WorldWideScience

Sample records for caspase-1 genetic variation

  1. Genetic analysis of environmental variation

    NARCIS (Netherlands)

    Hill, W.G.; Mulder, H.A.

    2010-01-01

    Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait

  2. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  3. Genetic variation in dieback resistance

    DEFF Research Database (Denmark)

    Lobo, Albin; Hansen, Jon Kehlet; McKinney, Lea Vig;

    2014-01-01

    -eastern Zealand, Denmark, and confirmed the presence of substantial genetic variation in ash dieback susceptibility. The average crown damage increased in the trial from 61% in 2009 to 66% in 2012 and 72% in 2014, while the estimated heritability was 0.42 in both 2009 and 2012 but increased to 0.53 in 2014....... Genetic correlation between assessments was 0.88 between 2009 and 2012 and 0.91 between 2009 and 2014, suggesting fairly good possibilities for early selection of superior genotypes in the presence of high infection levels in the trial. The level of crown damage had strong negative effect on growth...

  4. Genetic variations in multiple myeloma I

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, Ulla Birgitte

    2012-01-01

    Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis of variab......Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis...... of variability in a population. The complex interplay between environment and genes for the development of cancer may therefore be influenced by genetic variations. A genetic variation may change the function of the gene, and if the genetic variation is associated with the risk of disease, that particular gene...

  5. Genetic background of phenotypic variation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polyrnorphism in the overall gene expression profiles of gene networks.In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.

  6. Genetic variation in bovine milk fat composition

    OpenAIRE

    Stoop, W.M.

    2009-01-01

    In her thesis, Stoop shows that there is considerable genetic variation in milk fat composition, which opens opportunities to improve milk fat composition by selective breeding. Short and medium chain fatty acids had high heritabilities, whereas variation due to herd (mainly feed effects) was moderate. Long chain fatty acids had moderate heritabilities, whereas variation due to herd was high. Several genomic regions (QTL) with effect on short and medium chain, long chain, or both types of fat...

  7. Genetic variation in KCNA5

    DEFF Research Database (Denmark)

    Christophersen, Ingrid E; Olesen, Morten S; Liang, Bo;

    2012-01-01

    AimsGenetic factors may be important in the development of atrial fibrillation (AF) in the young. KCNA5 encodes the potassium channel a-subunit K(V)1.5, which underlies the voltage-gated atrial-specific potassium current I(Kur). KCNAB2 encodes K(V)ß2, a ß-subunit of K(V)1.5, which increases I......(Kur). Three studies have identified loss-of-function mutations in KCNA5 in patients with idiopathic AF. We hypothesized that early-onset lone AF is associated with high prevalence of genetic variants in KCNA5 and KCNAB2.Methods and resultsThe coding sequences of KCNA5 and KCNAB2 were sequenced in 307 patients...

  8. Characterization of Genetic Variation in Icelandic Cattle

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Das, Ashutosh; Momeni, Jamal;

    Identification of genetic variation in cattle breeds using next-generation sequencing technology has focused on the modern production cattle breeds. We focused on one of the oldest indigenous breeds, the Icelandic cattle breed. Sequencing of two individuals enabled identification of more than 8...... million SNPs and more than one million short indels. Annotation of the genetic variants identified a substantial number of functional SNPs and variants. The number of genetic variants identified in the Icelandic cattle breed is on the same level as previously seen in other studies on Holstein cattle...

  9. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  10. Genetic variation in cultivated Rheum tanguticum populations

    Directory of Open Access Journals (Sweden)

    Yanping Hu

    2014-09-01

    Full Text Available To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, H B = 0.3231, I = 0.3812 and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA showed that more genetic variation was found within populations (76.1% than among them (23.9%. This was supported by the coefficient of gene differentiation (Gst = 0.2742 and Bayesian analysis (θB = 0.1963. The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686. UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3. A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum.

  11. Genetic variation in genes affecting milk composition and quality

    DEFF Research Database (Denmark)

    Bertelsen, Henriette Pasgaard

    In the past decade major advances in next generation sequencing technologies have provided new opportuneties for the detection of genetic variation. Combining the knowlegde of genetic variation with phenotypic distributions provides considerable possibilites for detection of candidate genes...

  12. Identifying environmental correlates of intraspecific genetic variation.

    Science.gov (United States)

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution). PMID:27273322

  13. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation

    OpenAIRE

    Bergsbaken, Tessa; Fink, Susan L.; den Hartigh, Andreas B.; Loomis, Wendy P.; Cookson, Brad T.

    2011-01-01

    Activation of caspase-1 leads to pyroptosis, a program of cell death characterized by cell lysis and inflammatory cytokine release. Caspase-1 activation triggered by multiple NLRs (NLRC4, NLRP1b, or NLRP3) leads to loss of lysosomes via their fusion with the cell surface, or lysosome exocytosis. Active caspase-1 increased cellular membrane permeability and intracellular calcium levels, which facilitated lysosome exocytosis and release of host antimicrobial factors and microbial products. Lyso...

  14. Genetic variation in healthy oldest-old.

    Science.gov (United States)

    Halaschek-Wiener, Julius; Amirabbasi-Beik, Mahsa; Monfared, Nasim; Pieczyk, Markus; Sailer, Christian; Kollar, Anita; Thomas, Ruth; Agalaridis, Georgios; Yamada, So; Oliveira, Lisa; Collins, Jennifer A; Meneilly, Graydon; Marra, Marco A; Madden, Kenneth M; Le, Nhu D; Connors, Joseph M; Brooks-Wilson, Angela R

    2009-01-01

    Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old'), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs. PMID:19680556

  15. Genetic variation in healthy oldest-old.

    Directory of Open Access Journals (Sweden)

    Julius Halaschek-Wiener

    Full Text Available Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old', to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3, metabolism (IGF1R, APOB, SCD, autophagy (BECN1, FRAP1, stem cell activation (NOTCH1, DLL1, tumor suppression (TP53, CDKN2A, ING1, DNA methylation (TRDMT1, DNMT3A, DNMT3B Progeria syndromes (LMNA, ZMPSTE24, KL and stress response (CRYAB, HSPB2. We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs and 87 insertion or deletions; 41% (385 were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.

  16. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  17. Castration-induced expression of caspase-1 in epithelia of accessory sex organs in male rats

    Institute of Scientific and Technical Information of China (English)

    Masao Izawa; Mitunori Kimura; Tomiko Yamada; Makoto Saji

    2001-01-01

    Aim: As an attempt to clarify the molecular basis of castration-induced apoptosis, this study was undertaken to demonstrate the expression of caspase-1 in male accessory sex organs of rats. Methods and results: cDNA of rat caspase-1 was cloned by reverse transcription-polymerase chain reaction from the ventral prostates. The open reading frame predicts 402 amino acids, which shows more than 91% and 63 % identity to those of mouse and human, respec tively. Northern analyses demonstrated the presence of castration-induced up-regulation of the 1.6 kb transcript in the ventral prostate and the seminal vesicles. Finally, the authors demonstrated the caspase-1 transcripts in the epithelia of these tissues by in situ hybridization analyses. Conclusion: Castration induces the expression of caspase-1 tran scripts in the epithelia of ventral prostate and seminal vesicle. These observations suggest a possible role of caspase-1 in apoptosis in male accessory sex organs.

  18. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua;

    2013-01-01

    affects phenotypic variation. This showed that the cytoplasmic variation had effects similar to, if not larger than, the largest individual nuclear locus. Inclusion of cytoplasmic variation into the genetic model greatly increased the explained phenotypic variation. Cytoplasmic genetic variation was a...... central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation in...... metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation....

  19. Genetic variations in multiple myeloma II

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, U.

    2012-01-01

    Association studies on genetic variation to treatment effect may serve as a predictive marker for effect of treatment and can also uncover biological pathways behind drug effect. Single-nucleotide polymorphisms (SNPs) have been studied in relation to high-dose treatment (HDT), thalidomide......- and bortezomib-based therapy, maintenance treatment with interferon-α and in relation to therapy-related adverse effects caused by treatment. Candidate genes for prediction of effect of HDT include DNA repair genes, CYP genes and genes involved in inflammation and apoptosis such as IL1B and RAI. In thalidomide...... in function of the nervous system have been associated with VTE induced by thalidomide and with PN induced by bortezomib. SNP analysis is simple and can be performed, e.g., on blood and buccal cells. Further analysis of SNPs in clinical trials is needed, and collaboration between scientific groups...

  20. Propagation of genetic variation in gene regulatory networks

    OpenAIRE

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing h...

  1. Caspase-1 and IL-1β processing in a teleost fish.

    Directory of Open Access Journals (Sweden)

    Marta I R Reis

    Full Text Available Interleukine-1β (IL-1β is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax and sea bream (Sparus aurata but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β.

  2. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  3. Genetic variation amongst biotypes of Dactylopius tomentosus.

    Science.gov (United States)

    Mathenge, Catherine W; Riegler, Markus; Beattie, G Andrew C; Spooner-Hart, Robert N; Holford, Paul

    2015-03-01

    The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host-affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host-use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well-resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α-Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect-specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host-specific biotypes of the scale. PMID:24619863

  4. Human genetic variation database, a reference database of genetic variations in the Japanese population

    Science.gov (United States)

    Higasa, Koichiro; Miyake, Noriko; Yoshimura, Jun; Okamura, Kohji; Niihori, Tetsuya; Saitsu, Hirotomo; Doi, Koichiro; Shimizu, Masakazu; Nakabayashi, Kazuhiko; Aoki, Yoko; Tsurusaki, Yoshinori; Morishita, Shinichi; Kawaguchi, Takahisa; Migita, Osuke; Nakayama, Keiko; Nakashima, Mitsuko; Mitsui, Jun; Narahara, Maiko; Hayashi, Keiko; Funayama, Ryo; Yamaguchi, Daisuke; Ishiura, Hiroyuki; Ko, Wen-Ya; Hata, Kenichiro; Nagashima, Takeshi; Yamada, Ryo; Matsubara, Yoichi; Umezawa, Akihiro; Tsuji, Shoji; Matsumoto, Naomichi; Matsuda, Fumihiko

    2016-01-01

    Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/. PMID:26911352

  5. Avian leukosis virus subgroup J triggers caspase-1-mediated inflammatory response in chick livers.

    Science.gov (United States)

    Liu, Xue-lan; Shan, Wen-jie; Jia, Li-juan; Yang, Xu; Zhang, Jin-jing; Wu, Ya-rong; Xu, Fa-zhi; Li, Jin-nian

    2016-04-01

    Many pathogens trigger caspase-1-mediated innate immune responses. Avian leukosis virus subgroup J (ALV-J) causes serious immunosuppression and diverse tumors in chicks. The caspase-1 inflammasome mechanism of response to ALV-J invading remains unclear. Here we investigated the expression of caspase-1, the inflammasome adaptor NLRP3, IL-1β and IL-18 in response to ALV-J infection in the liver of chick. We found caspase-1 mRNA expression was elevated at 5 dpi and peaked at 7 dpi in ALV-J infected animals. Corresponding to this, the expressions of NLRP3 and proinflammatory cytokines IL-1β and IL-18 were significantly increased at 5 or 7 dpi. In addition, caspase-1 protein expression and inflammatory cell infiltration were induced after virus infection. These results indicated that ALV-J infection could trigger the caspase-1- mediated inflammatory response in chicks. Thus, an understanding of the inflammatory responses can provide a better insight into the pathogenicity of ALV-J and a possible anti-virus target for ALV-J infection.

  6. Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yin-Mo Yang; Marco Ramadani; Yan-Ting Huang

    2003-01-01

    AIM: To identify the expression of Caspase-l(interleukin1.β converting enzyme) and its role in adenoma of the pancreas and chronic pancreatitis.METHODS: The expression of Caspase-1 was assessed in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and 9 normal pancreatic tissues by immunohistochemistry and Western blot analysis.RESULTS: Overexpression of Caspase-1 was observed in both disorders, but there were differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissues showed a clear cytoplasmatic overexpression of Caspase-1 in tumor cells of 71% of the tumors, whereas normal pancreatic tissues showed only occasional immunoreactivity. In chronic pancreatitis, overexpression of Caspase-1 was found in atrophic acinar cells (89 %),hyperplastic ducts (87 %), and dedifferentiating acinar cells (84 %). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed dear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of Caspase-1 in pancreatic cancer and chronic pancreatitis (80 %and 86 %, respectively). Clear bands at 30 kDa, which suggested the p10-p20 heterodimer of active Caspase-1, were found in 60 % of the cancer tissue and 14 % of the pancreatitis tissue specimens, but not in normal pancreatic tissues.CONCLUSION: Overexpression of Caspase-1 is a frequent event in pancreatic disorders and its differential expression patterns may reflect two functions of the protease. One is its participation in the apoptotic pathway in atrophic acinar cells and tumor-surrounding pancreatitis tissue, the other is its possible role in proliferative processes in pancreatic cancer cells and hyperplastic duct cells and dedifferentiating acinar cells in chronic pancreatitis.

  7. Effects of Genetic Drift and Gene Flow on the Selective Maintenance of Genetic Variation

    OpenAIRE

    Star, Bastiaan; Spencer, Hamish G.

    2013-01-01

    Explanations for the genetic variation ubiquitous in natural populations are often classified by the population–genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compa...

  8. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    Science.gov (United States)

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  9. Propagation of genetic variation in gene regulatory networks.

    Science.gov (United States)

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  10. Human Primary Keratinocytes as a Tool for the Analysis of Caspase-1-Dependent Unconventional Protein Secretion.

    Science.gov (United States)

    Strittmatter, Gerhard E; Garstkiewicz, Martha; Sand, Jennifer; Grossi, Serena; Beer, Hans-Dietmar

    2016-01-01

    Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1β and -18, and induces unconventional protein secretion (UPS) of mature IL-1β, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1. PMID:27665556

  11. Genetic Variation Among White Croaker Populations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To investigate the genetic structures and differentiation of different wild populations of white croaker (Pennahia argentata), horizontal starch gel electrophoresis was performed on 133 individuals collected from five different locations in China and Japan. The eleven enzyme systems revealed 15 loci, of which eleven were polymorphic. The percentage ofpolymorphic loci of white croaker populations varied from 6.67% to 53.33%; the mean observed and expected heterozygosity ranged from 0.0033 to 0.0133and 0.0032 to 0.0191, respectively. The expected heterozygosity revealed a low genetic variability for white croaker in comparison with other marine fishes. The genetic distances between populations ranged from 0.00005 to 0.00026. A weak differentiation was observed within each clade and between clades; and no significant differences in gene frequencies among populations were observed in white croaker. Among the five populations, three Chinese populations showed more genetic diversity than that in Japanese populations.

  12. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity

    OpenAIRE

    Prabhakar, Pranay; Zhang, Hua; Chen, De; Faber, James E.

    2014-01-01

    The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine if differences in genetic backgroun...

  13. Genetic Variation Within and Among Populations of Delmarva Fox Squirrels

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this study was to provide important information about genetic variation in populations of the Delmarva Fox Squirrel in the context of a more...

  14. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  15. Metagenomic analysis of genetic variation in human gut microbial species

    OpenAIRE

    Zhu, Ana Cheng

    2015-01-01

    Microbial species (bacteria and archaea) in the gut are important for human health in various ways. Not only does the species composition vary considerably within the human population, but each individual also appears to have its own strains of a given species. While it is known from studies of bacterial pan-genomes, that genetic variation between strains can differ considerably, such as in Escherichia coli, the extent of genetic variation of strains for abundant gut species has not been surv...

  16. Genetic integration of molar cusp size variation in baboons

    OpenAIRE

    Koh, Christina; BATES, ELIZABETH; Broughton, Elizabeth; Do, Nicholas T.; Fletcher, Zachary; Mahaney, Michael C.; Hlusko, Leslea J.

    2010-01-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded o...

  17. Global Characterization of Genetic Variation by Using High-Throughput Technologies

    DEFF Research Database (Denmark)

    Zhan, Bujie

    Genetic variation, variation in alleles of genomes, occurs bith within and among populations and individuals. Genetic variation is important because it provides the "raw material" for evolution. Discovery of vatiants that determine phenotypes became a fundamental premise of genetic research...

  18. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  19. Sex-specific genetic effects influence variation in body composition

    OpenAIRE

    Zillikens, Carola; Yazdanpanah, Mojgan; Pardo Cortes, Luba; Rivadeneira Ramirez, Fernando; Aulchenko, Yurii; Oostra, Ben; Uitterlinden, André; Pols, Huib; Tikka-Kleemola, Päivi

    2008-01-01

    textabstractAims/hypothesis: Despite well-known sex differences in body composition it is not known whether sex-specific genetic or environmental effects contribute to these differences. Methods: We assessed body composition in 2,506 individuals, from a young Dutch genetic isolate participating in the Erasmus Rucphen Family study, by dual-energy X-ray absorptiometry and anthropometry. We used variance decomposition procedures to partition variation of body composition into genetic and environ...

  20. Genetic variation in the east Midlands.

    Science.gov (United States)

    Mastana, S S; Sokol, R J

    1998-01-01

    According to history, the population of the British Isles derives its genepool from a succession of invaders and immigrants. The settlement pattern of these invaders gave rise to a patchwork of genepools, shown in previous genetic surveys. Specimens from 1117 blood donors of regionally subdivided East Midlands (Derbyshire, Nottinghamshire and Leicestershire) were analysed for 18 conventional genetic systems (blood groups, serum proteins and red cell enzymes), according to place of residence. Significant differences exist among the five geographically defined sub-populations, and it is argued that these are derived from the historical settlement of continental European populations in the region, especially the Danes and the Vikings.

  1. Genetic variation of contact dermatitis in broilers

    DEFF Research Database (Denmark)

    Ask, Birgitte

    2010-01-01

    left and right scores was lower than 1 (FPD: 0.73 and HB: 0.57), and both left and right FPD and HB must, therefore, be evaluated. High prevalences of FPD, but also HB, were achieved in the field trial, but lower prevalences may be sufficient for genetic evaluations and would be less detrimental...

  2. Genetic variation in niche construction: implications for development and evolutionary genetics

    OpenAIRE

    Saltz, Julia B.; Nuzhdin, Sergey V.

    2013-01-01

    Niche construction occurs when an organism’s traits influence the environment that it experiences. Research has focused on niche-constructing traits that are fixed within populations or species. However, evidence increasingly demonstrates that niche-constructing traits vary among genotypes within populations. Here, we consider the potential implications of genetic variation in niche construction for evolutionary genetics. Specifically, genetic variation in niche-constructing traits creates a ...

  3. Genetic Variation in Healthy Oldest-Old

    OpenAIRE

    Halaschek-Wiener, Julius; Amirabbasi-Beik, Mahsa; Monfared, Nasim; Pieczyk, Markus; Sailer, Christian; Kollar, Anita; Thomas, Ruth; Agalaridis, Georgios; Yamada, So; Oliveira, Lisa; Collins, Jennifer A.; Meneilly, Graydon; Marra, Marco A.; Madden, Kenneth M; Le, Nhu D

    2009-01-01

    Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the ‘oldest-old’)...

  4. Genetic variation in healthy oldest-old

    OpenAIRE

    Halaschek-Wiener, J; Amirabbasi-Beik, M; Monfared, N; Pieczyk, M; SAILER, C.; Kollar, A.; Thomas, R.; Agalaridis, G; Yamada, S.; L. Oliveira; Collins, J.A.; Meneilly, G.; Marra, M A; Madden, K M; Le, N.D.

    2009-01-01

    Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old')...

  5. Genetic Variation of Host Populations of Liriomyza sativae Blanchard

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; DU Yu-zhou; HE Ya-ting; ZHENG Fu-shan; LU Zi-qiang

    2008-01-01

    In this study, partial sequences of the mitochondrial cytochrome oxidase subunit Ⅰ (mtDNA-COI) gene and the ribosomal internal transcribed spacer 1 (rDNA-ITS1) gene, isolated from five artificial populations of Liriomyza sativae (Diptera:Agromyzidae), were sequenced and compared, to analyze their genetic variation. Analysis of the mtDNA-CO1 gene showed that a low genetic variation was detected among the five populations and only five variable sites were found in the nucleotide sequences. Most of the observed variations that occurred within the populations were because of nucleotide transitions, whereas, the interpopulation variation was because of the differences in haplotype frequencies occurring among the host populations. Analysis of the rDNA-ITS1 gene revealed a small diversity in the five host populations. The trend of genetic differentiation in the host populations was consistent with the preference of L. sativae to the plant hosts.

  6. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  7. Identifying Genetic Variation for Alcohol Dependence

    OpenAIRE

    Agrawal, Arpana; Bierut, Laura J.

    2012-01-01

    Researchers are using various strategies to identify the genes that may be associated with alcoholism. The initial efforts primarily relied on candidate gene and linkage studies; more recently, however, modern advances in genotyping have resulted in widespread use of genome-wide association studies for alcohol dependence. The key findings of the earlier studies were that variations (i.e., polymorphisms) in the DNA sequences of the genes encoding alcohol dehydrogenase 1B (i.e., the ADH1B gene)...

  8. Shikonin Suppresses NLRP3 and AIM2 Inflammasomes by Direct Inhibition of Caspase-1.

    Science.gov (United States)

    Zorman, Jernej; Sušjan, Petra; Hafner-Bratkovič, Iva

    2016-01-01

    Shikonin is a highly lipophilic naphtoquinone found in the roots of Lithospermum erythrorhizon used for its pleiotropic effects in traditional Chinese medicine. Based on its reported antipyretic and anti-inflammatory properties, we investigated whether shikonin suppresses the activation of NLRP3 inflammasome. Inflammasomes are cytosolic protein complexes that serve as scaffolds for recruitment and activation of caspase-1, which, in turn, results in cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome activation involves two steps: priming, i.e. the activation of NF-κB pathway, and inflammasome assembly. While shikonin has previously been reported to suppress the priming step, we demonstrated that shikonin also inhibits the second step of inflammasome activation induced by soluble and particulate NLRP3 instigators in primed immortalized murine bone marrow-derived macrophages. Shikonin decreased NLRP3 inflammasome activation in response to nigericin more potently than acetylshikonin. Our results showed that shikonin also inhibits AIM2 inflammasome activation by double stranded DNA. Shikonin inhibited ASC speck formation and caspase-1 activation in murine macrophages and suppressed the activity of isolated caspase-1, demonstrating that it directly targets caspase-1. Complexing shikonin with β-lactoglobulin reduced its toxicity while preserving the inhibitory effect on NLRP3 inflammasome activation, suggesting that shikonin with improved bioavailability might be interesting for therapeutic applications in inflammasome-mediated conditions. PMID:27467658

  9. Caspase-1 and 3 Inhibiting Drimane Sesquiterpenoids from the Extremophilic Fungus, Penicillium solitum

    OpenAIRE

    Stierle, Donald B.; Stierle, Andrea A.; Girtsman, Teri; McIntyre, Kyle; Nichols, Jesse

    2012-01-01

    Two new drimane sesquiterpene lactones and one new tricarboxylic acid derivative were isolated from the Berkeley Pit extremophilic fungus Penicillium solitum. The structures of these compounds were deduced by spectroscopic analysis. Berkedrimanes A and B inhibited the signal transduction enzymes caspase-1 and caspase-3 and mitigated the production of interleukin 1-β in the induced THP-1 (promonocytic leukemia cell line) assay.

  10. Child externalizing behavior problems linked to genetic and non-genetic variation in dental caries.

    Science.gov (United States)

    Lorber, Michael F; Smith Slep, Amy M; Heyman, Richard E; Bretz, Walter A

    2014-01-01

    The association of environmental and genetic variation in caries with child externalizing behavior problems (inattention, hyperactivity, impulsivity, and defiance) was studied in a sample of 239 pairs of 3- to 8-year-old impoverished Brazilian twins. It was hypothesized that externalizing problems would show a stronger positive association with environmental than genetic variation in caries. Univariate twin models were estimated to parse variation in caries into three components: additive genetic (A), shared environment (C) and non-shared environment/error (E). Age-adjusted associations between externalizing problems and each variance component were tested. Contrary to the hypothesis, modest but very consistent negative associations were found between externalizing problems and both genetic and environmental variation in caries. Mutans streptococci and sweetness preference did not explain the negative associations of caries and externalizing problems. Externalizing problems in non-medicated children were associated with less dental decay that could be explained by both genetic and environmental factors.

  11. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Laura J Dixon

    Full Text Available Nonalcoholic steatohepatitis (NASH is associated with caspase activation. However, a role for pro-inflammatory caspases or inflammasomes has not been explored in diet-induced liver injury. Our aims were to examine the role of caspase-1 in high fat-induced NASH. C57BL/6 wild-type and caspase 1-knockout (Casp1(-/- mice were placed on a 12-week high fat diet. Wild-type mice on the high fat diet increased hepatic expression of pro-caspase-1 and IL-1β. Both wild-type and Casp1(-/- mice on the high fat diet gained more weight than mice on a control diet. Hepatic steatosis and TG levels were increased in wild-type mice on high fat diet, but were attenuated in the absence of caspase-1. Plasma cholesterol and free fatty acids were elevated in wild-type, but not Casp1(-/- mice, on high fat diet. ALT levels were elevated in both wild-type and Casp1(-/- mice on high fat diet compared to control. Hepatic mRNA expression for genes associated with lipogenesis was lower in Casp1(-/- mice on high fat diet compared to wild-type mice on high fat diet, while genes associated with fatty acid oxidation were not affected by diet or genotype. Hepatic Tnfα and Mcp-1 mRNA expression was increased in wild-type mice on high fat diet, but not in Casp1(-/- mice on high fat diet. αSMA positive cells, Sirius red staining, and Col1α1 mRNA were increased in wild-type mice on high fat diet compared to control. Deficiency of caspase-1 prevented those increases. In summary, the absence of caspase-1 ameliorates the injurious effects of high fat diet-induced obesity on the liver. Specifically, mice deficient in caspase-1 are protected from high fat-induced hepatic steatosis, inflammation and early fibrogenesis. These data point to the inflammasome as an important therapeutic target for NASH.

  12. Genetic variation of the genus Kengyilia by ISSR markers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We investigated the genetic variation within 32 accessions distributed to 14 species and one variety by using ISSR (inter-simple sequence repeat) markers.The results showed that genetic variation was relatively higher among the accessions.A total of 593 bands were amplified by 12 ISSR primers,of which 535 bands (90.2%) were polymorphic.Eleven to 80 polymorphie bands were amplified from each prime,with an average of 44.6 bands.The interspecies GS (genetic similarity)value ranged from 0.430 to 0.866,and the average was 0.620.Cluster analysis showed that all accessions could be classified into 4 groups by ISSR markers.The different accessions in a species were clustered together,but they had genetic variation in molecular levels.There was obvious interspecies genetic variation.Species with similar morphological characteristics and from the same areas or neighboring geographical regions were clustered together and had close relationships.ISSR markers are useful in analyzing interspecies variation in Kengyilia.

  13. Geographic variation and genetic structure in Spotted Owls

    Science.gov (United States)

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  14. Host genetic variation impacts microbiome composition across human body sites

    OpenAIRE

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T.; Timothy D Spector; Keinan, Alon; Ley, Ruth E.; Gevers, Dirk; Clark, Andrew G.

    2015-01-01

    Background The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and mic...

  15. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  16. TNF-α Induces Caspase-1 Activation Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells.

    Science.gov (United States)

    Furuoka, Mana; Ozaki, Kei-Ichi; Sadatomi, Daichi; Mamiya, Sayaka; Yonezawa, Tomo; Tanimura, Susumu; Takeda, Kohsuke

    2016-12-01

    The intracellular cysteine protease caspase-1 is critically involved in obesity-induced inflammation in adipose tissue. A substantial body of evidence from immune cells, such as macrophages, has shown that caspase-1 activation depends largely on a protein complex, called the NLRP3 inflammasome, which consists of the NOD-like receptor (NLR) family protein NLRP3, the adaptor protein ASC, and caspase-1 itself. However, it is not fully understood how caspase-1 activation is regulated within adipocytes upon inflammatory stimuli. In this study, we show that TNF-α-induced activation of caspase-1 is accompanied by robust induction of NLRP3 in 3T3-L1 adipocytes but that caspase-1 activation may not depend on the NLRP3 inflammasome. Treatment of 3T3-L1 cells with TNF-α induced mRNA expression and activation of caspase-1. Although the basal expression of NLRP3 and ASC was undetectable in unstimulated cells, TNF-α strongly induced NLRP3 expression but did not induce ASC expression. Interestingly, inhibitors of the ERK MAP kinase pathway strongly suppressed NLRP3 expression but did not suppress the expression and activation of caspase-1 induced by TNF-α, suggesting that NLRP3 is dispensable for TNF-α-induced caspase-1 activation. Moreover, we did not detect the basal and TNF-α-induced expression of other NLR proteins (NLRP1a, NLRP1b, and NLRC4), which do not necessarily require ASC for caspase-1 activation. These results suggest that TNF-α induces caspase-1 activation in an inflammasome-independent manner in 3T3-L1 cells and that the ERK-dependent expression of NLRP3 may play a role independently of its canonical role as a component of inflammasomes. J. Cell. Physiol. 231: 2761-2767, 2016. © 2016 Wiley Periodicals, Inc. PMID:26989816

  17. Genetic Variation in Nacobbus aberrans: An Approach toward Taxonomic Resolution

    OpenAIRE

    Ibrahim, S. K.; Baldwin, J. G.; Roberts, P. A.; Hyman, B.C.

    1997-01-01

    Biochemical and molecular analyses of genetic variation were evaluated to address the taxonomic status of Nacobbus aberrans. Isolates from Mexico, Peru, and Argentina, cultured on tomato in the greenhouse, were analyzed with respect to isozyme and DNA marker variation. Although acid phosphatase and malate dehydrogenase revealed distinct profiles for each isolate, non-specific esterases revealed possible affinities between the Peruvian isolates and between the isolates from Mexico and Peru. Tw...

  18. Chum and pink salmon genetics - Genetic and life history variation of southern chum and pink salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The distribution of genetic and life history variation in chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in their southern range in North America is key to...

  19. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clini

  20. Sequence variation and genetic diversity in the giant panda

    Institute of Scientific and Technical Information of China (English)

    张亚平; Oliver A.Ryder; 范志勇; 张和明; 何廷美; 何光昕; 张安居; 费立松; 钟顺隆; 陈红; 张成林; 杨明海; 朱飞兵; 彭真信; 普天春; 陈玉村; 姚敏达; 郭伟

    1997-01-01

    About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to some extent.

  1. Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes

    Institute of Scientific and Technical Information of China (English)

    Amy; J; Galliher-Beckley; Li-Qiong; Lan; Shelly; Aono; Lei; Wang; Jishu; Shi

    2013-01-01

    AIM:To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β(pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events.METHODS:All experiments were performed on fresh or overnight cultured human peripheral blood monocytes(PBMCs) that were isolated from healthy donors.PBMCs were activated by lipopolysaccharide(LPS) stimulation before being treated with Adenosine triphosphate(ATP,1 mmol/L),human α-defensin-5(HD-5,50 μg/mL),and/or nigericin(Nig,30 μmol/L).For each experiment,the culture supernatants were collected separately from the cells.Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies.RESULTS:We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation.In the presence of HD-5,this release of IL-1β,but not the processing of pro-IL-1β to IL-1β,was completely inhibited.Similarly,in the presence of HD-5,the release of IL-1β,but not the processing of IL-1β,was significantly inhibited from LPS-activated monocytes stimulated with Nig.Finally,we treated LPS-activated monocytes with ATP and Nig and collected the supernatants.We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes.Interestingly,and contrary to IL-1β processing and release,caspase-1 cleavage and release was not blocked by HD-5.All images are representative of three independent experiments.CONCLUSION:These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.

  2. Therapeutic effect of Caspase-1 inhibitor on liver injury in experimental severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    张晓华; 李兆申; 屠振兴; 许国铭; 龚燕芳; 满晓华

    2004-01-01

    Objective: To assess the therapeutic effect of Caspase-1 inhibitor on liver injury in experimental severe acute pancreatitis (SAP). Methods: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC, n =6); SAP-S group (n = 18); SAP-ICE-I group (n = 18). SAP was induced by retrograde infusion of 5% sodium taurocholate into the bili-pancreatic duct in SD rats. HC rats underwent same surgical procedures and duct cannulation without sodium taurocholate. In SAP-S group, rats received the first intraperitoneal injection of isotonic saline 2 h after induction of acute pancreatitis, which was repeated after 12 h. In SAP-ICE-I group, rats were firstly given ICE inhibitor intraperitoneally 2 h after induction of pancreatitis. As in SAP-S group, this was repeated at 12 h. Survied rats were killed at certain time points, and all samples were obtained for subsequent analysis. Results: The serum levels of ALT, AST and IL-1β in SAPS group were (215.50 ±58.52) U/L, (372.17 ± 38.05) U/L, (276.77 ±44.92) pg/ml at 6 h, (396.67± 70.29) U/L,(548.50±75.29)U/L, (308.99± 34.95)pg/ml at 12 h, (425.17±86.33)U/L, (665.83±84.05)U/L, (311.60±46.51 ) pg/ml, respectively, which were increased significantly ( P < 0.01, vs HC). In SAP-ICE-I group, their levels were decreased significantly ( P < 0.01, vs SAP-S). Intrahepatic expressions of Caspase-1, IL-1β and IL-18 mRNA could be observed in HC, which were increased significantly in SAP-S group ( P < 0.01, vs HC). The expressions of IL-1β and IL-18mRNA were decreased significantly in SAP-ICE-I group ( P < 0.01, vs SAP-S), whereas Caspase-1 mRNA expressions had no significant differences ( P > 0.05). Caspase-1 inhibition had no effect on the severity of liver tissue damage. Conclusion: Caspase-1 activate cytokines, IL-1β and IL-18, play a pivotal role in the course of liver injury in SAP. Caspase-1 inhibitor can improve liver functions effectively.

  3. Genetic Variation of Bordetella pertussis in Austria.

    Science.gov (United States)

    Wagner, Birgit; Melzer, Helen; Freymüller, Georg; Stumvoll, Sabine; Rendi-Wagner, Pamela; Paulke-Korinek, Maria; Repa, Andreas; Mooi, Frits R; Kollaritsch, Herwig; Mittermayer, Helmut; Kessler, Harald H; Stanek, Gerold; Steinborn, Ralf; Duchêne, Michael; Wiedermann, Ursula

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  4. Genetic Variation of Bordetella pertussis in Austria.

    Directory of Open Access Journals (Sweden)

    Birgit Wagner

    Full Text Available In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32, Linz (n = 63 and Graz (n = 15 by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis (n = 77, by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin gene (n = 110, and by amplification refractory mutation system quantitative PCR (ARMS-qPCR (n = 110 to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB, a fimbrial adhesin (fimD, tracheal colonisation factor (tcfA, and the virulence sensor protein (bvgS. Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517. The major part of the samples (93% displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  5. Obesity, hypertension and genetic variation in the TIGER Study

    Science.gov (United States)

    Obesity and hypertension are multifactoral conditions in which the onset and severity of the conditions are influenced by the interplay of genetic and environmental factors. We hypothesize that multiple genes and environmental factors account for a significant amount of variation in BMI and blood pr...

  6. Caspase-1 Is Hepatoprotective during Trauma and Hemorrhagic Shock by Reducing Liver Injury and Inflammation

    OpenAIRE

    Menzel, Christoph L.; Sun, Qian; Loughran, Patricia A.; Pape, Hans-Christoph; Billiar, Timothy R; Scott, Melanie J.

    2011-01-01

    Adaptive immune responses are induced in liver after major stresses such as hemorrhagic shock (HS) and trauma. There is emerging evidence that the inflammasome, the multiprotein platform that induces caspase-1 activation and promotes interleukin (IL)-1β and IL-18 processing, is activated in response to cellular oxidative stress, such as after hypoxia, ischemia and HS. Additionally, damage-associated molecular patterns, such as those released after injury, have been shown to activate the infla...

  7. Natural variation, an underexploited resource of genetic variation for plant genetics

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Koornneef, M.

    2000-01-01

    The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of gene

  8. Human genetic variation: new challenges and opportunities for doping control.

    Science.gov (United States)

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  9. Human genetic variation: new challenges and opportunities for doping control.

    Science.gov (United States)

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices. PMID:22681541

  10. Genetic variations of robinia pseudoacacia plant using sds-page

    International Nuclear Information System (INIS)

    The biochemical analysis using SDS-PAGE has great contribution for the estimation of genetic diversity. We estimated the genetic diversity of R. pseudoacacia germ plasm protein. A total of 19 varieties were collected from different areas of Dir lower were investigated for the level of genetic divergence and genetic linkages. The total germ plasm grouped were separated at 20 percentage distance into two linkages based on Euclidean distances the 19 cultivars were further divide at 45 percentage distance into three clusters, cluster 1, cluster 2 and cluster 3. Cluster 1 was comprised of Munda 3, Munda 4, Talash 2 and UOM 1. Cluster 2 was comprised of Maidan 1 and Gulabad 1. Cluster 3 was comprised Maidan 2, UOM 3, Talash 1, Maidan 4, Maidan 3, Gulabad 2, Gulabad 3 and Gulabad 4. A total of range 00 percentage to 88 percentage variation recoded among 19 varieties. The result obtained after SDS-PAGE were computed for the construction of phylogenetic diversity, geographic relationship, Euclidian distance, genetic distance and linkage distance. This plant show a lot of variation in germ plasmic level. It is concluded that it is possible to improve and produce new varieties of this plant. (author)

  11. Short communication: Genetic variation in estrus activity traits

    DEFF Research Database (Denmark)

    Løvendahl, P; Chagunda, M G G

    2009-01-01

    Genetic variation in estrus traits derived from hourly measurements by electronic activity tags was studied in an experimental herd of Holstein (n = 211), Jersey (n = 126), and Red Dane (n = 178) cows. Both virgin heifers (n = 132) and lactating cows in the first 4 parities (n = 895 cow parities......) were used, giving a total of 3,284 high-activity episodes indicating estrus. The first estrus after calving was predicted to occur on average, at 39, 44, and 45 d in milk for Red Danes, Holsteins, and Jerseys, respectively. Genetic variance was detected for the trait days to first high activity...

  12. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U;

    2010-01-01

    collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs......Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...

  13. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U;

    2011-01-01

    collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs......Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...

  14. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  15. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  16. Genetic contribution to individual variation in binocular rivalry rate

    OpenAIRE

    Miller, Steven M.; Hansell, Narelle K.; Ngo, Trung T.; Liu, Guang B.; Pettigrew, John D.; Martin, Nicholas G.; Wright, Margaret J.

    2010-01-01

    Binocular rivalry occurs when conflicting images are presented in corresponding locations of the two eyes. Perception alternates between the images at a rate that is relatively stable within individuals but that varies widely between individuals. The determinants of this variation are unknown. In addition, slow binocular rivalry has been demonstrated in bipolar disorder, a psychiatric condition with high heritability. The present study therefore examined whether there is a genetic contributio...

  17. Genetic Variation of Echinococcus canadensis (G7) in Mexico

    Science.gov (United States)

    Rodriguez-Prado, Ulises; Jimenez-Gonzalez, Diego Emiliano; Avila, Guillermina; Gonzalez, Armando E.; Martinez-Flores, Williams Arony; Mondragon de la Peña, Carmen; Hernandez-Castro, Rigoberto; Romero-Valdovinos, Mirza; Flisser, Ana; Martinez-Hernandez, Fernando; Maravilla, Pablo; Martinez-Maya, Jose Juan

    2014-01-01

    We evaluated the genetic variation of Echinococcus G7 strain in larval and adult stages using a fragment of the mitochondrial cox1 gen. Viscera of pigs, bovines, and sheep and fecal samples of dogs were inspected for cystic and canine echinococcosis, respectively; only pigs had hydatid cysts. Bayesian inferences grouped the sequences in an E. canadensis G7 cluster, suggesting that, in Mexico, this strain might be mainly present. Additionally, the population genetic and network analysis showed that E. canadensis in Mexico is very diverse and has probably been introduced several times from different sources. Finally, a scarce genetic differentiation between G6 (camel strain) and G7 (pig strain) populations was identified. PMID:25266350

  18. Genetic Architectures of Quantitative Variation in RNA Editing Pathways.

    Science.gov (United States)

    Gu, Tongjun; Gatti, Daniel M; Srivastava, Anuj; Snyder, Elizabeth M; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L; Dotu, Ivan; Chuang, Jeffrey H; Keller, Mark P; Attie, Alan D; Braun, Robert E; Churchill, Gary A

    2016-02-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.

  19. Genetic component of flammability variation in a Mediterranean shrub.

    Science.gov (United States)

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. PMID:24433213

  20. A simple genetic architecture underlies morphological variation in dogs.

    Directory of Open Access Journals (Sweden)

    Adam R Boyko

    Full Text Available Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs. Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3 explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  1. Patterns of molecular genetic variation among cat breeds.

    Science.gov (United States)

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  2. An evolutionary ecologist's view of how to study the persistence of genetic variation in personality

    NARCIS (Netherlands)

    Dingemanse, Niels J.

