1 to 4% can be successfully incorporated in concentrates containing cassava chip as an energy source. Cassava chip can also be processed with urea and other ingredients (tallow, sulfur, raw banana meal, cassava hay, and soybean meal to make products such as cassarea, cassa-ban, and cassaya. Various studies have been conducted in ruminants using cassava chip to replace corn meal in the concentrate mixtures and have revealed satisfactory results in rumen fermentation efficiency and the subsequent production of meat and milk. In addition, it was advantageous when used in combination with rice bran in the concentrate supplement. Practical home-made-concentrate using cassava chip can be easily prepared for use on farms. A recent development has involved enriching protein in cassava chips, yielding yeast fermented cassava chip protein (YEFECAP of up to 47.5% crude protein, which can be used to replace soybean meal. It is therefore, recommended to use cassava chip as an alternative source of energy to corn meal when the price is economical and it is locally available.

  18. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    Science.gov (United States)

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host’s redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa’s immediate confrontation with “foreign” reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa’s microbiome to improve stress resistance in other plant species. PMID:26834724

  19. Nutritional and toxicological composition analysis of selected cassava processed products

    Directory of Open Access Journals (Sweden)

    Kuda Dewage Supun Charuni Nilangeka Rajapaksha

    2017-01-01

    Full Text Available Cassava (Manihot esculanta Crantz is an important food source in tropical countries where it can withstand environmentally stressed conditions. Cassava and its processed products have a high demand in both local and export market of Sri Lanka. MU51 cassava variety is one of the more common varieties and boiling is the main consumption pattern of cassava among Sri Lankans. The less utilization of cassava is due to the presence of cyanide which is a toxic substance. This research was designed to analyse the nutritional composition and toxicological (cyanide content of Cassava MU51 variety and selected processed products of cassava MU51 (boiled, starch, flour, chips, two chips varieties purchased from market to identify the effect of processing on cassava MU51 variety. Nutritional composition was analysed by AOAC (2012 methods with modifications and cyanide content was determined following picric acid method of spectrophotometric determination. The Flesh of MU51 variety and different processed products of cassava had an average range of moisture content (3.18 - 61.94%, total fat (0.31 - 23.30%, crude fiber (0.94 - 2.15%, protein (1.67 - 3.71% and carbohydrates (32.68 - 84.20% and where they varied significantly in between products and the variety MU51, where no significance difference (p >0.05 observed in between MU51 flesh and processed products' ash content where it ranged (1.02 - 1.91%. However, boiled product and MU51 flesh had more similar results in their nutritional composition where they showed no significant difference at any of the nutrient that was analysed. Thus, there could be no significant effect on the nutrient composition of raw cassava once it boiled. Cyanide content of the MU51 flesh and selected products (boiled, starch, flour and chips prepared using MU51 variety, showed wide variation ranging from 4.68 mg.kg-1 to 33.92 mg.kg-1 in dry basis. But except boiled cassava all processed products had cyanide content <10 mg.kg-1, which

  20. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses.

    Science.gov (United States)

    Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E C; Taylor, Nigel J

    2016-04-02

    Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5'-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    Science.gov (United States)

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Quantification of African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV-UG) in single and mixed infected Cassava (Manihot esculenta Crantz) using quantitative PCR.

    Science.gov (United States)

    Naseem, Saadia; Winter, Stephan

    2016-01-01

    The quantity of genomic DNA-A and DNA-B of African cassava mosaic virus (ACMV) and East African cassava mosaic virus Uganda (Uganda variant, EACMV-UG) was analysed using quantitative PCR to assess virus concentrations in plants from susceptible and tolerant cultivars. The concentrations of genome components in absolute and relative quantification experiments in single and mixed viral infections were determined. Virus concentration was much higher in symptomatic leaf tissues compared to non-symptomatic leaves and corresponded with the severity of disease symptoms. In general, higher titres were recorded for EACMV-UG Ca055 compared to ACMV DRC6. The quantitative assessment also showed that the distribution of both viruses in the moderately resistant cassava cv. TMS 30572 was not different from the highly susceptible cv. TME 117. Natural mixed infections with both viruses gave severe disease symptoms. Relative quantification of virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to ACMV DNA-A, but a marked reduction of EACMV-UG DNA-B. The higher concentrations of EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections were consistent. Since DNA-B is implicated in virus cell-to-cell spread and systemic movement, the abundance of the EACMV-UG DNA-B may be an important factor driving cassava mosaic disease epidemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Understanding the productivity of cassava in West Africa

    NARCIS (Netherlands)

    Ezui, Kodjovi Senam

    2017-01-01

    Drought stress and sub-optimal soil fertility management are major constraints to crop production in general and to cassava (Manihot esculenta Crantz) in particular in the rain-fed cropping systems in West Africa. Cassava is an important source of calories for millions of smallholder

  4. Catalase activity of cassava (Manihot esculenta) plant under African ...

    African Journals Online (AJOL)

    aghomotsegin

    . E-mail: sabastina.amoako@kintampo-hrc.org. Tel: +233543550743. Abbreviations: CBSD, Cassava brown streak disease; ACMV, African cassava mosaic virus; ROS, reactive oxygen species; H2O2, hydrogen peroxide; BSA, bovine serum ...

  5. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  6. Trend Analysis of Cassava Price and Growth Rate in Nigeria | Igwe ...

    African Journals Online (AJOL)

    Trend Analysis of Cassava Price and Growth Rate in Nigeria. ... Abstract. The research work was on trend analysis of cassava output and price. The period ... There is need to encourage private sector investment on the industries to expand existing market on the price offer for cassava and encourage large scale production.

  7. Exploring the potential of cassava in promoting agricultural growth in Nigeria

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2016-05-01

    Full Text Available Cassava is one of the major food crops in Nigeria, with multiple uses from human consumption to industrial applications. This study explores the potential of cassava in Nigerian agriculture based on a review of cassava development policies; performs a trend analysis of the cultivation area, production, productivity, and real price of cassava and other competing crops for the period 1961–2013; identifies the sources of growth in production; and examines the production constraints at the local level based on a survey of 315 farmers/processors and 105 marketers from Delta State. The results revealed that several policies and programmes were implemented to develop the cassava sector with mixed outcomes. Although cassava productivity grew at 1.5% per annum (p.a. during the post-structural adjustment programme period (1993–2013, its real price declined at a rate of 3.5% p.a. The effect of yield is the main source of growth in production, contributing 76.4% of the total growth followed by the area effect (28.2%. The cassava sector is constrained by inadequate market infrastructure, processing facilities, and lack of information and unstable prices at the local level. The widespread diffusion of improved tropical manioc selection technologies and investments in market and marketing infrastructure, processing technologies, irrigation/water provision and information dissemination are recommended to enhance the potential of the cassava sector to support agricultural growth in Nigeria.

  8. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato......-colonization frequency appears to be influenced by the presence/absence of specific phytohormones. In order to obtain a deeper understanding of the role of these compounds in the plant-endophyte interaction, the selected isolates are currently being screened using confocal microscopy and qPCR in order to find candidates...... whose colonization rate is critically affected by the phytohormones of interest. A transcriptomic analysis of tomato plants inoculated with the isolates selected from the screening will provide further clues as to which physiological mechanisms, associated with endophyte recruitment, are influenced...

  9. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  10. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  11. EXPLORATION UNDER SHADE PLANTS OF CASSAVA AND IT’S POTENTIAL AS FORAGE

    Directory of Open Access Journals (Sweden)

    Novia Qomariyah

    2014-01-01

    Full Text Available Utilization of forage plants growing among cassava (Manihot esculenta Crantz is not optimal. Potential for development of integration of both very large and mutually beneficial. Purpose of this study is to explore and identify types of forage that grows in shade of the cassava plant and potential for development as a source of forage. This study took place in March 2014 Month held at IPB Sinar Sari Complex Dramaga. This research method to define area of cassava plants as treatments that cassava plants were planted separately with another crop (monoculture and cassava crops are planted among crops and horticultural crops such as pariah plants, beans, squash and corn (polyculture. Furthermore, observed and forage samples taken were grown in both location and made herbarium and identified its kind. Results: forage crops are grown between cassava monoculture is more diverse than polyculture. Types of forage crops grown on cassava monoculture is Echinochloa colona, Setaria barbata, Family Juncaceae, Cyperus sp., Conjugatum paspalum, Cynodon dactylon, Stenotaphrum secundatum, Axonophus compressus (Swartz P. Beauv, Eleusine indica and Panicum maximum. Types of forage crops grown on cassava polyculture is colona Echinochloa, Setaria barbata, Family Juncaceae, Cyperus sp., Stenotaphrum secundatum, Eleusine indica and Leucaena leucephala.

  12. Evaluation of cassava (Manihot esculenta (Crantz) planting methods ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-01-05

    Jan 5, 2008 ... and biological productivity of the crop species grown in sole and intercrop. The treatments ... of nitrogen through its symbiotic fixation, hence lowering the total ... mospheric nitrogen and produces proteins, while cassava depletes the ..... soybean/maize/cassava intercrop, in which they were of the view that ...

  13. Assessing arthropod pests and disease occurrence in cassava ...

    African Journals Online (AJOL)

    On-station trials were conducted at CSIR-Crops Research Institute's research farms at Kwadaso and Ejura, Ashanti Region, Ghana, during 2010/2011 cropping season, to assess the pests and disease occurrence in cassava-cowpea intercrop farming systems and their effect on yield of produce. Three improved cassava ...

  14. Sources of resistance to cassava anthracnose disease | Owolade ...

    African Journals Online (AJOL)

    A total of 436 African landraces and 497 improved cassava genotypes were planted in 1996, 1997, 1998 and 1999 growing seasons.. These were evaluated for their reactions to cassava anthracnose disease (CAD) under natural infection conditions at Ibadan (a high infection zone). The severity of the disease was ...

  15. Production Relationships among Cassava Farmers in Etche Local ...

    African Journals Online (AJOL)

    The study examined production relationships among cassava farmers in Etche L.G.A. of Rivers State, Nigeria. Multistage random sampling technique was used in the data generation exercise. A total of 96 cassava farmers were randomly selected from three out of the five clans for interview using structured questionnaire.

  16. Optimization of the Ethanol Fermentation of Cassava Wastewater ...

    African Journals Online (AJOL)

    This research work focused on the optimisation of the cassava wastewater medium for ethanol fermentation. The main thrust was the investigation of the influence of the glucose concentration, nutrient (NH4Cl) level, and cell concentration on the yield of ethanol from cassava wastewater. Twenty experiments based on ...

  17. SKRINING DAN IDENTIFIKASI ISOLAT BAKTERI ENDOFIT UNTUK MENGENDALIKAN PENYAKIT HAWAR DAUN BAKTERI PADA BAWANG MERAH

    Directory of Open Access Journals (Sweden)

    Zurai Resti

    2014-08-01

    Full Text Available Screening and identification of endophytic bacteria to control bacterial leaf blight disease on Shallot. The experiment was conducted in Laboratory and Green House, from January to June 2012.   Laboratory experiment consisted of three steps:  (1 isolation of endophytic bacteria from healthy onion roots, (2In planta /screening of endophytic isolates capable of reducing bacterial leaf blight disease, and (3 molecular identification of potential endophytic isolates.  Treatments of  in planta test were arranged in Completely Randomized Design.  Collected isolates were tested for their capability in controlling bacterial leaf blight disease on shallot.  The variables observed were disease incidence, disease severity, and shallot yield. The results showed that out of 82 isolates successfully isolated, 56 isolates (68.29% were Gram positive, and 26 isolate (31.71% were Gram negative. All isolates were HR negative and pathogenicity negative. Six endophytic isolates showed  better performance in inducing resistance and increasing onion yield. Based on 16S rRNA sequence the six isolates were  Bacillus cereus strain P14 , Bacillus cereus strain Se07, Bacillus sp H1, Bacillus sp SJ1 and Serratia marcescens strain PPM4.

  18. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  19. Gender differentials in adoption of cassava value addition ...

    African Journals Online (AJOL)

    This study investigated adoption by gender of Cassava Value Addition Technologies (CVATs) in Imo State. It identified CVATs disseminated to farmers among other issues. Multi-stage random sampling technique was used in the selection of respondents. A sample size of 150 cassava farmers comprising of 75 male and 75 ...

  20. Technical Efficiency Among Cassava Farmers im Ikenne Local ...

    African Journals Online (AJOL)

    Cassava has played and continues to play a remarkable role on the agricultural stage of Nigeria. The inability of the country meeting existing demand has been traced to resource use efficiency of the farmers. The study evaluates the technical efficiency among cassava farmers in Ikenne Local Government Area of Ogun ...

  1. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  3. Cassava starch as a stabilizer of soy-based beverages.

    Science.gov (United States)

    Drunkler, Northon Lee; Leite, Rodrigo Santos; Mandarino, José Marcos Gontijo; Ida, Elza Iouko; Demiate, Ivo Mottin

    2012-10-01

    Soy-based beverages are presented as healthy food alternatives for human nutrition. Cassava (Manihot esculenta, Crantz) starch is relatively inexpensive, widely available in Brazil and is broadly used by the food industry due to its desired properties that result from pasting. The objective of this study was to develop soy-based beverages with good sensory quality using native cassava starch as a stabilizer and maintaining the nutritional value that makes this product a functional food. The developed formulations featured a range of cassava starch and soybean extract concentrations, which were tested in a 2² experimental design with three central points. The results of sensory analysis showed that the studied variables (cassava starch and soybean extract concentrations) did not have a significant effect with respect to a 5% probability level. When considering the apparent viscosity, on the other hand, the variables had a significant effect: the increase in soybean extract and cassava starch concentrations caused an increase in the viscosity of the final product. The profile of isoflavones in the tested formulations was similar to the profiles reported in other papers, with a predominance of the conjugated glycosides over the aglycone forms.

  4. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  5. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  6. The isolation and characterization of endophytic microorganisms ...

    African Journals Online (AJOL)

    Fungi were identified by distinguishing between reproductive structures using a microculture technique. While observing diaphanized root fragments, we found arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi in the fine and coarse roots of H. marrubioides. The endophytic CR was more ...

  7. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  8. Isolation and characterization of beneficial indigenous endophytic ...

    African Journals Online (AJOL)

    Plant-associated bacteria that live inside plant tissues without causing any damage to plants are defined as endophytic bacteria. The present study was carried out to analyze the phenotypic and genotypic diversity of endophytic bacteria associated with Amaranthus hybridus, Solanum lycopersicum and Cucurbita maxima.

  9. A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel

    Science.gov (United States)

    Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.

    2018-02-01

    All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants

  10. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  11. Catalase activity of cassava ( Manihot esculenta ) plant under ...

    African Journals Online (AJOL)

    African cassava mosaic virus has caused an immersed low yield of the cassava crop. The virus impacts stress on the cellular metabolism of the plant producing a lot of reactive oxygen species and increases the expression of the antioxidant enzymes. The activity of catalase as a response to oxidative stress was investigated ...

  12. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  13. Molecular dynamics in germinating, endophyte-colonized quinoa seeds

    Science.gov (United States)

    2017-01-01

    Aims The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. Methods MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. Results Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. Conclusions Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible. PMID:29416180

  14. A endophytic fungus, Ramichloridium cerophilum, promotes growth ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-06-22

    Jun 22, 2016 ... A fungal endophyte, Ramichloridium cerophilum, was identified as a Class 2 endophytes species ... The mycorrhizal symbiosis between plants and fungi is common and .... growing fungal colony and placed into a sterile plastic pot and .... bacteria associated with the roots of Chinese cabbage (Brassica.

  15. Assessment of cassava supply response in Nigeria using vector error correction model (VECM

    Directory of Open Access Journals (Sweden)

    Obayelu Oluwakemi Adeola

    2016-12-01

    Full Text Available The response of agricultural commodities to changes in price is an important factor in the success of any reform programme in agricultural sector of Nigeria. The producers of traditional agricultural commodities, such as cassava, face the world market directly. Consequently, the producer price of cassava has become unstable, which is a disincentive for both its production and trade. This study investigated cassava supply response to changes in price. Data collected from FAOSTAT from 1966 to 2010 were analysed using Vector Error Correction Model (VECM approach. The results of the VECM for the estimation of short run adjustment of the variables toward their long run relationship showed a linear deterministic trend in the data and that Area cultivated and own prices jointly explained 74% and 63% of the variation in the Nigeria cassava output in the short run and long-run respectively. Cassava prices (P<0.001 and land cultivated (P<0.1 had positive influence on cassava supply in the short-run. The short-run price elasticity was 0.38 indicating that price policies were effective in the short-run promotion of cassava production in Nigeria. However, in the long-run elasticity cassava was not responsive to price incentives significantly. This suggests that price policies are not effective in the long-run promotion of cassava production in the country owing to instability in governance and government policies.

