WorldWideScience

Sample records for caspase dcp-1 reveals

  1. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    Science.gov (United States)

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.

  2. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    Science.gov (United States)

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  3. The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila.

    Science.gov (United States)

    Akagawa, Hiromi; Hara, Yusuke; Togane, Yu; Iwabuchi, Kikuo; Hiraoka, Tsuyoshi; Tsujimura, Hidenobu

    2015-08-15

    In the developing Drosophila optic lobe, cell death occurs via apoptosis and in a distinctive spatio-temporal pattern of dying cell clusters. We analyzed the role of effector caspases drICE and dcp-1 in optic lobe cell death and subsequent corpse clearance using mutants. Neurons in many clusters required either drICE or dcp-1 and each one is sufficient. This suggests that drICE and dcp-1 function in cell death redundantly. However, dying neurons in a few clusters strictly required drICE but not dcp-1, but required drICE and dcp-1 when drICE activity was reduced via hypomorphic mutation. In addition, analysis of the mutants suggests an important role of effecter caspases in corpse clearance. In both null and hypomorphic drICE mutants, greater number of TUNEL-positive cells were observed than in wild type, and many TUNEL-positive cells remained until later stages. Lysotracker staining showed that there was a defect in corpse clearance in these mutants. All the results suggested that drICE plays an important role in activating corpse clearance in dying cells, and that an additional function of effector caspases is required for the activation of corpse clearance as well as that for carrying out cell death.

  4. Morphological irregularities and features of resistance to apoptosis in the dcp-1/pita double mutated egg chambers during Drosophila oogenesis.

    Science.gov (United States)

    Nezis, Ioannis P; Stravopodis, Dimitrios J; Papassideri, Issidora S; Stergiopoulos, Costas; Margaritis, Lukas H

    2005-01-01

    In the present study, we demonstrate the most novel characteristic morphological features of Drosophila egg chambers lacking both dcp-1 and pita functions in the germline cells. Dcp-1 is an effector caspase and it has been previously shown to play an important role during Drosophila oogenesis [McCall and Steller, 1998 : Science 279 : 230-234; Laundrie et al., 2003 : Genetics 165 : 1881-1888; Peterson et al., 2003 : Dev Biol 260 : 113-123]. The completion of sequencing and annotation of the Drosophila genome has revealed that the dcp-1 gene is nested within an intron of another distinct gene, called pita, a member of the C2H2 zinc finger protein family that regulates transcriptional initiation. The dcp-1(-/-)/pita(-/-) nurse cells exhibit euchromatic nuclei (delay of apoptosis) during the late stages of oogenesis, as revealed by conventional light and electron microscopy. The phalloidin-FITC staining discloses significant defects in actin cytoskeleton arrangement. The actin bundles fail to organize properly and the distribution of actin filaments in the ring canals is changed compared to the wild type. The oocyte and the chorion structures have been also modified. The oocyte nucleus is out of position and the chorion appears to contain irregular foldings, while the respiratory filaments obtain an altered morphology. The dcp-1(-/-)/pita(-/-) egg chambers do not exhibit the rare events of spontaneously induced apoptosis, observed for the wild type flies, during mid-oogenesis. Interestingly, the mutated egg chambers are protected by staurosporine-induced apoptosis in a percentage of 40%, strongly suggesting the essential role of dcp-1 and/or pita during mid-oogenesis.

  5. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila.

    Science.gov (United States)

    Laundrie, Bonni; Peterson, Jeanne S; Baum, Jason S; Chang, Jeffrey C; Fileppo, Dana; Thompson, Sharona R; McCall, Kimberly

    2003-12-01

    Germline cell death in Drosophila oogenesis is controlled by distinct signals. The death of nurse cells in late oogenesis is developmentally regulated, whereas the death of egg chambers during mid-oogenesis is induced by environmental stress or developmental abnormalities. P-element insertions in the caspase gene dcp-1 disrupt both dcp-1 and the outlying gene, pita, leading to lethality and defective nurse cell death in late oogenesis. By isolating single mutations in the two genes, we have found that the loss of both genes contributes to this ovary phenotype. Mutants of pita, which encodes a C2H2 zinc-finger protein, are homozygous lethal and show dumpless egg chambers and premature nurse cell death in germline clones. Early nurse cell death is not observed in the dcp-1/pita double mutants, suggesting that dcp-1+ activity is required for the mid-oogenesis cell death seen in pita mutants. dcp-1 mutants are viable and nurse cell death in late oogenesis occurs normally. However, starvation-induced germline cell death during mid-oogenesis is blocked, leading to a reduction and inappropriate nuclear localization of the active caspase Drice. These findings suggest that the combinatorial loss of pita and dcp-1 leads to the increased survival of abnormal egg chambers in mutants bearing the P-element alleles and that dcp-1 is essential for cell death during mid-oogenesis.

  6. Analysis list: DCP1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DCP1A Uterus + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP1A.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP1A.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP...1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/DCP1A.Uterus.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Uterus.gml ...