    2007-01-01

    Personality is commonly regarded to involve either 'correlations among behavioural traits' or 'consistent individual differences in behaviour across contexts'. Any evolutionary explanation for the existence of genetic variation in personality must therefore not only address why genetic variation in

  3. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    NARCIS (Netherlands)

    B. Giardine (Belinda); J. Borg (Joseph); D.R. Higgs (Douglas); K.R. Peterson (Kenneth R.); J.N.J. Philipsen (Sjaak); D. Maglott (Donna); B.K. Singleton (Belinda K.); D.J. Anstee (David J.); A.N. Basak (Nazli); B.H. Clark (Bruce); F.C. Costa (Flavia C.); P. Faustino (Paula); H. Fedosyuk (Halyna); A.E. Felice (Alex); A. Francina (Alain); R. Galanello (Renzo); M.V.E. Gallivan (Monica V. E.); M. Georgitsi (Marianthi); R.J. Gibbons (Richard J.); P.C. Giordano (Piero Carlo); C.L. Harteveld (Cornelis); J.D. Hoyer (James D.); M. Jarvis (Martin); P. Joly (Philippe); E. Kanavakis (Emmanuel); P. Kollia (Panagoula); S. Menzel (Stephan); W.G. Miller (William); K. Moradkhani (Kamran); J. Old (John); A. Papachatzpoulou (Adamantia); M.N. Papadakis (Manoussos); P. Papadopoulos (Petros); S. Pavlovic (Sonja); L. Perseu (Lucia); M. Radmilovic (Milena); C. Riemer (Cathy); S. Satta (Stefania); I.A. Schrijver (Ingrid); M. Stojiljkovic (Maja); S.L. Thein; J. Traeger-Synodinos (Joanne); R. Tully (Ray); T. Wada (Takahito); J.S. Waye (John); C. Wiemann (Claudia); B. Zukic (Branka); D.H.K. Chui (David H. K.); H. Wajcman (Henri); R. Hardison (Ross); G.P. Patrinos (George)

    2011-01-01

    textabstractWe developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public

  4. Genetic variations strongly influence phenotypic outcome in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Austin S Jelcick

    Full Text Available Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1 at embryonic day 18.5 (E18.5 and postnatal day 30.5 (P30.5. Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.

  5. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice.

    Directory of Open Access Journals (Sweden)

    Tim Hendrikx

    Full Text Available While non-alcoholic steatohepatitis (NASH is characterized by hepatic steatosis combined with inflammation, the mechanisms triggering hepatic inflammation are unknown. In Ldlr(-/- mice, we have previously shown that lysosomal cholesterol accumulation in Kupffer cells (KCs correlates with hepatic inflammation and cholesterol crystallization. Previously, cholesterol crystals have been shown to induce the activation of inflammasomes. Inflammasomes are protein complexes that induce the processing and release of pro-inflammatory cytokines IL-1b and IL-18 via caspase-1 activation. Whereas caspase-1 activation is independent of caspase-11 in the canonical pathway of inflammasome activation, caspase-11 was found to trigger caspase-1-dependent IL-1b and IL-18 in response to non-canonical inflammasome activators. So far, it has not been investigated whether inflammasome activation stimulates the formation of cholesterol crystals. We hypothesized that inflammasome activation in KCs stimulates cholesterol crystallization, thereby leading to hepatic inflammation.Ldlr (-/- mice were transplanted (tp with wild-type (Wt or caspase-1/11(-/- (dKO bone marrow and fed either regular chow or a high-fat, high-cholesterol (HFC diet for 12 weeks. In vitro, bone marrow derived macrophages (BMDM from wt or caspase-1/11(-/- mice were incubated with oxLDL for 24h and autophagy was assessed.In line with our hypothesis, caspase-1/11(-/--tp mice had less severe hepatic inflammation than Wt-tp animals, as evident from liver histology and gene expression analysis in isolated KCs. Mechanistically, KCs from caspase-1/11(-/--tp mice showed less cholesterol crystals, enhanced cholesterol efflux and increased autophagy. In wt BMDM, oxLDL incubation led to disturbed autophagy activity whereas BMDM from caspase-1/11(-/- mice had normal autophagy activity.Altogether, these data suggest a vicious cycle whereby disturbed autophagy and decreased cholesterol efflux leads to newly formed

  6. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use. PMID:23278123

  7. Genetic variation in domestic reindeer and wild caribou in Alaska

    Science.gov (United States)

    Cronin, M.; Renecker, L.; Pierson, B. J.; Patton, J.C.

    1995-01-01

    Reindeer were introduced into Alaska 100 years ago and have been maintained as semidomestic livestock. They have had contact with wild caribou herds, including deliberate cross-breeding and mixing in the wild. Reindeer have considerable potential as a domestic animal for meat or velvet antler production, and wild caribou are important to subsistence and sport hunters. Our objective was to quantify the genetic relationships of reindeer and caribou in Alaska. We identified allelic variation among five herds of wild caribou and three herds of reindeer with DNA sequencing and restriction enzymes for three loci: a DQA locus of the major histocompatibility complex (Rata-DQA1), k-casein and the D-loop of mitochondrial DNA. These loci are of interest because of their potential influence on domestic animal performance and the fitness of wild populations. There is considerable genetic variation in reindeer and caribou for all three loci, including five, three and six alleles for DQA, k-casein and D-loop respectively. Most alleles occur in both reindeer and caribou, which may be the result of recent common ancestry or genetic introgression in either direction. However, allele frequencies differ considerably between reindeer and caribou, which suggests that gene flow has been limited.

  8. Genetic variation in normal tissue toxicity induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Marquardt, Jens Uwe [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Chang-Claude, Jenny [Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2009-07-10

    Radiotherapy is an important weapon in the treatment of cancer, but adverse reactions developing in the co-irradiated normal tissue can be a threat for patients. Early reactions might disturb the usual application schedule and limit the radiation dose. Late appearing and degenerative reactions might reduce or destroy normal tissue function. Genetic markers conferring the ability to identify hyper-sensitive patients in advance would considerably improve therapy. Association studies on genetic variation and occurrence of side effects should help to identify such markers. This survey includes published studies and novel data from our own laboratory. It illustrates the presence of candidate polymorphisms in genes involved in the cellular response to irradiation which could be used as predictive markers for radiosensitivity in breast or prostate cancer patients. For other tumor types such as head and neck cancers or brain tumors, the available data are much more limited. In any case, further validation of these markers is needed in large patient cohorts with systematically recorded data on side effects and patient characteristics. Genetic variation contributing to radiosensitivity should be screened on a broader basis using newly developed, more comprehensive approaches such as genome-wide association studies.

  9. Genetic Variation in Nacobbus aberrans: An Approach toward Taxonomic Resolution.

    Science.gov (United States)

    Ibrahim, S K; Baldwin, J G; Roberts, P A; Hyman, B C

    1997-09-01

    Biochemical and molecular analyses of genetic variation were evaluated to address the taxonomic status of Nacobbus aberrans. Isolates from Mexico, Peru, and Argentina, cultured on tomato in the greenhouse, were analyzed with respect to isozyme and DNA marker variation. Although acid phosphatase and malate dehydrogenase revealed distinct profiles for each isolate, non-specific esterases revealed possible affinities between the Peruvian isolates and between the isolates from Mexico and Peru. Two of l 0 RAPD primers revealed affinities suggested by esterase profiles. RFLP analysis of the rDNA repeating unit with six restriction enzymes revealed identical cleavage patterns between the Peru isolates and a distinct profile shared by isolates from Mexico and Argentina. Nucleotide sequence analysis of the 5.8S rRNA coding region revealed differences among the four isolates at eight of 157 positions; sequences of the Peruvian isolates differed from each other at only one position, whereas the Mexican and Argentine isolates were identical and could be distinguished from the Peruvian isolates. A distance matrix from unweighted pairwise comparisons of the 5.8S rDNA revealed apparent elevated intraspecific divergence in N. aberrans comparable to intergeneric divergence between Heterodera and Globodera. Analysis of additional N. aberrans isolates from throughout the distribution range should help determine the full extent of intraspecific genetic variation that underlies the phenotypic and morphologic diversity of the genus.

  10. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  11. Spatial Trends of Genetic Variation of Domestic Ruminants in Europe

    Directory of Open Access Journals (Sweden)

    Denis Laloë

    2010-06-01

    Full Text Available The introduction of livestock species in Europe has been followed by various genetic events, which created a complex spatial pattern of genetic differentiation. Spatial principal component (sPCA analysis and spatial metric multidimensional scaling (sMDS incorporate geography in multivariate analysis. This method was applied to three microsatellite data sets for 45 goat breeds, 46 sheep breeds, and 101 cattle breeds from Europe, Southwest Asia, and India. The first two sPCA coordinates for goat and cattle, and the first sPCA coordinate of sheep, correspond to the coordinates of ordinary PCA analysis. However, higher sPCA coordinates suggest, for all three species, additional spatial structuring. The goat is the most geographically structured species, followed by cattle. For all three species, the main genetic cline is from southeast to northwest, but other geographic patterns depend on the species. We propose sPCA and sMDS to be useful tools for describing the correlation of genetic variation with geography.

  12. The contribution of additive genetic variation to personality variation: heritability of personality

    OpenAIRE

    Dochtermann, Ned A.; Schwab, Tori; Sih, Andrew

    2015-01-01

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as ‘animal personality’. Personality differences can arise, for example, from differences in permanent environmental effects―including parental and epigenetic contributors―and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive gene...

  13. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    The widespread use of artificial insemination in cattle breeding Worldwide leads to reduced effective population sizes and increased inbreeding levels. Increased inbreeding result in increased probalility of expression of recessive defective alleles, which probably is reflected in a decline...... in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  14. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.;

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  15. The genetics of ray pattern variation in Caenorhabditis briggsae

    Directory of Open Access Journals (Sweden)

    Davidson Cynthia R

    2005-01-01

    Full Text Available Abstract Background How does intraspecific variation relate to macroevolutionary change in morphology? This question can be addressed in species in which derived characters are present but not fixed. In rhabditid nematodes, the arrangement of the nine bilateral pairs of peripheral sense organs (rays in tails of males is often the most highly divergent character between species. The development of ray pattern involves inputs from hometic gene expression patterns, TGFβ signalling, Wnt signalling, and other genetic pathways. In Caenorhabditis briggsae, strain-specific variation in ray pattern has provided an entrée into the evolution of ray pattern. Some strains were fixed for a derived pattern. Other strains were more plastic and exhibited derived and ancestral patterns at equal frequencies. Results Recombinant inbred lines (RILs constructed from crosses between the variant C. briggsae AF16 and HK104 strains exhibited a wide range of phenotypes including some that were more extreme than either parental strain. Transgressive segregation was significantly associated with allelic variation in the C. briggsae homolog of abdominal B, Cb-egl-5. At least two genes that affected different elements of ray pattern, ray position and ray fusion, were linked to a second gene, mip-1. Consistent with this, the segregation of ray position and ray fusion phenotypes were only partially correlated in the RILs. Conclusions The evolution of ray pattern has involved allelic variation at multiple loci. Some of these loci impact the specification of ray identities and simultaneously affect multiple ray pattern elements. Others impact individual characters and are not constrained by covariance with other ray pattern elements. Among the genetic pathways that may be involved in ray pattern evolution is specification of anteroposterior positional information by homeotic genes.

  16. 寻常型银屑病皮损处ASC和caspase-1的表达%Expressions of apoptosis-associated speck-like protein and caspase-1 in psoriasis vulgaris

    Institute of Scientific and Technical Information of China (English)

    胡坚; 杨闰平; 李恒进; 赵华

    2013-01-01

    Objective To study the role of apoptosis-associated speck-like protein (ASC) and caspase-1 in pathogenesis of psoriasis vulgaris. Methods Expression and distribution of ASC and caspase-1 in 30 psoriasis vulgaris patients were detected by immunohistochemistry. Results The ASC was intensely stained and expressed in cytoplasm and nuclei of psoriasis vulgaris patients and mainly expressed in middle and lower epidermis of normal persons. The caspase-1 was weakly stained and expressed in cytoplasm and full epidermis of psoriasis vulgaris patients and in basal and lower spinous cells of normal persons(t=49, 55, respectively, P<0.01). Conclusion ASC and caspase-1 play a significant role in the inflammation of psoriasis vulgarpsoriasis.%  目的探讨凋亡相关斑点样蛋白(apoptosis-associated speck-like protein,ASC)和半胱氨酸蛋白酶-1(caspase-1)在银屑病发病中的作用。方法采用免疫组化方法检测30例寻常型银屑病患者皮损处ASC和caspase-1的表达和分布。结果银屑病患者皮损处表皮全层强阳性表达ASC,主要分布在胞浆、胞核;正常人对照ASC主要表达于表皮中、下部,以轻、中度表达为主。银屑病患者皮损处caspase-1亦表达于表皮全层,位于胞浆,染色呈强阳性;正常人对照caspase-1表达于基底细胞和棘细胞层下部,染色强度较弱,两组比较差异均有统计学意义(t值分别为49和55,P均<0.01)。结论 ASC和caspase-1在银屑病的炎症过程中可能发挥重要作用。

  17. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Science.gov (United States)

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  18. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  19. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1β maturation

    Directory of Open Access Journals (Sweden)

    Zamboni Dario S

    2010-10-01

    Full Text Available Abstract Background Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1β and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold using caspase-1 deficient mice (casp1-/-. Results Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE2 and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL-1β and cyclooxygenase (COX-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNFα and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1β and PGE2 did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-α and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1β was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE2 production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1β maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE2 production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.

  20. Global genetic variations predict brain response to faces.

    Science.gov (United States)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  1. Global genetic variations predict brain response to faces.

    Directory of Open Access Journals (Sweden)

    Erin W Dickie

    2014-08-01

    Full Text Available Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML, we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI in a community-based sample of adolescents (n = 1,620. Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50% in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2 = 0.38, p<0.001. Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001 and the magnitude of brain response (R(2 = 0.32, p<0.001. Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  2. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity.

    Science.gov (United States)

    Prabhakar, Pranay; Zhang, Hua; Chen, De; Faber, James E

    2015-01-01

    The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest that wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine whether differences in genetic background in mice result in variation in branch patterning of the retinal arterial circulation, and whether these differences predict strain-dependent differences in pial collateral extent and severity of ischemic stroke. Retinal patterning metrics, collateral extent, and infarct volume were obtained for 10 strains known to differ widely in collateral extent. Multivariate regression was conducted, and model performance was assessed using K-fold cross-validation. Twenty-one metrics varied with strain (pcollateral number and diameter across seven regression models, with the best model closely predicting (pcollaterals, K-fold R2=0.83-0.98), diameter (±1.2-1.9 μm, R2=0.73-0.88), and infarct volume (±5.1 mm3, R2=0.85-0.87). An analogous set of the most predictive metrics, obtained for the middle cerebral artery (MCA) tree in a subset of the above strains, also predicted (pcollateral number (±3.3 collaterals, K-fold R2=0.78) and diameter (±1.6 μm, R2=0.86). Thus, differences in arterial branch patterning in the retina and the MCA trees are specified by genetic background and predict variation in collateral extent and stroke severity. If also true in human, and since genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar "retinal predictor index" could serve as a non- or minimally invasive biomarker for collateral extent in brain and other tissues. This could aid prediction of severity of tissue injury in the event of an occlusive event

  3. Natural variation and genetic covariance in adult hippocampal neurogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kempermann, Gerd [Center for Molecular Medicine, Berlin, Germany; Chesler, Elissa J [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Williams, Robert [University of Tennessee Health Science Center, Memphis; Gage, Fred [Salk Institute for Biological Studies, The, San Diego, CA

    2006-01-01

    Adult hippocampal neurogenesis is highly variable and heritable among laboratory strains of mice. Adult neurogenesis is also remarkably plastic and can be modulated by environment and activity. Here, we provide a systematic quantitative analysis of adult hippocampal neurogenesis in two large genetic reference panels of recombinant inbred strains (BXD and AXB?BXA, n ? 52 strains). We combined data on variation in neurogenesis with a new transcriptome database to extract a set of 190 genes with expression patterns that are also highly variable and that covary with rates of (i) cell proliferation, (ii) cell survival, or the numbers of surviving (iii) new neurons, and (iv) astrocytes. Expression of a subset of these neurogenesis-associated transcripts was controlled in cis across the BXD set. These self-modulating genes are particularly interesting candidates to control neurogenesis. Among these were musashi (Msi1h) and prominin1?CD133 (Prom1), both of which are linked to stem-cell maintenance and division. Twelve neurogenesis-associated transcripts had significant cis-acting quantitative trait loci, and, of these, six had plausible biological association with adult neurogenesis (Prom1, Ssbp2, Kcnq2, Ndufs2, Camk4, and Kcnj9). Only one cis- cting candidate was linked to both neurogenesis and gliogenesis, Rapgef6, a downstream target of ras signaling. The use of genetic reference panels coupled with phenotyping and global transcriptome profiling thus allowed insight into the complexity of the genetic control of adult neurogenesis.

  4. Genetic and environmental variation in lung function drives subsequent variation in aging of fluid intelligence.

    Science.gov (United States)

    Finkel, Deborah; Reynolds, Chandra A; Emery, Charles F; Pedersen, Nancy L

    2013-07-01

    Longitudinal studies document an association of pulmonary function with cognitive function in middle-aged and older adults. Previous analyses have identified a genetic contribution to the relationship between pulmonary function with fluid intelligence. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for pulmonary function and fluid intelligence. Longitudinal data from the Swedish Adoption/Twin Study of Aging were available from 808 twins ranging in age from 50 to 88 years at the first wave. Participants completed up to six assessments covering a 19-year period. Measures at each assessment included spatial and speed factors and pulmonary function. Model-fitting indicated that genetic variance for FEV1 was a leading indicator of variation in age changes for spatial and speed factors. Thus, these data indicate a genetic component to the directional relationship from decreased pulmonary function to decreased function of fluid intelligence.

  5. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. PMID:27265357

  6. Genetic variation in alkaloid accumulation in leaves of Nicotiana

    Institute of Scientific and Technical Information of China (English)

    Bo SUN; Fen ZHANG; Guo-jun ZHOU; Guo-hai CHU; Fang-fang HUANG; Qiao-mei WANG; Li-feng JIN; Fu-cheng LIN; Jun YANG

    2013-01-01

    Alkaloids are plant secondary metabolites that are widely distributed in Nicotiana species and contribute greatly to the quality of tobacco leaves. Some alkaloids, such as nornicotine and myosmine, have adverse effects on human health. To reduce the content of harmful alkaloids in tobacco leaves through conventional breeding, a genetic study of the alkaloid variation among different genotypes is required. In this study, alkaloid profiles in leaves of five Nicotiana tabacum cultivars and Nicotiana tomentosiformis were investigated. Six alkaloids were identified from al six genotypes via gas chromatograph-mass spectrometry (GC-MS). Significant differences in alkaloid content were ob-served both among different leaf positions and among cultivars. The contents of nornicotine and myosmine were positively and significantly correlated (R2=0.881), and were also separated from those of other alkaloids by clustering. Thus, the genotype plays a major role in alkaloid accumulation, indicating a high potential for manipulation of alkaloid content through traditional breeding.

  7. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  8. Investigation of Genetic Variation Underlying Central Obesity amongst South Asians

    Science.gov (United States)

    Scott, William R.; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S.; Bozaoglu, Kiymet; Sanghera, Dharambir K.; Elliott, Paul; Scott, James; Chambers, John C.; Kooner, Jaspal S.

    2016-01-01

    South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans. PMID:27195708

  9. Investigation of Genetic Variation Underlying Central Obesity amongst South Asians.

    Directory of Open Access Journals (Sweden)

    William R Scott

    Full Text Available South Asians are 1/4 of the world's population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR among South Asians compared to Europeans we carried out: i a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5 did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922 or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10-6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77, while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8. Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.

  10. Ritonavir and disulfiram have potential to inhibit caspase-1 mediated inflammation and reduce neurological sequelae after minor blast exposure.

    Science.gov (United States)

    Foley, Kevin; Kast, Richard E; Altschuler, Eric L

    2009-02-01

    Caspase-1 triggers cytokine release following acceleration-induced concussive head injury. Minor blast injury in which no physical tissue injury occurs, results in the release of cytokines in a similar fashion. Ritonavir, a generically available protease inhibitor with a benign short-term side-effect profile, has been shown to inhibit expression of caspase-1. We review the relevant literature and propose that ritonavir may be of benefit in reducing adverse neuropsychiatric outcomes and hastening recovery following mild blast injury. Further research in animal models of blast injury followed by clinical studies would determine whether this therapy is effective.

  11. Managing Genetic Variation to Conserve Genetic Diversity in Goats and Sheep

    Directory of Open Access Journals (Sweden)

    J. N. B. Shrestha

    2010-01-01

    breeding populations. The application of quantitative genetic principles related to inbreeding and genetic drift make it possible to safeguard against erosion of genetic diversity in endangered breeds, populations and landraces while lessening the impact from potential loss in their performance. Conservation of domestic animal diversity can be achieved by managing the erosion of genetic variation based on breeding strategies which promote the mating of sires to all dams, in either ‘random bred’ or ‘balanced pedigreed’ breeding structure for populations of endangered domestic goats and sheep. Obviously, the in-situ and ex-situ conservation of live animals, along with cryogenic preservation of their gametes, stem cells, somatic cells, blood and gonads will be complementary to conservation breeding.

  12. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    the laboratory methods and genetic interpretation of gel phenotypes along with statistical methods for data analysis. The applications and perspectives for identifying and protecting genetic variation within and among marine populations are discussed in the light...

  13. Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis (Trin.) Tzvel.

    Institute of Scientific and Technical Information of China (English)

    Yu-Sheng WANG; Li-Ming ZHAO; Hua WANG; Jie WANG; Da-Ming HUANG; Rui-Min HONG; Xiao-Hua TENG; Nakamura MIKI

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.

  14. The impact of serotonergic and dopaminergic genetic variation on endophenotypes of emotional processing

    OpenAIRE

    Armbruster, Diana

    2010-01-01

    Decades of research in quantitative genetics have found substantial heritability for personality traits as well as for mental disorders which formed the basis of the ongoing molecular genetic studies that aim to identify genetic variations that actually contribute to the manifestation of complex traits. With regard to psychological traits, genetic variation impacting neurotransmitter function have been of particular interest. Additionally, the role of environmental factors including gene × en...

  15. Genome-wide transcription analysis of clinal genetic variation in Drosophila

    NARCIS (Netherlands)

    Chen, Ying; Lee, Siu F.; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A.; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation betwee

  16. Understanding human genetic variation in the era of high-throughput sequencing

    OpenAIRE

    Knight, Julian C.

    2010-01-01

    The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence' highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease.

  17. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Yi; Yang, Dehua; Song, Lin; Li, Ting; Yang, Juan; Zhang, Xiaojie; Le, Weidong

    2012-02-01

    Embryonic stem cell (ESC)-based therapy is a promising treatment for neurodegenerative diseases. But there is always a risk of tumor formation that is due to contamination of undifferentiated ESCs. To reduce the risk and improve ESC-based therapy, we have established a novel strategy by which we can selectively eliminate tumor cells derived from undifferentiated ESCs but spare differentiated cells. In this study, we generated a caspase-1-ESC line transfected with a mifepristone-regulated caspase-1 expression system. Mifepristone induced caspase-1 overexpression both in differentiated and undifferentiated caspase-1-ESCs. All the undifferentiated caspase-1-ESCs were induced to death after mifepristone treatment. Tumors derived from undifferentiated caspase-1-ESCs were eliminated following 3 weeks of mifepristone treatment in vivo. However, differentiated caspase-1-ESCs survived well under the condition of mifepristone-induced caspase-1 overexpression. To examine in vivo the impact of mifepristone-induced caspase-1 activation on grafted cells, we transplanted wild-type ESCs or caspase-1-ESCs into nude mice brains. After 8 weeks of mifepristone treatment, we could not detect any tumor cells in the caspase-1-ESC grafts in the brains of mice. However, we found that donor dopamine neurons survived in the recipient brains. These data demonstrate that mifepristone-induced caspase-1 overexpression in ESCs can eliminate the potential tumor formation meanwhile spares the differentiated cells in the host brains. These results suggest that this novel ESC-based therapy can be used in Parkinson's disease and other related disorders without the risk of tumor formation.

  18. Mine, yours, ours? Sharing data on human genetic variation.

    Directory of Open Access Journals (Sweden)

    Nicola Milia

    Full Text Available The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9% was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%. The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6% suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing.

  19. Genetic and epigenetic variations contributed by Alu retrotransposition

    Directory of Open Access Journals (Sweden)

    de Andrade Alexandre

    2011-12-01

    Full Text Available Abstract Background De novo retrotransposition of Alu elements has been recognized as a major driver for insertion polymorphisms in human populations. In this study, we exploited Alu-anchored bisulfite PCR libraries to identify evolutionarily recent Alu element insertions, and to investigate their genetic and epigenetic variation. Results A total of 327 putatively recent Alu insertions were identified, altogether represented by 1,762 sequence reads. Nearly all such de novo retrotransposition events (316/327 were novel. Forty-seven out of forty-nine randomly selected events, corresponding to nineteen genomic loci, were sequence-verified. Alu element insertions remained hemizygous in one or more individuals in sixteen of the nineteen genomic loci. The Alu elements were found to be enriched for young Alu families with characteristic sequence features, such as the presence of a longer poly(A tail. In addition, we documented the occurrence of a duplication of the AT-rich target site in their immediate flanking sequences, a hallmark of retrotransposition. Furthermore, we found the sequence motif (TT/AAAA that is recognized by the ORF2P protein encoded by LINE-1 in their 5'-flanking regions, consistent with the fact that Alu retrotransposition is facilitated by LINE-1 elements. While most of these Alu elements were heavily methylated, we identified an Alu localized 1.5 kb downstream of TOMM5 that exhibited a completely unmethylated left arm. Interestingly, we observed differential methylation of its immediate 5' and 3' flanking CpG dinucleotides, in concordance with the unmethylated and methylated statuses of its internal 5' and 3' sequences, respectively. Importantly, TOMM5's CpG island and the 3 Alu repeats and 1 MIR element localized upstream of this newly inserted Alu were also found to be unmethylated. Methylation analyses of two additional genomic loci revealed no methylation differences in CpG dinucleotides flanking the Alu insertion sites in

  20. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Cardoso, Joao; Andersen, Mikael Rørdam; Herrgard, Markus;

    2015-01-01

    variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented......Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology......, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic...

  1. Genetic copy number variation and general cognitive ability.

    Directory of Open Access Journals (Sweden)

    Andrew K MacLeod

    Full Text Available Differences in genomic structure between individuals are ubiquitous features of human genetic variation. Specific copy number variants (CNVs have been associated with susceptibility to numerous complex psychiatric disorders, including attention-deficit-hyperactivity disorder, autism-spectrum disorders and schizophrenia. These disorders often display co-morbidity with low intelligence. Rare chromosomal deletions and duplications are associated with these disorders, so it has been suggested that these deletions or duplications may be associated with differences in intelligence. Here we investigate associations between large (≥500kb, rare (<1% population frequency CNVs and both fluid and crystallized intelligence in community-dwelling older people. We observe no significant associations between intelligence and total CNV load. Examining individual CNV regions previously implicated in neuropsychological disorders, we find suggestive evidence that CNV regions around SHANK3 are associated with fluid intelligence as derived from a battery of cognitive tests. This is the first study to examine the effects of rare CNVs as called by multiple algorithms on cognition in a large non-clinical sample, and finds no effects of such variants on general cognitive ability.

  2. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation

    NARCIS (Netherlands)

    Guryev, Victor; Cuppen, Edwin

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  3. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation.

    NARCIS (Netherlands)

    Guryev, V.; Cuppen, E.

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  4. Unexpectedly high genetic variation in large unisexual clumps of the subdioecious plant Honckenya peploides

    DEFF Research Database (Denmark)

    Sánchez-Vilas, Julia; Philipp, Marianne; Retuerto, Rubén

    2010-01-01

    Honckenya peploides is a subdioecious dune plant that reproduces both sexually and by clonal growth. In northwest Spain this species was found to exhibit an extreme spatial segregation of the sexes, and our objective was to investigate genetic variation in unisexual clumps. Genetic variation was ...

  5. MetaRanker 2.0: a web server for prioritization of genetic variation data

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Dworzynski, Piotr; Thomas, Cecilia Engel;

    2013-01-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, Meta...

  6. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae?

    Directory of Open Access Journals (Sweden)

    HEYER W. RONALD

    2003-01-01

    Full Text Available The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  7. Genetic variation in the feral horses of the Namib Desert, Namibia

    Directory of Open Access Journals (Sweden)

    E.G. Cothran

    2001-07-01

    Full Text Available Genetic variation at 7 blood-group and 10 biochemical genetic loci was examined in 30 horses from a feral herd from the Namib Desert of Namibia, Africa. The observed genetic variability was extremely low compared with that found in domestic horse breeds. The low variation was most probably a result of recent small population size and a small founding population size. Genetic comparison of the Namib horses, which were of unknown origins, to domestic horse breeds, showed that the Namib horses had the highest genetic similarity to Arabian type horses, although they did not closely resemble this type of horse in conformation.

  8. Genetic variation in wheat germplasm for salinity tolerance atseedling stage: improved statistical inference

    OpenAIRE

    Hussain, Babar; KHAN, ABDUS SALAM; Ali, Zulfiqar

    2015-01-01

    Salinity is the major threat to global wheat production, particularly in arid and semiarid areas. Breeding salt-tolerant cultivars is one feasible solution, while the presence of genetic variation is a prerequisite for genetic improvement. To detect genetic variation for salt tolerance in wheat, a total of 150 wheat genotypes were tested for seedling-stage tolerance response at 300 mM NaCl in hydroponic culture. Significant differences (P ≤ 0.001) were identified in wheat for seedling ...

  9. Divergence between phenotypic and genetic variation within populations of a common herb across Europe

    OpenAIRE

    Villellas, Jesús; Berjano, Enrique Regina; Terrab, Anass; García González, María Begoña

    2014-01-01

    Analyzing the pattern and causes of phenotypic and genetic variation within and among populations might help to understand life history variability in plants, and to predict their responses to changing environmental conditions. Here we compare phenotypic variation and genetic diversity of the widespread herb Plantago coronopus across Europe, and evaluate their relationship with environmental and geographical factors. Genetic diversity was estimated in 18 populations from molecular markers wit...

  10. Performing monkeys of Bangladesh: characterizing their source and genetic variation.

    Science.gov (United States)

    Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa; Engel, Gregory A; Akhtar, Sharmin; Kanthaswamy, Sree; Smith, David Glenn

    2016-04-01

    The acquisition and training of monkeys to perform is a centuries-old tradition in South Asia, resulting in a large number of rhesus macaques kept in captivity for this purpose. The performing monkeys are reportedly collected from free-ranging populations, and may escape from their owners or may be released into other populations. In order to determine whether this tradition involving the acquisition and movement of animals has influenced the population structure of free-ranging rhesus macaques in Bangladesh, we first characterized the source of these monkeys. Biological samples from 65 performing macaques collected between January 2010 and August 2013 were analyzed for genetic variation using 716 base pairs of mitochondrial DNA. Performing monkey sequences were compared with those of free-ranging rhesus macaque populations in Bangladesh, India and Myanmar. Forty-five haplotypes with 116 (16 %) polymorphic nucleotide sites were detected among the performing monkeys. As for the free-ranging rhesus population, most of the substitutions (89 %) were transitions, and no indels (insertion/deletion) were observed. The estimate of the mean number of pair-wise differences for the performing monkey population was 10.1264 ± 4.686, compared to 14.076 ± 6.363 for the free-ranging population. Fifteen free-ranging rhesus macaque populations were identified as the source of performing monkeys in Bangladesh; several of these populations were from areas where active provisioning has resulted in a large number of macaques. The collection of performing monkeys from India was also evident. PMID:26758818

  11. Genetic variation and plasticity of Plantago coronopus under saline conditions

    Science.gov (United States)

    Smekens, Marret J.; van Tienderen, Peter H.

    2001-08-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.

  12. Dual Role of Caspase-11 in Mediating Activation of Caspase-1 and Caspase-3 under Pathological Conditions

    OpenAIRE

    Kang, Shin-Jung; Wang, Suyue; Hara, Hideaki; Peterson, Erin P.; Namura, Shobu; Amin-Hanjani, Sepideh; Huang, Zhihong; Srinivasan, Anu; Tomaselli, Kevin J.; Thornberry, Nancy A.; Moskowitz, Michael A; Yuan, Junying

    2000-01-01

    Caspase-11, a member of the murine caspase family, has been shown to be an upstream activator of caspase-1 in regulating cytokine maturation. We demonstrate here that in addition to its defect in cytokine maturation, caspase-11–deficient mice have a reduced number of apoptotic cells and a defect in caspase-3 activation after middle cerebral artery occlusion (MCAO), a mouse model of stroke. Recombinant procaspase-11 can autoprocess itself in vitro. Purified active recombinant caspase-11 cleave...

  13. Genetic Variation among 11 Abies concolor Populations Based on Allozyme Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-feng; Li Hui; Dong Jian-sheng; Wang Jun-hui

    2005-01-01

    In order to obtain information on the genetic structure of Abies concolor and the genetic variation among 11 populations introduced from America to China, allozyme analysis based on starch gel electrophoresis technology was used. 24 loci of 10allozyme systems were mensurated, and the genetic structure and genetic diversity of the 11 populations of A. concolor evaluated.The results show that the genetic variation among is significant, and the genetic variation within A. concolor populations is more important. In contrast with other conifers, the variation of A. concolor is above the average level of conifers, and higher than the same level ofAbies. The percentage of polymorphic loci (P) was 62.5%, the number of alleles per locus (A) 2.08, the number of effective alleles per locus (Ae) was 1.37, the expected heterozygosity (H) 0.204, and the Shannon information index (I) 0.351 7. There is a short genetic distance (D=0.061) and a low gene flow (Nm=0.839 4) among the 11 introduced populations of A. concolor with high genetic variation. The genetic differentiation coefficient (Gst) was 0.229 5, which is higher than that of the mean in Abies or Pinus.

  14. Sex-specific genetic effects influence variation in body composition

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); M. Yazdanpanah (Mojgan); L.M. Pardo Cortes (Luba); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); B.A. Oostra (Ben); A.G. Uitterlinden (André); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi)

    2008-01-01

    textabstractAims/hypothesis: Despite well-known sex differences in body composition it is not known whether sex-specific genetic or environmental effects contribute to these differences. Methods: We assessed body composition in 2,506 individuals, from a young Dutch genetic isolate participating in t

  15. Spatial trends of genetic variation of domestic ruminants in Europe

    NARCIS (Netherlands)

    Laloë, Denis; Moazami-Goudarzi, Katayoun; Lenstra, Johannes A.; Ajmone Marsan, Paolo; Azor, Pedro; Baumung, Roswitha; Bradley, Daniel G.; Bruford, Michael W.; Cañón, Javier; Dolf, Gaudenz; Dunner, Susana; Erhardt, Georg; Hewitt, Godfrey; Kantanen, Juha; Obexer-Ruff, Gabriela; Olsaker, Ingrid; Rodellar, Clemen; Valentini, Alessio; Wiener, Pamela

    2010-01-01

    The introduction of livestock species in Europe has been followed by various genetic events, which created a complex spatial pattern of genetic differentiation. Spatial principal component (sPCA) analysis and spatial metric multidimensional scaling (sMDS) incorporate geography in multivariate analys

  16. Molecular techniques for detection of genetic variation in horticultural crops

    International Nuclear Information System (INIS)

    The application of molecular techniques in cultivar identification and classification of some horticultural fruit crops are briefly reviewed in this paper. Two distinct approaches have been utilized including electrophoresis of polymorphic isozymes and DNA Amplification Fingerprintings; DAFs. Such markers were successfully employed in distinguishing genetic variability and generated genetic relatedness dendrogram among closely related cultivars of Salacca species, and Lansium domesticum Correa. (author)

  17. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    João Gonçalo Rocha Cardoso

    2015-02-01

    Full Text Available Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.

  18. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    Science.gov (United States)

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  19. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies.

    Science.gov (United States)

    Coe, T S; Hamilton, P B; Griffiths, A M; Hodgson, D J; Wahab, M A; Tyler, C R

    2009-01-01

    There is substantial evidence that genetic variation, at both the level of the individual and population, has a significant effect on behaviour, fitness and response to toxicants. Using DNA microsatellites, we examined the genetic variation in samples of several commonly used laboratory strains of zebrafish, Danio rerio, a model species in toxicological studies. We compared the genetic variation to that found in a sample of wild fish from Bangladesh. Our findings show that the wild fish were significantly more variable than the laboratory strains for several measures of genetic variability, including allelic richness and expected heterozygosity. This lack of variation should be given due consideration for any study which attempts to extrapolate the results of ecotoxicological laboratory tests to wild populations.

  20. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  1. Genetic variation among agamid lizards of the trapelus agiliscomplex in the caspian-aral basin

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Ananjeva, Natalia B.

    2004-05-19

    Allozyme variation is examined in eight populations of Trapelus from the Caspian-Aral Basin of the former USSR. Thirty-one loci (15 variable) exhibit remarkably low levels of genetic variation with only a Nei's genetic distance of 0.117 across 2500 km. An isolated population on the European side of the Caspian Sea is found to phenetically cluster inside the Asian populations examined, suggesting that it should not be considered taxonomically distinct.

  2. Effect of population size on genetic variation levels in Capparis spinosa (Capparaceae detected by RAPDs

    Directory of Open Access Journals (Sweden)

    Houshang Nosrati

    2012-07-01

    Full Text Available Background: The population size of plants affects on population genetic variation. Materials and Methods: We studied the impact of population size on genetic variation in populations of Capparis spinosa (caper, Capparaceae using RAPDs in East Azerbaijan (Iran. Within-population genetic diversity was estimated based on Nei`s and Shanonn`s diversity using Popgen, and genetic similarity among the populations was studied from a UPGMA dendrogram based the matrix of Nei’s distances obtained through SHAN. Difference in the level genetic variation between small-sized and large-sized populations was tested using Mann-Whitney U test, and correlation between geographical and genetic distances among populations was examined by Pearson test (SPSS, 11.3. Total genetic variation was partitioned into within and among populations based on AMOVA using Arlequin. Results: The polymorphism levels of RAPDs bands among the populations ranged from 48.8% to 81.4%, and within-population Nei’s diversity varied from 0.1667 to 0.2630. Genetic variation in small-sized populations (0.1667 to 0.1809 was significantly lower than the variations in large-sized populations (0.2158 -0.2630 (N= 7, P0.674, Pearson correlation test. Conclusions: Population size has a dramatic impact on its genetic diversity. The results revealed that fragmentation of caper population in the study region has most likely occurred recently. The low genetic diversity revealed within caper populations indicates high risk of extinction and suggests that urgent conservation action is needed to recover diversity in these populations.

  3. Genetic variation and population structure in native Americans.

    Directory of Open Access Journals (Sweden)

    Sijia Wang

    2007-11-01

    Full Text Available We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1 a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2 a relative lack of differentiation between Mesoamerican and Andean populations, (3 a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4 a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

  4. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    Science.gov (United States)

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier. PMID:25136854

  5. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    Science.gov (United States)

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.

  6. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    Directory of Open Access Journals (Sweden)

    Rafe M Brown

    Full Text Available Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.

  7. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.;

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  8. Revealing the Genetic Variation and Allele Heterozygote Javanese and Arab Families in Malang East Java Indonesia

    Directory of Open Access Journals (Sweden)

    Nila Kartika Sari

    2014-02-01

    Results: Our result showed that the genetic variability and heterozygote allele increasing by using the 13 CODIS markers from the first generation to the next generation with paternity testing from each family were matched. Conclusion: We can conclude that in a Javanese-Arab family ethnic seems stimulate the increasing genetic variation and allele heterozygote.

  9. Estimation of genetic variation in residual variance in female and male broiler chickens

    NARCIS (Netherlands)

    Mulder, H.A.; Hill, W.G.; Vereijken, A.; Veerkamp, R.F.

    2009-01-01

    In breeding programs, robustness of animals and uniformity of end product can be improved by exploiting genetic variation in residual variance. Residual variance can be defined as environmental variance after accounting for all identifiable effects. The aims of this study were to estimate genetic va

  10. Spatial arrangement of genetic variation in the marine bivalve Macoma balthica (L.)

    NARCIS (Netherlands)

    Luttikhuizen, Pieternella Christina

    2003-01-01

    Phenotypic similarities come in two kinds: those that are partially based on genetic differences and those that are not. Genetic variation is inherently heritable and without it, evolution by means of natural selection could not occur. It is therefore important to understand the origin and maintenan

  11. Human Genetic Variation and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sun Ju Chung

    2010-05-01

    Full Text Available Parkinson’s disease (PD is a chronic neurodegenerative disorder with multifactorial etiology. In the past decade, the genetic causes of monogenic forms of familial PD have been defined. However, the etiology and pathogenesis of the majority of sporadic PD cases that occur in outbred populations have yet to be clarified. The recent development of resources such as the International HapMap Project and technological advances in high-throughput genotyping have provided new basis for genetic association studies of common complex diseases, including PD. A new generation of genome-wide association studies will soon offer a potentially powerful approach for mapping causal genes and will likely change treatment and alter our perception of the genetic determinants of PD. However, the execution and analysis of such studies will require great care.

  12. A genetic basis for the variation in the vulnerability of cancer to DNA damage

    OpenAIRE

    Yard, Brian D.; Adams, Drew J.; Chie, Eui Kyu; Tamayo, Pablo; Battaglia, Jessica S.; Gopal, Priyanka; Rogacki, Kevin; Pearson, Bradley E.; Phillips, James; Raymond, Daniel P.; Pennell, Nathan A.; Almeida, Francisco; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan

    2016-01-01

    Radiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic featur...

  13. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  14. Global genetic variations predict brain response to faces

    DEFF Research Database (Denmark)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon;

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximu...