  16. Field Screening of Cassava (Manihot esculenta Crantz) Germplasm ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Marmey P., Beeching J. R., Hamon S. and Charrier A. (1994). Evaluation of cassava (Manihot esculenta Crantz) germplasm collection using RAPD markers. Euphytica 74: 203–209. Roa A. C., Maya, M. M., Duque M. M., Tohme J., Allen A. C. and Bonierbale M. W. (1997). AFLP analysis of relationships among cassava and ...

  17. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Zapata, Andres; Neme, Rafik; Sanabria, Carolina; Lopez, Camilo

    2011-01-01

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  18. Kinetics of Natural Detoxification of Hydrogen Cyanide Contained In Retted Cassava Roots

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available This work presents the kinetics of natural detoxification of hydrogen cyanide contained in retted cassava roots. Retting is traditional fermentation of cassava, performed to soften the roots. During retting, cyanide diffuses into water used for the retting. The fresh cassava roots (bitter and sweet varieties used for this experiment were separately retted at ambient 0 temperature of 30 C. The cyanide content and pH were monitored daily. From the analysis of the experimental results, a first order consecutive rate equation is an adequate tool for explaining the mechanism of HCN reduction (or decay in retted cassava roots. The detoxification constants for the bound cyanide in the bitter and sweet cassava roots were 0.378/day and 0.438/day respectively, while that of the free hydrogen cyanide were 0.63/day and 0.74/day for the bitter and sweet varieties respectively. Cassava tubers from different species cannot be fermented with the same retting condition unless they have same or close functional properties.

  19. Soil Contamination from Cassava Wastewater Discharges in a Rural ...

    African Journals Online (AJOL)

    Michael Horsfall

    KEY WORDS: Soil contamination; cassava wastewater; physico-chemical characteristics; cassava ... Na (r = 0.03); P (r = 0.08); N (r = 0.40); Organic Carbon (r = 0.08) and organic matter (r .... a neutral or higher pH into to ketones and the toxic.

  20. Use of morphological characters to identify cassava mosaic disease ...

    African Journals Online (AJOL)

    Diseases are among the major constraints that prevent cassava's (Manihot esculenta L.) optimum yield. Both the improved cassava breeds and local germplasms in the International Institute of Tropical Agriculture, Ibadan expressed wide genetic variability in morphological characters and diseases resistance. The current ...

  1. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.

    Science.gov (United States)

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

    2014-06-01

    Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 μg/mL) and Bacillus subtillis (0.25 μg/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Root growth and NPK status of cassava as influenced by oil palm ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    . 4.3. 3.3. 3.8. 3.4. 3.8. MAP = Month after planting; B = bitter cassava; S = sweet cassava. Table 3. Effect of palm bunch ash (OBA) on number of roots per cassava plant at Umudike. 3MAP. 6MAP. 9MAP. 12MAP. OBA (t/ha). B.

  3. Effects of submerged and anaerobic fermentations on cassava flour ...

    African Journals Online (AJOL)

    Cassava tubers for processing into cassava flour, Lafun a Nigerian locally fermented product was subjected to two different types of fermentations: submerged and anaerobic fermentation for 72 h. Physicochemical changes that occurred during fermentation and their influence on the functional, rheological and sensory ...

  4. Extension Implications of Skill Gaps among Cassava Farmers in the ...

    African Journals Online (AJOL)

    Extension Implications of Skill Gaps among Cassava Farmers in the Niger Delta Region of Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Skill gap analysis indicated 16 areas including packaging of cassava products with ...

  5. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  6. Soaking and drying of cassava roots reduced cyanogenic potential ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... Key words: Cassava flour, soaking, total hydrogen cyanide. INTRODUCTION. Cassava (Manihot esculenta Crantz) is one of the most important food crops ... vision, ataxia of gait, deafness and weakness (Howlett,. 1994; Cardoso et al., 2005). These medical conditions caused by cyanide overload could be ...

  7. Farmers\\' Perception Of Improved And Local Cassava Cultivars In ...

    African Journals Online (AJOL)

    Quantity of the byproduct of cassava, taste of byproduct, maturity time and disease resistance significantly contributed to farmers' perception of the cassava cultivars. Apart from good agronomic characteristics of disease resistance and early maturity, farmers' perception of cultivars is also tied to food value issues, field ...

  8. Isolation and characterization of resistant gene analogs in cassava ...

    African Journals Online (AJOL)

    These candidate sequences mapped to the draft cassava genome with high sequence similarity to predicted NBS-LRR genes. These novel sequences may serve as a stepping stone for further characterization and experimental validation of predicted R genes in the draft cassava genome, ultimately leading to the ...

  9. Bemisia tabaci : the whitefly vector of cassava mosaic geminiviruses ...

    African Journals Online (AJOL)

    The ecology of the Bemisia tabaci/cassava/African cassava mosaic virus (ACMV) pathosystem is reviewed briefly with special attention given to the parameters affecting the pattern of population development of B. tabaci. Significant gaps in our understanding of this system remain, particularly concerning the importance of ...

  10. Toxicity of cassava wastewater effluents to African catfish: Clarias ...

    African Journals Online (AJOL)

    The relative lethal and sublethal toxicity of cassava wastewater effluents from a local food factory were investigated on Clarias gariepinus fingerlings using a renewable static bioassay. The physico-chemical characteristics of the cassava wastewater effluents showed a number of deviations from the standards of the Federal ...

  11. Socio-economic factors influencing cassava production in Kuje and ...

    African Journals Online (AJOL)

    This study examined socio-economic factors influencing output level of cassava production in Kuje and Abaji Area Councils of Federal Capital Territory, Abuja. The specific objectives were to:identify the socio-economic characteristics of sampled cassava farmers in the study area; determine the socio-economic factors ...

  12. Selection and in-vitro propagation of five cassava ( Manihot ...

    African Journals Online (AJOL)

    Thirteen cassava cultivars were collected from farmers in the Greater Accra Region using a structured questionanire. Five cultivars namely, Ankrah, Bosom nsia, Biafra, Santom and Afisiafi were selected based on popularity, duration to maturity and tolerance to African Cassava Mosaic Virus (ACMV) disease. The cultivars ...

  13. Physical properties of snacks made from cassava leaf flour

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Ferrari

    2014-02-01

    Full Text Available The food industry is continually growing with new products becoming available every year. Extrusion combines a number of unit operations in one energy efficient rapid continuous process and can be used to produce a wide variety of snacks foods. The objective of this study was to evaluate the effect of extrusion temperature, screw speed, and amount of cassava leaf flour mixed with cassava starch on the physical properties of extruded snacks processed using a single screw extruder. A central composite rotational design, including three factors with 20 treatments, was used in the experimental design. Dependent variables included the expansion index, specific volume, color, water absorption index, and water solubility index. Among the parameters examined, the amount of cassava leaf flour and extrusion temperature showed significant effects on extruded snack characteristics. Mixtures containing 10% of cassava leaf flour extruded at 100°C and 255 rpm shows favorable levels of expansion, color, water absorption index, and water solubility index.

  14. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  15. Sensory evaluation of different preparations of cassava leaves from ...

    African Journals Online (AJOL)

    Cassava leaves are largely consumed in Africa and are among the top three African indigenous vegetables rich in nutrients. Leaves from bitter (Manihot utilissima), sweet (Manihot dulcis) and wild (Manihot glaziovii) species of cassava were cooked by boiling in salted (sodium bicarbonate and table salt) water with the ...

  16. Chemical Changes during the Fortification of Cassava Meal (Gari ...

    African Journals Online (AJOL)

    The nutritional enrichment of a cassava meal (gari) with African breadfruit seed residue was investigated. Grated cassava (70%) was fermented for 3 days with the incorporation of African breadfruit seed residue (30%) at different stages of the fermentation. The fortified and unfortified gari samples were subjected to ...

  17. Economics of cassava farmers' adoption of improved varieties in ...

    African Journals Online (AJOL)

    The study investigated the economics of cassava farmers' adoption of improved varieties in Isoko North Local Government Area of Delta State. Studies on the economic analysis of farmers adoption of improved cassava varieties in the study area is lacking. This therefore constitutes a research gap which must be ...

  18. Bemisia tabaci : the whitefly vector of cassava mosaic geminiviruses ...

    African Journals Online (AJOL)

    Significant gaps in our understanding of this system remain, particularly concerning the importance of interactions of B. tabaci with other arthropod pests of cassava and the influence of ecological factors such as soil nutrients indirectly through their effects upon cassava. An holistic ecological approach to future work on B.

  19. Effects of different levels of supplementation with cassava leaves ...

    African Journals Online (AJOL)

    Effects of different levels of supplementation with cassava leaves ( Manihot esculenta ) on growth, parasite load and some characteristics of blood in the dwarf goat ... Also, supplementations with fresh cassava leaves do not affect red blood cells, white blood cells, haematocrite and sedimentation speed of the blood of Dwarf ...

  20. Farmers Accessibility to the Cassava Initiative Elements in the ...

    African Journals Online (AJOL)

    The Government cassava initiative was introduced in July 2002 to address the poor linkage between production, marketing and utilization of cassava. This study examined the extent of farmers' accessibility to the elements of this initiative. Data were obtained from individuals who had at least 10 years membership of ...

  1. Exploitation of endophytes for sustainable agricultural intensification.

    Science.gov (United States)

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  2. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    Directory of Open Access Journals (Sweden)

    Serdar Dirihan

    Full Text Available Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42, and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28, whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56. Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation

  3. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  4. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  5. Functional and pasting properties of cassava and sweet potato ...

    African Journals Online (AJOL)

    The functional and pasting properties of cassava starch and sweet potato starch mixtures at different ratios were investigated. Starches from four different cassava genotypes ('Adehye', AFS048, 'Bankye Botan' and OFF146) and one local sweet potato were used for the study. The swelling volume and swelling power of ...

  6. Breeding cassava for multiple pest resistance in Africa | Mahungu ...

    African Journals Online (AJOL)

    The green spider mite and cassava mealybug are by far the most economically important arthropod pests. The long growing period and diverse agroecologies in which cassava cultivars are grown expose them to one or more of these problems and the losses can be devastating. Multiple pest resistance helps to ensure ...

  7. Inventory of cassava plant protection and development projects in ...

    African Journals Online (AJOL)

    A total of 303 cassava protection and development projects were identified of which about half are plant protection-oriented. Most activities on cassava protection have been centred on biological control and host plant resistance. The least activity has been on chemical control. The applicability of the collected database is ...

  8. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape.

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    Full Text Available Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS, total flavonoids (TF, total phenols (TPh, trans-resveratrol (Res and activities of phenylalanine ammonia-lyase (PAL, in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp. and CXC-13 (Fusarium sp. conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.

  9. Beech cupules share endophytic fungi with leaves and twigs

    OpenAIRE

    Tateno, Osamu; Hirose, Dai; Osono, Takashi; Takeda, Hiroshi

    2015-01-01

    Endophytic mycobiota on leaves, twigs and cupules of Fagus crenata were investigated using a culture-dependent method over a growing season to test the hypothesis that endophytic fungi of cupule (a woody phyllome) share some components of the endophytic fungal assemblages with both leaves and twigs. A total of 14 fungal taxa were isolated, and the most frequent taxon was Phomopsis sp., followed by Xylaria sp., Ascochyta fagi and Geniculosporium sp. The compositions of fungal assemblages of le...

  10. Evaluation of some properties of wheat-brewers' spent cassava flour ...

    African Journals Online (AJOL)

    brewers' spent cassava flour blends and that it has a lot of potential in the food industry especially its use as thickener and binding agent in the food systems. Keywords: Brewers' spent cassava flour, wheat flour, proximate, functional properties.

  11. Properties of bacterial endophytes and their proposed role in plant growth

    NARCIS (Netherlands)

    Hardoim, P.R.; Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by

  12. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  13. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  14. Field reaction of cassava genotypes to anthracnose, bacterial blight ...

    African Journals Online (AJOL)

    Field reaction of cassava genotypes to anthracnose, bacterial blight, cassava mosaic disease and their effects on yield. ... The BYDV-PAV and BYDV-RPV serotypes were identified from 9 and 10 of the 11 surveyed fields, respectively, with the two serotypes co-infecting some plants. Of the nine wheat cultivars surveyed, four ...

  15. Effect od Soybean/Cassava Flour Blend in the Proximate ...

    African Journals Online (AJOL)

    Cassava tubers were also peeled, chopped, dried and milled in a similar fashion. Eventually, the soybean and cassava flour samples were blended individually with the quality protein maize flour in three different proportions: 5:95, 10:90 and 15:85, respectively. Normal maize flour was used as a control for the quality ...

  16. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  17. Differential methods of localisation of fungal endophytes in the seagrasses

    Directory of Open Access Journals (Sweden)

    S. Raja

    2016-07-01

    Full Text Available Sections of three seagrass species (Halophila ovalis, Cymodocea serrulata and Halodule pinifolia were assessed for endophytes based on differential staining using light and fluorescence microscopy method. Acridine orange and aniline blue detected endophytic fungi in 20% and 10% of the segments, respectively, whereas lactophenol cotton blue was more sensitive to detect the fungal hyphae in 70% of the segments. Hyphae were the principal fungal structures generally observed under the cuticle, within the epidermal cells, mesophyll (Parenchyma cells and occasionally within the vascular tissue that varied in type, size and location within the leaf tissue. Present study also recorded the sporulation for the first time from the seagrass endophytes. Successfully amplified products of the ITS region of endophytic fungal DNA, directly from seagrass tissue and also from culture-dependent fungal DNA clearly depicted the presence of endophytic fungi in H. ovalis with two banding patterns (903 and 1381 bp confirming the presence of two dominant fungal genera. The fingerprinting of endophytic fungal community within the seagrass tissue was assessed using denaturing gradient gel electrophoresis (DGGE that derived with multiple bands that clarified the presence of more than one taxon within the seagrass tissue.

  18. The retail market for fresh cassava root tubers in the European Union (EU)

    DEFF Research Database (Denmark)

    Kolind-Hansen, Lotte; Brimer, Leon

    2010-01-01

    A number of retail shops in Copenhagen sell fresh cassava roots. Cassava roots contain the toxic cyanogenic glucoside linamarin. A survey was made of the shop characteristics, origin of the roots, buyers, shop owner's knowledge of toxicity levels, and actual toxicity levels.......A number of retail shops in Copenhagen sell fresh cassava roots. Cassava roots contain the toxic cyanogenic glucoside linamarin. A survey was made of the shop characteristics, origin of the roots, buyers, shop owner's knowledge of toxicity levels, and actual toxicity levels....

  19. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  20. Life cycle cost of ethanol production from cassava in Thailand

    International Nuclear Information System (INIS)

    Sorapipatana, Chumnong; Yoosin, Suthamma

    2011-01-01

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  1. Life cycle cost of ethanol production from cassava in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  2. Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties Cyclodextrina glycosyltransferase de Bacillus licheniformis: otimização da produção e suas propriedades

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Martins Bonilha

    2006-09-01

    Full Text Available Cyclodextrin glycosyltransferase (EC 2.4.1.19 is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented with sodium ions and had the pH adjusted between 6.0 and 9.0, the microorganism maintained the growth and enzyme production capacity. This data is interesting because it contradicts the concept that alkalophilic microorganisms do not grow in this pH range. After ultrafiltration-centrifugation, one protein of 85.2 kDa with CGTase activity was isolated. This protein was identified in plates with starch and phenolphthalein. Determination of the optimum temperature showed higher activities at 25ºC and 55ºC, indicating the possible presence of more than one CGTase in the culture filtrate. Km and Vmax values were 1.77 mg/mL and 0.0263 U/mg protein, respectively, using potato starch as substrate.Ciclodextrina glicosiltransferase (EC 2.4.1.19 é uma enzima que produz ciclodextrinas a partir de amido via transglicosilação intramolecular. Uma cepa de Bacillus alcalofílico, isolada de cascas de mandioca, foi identificada como Bacillus licheniformis. A produção de CGTase por esta cepa foi melhor quando amido de batata foi utilizado como fonte de carbono, seguido por amido de mandioca e amilopectina. Glicose e amilose, por outro lado, atuaram como repressor de síntese desta enzima. Quando o cultivo foi suplementado com íons sódio e teve o pH ajustado entre 6,0 e 9,0, o microrganismo manteve a capacidade de crescimento e de produção da enzima. Este dado é interessante pois contraria o conceito de que microrganismos alcalofílicos não apresentam crescimento

  3. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation

    Science.gov (United States)

    Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Stomeo, Francesca; Maina, Solomon; Djinkeng, Appolinaire; Kehoe, Monica; Boykin, Laura M.