  7. Structural basis of Dcp2 recognition and activation by Dcp1

    Science.gov (United States)

    She, Meipei; Decker, Carolyn J.; Svergun, Dmitri I.; Round, Adam; Chen, Nan; Muhlrad, Denise; Parker, Roy; Song, Haiwei

    2008-01-01

    Summary A critical step in mRNA degradation is the removal of the 5' cap structure, which is catalyzed by the Dcp1-Dcp2 complex. The crystal structure of a S. pombe Dcp1p-Dcp2n complex combined with small-angle X-ray scattering analysis (SAXS) reveals that Dcp2p exists in open and closed conformations, with the closed complex being, or closely resembling the catalytically more active form. This suggests that a conformational change between these open and closed complexes might control decapping. A bipartite RNA binding channel containing the catalytic site and Box B motif is identified with a bound ATP located in the catalytic pocket in the closed complex, suggesting possible interactions that facilitate substrate binding. Dcp1 stimulates the activity of Dcp2 by promoting and/or stabilizing the closed complex. Notably, the interface of Dcp1 and Dcp2 is not fully conserved, explaining why the Dcp1-Dcp2 interaction in higher eukaryotes requires an additional factor. PMID:18280239

  8. Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex.

    Science.gov (United States)

    Ziemniak, Marcin; Mugridge, Jeffrey S; Kowalska, Joanna; Rhoads, Robert E; Gross, John D; Jemielity, Jacek

    2016-04-01

    Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.

  9. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition

    Science.gov (United States)

    Borja, Mark S.; Piotukh, Kirill; Freund, Christian; Gross, John D.

    2011-01-01

    Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the KM for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2. PMID:21148770

  10. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  11. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles.

    Science.gov (United States)

    Julien, Olivier; Zhuang, Min; Wiita, Arun P; O'Donoghue, Anthony J; Knudsen, Giselle M; Craik, Charles S; Wells, James A

    2016-04-05

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.

  12. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.

    Science.gov (United States)

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-05-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.

  13. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    Science.gov (United States)

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  14. Interaction study of a novel Macrobrachium rosenbergii effector caspase with B2 and capsid proteins of M. rosenbergii nodavirus reveals their roles in apoptosis.

    Science.gov (United States)

    Youngcharoen, Supak; Senapin, Saengchan; Lertwimol, Tareerat; Longyant, Siwaporn; Sithigorngul, Paisarn; Flegel, Timothy W; Chaivisuthangkura, Parin

    2015-08-01

    Apoptosis is an essential immune response to protect invertebrates from virus infected cells. In shrimp, virus infection has been reported to induce apoptosis. Macrobrachium rosenbergii (Mr) was considered to be a disease-resistant host when compared to penaeid shrimps. Caspase-3 was classified as an executioner caspase which played a key role in virus-induced apoptosis. In this study, an effector caspase gene of M. rosenbergii (Mrcasp) was cloned and characterized. The open reading frame (ORF) of Mrcasp was 957 nucleotide encoding 318 amino acid with a deduced molecular mass of 35.87 kDa. RT-PCR analysis showed the presence of Mrcasp in all examined tissues. The phylogenetic tree indicated that Mrcasp was closely related with caspase 3 of shrimp. The functions of the Mrcasp, B2 and capsid proteins of M. rosenbergii nodavirus (MrNV) were assayed in Sf-9 cells. The results showed that Mrcasp induce apoptotic morphology cells; however, capsid protein of MrNV could inhibit apoptotic cells whereas B2 could neither induce nor inhibit apoptotic cells by DAPI staining. The protein interaction between Mrcasp and viral MrNV structure revealed that Mrcasp did not bind to B2 or capsid protein whereas B2 and capsid proteins could bind directly to each other. This study reported a novel sequence of a full-length Mrcasp and its functional studies indicated that Mrcasp could induce apoptotic cells. Our data is the first report demonstrating the direct protein-protein interaction between capsid protein and B2 protein of MrNV.

  15. Cell survival and proliferation in Drosophila S2 cells following apoptotic stress in the absence of the APAF-1 homolog, ARK, or downstream caspases.

    Science.gov (United States)

    Kiessling, S; Green, D R

    2006-04-01

    In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.

  16. The Spodoptera frugiperda effector caspase Sf-caspase-1 becomes unstable following its activation.

    Science.gov (United States)

    Ying, Zhongfu; Li, Ao; Lu, Zhaodan; Wu, Chunfeng; Yin, Hanqi; Yuan, Meijin; Pang, Yi

    2013-08-01

    Sf-caspase-1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf-caspase-1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase-3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf-caspase-1: the pro-Sf-caspase-1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin-proteasome system. During the activation, the Sf-caspase-1 produces an intermediate form and then undergoes proteolytic processing to form active Sf-caspase-1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf-caspase-1 was unstable.

  17. Apoptotic and nonapoptotic function of caspase 7 in spermatogenesis.

    Science.gov (United States)

    Lei, Bin; Zhou, Xuming; Lv, Daojun; Wan, Bo; Wu, Huayan; Zhong, Liren; Shu, Fangpeng; Mao, Xiangming

    2017-01-01

    Recent studies have reported that caspase 7 has an apoptotic and nonapoptotic function. However, the relationship between caspase 7 and spermatogenesis remains unknown. This study aimed to investigate the possible function of caspase 7 during normal and abnormal spermatogenesis. The cleaved form of caspase 7 was detected in testis tissues at different postpartum times (5-14 weeks) by qRT-PCR, Western blot and immunohistochemistry (IHC). Then, the mice models of spermatogenic dysfunction were obtained by busulfan (30 mg kg-1 to further evaluate the potential function and mechanism of caspase 7. qRT-PCR and Western blot results showed that caspase 7 expression was gradually elevated from 5 to 14 weeks, which was not connected with apoptosis. IHC results revealed that caspase 7 was mainly located in spermatogenic cells and Leydig cells. In addition, spermatogenic dysfunction induced by busulfan gradually enhanced the apoptosis and elevated the expression of caspase 3, caspase 6, and caspase 9, but decreased the expression of caspase 7 in spermatogenic cells. However, when spermatogenic cells were mostly disappeared at the fourth week after busulfan treatment, caspase 7 expression in Leydig cells was significantly increased and positively correlated with the expression of caspase 3, caspase 6, and caspase 9. Therefore, these results indicate that caspase 7 has a nonapoptic function that participates in normal spermatogenesis, but also displays apoptotic function in spermatogenic dysfunction.