  15. An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1.

    Directory of Open Access Journals (Sweden)

    Kelly A Shipkowski

    Full Text Available Multi-walled carbon nanotubes (MWCNTs represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2 cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased

  16. An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1

    Science.gov (United States)

    Shipkowski, Kelly A.; Taylor, Alexia J.; Thompson, Elizabeth A.; Glista-Baker, Ellen E.; Sayers, Brian C.; Messenger, Zachary J.; Bauer, Rebecca N.; Jaspers, Ilona; Bonner, James C.

    2015-01-01

    Background Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. Methods THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Results Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and

  17. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    NARCIS (Netherlands)

    Cook, D.C.; Zdraljevic, S.; Tanny, R.E.; Seo, B.; Riccardi, D.D.; Noble, L.M.; Rockman, M.V.; Alkema, M.J.; Braendle, C.; Kammenga, J.E.; Wang, J.; Kruglyak, L.; Felix, M.A.; Lee, J.; Andersen, E.C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organis

  18. Moderate multiple parentage and low genetic variation reduces the potential for genetic incompatibility avoidance despite high risk of inbreeding.

    Directory of Open Access Journals (Sweden)

    Cristina Tuni

    Full Text Available BACKGROUND: Polyandry is widespread throughout the animal kingdom. In the absence of direct benefits of mating with different males, the underlying basis for polyandry is enigmatic because it can carry considerable costs such as elevated exposure to sexual diseases, physical injury or other direct fitness costs. Such costs may be balanced by indirect genetic benefits to the offspring of polyandrous females. We investigated polyandry and patterns of parentage in the spider Stegodyphus lineatus. This species experiences relatively high levels of inbreeding as a result of its spatial population structure, philopatry and limited male mating dispersal. Polyandry may provide an opportunity for post mating inbreeding avoidance that reduces the risk of genetic incompatibilities arising from incestuous matings. However, multiple mating carries direct fitness costs to females suggesting that genetic benefits must be substantial to counter direct costs. METHODOLOGY/PRINCIPAL FINDINGS: Genetic parentage analyses in two populations from Israel and a Greek island, showed mixed-brood parentage in approximately 50% of the broods. The number of fathers ranged from 1-2 indicating low levels of multiple parentage and there was no evidence for paternity bias in mixed-broods from both populations. Microsatellite loci variation suggested limited genetic variation within populations, especially in the Greek island population. Relatedness estimates among females in the maternal generation and potentially interacting individuals were substantial indicating full-sib and half-sib relationships. CONCLUSIONS/SIGNIFICANCE: Three lines of evidence indicate limited potential to obtain substantial genetic benefits in the form of reduced inbreeding. The relatively low frequency of multiple parentage together with low genetic variation among potential mates and the elevated risk of mating among related individuals as corroborated by our genetic data suggest that there are limited

  19. Genome-Wide Transcription Analysis of Clinal Genetic Variation in Drosophila

    OpenAIRE

    Chen, Ying; Siu F Lee; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A.; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern p...

  20. Genome-wide transcription analysis of clinal genetic variation in Drosophila.

    OpenAIRE

    Chen, Y; Lee, S. F.; E. Blanc; C. Reuter; Wertheim, B.; Martinez-Diaz, P.; Hoffmann, A. A.; Partridge, L

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern p...

  1. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  2. Intervention with a caspase-1 inhibitor reduces obesity-associated hyperinsulinemia, non-alcoholic steatohepatitis and hepatic fibrosis in LDLR−/−.Leiden mice

    Science.gov (United States)

    Morrison, M C; Mulder, P; Salic, K; Verheij, J; Liang, W; van Duyvenvoorde, W; Menke, A; Kooistra, T; Kleemann, R; Wielinga, P Y

    2016-01-01

    Background/Objectives: Non-alcoholic steatohepatitis (NASH) is a serious liver condition, closely associated with obesity and insulin resistance. Recent studies have suggested an important role for inflammasome/caspase-1 in the development of NASH, but the potential therapeutic value of caspase-1 inhibition remains unclear. Therefore, we aimed to investigate the effects of caspase-1 inhibition in the ongoing disease process, to mimic the clinical setting. Subjects/Methods: To investigate effects of caspase-1 inhibition under therapeutic conditions, male LDLR−/−.Leiden mice were fed a high-fat diet (HFD) for 9 weeks to induce a pre-diabetic state before start of treatment. Mice were then continued on HFD for another 12 weeks, without (HFD) or with (HFD-YVAD) treatment with the caspase-1 inhibitor Ac-YVAD-cmk (40 mg kg−1 per day). Results: Nine weeks of HFD feeding resulted in an obese phenotype, with obesity-associated hypertriglyceridemia, hypercholesterolemia, hyperglycemia and hyperinsulinemia. Treatment with Ac-YVAD-cmk did not affect further body weight gain or dyslipidemia, but did attenuate further progression of insulin resistance. Histopathological analysis of livers clearly demonstrated prevention of NASH development in HFD-YVAD mice: livers were less steatotic and neutrophil infiltration was strongly reduced. In addition, caspase-1 inhibition had a profound effect on hepatic fibrosis, as assessed by histological quantification of collagen staining and gene expression analysis of fibrosis-associated genes Col1a1, Acta2 and Tnfa. Conclusions: Intervention with a caspase-1 inhibitor attenuated the development of NASH, liver fibrosis and insulin resistance. Our data support the importance of inflammasome/caspase-1 in the development of NASH and demonstrate that therapeutic intervention in the already ongoing disease process is feasible. PMID:27121255

  3. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NARCIS (Netherlands)

    Smekens, Marret; Van Tienderen, P.H.

    2001-01-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Co

  4. The Evolutionary Reduction Principle for Linear Variation in Genetic Transmission

    CERN Document Server

    Altenberg, Lee

    2008-01-01

    The evolution of genetic systems has been analyzed through the use of modifier gene models, in which a neutral gene is posited to control the transmission of other genes under selection. Analysis of modifier gene models has found the manifestations of an ``evolutionary reduction principle'': in a population near equilibrium, a new modifier allele that scales equally all transition probabilities between different genotypes under selection can invade if and only if it reduces the transition probabilities. Analytical results on the reduction principle have always required some set of constraints for tractability: limitations to one or two selected loci, two alleles per locus, specific selection regimes or weak selection, specific genetic processes being modified, extreme or infinitesimal effects of the modifier allele, or tight linkage between modifier and selected loci. Here, I prove the reduction principle in the absence of any of these constraints, confirming a twenty-year old conjecture. The proof is obtaine...

  5. Integrating common and rare genetic variation in diverse human populations

    OpenAIRE

    Altshuler, D. M.; Gibbs, R.A.; Peltonen, L; Dermitzakis, Emmanouil; Schaffner, S. F.; F. Yu; Bonnen, P. E.; de Bakker, P. I.; Deloukas, Panos; Gabriel, Stacey B.; Gwilliam, Rhian; HUNT, SARAH; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno

    2010-01-01

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions i...

  6. Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

    Directory of Open Access Journals (Sweden)

    Wernimont Susan M

    2011-11-01

    Full Text Available Abstract Background Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease. Methods 330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models. Results Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified. Conclusions No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val, is predictive of cardiovascular disease biomarkers.

  7. DNA methylation mediates genetic variation for adaptive transgenerational plasticity.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2016-09-14

    Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes. PMID:27629032

  8. A genome-wide survey of genetic variation in gorillas using reduced representation sequencing.

    Directory of Open Access Journals (Sweden)

    Aylwyn Scally

    Full Text Available All non-human great apes are endangered in the wild, and it is therefore important to gain an understanding of their demography and genetic diversity. Whole genome assembly projects have provided an invaluable foundation for understanding genetics in all four genera, but to date genetic studies of multiple individuals within great ape species have largely been confined to mitochondrial DNA and a small number of other loci. Here, we present a genome-wide survey of genetic variation in gorillas using a reduced representation sequencing approach, focusing on the two lowland subspecies. We identify 3,006,670 polymorphic sites in 14 individuals: 12 western lowland gorillas (Gorilla gorilla gorilla and 2 eastern lowland gorillas (Gorilla beringei graueri. We find that the two species are genetically distinct, based on levels of heterozygosity and patterns of allele sharing. Focusing on the western lowland population, we observe evidence for population substructure, and a deficit of rare genetic variants suggesting a recent episode of population contraction. In western lowland gorillas, there is an elevation of variation towards telomeres and centromeres on the chromosomal scale. On a finer scale, we find substantial variation in genetic diversity, including a marked reduction close to the major histocompatibility locus, perhaps indicative of recent strong selection there. These findings suggest that despite their maintaining an overall level of genetic diversity equal to or greater than that of humans, population decline, perhaps associated with disease, has been a significant factor in recent and long-term pressures on wild gorilla populations.

  9. Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Mihai G Netea

    2006-08-01

    Full Text Available BACKGROUND: Interleukin (IL-32 is a newly described proinflammatory cytokine that seems likely to play a role in inflammation and host defense. Little is known about the regulation of IL-32 production by primary cells of the immune system. METHODS AND FINDINGS: In the present study, freshly obtained human peripheral blood mononuclear cells were stimulated with different Toll-like receptor (TLR agonists, and gene expression and synthesis of IL-32 was determined. We demonstrate that the TLR4 agonist lipopolysaccharide induces moderate (4-fold production of IL-32, whereas agonists of TLR2, TLR3, TLR5, or TLR9, each of which strongly induced tumor necrosis factor alpha and IL-6, did not stimulate IL-32 production. However, the greatest amount of IL-32 was induced by the mycobacteria Mycobacterium tuberculosis and M. bovis BCG (20-fold over unstimulated cells. IL-32-induced synthesis by either lipopolysaccharide or mycobacteria remains entirely cell-associated in monocytes; moreover, steady-state mRNA levels are present in unstimulated monocytes without translation into IL-32 protein, similar to other cytokines lacking a signal peptide. IL-32 production induced by M. tuberculosis is dependent on endogenous interferon-gamma (IFNgamma; endogenous IFNgamma is, in turn, dependent on M. tuberculosis-induced IL-18 via caspase-1. CONCLUSIONS: In conclusion, IL-32 is a cell-associated proinflammatory cytokine, which is specifically stimulated by mycobacteria through a caspase-1- and IL-18-dependent production of IFNgamma.

  10. Damnacanthal inhibits the NF-κB/RIP-2/caspase-1 signal pathway by inhibiting p56lck tyrosine kinase.

    Science.gov (United States)

    Kim, Min-Ho; Jeong, Hyun-Ja

    2014-10-01

    Damnacanthal is a major constituent of Morinda citrifolia L. (noni) and exhibits anti-cancer and anti-inflammatory activities. However, the effects of damnacanthal on allergic diseases have not been determined. In this study, we investigated the effect of damnacanthal on mast cell-mediated allergic inflammatory responses. Damnacanthal significantly and dose-dependently inhibited compound 48/80-induced systemic anaphylactic shock, histamine release and intracellular calcium levels. In particular, IgE-mediated passive cutaneous anaphylaxis was significantly inhibited by the oral administration of damnacanthal. In addition, we report for the first time that p56lck tyrosine kinase was expressed in phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated mast cells. Furthermore, damnacanthal inhibited the up-regulation of p56lck tyrosine kinase activity by PMACI and repressed PMACI-induced histidine decarboxylase expression and activity. Damnacanthal also inhibited PMACI-induced interleukin (IL)-1β, IL-6 and tumor necrosis factor-α expressions by suppressing nuclear factor-kappa B (NF-κB) activation and suppressed the activation of caspase-1 and the expression of receptor interacting protein-2. This study shows damnacanthal inhibits the NF-κB/receptor-interacting protein-2/caspase-1 signal pathway by inhibiting p56lck tyrosine kinase and suggests that damnacanthal has potential for the treatment of mast cell-mediated allergic disorders. PMID:25139491

  11. Genetic variations among Mycoplasma bovis strains isolated from Danish cattle

    DEFF Research Database (Denmark)

    Kusiluka, L.J.M.; Kokotovic, Branko; Ojeniyi, B.;

    2000-01-01

    The genetic heterogeneity of Mycoplasma bovis strains isolated in Denmark over a 17-year period was investigated. Forty-two field strains isolated from different geographic locations and specimens, including strains from 21 herds involved in two outbreaks of M. bovis-induced mastitis, and the type....... Among the analyzed strains, 18 different AFLP profiles were detected. The similarity between individual fingerprints, calculated by Dice similarity coefficient, ranged from 0.9 to 1.0. Twenty-five strains, including 23 which were isolated during two outbreaks of M. bovis-induced mastitis which occurred...

  12. Risks assessment - role of pre-existing genetic variation

    International Nuclear Information System (INIS)

    Previously published research on the epidemiology and molecular basis of genetic or congenital diseases and their occurrence in certain 'ethnic' or isolated populations is discussed to show the significance of consanguinity and 'ethnicity' as contributing factors. A statistical study aiming to correlate malformations with absolutely any environmental factor may miss the significance of defects in a gene pool. This consideration has an obvious significance for the nuclear industry. For example, carriers of Fanconi's anemia appear to have an increased tendency to develop acute myelogenous leukemia. The authors indicate the difficulty in finding a definite molecular basis even for simple Mendelian monogenic disorders such as Tay-Sachs disease. 12 refs., 4 tabs

  13. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley;

    2012-01-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT kno......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability.......Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT...

  14. A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes

    Science.gov (United States)

    Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-01-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782

  15. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species.

  16. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

    Science.gov (United States)

    Cortez, Michael H

    2016-09-01

    Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variation determines what effects prey evolution has on the dynamics and stability of predator-prey systems. I use linear stability analysis to decompose the stability of a general eco-evolutionary predator-prey model into components representing the stabilities of the ecological and evolutionary subsystems as well as the interactions between those subsystems. My results show that with low genetic variation, the cyclic dynamics and stability of the system are determined by the ecological subsystem. With increased genetic variation, disruptive selection always destabilizes stable communities, stabilizing selection can stabilize or destabilize communities, and prey evolution can alter predator-prey phase lags. Stability changes occur approximately when the magnitude of genetic variation balances the (in)stabilities of the ecological and evolutionary subsystems. I discuss the connections between my stability results and prior results from the theory of adaptive dynamics. PMID:27501090

  17. Temporal genetic variation of Fasciola hepatica from sheep in Galicia (NW Spain).

    Science.gov (United States)

    Vázquez-Prieto, Severo; Vilas, Román; Ubeira, Florencio M; Paniagua, Esperanza

    2015-04-30

    We found low genetic differentiation between two temporal samples of Fasciola hepatica (2006 and 2008) collected from nine sheep of the same flock that shared the same pasture for at least 2 years. However, each sample, represented by four and five infrapopulations respectively, showed strong heterozygote deficits regarding Hardy-Weinberg expectations and a high degree of genetic structure at infrapopulation level. This is an unexpected result since genetic drift should increase temporal variation among years. Our findings are most likely explained by the fact that the parasite can survive many years in the definitive host. Temporal gene flow favored by high longevity probably increases levels of genetic variability of the population but could also contribute to the observed heterozygote deficits within temporal samples and infrapopulations if it favors the Wahlund effect. Despite the homogenizing effect of gene flow, the high genetic divergence observed between infrapopulations is most likely a consequence of strong genetic drift associated to the complexity of the life cycle.

  18. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.

    Science.gov (United States)

    Gu, Junfei; Yin, Xinyou; Stomph, Tjeerd-Jan; Struik, Paul C

    2014-01-01

    Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis but also from electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved for both light-saturated and light-limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ-plasm, especially the variation in parameters determining light-limited photosynthesis.

  19. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  20. Genetic variation of goat Y chromosome in the Sardinian population

    Directory of Open Access Journals (Sweden)

    Antonello Carta

    2010-01-01

    Full Text Available Sardinian goat population is commonly considered a crossbred of autochthonous animals with improved Mediterranean breeds, mainly the Maltese. It has been demonstrated by using autosomal microsatellites that the Sardinian goats can be divided into three subpopulations: Sardinian, crossbred with Maltese, and Maltese. The aim of this study was to evaluate sequence variation at Y chromosome in Sardinian bucks and to integrate autosomal microsatellites data. Blood from 190 bucks from 68 farms spread in the main Sardinian goat farming areas was sampled. Three ECONOGENE project primer pairs plus an additional one corresponding to a total of 7 SNPs were used. For all common SNPs, the most frequent allele corresponded to the ECONOGENE one. The additional analysed SNP showed allelic frequencies similar to the other markers. The comparison with haplotypes based on the 6 common SNPs showed that the Sardinian most frequent haplotype corresponded to the predominant one in Central Europe. Results of this study showed that the Sardinian goat population has 8 haplotypes resulting in a large diversity of paternal lineages. The next step will be linking autosomal information to Y chromosome data. In fact, up to date, it seems unfeasible to detect recent upgrading breeds by using Y chromosome variation only.

  1. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  2. Genetic effects on sleep/wake variation of seizures

    Science.gov (United States)

    Winawer, Melodie R.; Shih, Jerry; Beck, Erin S.; Hunter, Jessica E.; Epstein, Michael P.

    2016-01-01

    Summary Objective There is a complex bidirectional relationship between sleep and epilepsy. Sleep/wake timing of seizures has been investigated for several individual seizure types and syndromes, but few large-scale studies of the timing of seizures exist in people with varied epilepsy types. In addition, the genetic contributions to seizure timing have not been well studied. Methods Sleep/wake timing of seizures was determined for 1,395 subjects in 546 families enrolled in the Epilepsy Phenome/Genome Project (EPGP). We examined seizure timing among subjects with different epilepsy types, seizure types, epilepsy syndromes, and localization. We also examined the familial aggregation of sleep/wake occurrence of seizures. Results Seizures in nonacquired focal epilepsy (NAFE) were more likely to occur during sleep than seizures in generalized epilepsy (GE), for both convulsive (odds ratio [OR] 5.2, 95% confidence interval [CI] 3.59–7.52) and nonconvulsive seizures (OR 4.2, 95% CI 2.48–7.21). Seizures occurring within 1 h of awakening were more likely to occur in patients with GE than with NAFE for both convulsive (OR 2.3, 95% CI 1.54– 3.39) and nonconvulsive (OR 1.7, 95% CI 1.04–2.66) seizures. Frontal onset seizures were more likely than temporal onset seizures to occur during sleep. Sleep/wake timing of seizures in first-degree relatives predicted timing of seizures in the proband. Significance We found that sleep/wake timing of seizures is associated with both epilepsy syndrome and seizure type. In addition, we provide the first evidence for a genetic contribution to sleep/wake timing of seizures in a large group of individuals with common epilepsy syndromes. PMID:26948972

  3. Studies of Genetic Variation of Essential Oil and Alkaloid Content in Boldo (Peumus boldus).

    Science.gov (United States)

    Vogel, H; Razmilic, I; Muñoz, M; Doll, U; Martin, J S

    1999-02-01

    Boldo is a tree or shrub with medicinal properties native to Chile. The leaves contain alkaloids and essential oils. Variation of total alkaloid concentration, of the alkaloid boldine, and essential oil components were studied in different populations from northern, central, and southern parts of its geographic range and in their progenies (half-sib families). Total alkaloid concentration showed genetic variation between progenies of the central population but not between populations. Boldine content found in concentrations of 0.007 to 0.009% did not differ significantly between populations. Principal components of the essential oil were determined genetically, with highest values for ascaridole in the population of the north and for P-cymene in the south. Between half-sib families genetic variation was found in the central and northern populations for these components. The high heritability coefficients found indicate considerable potential for successful selection of individuals for these characters. PMID:17260243

  4. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    Science.gov (United States)

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  5. Genetic variation in V gene of class II Newcastle disease virus.

    Science.gov (United States)

    Hao, Huafang; Chen, Shengli; Liu, Peng; Ren, Shanhui; Gao, Xiaolong; Wang, Yanping; Wang, Xinglong; Zhang, Shuxia; Yang, Zengqi

    2016-01-01

    The genetic variation and molecular evolution of the V gene of the class II Newcastle disease virus (NDV) isolates with genotypes I-XVIII were determined using bioinformatics. Results indicated that low homology existed in different genotype viruses, whereas high homology often for the same genotypes, exception may be existed within genotypes I, V, VI, and XII. Sequence analysis showed that the genetic variation of V protein was consistent with virus genotype, and specific signatures on the V protein for nine genotypes were identified. Phylogenetic analysis demonstrated that the phylogenetic trees were highly consistent between the V and F genes, with slight discrepancies in the sub-genotypes. Evolutionary rate analyses based on V and F genes revealed the evolution rates varied in genotypes. These data indicate that the genetic variation of V protein is genotype-related and will help in elucidating the molecular evolution of NDV.

  6. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    Science.gov (United States)

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. PMID:24621402

  7. Genetic variation in the free-living amoeba Naegleria fowleri.

    Science.gov (United States)

    Pélandakis, M; De Jonckheere, J F; Pernin, P

    1998-08-01

    In this study, 30 strains of the pathogenic free-living amoeba Naegleria fowleri were investigated by using the randomly amplified polymorphic DNA (RAPD) method. The present study confirmed our previous finding that RAPD variation is not correlated with geographical origin. In particular, Mexican strains belong to the variant previously detected in Asia, Europe, and the United States. In France, surprisingly, strains from Cattenom gave RAPD patterns identical to those of the Japanese strains. In addition, all of these strains, together with an additional French strain from Chooz, exhibited similarities to South Pacific strains. The results also confirmed the presence of numerous variants in Europe, whereas only two variants were detected in the United States. The two variants found in the United States were different from the South Pacific variants. These findings do not support the previous hypothesis concerning the origin and modes of dispersal of N. fowleri.

  8. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout

    Science.gov (United States)

    Wofford, John E.B.; Gresswell, Robert E.; Banks, M.A.

    2005-01-01

    Because human land use activities often result in increased fragmentation of aquatic and terrestrial habitats, a better understanding of the effects of fragmentation on the genetic heterogeneity of animal populations may be useful for effective management. We used eight microsatellites to examine the genetic structure of coastal cutthroat trout (Oncorhynchus clarki clarki) in Camp Creek, an isolated headwater stream in western Oregon. Our objectives were to determine if coastal cutthroat trout were genetically structured within streams and to assess the effects of natural and anthropogenic barriers on coastal cutthroat trout genetic variation. Fish sampling occurred at 10 locations, and allele frequencies differed significantly among all sampling sections. Dispersal barriers strongly influenced coastal cutthroat trout genetic structure and were associated with reduced genetic diversity and increased genetic differentiation. Results indicate that Camp Creek coastal cutthroat trout exist as many small, partially independent populations that are strongly affected by genetic drift. In headwater streams, barriers to movement can result in genetic and demographic isolation leading to reduced coastal cutthroat trout genetic diversity, and potentially compromising long-term population persistence. When habitat fragmentation eliminates gene flow among small populations, similar results may occur in other species.

  9. Intra-locus sexual conflict and sexually antagonistic genetic variation in hermaphroditic animals

    OpenAIRE

    Abbott, Jessica K.

    2010-01-01

    Intra-locus sexual conflict results when sex-specific selection pressures for a given trait act against the intra-sexual genetic correlation for that trait. It has been found in a wide variety of taxa in both laboratory and natural populations, but the importance of intra-locus sexual conflict and sexually antagonistic genetic variation in hermaphroditic organisms has rarely been considered. This is not so surprising given the conceptual and theoretical association of intra-locus sexual confl...

  10. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis

    OpenAIRE

    Routaboul, Jean-Marc; Dubos, Christian; Beck, Gilles; Marques, Catherine; Bidzinski, Przemyslaw; Loudet, Olivier; Lepiniec, Loic

    2012-01-01

    Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) a...

  11. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties

    OpenAIRE

    Howad Werner; Abbassi El-Kadri; Aranzana Maria; Arús Pere

    2010-01-01

    Abstract Background Peach [Prunus persica (L.) Batsch] is one of the most economically important fruit crops that, due to its genetic and biological characteristics (small genome size, taxonomic proximity to other important species and short juvenile period), has become a model plant in genomic studies of fruit trees. Our aim was an in-depth study of the extent, distribution and structure of peach genetic variation in North American and European commercial varieties as well as old Spanish var...

  12. GENETIC VARIATION IN TASTE PERCEPTION AND ITS ROLE IN FOOD LIKING AND HEALTH STATUS

    OpenAIRE

    Robino, Antonietta

    2014-01-01

    Taste has been described as the body's “nutritional gatekeeper”, affecting the identification of nutrients and toxins and guiding food choices. Genetic variation in taste receptor genes can influence perception of sweet, umami and bitter tastes, whereas less is known about the genetics of sour and salty taste. Differences in taste perception, influencing food selection and dietary behavior, have also shown important long-term health implications, especially for food-related diseases such as o...

  13. Effect of aging and genetic variations on decision making, fine motor and cognitive skills

    OpenAIRE

    Bogaers, Lise

    2011-01-01

    Aging is associated with a decline in cognition and motor function. Several SNPs have been linked to neural and cognitive variation in healthy adults. Moreover, it is suggested that the effects of genetic variants are enhanced with human aging. The present study investigates whether aging and genetic variants, in this case the BDNF and COMT Val/Met polymorphisms, influence executive functioning, fine hand motor control and cognitive skills. Fifty-seven healthy volunteers were genotyped fo...

  14. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    Science.gov (United States)

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  15. MetaRanker 2.0: a web server for prioritization of genetic variation data

    OpenAIRE

    Pers, Tune Hannes; Dworzynski, Piotr; Thomas, Cecilia Engel; Hansen, Kasper Lage; Brunak, Søren

    2013-01-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRa...

  16. MetaRanker 2.0: a web server for prioritization of genetic variation data.

    Science.gov (United States)

    Pers, Tune H; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-07-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.

  17. The variation game: Cracking complex genetic disorders with NGS and omics data.

    Science.gov (United States)

    Cui, Hongzhu; Dhroso, Andi; Johnson, Nathan; Korkin, Dmitry

    2015-06-01

    Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.

  18. Race, Common Genetic Variation, and Therapeutic Response Disparities in Heart Failure

    OpenAIRE

    Taylor, Mathew R.; Sun, Albert Y.; Davis, Gordon; Fiuzat, Mona; Liggett, Stephen B.; Bristow, Michael R.

    2014-01-01

    Because of its relatively recent evolution, Homo sapiens exhibits relatively little within-species genomic diversity. However, because of genome size, a proportionally small amount of variation creates ample opportunity for both rare mutations that may be disease-causative as well as more common genetic variation that may be important in disease modification or pharmacogenetics. Primarily because of the East African origin of modern humans, individuals of African ancestry (AA) exhibit greater...

  19. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    DEFF Research Database (Denmark)

    Robinson, Elise B; St Pourcain, Beate; Anttila, Verneri;

    2016-01-01

    find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral......Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we...

  20. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity.

    Science.gov (United States)

    Smith, Peter F; Konings, Ad; Kornfield, Irv

    2003-09-01

    The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration. PMID:12919487

  1. Genetic variation across the historical range of the wild turkey (Meleagris gallopavo).

    Science.gov (United States)

    Mock, K E; Theimer, T C; Rhodes, O E; Greenberg, D L; Keim, P

    2002-04-01

    Genetic differences within and among naturally occurring populations of wild turkeys (Meleagris gallopavo) were characterized across five subspecies' historical ranges using amplified fragment length polymorphism (AFLP) analysis, microsatellite loci and mitochondrial control region sequencing. Current subspecific designations based on morphological traits were generally supported by these analyses, with the exception of the eastern (M. g. silvestris) and Florida (M. g. osceola) subspecies, which consistently formed a single unit. The Gould's subspecies was both the most genetically divergent and the least genetically diverse of the subspecies. These genetic patterns were consistent with current and historical patterns of habitat continuity. Merriam's populations showed a positive association between genetic and geographical distance, Rio Grande populations showed a weaker association and the eastern populations showed none, suggesting differing demographic forces at work in these subspecies. We recommend managing turkeys to maintain subspecies integrity, while recognizing the importance of maintaining regional population structure that may reflect important adaptive variation.

  2. A genetic basis for the variation in the vulnerability of cancer to DNA damage

    Science.gov (United States)

    Yard, Brian D.; Adams, Drew J.; Chie, Eui Kyu; Tamayo, Pablo; Battaglia, Jessica S.; Gopal, Priyanka; Rogacki, Kevin; Pearson, Bradley E.; Phillips, James; Raymond, Daniel P.; Pennell, Nathan A.; Almeida, Francisco; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan; Peacock, Craig D.; Schreiber, Stuart L.; Hammerman, Peter S.; Abazeed, Mohamed E.

    2016-01-01

    Radiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic features to identify parameters that predict radiation sensitivity. We identify somatic copy number alterations, gene mutations and the basal expression of individual genes and gene sets that correlate with the radiation survival, revealing new insights into the genetic basis of tumour cellular response to DNA damage. These results demonstrate the diversity of tumour cellular response to ionizing radiation and establish multiple lines of evidence that new genetic features regulating cellular response after DNA damage can be identified. PMID:27109210

  3. Mitochondrial Genetic Variation in Iranian Infertile Men with Varicocele

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2016-09-01

    Full Text Available Background: Several recent studies have shown that mitochondrial DNA mutations lead to major disabilities and premature death in carriers. More than 150 mutations in human mitochondrial DNA (mtDNA genes have been associated with a wide spectrum of disorders. Varicocele, one of the causes of infertility in men wherein abnormal inflexion and distension of veins of the pampiniform plexus is observed within spermatic cord, can increase reactive oxygen species (ROS production in semen and cause oxidative stress and sperm dysfunction in patients. Given that mitochondria are the source of ROS production in cells, the aim of this study was to scan nine mitochondrial genes (MT-COX2, MT-tRNALys, MT-ATP8, MT-ATP6, MT-COX3, MT-tRNAGly, MT-ND3, MT-tRNAArg and MT-ND4L for mutations in infertile patients with varicocele. Materials and Methods: In this cross-sectional study, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP and DNA sequencing were used to detect and identify point mutations respectively in 9 mitochondrial genes in 72 infertile men with varicocele and 159 fertile men. In brief, the samples showing altered electrophoretic patterns of DNA in the SSCP gel were sent for DNA sequencing to identify the exact nucleotide variation. Results: Ten type nucleotide variants were detected exclusively in mitochondrial DNA of infertile men. These include six novel nucleotide changes and four variants previously reported for other disorders. Conclusion: Mutations in mitochondrial genes may affect respiratory complexes in combination with environmental risk factors. Therefore these nucleotide variants probably lead to impaired ATP synthesis and mitochondrial function ultimately interfering with sperm motility and infertility.

  4. Apoptosis-associated speck-like protein containing CARD forms specks but does not activate caspase-1 in the absence of NLRP3 during macrophage swelling

    Science.gov (United States)

    Compan, Vincent; Martín-Sánchez, Fátima; Baroja-Mazo, Alberto; López-Castejón, Gloria; Gomez, Ana I.; Verkhratsky, Alexei; Brough, David; Pelegrín, Pablo

    2016-01-01

    Apoptosis-associated speck-like protein containing a CARD (ASC) is a key adaptor molecule required for inflammatory processes. ASC acts by bridging NLRP proteins, such as NLRP3, with pro-caspase-1 within the inflammasome complex that subsequently results in the activation of caspase-1 and the secretion of interleukin (IL)-1β and IL-18. In response to bacterial infection, ASC also forms specks by self-oligomerization to activate caspase-1 and induce pyroptosis. Hitherto the role of these specks in NLRP3 inflammasome activation in response to danger signals is largely unexplored. Here we report that under hypotonic conditions, ASC formed specks independently of NLRP3 that did not activate caspase-1. These specks were not associated with pyroptosis and were controlled by Transient Receptor Potential Vanilloid 2 channel mediated signaling. However, interaction with NLRP3 enhanced ASC speck formation leading to fully functional inflammasomes and caspase-1 activation. This study reveals that the ASC speck could present different oligomerization assemblies and represents an essential step in the activation of functional NLRP3 inflammasomes. PMID:25552542

  5. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    Science.gov (United States)

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response.

  6. Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs.

    Science.gov (United States)

    Bekessy, Sarah A; Allnutt, T R; Premoli, A C; Lara, A; Ennos, R A; Burgman, M A; Cortes, M; Newton, A C

    2002-04-01

    Araucaria araucana (Monkey Puzzle), a southern South American tree species of exceptional cultural and economic importance, is of conservation concern owing to extensive historical clearance and current human pressures. Random amplified polymorphic DNA (RAPD) markers were used to characterise genetic heterogeneity within and among 13 populations of this species from throughout its natural range. Extensive genetic variability was detected and partitioned by analysis of molecular variance, with the majority of variation existing within populations (87.2%), but significant differentiation was recorded among populations (12.8%). Estimates of Shannon's genetic diversity and percent polymorphism were relatively high for all populations and provide no evidence for a major reduction in genetic diversity from historical events, such as glaciation. All pairwise genetic distance values derived from analysis of molecular variance (Phi(ST)) were significant when individual pairs of populations were compared. Although populations are geographically divided into Chilean Coastal, Chilean Andes and Argentinean regions, this grouping explained only 1.77% of the total variation. Within Andean groups there was evidence of a trend of genetic distance with increasing latitude, and clustering of populations across the Andes, suggesting postglacial migration routes from multiple refugia. Implications of these results for the conservation and use of the genetic resource of this species are discussed. PMID:11920130

  7. Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs.

    Science.gov (United States)

    Bekessy, Sarah A; Allnutt, T R; Premoli, A C; Lara, A; Ennos, R A; Burgman, M A; Cortes, M; Newton, A C

    2002-04-01

    Araucaria araucana (Monkey Puzzle), a southern South American tree species of exceptional cultural and economic importance, is of conservation concern owing to extensive historical clearance and current human pressures. Random amplified polymorphic DNA (RAPD) markers were used to characterise genetic heterogeneity within and among 13 populations of this species from throughout its natural range. Extensive genetic variability was detected and partitioned by analysis of molecular variance, with the majority of variation existing within populations (87.2%), but significant differentiation was recorded among populations (12.8%). Estimates of Shannon's genetic diversity and percent polymorphism were relatively high for all populations and provide no evidence for a major reduction in genetic diversity from historical events, such as glaciation. All pairwise genetic distance values derived from analysis of molecular variance (Phi(ST)) were significant when individual pairs of populations were compared. Although populations are geographically divided into Chilean Coastal, Chilean Andes and Argentinean regions, this grouping explained only 1.77% of the total variation. Within Andean groups there was evidence of a trend of genetic distance with increasing latitude, and clustering of populations across the Andes, suggesting postglacial migration routes from multiple refugia. Implications of these results for the conservation and use of the genetic resource of this species are discussed.

  8. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  9. Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics.

    Science.gov (United States)

    Charlesworth, Brian; Charlesworth, Deborah; Coyne, Jerry A; Langley, Charles H

    2016-08-01

    The 1966 GENETICS papers by John Hubby and Richard Lewontin were a landmark in the study of genome-wide levels of variability. They used the technique of gel electrophoresis of enzymes and proteins to study variation in natural populations of Drosophila pseudoobscura, at a set of loci that had been chosen purely for technical convenience, without prior knowledge of their levels of variability. Together with the independent study of human populations by Harry Harris, this seminal study provided the first relatively unbiased picture of the extent of genetic variability in protein sequences within populations, revealing that many genes had surprisingly high levels of diversity. These papers stimulated a large research program that found similarly high electrophoretic variability in many different species and led to statistical tools for interpreting the data in terms of population genetics processes such as genetic drift, balancing and purifying selection, and the effects of selection on linked variants. The current use of whole-genome sequences in studies of variation is the direct descendant of this pioneering work. PMID:27516612

  10. Genetic variation of natural and cultured stocks of Paralichthys olivaceus by allozyme and RAPD

    Institute of Scientific and Technical Information of China (English)

    YOU Feng; ZHANG Peijun; WANG Keling; XIANG Jianhai

    2007-01-01

    Population genetics of the left-eyed flounder, Paralichthys olivaceus, including natural and cultured stocks distributed in the coastal waters near Qingdao of eastern maritime China, was analyzed in allozyme and RAPD. The results showed that among total 29 gene loci of 15 isozymes, 9 and 7 were polymorphic in natural and cultured stocks, respectively. The status of genetic diversity in P olivaceus is low in terms of polymorphic loci in chi-square test and genetic departure index of Hardy-Weinberg equilibrium. More alleles in IDHP, CAT, GDH and Ldh-C allozymes were found in the fish, which could be used as markers in assortive breeding and distinguishing stock, population or species evolution. Total 88 and 86 RAPD bands ranging from 200 to 2 500 bp were recognized individually in average of 7.8-8.0 bands per primer. The genetic diversity in cultured stock is lower than that in natural ones showing an obviously decreasing genetic divergence. Therefore, effective countermeasures must be taken to protect genetic resources of marine cultured fishes. The 2 markers have their own pros and cons. Combining the 2 markers to investigate the genetic variation of populations is suggested. The results provide basic data of this flounder and they are useful for studying genetic improvement and genetic resources of the fish.

  11. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae: effects of reproductive strategy.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. METHODOLOGY/PRINCIPAL FINDINGS: Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. CONCLUSIONS/SIGNIFICANCE: Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  12. Picroilmenites in Yakutian kimberlites: variations and genetic models

    Science.gov (United States)

    Ashchepkov, I. V.; Alymova, N. V.; Logvinova, A. M.; Vladykin, N. V.; Kuligin, S. S.; Mityukhin, S. I.; Downes, H.; Stegnitsky, Yu. B.; Prokopiev, S. A.; Salikhov, R. F.; Palessky, V. S.; Khmel'nikova, O. S.

    2014-09-01

    Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10

  13. Genetic Variation and Combining Ability Analysis of Bruising Sensitivity in Agaricus bisporus

    NARCIS (Netherlands)

    Gao, W.; Baars, J.J.P.; Dolstra, O.; Visser, R.G.F.; Sonnenberg, A.S.M.

    2013-01-01

    Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incom

  14. Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression

    NARCIS (Netherlands)

    Kumar, Vinod; Westra, Harm-Jan; Karjalainen, Juha; Zhernakova, Daria V.; Esko, Tonu; Hrdlickova, Barbara; Almeida, Rodrigo; Zhernakova, Alexandra; Reinmaa, Eva; Hofker, Marten H.; Fehrmann, Rudolf S. N.; Fu, Jingyuan; Withoff, Sebo; Metspalu, Andres; Franke, Lude; Wijmenga, Cisca; Vosa, Urmo

    2013-01-01

    Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variation

  15. Genetic Variation in Candidate Genes Like the HMGA2 Gene in the Extremely Tall

    NARCIS (Netherlands)

    Hendriks, A. E. J.; Brown, M. R.; Boot, A. M.; Oostra, B. A.; Drop, S. L. S.; Parks, J. S.

    2011-01-01

    Background/Aims: Genetic variation in several candidate genes has been associated with short stature. Recently, a high-mobility group A2 (HMGA2) gene SNP has been robustly associated with height in the general population. Only few have attempted to study these genes in extremely tall stature. We the

  16. Estimation of the Proportion of Variation Accounted for by DNA Tests. I: Genetic Variance

    Science.gov (United States)

    The proportion of genetic variation accounted for (Rg2) is an important characteristic of a DNA test. For each of 3 levels of narrow sense heritability of the observed trait (h2gy) and 4 levels of Rg2, 500 independent replicates of an observed trait and a molecular breeding value (MBV) for 1000 offs...

  17. Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests

    Science.gov (United States)

    An increasingly relevant question in evaluating commercial DNA tests is "What proportion of the additive genetic variation in the target trait is accounted for by the test?" Therefore, several estimators of this quantity were evaluated by simulation of a population of 1000 animals with 100 sires, ea...

  18. Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans

    DEFF Research Database (Denmark)

    Thiele, Jan; Hansen, Thomas Møller; Siegismund, Hans Redlef;

    2010-01-01

    decoupled. There was a trend that the smaller population was less affected by ID than the large one, although the differences were not significant for most traits. Hence, evidence for purging of deleterious alleles remains inconclusive in this study. Genetic variation in ID among paternal families...

  19. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    1995-01-01

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  20. Genetic Variation in ABCG1 and Risk of Myocardial Infarction and Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Schou, Jesper; Frikke-Schmidt, Ruth; Kardassis, Dimitris;

    2012-01-01

    OBJECTIVE: ATP binding cassette transporter G1 (ABCG1) facilitates cholesterol efflux from macrophages to mature high-density lipoprotein particles. Whether genetic variation in ABCG1 affects risk of atherosclerosis in humans remains to be determined. METHODS AND RESULTS: We resequenced the core ...

  1. Genetic variation in folate metabolism is not associated with cognitive functioning or mood in healthy adults

    NARCIS (Netherlands)

    Schiepers, Olga; Van Boxtel, Martin; De Groot, Renate; Jolles, Jelle; Bekers, Otto; Kok, Frans; Verhoef, Petra; Durga, Jane

    2012-01-01

    Schiepers, O. J. G., Van Boxtel, M. J. P., De Groot, R. H. M., Jolles, J., Bekers, O., Kok, F. J., Verhoef, P., & Durga, J. (2011). Genetic variation in folate metabolism is not associated with cognitive functioning or mood in healthy adults. Progress in Neuropsychopharmacology and Biological Psychi

  2. Components of Genetic Variation Associated with Second and Third Chromosome Gene Arrangements in Drosophila melanogaster

    OpenAIRE

    Ferrari, James A.

    1987-01-01

    The effects of naturally occuring combinations of second and third chromosome gene arrangements of Drosophila melanogaster on two quantitative traits were partitioned into parameters of additive, dominance and interaction components of genetic variation. Development time and preadult survival of the gene arrangement genotypes were measured under four experimental conditions. Gene arrangement effects, when significant, were predominantly additive under all conditions. Experimental conditions, ...