    2015-01-01

    Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa’s most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production. PMID:26439260

  4. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation.

    Directory of Open Access Journals (Sweden)

    Joseph Ndunguru

    Full Text Available Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV and Ugandan cassava brown streak virus (UCBSV which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production.

  5. Boosting food security in sub-Saharan Africa through cassava ...

    African Journals Online (AJOL)

    Boosting food security in sub-Saharan Africa through cassava production: a case study of Nigeria. ... Nigerian Journal of Economic History ... The paper argues that cassava which is widely grown in Sub-Saharan Africa with a lot of variety of food derivatives from it can reduce to the barest minimum the present state of food ...

  6. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    Science.gov (United States)

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2016-09-01

    Full Text Available This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43, Margalef index D′ (6.1351, Shannon–Wiener index H′ (3.2743, Simpson diversity index Ds (0.9476, PIE index (0.9486, and evenness Pielou index J (0.8705 but a low dominant index λ (0.0524. Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  8. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  9. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots

    NARCIS (Netherlands)

    Huang, J.; Bachem, C.W.B.; Jacobsen, E.; Visser, R.

    2001-01-01

    One of the major problems for cassava is the rapid deterioration after harvesting cassava tuberous roots, which limits the possibilities for production and distribution of cassava in the world. Postharvest deterioration is an inherent problem for cassava since wounding and mechanical damage of the

  10. PROCESSORS’ PERCEPTION OF THE EFFECTIVENESS OF SOME CASSAVA PROCESSING INNOVATIONS IN OGUN STATE, NIGERIA

    OpenAIRE

    Adebayo, K.; Sangosina, M.A.

    2005-01-01

    The current drive towards higher levels of commercialisation of cassava processing under the Presidential Initiative on Cassava requires that the scale of cassava processing be increased in Nigeria. Primary data obtained from 112 respondents selected from the 4 extension zones of Ogun State was used to examine the perception of effectiveness of innovations by cassava processors and the factors responsible for adoption of these innovations. The processors’ perception of effectiveness of cassav...

  11. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    The colonization of plants by putative endophytes has been visualized by using laser scanning confocal microscope (Coombs and Franco 2003). Endophytes promote the growth of plants in various ways, for example through secretion of plant growth regulators;. e.g. indole-acetic acid (Lee et al 2004), via phosphate-.

  12. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  13. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    Science.gov (United States)

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  14. THE USE OF CASSAVA SPECIES

    African Journals Online (AJOL)

    User

    The plant is propagated from mature stems, which .... USE OF CASSAVA SPECIES AND ALUM IN WASTE WATER TREATMENT, .... acidity, total suspended solids, dissolved oxygen and ..... Rural Areas, MSc Thesis, Department of Water.

  15. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  16. Labour Arrangements in Cassava Production in Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Abila, N.

    2012-01-01

    Full Text Available The study examined the effects of labour arrangements on the profitability of cassava enterprises in Oyo North Area of Oyo State, Nigeria. A multi-stage sampling technique was adopted for data collection, while data were analysed using descriptive statistics and budgetary analysis. The results show that the prevalent labour arrangements for cassava enterprises are: a combination of Family, Hired and Contract labour (38.9%; Family-Hired labour (27.8%; Family-Contract labour (31.1%. The gross margin per hectares across labour arrangements are N279481.99 (all-labour, N286044.24 (family-hired, N216940.10 (familycontract, and N235000.00 (family only. The returns on a naira invested on variable costs across different labour arrangements for cassava enterprises are N2.04 (all-labour, N3.66 (family-hired, N2.37 (familycontract, and N2.61 (family only. This implies that a unit (N1 variable cost in the various labour arrangements of all-labour, family/hired, family/contract and family only in cassava production will yield a marginal return of N3.04, N3.66, N2.37 and N2.61 respectively. Family-hired labour arrangement yields higher marginal return per unit of manday and one naira spent than all other arrangements. The study recommends among others the application of laboursaving technologies and an optimum combination of various labour arrangements to reduce the cost of labour used in cassava production.

  17. Production and morphological components of sunflower on soil fertilized with cassava wastewater

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    Full Text Available ABSTRACT Agroindustrial residues, such as cassava wastewater, have been used as soil fertilizers, reducing environmental pollution and recovering nutrients. The objective of this work was to evaluate production and morphological components and oil yield of sunflower (Helianthus annuus, hybrid Helio-250, fertilized with cassava wastewater. The experiment was conducted at the Experimental Station of the Instituto Agronomico de Pernambuco, Vitória de Santo Antão, State of Pernambuco, Brazil. A randomized block experimental design was used, with six cassava wastewater rates (0, 8.5, 17.0, 34.0, 68.0 and 136 m3 ha-1 and four replications. The variables evaluated were shoot fresh and dry weight, capitulum fresh and dry weight, capitulum diameter, seed yield, oil yield and seed oil content. The use cassava wastewater as soil fertilizer improved the production and morphological variables evaluated, except the seed oil content, which decreased with application of cassava wastewater rates above 25 m3 ha-1.

  18. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  19. Correlation of chemical compositions of cassava varieties to their resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae).

    Science.gov (United States)

    Osipitan, Adebola A; Sangowusi, Victoria T; Lawal, Omoniyi I; Popoola, Kehinde O

    2015-01-01

    The preference of cassava as a major host by Prostephanus truncatus Horn is a major constraint to ample production of cassava, Manihot esculenta Crantz and storage. This study analyzed the nutritional and secondary metabolite compositions in 15 cassava varieties, evaluated levels of damage and reproduction by P. truncatus, and assessed their resistance to attack. One hundred grams of dried cassava chips in 250-ml Kilner jars were infested with 10 adult larger grain borerof 0-10 days old and held for 3 months. The nutritional and secondary metabolites compositions of the dry cassava chips were determined using the method of Association of Analytical Chemists . Chip perforation rates in the cassava varieties ranged from 17.7 to 71.6%. The weight of cassava powder varied by about threefold. The final number of larger grain borer in the cassava varieties varied by about sixfold with 63 in 01/0040 and 379 in 01/1368. Hydrocyanic acid content content varied by over 10-fold and correlated negatively with number of larger grain borer. Flavonoid content varied by ∼10%. Tannins and saponin content of the cassava negatively correlated with number of adult P. truncatus. The cassava varieties 95/0166, 92/0326, 01/0040, 05/0024, and 34 91934 had selection index 0.8 were classified as susceptible. The resistance to high damage in the resistant varieties was conferred by secondary metabolites such as tannins, saponins, alkaloids, and hydrocyanic acid content. The genetic variation in cassava varieties could be explored to breed resistant cassava varieties for use in larger grain borer-endemic areas. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  1. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans.

    Science.gov (United States)

    Castillo, Uvidelio F; Strobel, Gary A; Ford, Eugene J; Hess, Wilford M; Porter, Heidi; Jensen, James B; Albert, Heather; Robison, Richard; Condron, Margret A M; Teplow, David B; Stevens, Dennis; Yaver, Debbie

    2002-09-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-guided HPLC. The major components were four functionalized peptides with masses of 1269.6, 1298.5, 1312.5 and 1326.5 Da. Numerous other related compounds possessing bioactivity, with differing masses, were also present in the culture broth extract in lower quantities. With few exceptions, the peptide portion of each component contained only the common amino acids threonine, aspartic acid (or asparagine), glutamic acid (or glutamine), valine and proline, in varying ratios. The munumbicins possessed widely differing biological activities depending upon the target organism. For instance, munumbicin B had an MIC of 2.5 microg x ml(-1) against a methicillin-resistant strain of Staphylococcus aureus, whereas munumbicin A was not active against this organism. In general, the munumbicins demonstrated activity against Gram-positive bacteria such as Bacillus anthracis and multidrug-resistant Mycobacterium tuberculosis. However, the most impressive biological activity of any of the munumbicins was that of munumbicin D against the malarial parasite Plasmodium falciparum, having an IC(50) of 4.5+/-0.07 ng x ml(-1). This report also describes the potential of the munumbicins in medicine and agriculture.

  2. Correlation of concentration of modified cassava flour for banana fritter flour using simple linear regression

    Science.gov (United States)

    Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.

    2017-12-01

    The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.

  3. Consumption of Endophyte Infected Fescue During Gestation in Beef Cows

    OpenAIRE

    Oliver, Katherine Rene

    2016-01-01

    Tall fescue is a widely grown, cool season grass prevalent in the eastern United States that is known for its resistance to abiotic and biotic stresses. A main reason for tall fescue's resistance to these stresses is attributed to the presence of a fungal endophyte. Unfortunately, this endophyte also adversely affects cattle production. Cows consuming the ergot alkaloids produced by these endophytes can exhibit decreased feed intake, growth performance, organ vasoconstriction, and increased...

  4. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  5. Endophytic bacteria with potential for bioremediation of petroleum ...

    African Journals Online (AJOL)

    Endophytic microorganisms live inside plants and show no apparent damage for the host. They often assist in plants' survival and facilitate their growth, or they can metabolize organic contaminants. This study aimed to isolate and identify the endophytic bacteria of plants present in impacted areas, as well as to test their ...

  6. Experimental poisoning by cassava wastewater in sheep

    Directory of Open Access Journals (Sweden)

    Valdir C. Silva

    Full Text Available ABSTRACT: The processing of Manihot esculenta (cassava tubers yield different by-products, including cassava wastewater, which is the liquid pressed out of the tuber after it has been mechanically crushed. Cyanide poisoning after ingestion of cassava wastewater has been reported in ruminants and pigs in Northeastern Brazil. With the aim of studying its toxicity, cassava wastewater was administered orally to six sheep at doses of 0.99, 0.75, 0.70, 0.63, and 0.5 mg of hydrocyanic acid kg-1 body weight, which corresponded to 14.2, 10.6, 9.8, 8.89, and 7.1 mL of wastewater kg-1. On the second day, the sheep received a volume of wastewater which corresponded to 0.46, 0.34, 0.31, 0.28, and 0.23 mg of HCN kg-1. A sheep used as control received 9.9 mL of water kg-1 BW. Sheep that received from 0.75 to 0.99 mg kg-1 of HCN on the first day exhibited severe clinical signs of poisoning, and the sheep that received 0.63 and 0.5 mg kg-1 exhibited mild clinical signs. All sheep were successfully treated with sodium thiosulfate. On the second day, only the sheep that received 0.46 mg kg-1 and 0.34 mg kg-1 exhibited mild clinical signs and recovered spontaneously. The concentration of HCN in the wastewater was 71.69±2.19 μg mL-1 immediately after production, 30.56±2.45 μg mL-1 after 24 hours, and 24.25±1.28 μg mL-1 after 48 hours. The picric acid paper test was strongly positive 5 minutes after production; moderately positive 24 hours after production, and negative 48 hours after production. We conclude that cassava wastewater is highly toxic to sheep if ingested immediately after production, but rapidly loses toxicity in 24-48 hours.

  7. Vitamin A cassava in Nigeria: crop development and delivery | Ilona ...

    African Journals Online (AJOL)

    Biofortified vitamin A “yellow” cassava can help address the adverse health effects of vitamin A deficiency. By 2016, HarvestPlus and its partners had successfully developed and delivered vitamin A cassava varieties to more than one million farming households in Nigeria and the Democratic Republic of Congo (DRC).

  8. quality and safety characteristics of cassava crisps sold in urban

    African Journals Online (AJOL)

    ACSS

    QUALITY AND SAFETY CHARACTERISTICS OF CASSAVA CRISPS SOLD IN. URBAN KENYA. G.O. ABONG', S.I. SHIBAIRO, ... This study sought to characterise the quality and safety in terms of cyanide levels of cassava crisps ... Crantz) to food security and incomes for rural communities in sub-Saharan Africa, cannot be.

  9. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    Science.gov (United States)

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  10. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  11. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  12. Assessment of the use of cassava as alternative energy feedstuff in ...

    African Journals Online (AJOL)

    ayoade adetoye

    make use of cassava in their feed production while 38.71% never included cassava in the feeds. About 20% ... use in agribusiness sector as industrial raw material. However, the crop can be processed .... and productivity are being critical in.

  13. Cassava as feedstock for ethanol production in South Africa | Marx ...

    African Journals Online (AJOL)

    It can be grown on marginal lands where frost is not prevalent. In this study, the production of ethanol from unpeeled Cassava roots and cassava peels were investigated. It was found that temperature; pH and biomass loading had a significant effect on glucose yield during hydrolysis. Simultaneous saccharification and ...

  14. Quality of gari (roasted cassava mash) in Lagos State, Nigeria ...

    African Journals Online (AJOL)

    Gari is creamy-white, partially gelatinized roasted free flowing granular flour made from cassava roots. It is a major staple consumed in both urban and rural areas due to its convenience. Quality of Gari (roasted cassava mash) in Lagos, Nigeria was investigated. Gari samples were collected at random from different ...

  15. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    OpenAIRE

    Rangjaroen, C.; Rerkasem, B.; Teaumroong, N.; Sungthong, R.; Lumyong, S.

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice ...

  16. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  17. Preparation and Characterization of Cellulose and Nanocellulose from Agro-industrial Waste - Cassava Peel

    Science.gov (United States)

    Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M.

    2017-02-01

    Cassava peel is an agro-industrial waste which is available in huge quantities in Lampung Province of Indonesia. This work was conducted to evaluate the potential of cassava peel as a source of cellulose and nanocellulose. Cellulose was extracted from cassava peel by using different chemical treatment, and the nanocellulose was prepared by hydrolysis with the use of sulfuric acid. The best methods of cellulose extraction from cassava peels are using alkali treatment followed by a bleaching process. The cellulose yield from this methods was 17.8% of dry base cassava peel, while the yield from nitric and sulfuric methods were about 10.78% and 10.32% of dry base cassava peel respectively. The hydrolysis was performed at the temperature of 50 °C for 2 hours. The intermediate reaction product obtained after each stage of the treatments was characterized. Fourier transform infrared spectroscopy showed the removal of non-cellulosic constituent. X-ray Diffraction (XRD) analysis revealed that the crystallinity of cellulose increased after hydrolysis. Morphological investigation was performed using Scanning Electron Microscopy (SEM). The size of particle was confirmed by Particle Size Analyzer (PSA) and Transmission Electron Microscopy (TEM).

  18. Investigation of ethanol productivity of cassava crop as a sustainable ...

    African Journals Online (AJOL)

    The ethanol productivity of cassava crop was investigated in a laboratory experiment by correlating volumes and masses of ethanol produced to the masses of samples used. Cassava tubers (variety TMS 30555) were peeled, cut and washed. 5, 15, 25 and 35 kg samples of the tubers were weighed in three replicates, ...

  19. WEED FLORA OF CASSAVA IN WEST NILE ZONES OF UGANDA ...

    African Journals Online (AJOL)

    ACSS

    Information on weeds of cassava (Manihot esculenta Crantz) in eastern Africa is limited. The objective of this study was to establish the status of weed flora in selected cassava growing regions of Uganda. This study was conducted in 2013 at Abi Zonal Agricultural Research and Development Institute; (AbiZARDI) in Arua, ...

  20. Quality evaluation of 'gari' produced from cassava and sweet potato ...

    African Journals Online (AJOL)

    The quality evaluation of gari produced from mixes of cassava (Manihot esculenta, Crantz) and Sweet potato (Ipomoea batatas) tubers were investigated and reported. This is done to allow for the establishment of the best mixes of cassava and potato tubers to be adopted in the composite gari produced. Gari was produced ...