  18. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.

    Science.gov (United States)

    Imre, Gergely; Heering, Jan; Takeda, Armelle-Natsuo; Husmann, Matthias; Thiede, Bernd; zu Heringdorf, Dagmar Meyer; Green, Douglas R; van der Goot, F Gisou; Sinha, Bhanu; Dötsch, Volker; Rajalingam, Krishnaraj

    2012-05-30

    Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis.

  19. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  20. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.

    Science.gov (United States)

    Miyamoto, Akitoshi; Miyauchi, Hiroshi; Kogure, Takako; Miyawaki, Atsushi; Michikawa, Takayuki; Mikoshiba, Katsuhiko

    2015-04-24

    Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.

  1. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35.

    Science.gov (United States)

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its 'reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro.

  2. Proteasomal regulation of caspase-8 in cancer cell apoptosis.

    Science.gov (United States)

    Fiandalo, Michael V; Schwarze, Steven R; Kyprianou, Natasha

    2013-06-01

    Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.

  3. Caspase 12 in calnexin-deficient cells.

    Science.gov (United States)

    Groenendyk, Jody; Zuppini, Anna; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2006-11-07

    We investigated a role for calnexin, caspase 12, and Bap31 in endoplasmic reticulum stress-induced apoptosis in calnexin-deficient mouse embryonic fibroblasts and a calnexin-deficient human T cell line (NKR). We showed that calnexin-deficient mouse embryonic fibroblasts are relatively resistant to endoplasmic reticulum stress-induced apoptosis. Western blot analysis demonstrated that both wild-type and calnexin-deficient cells contained a caspase 12 protein. Caspase 12 expression was slightly inhibited in calnexin-deficient cells, and the protein carried out specific cleavage in the presence of thapsigargin. Immunoprecipitation experiments revealed that in the endoplasmic reticulum, caspase 12 forms complexes with Bap31 and calnexin. Treatment of wild-type cells with thapsigargin induced apoptosis and cleavage of Bap31. However, in the absence of calnexin, there was no significant cleavage of Bap31. There was also a negligible processing of caspase 8 in these cells. This work indicates that calnexin may play a role in modulating the sensitivity of a cell to apoptosis induced by endoplasmic reticulum stress, in conjunction with caspase 12 and Bap31.

  4. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG

    2005-01-01

    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  5. Discovery of Potent, Selective and Reversible Caspase-3 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Han Yongxin; John Tam; Paul Tawa; Donald W. Nicholson; Robert J. Zamboni; André Giroux; John Colucci; Christopher I. Bayly; Daniel J. Mckay; Sophie Roy; Steve Xanthoudakis; John Vaillancourt; Dita M. Rasper

    2004-01-01

    Recent studies towards understanding the molecular mechanisms of apoptosis have revealed the importance of a group of cysteinyl aspartate specific proteases, the caspases, in the programmed cell death process (Hengartner, M.O. Nature 2000, 407, 770). Caspase-3, in particular,has been characterized as the dominant effector caspase involved in the proteolytic cleavage of a variety of protein substrates including cytoskeletal proteins, kinases and DNA repair enzymes during apoptosis (Nicholson, D. W. Cell Death Differ. 1999, 6, 1028). The development of potent and selective caspase-3 inhibitors has thus emerged as an attractive therapeutic target. In the presentation,the identification of a series of potent, selective and reversible non-peptidyl caspase-3 inhibitors containing a pyrazinone core (1) will be presented. SAR optimization at R1, R2, R3 and R4 led to the discovery of inhibitors such as 2 with excellent in vitro activities (IC50 against rh-caspase-3: 5 nM; IC50 against camptothecin induced apoptotic cell death in NT2 cells: 20 nM). Compounds such as 2 also displayed excellent in vivo activities in a number of animal models of acute injuries (see: Methot, N. et al, J. Exp. Med. 2004, 119, 199; Toulmond, S. et al, British J. Pharm. 2004, 141,689; Holtzman,D.M. et al, JBC, 2002, 277, 30128), and selected examples will be discussed during the presentation.

  6. Structural Features of Caspase-Activating Complexes

    Directory of Open Access Journals (Sweden)

    Hyun Ho Park

    2012-04-01

    Full Text Available Apoptosis, also called programmed cell death, is an orderly cellular suicide program that is critical for the development, immune regulation and homeostasis of a multi-cellular organism. Failure to control this process can lead to serious human diseases, including many types of cancer, neurodegenerative diseases, and autoimmununity. The process of apoptosis is mediated by the sequential activation of caspases, which are cysteine proteases. Initiator caspases, such as caspase-2, -8, -9, and -10, are activated by formation of caspase-activating complexes, which function as a platform to recruit caspases, providing proximity for self-activation. Well-known initiator caspase-activating complexes include (1 DISC (Death Inducing Signaling Complex, which activates caspases-8 and 10; (2 Apoptosome, which activates caspase-9; and (3 PIDDosome, which activates caspase-2. Because of the fundamental biological importance of capases, many structural and biochemical studies to understand the molecular basis of assembly mechanism of caspase-activating complexes have been performed. In this review, we summarize previous studies that have examined the structural and biochemical features of caspase-activating complexes. By analyzing the structural basis for the assembly mechanism of the caspase-activating complex, we hope to provide a comprehensive understanding of caspase activation by these important oligomeric complexes.