  3. Natural Selection and Evolution: Using Multimedia Slide Shows to Emphasize the Role of Genetic Variation

    Science.gov (United States)

    Malone, Molly

    2012-01-01

    Most middle school students comprehend that organisms have adaptations that enable their survival and that successful adaptations prevail in a population over time. Yet they often miss that those bird beaks, moth-wing colors, or whatever traits are the result of random, normal genetic variations that just happen to confer a negative, neutral, or…

  4. Genetic variation for silvicultural traits in open-pollinated progenies of Astronium graveolens Jacq. (Anacardiaceae

    Directory of Open Access Journals (Sweden)

    Daniela Araújo

    2014-03-01

    Full Text Available This study has investigated the genetic variation for silvicultural traits in an open-pollinated progeny test of Astronium graveolens Jacq., established at Luiz Antônio Experimental Station (State of São Paulo, Brazil. The trial was planted in a random block experimental design, containing 23 families, six replications and five plants per plot. The traits measured were diameter at breast height (DBH, total height and stem form. The assessments were taken at the age of 19 years. Significant differences were not detected by the analysis of variance, suggesting that the genetic variation was low, as well as the probability to raising genetic gains through selection among progenies. The coefficient of genetic variation was moderate for the traits height (8.2% and DBH (21.2% and low to stem form (4.0%. However, the average coefficient of heritability among progenies was low for all studied traits (ranging from 0.02 to 0.15, confirming the low probability of genetic improvement of this population by selection among progenies.

  5. Genetics of Intraspecies Variation in Avoidance Behavior Induced by a Thermal Stimulus in Caenorhabditis elegans.

    Science.gov (United States)

    Ghosh, Rajarshi; Bloom, Joshua S; Mohammadi, Aylia; Schumer, Molly E; Andolfatto, Peter; Ryu, William; Kruglyak, Leonid

    2015-08-01

    Individuals within a species vary in their responses to a wide range of stimuli, partly as a result of differences in their genetic makeup. Relatively little is known about the genetic and neuronal mechanisms contributing to diversity of behavior in natural populations. By studying intraspecies variation in innate avoidance behavior to thermal stimuli in the nematode Caenorhabditis elegans, we uncovered genetic principles of how different components of a behavioral response can be altered in nature to generate behavioral diversity. Using a thermal pulse assay, we uncovered heritable variation in responses to a transient temperature increase. Quantitative trait locus mapping revealed that separate components of this response were controlled by distinct genomic loci. The loci we identified contributed to variation in components of thermal pulse avoidance behavior in an additive fashion. Our results show that the escape behavior induced by thermal stimuli is composed of simpler behavioral components that are influenced by at least six distinct genetic loci. The loci that decouple components of the escape behavior reveal a genetic system that allows independent modification of behavioral parameters. Our work sets the foundation for future studies of evolution of innate behaviors at the molecular and neuronal level.

  6. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  7. Genetic factors account for most of the variation in serum tryptase—a twin study

    DEFF Research Database (Denmark)

    Sverrild, Asger; van der Sluis, Sophie; Kyvik, Kirsten Ohm;

    2013-01-01

    values were available in 569 subjects. Intraclass correlations of serum tryptase in monozygotic and dizygotic twin pairs were 0.84 and 0.42 (P factors accounted for 82% (95% confidence interval 74-90, P ... on serum tryptase in asthma. Objective: To estimate the overall contribution of genetic and environmental factors to the variation in serum tryptase and to examine the correlation between serum tryptase and asthma, rhinitis, markers of allergy, airway inflammation, and airway hyperresponsiveness (AHR...... mass index and sex, but not asthma, rhinitis, or AHR, were correlated to serum tryptase. Conclusion: As much as 82% of the variation in serum tryptase is due to genetic factors. Body mass index and sex, but not asthma or AHR to methacholine, correlate to serum tryptase. A genetic overlap may exist...

  8. RNA splicing is a primary link between genetic variation and disease.

    Science.gov (United States)

    Li, Yang I; van de Geijn, Bryce; Raj, Anil; Knowles, David A; Petti, Allegra A; Golan, David; Gilad, Yoav; Pritchard, Jonathan K

    2016-04-29

    Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.

  9. Caspase-1-like regulation of the proPO-system and role of ppA and caspase-1-like cleaved peptides from proPO in innate immunity.

    Science.gov (United States)

    Jearaphunt, Miti; Noonin, Chadanat; Jiravanichpaisal, Pikul; Nakamura, Seiko; Tassanakajon, Anchalee; Söderhäll, Irene; Söderhäll, Kenneth

    2014-04-01

    Invertebrates rely on innate immunity to respond to the entry of foreign microorganisms. One of the important innate immune responses in arthropods is the activation of prophenoloxidase (proPO) by a proteolytic cascade finalized by the proPO-activating enzyme (ppA), which leads to melanization and the elimination of pathogens. Proteolytic cascades play a crucial role in innate immune reactions because they can be triggered more quickly than immune responses that require altered gene expression. Caspases are intracellular proteases involved in tightly regulated limited proteolysis of downstream processes and are also involved in inflammatory responses to infections for example by activation of interleukin 1ß. Here we show for the first time a link between caspase cleavage of proPO and release of this protein and the biological function of these fragments in response to bacterial infection in crayfish. Different fragments from the cleavage of proPO were studied to determine their roles in bacterial clearance and antimicrobial activity. These fragments include proPO-ppA, the N-terminal part of proPO cleaved by ppA, and proPO-casp1 and proPO-casp2, the fragments from the N-terminus after cleavage by caspase-1. The recombinant proteins corresponding to all three of these peptide fragments exhibited bacterial clearance activity in vivo, and proPO-ppA had antimicrobial activity, as evidenced by a drastic decrease in the number of Escherichia coli in vitro. The bacteria incubated with the proPO-ppA fragment were agglutinated and their cell morphology was altered. Our findings show an evolutionary conserved role for caspase cleavage in inflammation, and for the first time show a link between caspase induced inflammation and melanization. Further we give a more detailed understanding of how the proPO system is regulated in time and place and a role for the peptide generated by activation of proPO as well as for the peptides resulting from Caspase 1 proteolysis.

  10. Caspase-1-like regulation of the proPO-system and role of ppA and caspase-1-like cleaved peptides from proPO in innate immunity.

    Directory of Open Access Journals (Sweden)

    Miti Jearaphunt

    2014-04-01

    Full Text Available Invertebrates rely on innate immunity to respond to the entry of foreign microorganisms. One of the important innate immune responses in arthropods is the activation of prophenoloxidase (proPO by a proteolytic cascade finalized by the proPO-activating enzyme (ppA, which leads to melanization and the elimination of pathogens. Proteolytic cascades play a crucial role in innate immune reactions because they can be triggered more quickly than immune responses that require altered gene expression. Caspases are intracellular proteases involved in tightly regulated limited proteolysis of downstream processes and are also involved in inflammatory responses to infections for example by activation of interleukin 1ß. Here we show for the first time a link between caspase cleavage of proPO and release of this protein and the biological function of these fragments in response to bacterial infection in crayfish. Different fragments from the cleavage of proPO were studied to determine their roles in bacterial clearance and antimicrobial activity. These fragments include proPO-ppA, the N-terminal part of proPO cleaved by ppA, and proPO-casp1 and proPO-casp2, the fragments from the N-terminus after cleavage by caspase-1. The recombinant proteins corresponding to all three of these peptide fragments exhibited bacterial clearance activity in vivo, and proPO-ppA had antimicrobial activity, as evidenced by a drastic decrease in the number of Escherichia coli in vitro. The bacteria incubated with the proPO-ppA fragment were agglutinated and their cell morphology was altered. Our findings show an evolutionary conserved role for caspase cleavage in inflammation, and for the first time show a link between caspase induced inflammation and melanization. Further we give a more detailed understanding of how the proPO system is regulated in time and place and a role for the peptide generated by activation of proPO as well as for the peptides resulting from Caspase 1

  11. Genetic Variation in DNA of Coho Salmon from the Lower Columbia River : Final Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Fobes, Stephen; Knudsen, Kathy; Allendorf, Fred

    1993-04-01

    The goal of this project was to develop techniques to provide the information needed to determine if Lower Columbia River coho salmon represent a 'species' under the Endangered Species Act. Our report features two new nuclear DNA approaches to the improved detection of genetic variation: (1) Studies of DNA-level genetic variation for two nuclear growth hormone genes; (2) Use of arbitrary DNA primers (randomly amplified polymorphic DNA, or 'RAPD' primers) to detect variation at large numbers of nuclear genes. We used the polymerase chain reaction (PCR) to amplify variable sections (introns) of two growth hormone genes (GH-I and G/f-Z) in several salmonid species. Coho salmon had three DNA length variants for G/-I intron C. Restriction analysis and sequencing provided valuable information about the mode of evolution of these DNA sequences. We tested segregation of the variants in captive broods of coho salmon, and demonstrated that they are alleles at a single Mendelian locus. Population studies using the GH-1 alleles showed highly significant frequency differences between Lower Columbia River and Oregon Coast coho salmon, and marginal differences among stocks within these regions. These new markers are adequately defined and tested to use in coho salmon population studies of any size. The nature of the variation at GH-1 (Variable Number Tandem Repeats, or 'VNTRs') suggests that more genetic variants will be found in coho salmon from other areas. GH-2 intron C also showed length variation in coho salmon, and this variation was found to be sex-linked. Because PCR methods require minute amounts of tissue, this discovery provides a technique to determine the gender of immature coho salmon without killing them. Chinook salmon had restriction patterns and sequence divergences similar to coho salmon. Thus, we expect that sex linkage of GH-2 alleles predates the evolutionary divergence of Pacific salmon species, and that gender testing with

  12. The genetic basis for variation in olfactory behavior in Drosophila melanogaster.

    Science.gov (United States)

    Arya, Gunjan H; Magwire, Michael M; Huang, Wen; Serrano-Negron, Yazmin L; Mackay, Trudy F C; Anholt, Robert R H

    2015-05-01

    The genetic underpinnings that contribute to variation in olfactory perception are not fully understood. To explore the genetic basis of variation in olfactory perception, we measured behavioral responses to 14 chemically diverse naturally occurring odorants in 260400 flies from 186 lines of the Drosophila melanogaster Genetic Reference Panel, a population of inbred wild-derived lines with sequenced genomes. We observed variation in olfactory behavior for all odorants. Low to moderate broad-sense heritabilities and the large number of tests for genotype-olfactory phenotype association performed precluded any individual variant from reaching formal significance. However, the top variants (nominal P behavioral trait. Further, pathway enrichment analyses showed that genes tagged by the top variants included components of networks centered on cyclic guanosine monophosphate and inositol triphosphate signaling, growth factor signaling, Rho signaling, axon guidance, and regulation of neural connectivity. Functional validation with RNAi and mutations showed that 15 out of 17 genes tested indeed affect olfactory behavior. Our results show that in addition to chemoreceptors, variation in olfactory perception depends on polymorphisms that can result in subtle variations in synaptic connectivity within the nervous system.

  13. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    Science.gov (United States)

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  14. Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U

    2015-11-01

    The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome.

  15. Genetic variation in the emblematic Puya raimondii (Bromeliaceae from Huascarán National Park, Peru

    Directory of Open Access Journals (Sweden)

    Claudia Teresa Hornung-Leoni

    2013-04-01

    Full Text Available Puya raimondii, the giant Peruvian and Bolivian terrestrial bromeliad, is an emblematic endemic Andean species well represented in Huascarán National Park in Peru. This park is the largest reserve of puna (high altitude plateau vegetation. The objective of this study is to report on genetic variation in populations of P. raimondii from Huascarán and neighboring areas. AFLP profiles with four selective primer combinations were retrieved for 60 individuals from different zones. Genetic variability was estimated and a total of 172 bands were detected, of which 79.1% were polymorphic loci. The results showed genetic differentiation among populations, and gene flow. A cluster analysis showed that individuals of P. raimondii populations located in different mountain systems could be grouped together, suggesting long distance dispersal. Thus, conservation strategies for P. raimondii have to take into account exchange between populations located far apart in distance in order to preserve the genetic diversity of this showy species.

  16. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui;

    2011-01-01

    throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has......A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  17. Effect of Isolation of Hainan Island from the Mainland on the Genetic Variation of Podocarpus imbricatus

    Institute of Scientific and Technical Information of China (English)

    Li Jingwen; Zhang Huarong; Li Junqing

    2003-01-01

    Random amplified polymorphic DNA (RAPD) markers were used to analyze genetic variation of Podocarpus imbricatus in Hainan Island and Mainland of China. Two populations of Dacrydium pierrei were used as comparison materials. Both Podocarpus imbricatus and Dacrydium pierrei showed a low level of genetic diversity. However, Podocarpus imbricatus showed higher genetic diversity and higher population differentiation than Dacrydium pierrei. The geographic range may affect the genetic diversity of Podocarpus imbricatus and Dacrydium pierrei significantly. The UPGMA cluster tree showed that populations of Podocarpus imbricatus in Hainan Island and Guangxi Zhuang Autonomous Region were closer than those in Yunnan Province, indicating possible gene flow between Hainan Island and Guangxi Zhuang Autonomous Region. The young geological history of Hainan Island and the three times of unification and separation between Hainan Island and the Mainland may give the two species more possibilities of gene flow.

  18. Genetic variation of Melia azedarach in community forests of West Java assessed by RAPD

    Directory of Open Access Journals (Sweden)

    YULIANTI

    2011-04-01

    Full Text Available Yulianti, Siregar IZ, Wijayanto N, Tapa Darma IGK, Syamsuwida D (2011 Genetic variation of Melia azedarach in community forests of West Java assessed by RAPD. Biodiversitas 12: 64-69. Melia azedarach L. or mindi (local name is one of the widely planted exotic species in Indonesia, mostly found in community forests in West Java. However, improving and increasing the productivity of mindi commmunity plantation in West Java requires information on patterns of existing genetic diversity. The present work was aimed at estimating the genetic variation of mindi by using RAPD markers. Outcome of the activities was to propose appropriate conservation and management strategies of genetic resources in order to support the establishment of seed sources. Six populations of mindi plantation in the community forests were chosen for this research, i.e Sukaraja (Bogor-1, Megamendung (Bogor-2, Bandung, Purwakarta, Sumedang and Kuningan. Five primers (OPA-07, OPY-13, OPY-16, OPA-09 and OPO-05 producing reproducible bands were analysed for 120 selected mother trees in total, in which 20 trees per locality were sampled. Data were analysed using Popgene ver 1.31, NTSYS 2.02 and GenAlEx 6.3. Based on the analysis, the observed number of alleles per locus ranging from 1.43 to 1.60, and percentage of polymorphic loci (PPL ranging from 43.33 to 60.00.%. The levels of genetic variation were considered as moderate for all populations (He range from 0.1603 to 0.1956 and the the mean level of genetic diversity between population (Gst was 0.3005. Cluster analysis and Principal Coordinates showed three main groups, the first group consists of 4 populations i.e Bandung, Kuningan, Purwakarta and Megamendung, the second was Sukaraja and the third was Sumedang. Based on Analysis of Molecular Variance (AMOVA, the Percentages of Molecular Variance within population (69% is higher than that of between populations (31%. The moderate level of genetic variation in the community

  19. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB

    International Nuclear Information System (INIS)

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivity and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-α, IL (interleukin)-1β, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-κB and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: → Discovery of drugs for the allergic inflammation is important in human health. → Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. → Chrysin inhibited

  20. Identification of genetic variations of a Chinese family with paramyotonia congenita via whole exome sequencing

    Directory of Open Access Journals (Sweden)

    Jinxin Li

    2015-06-01

    Full Text Available Paramyotonia congenita (PC is a rare autosomal dominant neuromuscular disorder characterized by juvenile onset and development of cold-induced myotonia after repeated activities. The disease is mostly caused by genetic mutations of the sodium channel, voltage-gated, type IV, alpha subunit (SCN4A gene. This study intended to systematically identify the causative genetic variations of a Chinese Han PC family. Seven members of this PC family, including four patients and three healthy controls, were selected for whole exome sequencing (WES using the Illumina HiSeq platform. Sequence variations were identified using the SoftGenetics program. The mutation R1448C of SCN4A was found to be the only causative mutation. This study applied WES technology to sequence multiple members of a large PC family and was the first to systematically confirm that the genetic change in SCN4A is the only causative variation in this PC family and the SCN4A mutation is sufficient to lead to PC.

  1. Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.

    Science.gov (United States)

    Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C

    2011-08-01

    Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. PMID:21790565

  2. Genetic Variation among 82 Pharmacogenes: the PGRN-Seq data from the eMERGE Network

    Science.gov (United States)

    Obeng, Aniwaa Owusu; Wallace, John; Almoguera, Berta; Basford, Melissa A.; Bielinski, Suzette J.; Carrell, David S.; Connolly, John J.; Crawford, Dana; Doheny, Kimberly F.; Gallego, Carlos J.; Gordon, Adam S.; Keating, Brendan; Kirby, Jacqueline; Kitchner, Terrie; Manzi, Shannon; Mejia, Ana R.; Pan, Vivian; Perry, Cassandra L.; Peterson, Josh F.; Prows, Cynthia A.; Ralston, James; Scott, Stuart A.; Scrol, Aaron; Smith, Maureen; Stallings, Sarah C.; Veldhuizen, Tamra; Wolf, Wendy; Volpi, Simona; Wiley, Ken; Li, Rongling; Manolio, Teri; Bottinger, Erwin; Brilliant, Murray H.; Carey, David; Chisholm, Rex L.; Chute, Christopher G.; Haines, Jonathan L.; Hakonarson, Hakon; Harley, John B.; Holm, Ingrid A.; Kullo, Iftikhar J.; Jarvik, Gail P.; Larson, Eric B.; McCarty, Catherine A.; Williams, Marc S.; Denny, Joshua C.; Rasmussen-Torvik, Laura J.; Roden, Dan M.; Ritchie, Marylyn D.

    2016-01-01

    Genetic variation can affect drug response in multiple ways, though it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE-PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE-PGx data release includes sequence-derived data from ~5000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled CADD score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine. PMID:26857349

  3. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network.

    Science.gov (United States)

    Bush, W S; Crosslin, D R; Owusu-Obeng, A; Wallace, J; Almoguera, B; Basford, M A; Bielinski, S J; Carrell, D S; Connolly, J J; Crawford, D; Doheny, K F; Gallego, C J; Gordon, A S; Keating, B; Kirby, J; Kitchner, T; Manzi, S; Mejia, A R; Pan, V; Perry, C L; Peterson, J F; Prows, C A; Ralston, J; Scott, S A; Scrol, A; Smith, M; Stallings, S C; Veldhuizen, T; Wolf, W; Volpi, S; Wiley, K; Li, R; Manolio, T; Bottinger, E; Brilliant, M H; Carey, D; Chisholm, R L; Chute, C G; Haines, J L; Hakonarson, H; Harley, J B; Holm, I A; Kullo, I J; Jarvik, G P; Larson, E B; McCarty, C A; Williams, M S; Denny, J C; Rasmussen-Torvik, L J; Roden, D M; Ritchie, M D

    2016-08-01

    Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE-PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of "precision medicine." The February 2015 eMERGE-PGx data release includes sequence-derived data from ∼5,000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation-Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine. PMID:26857349

  4. Principles of genetic variations and molecular diseases: applications in hemophilia A.

    Science.gov (United States)

    Lannoy, N; Hermans, C

    2016-08-01

    DNA structure alterations are the ultimate source of genetic variations. Without them, evolution would be impossible. While they are essential for DNA diversity, defects in DNA synthesis can lead to numerous genetic diseases. Due to increasingly innovative technologies, our knowledge of the human genome and genetic diseases has grown considerably over the last few years, allowing us to detect another class of variants affecting the chromosomal structure. DNA sequence can be altered in multiple ways: DNA sequence changes by substitution, deletion, or duplication of some nucleotides; chromosomal structure alterations by deletion, duplication, translocation, and inversion, ranging in size from kilobases to mega bases; changes in the cell's genome size. If the alteration is located within a gene and sufficiently deleterious, it can cause genetic disorders. Due to the F8 gene's high rate of new small mutations and its location at the tip of X chromosome, containing high repetitive sequences, a wide variety of genetic variants has been described as the cause of hemophilia A (HA). In addition to the F8 intron 22 repeat inversion, HA can also result from point mutations, other inversions, complex rearrangements, such as duplications or deletions, and transposon insertions causing phenotypes of variable severity characterized by complete or partial deficiency of circulating FVIII. This review aims to present the origins, mechanisms, and consequences of F8 alterations. A sound understanding of the multiple genetic mechanisms responsible for HA is essential to determine the appropriate strategy for molecular diagnosis and detected each type of genetic variant. PMID:27296059

  5. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm.

    Science.gov (United States)

    Manni, Franz; Guérard, Etienne; Heyer, Evelyne

    2004-04-01

    When sampling locations are known, the association between genetic and geographic distances can be tested by spatial autocorrelation or regression methods. These tests give some clues to the possible shape of the genetic landscape. Nevertheless, correlation analyses fail when attempting to identify where genetic barriers exist, namely, the areas where a given variable shows an abrupt rate of change. To this end, a computational geometry approach is more suitable because it provides the locations and the directions of barriers and because it can show where geographic patterns of two or more variables are similar. In this frame we have implemented Monmonier's (1973) maximum difference algorithm in a new software package to identify genetic barriers. To provide a more realistic representation of the barriers in a genetic landscape, we implemented in the software a significance test by means of bootstrap matrices analysis. As a result, the noise associated with genetic markers can be visualized on a geographic map and the areas where genetic barriers are more robust can be identified. Moreover, this multiple matrices approach can visualize the patterns of variation associated with different markers in the same overall picture. This improved Monmonier's method is highly reliable and can be applied to nongenetic data whenever sampling locations and a distance matrix between corresponding data are available.

  6. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Foucart Antoine

    2008-02-01

    Full Text Available Abstract Background Environmental parental effects can have important ecological and evolutionary consequences, yet little is known about genetic variation among populations in the plastic responses of offspring phenotypes to parental environmental conditions. This type of variation may lead to rapid phenotypic divergence among populations and facilitate speciation. With respect to density-dependent phenotypic plasticity, locust species (Orthoptera: family Acrididae, exhibit spectacular developmental and behavioural shifts in response to population density, called phase change. Given the significance of phase change in locust outbreaks and control, its triggering processes have been widely investigated. Whereas crowding within the lifetime of both offspring and parents has emerged as a primary causal factor of phase change, less is known about intraspecific genetic variation in the expression of phase change, and in particular in response to the parental environment. We conducted a laboratory experiment that explicitly controlled for the environmental effects of parental rearing density. This design enabled us to compare the parental effects on offspring expression of phase-related traits between two naturally-occurring, genetically distinct populations of Locusta migratoria that differed in their historical patterns of high population density outbreak events. Results We found that locusts from a historically outbreaking population of L. migratoria expressed parentally-inherited density-dependent phase changes to a greater degree than those from a historically non-outbreaking population. Conclusion Because locusts from both populations were raised in a common environment during our experiment, a genetically-based process must be responsible for the observed variation in the propensity to express phase change. This result emphasizes the importance of genetic factors in the expression of phase traits and calls for further investigations on density

  7. Genetic variation at the MHC in a population of introduced wild turkeys.

    Science.gov (United States)

    Bauer, Miranda M; Miller, Marcia M; Briles, W Elwood; Reed, Kent M

    2013-01-01

    Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.

  8. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  9. Genetic variation in a closed line of the white shrimp Litopenaeus vannamei (Penaeidae

    Directory of Open Access Journals (Sweden)

    Eloize Luvesuto

    2007-01-01

    Full Text Available The culture of the marine shrimp Litopenaeus vannamei has recently boosted the Brazilian shrimp industry. However, it is well known that selection methods based solely on phenotypic characteristics, a reduced number of breeders and the practice of inbreeding may promote a significant raise in the genetic similarity of the captive populations, leading to greater disease susceptibility and impairing both the growth and final size of the shrimps. We used four microsatellite loci to investigate genetic variation in three generations (F5, F6 and F7 of a closed and reared L. vannamei lineage. Although an accentuated heterozygosis deficit was detected, we also observed that the captive propagation of this lineage did not lead to a significant loss of genetic variability over the three generations studied. One possible reason for this is that the breeding conditions of this lineage were good enough to prevent any significant loss of genetic variability. However, three generations may have been insufficient to produce detectable changes in genetic frequencies in the loci studied. Alternatively, the microsatellite loci may have been non-neutral (biased and related to the conditions in which the shrimps were kept, resulting in a similar allele pool in respect to these four microsatellites over the three generations studied. Any generalizations regarding microsatellite variation in closed shrimp lines may thus be incomplete and should be carefully analyzed.

  10. Genetic variation of common walnut (Juglans regia in Piedmont, Northwestern Italy

    Directory of Open Access Journals (Sweden)

    Ferrazzini D

    2007-12-01

    Full Text Available The European or common walnut is a large tree prized as a multipurpose species: it provides valuable timber and produces a high-quality edible nut. The diffusion of the species in Italy has been largely influenced by the human activity, mainly through germplasm movement, selection of genotypes most suited for wood or fruit production and adaptation induced on fruit crop reproductive materials. As a consequence, genetic variability has been reduced, so that programs aimed at its preservation appear of the utmost importance. 104 walnut plants growing in Piedmont, northwestern Italy, were investigated through genetic variation scored at RAPD loci, yielded by PCR amplification of 10 decamer primers. Among the 101 studied loci, only 53 were polymorphic, showing a low level of genetic variation within the studied material. Genetic differentiation was estimated both at individual and geographical area level. Only in few cases trees growing in the same area showed to be genetically similar, while the differentiation between areas accounted for about 10% of the total variation, according to AMOVA. No significant correlation was found between genetic and geographic distances. The results of the study showed that also in Piedmont (such as it was already demonstrated in other parts of Italy the distribution of common walnut is a direct consequence of the human activity. The selection of individual trees, to be used as basic materials for seed supply, should therefore be based mainly on phenotypic traits, rather than ecological features of the location: in species characterized by artificial diffusion, the adoption of Region of Provenance has a scarce significance and prominence should be given to the phenotype selection.

  11. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  12. The distribution of nuclear genetic variation and historical demography of sea otters

    Science.gov (United States)

    Aguilar, A.; Jessup, David A.; Estes, James; Garza, J.C.

    2008-01-01

    The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis, which represents ???10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes. ?? Journal compilation ?? 2007 The Zoological Society of London No claim to original US government works.

  13. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    Science.gov (United States)

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  14. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    Science.gov (United States)

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.

  15. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa).

    OpenAIRE

    Gu, Xing-You; Kianian, Shahryar F.; Foley, Michael E.

    2004-01-01

    Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. ...

  16. RAPD Analysis for Genetic Variation within the Endangered Quillwort Isoetes hypsophila(Isoetaceae)

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-ming; WANG Jing-yuan; LIU Xing; Gituru Wahiti Robert; WANG Qing-feng

    2005-01-01

    The genetic variation in the critically endangered species Isoetes hypsophila was investigated using Random Amplified Polymorphism DNA (RAPD) markers. Thirteen primers were screened from sixty primers, and a total of 104DNA fragments were scored, of which, 52 were polymorphic loci. Low-level genetic diversity within populations with PPB values ranging from 7.69% to 25.96% was found. An Anal ysis of Molecular Variance (AMOVA) indicated that the most of variance (78. 30%) occurred between Yunnan and Sichuan. The variances among populations within regions and within populations were only 3. 89% and 17. 82%, respectively.

  17. Genetic Variation in SENP1 and ANP32D as Predictors of Chronic Mountain Sickness

    OpenAIRE

    Cole, Amy M.; Petousi, Nayia; Cavalleri, Gianpiero L.; Robbins, Peter A.

    2014-01-01

    Cole, Amy M., Nayia Petousi, Gianpiero L. Cavalleri, and Peter A. Robbins Genetic variation in SENP1 and ANP32D as predictors of chronic mountain sickness. High Alt Med Biol 15:497–499, 2014.—Chronic mountain sickness (CMS) is a serious illness that affects life-long high-altitude residents. A recent study analyzed whole genome sequence data from residents of Cerro de Pasco (Peru) in an effort to identify the genetic basis of CMS and reported SENP1 (rs7963934) and ANP32D (rs72644851) to show ...

  18. 家蝇细胞凋亡起始酶Caspase-1基因的克隆及在不同虫态的表达%Cloning of the apoptosis initial enzyme Caspase-1 gene from the house fly,Musca domestica and its expression in different developmental stages

    Institute of Scientific and Technical Information of China (English)

    程功; 龚亮; 陈永; 胡美英; 钟国华

    2009-01-01

    为了研究Caspases家族在昆虫发育变态中的作用,通过RT-PCR扩增并结合RACE技术,克隆得到家蝇Musca domestica Caspase-1基因1条,命名为Mdom-Caspase-1(GenBank中cDNA序列号为EU854472,氨基酸序列号为ACF71490).该基因全长1 295 bp,阅读框序列870 bp,共编码289个氨基酸,理论分子量32.83 kDa,等电点8.67. Mdom-Caspase-1蛋白有5个保守的半胱氨酸位点QACQG,具有Caspase的典型特征;整个分子呈现亲水性,有8个区域共89个氨基酸为亲酯性,蛋白质二级结构主要由11个α螺旋区、 7个β-折叠区、 17个β-转角区组成.昆虫间Caspase-1分子具有明显的保守性,Mdom-Caspase-1与黑腹果蝇Drosophila melanogaster、埃及伊蚊Aedes aegypti和致倦库蚊Culex quinquefasciatus的Caspase-1氨基酸序列相似性为65% ~77%.RT-PCR半定量分析结果表明,Mdom-Caspase-1基因在家蝇各个虫态中均有表达,但在卵期、 3龄幼虫、预蛹、蛹和羽化5 d的雌虫中的表达量明显高于其他虫态.这些结果提示Caspase-1可能与昆虫发育变态关系密切,为进一步研究昆虫Caspase-1功能、设计Caspase-1抑制剂提供了分子基础.

  19. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    Science.gov (United States)

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  20. Can genetic differences explain vocal dialect variation in sperm whales, Physeter macrocephalus?

    Science.gov (United States)

    Rendell, Luke; Mesnick, Sarah L; Dalebout, Merel L; Burtenshaw, Jessica; Whitehead, Hal

    2012-03-01

    Sperm whale social groups can be assigned to vocal clans based on their production of codas, short stereotyped patterns of clicks. It is currently unclear whether genetic variation could account for these behavioural differences. We studied mitochondrial DNA (mtDNA) variation among sympatric vocal clans in the Pacific Ocean, using sequences extracted from sloughed skin samples. We sampled 194 individuals from 30 social groups belonging to one of three vocal clans. As in previous studies of sperm whales, mtDNA control region diversity was low (π = 0.003), with just 14 haplotypes present in our sample. Both hierarchical AMOVAs and partial Mantel tests showed that vocal clan was a more important factor in matrilineal population genetic structure than geography, even though our sampling spanned thousands of kilometres. The variance component attributed to vocal dialects (7.7%) was an order of magnitude higher than those previously reported in birds, while the variance component attributed to geographic area was negligible. Despite this, the two most common haplotypes were present in significant quantities in each clan, meaning that variation in the control region cannot account for behavioural variation between clans, and instead parallels the situation in humans where parent-offspring transmission of language variation has resulted in correlations with neutral genes. Our results also raise questions for the management of sperm whale populations, which has traditionally been based on dividing populations into geographic 'stocks', suggesting that culturally-defined vocal clans may be more appropriate management units. PMID:22015469

  1. Genetic variation in two sea cucumber (Apostichopus japonicus) stocks revealed by ISSR markers

    Institute of Scientific and Technical Information of China (English)

    YAO Bing; HU Xiaoli; BAO Zhenmin; LU Wei; HU Jingjie

    2007-01-01

    Sea cucumber Apostichopus japonicus samples were collected in Changdao, Penglai (PL),27 individuals, and Lingshandao, Qingdao (QD), 30 individuals, in the Shandong Peninsula, China. Ten SSR primers were used to assess the genetic variation and relationship between and within the two stocks.Respectively, for each stock, the percentage of polymorphic bands was 85.2% and 86.9%; the gene diversity was 0.360 5 and 0.342 8; and the Shannon's information index was 0.515 0 and 0.499 0. At species level, the percentage of polymorphic bands was 92.2%, the total gene diversity was 0.378 9 and the Shannon's information index was 0.550 4. The coefficient of overall genetic differentiation and the genetic distances between the stocks were also calculated to be 0.073 0 and 0.079 6 using the POPGENE program. Results show that the genetic diversity of the two stocks is still large but the genetic distance between the two stocks is close. A dendrogram was constructed for the 57 individuals from the two stocks,showing that the genetic structure was unitary for PL stock but complex for QD stock.

  2. Genetic variation in telomere maintenance genes in relation to ovarian cancer survival.

    Science.gov (United States)

    Harris, Holly R; Vivo, Immaculata De; Titus, Linda J; Vitonis, Allison F; Wong, Jason Y Y; Cramer, Daniel W; Terry, Kathryn L

    2012-01-01

    Telomeres are repetitive non-coding DNA sequences at the ends of chromosomes that provide protection against chromosomal instability. Telomere length and stability are influenced by proteins, including telomerase which is partially encoded by the TERT gene. Genetic variation in the TERT gene is associated with ovarian cancer risk, and predicts survival in lung cancer and glioma. We investigated whether genetic variation in five telomere maintenance genes was associated with survival among 1480 cases of invasive epithelial ovarian cancer in the population-based New England Case-Control Study. Cox proportional hazard models were used to calculate hazard ratios and 95% confidence intervals. Overall we observed no significant associations between SNPs in telomere maintenance genes and mortality using a significance threshold of p=0.001. However, we observed some suggestive associations in subgroup analyses. Future studies with larger populations may further our understanding of what role telomeres play in ovarian cancer survival.

  3. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    Science.gov (United States)

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  4. ESR1 and EGF genetic variation in relation to breast cancer risk and survival

    OpenAIRE

    Einarsdóttir, Kristjana; Darabi, Hatef; Li, Yi; Low, Yen Ling; Li, Yu Qing; Bonnard, Carine; Sjölander, Arvid; Czene, Kamila; Wedrén, Sara; Liu, Edison T.; Hall, Per; Humphreys, Keith; Liu, Jianjun

    2008-01-01

    Introduction Oestrogen exposure is a central factor in the development of breast cancer. Oestrogen receptor alpha (ESR1) is the main mediator of oestrogen effect in breast epithelia and has also been shown to be activated by epidermal growth factor (EGF). We sought to determine if common genetic variation in the ESR1 and EGF genes affects breast cancer risk, tumour characteristics or breast cancer survival. Methods We genotyped 157 single nucleotide polymorphisms (SNPs) in ESR1 and 54 SNPs in...

  5. Chemical Variation in a Dominant Tree Species: Population Divergence, Selection and Genetic Stability across Environments

    OpenAIRE

    Julianne M O'Reilly-Wapstra; Miller, Alison M.; Hamilton, Matthew G.; Dean Williams; Naomi Glancy-Dean; Potts, Brad M.

    2013-01-01

    Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E). We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs) in a dominant tree species, Eu...

  6. Analysis of human genetic variation in candidate genes under positive selections on the human linage

    OpenAIRE

    Moreno Estrada, Andr??s

    2009-01-01

    Natural selection has played an important role in shaping human genetic variation, thus, finding variants that have been targeted by positive selection can provide insights about which genes influence human phenotypic variability. In this work we conduct a genome-wide survey of protein-coding genes comparing humans, chimpanzees, and closely related species in order to detect the fraction of genes undergoing positive selection on the human lineage, and further investigate intraspecific variati...

  7. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory.

    Science.gov (United States)

    O'Reilly-Wapstra, Julianne M; Iason, Glenn R; Thoss, Vera

    2007-05-01

    This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Delta(3)-carene and alpha-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, alpha-pinene concentration (also representing beta-pinene, Delta(3)-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of alpha-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in alpha-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g(-1) dry matter) quantities of either Delta(3)-carene or alpha-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in alpha-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A

  8. Genetic-morphometric variation in Culex quinquefasciatus from Brazil and La Plata, Argentina

    OpenAIRE

    Sirlei Antunes de Morais; Camila Moratore; Lincoln Suesdek; Mauro Toledo Marrelli

    2010-01-01

    Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra...

  9. Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island

    OpenAIRE

    Sébastien Marcombe; Margot Paris; Christophe Paupy; Charline Bringuier; André Yebakima; Fabrice Chandre; Jean-Philippe David; Vincent Corbel; Laurence Despres

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determ...

  10. Candidate gene study to investigate the genetic determinants of normal variation in central corneal thickness

    OpenAIRE

    Dimasi, David P.; Kathryn P Burdon; Hewitt, Alex W; Savarirayan, Ravi; Healey, Paul R.; Mitchell, Paul; Mackey, David A.; Craig, Jamie E

    2010-01-01

    Purpose The genetic component underlying variation in central corneal thickness (CCT) in the normal population remains largely unknown. As CCT is an identified risk factor for open-angle glaucoma, understanding the genes involved in CCT determination could improve our understanding of the mechanisms involved in this association. Methods To identify novel CCT genes, we selected eight different candidates based on a range of criteria. These included; aquaporin 1 (AQ1), aquaporin 5 (AQ5), decori...

  11. Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk

    OpenAIRE

    Siegelmann-Danieli, N; Buetow, K H

    1999-01-01

    The activity of the aromatase enzyme, which converts androgens into oestrogens and has a major role in regulating oestrogen levels in the breast, is thought to be a contributing factor in the development of breast cancer. We undertook this study to assess the role of constitutional genetic variation in the human aromatase gene (Cyp19) in the development of this disease. Our genotyping of 348 cases with breast cancer and 145 controls (all Caucasian women) for a published tetranucleotide repeat...

  12. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    OpenAIRE

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arab...

  13. Roles of Helicobacter pylori infection, host genetic variation, and other environmental exposures in gastric carcinogenesis

    OpenAIRE

    Persson, Christina

    2009-01-01

    Despite a general declining secular trend of incidence in most parts of the world, stomach cancer is still a major cause of cancer-related death worldwide due to its poor prognosis. Although Helicobacter pylori (H. pylori) infection is an established risk factor for stomach cancer, the true magnitude of the association is still not determined. Besides H. pylori infection, some other factors including host genetic variation and environmental exposures might to play a role in ...

  14. Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations

    OpenAIRE

    Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

    2011-01-01

    The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human in...

  15. Genetic Variation in the Dectin-1/CARD9 Recognition Pathway and Susceptibility to Candidemia

    OpenAIRE

    Rosentul, Diana C.; Plantinga, Theo S.; Oosting, Marije; Scott, William K.; Digna R. Velez Edwards; Smith, P. Brian; Alexander, Barbara D.; Yang, John C.; Laird, Gregory M.; Joosten, Leo A. B.; van der Meer, Jos W.M.; Perfect, John R.; Kullberg, Bart-Jan; Mihai G Netea; Johnson, Melissa D.

    2011-01-01

    Background. Candidemia is an important cause of morbidity and mortality in critically ill patients or patients undergoing invasive treatments. Dectin-1 is the main β-glucan receptor, and patients with a complete deficiency of either dectin-1 or its adaptor molecule CARD9 display persistent mucosal infections with Candida albicans. The role of genetic variation of DECTIN-1 and CARD9 genes on the susceptibility to candidemia is unknown.

  16. Genetic Variation of Three Populations of Indian Frog (Hoplobatrachus tigerinus Revealed by Allozyme Marker

    Directory of Open Access Journals (Sweden)

    M. Belal Hossain

    2012-01-01

    Full Text Available The Indian bullfrog, Hoplobatrachus tigerinus plays a significant role in maintaining the natural balance in the ecosystems. It plays an important role in controlling the various agricultural pests because of its omnivorous feeding habit. The aim of the present study is to know the genetic variation of H. tigerinus in three natural habitats. Samples collected from three districts of Bangladesh were analyzed with five enzymes (MDH, LDH, GPI, PGM and EST in CA 6.1 buffer system for their genetic variation. Four polymorphic loci (Mdh-1, Est-1, Gpi-1 and Pgm were interpretable in muscle with starch gel electrophoresis. Among the 5 presumptive loci, the mean proportion of polymorphic loci was observed 80, 80 and 60% in Rangpur, Khulna and Mymensingh populations, respectively. The highest mean number of allele per locus and mean proportion of heterozygous loci per individual were observed in the Rangpur population. The average observed heterozygosity (Ho was 0.163 and expected heterozygosity (He was 0.469. In pair-wise analysis, comparatively higher Nm value (5.507 was estimated between the Rangpur and Khulna populations corresponding lower level of FST value (0.043. The UPGMA dendrogram showed two clusters among the three Indian bullfrog populations. Rangpur and Khulna populations formed one cluster while Mymensingh population formed another cluster. The Mymensingh population separated from Rangpur and Khulna by a genetic distance of 0.177 whereas, the Khulna population is different from the Rangpur population by the genetic distance of 0.052. The results suggested that the considerable genetic variation is maintained among the natural H. tigerinus populations.