  1. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  2. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  3. Evaluating Susceptibility to Commercial Fungicide of Endophytic Fungi Isolated from Roses (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    Ingrid Carolina Corredor Perilla

    2007-01-01

    Full Text Available Fungal endophytes have shown their potential as biocontrol agents; however, their application in commercial fields remains limited. Continuously applying fungicides to crops (specifically to roses may have harmful effects on endophyte growth. Endophytic fungi were isolated from R. hybrida and their susceptibility to fungicides regularly used for controlling important pathogens was analysed. This was performed in vitro, mixing several fungicide concentrations with standard medium for fungal endophytes; growth inhibition was then measured. The susceptibility of Botrytis cinerea (3015 strain, one of the most important pathogens affecting roses in Colombia, was also assessed using the same protocols. Active ingredients, such as boscalid, captan, iprodione and pyrimethanyl, showed susceptibility ranging from not sensitive (³73.75% to regularly sensitive (³48.75% - <61.25% for 45.45% of the fungal endophytes assessed. Endophytic fungi were highly susceptible to fungicides such as pyrimethanyl, carboxin plus thiram, fludioxonyl plus ciprodinyl and prochloraz. B. cinerea (3015 strain presented high susceptibility (<23.75% to fungicides such as pyrimethanyl, carboxin and thiram, fludioxonil and ciprodinyl, prochloraz. Although B. cinerea showed the greatest growth in controls, the endophytic fungi being assessed grew better in different media with fungicides. The results revealed some of these fungal endophytes’ potential for integrated pest management (IPM in roses in Colombia (3002, 3003, 3004, 3005 and 3006 strains, taking into account correct application time, application frequency and both fungal endophyte and fungicide dosage which may greatly limit fungal endophyte growth.

  4. comparative analysis of type 1 and type 2 cassava peeling machines

    African Journals Online (AJOL)

    user

    to design a cassava peeling machine that is capable of efficiently peeling .... the peeling chamber to the chute. Both the ... A belt and pulley mechanism was used to transfer the motion ... conveyor shaft that will not allow cassava tubers to drop ...

  5. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review

    Science.gov (United States)

    Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2016-01-01

    Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610

  6. Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill

    Science.gov (United States)

    Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

  7. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  8. Cassava leaves as protein source for pigs in Central Vietnam

    NARCIS (Netherlands)

    2007-01-01

    The aim of the studies described in this thesis was to evaluate the use of cassava leaves as protein sources for pigs when used at high levels in the diet, either in fresh form or with simplified methods of processing. In twenty cassava varieties taken from the upper part of the plant at the root

  9. Determinants of adoption of vitamin A bio-fortified cassava variety among farmers in Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    O. O. Ologunde

    2017-01-01

    Full Text Available The success of any agricultural innovation depends on its adoption by farmers. The study evaluates the determinants of adoption of vitamin A bio-fortified cassava variety among farmers by investigating the level of adoption and determinants of adoption among farmers. Three stages of random sampling procedure were used to select 240 cassava farmers. The data obtained were analyzed with descriptive statistics and a logit regression model. The study revealed that the level of adoption of vitamin A bio-fortified cassava variety is low (38.72%. The study also revealed that access to media, contact with extension agents, access to vitamin A bio-fortified cassava stem, amongst others, are the determinants of adoption of vitamin A bio-fortified cassava variety in the study area. It is therefore recommended that awareness about the new cassava technology should be prioritized to sensitize the farmers, and stems of these cassava varieties should be readily made available to farmers to take advantage of the benefit of the innovation.

  10. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2017-03-01

    Full Text Available According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportation in which the primary energy consumption was considered. The Net Energy Balance (NEB and Net Energy Ratio (NER of 25.68 MJ/L and 3.98, respectively, indicated that bioethanol production from Sri Kanji 1 cassava in Malaysia was energy efficient. From the environmental perspective, the GHG balance results revealed that the production and distribution of 1 L of Cassava Fuel Ethanol (CFE could reduce GHG emissions by 73.2%. Although found promising in the present study, Sri Kanji 1 cassava as bioethanol feedstock should be further investigated by constructing an actual ethanol plant to obtain real life data.

  11. The Effect of Emulsifier and Hydrocolloid on Baking Expansion and Texture of Bread from Modified Cassava

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Indonesia has a very abundant cassava that can be used instead of wheat. Bread made from cassava is safe for celiac sufferers, in which cannot tolerate a protein called gluten found in wheat flour. However, bread from cassava has the disadvantage that it cannot inflate perfectly. Our research goal is to study the effect of emulsifier and hydrocolloid concentration as modifying agents on baking expansion and bread texture (hardness. The test level hedonic preference for bread products results from modified tapioca is also necessary to know the level of customer satisfaction. This study were conducted by three main stages, modification of cassava, baking process, and analyses. Modification of cassava starch was applied using combination of lactic acid solution and ultra violet (UV irradiation. Emulsifier (DATEM and hydrocolloid (xanthan gum were used in baking process. The addition of emulsifier and hydrocolloid can improve baking expansion. The addition of 7% emulsifiers on modified cassava can increase the volume of bread, taste, and texture so it can give greater satisfaction to consumers. Hydrocolloid can replace the function of gluten so the bread can inflate perfectly. The optimal composition of modified cassava in bread making is 25% of modified cassava and 75% of wheat flour. The low value of texture (hardness on bread made from modified cassava indicated a better performance in comparison with native cassava. Baking expansion and texture of the bread is influenced by the modification process. Furthermore, the comprehensive and optimum studies of modification need to be investigated.

  12. Biocontrole da mancha-aquosa do melão pelo tratamento de sementes com bactérias epifíticas e endofíticas Biocontrol of bacterial blotch of melon by seed treatment with epiphytic and endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Aldenir de Oliveira

    2006-09-01

    Full Text Available Bactérias epifíticas e endofíticas (96 isolados e fungos endofíticos (69 isolados foram obtidos de plantas de meloeiro sadios e testados no controle da mancha-aquosa, em condições de casa de vegetação, pelo tratamento de sementes pré-inoculadas com Acidovorax avenae subsp. citrulli ou pelo tratamento de sementes sadias visando a proteção da planta a posterior inoculação com o patógeno. As sementes de melão foram microbiolizadas por imersão nas suspensões (A570= 0,7, semeadas e avaliadas quanto ao período de incubação (PI, incidência (INC, severidade da doença (SEV e redução da severidade da doença (RSD. Apenas a microbiolização de sementes artificialmente infectadas, utilizando os endofíticos ENM5 (não identificado, ENM9 (Bacillus cereus, ENM13 (Bacillus sp., ENM16 (Bacillus cereus, ENM32 (Bacillus subtilis e ENM43 (Bacillus sp., revelou potencial para o controle da mancha-aquosa. Esses isolados, após o teste de compatibilidade in vitro, foram reavaliados isoladamente e em misturas dois a dois quanto ao PI, INC, SEV e RSD, além do índice de doença (IDO e área abaixo da curva de progresso da doença (AACPD. Todos os tratamentos diferiram significativamente (P= 0,05 da testemunha, com RSD de até 93,6%, destacando-se os isolados ENM13 e ENM9 com PI de 7,5 e 7,25 dias, SEV de 0,22 e 0,22, IDO de 2,59 e 2,59, e AACPD de 0,22 e 0,39, respectivamente. Ensaios foram realizados in vitro para a determinação dos possíveis mecanismos de ação envolvidos no controle biológico. Os isolados ENM13 e ENM9 solubilizaram fosfato, ENM5 apresentou antibiose contra A. avenae subsp. citrulli, ENM43 produziu HCN enquanto ENM16 e ENM32 não apresentaram nenhum dos mecanismos testados.Epiphytic and endophytic bacteria (96 strains and endophytic fungi (69 strains were isolated from symptomless melon plants and tested for control of fruit blotch under greenhouse conditions, by treating seeds previously inoculated with Acidovorax

  13. Strategy of gene silencing in cassava for validation of resistance genes

    International Nuclear Information System (INIS)

    Cortes, Simon; Lopez, Camilo

    2010-01-01

    Cassava (Manihot esculenta) is a major source of food for more than 1000 million people in the world and constitutes an important staple crop. Cassava bacterial blight, caused by the gram negative bacterium Xanthomonas axonopodis pv. manihotis, is one of the most important constraints for this crop. A candidate resistance gene against cassava bacterial blight, named RXam1, has been identified previously. In this work, we employed the gene silencing approach using the African cassava mosaic virus (ACMV) to validate the function of the RXam1 gene. We used as positive control the su gen, which produce photo blanching in leaves when is silenced. Plants from the SG10735 variety were bombardment with the ACMV-A-SU+ACMV-B y ACMV-A-RXam1+ACMV-B constructions. The silencing efficiency employing the su gene was low, only one of seven plants showed photo blanching. In the putative silenced plants for the RXam1 gene, no presence of siRNAs corresponding to RXam1 was observed; although a low diminution of the RXam1 gene expression was obtained. The growth curves for the Xam strain CIO136 in cassava plants inoculated showing a little but no significance difference in the susceptibility in the silenced plants compared to not silenced

  14. 147__Sale_Cassava1

    African Journals Online (AJOL)

    User

    A total of 36 samples of Cassava flour were randomly collected inside clean polythene bag at each point of sale in three (3) major markets in Zaria, these are: Samaru, Sabon Gari and Zaria City Markets and transported to the laboratory for the department of microbiology Ahmadu Bello University, Zaria for further analysis.

  15. 13 Comparative Effects of Cassava Starch and Simple Sugar in ...

    African Journals Online (AJOL)

    Arc. Usman A. Jalam

    Abstract. Comparative effects of simple laboratory quality sugar and cassava starch on grade C35 concrete were studied in the laboratory. The simple white sugar was used at concentrations of 0 to 1% by weight of cement in concrete cured at 3, 7, 14 and 28 days using ordinary Portland cement. Cassava starch of the same ...

  16. Evaluation of the effect of ginger modified cassava starch as ...

    African Journals Online (AJOL)

    Raw cassava starch has been used as thickener and binder in the formulation of water based paint, but with a problem of loss of viscosity in a very short period. This study evaluates the modification of cassava starch using active component of ginger extract and its use as a water- based paint thickener. 150 g of starch in ...

  17. Effect of lactic acid bacteria starter culture fermentation of cassava ...

    African Journals Online (AJOL)

    The effects of lactic acid fermentation of cassava on the chemical and sensory characteristic of fufu flour were investigated. Two strains of Lactobacillus plantarum were used as starter cultures for the fermentation of cassava to fufu for 96 h. The resultant wet fufu samples were dried at 65oC in a cabinet dryer for 48 h and ...

  18. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    Full Text Available South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017 was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural

  19. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  20. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  1. Resources and testing of endophyte-infected germplasm in national grass repository collections

    Science.gov (United States)

    A. D. Wilson

    1996-01-01

    Clavicipitaceous endophytes have been known to exist in grasses since the discovery of an endophyte in seeds of damel (Lolium temulentum L.) by Vogl in 1898 (26). The oldest known specimens of damel with endophytic mycelium were seeds retrieved from a pharoah's tomb in an Egyptian pyramid dating back to 3400 B.C. (16). Subsequent work by...

  2. Simulating drought impact and mitigation in cassava using the LINTUL model

    NARCIS (Netherlands)

    Ezui, K.S.; Leffelaar, P.A.; Franke, A.C.; Mando, A.; Giller, K.E.

    2018-01-01

    We adapted and used a crop simulation model based on light interception and use efficiency (LINTUL-Cassava) to improve our understanding of water-limited yields of cassava under rain-fed conditions in Southern Togo. Data collected in four different fields in two locations, Sevekpota and

  3. Production of the first transgenic cassava in Africa via direct shoot ...

    African Journals Online (AJOL)

    Here we report on the first successful establishment of cassava regeneration and transformation capacity in Africa via organogenesis, somatic embryogenesis and friable embryogenic callus (FEC). As a prerequisite for genetic engineering, we evaluated six African cassava genotypes for the ability of a) induction of FEC b) ...

  4. Nitrogen requirements of cassava in selected soils of Thailand

    Directory of Open Access Journals (Sweden)

    Jakchaiwat Kaweewong

    2013-08-01

    Full Text Available Cassava (Manihot esculenta is one of the most important export crops in Thailand, yet the nitrogen requirement is unknown and not considered by growers and producers. Cassava requirements for N were determined in field experiments during a period of four years and four sites on the Satuk (Suk, Don Chedi (Dc, Pak Chong (Pc,and Ban Beung (BBg soil series in Lopburi, Supanburi, Nakhon Ratchasima, and Chonburi sites, respectively. The fertilizer treatment structure comprised 0, 62.5, 125, 187.5, 250 and 312.5 kg N ha^(-1 as urea. At each site cassava was harvested at nine months and yield parameters and the minimum datasets were taken. The fertilizer rate which resulted in maximum yield ranged from 187.5 kg N ha^(-1 in Supanburi and Chonburi (fresh weight yield of 47,500 and 30,000 kg ha^(-1 respectively to 250 kg N ha^(-1 in Lopburi and Nakhon Ratchasima (fresh weight yield of 64,100 and 46,700 kg ha^(-1 respectively. Yield appeared to decrease at the higher, 312 kg ha^(-1, at Supanburi and Lopburi, and 250 kg ha^(-1 (Chonburi fertilizer N rates. Net revenue was 70.4 and 72.9 % higher than where no N was appliedLopburi and Nakhon Ratchasima sites. Net revenue at the Supanburi and Chonburi sites were 53.8 and 211.0 % higher than that where no N was applied. This study suggests that at all sites improved cassava production and net revenue could be obtained with the judicious application of higher quantities of N. The results provide needed guidance to nitrogen fertilization of the important industrial crop cassava in Thailand.

  5. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Ya; Nan, Lijun; Liu, Junchao; Yan, Haiyan; Zhang, Dianpeng; Han, Xinnian

    2016-01-01

    Obtain endophyte strains with effective resveratrol production from superior grapevine variety Cabernet Sauvignon in Xinjiang and determine related taxonomic position of the strain. Seventy-three strains of endophytes, including 23 strains of bacteria, 14 ones of actinomycetes, 24 fungus and 12 yeasts, were isolated, respectively. The distribution law of endophytes was spring (30.14 %) = summer (30.14 %) < autumn (39.73 %) in different seasons, while the fruit (12.33 %) < leaf (20.55 %) < stem (32.88 %) < root (34.25 %) in different tissues and organs. From the 36 strains of endophytic fungi isolated, seven strains producing polyphenols were screened by ferric chloride-potassium ferricyanide color reaction. C2J6, stable genetic properties producing highly 1.48 mg L(-1) of resveratrol, was identified as Aspergillus niger by 26S rDNA-ITS sequence analysis after thin-layer chromatography sieve analysis, ultra violet wavelength scanning and high performance liquid chromatography, respectively. There were the certain number and kinds of endophytes in the various tissues of Cabernet Sauvignon, which, to a certain extent, reflected the biological diversity of plant endophytes. The fact that the fungus C2J6 producing resveratrol in grape was acquired attested the special ability of the endophytes to produce the same or similar bioactive substances as the host plants.

  7. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2015-06-01

    Full Text Available Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  8. Effect of canker size on availability of cassava planting materials in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta L.) production is highly limited by cassava anthracnose disease (CAD) which causes significant losses in planting materials. An experiment was laid out at Ihiagwa, Owern in Nigeria with eighteen treatments replicated three times. Disease severity was scored on a scale of 1-5, and disease ...

  9. Cassava: constraints to production and the transfer of biotechnology to African laboratories.

    Science.gov (United States)

    Bull, Simon E; Ndunguru, Joseph; Gruissem, Wilhelm; Beeching, John R; Vanderschuren, Hervé

    2011-05-01

    Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.

  10. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    Science.gov (United States)

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  11. Screening mycotoxins for quorum inhibition in a biocontrol bacterial endophyte

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. Bacteria communicate via cell-dependent signals, which are r...

  12. Modeling of China's cassava-based bioethanol supply chain operation and coordination

    International Nuclear Information System (INIS)

    Ye, Fei; Li, Yina; Lin, Qiang; Zhan, Yuanzhu

    2017-01-01

    As a useful alternative to petroleum-based fuel, biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. Cassava is viewed as an important and highly attractive nonedible feedstock for the production of biofuels. In this paper, a game-theoretic approach is proposed to explore decision behavior within a cassava-based bioethanol supply chain under the condition of yield uncertainty. In addition, a production cost sharing contract is proposed to overcome the double marginalization effect due to competition between supply chain players. With data from China's cassava-based bioethanol industry, the paper analyzes the effects of the farmer's capacity, risk aversion, yield uncertainty, the conversion ratio, the bioethanol's market price and ethanol plant's operation cost on optimal decisions within the supply chain and its overall performance. In addition, the effectiveness of the proposed production cost sharing contract is tested, and the results show that it can enhance the supply of cassava, increase the utility of the whole supply chain and reduce the level of greenhouse gas (GHG) emissions. The implications are set out for policy makers regarding how to promote the development of the biofuel industry, to guarantee the supply of feedstock, to reduce GHG emissions and to promote rural development. - Highlights: • Decision behavior within the cassava-based bioethanol supply chain is modeled. • Yield uncertainty and farmers' capacity and risk aversion are considered. • A production cost sharing contract is proposed to coordinate the supply chain. • The cassava supply, the utility and reduction on GHG emissions are increased. • Policy implications regarding how to promote biofuel supply chains are set out.