  7. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    Science.gov (United States)

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  8. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion.

    Science.gov (United States)

    van Diepen, Janna A; Stienstra, Rinke; Vroegrijk, Irene O C M; van den Berg, Sjoerd A A; Salvatori, Daniela; Hooiveld, Guido J; Kersten, Sander; Tack, Cees J; Netea, Mihai G; Smit, Johannes W A; Joosten, Leo A B; Havekes, Louis M; van Dijk, Ko Willems; Rensen, Patrick C N

    2013-02-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [(3)H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [(3)H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.

  9. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    Science.gov (United States)

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17.

  10. Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-8 from the blunt snout bream (Megalobrama amblycephala) exposed to ammonia.

    Science.gov (United States)

    Sun, Shengming; Ge, Xianping; Zhu, Jian; Zhang, Wuxiao; Zhang, Qiong

    2015-12-01

    Caspase-8 is an initiator caspase that plays a crucial role in some cases of apoptosis by extrinsic and intrinsic pathways. Caspase-8 structure and function have been extensively studied in mammals, but in fish the characterization of that initiator caspase is still scarce. In this study, we isolated the caspase-8 gene from Megalobrama amblycephala, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The 2034 bp full-length M. amblycephala caspase-8 cDNA sequence contained an ORF of 1467 bp encoding a polypeptide of 489 amino acid residues, a 5'-UTR of 102 bp and a 3'-UTR of 462 bp. The caspase-8 amino acid sequences contained two highly conservative death effector domains (DEDs) at N-terminal, the caspase family domains P20 and P10, caspase-8 active-site pentapeptide and potential aspartic acid cleavage sites. Phylogenetic analysis revealed that M. amblycephala caspase-8 were clustered with the caspase-8 from other vertebrate. Real-time quantitative PCR analysis revealed that caspase-8 transcripts were detected in liver after exposure to ammonia. Meanwhile using Western blot analysis, caspase-8 cleaved fragment was detected and significant alteration of procaspase-8 level was found with the same ammonia treatment condition. Furthermore, the result of immunohistochemical detection showed that remarkable changes of immunopositive staining were observed after ammonia treatment. Accordingly, the results signify that caspase-8 of fish may play an essential role in ammonia induced apoptosis.

  11. Specific inhibition of caspase-3 by a competitive DARPin: molecular mimicry between native and designed inhibitors.

    Science.gov (United States)

    Schroeder, Thilo; Barandun, Jonas; Flütsch, Andreas; Briand, Christophe; Mittl, Peer R E; Grütter, Markus G

    2013-02-05

    Dysregulation of apoptosis is associated with several human diseases. The main apoptotic mediators are caspases, which propagate death signals to downstream targets. Executioner caspase-3 is responsible for the majority of cleavage events and its therapeutic potential is of high interest with to date several available active site peptide inhibitors. These molecules inhibit caspase-3, but also homologous caspases. Here, we describe caspase-3 specific inhibitors D3.4 and D3.8, which have been selected from a library of designed ankyrin repeat proteins (DARPins). The crystal structures of D3.4 and mutants thereof show how high specificity and inhibition is achieved. They also show similarities in the binding mode with that of the natural caspase inhibitor XIAP (X-linked inhibitor of apoptosis). The kinetic data reveal a competitive inhibition mechanism. D3.4 is specific for caspase-3 and does not bind the highly homologous caspase-7. D3.4 therefore is an excellent tool to define the precise role of caspase-3 in the various apoptotic pathways.

  12. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach.

    Science.gov (United States)

    Flanagan, L; Meyer, M; Fay, J; Curry, S; Bacon, O; Duessmann, H; John, K; Boland, K C; McNamara, D A; Kay, E W; Bantel, H; Schulze-Bergkamen, H; Prehn, J H M

    2016-02-04

    Colorectal cancer (CRC) is one of the most common cancers in the Western world. 5-Fluorouracil (5FU)-based chemotherapy (CT) remains the mainstay treatment of CRC in the advanced setting, and activates executioner caspases in target cells. Executioner caspases are key proteins involved in cell disassembly during apoptosis. Activation of executioner caspases also has a role in tissue regeneration and repopulation by stimulating signal transduction and cell proliferation in neighbouring, non-apoptotic cells as reported recently. Tissue microarrays (TMAs) consisting of tumour tissue from 93 stage II and III colon cancer patients were analysed by immunohistochemistry. Surprisingly, patients with low levels of active Caspase-3 had an increased disease-free survival time. This was particularly pronounced in patients who received 5FU-based adjuvant CT. In line with this observation, lower serum levels of active Caspase-3 were found in patients with metastasised CRC who revealed stable disease or tumour regression compared with those with disease progression. The role of Caspase-3 in treatment responses was explored further in primary human tumour explant cultures from fresh patient tumour tissue. Exposure of explant cultures to 5FU-based CT increased the percentage of cells positive for active Caspase-3 and Terminal Deoxynucleotidyl Transferase dUTP Nick end Labelling (TUNEL), but also the expression of regeneration and proliferation markers β-Catenin and Ki-67, as well as cyclooxygenase-2 (COX-2). Of note, selective inhibition of Caspase-3 with Ac-DNLD-CHO, a selective, reversible inhibitor of Caspase-3, significantly reduced the expression of proliferation markers as well as COX-2. Inhibition of COX-2 with aspirin or celecoxib did not affect Caspase-3 levels but also reduced Ki-67 and β-Catenin levels, suggesting that Caspase-3 acted via COX-2 to stimulate cell proliferation and tissue regeneration. This indicates that low levels of active Caspase-3 may represent a