  17. Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action

    Science.gov (United States)

    Hagen, Casper P.; Sørensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, Jørgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

    2014-01-01

    Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

  18. Modeling variation in early life mortality in the western lowland gorilla: Genetic, maternal and other effects.

    Science.gov (United States)

    Ahsan, Monica H; Blomquist, Gregory E

    2015-06-01

    Uncovering sources of variation in gorilla infant mortality informs conservation and life history research efforts. The international studbook for the western lowland gorilla provides information on a sample of captive gorillas large enough for which to analyze genetic, maternal, and various other effects on early life mortality in this critically endangered species. We assess the importance of variables such as sex, maternal parity, paternal age, and hand rearing with regard to infant survival. We also quantify the proportions of variation in mortality influenced by heritable variation and maternal effects from these pedigree and survival data using variance component estimation. Markov chain Monte Carlo simulations of generalized linear mixed models produce variance component distributions in an animal model framework that employs all pedigree information. Two models, one with a maternal identity component and one with both additive genetic and maternal identity components, estimate variance components for different age classes during the first 2 years of life. This is informative of the extent to which mortality risk factors change over time during gorilla infancy. Our results indicate that gorilla mortality is moderately heritable with the strongest genetic influence just after birth. Maternal effects are most important during the first 6 months of life. Interestingly, hand-reared infants have lower mortality for the first 6 months of life. Aside from hand rearing, we found other predictors commonly used in studies of primate infant mortality to have little influence in these gorilla data.

  19. Evolving Landscapes: the Effect of Genetic Variation on Salt Marsh Erosion

    Science.gov (United States)

    Bernik, B. M.; Blum, M. J.

    2014-12-01

    Ecogeomorphic studies have demonstrated that biota can exert influence over geomorphic processes, such as sediment transport, which in turn have biotic consequences and generate complex feedbacks. However, little attention has been paid to the potential for feedback to arise from evolutionary processes as population genetic composition changes in response to changing physical landscapes. In coastal ecosystems experiencing land loss, for example, shoreline erosion entails reduced plant survival and reproduction, and thereby represents a geomorphic response with inherent consequences for evolutionary fitness. To get at this topic, we examined the effect of genetic variation in the saltmarsh grass Spartina alterniflora, a renowned ecosystem engineer, on rates of shoreline erosion. Field transplantation studies and controlled greenhouse experiments were conducted to compare different genotypes from both wild and cultivated populations. Plant traits, soil properties, accretion/subsidence, and rates of land loss were measured. We found significant differences in rates of erosion between field plots occupied by different genotypes. Differences in erosion corresponded to variation in soil properties including critical shear stress and subsidence. Plant traits that differed across genotypes included belowground biomass, root tensile strength, and C:N ratios. Our results demonstrate the importance of genetic variation to salt marsh functioning, elucidating the relationship between evolutionary processes and ecogeomorphic dynamics in these systems. Because evolutionary processes can occur on ecological timescales, the direction and strength of ecogeomorphic feedbacks may be more dynamic than previously accounted for.

  20. Genetic variation but weak genetic covariation between pre- and post-copulatory episodes of sexual selection in Drosophila melanogaster.

    Science.gov (United States)

    Travers, L M; Garcia-Gonzalez, F; Simmons, L W

    2016-08-01

    When females mate polyandrously, male reproductive success depends both on the male's ability to attain matings and on his ability to outcompete rival males in the fertilization of ova post-copulation. Increased investment in  ejaculate components may trade off with investment in precopulatory traits due to resource allocation. Alternatively, pre- and post-copulatory traits could be positively related if individuals can afford to invest heavily in traits advantageous at both episodes of selection. There is empirical evidence for both positive and negative associations between pre- and post-copulatory episodes, but little is known about the genetic basis of these correlations. In this study, we measured morphological, chemical and behavioural precopulatory male traits and investigated their relationship with measures of male fitness (male mating success, remating inhibition and offensive sperm competitiveness) across 40 isofemale lines of Drosophila melanogaster. We found significant variation among isofemale lines, indicating a genetic basis for most of the traits investigated. However, we found weak evidence for genetic correlations between precopulatory traits and our indices of male fitness. Moreover, pre- and post-copulatory episodes of selection were uncorrelated, suggesting selection may act independently at the different episodes to maximize male reproductive success. PMID:27159063

  1. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality

    Science.gov (United States)

    Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.

    2015-01-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286

  2. Genetic variations in the serotoninergic system contribute to body-mass index in Chinese adolescents.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available OBJECTIVE: Obesity has become a worldwide health problem in the past decades. Human and animal studies have implicated serotonin in appetite regulation, and behavior genetic studies have shown that body mass index (BMI has a strong genetic component. However, the roles of genes related to the serotoninergic (5-hydroxytryptamine,5-HT system in obesity/BMI are not well understood, especially in Chinese subjects. SUBJECTS AND DESIGN: With a sample of 478 healthy Chinese volunteers, this study investigated the relation between BMI and genetic variations of the serotoninergic system as characterized by 136 representative polymorphisms. We used a system-level approach to identify SNPs associated with BMI, then estimated their overall contribution to BMI by multiple regression and verified it by permutation. RESULTS: We identified 12 SNPs that made statistically significant contributions to BMI. After controlling for gender and age, four of these SNPs accounted for 7.7% additional variance of BMI. Permutation analysis showed that the probability of obtaining these findings by chance was low (p = 0.015, permuted for 1000 times. CONCLUSION: These results showed that genetic variations in the serotoninergic system made a moderate contribution to individual differences in BMI among a healthy Chinese sample, suggesting that a similar approach can be used to study obesity.

  3. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt.

    Science.gov (United States)

    Mahmoud, Amer F

    2016-04-01

    Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. PMID:27147934

  4. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens.

    Science.gov (United States)

    Felver-Gant, J N; Mack, L A; Dennis, R L; Eicher, S D; Cheng, H W

    2012-07-01

    Heat stress (HS) is a major problem experienced by the poultry industry during high-temperature conditions. The ability to manage the detrimental effects of HS can be attributed to multiple factors, including genetic background of flocks. The objective of the present study was to determine the genetic variation in HS effects on laying hens' physiological homeostasis. Ninety 28-wk-old White Leghorn hens of 2 strains were used: a commercial line of individually selected hens for high egg production, DeKalb XL (DXL), and a line of group-selected hens for high productivity and survivability, named kind gentle bird (KGB). Hens were randomly paired by strain and assigned to hot or control treatment for 14 d. Physical and physiological parameters were analyzed at d 8 and 14 posttreatment. Compared with controls, HS increased hen's core body temperature (P hens exposed to HS (P hens, KGB hens had higher heat shock protein 70 concentrations (P hens' liver weight decreased following HS, with less of a response in the KGB line (P hens due to genetic variations. These data provide evidence that is valuable for determining genetic interventions for laying hens under HS.

  5. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    Science.gov (United States)

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. PMID:26296591

  6. Variation in salamander tail regeneration is associated with genetic factors that determine tail morphology.

    Directory of Open Access Journals (Sweden)

    Gareth J Voss

    Full Text Available Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander's tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66-68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4% and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.

  7. Contribution of FKBP5 genetic variation to gemcitabine treatment and survival in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Ellsworth

    Full Text Available PURPOSE: FKBP51, (FKBP5, is a negative regulator of Akt. Variability in FKBP5 expression level is a major factor contributing to variation in response to chemotherapeutic agents including gemcitabine, a first line treatment for pancreatic cancer. Genetic variation in FKBP5 could influence its function and, ultimately, treatment response of pancreatic cancer. EXPERIMENTAL DESIGN: We set out to comprehensively study the role of genetic variation in FKBP5 identified by Next Generation DNA resequencing on response to gemcitabine treatment of pancreatic cancer by utilizing both tumor and germline DNA samples from 43 pancreatic cancer patients, including 19 paired normal-tumor samples. Next, genotype-phenotype association studies were performed with overall survival as well as with FKBP5 gene expression in tumor using the same samples in which resequencing had been performed, followed by functional genomics studies. RESULTS: In-depth resequencing identified 404 FKBP5 single nucleotide polymorphisms (SNPs in normal and tumor DNA. SNPs with the strongest associations with survival or FKBP5 expression were subjected to functional genomic study. Electromobility shift assay showed that the rs73748206 "A(T" SNP altered DNA-protein binding patterns, consistent with significantly increased reporter gene activity, possibly through its increased binding to Glucocorticoid Receptor (GR. The effect of rs73748206 was confirmed on the basis of its association with FKBP5 expression by affecting the binding to GR in lymphoblastoid cell lines derived from the same patients for whom DNA was used for resequencing. CONCLUSION: This comprehensive FKBP5 resequencing study provides insights into the role of genetic variation in variation of gemcitabine response.

  8. HLA variation reveals genetic continuity rather than population group structure in East Asia.

    Science.gov (United States)

    Di, Da; Sanchez-Mazas, Alicia

    2014-03-01

    Genetic differences between Northeast Asian (NEA) and Southeast Asian (SEA) populations have been observed in numerous studies. At the among-population level, despite a clear north-south differentiation observed for many genetic markers, debates were led between abrupt differences and a continuous pattern. At the within-population level, whether NEA or SEA populations have higher genetic diversity is also highly controversial. In this study, we analyzed a large set of HLA data from East Asia in order to map the genetic variation among and within populations in this continent and to clarify the distribution pattern of HLA lineages and alleles. We observed a genetic differentiation between NEA and SEA populations following a continuous pattern from north to south, and we show a significant and continuous decrease of HLA diversity by the same direction. This continuity is shaped by clinal distributions of many HLA lineages and alleles with increasing or decreasing frequencies along the latitude. These results bring new evidence in favor of the "overlapping model" proposed previously for East Asian peopling history, whereby modern humans migrated eastward from western Eurasia via two independent routes along each side of the Himalayas and, later, overlapped in East Asia across open land areas. Our study strongly suggests that intensive gene flow between NEA and SEA populations occurred and shaped the latitude-related continuous pattern of genetic variation and the peculiar HLA lineage and allele distributions observed in this continent. Probably for a very long period, the exact duration of these events remains to be estimated. PMID:24449274

  9. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs. Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.

  10. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

    Institute of Scientific and Technical Information of China (English)

    Martin A. Erlandson

    2009-01-01

    Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark "hot spots" of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.

  11. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  12. Genetic variation in Norwegian piscine myocarditis virus in Atlantic salmon, Salmo salar L.

    Science.gov (United States)

    Wiik-Nielsen, J; Alarcón, M; Fineid, B; Rode, M; Haugland, Ø

    2013-02-01

    Cardiomyopathy syndrome (CMS) in Atlantic salmon, Salmo salar L., is a severe cardiac disease characterized by a necrotizing myocarditis involving the atrium and the spongious part of the ventricle. The disease is caused by piscine myocarditis virus (PMCV), a double-stranded RNA virus likely belonging to the family Totiviridae. The objective of this study was to evaluate the genetic variation in Norwegian PMCV isolates focusing on the putative structural proteins encoded by open reading frames (ORFs) 1 and 3. The virus isolates were sampled from a total of 36 farms along the Norwegian coastline. This study represents the first investigation of PMCV genome variation and shows that Norwegian isolates are highly similar, with the most divergent isolates sharing 98.6% nucleotide identity. Interestingly, amino acid sequence diversity within ORF3 is approximately threefold higher than for ORF1. While phylogenetic analysis based on concatenated nucleotide data covering ORF1 and ORF3 revealed four main clusters, the maximum sequence variation of 1.4% at the nucleotide level suggests that all Norwegian isolates belong to a single genogroup. Substantial sequence variation within farms was also observed, which may complicate future molecular epidemiological investigations. The genetic homogeneity among the Norwegian isolates might facilitate development of both diagnostic tools and an efficient vaccine against CMS in the future.

  13. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.).

    Science.gov (United States)

    Robinson, Kathryn M; Ingvarsson, Pär K; Jansson, Stefan; Albrectsen, Benedicte R

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  14. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  15. Estimating genetic variation in sugar beets and wild beets using pools of individuals.

    Science.gov (United States)

    Kraft, T; Säll, T; Fridlund, B; Hjerdin, A; Tuvesson, S; Halldén, C

    1997-08-01

    The study describes the genetic structure in sugar beets and in wild beets (Beta vulgaris) using 30 RFLP markers. Samples consisting of pooled plant material of 100 individuals from each line and population were used to analyse 120 sugar beet breeding lines and 91 wild beet populations. Greater variation was found among the wild populations than among the breeding lines. Although the two major groups of breeding lines, monogerm and multigerm, had approximately equal amounts of genetic variation, in the monogerm group more of this variation was partitioned among the lines than within the lines. Furthermore, despite most of the variation being shared by the two groups, the two groups were found to be separated along the first two components in a principal component analysis. Computer simulations were carried out to evaluate the usefulness of the pooled-sample strategy employed in the investigation. These simulations showed the use of pooled samples to be a better alternative than that of analysing a few plants individually.

  16. Genetic variation in host plants influences the mate preferences of a plant-feeding insect.

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L

    2014-10-01

    Many species spend their lives in close association with other organisms, and the environments provided by those organisms can play an important role as causes of variation in phenotypes. When this is the case, the genotypes of the individuals constituting the environment may influence the phenotypes of individuals living in that environment. When these effects are between heterospecifics, interspecific indirect genetic effects (IIGEs) occur. Several studies have detected IIGEs, but whether IIGEs contribute to variation in sexually selected traits remains virtually unexplored. We assessed how mate preferences in a plant-feeding insect are influenced by the genotype of their host plant. We established clone lines of a sample of host plant genotypes constituting the background biotic environment for a random sample of insects that we reared on them. We found that the insects' mate preferences varied according to the clone line on which they developed. These results demonstrate that genetic variation in host plants has cross-trophic consequences on a trait that has strong effects on fitness and interpopulation dynamics such as diversification in communication systems. We discuss how IIGEs on mate preferences may influence the way in which selection acts, including the maintenance of variation and the promotion of evolutionary divergence. PMID:25226184

  17. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  18. Genetic variation of Garra rufa fish in Kermanshah and Bushehr provinces, Iran, using SSR microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ali Shabani

    2013-09-01

    Full Text Available Six highly variable microsatellite loci were used to investigate the genetic diversity and population structure of the Garra rufa in Kermanshah and Bushehr provinces, Iran. All of the 6 microsatellite loci screened in this study showed polymorphism. A total of 90 individual fish from 3 populations were genotyped and 60 alleles were observed in all loci. The number of alleles per locus ranged from 6 to14. The average allelic number of these polymorphic markers was 10. The averages of observed (Ho and expected heterozygosity (He was 0.529 and 0.826, respectively. The genetic distance values ranged between 0.235-0.570. The UPGMA dendrogram based on genetic distance resulted in three clusters: Gamasiab population alone was classified as one and the other two populations as the second cluster. This study revealed a fairly high level of genetic variation in the microsatellite loci within the three populations, and identified distinct population groups of Garra rufa. This study gains significance for the analysis of the populations’ genetic diversity as well as the management of this important fish resource.

  19. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  20. Spatial structure of morphological and neutral genetic variation in Brook Trout

    Science.gov (United States)

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  1. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression.

    Science.gov (United States)

    Ferguson, B; Ram, R; Handoko, H Y; Mukhopadhyay, P; Muller, H K; Soyer, H P; Morahan, G; Walker, G J

    2015-05-28

    Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4(R24C) and NRAS(Q61K). In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations. PMID:25088201

  2. Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex.

    Directory of Open Access Journals (Sweden)

    Raoul F H Ribot

    Full Text Available Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans, can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position. The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow

  3. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression.

    Science.gov (United States)

    Ferguson, B; Ram, R; Handoko, H Y; Mukhopadhyay, P; Muller, H K; Soyer, H P; Morahan, G; Walker, G J

    2015-05-28

    Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4(R24C) and NRAS(Q61K). In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations.

  4. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  5. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    Directory of Open Access Journals (Sweden)

    P. K. Rout

    2012-01-01

    Full Text Available Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the

  6. Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India

    Indian Academy of Sciences (India)

    Srilakshmi M. Raj; Diddahally R. Govindaraju; Ranajit Chakraborty

    2007-12-01

    The extent of genetic variation and the degree of genetic differentiation among seven ethnic populations from Karnataka, India (Bunt, Havyak, Iyengar, Lingayath, Smartha, Vaishya, Vokkaliga), was investigated using four single nucleotide polymorphisms (SNPs: IL-1A 4845, IL-1B 3954, IL-1B 511 and IL-1RA 2018) of the interleukin gene cluster. Allele frequencies varied by threefold among these populations, which also differed for gene diversity and heterozygosity levels. The average degree of population subdivision among these castes was low ($F_{ST} = 0.02$). However, pair-wise interpopulation differentiation ranged from 0–7%, indicating no detectable differentiation to moderate differentiation between specific populations. The results of phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data on these ethnic groups. Variation in the allele frequencies, as well as differentiation, may be attributed to differential selection and demographic factors including consanguinity among the ethnic groups. Information on the distribution of functionally relevant polymorphisms among ethnic populations may be important towards developing community medicine and public health policies.

  7. Genetic variation of Leptospira isolated from rats catched in Yogyakarta Indonesia

    Institute of Scientific and Technical Information of China (English)

    Hadi; Sumanta; Tri; Wibawa; Suwarno; Hadisusanto; Anik; Nuryati; Hari; Kusnanto

    2015-01-01

    Objective: To detect genetic variations among pathogenic Leptospira isolated from rats using 16 S r RNA gen as chronometer. Methods: This is an observational study with cross sectional design. Rats saples were taken in Yogyakarta Special Region of Indonesia. Leptospira in the rats was detected by two methods ie. real time PCR(q PCR) by using primers correspond to16 S r RNA gene of Leptospira, and standard PCR by using dif erent set of primer correspond to the 16 S r RNA gene of Leptospira. The standard PCR amplicon then subjected for DNA sequencing. Analysis genetic variation was performed using MEGA 6.2. Software. Results:There were 99 DNA samples from rats included in this study. Detection of Leptospira by using q PCR revealed 25 samples positive for pathogenic Leptospira, while only 6 samples were able to be detected using standard PCR. The new primer set correspond to 16 S r RNA gene was able to detect specii cally pathogenic Leptospira in the rats. Sequencing analysis of 6 PCR amplicons showed that the Leptospira which infect the rats catched in Yogyakarta genetically close related with pathogenic Leptospira which were isolated from human, animal, rodents, and environment. Conclusions: It can be considered that rats are the most important vector and reservoir of Leptospira.

  8. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations.

    Science.gov (United States)

    Trotter, Meredith V; Weissman, Daniel B; Peterson, Grant I; Peck, Kayla M; Masel, Joanna

    2014-12-01

    The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.

  9. Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax.

    Science.gov (United States)

    Francuski, Lj; Matić, I; Ludoški, J; Milankov, V

    2011-06-01

    Eristalis tenax L. (Diptera: Syrphidae) is commonly known as the drone fly (adult) or rat-tailed maggot (immature). Both adults and immature stages are identified as potential mechanical vectors of mycobacterial pathogens, and early-stage maggots cause accidental myiasis. We compared four samples from Mount Fruška Gora, Serbia, with the aim of obtaining insights into the temporal variations and sexual dimorphism in the species. This integrative approach was based on allozyme loci, morphometric wing parameters (shape and size) and abdominal colour patterns. Consistent sexual dimorphism was observed, indicating that male specimens had lighter abdomens and smaller and narrower wings than females. The distribution of genetic diversity at polymorphic loci indicated genetic divergence among collection dates. Landmark-based geometric morphometrics revealed, contrary to the lack of divergence in wing size, significant wing shape variation throughout the year. In addition, temporal changes in the frequencies of the abdominal patterns observed are likely to relate to the biology of the species and ecological factors in the locality. Hence, the present study expands our knowledge of the genetic diversity and phenotypic plasticity of E. tenax. The quantification of such variability represents a step towards the evaluation of the adaptive potential of this species of medical and epidemiological importance. PMID:21414022

  10. Genetic Variation of Inbred Lines of Maize Detected by SSR Markers

    Institute of Scientific and Technical Information of China (English)

    LI Xin-hai; FU Jun-hua; ZHANG Shi-huang; YUAN Li-xing; LI Ming-shun

    2001-01-01

    Simple sequence repeats (SSRs) were used to detect genetic variation among 21 maize(Zea mays L. ) inbred lines. Forty-three SSR primers selected from 69 primers gave stable amplification profiles, which could be clearly resolved on 3% Metaphor agarose gel, and produced 127 polymorphic amplified fragments.The average number of alleles per SSR locus was 2.95 with a range from 2 to 7. The polymorphism information content (PIC) for the SSR loci varied from 0.172 to 0.753 with an average of 0.511. Genetic similarities among the 21 lines ranged from 0.480 between the combination of Zhongzi451 vs. K12 up to 0.768 between CA156 vs. Ye478. The cluster analysis showed that 21 inbred lines could be classified into two distinct clusters with several subclusters, which corresponded to the heterotic groups determined by their pedigree information.Eight SSR primers, which had high level of polymorphism, could allow a rapid and efficient identification of 21 inbreds. Consequently, SSR markers could be used for measuring genetic variation of maize inbred lines and assigning them to heterotic groups.

  11. Assessment of Genetic Variation and Distribution Pattern of Thalictrum petaloideum Detected by RAPDs

    Institute of Scientific and Technical Information of China (English)

    XIELei; LILiang—Qian; ZHANGDa—Ming

    2004-01-01

    Random amplified polymerphic DNA(RAPD)method was applied to assessg enetic variation and population structure of Thahctrum petalotdeum L(Ranunoulaceae),Two hundred and forty-six individuals from 11 populations of the species were investigated by RAPD profiles Twenty selected RAPD primers generated 125 bands.in which 120 were polymorphic Ther esults revealed a high level of genetic variation(ercentage of polymorphIc bands(PPB was 96%.Nei’s gene diversity(りwas 03502 and shannon’s information index(I) was 0.5199 at the species level) The differentiation among the populations was high(Gst=0.3511)in this species.Result of analyzing of molecularvariance(AMOVA)showedthat38.88%of genetic variance was found among the populations Positive correlation withr r=01945(P=00002)was found between genetic distance and geographic distance amongpo pulations Two populations distributed in the drainage basin of YanELz River affined genedcally and formed one clada and the rest nine populations formed the other clade in both unweighted pair-group method using arithmetic average(UPGMA)trees made by two different method different methods. It was yen/clear that these two populations were very special, andmust be closely related in history, despite the fact that they now share quite weak link to the restpopulations through gene communication.

  12. Does Genetic Variation Maintained by Environmental Heterogeneity Facilitate Adaptation to Novel Selection?

    Science.gov (United States)

    Huang, Yuheng; Tran, Ivan; Agrawal, Aneil F

    2016-07-01

    Environmental heterogeneity helps maintain genetic variation in fitness. Therefore, one might predict that populations living in heterogeneous environments have higher adaptive potential than populations living in homogeneous environments. Such a prediction could be useful in guiding conservation priorities without requiring detailed genetic studies. However, this prediction will be true only if the additional genetic variation maintained by environmental heterogeneity can be used to respond to novel selection. Here we examine the effect of environmental heterogeneity on future adaptability using replicated experimental Drosophila melanogaster populations that had previously evolved for ∼100 generations under one of four selective regimes: constant salt-enriched larvae medium, constant cadmium-enriched larvae medium, and two heterogeneous regimes that vary either temporally or spatially between the two media. Replicates of these experimental populations were subjected to a novel heat stress while being maintained in their original larval diet selection regimes. Adaptation to increased temperature was measured with respect to female productivity and male siring success after ∼20 generations. For female productivity, there was evidence of adaptation overall and heterogeneous populations had a larger adaptive response than homogeneous populations. There was less evidence of adaptation overall for male siring success and no support for faster adaptation in heterogeneous populations. PMID:27322119

  13. Genome-wide transcription analysis of clinal genetic variation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern populations using whole genome tiling arrays. We found that genes that were differentially expressed between the cline ends were generally associated with metabolism and growth, and experimental alteration of expression of a sample of them generally resulted in altered body size in the predicted direction, sometimes significantly so. We further identified the serpent (srp transcription factor binding sites to be enriched near genes up-regulated in expression in the south. Analysis of clinal populations revealed a significant cline in the expression level of srp. Experimental over-expression of srp increased body size, as predicted from its clinal expression pattern, suggesting that it may be involved in regulating adaptive clinal variation in Drosophila. This study identified a handful of genes that contributed to clinal phenotypic variation through altered gene expression level, yet misexpression of individual gene led to modest body size change.

  14. Intra-population genetic variation in the temporal pattern of egg maturation in a parasitoid wasp.

    Directory of Open Access Journals (Sweden)

    Eric Wajnberg

    Full Text Available Parasitoid wasps are taxonomically and biologically extremely diverse. A conceptual framework has recently been developed for understanding life-history evolution and diversification in these animals, and it has confirmed that each of two linked life-history traits - the mode of larval development and the temporal pattern of egg maturation - acts as an organiser of life-history. The framework has been predicated on the assumption that there exists sufficient genetic variation in the latter trait to allow it to be shaped by natural selection. Focusing on the parasitoid wasp Trichogramma brassicae, our aim was to test the validity of that assumption, using established quantitative genetic methods. We demonstrate the existence of a statistically significant degree of intra-population polygenic variation in the temporal pattern of egg production within the wasp population we studied. Furthermore, our results, together with published data on clinal variation in the egg maturation pattern of another species, suggest that intra-specific evolutionary shifts in the temporal pattern of egg maturation of parasitoid wasps can result from a change in allocation to egg production either before, or very shortly after adult emergence, without there being an accompanying change in lifetime fecundity. As well as opening new avenues of research into the reproductive strategies, behaviour, community organisation and biological control potential of parasitoid wasps, this discovery also has implications for studies of life-history evolution and diversification in insects generally.

  15. Genetic variation in two conserved local Romanian pig breeds using type 1 DNA markers

    Directory of Open Access Journals (Sweden)

    Wales Richard

    2001-07-01

    Full Text Available Abstract Analysis of the genetic variation of an endangered population is an important component for the success of conservation. Animals from two local Romanian pig breeds, the Mangalitsa and Bazna, were analysed for variation at a number of genetic loci using PCR-based DNA tests. Polymorphism was assessed at loci which 1 are known to cause phenotypic variation, 2 are potentially involved in trait differences or 3 are putative candidate genes. The traits considered are disease resistance, growth, coat colour, meat quality and prolificacy. Even though the populations are small and the markers are limited to specific genes, we found significant differences in five of the ten characterised loci. In some cases the observed allele frequencies were interesting in relation to gene function and the phenotype of the breed. These breeds are part of a conservation programme in Romania and marker information may be useful in preserving a representative gene pool in the populations. The use of polymorphisms in type 1 (gene markers may be a useful complement to analysis based on anonymous markers.

  16. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    Science.gov (United States)

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  17. An ICA with reference approach in identification of genetic variation and associated brain networks

    Directory of Open Access Journals (Sweden)

    Jingyu eLiu

    2012-02-01

    Full Text Available To address the statistical challenges associated with genome-wide association studies, we present an independent component analysis (ICA with reference approach to target a specific genetic variation and associated brain networks. First, a small set of single nucleotide polymorphisms (SNPs are empirically chosen to reflect a feature of interest and these SNPs are used as a reference when applying ICA to a full genomic SNP array. After extracting the genetic component maximally representing the characteristics of the reference, we test its association with brain networks in functional magnetic resonance imaging (fMRI data. The method was evaluated on both real and simulated datasets. Simulation demonstrates that ICA with reference can extract a specific genetic factor, even when the variance accounted for by such a factor is so small that a regular ICA fails. Our real data application from 48 schizophrenia patients and 40 healthy controls include 300K SNPs and fMRI images in an auditory oddball task. Using SNPs with allelic frequency difference in two groups as a reference, we extracted a genetic component that maximally differentiates patients from controls (p<4×10-17, and discovered a brain functional network that was significantly associated with this genetic component (p<1×10-4. The regions in the functional network mainly locate in the thalamus, anterior and posterior cingulate gyri. The contributing SNPs in the genetic factor mainly fall into two clusters centered at chromosome 7q21 and chromosome 5q35. The findings from the schizophrenia application are in concordance with previous knowledge about brain regions and gene function. All together, the results suggest that the ICA with reference can be particularly useful to explore the whole genome to find a specific factor of interest and further study its effect on brain.

  18. Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure

    OpenAIRE

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-01-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year population...

  19. Genetic variation in Opisthorchis viverrini (Trematoda: Opisthorchiidae) from northeast Thailand and Laos PDR based on random amplified polymorphic DNA analyses

    OpenAIRE

    Sithithaworn, Paiboon; Nuchjungreed, Chadaporn; Srisawangwong, Tuanchai; Ando, Katsuhiko; Petney, Trevor N.; Neil B. Chilton; Andrews, Ross H.

    2006-01-01

    Genetic variation in Opisthorchis viverrini adults originating from different locations in northeast Thailand and Laos, People’s Democratic Republic (PDR), was examined using random amplified polymorphic DNA (RAPD) analyses. In an initial analysis, the genomic DNA of one fluke from each of ten localities was amplified using 15 random primers (10-mers); however, genetic variation among O. viverrini specimens was detected reliably for only four primers. A more detailed RAPD analysis using these...

  20. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1.

    Directory of Open Access Journals (Sweden)

    Erin McElvania Tekippe

    Full Text Available The NLR gene family mediates host immunity to various acute pathogenic stimuli, but its role in chronic infection is not known. This paper addressed the role of NLRP3 (NALP3, its adaptor protein PYCARD (ASC, and caspase-1 during infection with Mycobacterium tuberculosis (Mtb. Mtb infection of macrophages in culture induced IL-1beta secretion, and this requires the inflammasome components PYCARD, caspase-1, and NLRP3. However, in vivo Mtb aerosol infection of Nlrp3(-/-, Casp-1(-/-, and WT mice showed no differences in pulmonary IL-1beta production, bacterial burden, or long-term survival. In contrast, a significant role was observed for Pycard in host protection during chronic Mtb infection, as shown by an abrupt decrease in survival of Pycard(-/- mice. Decreased survival of Pycard(-/- animals was associated with defective granuloma formation. These data demonstrate that PYCARD exerts a novel inflammasome-independent role during chronic Mtb infection by containing the bacteria in granulomas.

  1. Individual identification and genetic variation of lions (Panthera leo from two protected areas in Nigeria.

    Directory of Open Access Journals (Sweden)

    Talatu Tende

    Full Text Available This survey was conducted in two protected areas in Nigeria to genetically identify individual lions and to determine the genetic variation within and between the populations. We used faecal sample DNA, a non-invasive alternative to the risky and laborious task of taking samples directly from the animals, often preceded by catching and immobilization. Data collection in Yankari Game Reserve (YGR spanned through a period of five years (2008 -2012, whereas data in Kainji Lake National Park (KLNP was gathered for a period of three years (2009, 2010 and 2012. We identified a minimum of eight individuals (2 males, 3 females, 3 unknown from YGR and a minimum of ten individuals (7 males, 3 females from KLNP. The two populations were found to be genetically distinct as shown by the relatively high fixation index (FST  = 0.17 with each population exhibiting signs of inbreeding (YGR FIS  = 0.49, KLNP FIS  = 0.38. The genetic differentiation between the Yankari and Kainji lions is assumed to result from large spatial geographic distance and physical barriers reducing gene flow between these two remaining wild lion populations in Nigeria. To mitigate the probable inbreeding depression in the lion populations within Nigeria it might be important to transfer lions between parks or reserves or to reintroduce lions from the zoos back to the wild.

  2. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  3. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    Directory of Open Access Journals (Sweden)

    Romi Roberto

    2011-01-01

    Full Text Available Abstract Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 FST An. atroparvus populations spanning over 3,000 km distance. Genetic differentiation (0.202 FST An. atroparvus and Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées. While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized.

  4. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera.

    Science.gov (United States)

    Lymbery, R A; Evans, J P

    2013-10-01

    Ocean warming can alter natural selection on marine systems, and in many cases, the long-term persistence of affected populations will depend on genetic adaptation. In this study, we assess the potential for adaptation in the sea urchin Heliocidaris erythrogramma armigera, an Australian endemic, that is experiencing unprecedented increases in ocean temperatures. We used a factorial breeding design to assess the level of heritable variation in larval hatching success at two temperatures. Fertilized eggs from each full-sibling family were tested at 22 °C (current spawning temperature) and 25 °C (upper limit of predicted warming this century). Hatching success was significantly lower at higher temperatures, confirming that ocean warming is likely to exert selection on this life-history stage. Our analyses revealed significant additive genetic variance and genotype-by-environment interactions underlying hatching success. Consistent with prior work, we detected significant nonadditive (sire-by-dam) variance in hatching success, but additionally found that these interactions were modified by temperature. Although these findings suggest the potential for genetic adaptation, any evolutionary responses are likely to be influenced (and possibly constrained) by complex genotype-by-environment and sire-by-dam interactions and will additionally depend on patterns of genetic covariation with other fitness traits.

  5. The causes of variation in the presence of genetic covariance between sexual traits and preferences.

    Science.gov (United States)

    Fowler-Finn, Kasey D; Rodríguez, Rafael L

    2016-05-01

    Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait-preference genetic covariance). We review the literature on trait-preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait-preference covariance. Trait-preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences.

  6. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring ( Clupea harengus )

    DEFF Research Database (Denmark)

    Jørgensen, H.B.H.; Pertoldi, C.; Hansen, Michael Møller;

    2008-01-01

    Baltic Sea herring (Clupea harengus) have been shown to exhibit morphological differences across the marked salinity and temperature gradients in the region. Here we analyse genetic (nine microsatellite loci), morpho metric (skull shape), and meristic (pectoral fin rays and number of vertebrae......) variations across seven samples of spawning herring collected from four spawning locations in the Baltic Sea to examine whether morphological variation correlates with genetic and (or) environmental factors. Results suggest that herring is adapting to its environment through a combination of selection...... and plastic responses. Skull shape, including and excluding size variation, differed significantly among samples, both temporally and spatially. Genetic and morphometric distances were correlated, especially when size variation was excluded from the analysis. When size variation was included, skull shape...

  7. Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping

    Directory of Open Access Journals (Sweden)

    Ellis Nathan A

    2008-02-01

    Full Text Available Abstract Background Genetic isolates such as the Ashkenazi Jews (AJ potentially offer advantages in mapping novel loci in whole genome disease association studies. To analyze patterns of genetic variation in AJ, genotypes of 101 healthy individuals were determined using the Affymetrix EAv3 500 K SNP array and compared to 60 CEPH-derived HapMap (CEU individuals. 435,632 SNPs overlapped and met annotation criteria in the two groups. Results A small but significant global difference in allele frequencies between AJ and CEU was demonstrated by a mean FST of 0.009 (P Conclusion LD in the AJ versus was lower than expected by some measures and higher by others. Any putative advantage in whole genome association mapping using the AJ population will be highly dependent on regional LD structure.

  8. RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey.

    Science.gov (United States)

    Akbulut, M; Ercisli, S; Karlidag, H

    2009-01-01

    The fig tree (Ficus carica L.) is of significant socio-economic importance in Turkey, with 25% of the world's fig production. Genetic variation and relationships among 14 wild-grown figs sampled from Coruh Valley in Turkey were characterized by random amplified polymorphic DNA (RAPD). Ninety-eight DNA fragments were scored after amplification of DNA samples with 13 random primers; 70% of the scored bands were polymorphic. Genetic distances between the fig genotypes ranged from 0.21 to 0.62. Genotypes 08-ART-02 and 08-ART-06 were found to be the most closely related, whereas 08-ART-09 and 08-ART-10 were the most distant. The 14 wild-grown genotypes were grouped into six main clusters and one outgroup. We conclude that RAPD analysis is efficient for genotyping wild-grown fig genotypes.

  9. Genetic variation in time and space : Microsatellite analysis of extinct and extant populations of Atlantic salmon

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1999-01-01

    rivers that covered a time span of up to 76 years. These results suggest that salmon populations evolve as semi- independent units connected by modest amounts of gene flow. Additionally, a clear association between geographic and genetic distance was found. This relationship has otherwise been difficult....... Variation at six microsatellite loci was studied. Tests for differentiation among populations and among time series within populations showed that population structure was stable over time. This was also confirmed by a neighbor-joining dendrogram which showed a clear clustering of samples from individual...... to establish in several recent studies. The discrepancy may be due to impact of human activities on the genetic structure of present populations, whereas old samples represent populations in a more unaffected state. However, other explanations related to differences in the sampling of past and...

  10. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.

    Science.gov (United States)

    Hand, Brian K; Muhlfeld, Clint C; Wade, Alisa A; Kovach, Ryan P; Whited, Diane C; Narum, Shawn R; Matala, Andrew P; Ackerman, Michael W; Garner, Brittany A; Kimball, John S; Stanford, Jack A; Luikart, Gordon

    2016-02-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  11. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    Science.gov (United States)

    Hand, Brian K; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R; Matala, Andrew P; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  12. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines.

    Science.gov (United States)

    Huang, Wen; Massouras, Andreas; Inoue, Yutaka; Peiffer, Jason; Ràmia, Miquel; Tarone, Aaron M; Turlapati, Lavanya; Zichner, Thomas; Zhu, Dianhui; Lyman, Richard F; Magwire, Michael M; Blankenburg, Kerstin; Carbone, Mary Anna; Chang, Kyle; Ellis, Lisa L; Fernandez, Sonia; Han, Yi; Highnam, Gareth; Hjelmen, Carl E; Jack, John R; Javaid, Mehwish; Jayaseelan, Joy; Kalra, Divya; Lee, Sandy; Lewis, Lora; Munidasa, Mala; Ongeri, Fiona; Patel, Shohba; Perales, Lora; Perez, Agapito; Pu, LingLing; Rollmann, Stephanie M; Ruth, Robert; Saada, Nehad; Warner, Crystal; Williams, Aneisa; Wu, Yuan-Qing; Yamamoto, Akihiko; Zhang, Yiqing; Zhu, Yiming; Anholt, Robert R H; Korbel, Jan O; Mittelman, David; Muzny, Donna M; Gibbs, Richard A; Barbadilla, Antonio; Johnston, J Spencer; Stone, Eric A; Richards, Stephen; Deplancke, Bart; Mackay, Trudy F C

    2014-07-01

    The Drosophila melanogaster Genetic Reference Panel (DGRP) is a community resource of 205 sequenced inbred lines, derived to improve our understanding of the effects of naturally occurring genetic variation on molecular and organismal phenotypes. We used an integrated genotyping strategy to identify 4,853,802 single nucleotide polymorphisms (SNPs) and 1,296,080 non-SNP variants. Our molecular population genomic analyses show higher deletion than insertion mutation rates and stronger purifying selection on deletions. Weaker selection on insertions than deletions is consistent with our observed distribution of genome size determined by flow cytometry, which is skewed toward larger genomes. Insertion/deletion and single nucleotide polymorphisms are positively correlated with each other and with local recombination, suggesting that their nonrandom distributions are due to hitchhiking and background selection. Our cytogenetic analysis identified 16 polymorphic inversions in the DGRP. Common inverted and standard karyotypes are genetically divergent and account for most of the variation in relatedness among the DGRP lines. Intriguingly, variation in genome size and many quantitative traits are significantly associated with inversions. Approximately 50% of the DGRP lines are infected with Wolbachia, and four lines have germline insertions of Wolbachia sequences, but effects of Wolbachia infection on quantitative traits are rarely significant. The DGRP complements ongoing efforts to functionally annotate the Drosophila genome. Indeed, 15% of all D. melanogaster genes segregate for potentially damaged proteins in the DGRP, and genome-wide analyses of quantitative traits identify novel candidate genes. The DGRP lines, sequence data, genotypes, quality scores, phenotypes, and analysis and visualization tools are publicly available.

  13. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).

    Science.gov (United States)

    Bansal, Sheel; Harrington, Constance A; Gould, Peter J; St Clair, J Bradley

    2015-02-01

    There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated

  14. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

  15. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome. PMID:26830772

  16. Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding

    NARCIS (Netherlands)

    Verweij, C.J.H.; Yang, J.; Lahti, J.; Veijola, J.; Hintsanen, M.; Pulkki-Raback, L.; Heinonen, K.; Pouta, A.; Pesonen, A.K.; Widen, E.; Taanila, A.; Isohanni, M.; Miettunen, J.; Palotie, A.; Penke, L.; Service, S.K.; Heath, A.C.; Montgomery, G.W.; Raitakari, O.; Kahonen, M.; Viikari, J.; Raikkonen, K.; Eriksson, J.G.; Keltikangas-Jarvinen, L.; Lehtimäki, T.; Martin, N.G.; Jarvelin, M.R.; Visscher, P.M.; Keller, M.C.; Zietsch, B.P.

    2012-01-01

    Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several e

  17. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  18. Uniform Variation in Genetic-Traits of a Marine Bivalve Related to Starvation, Pollution and Geographic Clines

    NARCIS (Netherlands)

    Hummel, H.; Bogaards, R.H.; Amiard-Triquet, C.; Bachelet, G.; Desprez, M.; Marchand, J.; Rybarczyk, H.; Sylvand, B.; De Wit, Y.; De Wolf, L.

    1995-01-01

    Consistent patterns of genetic variation in the marine bivalve Macoma balthica (L.) were found after exposure to low levels of copper, starvation, and along geographic dines. The geographic dines were related to temperature and salinity. Genetic differences were primarily found in the LAP (Leucine a

  19. Response of predatory mites to a herbivore-induced plant volatile: Genetic variation for context-dependent behaviour

    NARCIS (Netherlands)

    B. Sznajder; M.W. Sabelis; M. Egas

    2010-01-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytose

  20. Genetic Variation in Selenoprotein Genes, Lifestyle, and Risk of Colon and Rectal Cancer

    OpenAIRE

    Martha L Slattery; Lundgreen, Abbie; Welbourn, Bill; Corcoran, Christopher; Wolff, Roger K.

    2012-01-01

    Background Associations between selenium and cancer have directed attention to role of selenoproteins in the carcinogenic process. Methods We used data from two population-based case-control studies of colon (n = 1555 cases, 1956 controls) and rectal (n = 754 cases, 959 controls) cancer. We evaluated the association between genetic variation in TXNRD1, TXNRD2, TXNRD3, C11orf31 (SelH), SelW, SelN1, SelS, SepX, and SeP15 with colorectal cancer risk. Results After adjustment for multiple compari...