  13. Effect of Replacement of Maize with Cassava Root Meal Fortified ...

    African Journals Online (AJOL)

    The effects of replacement of maize with cassava root meal (CRM) fortified with palm oil on performance of starter broilers were determined in a 28-day feeding trial. Diets T2, T3, T4 and T5 were formulated such that they contained cassava root meal, fortified with 20% palm oil, in the proportions 10, 20, 30 and 40%, ...

  14. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.

    Science.gov (United States)

    Tiwari, Sarita; Sarangi, Bijaya Ketan; Thul, Sanjog T

    2016-09-15

    Mitigation of arsenic (As) pollution is a topical environmental issue of high R&D priority. The present investigation was carried out to isolate As resistant endophytes from the roots of Indian ecotype Pteris vittata and characterize their As transformation and tolerance ability, plant growth promoting characteristics and their role to facilitate As uptake by the plant. A total of 8 root endophytes were isolated from plants grown in As amended soil (25 mg As kg(-1)). These isolates were studied for minimum inhibitory concentration (MIC), arsenite As(III) - arsenate As(V) transformation ability, plant growth promoting (PGP) characteristics through siderophore, indole acetic acid (IAA) production, phosphatase, ACC deaminase activity, and presence of arsenite oxidase (aox) and arsenite transporter (arsB) genes. On the basis of 16S rDNA sequence analysis, these isolates belong to Proteobacteria, Firmicutes and Bacteroidetes families under the genera Bacillus, Enterobacter, Stenotrophomonas and Rhizobium. All isolates were found As tolerant, of which one isolates showed highest tolerance up to 1000 mg L(-1) concentration in SLP medium. Five isolates were IAA positive with highest IAA production up to 60 mg/L and two isolates exhibited siderophore activity. Phosphatase activity was shown by only one isolate while ACC deaminase activity was absent in all the isolates. The As transformation study by silver nitrate test showed that only two strains had dual characteristics of As(III) oxidation and As (V) reduction, four strains exhibited either of the characteristics while other two didn't confirmed any of the two characteristics. Presence of aox gene was detected in two strains and arsB gene in six isolates. The strain with highest As tolerance also showed highest IAA production and occurrence of arsB gene. Present investigation may open up further scope of utilizing these endophytes for up gradation of phytoextraction process. Copyright © 2016 Elsevier Ltd. All

  15. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cassava and soil fertility in intensifying smallholder farming systems of East Africa

    NARCIS (Netherlands)

    Fermont, van A.M.

    2009-01-01

    Keywords: Cost-benefits, Crop management, Farming systems, Fertilizer, Food security, Generalizations, Income, Labour, Land pressure, Niche, Rainfall, Sub-Saharan Africa, System analysis, Yield gap.
    Cassava is an important crop in Africa. This thesis focuses on cassava production in the mid

  17. Evaluation of synergistic effect in vacuum pack, refrigeration and irradiated treatments of minimally processed cassava

    International Nuclear Information System (INIS)

    Pedroso, Bianca Maria

    2005-01-01

    Cassava is cultivated almost all over the world and it is considered one of the most important nutritious sources of calories in the human diet. Cassava is a viable food against starvation in several poor areas of the world because it is an extremely resistant culture and may reach satisfactory economical yield. We utilized vacuum packed industrialized cassava irradiated with 0,1 kGy, 3kGy and 5kGy and stored under refrigeration for 1, 21, 30 and 50 days. Our objective was to analyse the synergistic effect of vacuum packing, irradiation and refrigeration on the preservation of minimally processed cassava. The samples were analyzed for pH, acidity, weight, humidity, texture and color. The irradiation did not affect the chemical characteristics of the cassava. Neither the pH nor the acidity, the most relevant variables to verify deterioration in cassava, presented significant alterations during the period of storage. Comparing the irradiated treatments, the dose of 1kGy and 3kGy affected the physic-chemical characteristics of the cassava the least during the period of storage and refrigeration for 50 days; the doses of 1kGy,3kGy and 5kGy scored the highest rates the sensorial analysis during the period of storage for 21 days. (author)

  18. Cassava traits and end-user preference: Relating traits to consumer liking, sensory perception, and genetics.

    Science.gov (United States)

    Bechoff, Aurélie; Tomlins, Keith; Fliedel, Geneviève; Becerra Lopez-Lavalle, Luis Augusto; Westby, Andrew; Hershey, Clair; Dufour, Dominique

    2018-03-04

    Breeding efforts have focused on improving agronomic traits of the cassava plant however little research has been done to enhance the crop palatability. This review investigates the links between cassava traits and end-user preference in relation with sensory characteristics. The main trait is starch and its composition related to the textural properties of the food. Pectin degradation during cooking resulted in increased mealiness. Nutritional components such as carotenoids made the cassava yellow but also altered sweetness and softness; however, yellow cassava was more appreciated by consumers than traditional (white) varieties. Components formed during processing such as organic acids gave fermented cassava products an acidic taste that was appreciated but the fermented smell was not always liked. Anti-nutritional compounds such as cyanogenic glucosides were mostly related to bitter taste. Post-harvest Physiological Deterioration (PPD) affected the overall sensory characteristics and acceptability. Genes responsible for some of these traits were also investigated. Diversity in cassava food products can provide a challenge to identifying acceptance criteria. Socio-economic factors such as gender may also be critical. This review leads to questions in relation to the adaptation of cassava breeding to meet consumer needs and preference in order to maximize income, health and food security.

  19. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  20. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    Science.gov (United States)

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  1. Glucanase and Chitinase from Some Isolates of Endophytic Fungus Trichoderma spp.

    Science.gov (United States)

    Prasetyawan, Sasangka; Sulistyowati, Lilik; Aulanni'am

    2018-01-01

    Endophytic fungi are those fungi that are able to grow in plant tissue without causing symptoms of disease. It is thought that these fungi may confer on the host plants degree of resistance to parasitic invasion. Endophytic fungi have been isolated from stem tissue and these fungi are known to be antagonistic to pathogenic fungi. These endophytes produce chitinase and β-1,3-glucanase enzymes. Based on the fact that chitin and β-1,3-glucan are the main skeletal polysaccharides of the cell walls of fungal patogen. The aim of this research is to do potential test on some of isolates of Trichoderma’s endophytic (L-1, L-2, Is-1, Is-2 and Is-7) in the chitinase and β-1,3-glucanase activity in effort to determine endophytic which be chossen to be gene resource for the next research. The gene will be transformed to citrus plant japanese citroen in effort to make citrus plant transgenic resistance to phytopatogenic invasion. The result of this research is endofit namely L-1 is the most potential endophytic fungi with chitinase activities is 4,8 10-2 Unit and glucanase 24,2. 1012 Unit. The addition of chitin and cell wall of phytophtora causes chitinase activity significantly increase, and also addition of laminarin and cell wall of phytophtora makes glucanase activity increase.

  2. Growth and yield of cassava as influenced by maize and cowpea ...

    African Journals Online (AJOL)

    Two field trials were conducted at the research farm of the National Root Crops Research Institute (NRCRI) Umudike, Igbariam sub-station (060151N, 060521E) in 2013/2014 and 2014/2015 cropping seasons to determine the growth and yield of cassava as influenced by maize and cowpea population densities. Cassava at ...

  3. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    Science.gov (United States)

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  4. INTEGRATING CASSAVA VARIETIES AND Typhlodramulus aripo ...

    African Journals Online (AJOL)

    ACSS

    The objective of this study was to identify cassava ... mite species, of Colombian and Brazilian origin, ... Typhlodramulus aripo was imported by the ..... Environmental Entomology 36:938-951 ... shade, weed competition, and kaolin in particle.

  5. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  6. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  7. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  8. Modification of Foamed Articles Based on Cassava Starch

    International Nuclear Information System (INIS)

    Ponce, P.

    2006-01-01

    This work reports the influence of radiation, plasticizers and poly vinyl alcohol (PVA) on the barrier properties [water vapour permeability (WVP)) and mechanical properties (tensile strength and elongation; compression resistance and flexibility) of foamed articles based on cassava starch. The starch foam was obtained by thermopressing process. Poly ethylene glycol (PEG, 300) was selected as plasticizer and water was necessary for the preparation of the foams. The foamed articles based on cassava starch were irradiated at low doses of 2 and 5 kGy, commonly used in food irradiation. The mechanical properties of starch foams are influenced by the plasticizer concentration and by irradiation dose. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the foams; also increase the permeability of the foams in water. After irradiation, the barrier properties and mechanical properties of the foams were improved due to chemical reactions among polymer molecules. Irradiated starch cassava foams with poly vinyl alcohol (PVA) have good flexibility and low water permeability. WVP can be reduced by low doses of gamma radiation

  9. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    Science.gov (United States)

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  10. Revamping Nigerian Economy through Cassava Production

    African Journals Online (AJOL)

    Nneka Umera-Okeke

    2017-04-28

    The main kernel of this paper is on revamping Nigerian economy through cassava .... in his book Action Oriented Process of Indigenous Participatory Network (2000) .... https://www.reference.com/worldnew/national-economy on April 28, 2017.

  11. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (industrial utilization. Copyright © 2011 Wiley Periodicals, Inc.

  12. Secondary metabolites from the endophytic fungus Talaromyces pinophilus.

    Science.gov (United States)

    Vinale, F; Nicoletti, R; Lacatena, F; Marra, R; Sacco, A; Lombardi, N; d'Errico, G; Digilio, M C; Lorito, M; Woo, S L

    2017-08-01

    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.

  13. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed through...... the adoption of proper quality and food safety procedures. Cassava processing enterprises involved in the productionof HQCF must therefore be commited to the quality and food safety of the HQCF. They must have the right technology, appropriate processing machhinery, standard testing instruments...... and the necessary technical expertise. This quality manual was therefore developed to guide small- to medium-scale cassava in the design and implematation of Hazard Analysis Critical Control Point (HACCP) system and Good manufacturing Practices (GMP) plans for HQCF production. It describes the HQCF production...

  14. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops.

    Science.gov (United States)

    Murphy, Brian R; Doohan, Fiona M; Hodkinson, Trevor R

    2018-02-11

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

  15. The effect of replacing maize with cassava peel meal on the ...

    African Journals Online (AJOL)

    A 12-week feeding trial was conducted to determine the optimal replacement level(s) of dried cassava peel meal (DCPM) for maize in diets for weaner rabbits. Four experimentnl diets were formulated such that dried cassava peel meal replaced maize at 0, 50%, 75% and 100% levels, respectively. Each diet was fed to five ...

  16. Effect of adoption of improved cassava varieties on the livelihoods of ...

    African Journals Online (AJOL)

    Over the years, the use of local varieties of cassava by farmers especially in the study area had not appreciably improved the livelihood status of the farmers. This study, therefore, examined the effects of adoption of improved cassava varieties on the livelihoods of the rural farmers in Nsukka Local Government Area of Enugu ...

  17. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.

    Science.gov (United States)

    Soto-Blanco, Benito; Górniak, Silvana Lima

    2010-07-01

    Cassava (Manihot esculenta Crantz) is a major source of dietary energy for humans and domestic animals in many tropical countries. However, consumption of cassava is limited by its characteristic content of cyanogenic glycosides. The present work aimed to evaluate the toxic effects of ingestion of cassava leaves by goats for 30 consecutive days, and to compare the results with the toxic effects of cyanide in goats, which have been described previously. Eight Alpine cross-bred female goats were divided into two equal groups, and were treated with ground frozen cassava leaves at a target dose of 6.0mg hydrogen cyanide (HCN)/kg/day (treated animals), or with ground hay and water only (control group) by gavage for 30 consecutive days. Blood samples were collected on days 0, 7, 15, 21, and 30 for biochemical panel and cyanide determination. At the end of the experiment, fragments of pancreas, thyroid gland, liver, kidney, lungs, heart, spleen, and the whole central nervous system were collected for histopathological examination. Clinical signs were observed in all goats treated with cassava on the first day of the experiment. From the second day the dose of cassava leaves was reduced to 4.5mgHCN/kg/day. No changes were found in the blood chemical panel. A mild increase in the number of resorption vacuoles in the thyroid follicular colloid, slight vacuolation of periportal hepatocytes, and spongiosis of the mesencephalon were found in goats treated with cassava. The pattern of lesions seen in the present goats was similar to what has been described previously in cyanide-dosed goats. Thus, the toxic effects of the ingestion of cassava leaves by goats can be attributed to the action of cyanide released from cyanogenic glycosides, and none of the effects was promoted by these glycosides directly.

  18. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    Science.gov (United States)

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    Science.gov (United States)

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  20. Addition of enzymes to improve sensory quality of composite wheat–cassava bread

    DEFF Research Database (Denmark)

    Serventi, Luca; Jensen, Sidsel; Skibsted, Leif Horsfelt

    2016-01-01

    Composite wheat–cassava (WC) bread was recently proposed as a sustainable alternative to wheat bread. Nonetheless, using >20 % cassava flour on flour basis in bread baking has consistently been proven to impair the sensory quality. Selected enzymes: fungal alpha-amylase Fungamyl® 2500 SG (Fungamy...

  1. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants.

    Science.gov (United States)

    Otti, G; Bouvaine, S; Kimata, B; Mkamillo, G; Kumar, P L; Tomlins, K; Maruthi, M N

    2016-05-01

    To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa. The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause the economically important cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) respectively. Our method, developed by analysing PCR products of viruses, was highly sensitive to detect target viruses from very low quantities of 4-10 femtograms. Multiplexing did not diminish sensitivity or accuracy compared to uniplex alternatives. The assay reliably detected and quantified four cassava viruses in field samples where CBSV and UCBSV synergy was observed in majority of mixed-infected varieties. We have developed a high-throughput qPCR diagnostic assay capable of specific and sensitive quantification of predominant DNA and RNA viruses of cassava in eastern Africa. The qPCR methods are a great improvement on the existing methods and can be used for monitoring virus spread as well as for accurate evaluation of the cassava varieties for virus resistance. © 2016 The Society for Applied Microbiology.

  2. Maize Fungal Growth Control with Scopoletin of Cassava Roots Produced in Benin

    Directory of Open Access Journals (Sweden)

    Rafiatou Ba

    2017-01-01

    Full Text Available The chemical contamination of food is among the main public health issues in developing countries. With a view to find new natural bioactive products against fungi responsible for chemical contamination of staple food such as maize, the antifungal activity tests of scopoletin extracted from different components of the cassava root produced in Benin were carried out. The dosage of scopoletin from parts of the root (first skin, second skin, whole root, and flesh was done by High Performance Liquid Chromatography. The scopoletin extract was used to assess the activity of 12 strains (11 strains of maize and a reference strain. The presence of scopoletin was revealed in all components of the cassava root. Scopoletin extracted from the first skin cassava root was the most active both as inhibition of sporulation (52.29 to 87.91% and the mycelial growth (36.51–80.41%. Scopoletin extract from the cassava root skins showed significant inhibitory activity on the tested strains with fungicide concentration (MFC between 0.0125 mg/mL and 0.1 mg/mL. The antifungal scopoletin extracted from the cassava root skins may be well beneficial for the fungal control of the storage of maize.

  3. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    OpenAIRE

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophyt...

  4. Sensory Quality of Wheat and Cassava Breads as Affected by Some ...

    African Journals Online (AJOL)

    The effects of some leguminous seed flours (LSF) on the quality of wheat and cassava breads were investigated. Three LSF, namely Brachystegia eurycoma, Detarium microcarpum, and Mucuna sloanei were added into wheat flour and cassava flour at 0 (control), 0.5, 1.0, 1.5, and 2.0% of the flour basis. The different flour ...