  13. Upregulation and activation of caspase-3 or caspase-8 and elevation of intracellular free calcium mediated apoptosis of indomethacin-induced K562 cells

    Institute of Scientific and Technical Information of China (English)

    张广森; 周光飚; 戴崇文

    2004-01-01

    Background A nonsteroidal anti-inflammatory drug, indomethacin, has been shown to have anti-leukemic activity and induce leukemic cell opoptosis. This study was to elucidate the mechanism of indomethacin-induced K562 cell apoptosis.Methods K562 cells were grown in RPMI 1640 medium and treated with different doses of indomethacin (0 μmol/L, 100 μmol/L, 200 μmol/L, 400 μmol/L, 800 μmol/L) for 72 hours. The cells were harvested, and cell viability or apoptosis was analyzed using MTT assay and AO/EB stain, combining laser scanning confocal microscopy (LSCM) technique separately. For the localization and distribution of intracellular caspase-3 or caspase-8 protein, immunofluorescence assay was carried out. To reveal the activation of caspase-3 or caspase-8 in indomethacin-treated cells, Western blot detection was used. The change in intracellular free calcium was determined by Fluo-3/ Am probe labeling combined with LSCM. Results Indomethacin could lead to K562 cell apoptosis and inhibit cell viability in a concentration-dependent manner. An increased expression of intracellular caspase-3 or caspase-8 was observed at higher doses of indomethacin (400-800 μmol/L). Western blot results showed upregrulation and activation in both caspase-3 and caspase-8 protein. Under indomethacin intervention, the levels of intracellular free calcium showed a significant increase. Blocking the activity of cyclooxygenase did not abolish the effects of indomethacin on K562 cell apoptosis.Conclusions Activation and upregulation of caspase-3 or caspase-8 protein were responsible for Indomethacin-induced K562 cell apoptosis. Variation of intracellular free calcium might switch on the apoptotic pathway and the proapoptotic effect of indomethacin might be cyclooxygenase-independent.

  14. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI Xu

    2001-01-01

    @@ Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry. Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.

  15. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI; Xu

    2001-01-01

    Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry.  Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.  ……

  16. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity

    OpenAIRE

    Tang, Ho Lam; Tang, Ho Man; Fung, Ming Chiu; Hardwick, J. Marie

    2015-01-01

    The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for Drosophila to identify cells with ongoing or past caspase a...

  17. Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia.

    Science.gov (United States)

    Kim, Nam-Gon; Lee, Heasuk; Son, Eunyung; Kwon, Oh-Young; Park, Jae-Yong; Park, Jae-Hoon; Cho, Gyeong Jae; Choi, Wan Sung; Suk, Kyoungho

    2003-06-10

    Caspase-11 is an inducible protease that plays an important role in both inflammation and apoptosis. Inflammatory stimuli induce and activate caspase-11, which is required for the activation of caspase-1 or interleukin-1beta (IL-1beta) converting enzyme (ICE). Caspase-1 in turn mediates the maturation of proinflammatory cytokines such as IL-1beta, which is one of the crucial mediators of neurodegeneration in the central nervous system. Here, we report that hypoxic exposure of cultured brain microglia (BV-2 mouse microglia cells and rat primary microglial cultures) induces expression and activation of caspase-11, which is accompanied by activation of caspase-1 and secretion of mature IL-1beta and IL-18. Hypoxic induction of caspase-11 was observed in both mRNA and protein levels, and was mediated through p38 mitogen-activated protein kinase pathway. Transient global ischemia in rats also induced caspase-11 expression and IL-1beta production in hippocampus supporting our in vitro findings. Caspase-11-expressing cells in hippocampus were morphologically identified as microglia. Taken together, our results indicate that hypoxia induces a sequential event-caspase-11 induction, caspase-1 activation, and IL-1beta release-in brain microglia, and point out the importance of initial caspase-11 induction in hypoxia-induced inflammatory activation of microglia.

  18. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  19. Molecular basis of caspase-1 polymerization and its inhibition by a novel capping mechanism

    Science.gov (United States)

    Lu, Alvin; Li, Yang; Schmidt, Florian I.; Yin, Qian; Chen, Shuobing; Fu, Tian-Min; Tong, Alexander B.; Ploegh, Hidde L.; Mao, Youdong; Wu, Hao

    2016-01-01

    Inflammasomes are cytosolic caspase-1 activation complexes that sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic interactions by Pyrin domains (PYD) and caspase recruitment domains (CARD) in inflammasome component proteins mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only the interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of human caspase-1CARD filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins, human inhibitor of CARD (INCA or CARD17) and ICEBERG (or CARD18). Our results reveal the surprising finding that INCA caps caspase-1 filament, thereby exerting potent inhibition with low nanomolar Ki on caspase-1CARD polymerization in vitro and inflammasome activation in cells. While caspase-1CARD uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces to terminate caspase-1 filament. PMID:27043298

  20. Inactivation of Effector Caspases through Nondegradative Polyubiquitylation

    DEFF Research Database (Denmark)

    Ditzel, Mark; Broemer, Meike; Tenev, Tencho;

    2008-01-01

    Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, block...