  1. Genetic variation of space flight carried rice and mutant analysis by AFLP molecular marker

    International Nuclear Information System (INIS)

    Rice seeds were carried by 'Shenzhou No.3' space shuttle, a mutant with golden chaff, stem and leaf was selected and named Golden 1 after the seeds returned to the earth. Except the golden color, other traits of Golden 1 are no obviously different with its original material H9808. Genetic analysis identified that color variation was control by a pair of recessive gene. The DNA fragments of the mutant were compared with its parent by AFLP molecular markers. Five specific bands were found through a serial selection. (authors)

  2. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.

    Directory of Open Access Journals (Sweden)

    Maria Gutierrez-Arcelus

    2015-01-01

    Full Text Available Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans' lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types. This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore

  3. Assessing inbreeding and loss of genetic variation in canids, domestic dog (Canis familiaris) and wolf (Canis lupus), using pedigree data

    OpenAIRE

    Jansson, Mija

    2014-01-01

    Genetic variation is necessary to maintain the ability of wild and domestic populations to genetically adapt to changed selective pressures. When relationships among individuals are known, conservation genetic management can be based on statistical pedigree analysis. Such approaches have traditionally focused on wild animal conservation breeding in captivity. In this thesis, I apply pedigree-based techniques to domestic and wild animal populations, focusing on two canids – the domestic dog an...

  4. Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations

    OpenAIRE

    Mehta, Akash M.; Spaans, Vivian M.; Mahendra, Nyoman Bayu; Osse, Elisabeth M.; Vet, Jessica N. I.; Purwoto, Gatot; Surya, I G D; Cornian, Santoso; Peters, Alexander A.; Fleuren, Gert J.; Jordanova, Ekaterina S.

    2015-01-01

    Genetic variation of antigen-processing machinery (APM) components has been shown to be associated with cervical carcinoma risk and outcome in a genetically homogeneous Dutch population. However, the role of APM component single nucleotide polymorphisms (SNPs) in genetically heterogeneous populations with different distributions of human papillomavirus (HPV) subtypes remains unclear. Eleven non-synonymous, coding SNPs in the TAP1, TAP2, LMP2, LMP7 and ERAP1 genes were genotyped in cervical ca...

  5. Caspase-1-independent interleukin-1β is required for clearance of Bordetella pertussis infections and whole-cell vaccine-mediated immunity.

    Science.gov (United States)

    Place, David E; Muse, Sarah J; Kirimanjeswara, Girish S; Harvill, Eric T

    2014-01-01

    Whooping cough remains a significant disease worldwide and its re-emergence in highly vaccinated populations has been attributed to a combination of imperfect vaccines and evolution of the pathogen. The focus of this study was to examine the role of IL-1α/β and the inflammasome in generation of the interleukin-1 (IL-1) response, which is required for the clearance of Bordetella pertussis. We show that IL-1β but not IL-1α is required for mediating the clearance of B. pertussis from the lungs of mice. We further found that IL-1β and IL-1R deficient mice, compared to wild-type, have similar but more persistent levels of inflammation, characterized by immune cell infiltration, with significantly increased IFNγ and a normal IL-17A response during B. pertussis infection. Contrary to expectations, the cleavage of precursor IL-1β to its mature form did not require caspase-1 during primary infections within the lung despite being required by bone marrow-derived macrophages exposed to live bacteria. We also found that the caspase-1 inflammasome was not required for protective immunity against a B. pertussis challenge following vaccination with heat-killed whole cell B. pertussis, despite IL-1R signaling being required. These findings demonstrate that caspase-1-independent host factors are involved in the processing of protective IL-1β responses that are critical for bacterial clearance and vaccine-mediated immunity.

  6. The caspase-1 inhibitor AC-YVAD-CMK attenuates acute gastric injury in mice: involvement of silencing NLRP3 inflammasome activities.

    Science.gov (United States)

    Zhang, Fang; Wang, Liang; Wang, Jun-jie; Luo, Peng-fei; Wang, Xing-tong; Xia, Zhao-fan

    2016-04-07

    This study evaluated the protective effects of inhibiting caspase-1 activity or gastric acid secretion on acute gastric injury in mice. AC-YVAD-CMK, omeprazole, or vehicle were administered to mice before cold-restraint stress- or ethanol-induced gastric injury. Survival rates and histological evidence of gastric injury of mice pretreated with AC-YVAD-CMK or omeprazole, and exposed to cold-restraint stress, improved significantly relative to the vehicle group. The increased levels of tumour necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-18 following cold-stress injury were decreased by AC-YVAD-CMK, but not omeprazole, pretreatment. The increased expression of CD68 in gastric tissues was inhibited significantly by AC-YVAD-CMK pretreatment. Inhibiting caspase-1 activity in the NLRP3 inflammasome decreased gastric cell apoptosis, and the expression of Bax and cleaved caspase-3. AC-YVAD-CMK pretreatment significantly inhibited cold-restraint stress-induced increases in the expression of phosphorylated IκB-alpha and P38. General anatomy and histological results showed the protective effect of AC-YVAD-CMK on ethanol-induced acute gastric injury. Overall, our results showed that the caspase-1 inhibitor AC-YVAD-CMK protected against acute gastric injury in mice by affecting the NLRP3 inflammasome and attenuating inflammatory processes and apoptosis. This was similar to the mechanism associated with NF-κB and P38 mitogen-activated protein kinase signalling pathways.

  7. Caspase-1-independent interleukin-1β is required for clearance of Bordetella pertussis infections and whole-cell vaccine-mediated immunity.

    Directory of Open Access Journals (Sweden)

    David E Place

    Full Text Available Whooping cough remains a significant disease worldwide and its re-emergence in highly vaccinated populations has been attributed to a combination of imperfect vaccines and evolution of the pathogen. The focus of this study was to examine the role of IL-1α/β and the inflammasome in generation of the interleukin-1 (IL-1 response, which is required for the clearance of Bordetella pertussis. We show that IL-1β but not IL-1α is required for mediating the clearance of B. pertussis from the lungs of mice. We further found that IL-1β and IL-1R deficient mice, compared to wild-type, have similar but more persistent levels of inflammation, characterized by immune cell infiltration, with significantly increased IFNγ and a normal IL-17A response during B. pertussis infection. Contrary to expectations, the cleavage of precursor IL-1β to its mature form did not require caspase-1 during primary infections within the lung despite being required by bone marrow-derived macrophages exposed to live bacteria. We also found that the caspase-1 inflammasome was not required for protective immunity against a B. pertussis challenge following vaccination with heat-killed whole cell B. pertussis, despite IL-1R signaling being required. These findings demonstrate that caspase-1-independent host factors are involved in the processing of protective IL-1β responses that are critical for bacterial clearance and vaccine-mediated immunity.

  8. Enhanced recombinant protein production and differential expression of molecular chaperones in sf-caspase-1-repressed stable cells after baculovirus infection

    Directory of Open Access Journals (Sweden)

    Lai Yiu-Kay

    2012-11-01

    Full Text Available Abstract Background There are few studies that have examined the potential of RNA inference (RNAi to increase protein production in the baculovirus expression vector system (BEVS. Spodoptera frugiperda (fall armyworm (Sf-caspase-1-repressed stable cells exhibit resistance to apoptosis and enhancement of recombinant protein production. However, the mechanism of recombinant protein augmentation in baculovirus-infected Caspase-repressed insect cells has not been elucidated. Results In the current study, we utilized RNAi-mediated Sf-caspase-1-repressed stable cells to clarify how the resistance to apoptosis can enhance both intracellular (firefly luciferase and extracellular (secreted alkaline phosphatase [SEAP] recombinant protein production in BEVS. Since the expression of molecular chaperones is strongly associated with the maximal production of exogenous proteins in BEVS, the differential expression of molecular chaperones in baculovirus-infected stable cells was also analyzed in this study. Conclusion The data indicated that the retention of expression of molecular chaperones in baculovirus-infected Sf-caspase-1-repressed stable cells give the higher recombinant protein accumulation.

  9. Comparison of Two Mice Strains, A/J and C57BL/6, in Caspase-1 Activity and IL-1β Secretion of Macrophage to Mycobacterium leprae Infection

    Directory of Open Access Journals (Sweden)

    Tae Jin Kang

    2010-01-01

    Full Text Available A/J mice were found to have amino acid differences in Naip5, one of the NOD-like receptors (NLRs involved in the cytosolic recognition of pathogen-associated molecular patterns and one of the adaptor proteins for caspase-1 activation. This defect was associated with a susceptibility to Legionella infection, suggesting an important role for Naip5 in the immune response also to other intracellular pathogens, such as Mycobacterium leprae. In this study, the immune responses of macrophages from A/J mice against M. leprae were compared to those of macrophages from C57BL/6 mice. Infection with M. leprae induced high levels of TNF-α production and NF-κB activation in A/J and C57BL/6 macrophages. Caspase-1 activation and IL-1β secretion were also induced in both macrophages. However, macrophages from A/J mice exhibited reduced caspase-1 activation and IL-1β secretion compared to C57BL/6 macrophages. These results suggest that NLR family proteins may have a role in the innate immune response to M. leprae.

  10. ATP Induces IL-1β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis

    Science.gov (United States)

    García, Killen; Escobar, Gisselle; Mendoza, Pablo; Beltran, Caroll; Perez, Claudio; Vernal, Rolando; Acuña-Castillo, Claudio

    2016-01-01

    Neisseria gonorrhoeae (Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P 0.05) and caspase-1 (CASP1, P > 0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P > 0.01). Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.

  11. Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae).

    Science.gov (United States)

    Coleman, R A; Weeks, A R; Hoffmann, A A

    2013-04-01

    Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well-differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re-explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long-term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re-introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations. PMID:23432132

  12. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    Full Text Available Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2 is critical for cardiac development, we screened patients with congenital heart disease (CHDs for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430 at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that

  13. On the extent of genetic variation for transpiration efficiency in sorghum

    International Nuclear Information System (INIS)

    associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued. Copyright (1997) CSIRO Australia

  14. Extensive natural variation for cellular hydrogen peroxide release is genetically controlled.

    Directory of Open Access Journals (Sweden)

    Homa Attar

    Full Text Available Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H(2O(2 release, which is the joint effect of reactive oxygen species (ROS production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H(2O(2 release in lymphoblastoid cell lines (LCL in a family-based 3-generation cohort (CEPH-HapMap, and in 3 population-based cohorts (KORA, GenCord, HapMap. Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS for the combined KORA-GenCord cohorts (n = 279 using enhanced marker resolution by imputation (>1.4 million SNPs. We found 5 significant associations (p<5.00×10-8 and 54 suggestive associations (p<1.00×10-5, one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H(2O(2 release was observed in Down Syndrome (DS individuals (p<2.88×10-12. Taken together, our results show strong evidence of genetic control of H(2O(2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be

  15. MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.

    Directory of Open Access Journals (Sweden)

    Roberto de la Rosa Santamaria

    Full Text Available MutS Homolog 1 (MSH1 encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.

  16. Indirect genetic effects and the spread of infectious disease: are we capturing the full heritable variation underlying disease prevalence?

    Directory of Open Access Journals (Sweden)

    Debby Lipschutz-Powell

    Full Text Available Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected. We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help

  17. Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?

    Science.gov (United States)

    Lipschutz-Powell, Debby; Woolliams, John A.; Bijma, Piter; Doeschl-Wilson, Andrea B.

    2012-01-01

    Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease

  18. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice.

    Directory of Open Access Journals (Sweden)

    Jules B Panksepp

    Full Text Available Social approach is crucial for establishing relationships among individuals. In rodents, social approach has been studied primarily within the context of behavioral phenomena related to sexual reproduction, such as mating, territory defense and parental care. However, many forms of social interaction occur before the onset of reproductive maturity, which suggests that some processes underlying social approach among juvenile animals are probably distinct from those in adults. We conducted a longitudinal study of social investigation (SI in mice from two inbred strains to assess the extent to which genetic factors influence the motivation for young mice to approach one another. Early-adolescent C57BL/6J (B6 mice, tested 4-6 days after weaning, investigated former cage mates to a greater degree than BALB/cJ (BALB mice, irrespective of the sex composition within an interacting pair. This strain difference was not due to variation in maternal care, the phenotypic characteristics of stimulus mice or sensitivity to the length of isolation prior to testing, nor was it attributable to a general difference in appetitive motivation. Ultrasonic vocalization (USV production was positively correlated with the SI responses of mice from both strains. Interestingly, several USV characteristics segregated with the genetic background of young mice, including a higher average frequency and shorter duration for the USVs emitted by B6 mice. An assessment of conditioned place preference responses indicated that there was a strain-dependent difference in the rewarding nature of social contact. As adolescent mice aged, SI responses gradually became less sensitive to genetic background and more responsive to the particular sex of individuals within an interacting pair. We have thus identified a specific, genetic influence on the motivation of early-adolescent mice to approach one another. Consistent with classical theories of motivation, which propose a functional

  19. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    Directory of Open Access Journals (Sweden)

    Shriver Mark D

    2005-06-01

    Full Text Available Abstract Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification 12. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification 345. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican, we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.

  20. Genetic variation in resistance of the preimplantation bovine embryo to heat shock.

    Science.gov (United States)

    Hansen, Peter J

    2014-12-01

    Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4-5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock. PMID:25472041

  1. Genetic and environmental causes of variation in gestation length of Jersey crossbred cattle

    Directory of Open Access Journals (Sweden)

    Anshuman Kumar

    2016-04-01

    Full Text Available Aim: The objective of this study was to investigate the effect of genetic and non-genetic factors and estimate the genetic parameter for gestation length (GL of Jersey crossbred cattle. Materials and Methods: The data included the 986 parturition records on Jersey crossbred cattle maintained at the Eastern Regional Station of ICAR-National Dairy Research Institute, Kalyani, West Bengal, India during 36 years (1978-2013. The data were analyzed applying mixed model least square technique considering the fixed effects of genetic group, season of calving, period of calving, parity of animal, birth weight, and sex of calf born from animal. The effect of sire was included as a random effect in the model. Results: The genetic group of animal, season of calving, parity of animal, and birth weight of calf born were found to be a significant source of variation in the GL, whereas the period of calving and sex of calf did not affect this trait. Cows with 62.5% Jersey inheritance had the shortest and longest GLs, respectively. Cows calved in summer and rainy season had shorter GL than those calved in the winter season. Older cows in 4th parity carried calves for longer days than the cows in 1st parity. The increase in calf birth weight significantly (p<0.01 contributed to a linear increase in GL value in this study. The heritability estimate of GL was 0.24±0.08. Conclusion: It can be concluded that selection for lower GL without distressing future growth of calf can be used to reduce calving difficulty, but a very small standard deviation of GL limits the benefit. Moreover, more accurate prediction of calving date will help in better management and health care of pregnant animals.

  2. Genetic Variation along the Histamine Pathway in Children with Allergic versus Nonallergic Asthma.

    Science.gov (United States)

    Anvari, Sara; Vyhlidal, Carrie A; Dai, Hongying; Jones, Bridgette L

    2015-12-01

    Histamine is an important mediator in the pathogenesis of asthma. Variation in genes along the histamine production, response, and degradation pathway may be important in predicting response to antihistamines. We hypothesize that differences exist among single-nucleotide polymorphisms (SNPs) in genes of the histamine pathway between children with allergic versus nonallergic asthma. Children (7-18 yr of age; n = 202) with asthma were classified as allergic or nonallergic based on allergy skin testing. Genotyping was performed to detect known SNPs (n = 10) among genes (HDC, HNMT, ABP1, HRH1, and HRH4) within the histamine pathway. Chi square tests and Cochran-Armitage Trend were used to identify associations between genetic variants and allergic or nonallergic asthma. Significance was determined by P asthma. Genotype differences specifically among the African-American children were also observed: HRH1-17 TT (13% allergic versus 0% nonallergic; P = 0.04) and HNMT-1639 TT (23% allergic versus 3% nonallergic; P = 0.03) genotypes were overrepresented among African-American children with allergic asthma. Our study suggests that genetic variation within the histamine pathway may be associated with an allergic versus nonallergic asthma phenotype. Further studies are needed to determine the functional significance of identified SNPs and their impact on antihistamine response in patients with asthma and allergic disease.

  3. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle.

    Science.gov (United States)

    Bickhart, Derek M; Xu, Lingyang; Hutchison, Jana L; Cole, John B; Null, Daniel J; Schroeder, Steven G; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S; Van Tassell, Curtis P; Schnabel, Robert D; Taylor, Jeremy F; Lewin, Harris A; Liu, George E

    2016-06-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1 Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  4. Addiction pharmacogenetics: a systematic review of the genetic variation of the dopaminergic system.

    Science.gov (United States)

    Patriquin, Michelle A; Bauer, Isabelle E; Soares, Jair C; Graham, David P; Nielsen, David A

    2015-10-01

    Substance use disorders have significant personal, familial, and societal consequences. Despite the serious consequences of substance use, only a few therapies are effective in treating substance use disorders, thus highlighting a need for improved treatment practices. Substance use treatment response depends on multiple factors such as genetic, biological, and social factors. It is essential that each component is represented in treatment plans. The dopaminergic system plays a critical role in the pharmacotherapy for addictions, and an understanding of the role of variation of genes involved in this system is essential for its success. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement guidelines. A computerized literature search was conducted using PubMed and Scopus (all databases). Articles published up to April 2015 that examined the role of dopaminergic gene variation in the pharmacotherapy of alcohol, opioid, and cocaine use disorders were reviewed. Search terms were dopamine, gene, polymorphism, substance abuse, treatment, and response. Polymorphisms of the DRD2, ANKK1, DAT1, DBH, and DRD4 genes have been found to moderate the effects of pharmacotherapy of alcohol, opioid, and cocaine use disorders. The integration of genetic information with clinical data will inform health professionals of the most efficacious pharmacotherapeutic intervention for substance use disorders. More studies are needed to confirm and extend these findings. PMID:26146874

  5. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease.

    Directory of Open Access Journals (Sweden)

    Kristen N Stevens

    Full Text Available Congenital heart disease (CHD is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1 is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant-common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations.

  6. Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity.

    Directory of Open Access Journals (Sweden)

    Michael Hellmair

    Full Text Available Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi, show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species.

  7. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility.

    Science.gov (United States)

    Hosgood, H Dean; Cawthon, Richard; He, Xingzhou; Chanock, Stephen; Lan, Qing

    2009-11-01

    Telomeres are responsible for the protection of the chromosome ends and shortened telomere length has been associated with risk of multiple cancers. Genetic variation in telomere-related genes may alter cancer risk associated with telomere length. Using lung cancer cases (n=120) and population-based controls (n=110) from Xuanwei, China, we analyzed telomere length separately and in conjunction with single nucleotide polymorphisms in the telomere maintenance genes POT1, TERT, and TERF2, which we have previously reported were associated with risk of lung cancer in this study. POT1 rs10244817, TERT rs2075786, and TERF2 rs251796 were significantly associated with lung cancer (p(trend)telomere length was not significantly associated with risk of lung cancer (OR=1.58; 95% CI=0.79-3.18) when compared to the longest tertile of telomere length. When stratified by genotype, there was a suggestion of a dose-response relationship between tertiles of telomere length and risk of lung cancer among the POT1 rs10244817 common variant carriers (OR (95% CI)=1.33 (0.47-3.75), 3.30 (1.14-9.56), respectively) but not among variant genotype carriers (p(interaction)=0.05). Our findings provide evidence that telomere length and genetic variation in telomere maintenance genes may be associated with risk of lung cancer susceptibility and warrant replication in larger studies.

  8. Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Eler, J P; Ferraz, J B S

    2016-04-01

    The objective of this study was to identify the genetic variation in the weaning weight (WW) of beef cattle as a function of heat stress. The WWs were recorded at approximately 205 days of age in three Brazilian beef cattle populations: Nelore (93,616), Brangus (18,906) and Tropical Composite (62,679). In view of the cumulative nature of WW, the effect of heat stress was considered as the accumulation of temperature and humidity index units (ACTHI) from the animal's birth to weaning. A reaction norm model was used to estimate the (co)variance components of WW across the ACTHI scale. The accumulation of THI units from birth to weaning negatively affected the WW. The definition of accumulated THI units as an environmental descriptor permitted to identify important genetic variation in the WW as a function of heat stress. As evidence of genotype by environment interaction, substantial heterogeneity was observed in the (co)variance components for WW across the environmental gradient. In this respect, the best animals in less stressful environments are not necessarily the best animals in more stressful environments. Furthermore, the response to selection for WW is expected to be lower in more stressful environments. PMID:26061790

  9. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout

    DEFF Research Database (Denmark)

    Henryon, Mark; Jokumsen, Alfred; Berg, Peer;

    2002-01-01

    The objective of this study was to test that additive genetic (co)variation for survival, growth rate, feed conversion efficiency, and resistance to viral haemorrhagic septicaemia (VHS) exists within a farmed population of rainbow trout. Thirty sires and 30 dams were mated by a partly factorial...... on days 52, 76, 96, 123, 157, 185, and 215, and body length on days 52 and 215); feed conversion efficiency between days 52-215, 52-76, 77-96, 97-123, 124-157, 158-185, and 186-215, and VHS resistance. REML estimates of additive genetic variation for the body weights, body lengths, and feed conversion...... efficiencies were obtained by fitting univariate linear (reduced) animal models. Additive genetic variation for VHS resistance was estimated by fitting a Weibull, sire-dam frailty model to time until death of fish challenged with VHS. Genetic correlations were estimated among the body weights, body length...

  10. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection

    Science.gov (United States)

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-01

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. DOI: http://dx.doi.org/10.7554/eLife.04494.001 PMID:25599590

  11. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    Science.gov (United States)

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  12. Genetic Variation between Biomphalaria alexandrina Snails Susceptible and Resistant to Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Suzanne M. F. El-Nassery

    2013-01-01

    Full Text Available Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.

  13. Patterns of genetic variation in native grape phylloxera on two sympatric host species.

    Science.gov (United States)

    Downie, D A

    2000-05-01

    Random amplified polymorphic DNA (RAPD) markers were used to examine population genetic structure in populations of native grape phylloxera. This research asked: (i) do RAPD markers distinguish two groups corresponding to the two host plant species; and (ii) do RAPD markers distinguish groups according to spatial location, independent of host plant association? Forty-nine phylloxera clones were collected from five pairs of adjacent individuals of two sympatric grape species in five sites along a 145 km transect in Missouri, USA. A high level of polymorphism was observed, with some evidence for structuring between host plant species and no evidence for spatial structuring. An analysis of molecular variance (AMOVA) found that 6.52% of the variance in RAPD banding patterns was attributable to host species and 7.96% of the variance was attributable to spatial location. A cluster analysis did not result in two groups corresponding to the two hosts, or to five groups corresponding to the geographical sites sampled. A Mantel test showed a low correlation between genetic similarity and spatial location. Two of the 93 RAPD markers were nonrandomly associated between the hosts. It is suggested that there may be a small host-mediated effect on genetic variation but stochastic dispersal and a highly heterogeneous environment may be the primary influences on the observed polymorphism. PMID:10792695

  14. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.

    Science.gov (United States)

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-07-07

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.

  15. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    Directory of Open Access Journals (Sweden)

    Huajing Teng

    2016-07-01

    Full Text Available Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.

  16. Genetic variation and phylogenetic relationships in oil palm (Elaeis guineensis Jacq. based on RAPD analysis

    Directory of Open Access Journals (Sweden)

    Nualsri, C.

    2005-05-01

    Full Text Available The genetic variability and phylogenetic relationships in oil palm (Elaeis guineensis Jacq. were studied using RAPD (Random Amplified Polymorphic DNA. Leaf samples of 151 plants were collected from different areas in southern Thailand. DNA from the leaf samples was isolated using CTAB buffer and screened by decamer oligonucleotide primers. Among the total of 160 primers screened, 7 primers (OPB-08, OPR-11, OPT-06, OPT-19, OPAB-01, OPAB-09 and OPAB-14 were chosen to analyse for genetic variation in 151 individuals representing 52 dura, 60 tenera and 39 pisifera. Two hundred and nine amplified fragments were obtained from 7 primers with an average of 29.85 RAPD markers per primer. A dendrogram showing genetic similarities among oil palm was constructed based on polymorphic bands using UPGMA (Unweighted Pair-Group Method Using Arithmetic Average. Cluster analysis was performed using the SPSS program, which revealed four major clusters: 1 dura, tenera and pisifera from Paorong Oil Palm Company, Oil Palm Research Center, dura and tenera from private plantation in Krabi, and dura from Thepa Research Station;2 dura and tenera from Thai Boonthong Company, pisifera and tenera from Thepa Research Station, dura, tenera and pisifera from Klong Hoi Khong Research Station; 3 and 4 dura and tenera from Univanit Company, respectively. In general, a similarity index showed relatively high levels of 0.6 or greater.

  17. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    Science.gov (United States)

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size ( 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  18. Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico.

    Directory of Open Access Journals (Sweden)

    E J Sánchez-Velázquez

    Full Text Available Brevipalpus phoenicis s.l. is an economically important vector of the Citrus leprosis virus-C (CiLV-C, one of the most severe diseases attacking citrus orchards worldwide. Effective control strategies for this mite should be designed based on basic information including its population structure, and particularly the factors that influence its dynamics. We sampled sweet orange orchards extensively in eight locations in Brazil and 12 in Mexico. Population genetic structure and genetic variation between both countries, among locations and among sampling sites within locations were evaluated by analysing nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI. In both countries, B. yothersi was the most common species and was found in almost all locations. Individuals from B. papayensis were found in two locations in Brazil. Brevipalpus yothersi populations collected in Brazil were more genetically diverse (14 haplotypes than Mexican populations (four haplotypes. Although geographical origin had a low but significant effect (ca. 25% on the population structure, the greatest effect was from the within location comparison (37.02 %. Potential factors driving our results were discussed.

  19. RESPONSIVENESS OF OBAATANPA MAIZE GRAIN YIELD AND BIOMASS TO SOIL, WEATHER AND CROP GENETIC VARIATIONS

    Directory of Open Access Journals (Sweden)

    Atakora K. Williams

    2014-04-01

    Full Text Available Use of crop growth simulations models such as those incorporated into Decision Support System for Agro technology Transfer (DSSAT are useful tools for assessing the impacts of crop productivity under various management systems. Maize growth model of DSSAT is Crop Environment Resource Synthesis (CERES -Maize. To predict maize grain yield and biomass using CERES-maize under Guinea savanna agro ecological conditions with different weather scenarios, data on maize growth, yield and development as well as data on soil and weather was collected from field on-station experiment conducted during the 2010 growing season at Kpalesawgu, Tamale-Ghana. Twenty on-farm experiments were also conducted in the Tolon-Kunbungu and Tamale Metropolitan districts in Northern Ghana to determine the responsiveness of maize grain yield and biomass to soil, weather and crop genetic variations. The cultivar coefficient was however calibrated with data collected from the on-station field experiment at Kpalesawgu. The cultivar coefficient was however calibrated with data collected from the on-station field experiment at Kpalesawgu. Data on phenology, grain yield and biomass from the field experiment were used for model validation and simulations. Validation results showed good agreement between predicted and measured yields with a Normalized Random Square mean Error (NRSME value of 0.181. Results of these sensitivity analysis results showed that the DSSAT model is highly sensitive to changes in weather variables such as daily maximum and minimum temperatures as well as solar radiation, however, the model was found to be least sensitive to rainfall.  The model also found to be sensitive to crop genetic and soil variations. Model predictions of the responsiveness of the yield and biomass to changes in soil, weather and crop genetic coefficients were found to be good with an r2 values between 0.95 to 0.99 except when predicting maize grain yield using changes in minimum

  20. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    Science.gov (United States)

    Besnard, Guillaume; Basic, Nevena; Christin, Pascal-Antoine; Savova-Bianchi, Dessislava; Galland, Nicole

    2009-03-01

    Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation. PMID:19076982

  1. Bioactive constituents in Prunus africana: geographical variation throughout Africa and associations with environmental and genetic parameters.

    Science.gov (United States)

    Kadu, Caroline A C; Parich, Alexandra; Schueler, Silvio; Konrad, Heino; Muluvi, Geoffrey M; Eyog-Matig, Oscar; Muchugi, Alice; Williams, Vivienne L; Ramamonjisoa, Lolona; Kapinga, Consolatha; Foahom, Bernard; Katsvanga, Cuthbert; Hafashimana, David; Obama, Crisantos; Vinceti, Barbara; Schumacher, Rainer; Geburek, Thomas

    2012-11-01

    Prunus africana--an evergreen tree found in Afromontane forests--is used in traditional medicine to cure benign prostate hyperplasia. Different bioactive constituents derived from bark extracts from 20 tree populations sampled throughout the species' natural range in Africa were studied by means of GC-MSD. The average concentration [mg/kgw/w] in increasing order was: lauric acid (18), myristic acid (22), n-docosanol (25), ferulic acid (49), β-sitostenone (198), β-sitosterol (490), and ursolic acid (743). The concentrations of many bark constituents were significantly correlated and concentration of n-docosanol was highly significantly correlated with all other analytes. Estimates of variance components revealed the highest variation among populations for ursolic acid (66%) and the lowest for β-sitosterol (20%). In general, environmental parameters recorded (temperature, precipitation, altitude) for the samples sites were not correlated with the concentration of most constituents; however, concentration of ferulic acid was significantly correlated with annual precipitation. Because the concentration of compounds in bark extracts may be affected by tree size, the diameter of sampled plants at 1.3m tree height (as proxy of age) was recorded. The only relationship with tree diameter was a negative correlation with ursolic acid. Under the assumption that genetically less variable populations have less variable concentrations of bark compounds, correlations between variation parameters of the concentration and the respective genetic composition based on chloroplast and nuclear DNA markers were assessed. Only variation of β-sitosterol concentration was significantly correlated with haplotypic diversity. The fixation index (F(IS)) was positively correlated with the variation in concentration of ferulic acid. Principal Components Analysis (PCA) indicated a weak geographic pattern. Mantel tests, however, revealed associations between the geographic patterns of bioactive

  2. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation. PMID:25488978

  3. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Francisco Salinas

    Full Text Available Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the quantitative trait loci (QTLs that regulate oenological phenotypes, we performed linkage analysis using three crosses between highly diverged S. cerevisiae strains. Segregants from each cross were used as starter cultures for 20-day fermentations, in synthetic wine must, to simulate actual winemaking conditions. Linkage analysis on phenotypes of primary industrial importance resulted in the mapping of 18 QTLs. We tested 18 candidate genes, by reciprocal hemizygosity, for their contribution to the observed phenotypic variation, and validated five genes and the chromosome II right subtelomeric region. We observed that genes involved in mitochondrial metabolism, sugar transport, nitrogen metabolism, and the uncharacterized ORF YJR030W explained most of the phenotypic variation in oenological traits. Furthermore, we experimentally validated an exceptionally strong epistatic interaction resulting in high level of succinic acid between the Sake FLX1 allele and the Wine/European MDH2 allele. Overall, our work demonstrates the complex genetic basis underlying wine traits, including natural allelic variation, antagonistic linked QTLs and complex epistatic interactions between alleles from strains with different evolutionary histories.

  4. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

  5. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review.

    Directory of Open Access Journals (Sweden)

    Lijun Jing

    Full Text Available The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort's ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be

  6. Genetic basis of hidden phenotypic variation revealed by increased translational readthrough in yeast.

    Directory of Open Access Journals (Sweden)

    Noorossadat Torabi

    Full Text Available Eukaryotic release factors 1 and 3, encoded by SUP45 and SUP35, respectively, in Saccharomyces cerevisiae, are required for translation termination. Recent studies have shown that, besides these two key factors, several genetic and epigenetic mechanisms modulate the efficiency of translation termination. These mechanisms, through modifying translation termination fidelity, were shown to affect various cellular processes, such as mRNA degradation, and in some cases could confer a beneficial phenotype to the cell. The most studied example of such a mechanism is [PSI+], the prion conformation of Sup35p, which can have pleiotropic effects on growth that vary among different yeast strains. However, genetic loci underlying such readthrough-dependent, background-specific phenotypes have yet to be identified. Here, we used sup35(C653R, a partial loss-of-function allele of the SUP35 previously shown to increase readthrough of stop codons and recapitulate some [PSI+]-dependent phenotypes, to study the genetic basis of phenotypes revealed by increased translational readthrough in two divergent yeast strains: BY4724 (a laboratory strain and RM11_1a (a wine strain. We first identified growth conditions in which increased readthrough of stop codons by sup35(C653R resulted in different growth responses between these two strains. We then used a recently developed linkage mapping technique, extreme QTL mapping (X-QTL, to identify readthrough-dependent loci for the observed growth differences. We further showed that variation in SKY1, an SR protein kinase, underlies a readthrough-dependent locus observed for growth on diamide and hydrogen peroxide. We found that the allelic state of SKY1 interacts with readthrough level and the genetic background to determine growth rate in these two conditions.

  7. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  8. Epigenetic Variation May Compensate for Decreased Genetic Variation with Introductions: A Case Study Using House Sparrows (Passer domesticus on Two Continents

    Directory of Open Access Journals (Sweden)

    Aaron W. Schrey

    2012-01-01

    Full Text Available Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old, and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.

  9. Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides.

    Science.gov (United States)

    Osorio, L F; Pattison, J A; Peres, N A; Whitaker, V M

    2014-01-01

    Anthracnose crown rot is an important disease of strawberry primarily caused by Colletotrichum gloeosporioides in Florida and North Carolina. Information on the magnitude of additive and nonadditive genetic variation is required to define breeding strategies and to estimate potential genetic gains. However, little is known about the genetic control of resistance and its utility in breeding. Our objectives were to obtain estimates of heritabilities and of components of genetic variances, genotype-environment interactions, and gains for resistance, and to examine the effects of locations and transplant types on the estimates. An incomplete diallel mating design generated 42 full-sib families, which were propagated in plugs from seed (seedling tests) and as bare-root runner plants (clonal tests) of different genotypes of the same families. Both seedlings and clones were inoculated with C. gloeosporioides under field conditions in North Carolina and Florida during the 2010-11 season. Narrow-sense heritability (h(2)) and broad-sense heritability (H(2)) for both clones and seedlings were higher at the North Carolina location (h(2) = 0.34 to 0.62 and H(2) = 0.46 to 0.85) than at the Florida location (h(2) = 0.16 to 0.22 and H(2) = 0.37 to 0.46). Likewise, the seedling tests showed higher genetic control than the clonal tests at both locations. Estimates of dominance variance were approximately one-third of the additive variance at North Carolina and were even larger at Florida. Epistasis was negative at both locations and assumed zero for heritability (H(2)) calculations. Genotype-environment interactions were different by transplant type, suggesting rank changes across locations. 'Pelican' was the most resistant parent at both locations, followed by 'NCH09-68' at the NC location and 'Winter Dawn' at the Florida location. Selection and deployment of the most resistant clone within each of the five best families is estimated to produce average genetic gains of 53.0 and 73

  10. GENETIC VARIATIONS AMONG AQUILARIA SPECIES AND GYRINOPS VERSTEEGII USING AMPLIFIED FRAGMENT LENGTH POLYMORPHISM MARKERS

    Directory of Open Access Journals (Sweden)

    NURITA TORUAN-MATHIUS

    2009-01-01

    Full Text Available Aquilaria sp. (Thymelaeaceae is the most valuable non wood production of forestry plant in Indonesia. It produces a fragrant resin when subjected to fungal attack and has been traded internationally known as gaharu. Knowledge of genetic diversity and relationship among species and genus is important for breeding purposes and species conservation. In this study, genetic variabilityof six Aquilaria species were analyzed using the AmplifiedFragment Length Polymorphism (AFLP markers. Ten AFLP primercombinations amplified 1353 DNA fragments ranging in size from100 to 350 bp of which 1285 (95% of them were polymorphic. Genetic similarities among Aquilaria sp. consisted of A. malaccensis, A. beccariana, A. microcarpa, and A. crassna ranged from 63.90 to 72.00 % based on Dice coefficient. The dendrogram derivedby the unweighted pair group method with arithmetic mean of germplasm analysis were clustered into two main groups. Hence, a genetic variation among species is quiet high. Bootstrap valuesfor the groups supported 70% of the cluster using a linear relationship equation of (r = 0.724, P < 0.0001 was observedbetween known pedigrees and AFLP-derived genetic similarityfor 136 pairwise comparisons of Aquilaria species. For example, A. malacensis and A. microcarpa have the highest genetic similarity (72.00% compared with another Aquilaria species. Primer pairs E-ACG/M-CTA produced a specific fragment for A. beccariana (850 bp, A. crasna (550 bp, 180 bp, and 140 bp, A. malaccencis (1500 bp, A. microcarpa (250 bp and Gyrinops versteegii (150 bp. Primer pairs E-ACG/M-CAA produced a specific DNA fragment only for A. beccariana (1500 bp and 100 bp. Primer pairs E-ACC/M-CAC also produced only specific fragment for A. crassna (1500 bp. Study showed the usefulness of AFLPanalysis in Aquilaria sp. and its potential application for breedingand species conservation. Further, molecular diversity estimated in the present study combined with the datasets on other

  11. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation. PMID:26337939

  12. Genetic variation of Lymnaea stagnalis tolerance to copper: A test of selection hypotheses and its relevance for ecological risk assessment

    International Nuclear Information System (INIS)

    The use of standardized monospecific testing to assess the ecological risk of chemicals implicitly relies on the strong assumption that intraspecific variation in sensitivity is negligible or irrelevant in this context. In this study, we investigated genetic variation in copper sensitivity of the freshwater snail Lymnaea stagnalis, using lineages stemming from eight natural populations or strains found to be genetically differentiated at neutral markers. Copper-induced mortality varied widely among populations, as did the estimated daily death rate and time to 50% mortality (LT50). Population genetic divergence in copper sensitivity was compared to neutral differentiation using the QST-FST approach. No evidence for homogenizing selection could be detected. This result demonstrates that species-level extrapolations from single population studies are highly unreliable. The study provides a simple example of how evolutionary principles could be incorporated into ecotoxicity testing in order to refine ecological risk assessment. - Highlights: • Genetic variation in copper tolerance occurs between Lymnaea stagnalis populations. • We used the QST-FST approach to test evolutionary patterns in copper tolerance. • No evidence for uniform selection was found. • Results suggest that extrapolations to the species level are not safe. • A method is proposed to refine ecological risk assessment using genetic parameters. - Genetic variation in copper tolerance occurs in Lymnaea stagnalis. A method is proposed for considering evolutionary parameters in ecological risk assessment

  13. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population.

    Directory of Open Access Journals (Sweden)

    Andrew K Turner

    2011-10-01

    Full Text Available Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC; the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b, Il2, and Il12b, rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.

  14. Juglans regia L., phenotypic selection and assessment of genetic variation within a simulated seed orchard

    Directory of Open Access Journals (Sweden)

    Fulvio Ducci

    2010-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Noble hardwoods are very important for the Italian furniture industry. Since 1985, approximately 170,000 ha have been planted in Italy with noble hardwoods. Among them, about 50% of species are represented by walnuts. Walnut (Juglans regia L., not native in Italy, has been the focus of a substantial research effort for breeding and improvement programmes. The priority has been to preserve the in situ genetic resource still existing after intensive felling. Phenotypes suitable for timber production showing important traits such as straight stem, nice branch architecture, dominance and adaptation (phenology have needed to be developed and selected. In order to reach this goals, selection of valuable progenies and the evaluation of the interaction genotype x environment, methods based essentially on a multi-trait Selection Index, were developed. Studies have been undertaken also to measure the variation of phenological traits, more correlated to traits valuable for architecture; in addition, neutral markers were used to assess genetic variation among different intensities of the adopted selections. The individual genetic component was found to be higher than at the inter-population level. Results showed that a hypothetical seed orchard made with progenies selected by morphology, phenology and genetic traits could provide material with a good performance and supply a variability similar to larger populations as the total plantation or the pseudo-natural system chosen for comparison. st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso

  15. Genetic diversity in northern Spain (Basque Country and Cantabria): GM and KM variation related to demographic histories.

    Science.gov (United States)

    Esteban, E; Dugoujon, J M; Guitard, E; Sénégas, M T; Manzano, C; de la Rúa, C; Valveny, N; Moral, P

    1998-01-01

    Genetic diversity in Northern Spain (SW Europe) was assessed through the analysis of the GM and KM immunoglobulin markers in 505 individuals using a set of 17 allotypes, including the G2M(23) allotype which has been infrequently used before now. The individuals were representative of three anthropologically well-defined populations belonging to two geographically and archaeologically distinct areas in the Basque Country (Guipúzcoa and Alava provinces) and to the mountainous region of Montes de Pas in the province of Cantabria. Gene frequency distributions indicated a high genetic divergence between Montes de Pas and the Basque Country, and a relative degree of heterogeneity between the two Basque regions. The genetic differentiation of Montes de Pas, which is consistent with previous classical polymorphism analyses, suggests a considerable genetic variation range within the Iberian Peninsula, possibly higher than that often polarised around the Basque versus non-Basque variation. Analyses of genetic structure show that the major differentiation of Montes de Pas could be related to the historically documented mixed origin of this population. The moderate genetic distances between regions in the Spanish Basque Country could be explained by differential systematic pressures acting through a stronger gene flow in the South than in the more isolated Northern areas. The comparisons with neighbouring populations from the French Pyrenees suggest that the present genetic variation revealed by lg polymorphisms in SW Europe can be related to historical demographic processes including gene flow and/or low population sizes. PMID:9781037

  16. Genetic Variation of the First Generation of Rodent Tuber (Typhonium flagelliforme Lodd. Mutants Based on RAPD Molecular Markers

    Directory of Open Access Journals (Sweden)

    Nesti Fronika Sianipar

    2015-04-01

    Full Text Available Rodent tuber (Typhonium flagelliforme Lodd. is a herbal plant from the Araceae family. The plant has high medical potential and is effective to cure cancer. However, the low level of its genetic variation limits its exploration for desirable traits. The low level of genetic variation in Rodent tuber is mainly due to its asexual reproduction system. It usually reproduces vegetatively via tuber separation. Therefore, gamma irradiation had been applied to rodent tuber in vitro to increase its genetic diversity. The objective of this study was to analyze the genetic diversity of the first generation (MV1 of gamma irradiated rodent tuber mutant using random amplified polymorphic DNA (RAPD markers. A total of 14 mutant DNA samples were analyzed with 14 RAPD primers. The result showed that 67 out of 123 DNA bands were polymorphic among mutant lines. Based on cluster analysis these mutants showed 0.78-0.97 genetic similarity. Cutting of dendogram at genetic distance of 0.89 produced four main clusters. Mutants with high genetic variation are now available. This increases the opportunity of obtaining mutant lines with high anti-cancer activity.