  5. Comparative analysis of type 1 and type 2 cassava peeling machines

    African Journals Online (AJOL)

    A comparative analysis of type 1 and type 2 cassava peeling machines with nail lengths of 26mm and 20mm were investigated in order to improve peeling techniques of cassava tubers. The machines were evaluated at four (4) different speeds; (80rev/min, 90rev/min, 100rev/min, and 110rev/min), with 750HP petrol engine.

  6. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    Science.gov (United States)

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  7. Fungal enrichment of cassava peels proteins

    African Journals Online (AJOL)

    hope&shola

    2006-02-02

    Feb 2, 2006 ... animal diseases (Richard et al., 1985) and mycotoxin production (Mossel, 1982) ... Effects of replacing maize with maize bran and cassava peels on broiler ... Abiola SS (1997). Utilization of sun-dried poultry manure as protein.

  8. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.

    Science.gov (United States)

    Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K

    2005-09-01

    Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.

  9. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    OpenAIRE

    M. Hanif; T.M.I. Mahlia; H.B. Aditiya; M.S. Abu Bakar

    2017-01-01

    According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG) emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportat...

  10. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response

    OpenAIRE

    Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé

    2018-01-01

    Cassava brown streak viruses (CBSVs) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs we inoculated CBSV-susceptible and -resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time-point of full infection (28 days after grafting) in the susceptible scions. The expression of genes enco...

  11. High throughput multiplex real time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants

    OpenAIRE

    Otti, Gerald; Bouvaine, Sophie; Kimata, Bernadetha; Mkamillo, Geoffrey; Kumar, Lava; Tomlins, Keith; Maruthi, M.N.

    2016-01-01

    Aims: To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa.\\ud \\ud Methods and Results: The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause t...

  12. Genome-wide identification and expression analysis of the CIPK gene family in cassava

    Directory of Open Access Journals (Sweden)

    Wei eHu

    2015-10-01

    Full Text Available Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava.

  13. Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production

    Science.gov (United States)

    Yuniwati, E. D.

    2017-12-01

    This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.

  14. Tensile and Water Absorption Properties of Biodegradable Composites Derived from Cassava Skin/ Polyvinyl Alcohol with Glycerol as Plasticizer

    International Nuclear Information System (INIS)

    Dayangku Intan Munthoub; Wan Aizan Wan Abdul Rahman

    2011-01-01

    Natural organic and abundant resources biopolymers received more attention due to their low cost, availability and degradability after usage. Cassava skin was used as natural fillers to the polyvinyl alcohol (PVA). Cassava skin/ poly vinyl alcohol blends were compounded using melt extrusion twin screw extruder and test samples were prepared using the compression method. Various ratios of cassava skin and glycerol were investigated to identify suitable composition based on the water absorption and tensile properties. The water absorption of the cassava skins/ PVA samples increased at higher composition of cassava skin due to their hydrophilic properties but decrease with glycerol content. The strength of the cassava skins/ PVA samples increased with the higher composition of cassava skin up to 70 wt % while gradually decreased with the increasing composition of glycerol. The Young modulus increased with glycerol content but decreased with fibre loading up to 70 wt %. Elongation at break decreased with fibre loading and glycerol up to 70 wt % and 30 phr, respectively. (author)

  15. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    2014-01-01

    Full Text Available The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA, located in Vitória de Santo Antão. The experimental design was randomized blocks with 6×5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1; and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater, with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers.

  16. The potential and biological test on cloned cassava crop remains on local sheep

    Science.gov (United States)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  17. Research advance on stable mechanism of endophytic fungi to red wine colour during the aging

    Science.gov (United States)

    Nan, Lijun; Li, Yashan; Cui, Changwei; Ning, Na; Huang, Jing; Xu, Chengdong; Tao, Fang; Zhang, Jinyong

    2018-04-01

    Based on the fact that persistent mutation of vinous color was not conducive to the stabilization of vinous quality during the aging, research advance on the stable mechanism of endophytic fungi to colour of red wine during the aging, including investigative status and developmental dynamic at home and abroad, endophytes and pigment of materials in wine, including effect of endophyte on vinaceous color, and even the application of tracer method in wine was summarized, respectively. The relationship between diversity of community the endophytic fungi and the main pigment material in wine was existent objectively, also included the response mechanism on colony dynamic of endophytic fungi to the various pigment as well as substance related to color, which laid the foundation for exploring the relationships between endophytic fungi and wine color, and the variational mechanism of the color under endophytic fungi during the aging period of wine. Color as an important reference index of wine quality influenced not only the sensory evaluation of consumer, but also the quality of wine because of the self-aggregation or combination of phenolic composition with other substances under the endophytic fungi during the storage. Only steady wine in the color could guarantee the security of quality.

  18. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  19. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  20. RESPONSE OF NIGERIAN CASSAVA EXPANSION INITIATIVES TO CLIMATE CHANGES, ECONOMIC GROWTH AND SOME POLICY INSTRUMENT (1970-2012

    Directory of Open Access Journals (Sweden)

    Onwumere Joseph

    2013-10-01

    Full Text Available This study considered the limiting response of Nigeria cassava expansion initiative to climate changes, economic growth and some policy instruments. The presidential initiative to make cassava a foreign exchange earner as well as ensuring that national demand are satisfied has made cassava a significant economic crop and resource input of industrial and international status. Currently, its derivatives such as animal feed, starch, ethanol, cassava chip, cassava flour, cassava liquor etc are in high demand. Having gained international recognition some factors need be examined to ascertain the limiting response of this economic crop some exogenous factors. The specific objectives of interest were to ascertain the response of cassava output expansion to rainfall, temperature, imports, exports, credit allocation to agribusiness, exchange rate, nominal interest rate, inflation and GDP from 1970 – 2012. Also, it examined the short and long run effects of these variables to cassava output so as to know how much adjustment it makes to reach the equilibrium. Secondary data were used for this research work. The technique of data analysis was auto- regressive modeling regression. To capture the long run and short run dynamics of cassava output behavior, the error correction model (ECM using the Engle-Granger methodology was adopted. The result revealed a very high rate of adjustment to long run equilibrium and the variables are correlated which means that impact of each variable on cassava output behavior in the economy is inseparable. The Error correction coefficient of -0.975 measures the speed of adjustment towards long run equilibrium earned the expected negative sign and is statistically significant at 1% risk level. Thus, this study recommends that the emerging cassava economy of Nigeria would be adequately empowered for efficient productivity if the Government stipulate policies that will encourage domestic output expansion to meet the national and

  1. Incidence of cassava mosaic disease and associated whitefly vectors in South West and North Central Nigeria: Data exploration.

    Science.gov (United States)

    Eni, Angela O; Efekemo, Oghenevwairhe P; Soluade, Mojisola G; Popoola, Segun I; Atayero, Aderemi A

    2018-08-01

    Cassava mosaic disease (CMD) is one of the most economically important viral diseases of cassava, an important staple food for over 800 million people in the tropics. Although several Cassava mosaic virus species associated with CMD have been isolated and characterized over the years, several new super virulent strains of these viruses have evolved due to genetic recombination between diverse species. In this data article, field survey data collected from 184 cassava farms in 12 South Western and North Central States of Nigeria in 2015 are presented and extensively explored. In each State, one cassava farm was randomly selected as the first farm and subsequent farms were selected at 10 km intervals, except in locations were cassava farms are sporadically located. In each selected farm, 30 cassava plants were sampled along two diagonals and all selected plant was scored for the presence or absence of CMD symptoms. Cassava mosaic disease incidence and associated whitefly vectors in South West and North Central Nigeria are explored using relevant descriptive statistics, box plots, bar charts, line graphs, and pie charts. In addition, correlation analysis, Analysis of Variance (ANOVA), and multiple comparison post-hoc tests are performed to understand the relationship between the numbers of whiteflies counted, uninfected farms, infected farms, and the mean of symptom severity in and across the States under investigation. The data exploration provided in this data article is considered adequate for objective assessment of the incidence and symptom severity of cassava mosaic disease and associated whitefly vectors in farmers' fields in these parts of Nigeria where cassava is heavily cultivated.

  2. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  3. Manioc alcohol by continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, V; de Queiroz Araujo, N; Miceli, A; Souza e Silva, P C; da Silva Burle, J A

    1976-01-01

    EtOH was produced from dry cassava meal by first obtaining a glucose syrup by enzymic action, then fermenting the syrup with yeast. Bacillus subtilis amylase and Aspergillus awamori amyloglucosidase were prepared by growing the organisms on cassava meal. Both enzymes were used to saccharify the cassava starch to syrup. Saccharomyces cervisiae ATCC 1133 was then used in a continuous process to produce EtOH.

  4. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz)

    NARCIS (Netherlands)

    Munyikwa, T.R.I.

    1997-01-01


    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the

  5. Biofortified cassava with pro-vitamin A is sensory and culturally acceptable for consumption by primary school children in Kenya.

    Science.gov (United States)

    Talsma, Elise F; Melse-Boonstra, Alida; de Kok, Brenda P H; Mbera, Gloria N K; Mwangi, Alice M; Brouwer, Inge D

    2013-01-01

    Biofortification of cassava with pro-vitamin A can potentially reduce vitamin A deficiency in low-income countries. However, little is known about consumer acceptance of this deep yellow variety of cassava compared to the commonly available white varieties. We aimed to determine the sensory and cultural acceptability of the consumption of pro-vitamin A rich cassava in order to identify key factors predicting the intention to consume pro-vitamin A rich cassava by families with school-aged children in Eastern Kenya. Sensory acceptability was measured by replicated discrimination tests and paired preference tests among 30 children (7-12 yr) and 30 caretakers (18-45 yr) in three primary schools. Cultural acceptability was assessed with a questionnaire based on the combined model of The Theory of Planned Behavior and The Health Belief Model in one primary school among 140 caretakers of children aged 6 to 12 years. Correlations and multivariate analyses were used to determine associations between summed scores for model constructs. Caretakers and children perceived a significant difference in taste between white and pro-vitamin A rich cassava. Both preferred pro-vitamin A rich cassava over white cassava because of its soft texture, sweet taste and attractive color. Knowledge about pro-vitamin A rich cassava and it's relation to health ('Knowledge' ((β = 0.29, P = behavior identity'. Worries related to bitter taste and color ('Perceived barriers 1' (β = -0.21, P = .02)), the belief of the caretaker about having control to prepare cassava ('Control beliefs' (β = 0.18, P = .02)) and activities like information sessions about pro-vitamin A rich cassava and recommendations from health workers ('Cues to action'(β = 0.51, P = consume pro-vitamin A rich cassava. Pro-vitamin A rich cassava is well accepted by school children in our study population.

  6. Natural Medium for Growing of Endophytic Bacteria from Solanaceae in Malang-Indonesia

    Directory of Open Access Journals (Sweden)

    Purnawati Arika

    2016-01-01

    Full Text Available Endophytic bacteria are important microorganisms having potential as biocontrol agents for many pathogens. Until now, the growth of it always uses semi-synthetic or synthetic medium so it was difficult to be used by farmers in the field and it was expensive to have its propagation as biocontrol agents. Based on the problem, this research will study the natural medium as propagation medium of Endophytic bacteria. It had natural ingredients such as soybean, chicken broth, egg, worms, snail, sorghum and they were easy to get by farmers. This study used endophytic bacteria from Solanaceae in Malang- Indonesia. Four isolates of endophytic bacteria were grown in agar and liquid medium with ingredients of corn flour, soybean flour, sorghum flour, snail flour, and worm flour. There is no difference in the incubation period, color, shape, and surface colony. The population in medium with snail flour ingredients at a concentration of 107 cfu/ml is the highest and snail flour is the best medium for growing endophytic bacteria.

  7. Marker-assisted selection in common beans and cassava

    International Nuclear Information System (INIS)

    Blair, M.W.; Fregene, M.A.; Beebe, S.E.; Ceballos, H.

    2007-01-01

    Marker-assisted selection (MAS) in common beans (Phaseolus vulgaris L.) and cassava (Manihot esculenta) is reviewed in relation to the breeding system of each crop and the breeding goals of International Agricultural Research Centres (IARCs) and National Agricultural Research Systems (NARS). The importance of each crop is highlighted and examples of successful use of molecular markers within selection cycles and breeding programmes are given for each. For common beans, examples are given of gene tagging for several traits that are important for bean breeding for tropical environments and aspects considered that contribute to successful application of MAS. Simple traits that are tagged with easy-to-use markers are discussed first as they were the first traits prioritized for breeding at the International Center for Tropical Agriculture (CIAT) and with NARS partners in Central America, Colombia and eastern Africa. The specific genes for MAS selection were the bgm-1 gene for bean golden yellow mosaic virus (BGYMV) resistance and the bc-3 gene for bean common mosaic virus (BCMV) resistance. MAS was efficient for reducing breeding costs under both circumstances as land and labour savings resulted from eliminating susceptible individuals. The use of markers for other simply inherited traits in marker-assisted backcrossing and introgression across Andean and Mesoamerican gene pools is suggested. The possibility of using MAS for quantitative traits such as low soil phosphorus adaptation is also discussed as are the advantages and disadvantages of MAS in a breeding programme. For cassava, the use of multiple flanking markers for selection of a dominant gene, CMD2 for cassava mosaic virus (CMV) resistance at CIAT and the International Institute of Tropical Agriculture (IITA) as well as with NARS partners in the United Republic of Tanzania using a participatory plant breeding scheme are reviewed. MAS for the same gene is important during introgression of cassava green mite

  8. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  9. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  10. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress.

    Science.gov (United States)

    Oberhofer, Martina; Güsewell, Sabine; Leuchtmann, Adrian

    2014-01-01

    Interspecific hybrid endophytes of the genus Epichloë (Ascomycota, Clavicipitaceae) are prevalent in wild grass populations, possibly because of their larger gene variation, resulting in increased fitness benefits for host plants; however, the reasons are not yet known. We tested hypotheses regarding niche expansion mediated by hybrid endophytes, population-dependent interactions and local co-adaptation in the woodland grass Hordelymus europaeus, which naturally hosts both hybrid and non-hybrid endophyte taxa. Seedlings derived from seeds of four grass populations made endophyte free were re-inoculated with hybrid or non-hybrid endophyte strains, or left endophyte free. Plants were grown in the glasshouse with or without drought treatment. Endophyte infection increased plant biomass and tiller production by 10-15% in both treatments. Endophyte types had similar effects on growth, but opposite effects on reproduction: non-hybrid endophytes increased seed production, whereas hybrid endophytes reduced or prevented it completely. The results are consistent with the observation that non-hybrid endophytes in H. europaeus prevail at dry sites, but cannot explain the prevalence of hybrid endophytes. Thus, our results do not support the hypothesis of niche expansion of hybrid-infected plants. Moreover, plants inoculated with native relative to foreign endophytes yielded higher infections, but both showed similar growth and survival, suggesting weak co-adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Mantakassa: an epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area of Mozambique. 2. Nutritional factors and hydrocyanic acid content of cassava products*

    Science.gov (United States)

    1984-01-01

    An outbreak of spastic paraparesis which mostly affected women and children occurred in a northern province of Mozambique in 1981. The epidemic was related to chronic cyanide intoxication associated with a diet consisting almost exclusively of cassava. A prolonged drought in the area had exhausted all food resources except cassava, especially the bitter varieties. A nutritional, toxicological and botanical investigation was carried out in two of the five districts affected. The main findings were that cyanide levels were unusually high in the cassava plant as a consequence of the drought with daily intakes estimated at 15-31.5 mg HCN. Detoxification of the bitter varieties by sun-drying was inadequate because of the general food shortage, and metabolic detoxification was probably reduced owing to the absence of sulfur-containing amino acids in the diet. The raw and dried uncooked cassava was eaten mostly by women and children. The nutritional status of the population, however, was not very poor and symptoms of advanced under-nutrition were rarely seen. PMID:6088100

  12. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  13. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  14. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  15. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  16. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis.

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Mishra

    Full Text Available Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA, 28S ribosomal RNA (28S rRNA and translation elongation factor 1- alpha (EF 1α. Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS and non ribosomal peptide synthetase (NRPS genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.

  17. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  18. Development of cassava periclinal chimera may boost production.

    Science.gov (United States)

    Bomfim, N; Nassar, N M A

    2014-02-10

    Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.