  1. Caspase Work Model During Pathogen Infection

    Institute of Scientific and Technical Information of China (English)

    Yah-bin Ma; Hui-yun Chang

    2011-01-01

    Caspases are an evolutionarily conserved family of aspartate-specific cystein-dependent proteases with essential functions in apoptosis and normally exist in ceils as inactive proenzymes.In addition to the inflammatory caspases,the initiator and effector caspases have been shown to have an important role in regulating the immune response,but are involved in different ways.We give a brief introduction on the benefit of apoptosis on the clearance of invasive pathogens,and the caspase functions involved in the immune response.Then we construct a working model of caspases during pathogen invasion.A detailed description of the three modes is given in the discussion.These three modes are regulated by different inhibitors,and there may be a novel way to treat intracellular pathogen and autoimmune diseases based on the specific inhibitors.

  2. Differential roles of caspase-1 and caspase-11 in infection and inflammation

    Science.gov (United States)

    Ming Man, Si; Karki, Rajendra; Briard, Benoit; Burton, Amanda; Gingras, Sebastien; Pelletier, Stephane; Kanneganti, Thirumala-Devi

    2017-01-01

    Caspase-1, also known as interleukin-1β (IL-1β)-converting enzyme (ICE), regulates antimicrobial host defense, tissue repair, tumorigenesis, metabolism and membrane biogenesis. On activation within an inflammasome complex, caspase-1 induces pyroptosis and converts pro-IL-1β and pro-IL-18 into their biologically active forms. “ICE−/−” or “Casp1−/−” mice generated using 129 embryonic stem cells carry a 129-associated inactivating passenger mutation on the caspase-11 locus, essentially making them deficient in both caspase-1 and caspase-11. The overlapping and unique functions of caspase-1 and caspase-11 are difficult to unravel without additional genetic tools. Here, we generated caspase-1–deficient mouse (Casp1Null) on the C57BL/6 J background that expressed caspase-11. Casp1Null cells did not release IL-1β and IL-18 in response to NLRC4 activators Salmonella Typhimurium and flagellin, canonical or non-canonical NLRP3 activators LPS and ATP, Escherichia coli, Citrobacter rodentium and transfection of LPS, AIM2 activators Francisella novicida, mouse cytomegalovirus and DNA, and the infectious agents Listeria monocytogenes and Aspergillus fumigatus. We further demonstrated that caspase-1 and caspase-11 differentially contributed to the host defense against A. fumigatus infection and to endotoxemia. PMID:28345580

  3. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis.

    Science.gov (United States)

    Lee, Hyo-Jung; Lee, Hyo-Jeong; Lee, Eun-Ok; Ko, Seong-Gyu; Bae, Hyun-Soo; Kim, Cheol-Ho; Ahn, Kyoo-Seok; Lu, Junxuan; Kim, Sung-Hoon

    2008-11-08

    Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.

  4. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Zhouning; Zhou, Ke; Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen

    2016-01-01

    Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.

  5. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda.

    Directory of Open Access Journals (Sweden)

    Zhouning Yang

    Full Text Available Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.

  6. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  7. Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival.

    LENUS (Irish Health Repository)

    Creagh, Emma M

    2009-01-01

    Members of the caspase family of cysteine proteases coordinate cell death through restricted proteolysis of diverse protein substrates and play a conserved role in apoptosis from nematodes to man. However, while numerous substrates for the mammalian cell death-associated caspases have now been described, few caspase substrates have been identified in other organisms. Here, we have utilized a proteomics-based approach to identify proteins that are cleaved by caspases during apoptosis in Drosophila D-Mel2 cells, a subline of the Schneider S2 cell line. This approach identified multiple novel substrates for the fly caspases and revealed that bicaudal\\/betaNAC is a conserved substrate for Drosophila and mammalian caspases. RNAi-mediated silencing of bicaudal expression in Drosophila D-Mel2 cells resulted in a block to proliferation, followed by spontaneous apoptosis. Similarly, silencing of expression of the mammalian bicaudal homologue, betaNAC, in HeLa, HEK293T, MCF-7 and MRC5 cells also resulted in spontaneous apoptosis. These data suggest that bicaudal\\/betaNAC is essential for cell survival and is a conserved target of caspases from flies to man.

  8. Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival.

    Directory of Open Access Journals (Sweden)

    Emma M Creagh

    Full Text Available Members of the caspase family of cysteine proteases coordinate cell death through restricted proteolysis of diverse protein substrates and play a conserved role in apoptosis from nematodes to man. However, while numerous substrates for the mammalian cell death-associated caspases have now been described, few caspase substrates have been identified in other organisms. Here, we have utilized a proteomics-based approach to identify proteins that are cleaved by caspases during apoptosis in Drosophila D-Mel2 cells, a subline of the Schneider S2 cell line. This approach identified multiple novel substrates for the fly caspases and revealed that bicaudal/betaNAC is a conserved substrate for Drosophila and mammalian caspases. RNAi-mediated silencing of bicaudal expression in Drosophila D-Mel2 cells resulted in a block to proliferation, followed by spontaneous apoptosis. Similarly, silencing of expression of the mammalian bicaudal homologue, betaNAC, in HeLa, HEK293T, MCF-7 and MRC5 cells also resulted in spontaneous apoptosis. These data suggest that bicaudal/betaNAC is essential for cell survival and is a conserved target of caspases from flies to man.