  17. Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms.

    Science.gov (United States)

    Datwyler, Shannon L; Weiblen, George D

    2006-03-01

    Cannabis sativa L. (Cannabaceae) is one of the earliest known cultivated plants and is important in the global economy today as a licit and an illicit crop. Molecular markers distinguishing licit and illicit cultivars have forensic utility, but no direct comparison of hemp and marijuana amplified fragment length polymorphism (AFLP) has been made to date. Genetic variation was surveyed in three populations of fiber hemp and a potent cultivar of marijuana using AFLP markers. Ten primer pairs yielded 1206 bands, of which 88% were polymorphic. Eighteen bands represented fixed differences between all fiber populations and the drug cultivar. These markers have practical utility for (1) establishing conspiracy in the cultivation and distribution of marijuana, (2) identifying geographic sources of seized drugs, and (3) discriminating illegal, potent marijuana cultivars from hemp where the cultivation of industrial hemp is permitted.

  18. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens;

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a...... lack of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  19. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B;

    2016-01-01

    and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according...... matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition......Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases...

  20. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  1. Genetic Variation of Isozyme Polyphenol Oxidase (PPO Profiles in Different Varieties of Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Owk ANIEL KUMAR

    2013-12-01

    Full Text Available The genus Capsicum commonly known as chilli pepper is a major spice crop and is of cosmopolitan in distribution. Native polyacrylamide gel electrophoresis (Native PAGE was used to study the polyphenol oxidase (PPO isozyme variation in 21 varieties of Capsicum annuum L. A maximum of 4 PPO bands were scored in five varieties i.e., Ca14, Ca15, Ca16, Ca19 & Ca20, while the minimum (2 bands was observed in four varieties (Ca3, Ca10, Ca13 & Ca17. 15 pair wise combinations showed highest average per cent similarity (100% and the UPGMA dendrogram represented low genetic diversity. The present study revealed that considerable intraspecific differences were found in the varieties. Thus the results obtained could be used in fingerprinting the genotypes.

  2. Genetic variation in Puccinia graminis collected from oats, rye, and barberry.

    Science.gov (United States)

    Berlin, Anna; Djurle, Annika; Samils, Berit; Yuen, Jonathan

    2012-10-01

    Puccinia graminis, the causal agent of stem rust, was collected from its alternate host barberry (Berberis spp.) and two different uredinial hosts, oats (Avena sativa) and rye (Secale cereale). The samples were analyzed using 11 polymorphic simple sequence repeat (SSR) markers. There were large differences between fungal populations on oats (P. graminis f. sp. avenae) and rye (P. graminis f. sp. secalis), and the genetic variation within the different formae speciales was also high. It was possible to distinguish between the two formae speciales on barberry. Additional genotypic groups not present in the field samples from oats and rye were also identified on barberry. Our results confirm the importance of barberry in maintaining the populations of P. graminis in Sweden and the importance of the sexual stage for the survival of the pathogen.

  3. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease.

    Science.gov (United States)

    Jaeger, Martin; Stappers, Mark H T; Joosten, Leo A B; Gyssens, Inge C; Netea, Mihai G

    2015-01-01

    Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.

  4. Population genetic structure of Indian shad, Tenualosa ilisha inferred from variation in mitochondrial DNA sequences.

    Science.gov (United States)

    Behera, B K; Singh, N S; Paria, P; Sahoo, A K; Panda, D; Meena, D K; Das, P; Pakrashi, S; Biswas, D K; Sharma, A P

    2015-09-01

    Indian shad, Tenualosa ilisha, is a commercially important anadromous fish representing major catch in Indo-pacific region. The present study evaluated partial Cytochrome b (Cyt b) gene sequence of mtDNA in T. ilisha for determining genetic variation from Bay of Bengal and Arabian Sea origins. The genomic DNA extracted from T. ilisha samples representing two distant rivers in the Indian subcontinent, the Bhagirathi (lower stretch of Ganges) and the Tapi was analyzed. Sequencing of 307 bp mtDNA Cytochrome b gene fragment revealed the presence of 5 haplotypes, with high haplotype diversity (Hd) of 0.9048 with variance 0.103 and low nucleotide diversity (π) of 0.14301. Three population specific haplotypes were observed in river Ganga and two haplotypes in river Tapi. Neighbour-joining tree based on Cytochrome b gene sequences of T. ilisha showed that population from Bay of Bengal and Arabian Sea origins belonged to two distinct clusters. PMID:26521565

  5. Nontypeable Haemophilus Influenzae Infection Upregulates the NLRP3 Inflammasome and Leads to Caspase-1-Dependent Secretion of Interleukin-1β - A Possible Pathway of Exacerbations in COPD.

    Directory of Open Access Journals (Sweden)

    Johannes Rotta Detto Loria

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is the most common cause for bacterial exacerbations in chronic obstructive pulmonary disease (COPD. Recent investigations suggest the participation of the inflammasome in the pathomechanism of airway inflammation. The inflammasome is a cytosolic protein complex important for early inflammatory responses, by processing Interleukin-1β (IL-1β to its active form.Since inflammasome activation has been described for a variety of inflammatory diseases, we investigated whether this pathway plays a role in NTHi infection of the airways.A murine macrophage cell line (RAW 264.7, human alveolar macrophages and human lung tissue (HLT were stimulated with viable or non-viable NTHi and/or nigericin, a potassium ionophore. Secreted cytokines were measured with ELISA and participating proteins detected via Western Blot or immunohistochemistry.Western Blot analysis of cells and immunohistochemistry of lung tissue detected the inflammasome key components NLRP3 and caspase-1 after stimulation, leading to a significant induction of IL-1β expression (RAW: control at the lower detection limit vs. NTHi 505±111pg/ml, p<0.01. Inhibition of caspase-1 in human lung tissue led to a significant reduction of IL-1β and IL-18 levels (IL-1β: NTHi 24 h 17423±3198pg/ml vs. NTHi+Z-YVAD-FMK 6961±1751pg/ml, p<0.01.Our data demonstrate the upregulation of the NRLP3-inflammasome during NTHi-induced inflammation in respiratory cells and tissues. Our findings concerning caspase-1 dependent IL-1β release suggest a role for the inflammasome in respiratory tract infections with NTHi which may be relevant for the pathogenesis of bacterial exacerbations in COPD.

  6. Morphometric and genetic variation of small dwarf honeybees Apis andreniformis Smith, 1858 in Thailand

    Institute of Scientific and Technical Information of China (English)

    ATSALEK RATTANAWANNEE; CHANPEN CHANCHAO; SIRIWAT WONGSIRI

    2007-01-01

    The small dwarf honey bee, Apis andreniformis, is a rare and patchily distributed Apis spp. and is one of the native Thai honey bees, yet little is known about its biodiversity. Thirty (27 Thai and 3 Malaysian) and 37 (32 Thai and 5 Malaysian) colonies of A.andreniformis were sampled for morphometric and genetic analysis, respectively. For morphometric analysis, 20 informative characters were used to determine the variation. After plotting the factor scores, A. andreniformis from across Thailand were found to belong to one group, a notion further supported by a cluster analysis generated dendrogram.However, clinal patterns in groups of bee morphometric characters were revealed by linear regression analysis. The body size of bees increases from South to North but decreases from West to East, although this may reflect altitude rather than longitude. Genetic variation was determined by sequence analysis of a 520 bp fragment of the mitochondrial cytochrome oxidase subunit b (cytb). DNA polymorphism among bees from the mainland of Thailand is lower than that from Phuket Island and Chiang Mai. Although two main different groups of bees were obtained from phylogenetic trees constructed by neighbor-joining and unweighted pair-group method using arithmetic averages programs, no clear geographic signal was present. Thus, while the minor group (B) contained all of the samples from the only island sampled (Phuket in the south), but not the southern mainland colonies, it also contained samples from the far northern inland region of Chiang Mai, other samples of which were firmly rooted in the major group (A).

  7. Genetic variation for growth and selection in adult plants of Eucalyptus badjensis.

    Science.gov (United States)

    Santos, Paulo Eduardo Telles Dos; Paludzyszyn Filho, Estefano; Silva, Lorenzo Teixeira de Melo da; Vandresen, Paula Burigo

    2015-12-01

    The aim of this study was to evaluate Eucalyptus badjensis concerning the genetic variation for growth traits and the potential of the species in supporting a breeding programme. The field trial was a provenance/progeny test established in Campina da Alegria, Santa Catarina, Brazil (latitude 26°52'05.1″ S, longitude 51°48'47.5″ W, altitude 1,015 m) in a soil classified as Latossolic Alumino-Ferric Brown Nitosol. The experiment comprised 60 open-pollinated progenies from the provenances Glenbog and Badja State Forest, New South Wales, Australia. Ten replicates and plots with six plants in row were used. At the age of 17 years, 279 trees were assessed for diameter of the bole at breast height (DBH), total tree height (H) and volume of wood with bark (Vol). After submitting the data to statistical genetic analysis, the overall means for DBH, H and Vol were 45.17 cm, 33.30 m and 2.84 m3, and the estimates of additive coefficient of variation [ C V a(%)] were 12.59%, 5.91% and 26.51%, respectively. Heritability coefficients of additive effects ( h a 2) were also estimated and the following values were found: 0.443, 0.312 and 0.358. Thirty-nine trees from 25 different progenies were selected. The expected means of the provenances after improvement were 50.02 cm, 34.35 m and 3.47 m3 for DBH, H and Vol, respectively. PMID:26692156

  8. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates

    Directory of Open Access Journals (Sweden)

    Spadafora Domenico

    2007-04-01

    Full Text Available Abstract Background Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. Results The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. Conclusion These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.

  9. Genetic variation for growth and selection in adult plants of Eucalyptus badjensis

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Telles dos Santos

    2015-01-01

    Full Text Available Abstract The aim of this study was to evaluate Eucalyptus badjensis concerning the genetic variation for growth traits and the potential of the species in supporting a breeding programme. The field trial was a provenance/progeny test established in Campina da Alegria, Santa Catarina, Brazil (latitude 26°52′05.1″ S, longitude 51°48′47.5″ W, altitude 1,015 m in a soil classified as Latossolic Alumino-Ferric Brown Nitosol. The experiment comprised 60 open-pollinated progenies from the provenances Glenbog and Badja State Forest, New South Wales, Australia. Ten replicates and plots with six plants in row were used. At the age of 17 years, 279 trees were assessed for diameter of the bole at breast height (DBH, total tree height (H and volume of wood with bark (Vol. After submitting the data to statistical genetic analysis, the overall means for DBH, H and Vol were 45.17 cm, 33.30 m and 2.84 m3, and the estimates of additive coefficient of variation [ C V a(%] were 12.59%, 5.91% and 26.51%, respectively. Heritability coefficients of additive effects ( h a 2 were also estimated and the following values were found: 0.443, 0.312 and 0.358. Thirty-nine trees from 25 different progenies were selected. The expected means of the provenances after improvement were 50.02 cm, 34.35 m and 3.47 m3 for DBH, H and Vol, respectively.

  10. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    2011-03-01

    Full Text Available Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.

  11. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem

  12. Analysis of protein-coding genetic variation in 60,706 humans.

    Science.gov (United States)

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-18

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes. PMID:27535533

  13. Strategies for integrated analysis of genetic, epigenetic and gene expression variation in cancer: addressing the challenges

    Directory of Open Access Journals (Sweden)

    Louise Bruun Thingholm

    2016-02-01

    Full Text Available The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis. However, integration of heterogeneous measurements of biological variation is a non-trivial exercise due to the diversity of the human genome and the variety of output data formats and genome coverage obtained from the commonly used molecular platforms. This review article will provide an introduction to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured – making the assessment of disease risk against a composite genomic factor possible. The focus of this review is to provide an overview and introduction to the main strategies and to discuss where there is a need for further development.

  14. Genetic Variation and Diversity of Japanese Loach Inferred from Mitochondrial DNA

    Science.gov (United States)

    Koizumi, Noriyuki; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    We conducted a phylogenetic analysis of the cytochrome b gene sequences (1,131-bp) in mitochondrial DNA, to elucidate genetic variation and diversity of the loach Misgurnus anguillicaudatus population in Japan. There were 147 haplotypes that were identified from 444 specimens collected from 123 sites. The phylogenetic tree based on the maximum parsimony method indicated three clades (A, B and C). Clade A resembled genetically the European loach M. fossilis, and the haplotypes were distributed from the North Kanto region northward. Clade B was closely related to the Chinese loach M. anguillicaudatus, and the haplotypes were distributed over the South Tohoku region westward. Clade C that composed of seven subclades seemed to be endemic to Japan, and the haplotypes of these subclades indicated regional or nationwide distribution. Distribution of Clade A and B in Japan appeared to derive from not only artificial release of individuals imported recently from China or Korea, but also diastrophism related to formation processes of the Japanese Islands. Also the estimated divergence time for evolutionary separations between clades was from the upper Miocene to the lower Pliocene (7.4 to 3.8 mya).

  15. Analysis of protein-coding genetic variation in 60,706 humans.

    Science.gov (United States)

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-17

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

  16. Identification of Y chromosome genetic variations in Chinese indigenous horse breeds.

    Science.gov (United States)

    Ling, Yinghui; Ma, Yuehui; Guan, Weijun; Cheng, Yuejiao; Wang, Yanping; Han, Jianlin; Jin, Dapeng; Mang, Lai; Mahmut, Halik

    2010-01-01

    Y chromosome acts as a single nonrecombining unit that is male specific and in effect haploid, thus ensuring the preservation of mutational events as a single haplotype via male lines. In this study, 6 Y chromosome-specific microsatellites (SSR) were tested for the patrilineal genetic variations of 573 male samples from Chinese domestic horse (30 breeds), Przewalski's horse, and donkey. All the 6 loci appeared as a haplotype block in Przewalski's horse and the domestic donkey. There were notable differences, however, at Y chromosome markers between horse and donkey. There were 2 haplotypes of Eca.YA16 in the domestic horse breeds, Haplotype A (Allele A: 156 bp) and Haplotype B (Allele B: 152 bp). Allele A was the common allele among 30 horse breeds, and Allele B was found in 11 horse breeds. This is the first description of a Y chromosome variant for horses. The 2 haplotypes of Y chromosome discovered in the domestic horse breeds in China could be helpful in unveiling their intricate genetic genealogy.

  17. Genetic-morphometric variation in Culex quinquefasciatus from Brazil and La Plata, Argentina.

    Science.gov (United States)

    Morais, Sirlei Antunes de; Moratore, Camila; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2010-08-01

    Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35° S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil. PMID:20835615

  18. Genetic-morphometric variation in Culex quinquefasciatus from Brazil and La Plata, Argentina

    Directory of Open Access Journals (Sweden)

    Sirlei Antunes de Morais

    2010-08-01

    Full Text Available Variation among natural populations of Culex (Culex quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil.

  19. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  20. Individual Variations in Inorganic Arsenic Metabolism Associated with AS3MT Genetic Polymorphisms

    Directory of Open Access Journals (Sweden)

    Haruo Takeshita

    2011-04-01

    Full Text Available Individual variations in inorganic arsenic metabolism may influence the toxic effects. Arsenic (+3 oxidation state methyltransferase (AS3MT that can catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet to trivalent arsenical, may play a role in arsenic metabolism in humans. Since the genetic polymorphisms of AS3MT gene may be associated with the susceptibility to inorganic arsenic toxicity, relationships of several single nucleotide polymorphisms (SNPs in AS3MT with inorganic arsenic metabolism have been investigated. Here, we summarize our recent findings and other previous studies on the inorganic arsenic metabolism and AS3MT genetic polymorphisms in humans. Results of genotype dependent differences in arsenic metabolism for most of SNPs in AS3MT were Inconsistent throughout the studies. Nevertheless, two SNPs, AS3MT 12390 (rs3740393 and 14458 (rs11191439 were consistently related to arsenic methylation regardless of the populations examined for the analysis. Thus, these SNPs may be useful indicators to predict the arsenic metabolism via methylation pathways.

  1. Interpopulation genetic-ecological variation of Scots pine (Pinus sylvestris L. in Serbia

    Directory of Open Access Journals (Sweden)

    Lučić Aleksandar

    2011-01-01

    Full Text Available The genetic-ecological variation of Scots pine (Pinus sylvestris L. in Serbia was studied in the populations at five localities in western and south-western Serbia. Three groups of Scots pine (Pinus sylvestris L. populations were differentiated based on genetic research (seed protein analysis and plant community research. The first group consists of Scots pine populations on Šargan (FMU “Šargan“ and on Tara (FMU “Kaluderske Bare”, where the forests belong to the community of Scots pine and Austrian pine (Pinetum sylvestris-nigrae Pavlovic 1951. The second group covers the localities Stolovi (FMU “Radocelo-Crepuljnik“ and Zlatar (FMU “Zlatar I“, where the forests belong to the community of Scots pine and spruce (Piceo abietis-Pinetum sylvestris Stefanovic 1960. The third group comprises the Scots pine population on Pešter (FMU “Dubocica-Bare“ which belongs to the community of Scots pine with erica (Erico-Pinetum sylvestris Stefanovic 1963. Cluster analysis was performed on the basis of seed protein data and showed that there are three groups of Scots pine populations. The three populations coincide with plant communities. The community of Scots pine with erica (Erico-Pinetum sylvestris Stefanovic 1963 recorded on Pešter at the locality “Dubocica- Bare“ in the area of FE “Golija“ Ivanjica, is a special Scots pine population displayed at the greatest distance from all other populations in the cluster analysis dendrogram.

  2. Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation.

    Science.gov (United States)

    Meyer, Karin

    2016-08-01

    Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty-derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated-rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined.

  3. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize.

    Science.gov (United States)

    Tzin, Vered; Lindsay, Penelope L; Christensen, Shawn A; Meihls, Lisa N; Blue, Levi B; Jander, Georg

    2015-11-01

    Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within-species variation in such plant-mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore-induced methylation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) to form 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) promotes caterpillar resistance, lower DIMBOA-Glc levels favour aphid reproduction. Thus, caterpillar-induced DIMBOA-Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O-methyltransferases that convert DIMBOA-Glc to HDMBOA-Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua -induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21. PMID:26462033

  4. A Survey of Genetic Variation and Genome Evolution within the Invasive Fallopia Complex.

    Science.gov (United States)

    Bzdega, Katarzyna; Janiak, Agnieszka; Książczyk, Tomasz; Lewandowska, Agata; Gancarek, Małgorzata; Sliwinska, Elwira; Tokarska-Guzik, Barbara

    2016-01-01

    The knotweed taxa Fallopia japonica, F. sachalinensis and their interspecific hybrid F. × bohemica are some of the most aggressive invaders in Europe and North America and they are serious threats to native biodiversity. At the same time, they constitute a unique model system for the creation of hybrids and studies of the initiation of evolutionary processes. In the presented study, we focused on (i) examining genetic diversity in selected populations of three Fallopia taxa in the invaded (Poland) and native ranges (Japan), (ii) establishing genome size and ploidy levels and (iii) identifying ribosomal DNA (rDNA)-bearing chromosomes in all of the taxa from the invaded range. We found that the genetic diversity within particular taxa was generally low regardless of their geographical origin. A higher level of clonality was observed for the Polish populations compared to the Japanese populations. Our study suggests that the co-occurrence of F. sachalinensis together with the other two taxa in the same stand may be the source of the higher genetic variation within the F. × bohemica hybrid. Some shift towards the contribution of F. japonica alleles was also observed for selected F. × bohemica individuals, which indicates the possibility of producing more advanced generations of F. × bohemica hybrids. All of the F. sachalinensis individuals were hexaploid (2n = 6x = 66; 2C = 6.01 pg), while those of F. japonica were mostly octoploid (2n = 8x = 88; 2C = 8.87 pg) and all of the F. × bohemica plants except one were hexaploid (2n = 6x = 66; 2C = 6.46 pg). Within the chromosome complement of F. japonica, F. sachalinensis and F. × bohemica, the physical mapping of the rDNA loci provided markers for 16, 13 and 10 chromosomes, respectively. In F. × bohemica, a loss of some of rDNA loci was observed, which indicates the occurrence of genome changes in the hybrid. PMID:27575805

  5. Genetic Variation Among Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cubense Analyzed by DNA Fingerprinting.

    Science.gov (United States)

    Bentley, S; Pegg, K G; Moore, N Y; Davis, R D; Buddenhagen, I W

    1998-12-01

    ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.

  6. Genetic Variation Among Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cubense Analyzed by DNA Fingerprinting.

    Science.gov (United States)

    Bentley, S; Pegg, K G; Moore, N Y; Davis, R D; Buddenhagen, I W

    1998-12-01

    ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host. PMID:18944830

  7. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem

    OpenAIRE

    Zytynska, Sharon E.; Fay, Michael F.; Penney, David; Preziosi, Richard F.

    2011-01-01

    Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated commu...

  8. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    OpenAIRE

    Beleza Sandra; Luiselli Donata; Sequeira Fernando; Coelho Margarida; Rocha Jorge

    2009-01-01

    Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyanek...

  9. Genetic variation in MHC proteins is associated with T cell receptor expression biases.

    Science.gov (United States)

    Sharon, Eilon; Sibener, Leah V; Battle, Alexis; Fraser, Hunter B; Garcia, K Christopher; Pritchard, Jonathan K

    2016-09-01

    In each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and, if so, whether differences exist in TCR V gene compatibilities with different MHC alleles. We applied expression quantitative trait locus (eQTL) mapping to test for associations between genetic variation and TCR V gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V gene usage. Fine-mapping of the association signals identifies specific amino acids from MHC genes that bias V gene usage, many of which contact or are spatially proximal to the TCR or peptide in the TCR-peptide-MHC complex. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTL effects mediated by protein-protein interactions and are consistent with intrinsic TCR-MHC specificity. PMID:27479906

  10. Genetic variation in human NPY expression affects stress response and emotion.

    Science.gov (United States)

    Zhou, Zhifeng; Zhu, Guanshan; Hariri, Ahmad R; Enoch, Mary-Anne; Scott, David; Sinha, Rajita; Virkkunen, Matti; Mash, Deborah C; Lipsky, Robert H; Hu, Xian-Zhang; Hodgkinson, Colin A; Xu, Ke; Buzas, Beata; Yuan, Qiaoping; Shen, Pei-Hong; Ferrell, Robert E; Manuck, Stephen B; Brown, Sarah M; Hauger, Richard L; Stohler, Christian S; Zubieta, Jon-Kar; Goldman, David

    2008-04-24

    Understanding inter-individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y (NPY) is anxiolytic and its release is induced by stress. NPY is abundantly expressed in regions of the limbic system that are implicated in arousal and in the assignment of emotional valences to stimuli and memories. Here we show that haplotype-driven NPY expression predicts brain responses to emotional and stress challenges and also inversely correlates with trait anxiety. NPY haplotypes predicted levels of NPY messenger RNA in post-mortem brain and lymphoblasts, and levels of plasma NPY. Lower haplotype-driven NPY expression predicted higher emotion-induced activation of the amygdala, as well as diminished resiliency as assessed by pain/stress-induced activations of endogenous opioid neurotransmission in various brain regions. A single nucleotide polymorphism (SNP rs16147) located in the promoter region alters NPY expression in vitro and seems to account for more than half of the variation in expression in vivo. These convergent findings are consistent with the function of NPY as an anxiolytic peptide and help to explain inter-individual variation in resiliency to stress, a risk factor for many diseases. PMID:18385673

  11. Genetic variation in human NPY expression affects stress response and emotion

    Science.gov (United States)

    Zhou, Zhifeng; Zhu, Guanshan; Hariri, Ahmad R.; Enoch, Mary-Anne; Scott, David; Sinha, Rajita; Virkkunen, Matti; Mash, Deborah C.; Lipsky, Robert H.; Hu, Xian-Zhang; Hodgkinson, Colin A.; Xu, Ke; Buzas, Beata; Yuan, Qiaoping; Shen, Pei-Hong; Ferrell, Robert E.; Manuck, Stephen B.; Brown, Sarah M.; Hauger, Richard L.; Stohler, Christian S.; Zubieta, Jon-Kar; Goldman, David

    2009-01-01

    Understanding inter-individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y (NPY) is anxiolytic1,2 and its release is induced by stress3. NPY is abundantly expressed in regions of the limbic system that are implicated in arousal and in the assignment of emotional valences to stimuli and memories4–6. Here we show that haplotype-driven NPY expression predicts brain responses to emotional and stress challenges and also inversely correlates with trait anxiety. NPY haplotypes predicted levels of NPY messenger RNA in postmortem brain and lymphoblasts, and levels of plasma NPY. Lower haplotype-driven NPY expression predicted higher emotion-induced activation of the amygdala, as well as diminished resiliency as assessed by pain/stress-induced activations of endogenous opioid neurotransmission in various brain regions. A single nucleotide polymorphism (SNP rs16147) located in the promoter region alters NPY expression in vitro and seems to account for more than half of the variation in expression in vivo. These convergent findings are consistent with the function of NPY as an anxiolytic peptide and help to explain inter-individual variation in resiliency to stress, a risk factor for many diseases. PMID:18385673

  12. Morphological and Genetic Variation Between the Japanese Populations of the Amphidromous Snail Stenomelania crenulata (Cerithioidea: Thiaridae).

    Science.gov (United States)

    Hidaka, Hiroka; Kano, Yasunori

    2014-09-01

    Freshwater gastropods often have limited dispersal capability and small geographic ranges, and face severe threats from habitat loss and degradation. However, in addition to the scarcity of knowledge on their life history traits, species taxonomy has not been adequately resolved and boundaries between intra- and interspecific variation remain unclear for many taxa. One such example of an indeterminate species boundary with implications for conservation issues is the relationship between the thiarid snails Stenomelania crenulata in Okinawa and southwards (ranked as CR+EN in the 2012 Japanese Red List) and S. rufescens in mainland Japan (VU). The results of our multi-disciplinary investigation into variation in the shell morphology and mitochondrial (COI) and nuclear (ITS-1) gene sequences suggest that S. rufescens represents a geographic variant and a junior synonym of S. crenulata. The widespread geographic range of S. crenulata, spanning a few thousand kilometers north to south, is possible due to an amphidromous life cycle that involves a marine planktotrophic larval phase and upstream migration after settlement in estuaries. Nevertheless, there is recognizable morphological and genetic differentiation between distant populations, probably reflecting a relatively short pelagic duration and possibly also infrequent transoceanic dispersal; metamorphic competence is achieved in two weeks in full seawater and even more rapidly in brackish water. The Okinawan population, with only a few known localities, therefore deserves the high conservation priority; conservation efforts need to involve the proper maintenance of migration pathways including all marine, brackish and freshwater environments. PMID:25186931

  13. Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A. J.; Coors, J. G.; de Leon, N.; Wolfrum, E. J.; Hames, B. R.; Sluiter, A. D.; Weimer, P. J.

    2009-01-01

    Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.

  14. The RGS2 (-391, C>G genetic variation correlates to antihypertensive drug responses in Chinese patients with essential hypertension.

    Directory of Open Access Journals (Sweden)

    Fazhong He

    Full Text Available Regulators of G-protein signaling protein 2 (RGS2 play an irreplaceable role in the control of normal blood pressure (BP. One RGS2 (-391, C>G genetic variation markedly changes its mRNA expression levels. This study explored the relationship between this genetic variation and the responses to antihypertensive drugs in Chinese patients with essential hypertension.Genetic variations of RGS2 were successfully identified in 367 specimens using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP assays. All patients were treated with conventional doses of antihypertensives after a 2-week run-in period and followed-up according to our protocol. A general linear model multivariate analysis of variance (ANOVA was used for the data analysis.A significant difference in the mean systolic BP change was observed between RGS2 (-391, C>G CC/CG (n = 82 and GG (n = 38 genotype carriers (-13.6 vs. -19.9 mmHg, P = 0.043 who were treated with candesartan, irbesartan or imidapril at the end of 6 weeks. In addition, the patients' BP responses to α,β-adrenergic receptor blockers exhibited an age-specific association with the RGS2 (-391, C>G genetic variation at the end of 4 weeks.The RGS2 (-391, C>G genetic polymorphism may serve as a biomarker to predict a patient's response to antihypertensive drug therapy, but future studies need to confirm this.

  15. Assessment of Morphometric and Genetic Variation an Three Freshwater Fish Species of the Genus Garra (Osteichthyes: Cyprinidae

    Directory of Open Access Journals (Sweden)

    Arulraj DHINAKARAN

    2011-03-01

    Full Text Available The present study evaluated the patterns of morphometric and genetic variation using RAPD-PCR techniques for the first time on three species of Garra, viz. G. mullya, G. kalakadensis and G. gotyla stenorhynchus, collected from various river basins of South-India. The results of morphological analysis revealed that G. mullya and G. kalakadensis hold many similar characters compared to the other congener, G. gotyla stenorhynchus. However, the G. gotyla stenorhynchus fish species exhibited distinct variation in the morphological characters such as snout length, pre-nasal length, inter-nasal width, gap width, lower jaw to isthmus, head depth at pupil, dorsal fin length and disc width from the other two species of Garra. However, certain morphometric characters overlapped. Hence the RAPD finger printing was used to assess the levels of genetic variation in Garra spp. using RAPD-PCR technique. A total of 72 reliable fragments were detected using 10 Operon primers, ranging from 2600 molecular weight to 3100. The shared RAPD fragments found in both G. mullya and G. kalakadensis with fixed frequencies were observed with all the investigated primers, implying their genetically closer relationship. However, the similarity index observed for G. gotyla stenorhynchus was less with the other two species specifying a genetically distant link. The present investigation thus contribute to the knowledge on morphological and genetic variation in these three Garra species.

  16. Assessment of Morphometric and Genetic Variation in Three Freshwater Fish Species of the Genus Garra (Osteichthyes: Cyprinidae

    Directory of Open Access Journals (Sweden)

    Arulraj DHINAKARAN

    2011-03-01

    Full Text Available The present study evaluated the patterns of morphometric and genetic variation using RAPD-PCR techniques for the first time on three species of Garra, viz. G. mullya, G. kalakadensis and G. gotyla stenorhynchus, collected from various river basins of South-India. The results of morphological analysis revealed that G. mullya and G. kalakadensis hold many similar characters compared to the other congener, G. gotyla stenorhynchus. However, the G. gotyla stenorhynchus fish species exhibited distinct variation in the morphological characters such as snout length, pre-nasal length, inter-nasal width, gap width, lower jaw to isthmus, head depth at pupil, dorsal fin length and disc width from the other two species of Garra. However, certain morphometric characters overlapped. Hence the RAPD finger printing was used to assess the levels of genetic variation in Garra spp. using RAPD-PCR technique. A total of 72 reliable fragments were detected using 10 Operon primers, ranging from 2600 molecular weight to 3100. The shared RAPD fragments found in both G. mullya and G. kalakadensis with fixed frequencies were observed with all the investigated primers, implying their genetically closer relationship. However, the similarity index observed for G. gotyla stenorhynchus was less with the other two species specifying a genetically distant link. The present investigation thus contribute to the knowledge on morphological and genetic variation in these three Garra species.

  17. Genetic variations in pattern recognition receptor loci are associated with anti-TNF response in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Sode, Jacob; Vogel, Ulla; Bank, Steffen;

    2015-01-01

    OBJECTIVES: To determine whether genetic variation within genes related to the Toll-like receptor, inflammasome and interferon-γ pathways contributes to the differences in treatment response to tumour necrosis factor inhibitors (anti-TNF) in patients with rheumatoid arthritis (RA). METHODS...... scale (VAS) and change in pain VAS were the main factors responsible for the association. CONCLUSIONS: We reproduced previously reported associations between genetic variation in the TLR10/1/6 gene cluster, TLR5, and NLRP3 loci and response to anti-TNF treatment in RA. Changes in VAS pain and patient...

  18. Plasma level and genetic variation of apolipoprotein E in patients with lipoprotein glomerulopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; LIU Zhi-hong; ZENG Cai-hong; ZHENG Jing-min; CHEN Hui-ping; ZHOU Hong; LI Lei-shi

    2005-01-01

    Background Lipoprotein glomerulopathy (LPG) is a renal disease characterized by thrombus-like lipoproteins in the glomerular capillaries and its abnormal lipoprotein profiles with marked elevation of apolipoprotein E (apoE). In this study, 15 Chinese patients with LPG were involed in exploring the association of the genetic variation and its plasma level in the pathogenesis of LPG.Methods A retrospective analysis of the clinical and pathological features was made in 15 patients with LPG. Plasma concentrations of apoE were measured with radial immunodiffusion assay. Genetic variations of apoE gene were detected using polymerase chain reaction and restriction fragment length polymorphism. Glomerular deposition of apoA, apoB and apoE in these patients were detected by immunofluorescence staining using monoclonal antibodies. Results Biochemical profiles of lipids and lipoproteins revealed markedly elevated levels of triglyceride, apoB and apoE, but approximately normal levels of total cholesterol, apoA1 and lipoprotein(a) [Lp(a)], which resembled familial hypertriglyceridemia. Genetic analysis demonstrated that the genotype distribution of apoE were 7 cases with ε3/ε 4, 4 cases with ε3/ε 3 and 2 cases with ε2/ε 3. The other 2 cases (a mother and her son) showed a same distinct band. The band pattern of later 2 cases was quite similar to the apoE variant of Tokyo type. The calculated allele frequency of ε 4 was relatively high in cases with LPG in comparison with that in the normal controls. We further divided the 13 patients into three groups according to their genotypes of apoE. Patients with the genotype of apoE ε2/ε3 showed a lower level of plasma apoE as compared to those with apoE ε3/ε4 (P<0.05). The serum level of high-density lipoprotein (HDL) was the lowest in patients with the genotype of apoE ε3/ε4. No difference was found among the patients with different apoE genotype in the other clinical and pathological characteristics. Conclusions The

  19. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    Science.gov (United States)

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Schernhammer, Eva; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M.; Kelemen, Linda E.; Ramus, Susan J.; Monteiro, Alvaro N.A.; Goode, Ellen L.; Narod, Steven A.; Gayther, Simon A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways. PMID:26807442

  20. Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Jonathan M Flowers

    2010-07-01

    Full Text Available Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell-cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (pi of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter rho. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle.

  1. Interaction Between Functional Genetic Variation of DRD2 and Cannabis Use on Risk of Psychosis.

    Science.gov (United States)

    Colizzi, Marco; Iyegbe, Conrad; Powell, John; Ursini, Gianluca; Porcelli, Annamaria; Bonvino, Aurora; Taurisano, Paolo; Romano, Raffaella; Masellis, Rita; Blasi, Giuseppe; Morgan, Craig; Aitchison, Katherine; Mondelli, Valeria; Luzi, Sonija; Kolliakou, Anna; David, Anthony; Murray, Robin M; Bertolino, Alessandro; Di Forti, Marta

    2015-09-01

    Both cannabis use and the dopamine receptor (DRD2) gene have been associated with schizophrenia, psychosis-like experiences, and cognition. However, there are no published data investigating whether genetically determined variation in DRD2 dopaminergic signaling might play a role in individual susceptibility to cannabis-associated psychosis. We genotyped (1) a case-control study of 272 patients with their first episode of psychosis and 234 controls, and also from (2) a sample of 252 healthy subjects, for functional variation in DRD2, rs1076560. Data on history of cannabis use were collected on all the studied subjects by administering the Cannabis Experience Questionnaire. In the healthy subjects' sample, we also collected data on schizotypy and cognitive performance using the Schizotypal Personality Questionnaire and the N-back working memory task. In the case-control study, we found a significant interaction between the rs1076560 DRD2 genotype and cannabis use in influencing the likelihood of a psychotic disorder. Among cannabis users, carriers of the DRD2, rs1076560, T allele showed a 3-fold increased probability to suffer a psychotic disorder compared with GG carriers (OR = 3.07; 95% confidence interval [CI]: 1.22-7.63). Among daily users, T carrying subjects showed a 5-fold increase in the odds of psychosis compared to GG carriers (OR = 4.82; 95% CI: 1.39-16.71). Among the healthy subjects, T carrying cannabis users had increased schizotypy compared with T carrying cannabis-naïve subjects, GG cannabis users, and GG cannabis-naïve subjects (all P ≤ .025). T carrying cannabis users had reduced working memory accuracy compared with the other groups (all P ≤ .008). Thus, variation of the DRD2, rs1076560, genotype may modulate the psychosis-inducing effect of cannabis use. PMID:25829376

  2. Genetic variation in the familial Mediterranean fever gene (MEFV and risk for Crohn's disease and ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Alexandra-Chloé Villani

    Full Text Available The familial Mediterranean fever (FMF gene (MEFV encodes pyrin, a major regulator of the inflammasome platform controlling caspase-1 activation and IL-1beta processing. Pyrin has been shown to interact with the gene product of NLRP3, NALP3/cryopyrin, also an important active member of the inflammasome. The NLRP3 region was recently reported to be associated with Crohn's disease (CD susceptibility. We therefore sought to evaluate MEFV as an inflammatory bowel disease (IBD susceptibility gene.MEFV colonic mucosal gene expression was significantly increased in experimental colitis mice models (TNBS p<0.0003; DSS p<0.006, in biopsies from CD (p<0.02 and severe ulcerative colitis (UC patients (p<0.008. Comprehensive genetic screening of the MEFV region in the Belgian exploratory sample set (440 CD trios, 137 UC trios, 239 CD cases, 96 UC cases, and 107 healthy controls identified SNPs located in the MEFV 5' haplotype block that were significantly associated with UC (rs224217; p = 0.003; A allele frequency: 56% cases, 45% controls, while no CD associations were observed. Sequencing and subsequent genotyping of variants located in this associated haplotype block identified three synonymous variants (D102D/rs224225, G138G/rs224224, A165A/rs224223 and one non-synonymous variant (R202Q/rs224222 located in MEFV exon 2 that were significantly associated with UC (rs224222: p = 0.0005; A allele frequency: 32% in cases, 23% in controls. No consistent associations were observed in additional Canadian (256 CD trios, 91 UC trios and Scottish (495 UC, 370 controls sample sets. We note that rs224222 showed marginal association (p = 0.012; G allele frequency: 82% in cases, 70% in controls in the Canadian sample, but with a different risk allele. None of the NLRP3 common variants were associated with UC in the Belgian-Canadian UC samples and no significant interactions were observed between NLRP3 and MEFV that could explain the observed flip-flop of the rs224222 risk

  3. Allelic Variation and Genetic Diversity at Glu-1 Loci in Chinese Wheat (Triticum aestivum L.) Germplasms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-yong; PANG Bin-shuang; YOU Guang-xia; WANG Lan-fen; JIA Ji-zeng; DONG Yu-chen

    2002-01-01

    Wheat processing quality is greatly influenced by the seed proteins especially the high molecular weight glutenin subunit (HMW-GS) components, the low molecular weight glutenin subunit (LMW-GS) components and gliadin components. Genes encoding the HMW-GS and LMW-GS components were located on the long arms and the short arms of homoeologous group 1 chromosomes, respectively. HMW-GS components in 5 129 accessions of wheat germplasms were analyzed systematically, including 3 459 landraces and 1 670 modern varieties. These accessions were chosen as candidate core collections to represent the genetic diversity of Chinese common wheat (Triticum aestivum ) germplasms documented and conserved in the National Gene Bank. These candidate core collections covered the 10 wheat production regions in China. In the whole country, the dominating alleles at the three loci are Glu-A1b (null), Glu-B1b (7 + 8), and Glu- D1a (2 + 12), respectively. The obvious difference between the land race and the modern variety is the dramatic frequency increase of alleles Glu-A1a (1), Glu-B1c (7 + 9), Glu-B1h (14 + 15), Glu-D1d (5 + 10) and allele cording 5 + 12 subunits in the later ones. In the whole view, there is minor difference on the genetic(allelic)richness between the landrace and the modern variety at Glu-1, which is 28 and 30 respectively. However, the genetic dispersion index (Simpson index) based on allelic variation and frequencies at Glu-A1, Glu-B1 and Glu-D1 suggested that the modern varieties had much higher genetic diversity than the landraces. This revealed that various isolating mechanisms (such as auto-gamous nature, low migration because of undeveloped transposition system) limited the gene flow and exchange between populations of the landraces, which led up to some genotypes localized in very small areas. Modern breeding has strongly promoted gene exchanges and introgression between populations and previous isolated populations. In the three loci, Glu-B1 has the highest

  4. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans

    OpenAIRE

    Tan, Hao-Yang; Nicodemus, Kristin K.; Chen, Qiang; Li, Zhen; Brooke, Jennifer K.; Honea, Robyn; Kolachana, Bhaskar S.; Straub, Richard E.; Meyer-Lindenberg, Andreas; Sei, Yoshitasu; Mattay, Venkata S.; Callicott, Joseph H.; Weinberger, Daniel R.