  19. Technical and Socioeconomic Potential of Biogas from Cassava Waste in Ghana.

    Science.gov (United States)

    Kemausuor, Francis; Addo, Ahmad; Darkwah, Lawrence

    2015-01-01

    This study analyses technical potential and ex ante socioeconomic impacts of biogas production using cassava waste from agroprocessing plants. An analysis was performed for two biodigesters in two cassava processing communities in Ghana. The results showed that the two communities generate an excess of 4,500 tonnes of cassava peels per year. Using approximately 5% of the peels generated and livestock manure as inoculum can generate approximately 75,000 m(3) of gas with an estimated 60% methane content from two separate plants of capacities 500 m(3) and 300 m(3) in the two communities. If used internally as process fuel, the potential gas available could replace over 300 tonnes of firewood per year for cassava processing. The displacement of firewood with gas could have environmental, economic, and social benefits in creating sustainable development. With a 10 percent discount rate, an assumed 20-year biodigester will have a Net Present Value of approximately US$ 148,000, 7-year Payback Period, and an Internal Rate of Return of 18.7%. The project will create 10 full-time unskilled labour positions during the investment year and 4 positions during operation years.

  20. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  1. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  2. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  3. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation.

  4. Experimental study of bioethanol production using mixed cassava and durian seed

    Science.gov (United States)

    Seer, Q. H.; Nandong, J.; Shanon, T.

    2017-06-01

    The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.

  5. THE IMPLEMENTATION OF A SIMPLE LINIER REGRESSIVE ALGORITHM ON DATA FACTORY CASSAVA SINAR LAUT AT THE NORTH OF LAMPUNG

    Directory of Open Access Journals (Sweden)

    Dwi Marisa Efendi

    2018-04-01

    Full Text Available Cassava is one type of plant that can be planted in tropical climates. Cassava commodity is one of the leading sub-sectors in the plantation area. Cassava plant is the main ingredient of sago flour which is now experiencing price decline. The condition of the abundant supply of sago or tapioca flour production is due to the increase of cassava planting in each farmer. With the increasing number of cassava planting in farmer's plantation cause the price of cassava received by farmer is not suitable. So for the need of making sago or tapioca flour often excess in buying raw material of cassava This resulted in a lot of rotten cassava and the factory bought cassava for a low price. Based on the problem, this research is done using data mining modeled with multiple linear regression algorithm which aim to estimate the amount of Sago or Tapioca flour that can be produced, so that the future can improve the balance between the amount of cassava supply and tapioca production. The variables used in linear regression analysis are dependent variable and independent variable . From the data obtained, the dependent variable is the number of Tapioca (kg symbolized by Y while the independent variable is milled cassava symbolized by X. From the results obtained with an accuracy of 95% confidence level, then obtained coefficient of determination (R2 is 1.00. While the estimation results almost closer to the actual data value, with an average error of 0.00.

  6. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Science.gov (United States)

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  7. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry.

    Science.gov (United States)

    Favaro, Gabriella; Bogialli, Sara; Di Gangi, Iole Maria; Nigris, Sebastiano; Baldan, Enrico; Squartini, Andrea; Pastore, Paolo; Baldan, Barbara

    2016-10-30

    The plant endophyte Bacillus licheniformis, isolated from leaves of Vitis vinifera, was studied to individuate and characterize the presence of bioactive lipopeptides having amino acidic structures. Crude extracts of liquid cultures were analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. Chromatographic conditions were optimized in order to obtain an efficient separation of the different isobaric lipopeptides, avoiding merged fragmentations of co-eluted isomeric compounds and reducing possible cross-talk phenomena. Composition of the amino acids was outlined through the interpretation of the fragmentation behavior in tandem high-resolution mass spectrometry (HRMS/MS) mode, which showed both common-class and peculiar fragment ions. Both [M + H](+) and [M + Na](+) precursor ions were fragmented in order to differentiate some isobaric amino acids, i.e. Leu/Ile. Neutral losses characteristic of the iso acyl chain were also evidenced. More than 90 compounds belonging to the classes of surfactins and lichenysins, known as biosurfactant molecules, were detected. Sequential LC/HRMS/MS analysis was used to identify linear and cyclic lipopeptides, and to single out the presence of a large number of isomers not previously reported. Some critical issues related to the simultaneous selection of different compounds by the quadrupole filter were highlighted and partially solved, leading to tentative assignments of several structures. Linear lichenysins are described here for the first time. The approach was proved to be useful for the characterization of non-target lipopeptides, and proposes a rationale MS experimental scheme aimed to investigate the difference in amino acid sequence and/or in the acyl chain of the various congeners, when standards are not available. Results expanded the knowledge about production of linear and cyclic bioactive compounds from Bacillus licheniformis, clarifying the

  8. Cassava dreg as replacement of corn in goat kid diets.

    Science.gov (United States)

    Ferraz, Lucíola Vilarim; Guim, Adriana; Véras, Robson Magno Liberal; de Carvalho, Francisco Fernando Ramos; de Freitas, Marciela Thais Dino

    2018-02-01

    The effects of corn replacement by cassava dreg in diets of crossbred goat kids were evaluated. We tested the impacts of 0, 33, 66 and 100% replacement on intake, digestibility, feeding behaviour, performance and carcass characteristics. Thirty-six goat kids, aged between 4 and 5 months and with initial body weights of 17.61 ± 1.98 kg, were used in a completely randomised design. Analysis of regression revealed a negative linear effect on neutral detergent fibre (NDF) intake and a positive linear effect on non-fibrous carbohydrates (NFC) and hydrocyanic acids (HCN) intake. Cassava dreg use had a positive linear effect on organic matter digestibility and non-fibrous carbohydrates. Based on our results, cassava dreg use did not negatively impact animal performance, feeding behaviour and carcass characteristics, suggesting that it may replace corn up to 100% in the diets of confined goat kids.

  9. DEVELOPMENT OF A CASSAVA PELLETING MACHINE

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... ers is in the rise of price of fish feed which is a product processed from cassava ... Pelleting is an extrusion process which is simply the operation of ... is the process of forcing material through a specifically design opening.

  10. Cassava for food and energy: exploring potential benefits of processing of cassava into cassava flour and bioenergy at farmstead and community levels in rural Mozambique

    NARCIS (Netherlands)

    Zvinavashe, E.; Elbersen, H.W.; Slingerland, M.A.; Kolijn, S.; Sanders, J.P.M.

    2011-01-01

    As in most of sub-Sahara Africa, rural people in Mozambique use firewood as their main source of energy. The use of firewood is associated with several health problems, and the time spent collecting it reduces time for other activities. Cassava is grown as a reserve crop in Mozambique where it is

  11. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    Science.gov (United States)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  12. Application of edible coating from cassava peel – bay leaf on avocado

    Science.gov (United States)

    Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.

    2018-05-01

    Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.

  13. Optimization of factors to obtain cassava starch films with improved mechanical properties

    Science.gov (United States)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.

  14. Exploitation of endophytic fungus as a potential source of biofuel

    Directory of Open Access Journals (Sweden)

    Nawed Anjum

    2016-06-01

    Full Text Available Biofuel demand is unquestionable in order to reduce greenhouse gaseous emission which can lead to climatic changes and global warming effect. Finding sufficient supply of clean energy for the upcoming is one of the society’s most daunting challenges and is directly linked with global stability, economic prosperity and quality of life. Endophytic microbes reside in the healthy part of the plant without causing any symptoms of disease. It is well known that the endophytic microbes produces wide variety of bioactive compound having, antibacterial, antifungal, antiviral, antitumor, antioxidant, antiinflammatory, immunosuppressive drugs, and volatile organic compounds having similarity with conventional diesel fuel. Now the endophytic fungi, have also been known to possess a suitable lipid matrix at high concentrations and volatile organic compounds having similarity with conventional diesel fuel that make them promising sources for next generation biofuels. This would be more efficient and having lesser number of biosynthetic steps in production, can be brought to immediate use in the existing internal combustion engines without taking about any major modification in automobile design. The present article therefore aims to review the current status of research in the field of alternative source of energy emphasizing endophytic fungi as a source of biofuel precursor, in order to encourage and generate interest among research groups across India and the world for initiating and undertaking more enthusiastic and intensive research activity on endophytic fungi from the Indian subcontinent having the potential to make fuel-related hydrocarbons.

  15. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  16. Detrimental and Neutral Effects of a Wild Grass-Fungal Endophyte Symbiotum on Insect Preference and Performance

    OpenAIRE

    Clement, Stephen L.; Hu, Jinguo; Stewart, Alan V.; Wang, Bingrui; Elberson, Leslie R.

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass—endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass—endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more...

  17. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia

    NARCIS (Netherlands)

    Koehorst-van Putten, H.J.J.; Sudarmonowati, E.; Herman, M.; Pereira-Bertram, I.J.; Wolters, A.M.A.; Meima, H.; Vetten, de N.; Raemakers, C.J.J.M.; Visser, R.G.F.

    2012-01-01

    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is

  18. Thermogravimetric and Kinetic Analysis of Cassava Starch Based Bioplastic

    Directory of Open Access Journals (Sweden)

    Nanang Eko Wahyuningtyas

    2017-11-01

    Full Text Available Cassava starch based bioplasticfor packaging application has great potency because of the various starch-producing plants in Indonesia.Bioplasticcan contribute to reduce the dependence on fossil fuels andpetroleumthat can solve the environmentalproblem.Thepurpose of this research is to find out the thermal decomposition and the activation energy of cassava starch based bioplastic. The methods weresynthesis bioplastic with cassava starch as main component and glycerol as plasticizer. The thermogravimetry analysis was conducted to obtain the decomposition process mechanism of bioplastic and the heating valueof bioplasticwas measured  using theadiabatic bomb calorimetric.  Data analysis was conducted using  a fitting model approach with an acikalin method to determine the activation energy. The result of thethermogravimetricanalysis showed thatbioplasticisgraduallydecomposedto the moisture, volatilematter, fixed carbon, andash in four stages mechanism. Totally decomposition of bioplastic was 530°C, then all of bioplastic was become the ash. The activation energy in the early and primary thermal decomposition stages are 1.27 kJ/moland 22.62 kJ/mol, respectively and heating valueof bioplastic is 15.16 MJ/kg.

  19. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  20. Developmental peculiarities and seed-borne endophytes in quinoa: Omnipresent, robust bacilli contribute to plant fitness.

    Directory of Open Access Journals (Sweden)

    Andrea ePitzschke

    2016-01-01

    Full Text Available Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa, a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. A seed-borne microbiome was discovered and its potential role in early development and stress resistance investigated.Methods involved germination and drought exposure assays, histochemical detection of reactive oxygen species, and diverse tests with seed(ling material to assess microbial occurrence, release and proliferation. Quinoa´s microbial partners were biochemically, microscopically and taxonomically characterized.Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by bacteria of the genus Bacillus. These endophytes are mobile and reside in all seedling organs, indicating vertical transmission. Owing to their strong catalase activity and high superoxide contents they can modify host redox properties. One outcome is cell expansion, enabling quinoa to overcome a critical period in development, seedling establishment.Quinoa´s immediate confrontation with foreign ROS and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase and cosmetics (catalase industry. An exciting question arising from this work is: Can quinoa´s microbiome be transferred to improve stress resistance in other plant species?

  1. Cassava production and consumption: Health implications

    African Journals Online (AJOL)

    Mr A. O. Akinpelu

    HEALTH IMPLICATIONS OF CASSAVA PRODUCTION AND CONSUMPTION. AKINPELU, A.O. ... huge potential for the export market (Egesi et al., 2007). In urban areas ... farmer's/ household income and economic growth. Stakeholders in ..... dissertation submitted to the school of graduate studies in partial fulfilment of the.

  2. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Biofortified cassava with pro-vitamin A is sensory and culturally acceptable for consumption by primary school children in Kenya.

    Directory of Open Access Journals (Sweden)

    Elise F Talsma

    Full Text Available BACKGROUND: Biofortification of cassava with pro-vitamin A can potentially reduce vitamin A deficiency in low-income countries. However, little is known about consumer acceptance of this deep yellow variety of cassava compared to the commonly available white varieties. We aimed to determine the sensory and cultural acceptability of the consumption of pro-vitamin A rich cassava in order to identify key factors predicting the intention to consume pro-vitamin A rich cassava by families with school-aged children in Eastern Kenya. METHODS: Sensory acceptability was measured by replicated discrimination tests and paired preference tests among 30 children (7-12 yr and 30 caretakers (18-45 yr in three primary schools. Cultural acceptability was assessed with a questionnaire based on the combined model of The Theory of Planned Behavior and The Health Belief Model in one primary school among 140 caretakers of children aged 6 to 12 years. Correlations and multivariate analyses were used to determine associations between summed scores for model constructs. RESULTS: Caretakers and children perceived a significant difference in taste between white and pro-vitamin A rich cassava. Both preferred pro-vitamin A rich cassava over white cassava because of its soft texture, sweet taste and attractive color. Knowledge about pro-vitamin A rich cassava and it's relation to health ('Knowledge' ((β = 0.29, P = <.01 was a strong predictor of 'Health behavior identity'. Worries related to bitter taste and color ('Perceived barriers 1' (β = -0.21, P = .02, the belief of the caretaker about having control to prepare cassava ('Control beliefs' (β = 0.18, P = .02 and activities like information sessions about pro-vitamin A rich cassava and recommendations from health workers ('Cues to action'(β = 0.51, P = <.01 were the best predictors of intention to consume pro-vitamin A rich cassava. CONCLUSIONS: Pro-vitamin A rich cassava is well

  4. Biofortified Cassava with Pro-Vitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya

    Science.gov (United States)

    Talsma, Elise F.; Melse-Boonstra, Alida; de Kok, Brenda P. H.; Mbera, Gloria N. K.; Mwangi, Alice M.; Brouwer, Inge D.

    2013-01-01

    Background Biofortification of cassava with pro-vitamin A can potentially reduce vitamin A deficiency in low-income countries. However, little is known about consumer acceptance of this deep yellow variety of cassava compared to the commonly available white varieties. We aimed to determine the sensory and cultural acceptability of the consumption of pro-vitamin A rich cassava in order to identify key factors predicting the intention to consume pro-vitamin A rich cassava by families with school-aged children in Eastern Kenya. Methods Sensory acceptability was measured by replicated discrimination tests and paired preference tests among 30 children (7–12 yr) and 30 caretakers (18–45 yr) in three primary schools. Cultural acceptability was assessed with a questionnaire based on the combined model of The Theory of Planned Behavior and The Health Belief Model in one primary school among 140 caretakers of children aged 6 to 12 years. Correlations and multivariate analyses were used to determine associations between summed scores for model constructs. Results Caretakers and children perceived a significant difference in taste between white and pro-vitamin A rich cassava. Both preferred pro-vitamin A rich cassava over white cassava because of its soft texture, sweet taste and attractive color. Knowledge about pro-vitamin A rich cassava and it's relation to health (‘Knowledge’ ((β = 0.29, P = behavior identity’. Worries related to bitter taste and color (‘Perceived barriers 1’ (β = −0.21, P = .02)), the belief of the caretaker about having control to prepare cassava (‘Control beliefs’ (β = 0.18, P = .02)) and activities like information sessions about pro-vitamin A rich cassava and recommendations from health workers (‘Cues to action’(β = 0.51, P = consume pro-vitamin A rich cassava. Conclusions Pro-vitamin A rich cassava is well accepted by school children in our study population. PMID:24023681

  5. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  6. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  7. Transient GUS gene expression in cassava (Manihot esculenta Crantz using Agrobacterium tumefaciens leaf infiltration

    Directory of Open Access Journals (Sweden)

    Paula Díaz T.

    2014-09-01

    Full Text Available Objective. Assess transient gene expression of GUS in cassava (Manihot esculenta Crantz leaves using Agrobacterium tumefaciens infiltration. Materials and methods. A. tumefaciens strains GV3101 and AGL1 containing pCAMBIA1305.2 were used to evaluate transient gene expression of β-glucuronidase (GUS. A. tumefaciens infiltration (agroinfiltration was made using both leaves from in vitro and 1 month old greenhouse plants. Leaves were incubated in X-GLUC buffer, stained and photographed to detect GUS activity. Results. Agroinfiltration assays showed GUS transient expression in leaves of cassava varieties widely cultivated in the north coast and eastern savannah, MCOL2215 (Venezuelan and CM6438-14 (Vergara, respectively. A. tumefaciens agressive strain AGL1 showed high efficiency inducing GUS expression in cassava leaves. Conclusions. We recommend using A. tumefaciens agressive strain AGL1 for agroinfiltration to assess transient expression in cassava leaves.

  8. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Directory of Open Access Journals (Sweden)

    João Lúcio Azevedo

    Full Text Available Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  9. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  10. Variation in cassava germplasm for tolerance to post-harvest physiological deterioration.