  9. KIPase activity is a novel caspase-like activity associated with cell proliferation.

    Science.gov (United States)

    Medina-Palazon, Cahora; Bernard, Emmanuelle; Frost, Victoria; Morley, Simon; Sinclair, Alison J

    2004-07-01

    A novel caspase-like activity, which is directly regulated with cell proliferation is a candidate to regulate the abundance of the cyclin-dependent kinase inhibitor, p27(KIP1), in human lymphoid cells. This activity, which we term KIPase activity, can also cleave a subset of caspase substrates. Here we demonstrate that KIPase is a novel enzyme distinct from any of the previously characterized human caspases. We show that KIPase is active in a variety of cell lineages, its activity is associated with the proliferation of the human T-cell line, Jurkat, and is not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. Gel filtration analysis revealed that KIPase has a native molecular mass of approximately 100-200 kDa. Furthermore, the activity of KIPase does not change during apoptosis induced by either ligation of FAS or exposure of cells to etoposide. The uniqueness of KIPase is demonstrated by the fact that none of the human caspases tested (1-10) are able to cleave a specific KIPase substrate (Ac-DPSD-AMC) and that an aldehyde modified derivative of the DPSD tetra peptide is unable to inhibit caspases, but is a good inhibitor of KIPase activity. This supports a hypothesis whereby KIPase is a currently unidentified caspase-like enzyme which regulates the abundance of p27(KIP1) in a proliferation-dependent manner.

  10. Studies on caspase signaling in microglia

    OpenAIRE

    Rodhe, Johanna

    2016-01-01

    The aim of this thesis is to investigate the roles of caspase-8 and caspase-3 in microglia and in brain disorders, beyond their function in apoptosis. Microglia are resident immune cells of the central nervous system and act as the first line of defense against invading pathogens and other types of brain insults. They are important for normal brain homeostasis and can get rapidly activated upon infection or damage in the brain. However, dysregulated and overactivated microgl...

  11. Function of caspase-14 in trophoblast differentiation

    Directory of Open Access Journals (Sweden)

    Charles Adrian K

    2009-09-01

    Full Text Available Abstract Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.

  12. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel P Denning

    Full Text Available Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3, of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell

  13. WildCARDs: Inflammatory caspases directly detect LPS

    OpenAIRE

    Hagar, Jon Alan; Aachoui, Youssef; Miao, Edward Axel

    2014-01-01

    Inflammasomes are sensors that serve as activation platforms for caspase-1 — a mechanism that set the prevailing paradigm for inflammatory caspase activation. A recent Nature paper by Shi et al. upends this paradigm by describing an unprecedented model for caspase activation whereby caspase-4, -5, and -11 directly bind their agonist, cytosolic LPS, triggering auto-activation and subsequent pyroptotic cell death.

  14. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    Science.gov (United States)

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  15. Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-9 from the purse red common carp (Cyprinus carpio) exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dian; Xu, Zhen’e [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Zhang, Xiaoyan [Medical College of Nanchang University, Nanchang 330006 (China); Wang, Hongmei [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Wang, Yannan [Medical College of Nanchang University, Nanchang 330006 (China); Min, Weiping, E-mail: weiping.min@gmail.com [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Jiangxi Academy of Medical Sciences, Nanchang 330006 (China)

    2013-10-15

    Highlights: •The cDNA of caspase-9 in common carp was cloned. •The evolutionary conservation including caspase recruitment domain, large and small subunits was clarified. •The mRNA level of caspase-9 cannot be used as a major marker at an earlier point in the apoptotic cascade. •Caspase-9 cleavage form was detected. •Immunopositive staining was limited to the cytoplasm of renal tubular epithelial cells. -- Abstract: Caspase-9, the essential initiator caspase is believed to play a central role in mitochondria-mediated apoptosis signaling. In this study, we isolated the caspase-9 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-9, composed of 436 amino acids, showed approximately 47.6% identity and 64.7% similarity to human caspase-9. It also possessed a conserved caspase-associated recruitment domain (CARD), a large subunit and a small subunit. Phylogenetic analysis clearly demonstrated that caspase-9 formed a clade with cyprinid fish caspase-9. Real-time quantitative PCR analysis revealed that caspase-9 transcripts were not significantly increased in kidney after exposure to cadmium (Cd). Whereas caspase-9 cleaved fragments were detected using Western blot analysis with the same Cd treatment condition. Furthermore, the result of immunohistochemical detection showed immunoreactivities were predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunopositive staining were observed after Cd treatment. Accordingly, the results signify that caspase-9 may play an essential role in Cd induced apoptosis.

  16. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells.

    Science.gov (United States)

    Yamamuro, Akiko; Kishino, Takashi; Ohshima, Yu; Yoshioka, Yasuhiro; Kimura, Tomoki; Kasai, Atsushi; Maeda, Sadaaki

    2011-01-01

    The present study investigated the function of caspase-4 in endoplasmic reticulum (ER) stress-induced apoptosis in human neuronal cell line SH-SY5Y. Tunicamycin, which is known to induce ER stress, activated both caspase-9 and caspase-4, and the activation of caspase-4 preceded that of caspase-9. The caspase-4 inhibitor LEVD-CHO suppressed both the apoptosis and caspase-9 activation. In addition, human recombinant active caspase-4 cleaved wild type and D330A mutant substituted Asp-330 for alanine of human recombinant procaspase-9, but did not cleave D315A mutant substituted Asp-315 for alanine. These results suggest that caspase-4 directly activates caspase-9 by the processing of procaspase-9 at Asp-315 in ER stress-induced neuronal apoptosis.