    2008-01-01

    AKT1-dependent molecular pathways control diverse aspects of cellular development and adaptation, including interactions with neuronal dopaminergic signaling. If AKT1 has an impact on dopaminergic signaling, then genetic variation in AKT1 would be associated with brain phenotypes related to cortical dopaminergic function. Here, we provide evidence that a coding variation in AKT1 that affects protein expression in human B lymphoblasts influenced several brain measures related to dopaminergic f...

  5. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose

    OpenAIRE

    Auld, Stuart K. J. R.; Kai H. Edel; Tom J Little

    2012-01-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established patt...

  6. Genetic variation of metabolite and hormone concentration in UK Holstein-Frisian calves and the genetic relationship with economically important traits

    DEFF Research Database (Denmark)

    Hayhurst, C; Flint, A P F; Løvendahl, P;

    2009-01-01

    balance and fertility are linked via several hormones or metabolites. These compounds therefore have the potential to predict fertility at a genetic level. The addition of a predictor trait for fertility into present fertility indices would accelerate genetic gain, particularly if it was expressed before...... adulthood. The objective of this work was to estimate the genetic variation in several metabolites and hormones in calves, and to determine their genetic relationships with fertility and production through sire predicted transmitting abilities (PTA; sires of calves sampled). Circulating concentrations...... of free fatty acids (FFA), glucose, growth hormone (GH), insulin, and insulin-like growth factor 1 (IGF-1) in male and female UK Holstein-Friesian dairy calves (average age ± SD; 126 ± 12.7 d) were analyzed during 2 studies: data set 1 (n = 496 females; 1996-2001; 7 commercial dairy herds) and data set 2...

  7. Genetic variation and population structure in Oryza malampuzhaensis Krish. et Chand. endemic to Western Ghats, South India

    Indian Academy of Sciences (India)

    George Thomas; Sreejayan; Latha Joseph; Philomena Kuriachan

    2001-12-01

    Oryza malampuzhaensis Krish. et Chand. ($2n = 4x = 48$; Poaceae, Oryza) is endemic to Western Ghats, South India, and shows a highly localized distribution over a small geographical area in this region. This is the most poorly understood taxon in genus Oryza and is often misidentified as O. officinalis owing to their close morphology. We assessed the nature and distribution of genetic variation among 11 populations of O. malampuzhaensis using random amplified polymorphic DNA markers. The analysis revealed low genetic variation in O. malampuzhaensis. Cluster analysis of pairwise genetic distances of populations revealed three distinct clusters and the grouping of populations largely corresponded to their geographical proximity. Restricted gene flow and a geography-dependent differentiation were evident among populations. The altitude-influenced differences in ecological factors among the natural habitats of the populations seem to be the cause of the geography-dependent differentiation. Genetically isolated smaller populations and a narrow genetic base in O. malampuzhaensis point to its vulnerability to genetic drift and genetic depauperation. Thus O. malampuzhaensis appears to be under the threat of extinction and needs to be conserved by use of suitable methods. The present study also identified molecular markers diagnostic for O. malampuzhaensis.

  8. Mizoribine ameliorates renal injury and hypertension along with the attenuation of renal caspase-1 expression in aldosterone-salt-treated rats.

    Directory of Open Access Journals (Sweden)

    Toshiki Doi

    Full Text Available Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group: (1 vehicle infusion group, (2 aldosterone infusion group, or (3 aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension.

  9. Large intraspecific genetic variation within the Saffron-Crocus group (Crocus L., Series Crocus; Iridaceae)

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Orabi, Jihad; Pedersen, Carsten;

    2015-01-01

    generally were grouped with C. sativus samples. Pollination and maintenance of genetic variation are discussed. The large intraspecific variation found within the three specifically studied species reflects dynamic population structures with potential to meet future ecological fluctuations. It emphasises...

  10. The admixture structure and genetic variation of the archipelago of Cape Verde and its implications for admixture mapping studies.

    Directory of Open Access Journals (Sweden)

    Sandra Beleza

    Full Text Available Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08, with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e-16. Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have

  11. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans.

    Science.gov (United States)

    Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J

    2015-11-01

    Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. PMID

  12. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Science.gov (United States)

    Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.

    2015-01-01

    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438

  13. Cyclophosphamide (CYP) Inhibition on the Growth of Skin Through the Activation of Caspase-1 in Mouse%环磷酰胺(CYP)通过激活Caspase-1诱导表达抑制小鼠皮肤的生长

    Institute of Scientific and Technical Information of China (English)

    向志雄; 付鹏; 齐麟; 贺洪

    2012-01-01

    Cyclophosphamide is a chemotherapy drug widey used in endometrial cancer, B-type lymphoma, central nervous system neoplasm, etc. However, one of the serious side effects of cyclophosphamide is its skin toxicity, and the underlying molecular mechanism is currently unclear. Cyclophosphamide induced caspase-1 expression, which mediates abnormal apoptosis and skin toxicity according to HE staining and Realtime qPCR experiment.%环磷酰胺对于子宫内膜癌、B细胞淋巴癌、中央神经系统肿瘤等各类癌症的治疗有着良好的效果.但是,一个重要的问题是它对于患者的皮肤,产生严重的有害作用,产生这个作用的详细机制还不是很清楚.苏木精-伊红(hematoxylin-eosin,HE)染色和实时荧光定量PCR (Real-time qPCR)实验结果表明,环磷酰胺诱导caspase-1过量表达,而caspase-1基因的诱导性表达,可能引起了皮肤的非正常凋亡,从而对皮肤构成毒害.

  14. Review: A high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome.

    Science.gov (United States)

    Yuen, R K C; Robinson, W P

    2011-03-01

    Genetic and epigenetic studies of the human placenta can help to clarify the underlying mechanisms of placenta-associated diseases. However, such studies have also revealed a considerable degree of within- and between-placenta variability, which can be attributed to a variety of influences. We illustrate the inherent heterogeneity in the placenta using examples from two types of studies: 1) chromosomal mosaicism and 2) DNA methylation variation. We discuss the factors that may influence the distribution of variation and how, understanding the source of this variation is important for interpreting data used to investigate and predict clinical outcomes.

  15. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    Science.gov (United States)

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. PMID:27282025

  16. Structure and amount of genetic variation at minisatellite loci within the subspecies complex of Phoca vitulina (the harbour seal)

    NARCIS (Netherlands)

    Kappe, A.L.; Bijlsma, R.; Osterhaus, ADME; van Delden, W.; van de Zande, L.

    1997-01-01

    The structure and amount of genetic variation within and between three subspecies of the harbour seal Phoca vitulina was assessed by multilocus DNA fingerprinting. Bandsharing similarity indicates that the subspecies Phoca vitulina richarhsi (Alaska, East Pacific) is clearly separated from the other

  17. Morphological variation in two genetically distinct groups of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela)

    NARCIS (Netherlands)

    Alexandrino, J.; Ferrand, N.; Arntzen, J.W.

    2005-01-01

    Morphometric and colour pattern variation in the endemic Iberian salamander Chioglossa lusitanica is concordant with the genetic differentiation of two groups of populations separated by the Mondego river in Portugal. Salamanders from the south have shorter digits than those from the north. Clinal v

  18. The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide.

    Science.gov (United States)

    Rissler, Leslie J; Wilbur, Henry M; Taylor, Douglas R

    2004-08-01

    Understanding the unique contributions of ecology and history to the distribution of species within communities requires an integrative approach. The Eastern Continental Divide in southwestern Virginia separates river drainages that differ in species composition: the more aquatic, predatory Desmognathus quadramaculatus is present only in the New River drainage (which drains to the Gulf of Mexico), while Desmognathus monticola is present in both the New River drainage and the James River drainage (which drains to the Atlantic Ocean). We investigated natural distributions, behavioral variation in experimental mesocosms, population genetic, and phylogenetic implications of community structure. The presence of D. quadramaculatus increased the terrestriality of D. monticola in natural and experimental situations but to different degrees in allopatric and sympatric populations. Our ecological data suggest that the degree of terrestriality in D. monticola is a result of a balance between the optimal aquatic habitat and risks of predation. Our genetic analyses suggest that D. monticola has experienced a recent range expansion and has only a recent history of association with D. quadramaculatus in Virginia. This is surprising given the strong behavioral variation that exists in populations experiencing unique community compositions over a scale of meters. This study demonstrates the need to combine both ecology and genetics toward an understanding of the factors affecting species distributions, behavioral variation between populations, and patterns of genetic variation across a landscape. PMID:15278844

  19. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis;

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRα) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRα associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge...

  20. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis;

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRa) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRa associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge...

  1. Structure and amount of genetic variation at minisatellite loci within the subspecies complex of Phoca vitulina (the harbour seal).

    NARCIS (Netherlands)

    A.L. Kappe; R. Bijlsma; A.D.M.E. Osterhaus (Albert); W. van Delden; L. van de Zande

    1997-01-01

    textabstractThe structure and amount of genetic variation within and between three subspecies of the harbour seal Phoca vitulina was assessed by multilocus DNA fingerprinting. Bandsharing similarity indicates that the subspecies Phoca vitulina richardsi (Alaska, East Pacific) is clearly separated fr

  2. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: The Viva La Familia Study

    Science.gov (United States)

    Elevated concentrations of serum uric acid are associated with increased risk of gout and renal and cardiovascular diseases. Genetic studies in adults have consistently identified associations of solute carrier family 2, member 9 (SLC2A9), polymorphisms with variation in serum uric acid. However, it...

  3. Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants

    DEFF Research Database (Denmark)

    Hughes, W O H; Bot, A N M; Boomsma, J J

    2010-01-01

    Social insect castes represent some of the most spectacular examples of phenotypic plasticity, with each caste being associated with different environmental conditions during their life. Here we examine the level of genetic variation in different castes of two polyandrous species of Acromyrmex le...

  4. Common genetic variation in the Estrogen Receptor Beta (ESR2) gene and osteoarthritis: Results of a meta-analysis

    NARCIS (Netherlands)

    J.M. Kerkhof (Hanneke); I. Meulenbelt (Ingrid); A. Gonzalez (Antonio); D.J. Hart (Deborah); A. Hofman (Albert); M. Kloppenburg (Margreet); N.E. Lane; J. Loughlin (John); M.C. Nevitt (Michael); H.A.P. Pols (Huib); F. Rivadeneira Ramirez (Fernando); E. Slagboom (Eline); T.D. Spector (Tim); L. Stolk (Lisette); A. Tsezou (Aspasia); A.G. Uitterlinden (André); A.M. Valdes (Ana Maria); J.B.J. van Meurs (Joyce); A.J. Carr (Andrew Jonathan)

    2010-01-01

    textabstractBackground: The objective of this study was to examine the relationship between common genetic variation of the ESR2 gene and osteoarthritis.Methods: In the discovery study, the Rotterdam Study-I, 7 single nucleotide polymorphisms (SNPs) were genotyped and tested for association with hip

  5. Genetic Variation of the Endangered Gentiana lutea L. var. aurantiaca (Gentianaceae in Populations from the Northwest Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Oscar González-López

    2014-06-01

    Full Text Available Gentiana lutea L. (G. lutea L. is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula. Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally.

  6. Genetic variation for susceptibility to storm-induced stem breakage in Solidago altissima: The role of stem height and morphology

    Science.gov (United States)

    Wise, Michael J.; Abrahamson, Warren G.

    2010-07-01

    While storms can have obvious ecological impacts on plants, plants' potential to respond evolutionarily to selection for increased resistance to storm damage has received little study. We took advantage of a thunderstorm with strong wind and hail to examine genetic variation for resistance to stem breakage in the herbaceous perennial Solidago altissima. The storm broke the apex of nearly 10% of 1883 marked ramets in a common-garden plot containing 26 genets of S. altissima. Plant genets varied 20-fold in resistance to breakage. Stem height was strongly correlated with resistance to breakage, with taller stems being significantly more susceptible. A stem's growth form (erect versus nodding) had no detectable effect on its resistance to breakage. Therefore, we rejected the hypothesis that a function of the nodding, or "candy-cane," morphology is protection of the apex from storm damage. The significant genetic variation in S. altissima for stem breakage suggests that this plant has the capacity to respond to selection imposed by storms - particularly through changes in mean stem height. Tradeoffs between breakage resistance and competition for light and pollinators may act to maintain a large amount of genetic variation in stem height.

  7. Genetic variation and species identification of Thai Boesenbergia (Zingiberaceae) analyzed by chloroplast DNA polymorphism.

    Science.gov (United States)

    Techaprasan, Jiranan; Ngamriabsakul, Chatchai; Klinbunga, Sirawut; Chusacultanachai, Sudsanguan; Jenjittikul, Thaya

    2006-07-31

    Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B.pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B.curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species. PMID:16889678

  8. Genetic variation and combining ability analysis of bruising sensitivity in Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA for each homokaryotic parental line and to estimate the specific combining ability (SCA of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.

  9. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana.

    Science.gov (United States)

    Vences, Miguel; Hauswaldt, J Susanne; Steinfartz, Sebastian; Rupp, Oliver; Goesmann, Alexander; Künzel, Sven; Orozco-terWengel, Pablo; Vieites, David R; Nieto-Roman, Sandra; Haas, Sabrina; Laugsch, Clara; Gehara, Marcelo; Bruchmann, Sebastian; Pabijan, Maciej; Ludewig, Ann-Kathrin; Rudert, Dirk; Angelini, Claudio; Borkin, Leo J; Crochet, Pierre-André; Crottini, Angelica; Dubois, Alain; Ficetola, Gentile Francesco; Galán, Pedro; Geniez, Philippe; Hachtel, Monika; Jovanovic, Olga; Litvinchuk, Spartak N; Lymberakis, Petros; Ohler, Annemarie; Smirnov, Nazar A

    2013-09-01

    We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.

  10. Clinical associations of host genetic variations in the genes of cytokines in critically ill patients

    Science.gov (United States)

    Belopolskaya, O B; Smelaya, T V; Moroz, V V; Golubev, A M; Salnikova, L E

    2015-01-01

    Host genetic variations may influence a changing profile of biochemical markers and outcome in patients with trauma/injury. The objective of this study was to assess clinical associations of single nucleotide polymorphisms (SNPs) in the genes of cytokines in critically ill patients. A total of 430 patients were genotyped for SNPs in the genes of pro- (IL1B, IL6, IL8) and anti-inflammatory (IL4, IL10, IL13) cytokines. The main end-points were sepsis, mortality and adult respiratory distress syndrome (ARDS). We evaluated the dynamic levels of bilirubin, blood urea nitrogen, creatine kinase, creatinine and lactate dehydrogenase in five points of measurements (between 1 and 14 days after admission) and correlated them with SNPs. High-producing alleles of proinflammatory cytokines protected patients against sepsis (IL1B −511A and IL8 —251A) and mortality (IL1B −511A). High-producing alleles of anti-inflammatory cytokines IL4 —589T and IL13 431A (144Gln) were less frequent in ARDS patients. The carriers of IL6 —174C/C genotypes were prone to the increased levels of biochemical markers and acute kidney and liver insufficiency. Genotype-dependent differences in the levels of biochemical indicators gradually increased to a maximal value on the 14th day after admission. These findings suggest that genetic variability in pro- and anti-inflammatory cytokines may contribute to different clinical phenotypes in patients at high risk of critical illness. PMID:25619315

  11. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women.

    Directory of Open Access Journals (Sweden)

    Thomas R Hawn

    Full Text Available BACKGROUND: Although several studies suggest that genetic factors are associated with human UTI susceptibility, the role of DNA variation in regulating early in vivo urine inflammatory responses has not been fully examined. We examined whether candidate gene polymorphisms were associated with altered urine inflammatory profiles in asymptomatic women with or without bacteriuria. METHODOLOGY: We conducted a cross-sectional analysis of asymptomatic bacteriuria (ASB in 1,261 asymptomatic women ages 18-49 years originally enrolled as participants in a population-based case-control study of recurrent UTI and pyelonephritis. We genotyped polymorphisms in CXCR1, CXCR2, TLR1, TLR2, TLR4, TLR5, and TIRAP in women with and without ASB. We collected urine samples and measured levels of uropathogenic bacteria, neutrophils, and chemokines. PRINCIPAL FINDINGS: Polymorphism TLR2_G2258A, a variant associated with decreased lipopeptide-induced signaling, was associated with increased ASB risk (odds ratio 3.44, 95%CI; 1.65-7.17. Three CXCR1 polymorphisms were associated with ASB caused by gram-positive organisms. ASB was associated with urinary CXCL-8 levels, but not CXCL-5, CXCL-6, or sICAM-1 (P< or =0.0001. Urinary levels of CXCL-8 and CXCL-6, but not ICAM-1, were associated with higher neutrophil levels (P< or =0.0001. In addition, polymorphism CXCR1_G827C was associated with increased CXCL-8 levels in women with ASB (P = 0.004. CONCLUSIONS: TLR2 and CXCR1 polymorphisms were associated with ASB and a CXCR1 variant was associated with urine CXCL-8 levels. These results suggest that genetic factors are associated with early in vivo human bladder immune responses prior to the development of symptomatic UTIs.

  12. The association between common genetic variation in the FTO gene and metabolic syndrome in Han Chinese

    Institute of Scientific and Technical Information of China (English)

    WANG Tong; ZHANG Li-li; ZHANG Yun; SUN Xiao-fang; ZHANG Qian; HUANG Yi; XIAO Xin-hua; WANG Duen-mei; DIAO Cheng-ming; ZHANG Feng; XU Ling-ling; ZHANG Yong-biao; LI Wen-hui

    2010-01-01

    Background Genome-wide association studies for type 2 diabetes mellitus (T2DM) identified FTO gene as a locus conferring increased risk for common obesity in many populations with European ancestry. However, the involvement of FTO gene in obesity or T2DM related metabolic traits has not been consistently established in Chinese populations. The objective of this study was to investigate the association of FTO genetic polymorphisms with metabolic syndrome (MetS) in Han Chinese.Methods We tested 41 FTO single nucleotide polymorphisms (SNPs) for association between FTO and MetS-related traits. There were a total of 236 unrelated subjects (108 cases and 128 controls), grouped according to the International Diabetes Federation (IDF) criteria.Results Of the 41 SNPs examined, only SNP rs8047395 exhibited statistical significance (P=0.026) under a recessive model, after Bonferroni adjustment for multiple testing (OR 1.64, 95% CI 1.11-2.42; P=0.014). The common distributions of this polymorphism among Chinese-with a minor allele frequency (MAF) of 36% in the control group versus 48% in the MetS group-greatly improved our test power in a relatively small sample size for an association study. Previously identified obesity-(or T2DM-) associated FTO SNPs were less common in Han Chinese and were not associated with MetS in this study. No significant associations were found between our FTO SNPs and any endophenotypes of MetS.Conclusions A more common risk-conferring variant of FTO for MetS was identified in Han Chinese. Our study substantiated that genetic variations in FTO locus are involved in the pathogenesis of MetS.

  13. Evolutionary analysis of genetic variation observed in citrus tristeza virus (CTV) after host passage.

    Science.gov (United States)

    Sentandreu, V; Castro, J A; Ayllón, M A; Rubio, L; Guerri, J; González-Candelas, F; Moreno, P; Moya, A

    2006-05-01

    We have studied the genetic variability in two genes (p18 and p20) from two groups of Citrus tristeza virus (CTV) isolates. One group (isolates T385, T317, T318, and T305) was derived from a Spanish source by successive host passages while the other (isolates T388 and T390) was obtained after aphid transmission from a Japanese source. A total of 274 sequences were obtained for gene p18 and 451 for p20. In the corresponding phylogenetic trees, sequences derived from the severe isolates (T318, T305, and T388) clustered together and separately from those derived from mild or moderate isolates (T385, T317, and T390), regardless of their geographic origin. Hierarchical analyses of molecular variance showed that up to 53% of the total genetic variability in p18 and up to 87% of the variation in p20 could be explained by differences in the pathogenicity features of the isolates. Neutrality tests revealed that different selection forces had been acting between isolates and between genes, with purifying selection being suggested for p18 from isolates T385 and T390 and for p20 from isolates T385, T317, and T388, and balancing selection for p18 from isolates T318, T305, and T388 and for p20 from isolates T318 and T390. Furthermore, several models of codon selection were observed, with purifying selection being the most notable one, compatible with low effective population size of the virus populations resulting from transmission bottlenecks. We found no evidence of recombination playing a significant role during p18 and p20 evolution in these isolates. These results suggest that hosts can be an important evolutionary factor for CTV isolates. PMID:16329002

  14. Genetic variation in litter size and kit survival of mink (Neovison vison)

    DEFF Research Database (Denmark)

    Hansen, B K; Su, G; Berg, P

    2010-01-01

    -REML approach, based on data from 1940 litters of the black colour type mink from 1996 to 2001. The models included (i) additive genetic effect of dam; (ii) dam and sire genetic effects; (iii) additive genetic effect of dam in relation to litter size and dam and sire genetic effects in relation to survival rate...

  15. Increase of genetic variation in 'Blue Daisy' (Brachycome multifida) by in-vitro mutagenesis and polyploidization

    International Nuclear Information System (INIS)

    'Blue Daisy' was recently introduced from Australia and became a popular ornamental in Europe, but it lacks genetic variation and does not produce seeds under European environment conditions. Thus, the development of new cultivars is handicapped. 'Blue Daisy' is vegetatively propagated by cuttings. Techniques were developed to increase genetic variation by in-vitro mutation induction and polyploidization. For in-vitro propagation nodal segments with one pinnate leaf were placed on MS-medium containing 0.1 mg/l NAA and 2 mg/l BAP (medium 'a') or 2 mg/l IAA and 0.2 mg/l BAP (medium 'b') solidified by 0.6% Oxoid agar. 25 deg C and 16 h illumination (800 lux) resulted in highest propagation rates. After 4 weeks on medium 'b' large numbers of axillary shoots could be cut off and placed for rooting on 1/3 strength MS-medium supplemented with 2 mg/l IAA. Another 3 weeks later plantlets could be transferred into the greenhouse for further cultivation. The chromosome number of B. multifida is 2n=14. Polyploidy was obtained by placing in-vitro derived explants for about 3 weeks on solid MS-medium 'a' containing 0.1% colchicine. The resulting axillary buds were transferred for 3-5 months to medium 'b' for shoot development. After rooting and transfer into the greenhouse polyploidy was first determined by comparison of pollen grains from treated and untreated plants. For confirmation, the number of chromosomes was counted using the orcein-acetic squash method. Two different polyploid types were obtained: one more erect and one more hanging phenotype, both having enlarged leaves and flowers. X-ray doses of 10-50 Gy were applied to freshly cut nodal segments. The explants were placed on solid medium 'b' in petri dishes. Inhibition of shoot development was used as criterium of radiosensitivity. The described procedure of in-vitro propagation of Brachycome during 3 years did not give any somaclonal variant. The shoots developing after application of X-rays were rooted and all

  16. Genetic variation in the parasympathetic signaling pathway in patients with reflex syncope.

    Science.gov (United States)

    Holmegard, H N; Benn, M; Mehlsen, J; Haunsø, S

    2013-01-01

    Reflex syncope is defined by a self-terminating transient loss of consciousness associated with an exaggerated response of the vagal reflexes upon orthostatic challenges. A hereditary component has previously been suggested. We hypothesized that variations in genes encoding proteins mediating the vagal signaling in the heart may be involved in reflex syncope pathogenesis. We systematically resequenced the entire coding regions and flanking intron sequences in 5 genes in the cardiac post-synaptic parasympathetic signaling pathway [muscarinic acetylcholine receptor M2 (CHRM2); G-protein beta-1 subunit (GNB1); G-protein gamma-2 subunit (GNG2); potassium inwardly rectifying channel, subfamily J, member 3 (KCNJ3); and potassium inwardly rectifying channel, subfamily J, member 5 (KCNJ5)] in 74 patients with well-characterized reflex syncope of either cardioinhibitory [Vasovagal Syncope International Study (VASIS-IIB), N = 38] or vasodepressor (VASIS-III, N = 36) type. We identified 2 novel genetic variants (CHRM2 c.1114C>G and GNG2 c.87+34G>A) and several known variants (GNB1: c.267+14G>A, c.267+19C>T, and c.738C>T; KCNJ3: c.119A>G, c.591C>T, c.1038T>C, and c.1494T>C; KCNJ5: c. 171T>C, c.810T>G, c.834T>C, c.844C>G, c.938+7C>T, and c.938-10G>A). The minor allele frequency of the KCNJ5 c.938+7C>T variant was significantly lower in patients than in the control group (0.014 versus 0.089, P = 0.001), and the frequency of heterozygosity and homozygosity was lower in cardioinhibitory patients compared to controls. Genetic variations in genes responsible for the vagal signaling in the heart, including CHRM2, GNB1, GNG2, KCNJ3, and KCNJ5, are not major contributors to the pathogenesis of reflex syncope of vasodepressor or cardioinhibitory types. PMID:23408450

  17. Association of genetic variations of the prostasin gene with essential hypertension in the Xinjiang Kazakh population

    Institute of Scientific and Technical Information of China (English)

    LI Nan-fang; ZHANG Ju-hong; CHANG Jian-hang; YANG Jin; WANG Hong-mei; ZHOU Ling; LUO Wen-li

    2011-01-01

    Background Transgenic overexpression of human prostasin in rats disturbs salt balance and causes hypertension. We investigated whether genetic variations in prostasin were implicated in hypertension or related phenotypes in the Xinjiang Kazakh population.Methods We sequenced all exons and the promoter regions of the prostasin gene in 94 hypertensive individuals, and the genotype identification was performed by the TaqMan polymerase chain reaction method. Case-control studies were conducted in 938 Kazakh subjects.Results E342K and 2827G>A, which are novel variants, were successfully genotyped in the general Xinjiang Kazakh population with a sample size of 938 individuals (406 men and 532 women). Only one hypertensive patient was identified with the E342K mutation. No significant association was observed between 2827G>A and hypertension. However,quantitative traits of hypertensive intermediate phenotypes were significantly associated with the A allele; P=-0.041 and 0.034 for body mass index (BMI) in the additive and recessive models, P=0.042 and 0.018 for OGTT-2h glucose in the additive and recessive models, P=0.031 for IRT-3h insulin in the recessive model, and P=0.038 for serum potassium in the dominant model.Conclusions This study does not provide evidence of a major role of prostasin variation in blood pressure modulation.However, association of prostasin polymorphisms with hypertension and metabolic effects can be observed in our population. Further investigation is warranted to clarify the relevance of prostasin polymorphisms to blood pressure regulation.

  18. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    Science.gov (United States)

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  19. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation.

    Directory of Open Access Journals (Sweden)

    Helen R Griffin

    Full Text Available Several previous studies have investigated the role of common promoter variants in the vascular endothelial growth factor (VEGF gene in causing congenital cardiovascular malformation (CVM. However, results have been discrepant between studies and no study to date has comprehensively characterised variation throughout the gene. We genotyped 771 CVM cases, of whom 595 had the outflow tract malformation Tetralogy of Fallot (TOF, and carried out TDT and case-control analyses using haplotype-tagging SNPs in VEGF. We carried out a meta-analysis of previous case-control or family-based studies that had typed VEGF promoter SNPs, which included an additional 570 CVM cases. To identify rare variants potentially causative of CVM, we carried out mutation screening in all VEGF exons and splice sites in 93 TOF cases. There was no significant effect of any VEGF haplotype-tagging SNP on the risk of CVM in our analyses of 771 probands. When the results of this and all previous studies were combined, there was no significant effect of the VEGF promoter SNPs rs699947 (OR 1.05 [95% CI 0.95-1.17]; rs1570360 (OR 1.17 [95% CI 0.99-1.26]; and rs2010963 (OR 1.04 [95% CI 0.93-1.16] on the risk of CVM in 1341 cases. Mutation screening of 93 TOF cases revealed no VEGF coding sequence variants and no changes at splice consensus sequences. Genetic variation in VEGF appears to play a small role, if any, in outflow tract CVM susceptibility.

  20. Genetic Variation of αENaC Influences Lung Diffusion During Exercise in Humans

    Science.gov (United States)

    Baker, Sarah E.; Wheatley, Courtney M.; Cassuto, Nicholas A.; Foxx-Lupo, William T.; Sprissler, Ryan; Snyder, Eric M.

    2011-01-01

    Exercise, decompensated heart failure, and exposure to high altitude have been shown to cause symptoms of pulmonary edema in some, but not all, subjects, suggesting a genetic component to this response. Epithelial Na+ Channels (ENaC) regulate Na+ and fluid reabsorption in the alveolar airspace in the lung. An increase in number and/or activity of ENaC has been shown to increase lung fluid clearance. Previous work has demonstrated common functional genetic variants of the α-subunit of ENaC, including an A→T substitution at amino acid 663 (αA663T). We sought to determine the influence of the T663 variant of αENaC on lung diffusion at rest and at peak exercise in healthy humans. Thirty healthy subjects were recruited for study and grouped according to their SCNN1A genotype [n= 17vs.13, age=25±7vs.30±10yrs., BMI= 23±4vs.25±4kg/m2, V̇O2peak= 95±30vs.100±31%pred., mean±SD, for AA (homozygous for αA663) vs. AT/TT groups (at least one αT663), respectively]. Measures of the diffusing capacity of the lungs for carbon monoxide (DLCO), the diffusing capacity of the lungs for nitric oxide (DLNO), alveolar volume (VA), and alveolar-capillary membrane conductance (DM) were taken at rest and at peak exercise. Subjects expressing the AA polymorphism of ENaC showed a significantly greater percent increase in DLCO and DLNO, and a significantly greater decrease in systemic vascular resistance from rest to peak exercise than those with the AT/TT variant (DLCO=51±12vs.36±17%, DLNO=51±24vs.32±25%, SVR=−67±3vs.−50±8%, p<0.05). The AA ENaC group also tended to have a greater percent increase in DLCO/VA from rest to peak exercise, although this did not reach statistical significance (49±26vs.33±26%, p=0.08). These results demonstrate that genetic variation of the α-subunit of ENaC at amino acid 663 influences lung diffusion at peak exercise in healthy humans, suggesting differences in alveolar Na+ and, therefore, fluid handling. These findings could be important

  1. Genetic variation and phylogenetic relationship analysis of Jatropha curcas L. inferred from nrDNA ITS sequences.

    Science.gov (United States)

    Guo, Guo-Ye; Chen, Fang; Shi, Xiao-Dong; Tian, Yin-Shuai; Yu, Mao-Qun; Han, Xue-Qin; Yuan, Li-Chun; Zhang, Ying

    2016-01-01

    Genetic variation and phylogenetic relationships among 102 Jatropha curcas accessions from Asia, Africa, and the Americas were assessed using the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS). The average G+C content (65.04%) was considerably higher than the A+T (34.96%) content. The estimated genetic diversity revealed moderate genetic variation. The pairwise genetic divergences (GD) between haplotypes were evaluated and ranged from 0.000 to 0.017, suggesting a higher level of genetic differentiation in Mexican accessions than those of other regions. Phylogenetic relationships and intraspecific divergence were inferred by Bayesian inference (BI), maximum parsimony (MP), and median joining (MJ) network analysis and were generally resolved. The J. curcas accessions were consistently divided into three lineages, groups A, B, and C, which demonstrated distant geographical isolation and genetic divergence between American accessions and those from other regions. The MJ network analysis confirmed that Central America was the possible center of origin. The putative migration route suggested that J. curcas was distributed from Mexico or Brazil, via Cape Verde and then split into two routes. One route was dispersed to Spain, then migrated to China, eventually spreading to southeastern Asia, while the other route was dispersed to Africa, via Madagascar and migrated to China, later spreading to southeastern Asia. PMID:27461559

  2. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem.

    Science.gov (United States)

    Zytynska, Sharon E; Fay, Michael F; Penney, David; Preziosi, Richard F

    2011-05-12

    Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated communities. We assessed the influence of within-species genetic variation in the tree Brosimum alicastrum (Moraceae) on associated epiphytic and invertebrate communities in a neotropical rainforest. We found a significant positive association between genetic distance of trees and community difference of the epiphytic plants growing on the tree, the invertebrates living among the leaf litter around the base of the tree, and the invertebrates found on the tree trunk. This means that the more genetically similar trees are host to more similar epiphyte and invertebrate communities. Our work has implications for whole ecosystem conservation management, since maintaining sufficient genetic diversity at the primary producer level will enhance species diversity of other plants and animals.

  3. Pedigree- and SNP-Associated Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic Trait Variation.

    Science.gov (United States)

    Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S

    2016-02-01

    Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.

  4. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Science.gov (United States)

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves. PMID:27379532

  5. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Directory of Open Access Journals (Sweden)

    Sara Fratini

    Full Text Available The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  6. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs

    Science.gov (United States)

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima’s D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves. PMID:27379532

  7. Genetic Variation Analyses of nsp2 Gene of PRRSV in Ningxia Hui Autonomous Region of China

    Institute of Scientific and Technical Information of China (English)

    Hong TIAN; Jing-yan WU; Shuang-hui YIN; You-jun SHANG; Zi-ping MAN; Na ZHAO; Ye JIN; Xiang-tao LIU

    2009-01-01

    To gain a better understanding of the genetic diversity and evolution of PRRSV in the Ningxia Hui Nationality Autonomous Region (Ningxia) of China, the nsp2 genes from a series of PRRSV strains collected from the region in 2007 were partially sequenced. These sequences were then analyzed along with the classical strain (ch-la) and two other epidemic strains SD (3) and SD2006. Comparison of the nucleotide sequence with ch-la indicated that nsp2 genes of seventeen Ningxia isolates (NX strain) have deletions of 87 nucleotides. Sequence analysis indicated that homology between the Ningxia strain and ch-la was 60.3%-79.9% in the nucleotide sequence, and homology between the NX strains and SD strains was 80.3%-98.8% in the nucleotide sequence. The nsp2 genes of the seventeen isolates had 74.9%-100% nucleotide sequence identities with each other. This study was undertaken to assess the regional variation of prevalent PRRSV and to establish a sequence database for PRRSV molecular epidemiological studies.

  8. Effects of Genetic Variation on the E. coli Host-Circuit Interface

    Directory of Open Access Journals (Sweden)

    Stefano Cardinale

    2013-07-01

    Full Text Available Predictable operation of engineered biological circuitry requires the knowledge of host factors that compete or interfere with designed function. Here, we perform a detailed analysis of the interaction between constitutive expression from a test circuit and cell-growth properties in a subset of genetic variants of the bacterium Escherichia coli. Differences in generic cellular parameters such as ribosome availability and growth rate are the main determinants (89% of strain-specific differences of circuit performance in laboratory-adapted strains but are responsible for only 35% of expression variation across 88 mutants of E. coli BW25113. In the latter strains, we identify specific cell functions, such as nitrogen metabolism, that directly modulate circuit behavior. Finally, we expose aspects of carbon metabolism that act in a strain- and sequence-specific manner. This method of dissecting interactions between host factors and heterologous circuits enables the discovery of mechanisms of interference necessary for the development of design principles for predictable cellular engineering.

  9. Common genetic variation in the human CTF1 locus, encoding cardiotrophin-1, determines insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Stefan Z Lutz

    Full Text Available AIMS/HYPOTHESIS: Recently, cardiotrophin-1, a member of the interleukin-6 family of cytokines was described to protect beta-cells from apoptosis, to improve glucose-stimulated insulin secretion and insulin resistance, and to prevent streptozotocin-induced diabetes in mice. Here, we studied whether common single nucleotide polymorphisms (SNPs in the CTF1 locus, encoding cardiotrophin-1, influence insulin secretion and insulin sensitivity in humans. METHODS: We genotyped 1,771 German subjects for three CTF1 tagging SNPs (rs1046276, rs1458201, and rs8046707. The subjects were metabolically characterized by an oral glucose tolerance test. Subgroups underwent magnetic resonance (MR imaging/spectroscopy and hyperinsulinaemic-euglycaemic clamps. RESULTS: After appropriate adjustment, the minor allele of CTF1 SNP rs8046707 was significantly associated with decreased in vivo measures of insulin sensitivity. The other tested SNPs were not associated with OGTT-derived sensitivity parameters, nor did the three tested SNPs show any association with OGTT-derived parameters of insulin release. In the MR subgroup, SNP rs8046707 was nominally associated with lower visceral adipose tissue. Furthermore, the SNP rs1458201 showed a nominal association with increased VLDL levels. CONCLUSIONS: In conclusion, this study, even though preliminary and awaiting further confirmation by independent replication, provides first evidence that common genetic variation in CTF1 could contribute to insulin sensitivity in humans. Our SNP data indicate an insulin-desensitizing effect of cardiotrophin-1 and underline that cardiotrophin-1 represents an interesting target to influence insulin sensitivity.

  10. Thyroid hormone transport and metabolism by OATP1C1 and consequences of genetic variation

    DEFF Research Database (Denmark)

    van der Deure, Wendy M; Hansen, Pia Skov; Peeters, Robin P;

    2008-01-01

    OATP1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key-role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity of...... iodothyronine transport by OATP1C1 in detail by analysis of thyroid hormone uptake in OATP1C1-transfected COS1 cells. Furthermore, we examined whether OATP1C1 is rate-limiting in subsequent thyroid hormone metabolism in cells co-transfected with deiodinases. We also studied the effect of genetic variation in...... the OATP1C1 gene: polymorphisms were determined in 155 blood donors and 1192 Danish twins, and related to serum thyroid hormone levels. In vitro effects of the polymorphisms were analyzed in cells transfected with the variants. Cells transfected with OATP1C1 showed increased transport of T4 and T4...

  11. Genetic variation of wheat streak mosaic virus in the United States Pacific Northwest.

    Science.gov (United States)

    Robinson, Megan D; Murray, Timothy D

    2013-01-01

    Wheat streak mosaic virus (WSMV), the cause of wheat streak mosaic, is a widespread and damaging pathogen of wheat. WSMV is not a chronic problem of annual wheat in the United States Pacific Northwest but could negatively affect the establishment of perennial wheat, which is being developed as an alternative to annual wheat to prevent soil erosion. Fifty local isolates of WSMV were collected from 2008 to 2010 near Lewiston, ID, Pullman, WA, and the United States Department of Agriculture Central Ferry Research Station, near Pomeroy, WA to determine the amount of genetic variation present in the region. The coat protein gene from each isolate was sequenced and the data subjected to four different methods of phylogenetic analyses. Two well-supported clades of WSMV were identified. Isolates in clade I share sequence similarity with isolates from Central Europe; this is the first report of isolates from Central Europe being reported in the United States. Isolates in clade II are similar to isolates originating from Australia, Argentina, and the American Pacific Northwest. Nine isolates showed evidence of recombination and the same two well-supported clades were observed when recombinant isolates were omitted from the analysis. More polymorphic sites, parsimony informative sites, and increased diversity were observed in clade II than clade I, suggesting more recent establishment of the virus in the latter. The observed diversity within both clades could make breeding for durable disease resistance in perennial wheat difficult if there is a differential response of WSMV resistance genes to isolates from different clades.

  12. Genetic architecture of trout from Albania as revealed by mtDNA control region variation

    Directory of Open Access Journals (Sweden)

    Shumka Spase

    2009-02-01

    Full Text Available Abstract To determine the genetic architecture of trout in Albania, 87 individuals were collected from 19 riverine and lacustrine sites in Albania, FYROM and Greece. All individuals were analyzed for sequence variation in the mtDNA control region. Among fourteen haplotypes detected, four previously unpublished haplotypes, bearing a close relationship to haplotypes of the Adriatic and marmoratus lineages of Salmo trutta, were revealed. Ten previously described haplotypes, characteristic of S. ohridanus, S. letnica and the Adriatic and Mediterranean lineages of S. trutta, were also detected. Haplotypes detected in this study were placed in a well supported branch of S. ohridanus, and a cluster of Mediterranean – Adriatic – marmoratus haplotypes, which were further delimited into three subdivisions of Mediterranean, marmoratus, and a previously non-described formation of four Adriatic haplotypes (Balkan cluster. Haplotypes of the Balkan cluster and the other Adriatic haplotypes, do not represent a contiguous haplotype lineage and appear not to be closely related, indicating independent arrivals into the Adriatic drainage and suggesting successive colonization events. Despite the presence of marmoratus haplotypes in Albania, no marbled phenotype was found, confirming previously reported findings that there is no association between this phenotype and marmoratus haplotypes.

  13. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival

    DEFF Research Database (Denmark)

    Song, H.; Hogdall, E.; Ramus, S.J.;

    2008-01-01

    plausibly influence clinical characteristics of multiple tumors types. EXPERIMENTAL DESIGN: We examined associations between common germ-line genetic variation in 14 genes involved in cell cycle pathway (CCND1, CCND2, CCND3, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDK2, CDK4, CDK6, and RB1.......05) in these genes. The genotypes of each polymorphism were tested for association with survival by Cox regression analysis. RESULTS: A nominally statistically significant association between genotype and ovarian cancer survival was observed for polymorphisms in CCND2 and CCNE1. The per-allele hazard ratios (95......% confidence intervals) were 1.16 (1.03-1.31; P = 0.02) for rs3217933, 1.14 (1.02-1.27; P = 0.024) for rs3217901, and 0.85 (0.73-1.00; P = 0.043) for rs3217862 in CCND2 and 1.39 (1.