    Science.gov (United States)

    Venturini, M T; Santos, L R; Vildoso, C I A; Santos, V S; Oliveira, E J

    2016-05-06

    Tolerant varieties can effectively control post-harvest physiological deterioration (PPD) of cassava, although knowledge on the genetic variability and inheritance of this trait is needed. The objective of this study was to estimate genetic parameters and identify sources of tolerance to PPD and their stability in cassava accessions. Roots from 418 cassava accessions, grown in four independent experiments, were evaluated for PPD tolerance 0, 2, 5, and 10 days post-harvest. Data were transformed into area under the PPD-progress curve (AUP-PPD) to quantify tolerance. Genetic parameters, stability (Si), adaptability (Ai), and the joint analysis of stability and adaptability (Zi) were obtained via residual maximum likelihood (REML) and best linear unbiased prediction (BLUP) methods. Variance in the genotype (G) x environment (E) interaction and genotypic variance were important for PPD tolerance. Individual broad-sense heritability (hg(2)= 0.38 ± 0.04) and average heritability in accessions (hmg(2)= 0.52) showed high genetic control of PPD tolerance. Genotypic correlation of AUP-PPD in different experiments was of medium magnitude (ȓgA = 0.42), indicating significant G x E interaction. The predicted genotypic values o f G x E free of interaction (û + ĝi) showed high variation. Of the 30 accessions with high Zi, 19 were common to û + ĝi, Si, and Ai parameters. The genetic gain with selection of these 19 cassava accessions was -55.94, -466.86, -397.72, and -444.03% for û + ĝi, Si, Ai, and Zi, respectively, compared with the overall mean for each parameter. These results demonstrate the variability and potential of cassava germplasm to introduce PPD tolerance in commercial varieties.

  11. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  12. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  13. Leaf area estimation of cassava from linear dimensions

    Directory of Open Access Journals (Sweden)

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  14. [Construction of a microbial consortium RXS with high degradation ability for cassava residues and studies on its fermentative characteristics].

    Science.gov (United States)

    He, Jiang; Mao, Zhong-Gui; Zhang, Qing-Hua; Zhang, Jian-Hua; Tang, Lei; Zhang, Hong-Jian

    2012-03-01

    A microbial consortium with high effective and stable cellulosic degradation ability was constructed by successive enrichment and incubation in a peptone cellulose medium using cassava residues and filter paper as carbon sources, where the inoculums were sampled from the environment filled with rotten lignocellulosic materials. The degradation ability to different cellulosic materials and change of main parameters during the degradation process of cassava residues by this consortium was investigated in this study. It was found that, this consortium can efficiently degrade filter paper, absorbent cotton, avicael, wheat-straw and cassava residues. During the degradation process of cassava residues, the key hydrolytic enzymes including cellulase, hemicellulase and pectinase showed a maximum enzyme activity of 34.4, 90.5 and 15.8 U on the second or third day, respectively. After 10 days' fermentation, the degradation ratio of cellulose, hemicellulose and lignin of cassava residues was 79.8%, 85.9% and 19.4% respectively, meanwhile the loss ratio of cassava residues reached 61.5%. Otherwise,it was found that the dominant metabolites are acetic acid, butyric acid, caproic acid and glycerol, and the highest hydrolysis ratio is obtained on the second day by monitoring SCOD, total volatile fatty acids and total sugars. The above results revealed that this consortium can effectively hydrolyze cassava residues (the waste produced during the cassava based bioethanol production) and has great potential to be utilized for the pretreatment of cassava residues for biogas fermentation.

  15. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Potensi Bakteri Endofit Pengendali Nematoda Peluka Akar (Pratylenchus brachyurus pada Nilam

    Directory of Open Access Journals (Sweden)

    RITA HARNI

    2007-03-01

    Full Text Available Root lesion nematode (Pratylenchus brachyurus is one of the most important pathogens of patchouli that caused significant losses. Studies on the potential of endophytic bacterial to control P. brachyurus on patchouli had been conducted. To evaluate the effectiveness of endophytic bacterial against to P. brachyurus on patchouli, nine isolates of bacteria (NJ2, NJ25, NJ41, NJ46, NJ57, NA22, ERB21, ES32, and E26 were applied by deeping root seedling into bacterial suspension. A study of the physiological characteristics of nine isolates was conducted by using specific medium. The results showed that endophytic bacterial was significantly reduced the population of P. brachyurus and all isolates bacterial promoted growth of patchouli (shoot weight, root weight, and root length. Four isolates, i.e. Bacillus NJ46, Bacillus Na22, Bacillus NJ2, and Bacillus NJ57 were among the potential control agents that reduced nematode populations as much as 68.1–73.9%. Almost all of the isolated bacteria from patchouli roots were able to solubilizing phosphate, while some of them had the ability to produce chitinase, cellulase, protease, HCN, and fluorescency.

  17. Pathways out of poverty through cassava, maize and soybean in Thailand

    OpenAIRE

    Nareenat, Roonnaphai

    2006-01-01

    This phase II covers the case study survey and interviews with farmers growing cassava, soybean and maize in the major producing areas, namely cassava farmers in Nakhonratchasima, soybean farmers in Sukhotai and maize farmers in Nakhonsawan, with the major objectives of studying the returns of diverse farming involving three CGPRT and other crops. Opportunities and constraints for the farm families are analysed together with the related industries and marketing systems in the survey areas. Fu...

  18. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  19. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  20. Assessment of functional traits in the assemblage of endophytic fungi of anacardium othonianum rizzini

    International Nuclear Information System (INIS)

    Faria, P. S.; Senabio, J. A.; Soares, M. A.

    2016-01-01

    Plants maintain symbiotic relationships with microorganisms as a strategy to withstand adversities. From this exchange, organisms receive photoassimilates and provide benefits to the plant. Anacardium othonianum Rizzini, locally known as caju-de-arvore-do-cerrado (tree cashew of the cerrado), is a tree species of the family Anacardiaceae nativeto the Midwest region of Brazil. The objective of this study was to characterize the culturable endophytic fungal community, its functional traits and its association with the roots of A. othonianum. The roots of A. othonianum were fragmented (1 cm) and inoculated in medium for the isolation of endophytic microorganisms. The molecular identification of the isolates was performed through the partial sequencing of the internal transcribed spacer (ITS). The endophytic isolates were tested for the synthesis of indole acetic acid (IAA) and phosphate solubilization through the colorimetric method. The root fragments were cleared, stained and examined under a microscope. Structures characteristic of endomycorrhizal and endophytic microorganisms were found on the slides analyzed. A total of 67 fungal strains were isolated and identified in 12 species: Fusarium oxysporum, Bionectria ochroleuca, Periconia macrospinosa, Phomopsis lagerstroemiae, Penicillium kloeckeri, Eupenicillium shearii, Phomopsis asparagi, Penicillium pinophilum, Agaricomycetes sp., Diaporthe sp., Cladosporium cladosporioide sand Paecilomyces lilacinus. All the genera found have been reported in the literature as endophytic species. It can be concluded that A. othonianum maintains associations with endomycorrhizal and endophytic fungi. Twelve endophytic strains were isolated from A. othonianum Rizzini, seven of which have potential for phosphate solubilization and IAA synthesis. (author)

  1. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  2. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  3. Reducing post-harvest physiological deterioration in cassava ...

    African Journals Online (AJOL)

    ... in cassava breeding by National Root Crops Research Institute Umudike. ... The short shelf-life severely limits marketing options by increasing losses, marketing ... locations is necessary due to high influence of G x E interaction on the trait.

  4. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    OpenAIRE

    Puji Astuti; Sudarsono Sudarsono; Khoirun Nisak; Giri Wisnu Nugroho

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatograp...

  5. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  6. CONTRIBUTIONS OF MICROFINANCE INSTITUTIONS TO ECONOMIC EFFICIENCY OF CASSAVA FARMERS IN ABIA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Kingsley Chukwuemeka OBIKE

    2014-10-01

    Full Text Available The study examined contributions of microfinance institutions to economic efficiency of cassava farmers in Abia state, Nigeria. A multistage random sampling technique was adopted in collecting cross sectional data on a sample size of 240 respondents (120 MFI beneficiaries and 120 non beneficiaries. Primary Data was collected by administering questionnaire on cassava farmers. The result showed that economic efficiency of MFI beneficiaries was influenced by wage rate, price of fertilizer and adjusted Y (output, while wage rate, price of fertilizer and price of cassava cutting s are variables that influenced economic efficiency of non beneficiaries. The t – test analysis confirmed that MFI beneficiaries had higher economic efficiency advantage compared with non beneficiaries. It is recommended that government agricultural policy should take positive steps to reduce interest rate to encourage MFI efforts in providing the necessary platform to encourage higher efficiency in cassava production in Abia state, Nigeria.

  7. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    Science.gov (United States)

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study

  8. Comparison of three cyanogen assays for total cyanogens in cassava (Manihot esculenta Crantz)

    DEFF Research Database (Denmark)

    Saka, J.D.K.; Mhone, A.R.K.; Brimer, Leon

    1997-01-01

    The sensitivity and reproducibility of three methods for determining the total cyanogenic potential (CNp) of 7 fresh and processed cassava varieties were determined and compared. The total cyanogen content of fresh cassava roots and three cassava products (kondowole, makaka, and starch) were...... analysed by the acid hydrolysis, microdiffusion with solid state detection and Cooke's enzymatic assays. The total cyanogen contents of the cassava, obtained by the three methods were not significantly different (p....3+or-0.4 and 20.4+or-1.4 mg HCN eq. kg-1 fresh weight by Cooke's, acid hydrolysis and solid state methods, respectively. However, at very low cyanogen levels, less than 5 mg HCN eq. kg-1 fresh weight, the acid hydrolysis method overestimates by 3-5 times. Otherwise, their coefficients of variations...

  9. Mantakassa: an epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area of Mozambique. 2. Nutritional factors and hydrocyanic acid content of cassava products. Ministry of Health, Mozambique.

    Science.gov (United States)

    1984-01-01

    An outbreak of spastic paraparesis which mostly affected women and children occurred in a northern province of Mozambique in 1981. The epidemic was related to chronic cyanide intoxication associated with a diet consisting almost exclusively of cassava. A prolonged drought in the area had exhausted all food resources except cassava, especially the bitter varieties. A nutritional, toxicological and botanical investigation was carried out in two of the five districts affected. The main findings were that cyanide levels were unusually high in the cassava plant as a consequence of the drought with daily intakes estimated at 15-31.5 mg HCN. Detoxification of the bitter varieties by sun-drying was inadequate because of the general food shortage, and metabolic detoxification was probably reduced owing to the absence of sulfur-containing amino acids in the diet. The raw and dried uncooked cassava was eaten mostly by women and children. The nutritional status of the population, however, was not very poor and symptoms of advanced under-nutrition were rarely seen.

  10. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  11. Epicoccum nigrum P16, a Sugarcane Endophyte, Produces Antifungal Compounds and Induces Root Growth

    Science.gov (United States)

    Fávaro, Léia Cecilia de Lima; Sebastianes, Fernanda Luiza de Souza; Araújo, Welington Luiz

    2012-01-01

    Background Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte

  12. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation

    Science.gov (United States)

    Redfern, Lauren K.

    2016-01-01

    Abstract Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions. PMID:27158249

  13. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  14. Growth and Biochemical performance of Cassava-Manihot ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    the crude oil polluted soil improved the growth and biochemical performance of cassava. For the qualitative .... delay in the rate of soil recovery and a decrease in crop yield ... enhances biodegradation of polluted soil presumably by removing ...

  15. 215 ECONOMIC CONTRIBUTION OF CASSAVA PRODUCTION (A ...

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Jun 1, 2010 ... The study determined the economics of cassava production in Kuje Area Council FCT. Simple random ... their main dish. Because of its high demand both .... elasticity of production with respect to each input categories and ...

  16. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...

  17. The sustainability of cassava-based bioethanol production in southern Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Birch-Thomsen, Torben; Bruun, Thilde Bech

    2015-01-01

    of labour input. Analysis of the significance of current cassava production for food security shows that bioethanol production should be based on the attiéké variety of cassava, thereby avoiding interference with the important role of the bonouma in assuring food security in northern Mali. The key factor......The demand for biofuels has been rising, which has led developing countries to focus on production of feedstocks for biodiesel and bioethanol production. This has caused concerns for the impacts on food security, food prices and environmental sustainability. This paper examines a hypothetical case...

  18. Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight.

    Science.gov (United States)

    Zeng, Hongqiu; Xie, Yanwei; Liu, Guoyin; Lin, Daozhe; He, Chaozu; Shi, Haitao

    2018-06-01

    MeGAPCs were identified as negative regulators of plant disease resistance, and the interaction of MeGAPCs and MeATG8s was highlighted in plant defense response. As an important enzyme of glycolysis metabolic pathway, glyceraldehyde-3-P dehydrogenase (GAPDH) plays important roles in plant development, abiotic stress and immune responses. Cassava (Manihot esculenta) is most important tropical crop and one of the major food crops, however, no information is available about GAPDH gene family in cassava. In this study, 14 MeGAPDHs including 6 cytosol GAPDHs (MeGAPCs) were identified from cassava, and the transcripts of 14 MeGAPDHs in response to Xanthomonas axonopodis pv manihotis (Xam) indicated their possible involvement in immune responses. Further investigation showed that MeGAPCs are negative regulators of disease resistance against Xam. Through transient expression in Nicotiana benthamiana, we found that overexpression of MeGAPCs led to decreased disease resistance against Xam. On the contrary, MeGAPCs-silenced cassava plants through virus-induced gene silencing (VIGS) conferred improved disease resistance. Notably, MeGAPCs physically interacted with autophagy-related protein 8b (MeATG8b) and MeATG8e and inhibited autophagic activity. Moreover, MeATG8b and MeATG8e negatively regulated the activities of NAD-dependent MeGAPDHs, and are involved in MeGAPCs-mediated disease resistance. Taken together, this study highlights the involvement of MeGAPCs in plant disease resistance, through interacting with MeATG8b and MeATG8e.

  19. EFFECT OF TEMPERATURE AND pH OF MODIFICATION PROCESS ON THE PHYSICAL-MECHANICAL PROPERTIES OF MODIFIED CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Yudi Wicaksono

    2016-11-01

    Full Text Available The use of cassava starch for excipient in the manufacturing of the tablet has some problems, especially on physical-mechanical properties. The purpose of this study was to determine the effect of the differentness of temperature and pH in the process of modification on the physical-mechanical properties of modified cassava starch. Modifications were performed by suspending cassava starch into a solution of 3 % (w/v PVP K30. The effect of the difference of temperature was observed at temperatures of 25; 45 and 65 0C, while the effect of the difference of pH was observed at pH of 4.0; 7.0 and 12.0. The results showed that the temperature and pH did not affect the physical-mechanical properties of the modified cassava starch. Modification of cassava starch at pH and temperature of 7.0 and 45 0C was produced modified cassava starch with the most excellent solubility, while the best swelling power were formed by the modification process at pH and temperature of 7.0 and 25 0C. Overall, the most excellent compression properties of modified cassava starch resulted from the modification process at pH 12.

  20. Somatic embryogenesis in cassava: A tool for mutation breeding

    International Nuclear Information System (INIS)

    Lee, K.S.; Duren, M. Van; Morpurgo, R.

    1997-01-01

    Cassava is an important food and livestock feed crop. The effect of gamma radiation on somatic embryogenesis and plant regeneration in cassava clones of African origin was investigated. Explants from young leaves of cassava were cultured on MS medium, supplemented with 18.1 mM 2,4-D and 2 mM CuSO4, solidified with 0.3% Phytagel. Compact and friable calli were observed after 10-15 days of explant culture in dark, which produced somatic embryos in all but one clone. The somatic embryos showed morphological aberrations, such as fused cotyledons, lack of meristematic tip, epicotyl elongation, and had low germination rate; desiccation of embryos increased germination. Histological study showed that the somatic embryos were of multicellular origin. Leaf explants were irradiated with doses between 4 to 38 Gy of gamma rays, and cultured on somatic embryo induction medium. In addition, somatic embryos were irradiated with gamma ray doses from 10 to 18 Gy, and analyzed for germination. LD 50 for embryogenic response of leaf-explants was at around 20 Gy, while that for somatic embryo germination was ca. 10 Gy. (author). 7 refs, 2 tabs