  17. IMMUNOHISTOCHEMICAL ANALYSIS OF CASPASE-3 ACTIVITY IN LIVER BIOPSIES OF PATIENTS WITH MONO AND MIXED INFECTIONS

    Directory of Open Access Journals (Sweden)

    I. I. Tokin

    2015-01-01

    Full Text Available Objective: to study the activity of proapoptotic signal protein caspase-3 for determination of peculiarities of apoptosis regulation under liver chronic diseases.Subjects and methods. The immunohistochemical analysis of caspase-3 activity in 5 liver biopsies of the patients with mono infection of chronic hepatitis B and 5 liver biopsies of the patients with mixed infection of tuberculosis, chronic hepatitis C and human immunodeficiency virus was fulfilled. Morphological and morphometric analysis of serial microphotographs was performed using an image analysis system (microscope Leica DM 2500, digital camera Leica DFC320 R2 and a computer.Results. The activity of caspase-3 as dark brown granularity was revealed in all tis-sue components of liver (hepatocytes, epithelium of bile ducts, endotheliocytes, Kupffer cells of sinusoids, in compositions of lymphohistiocyte infiltrations. The maximal activity was discovered in hepatocytes nuclei. The expression of caspase-3 was significantly higher in liver biopsies of the patients with mixed infection. It is typical that the immunoreactive hepatocytes had not any morphological marks of apoptosis.Conclusion. The caspase-3 expression of proapoptotic signal protein caspase-3 may serve as an early marker of liver damage including the possibilities of apoptosis development.

  18. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    Science.gov (United States)

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.

  19. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    Full Text Available Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.

  20. Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yin-Mo Yang; Marco Ramadani; Yan-Ting Huang

    2003-01-01

    AIM: To identify the expression of Caspase-l(interleukin1.β converting enzyme) and its role in adenoma of the pancreas and chronic pancreatitis.METHODS: The expression of Caspase-1 was assessed in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and 9 normal pancreatic tissues by immunohistochemistry and Western blot analysis.RESULTS: Overexpression of Caspase-1 was observed in both disorders, but there were differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissues showed a clear cytoplasmatic overexpression of Caspase-1 in tumor cells of 71% of the tumors, whereas normal pancreatic tissues showed only occasional immunoreactivity. In chronic pancreatitis, overexpression of Caspase-1 was found in atrophic acinar cells (89 %),hyperplastic ducts (87 %), and dedifferentiating acinar cells (84 %). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed dear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of Caspase-1 in pancreatic cancer and chronic pancreatitis (80 %and 86 %, respectively). Clear bands at 30 kDa, which suggested the p10-p20 heterodimer of active Caspase-1, were found in 60 % of the cancer tissue and 14 % of the pancreatitis tissue specimens, but not in normal pancreatic tissues.CONCLUSION: Overexpression of Caspase-1 is a frequent event in pancreatic disorders and its differential expression patterns may reflect two functions of the protease. One is its participation in the apoptotic pathway in atrophic acinar cells and tumor-surrounding pancreatitis tissue, the other is its possible role in proliferative processes in pancreatic cancer cells and hyperplastic duct cells and dedifferentiating acinar cells in chronic pancreatitis.

  1. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  2. Independent Induction of Caspase-8 and cFLIP Expression during Colorectal Carcinogenesis in Sporadic and HNPCC Adenomas and Carcinomas

    Directory of Open Access Journals (Sweden)

    D. M. Heijink

    2007-01-01

    Full Text Available Background: TNF-Related Apoptosis Inducing Ligand (TRAIL is a promising agent for the induction of apoptosis in neoplastic tissues. Important determinants of TRAIL sensitivity are two intracellular proteins of the TRAIL pathway, caspase-8 and its anti-apoptotic competitor cellular Flice-Like Inhibitory Protein (cFLIP. Methods: The aim of this study was to investigate basic expression of caspase-8 and cFLIP in normal colorectal epithelium (n = 20, colorectal adenomas (n = 66 and colorectal carcinomas (n = 44 using immunohistochemistry performed on both sporadic and Hereditary Non-Polyposis Colorectal Cancer (HNPCC or Lynch syndrome-associated adenomas and carcinomas. Results: Expression of both caspase-8 and cFLIP was similar in cases with sporadic and hereditary origin. Expression of caspase-8 in colorectal adenomas and carcinomas was increased when compared to normal colon tissue (P = 0.02. Nuclear, paranuclear as well as cytoplasmic localizations of caspase-8 were detected. Immunohistochemistry revealed an upregulation of cFLIP in colorectal carcinomas in comparison to normal epithelium and colorectal adenomas (P < 0.001. A large variation in the caspase-8/cFLIP ratio was observed between the individual adenomas and carcinomas. Conclusion: Caspase-8 and cFLIP are upregulated during colorectal carcinogenesis. Upregulation of caspase-8 and/or downregulation of cFLIP may be interesting approaches to maximize TRAIL sensitivity in colorectal neoplasms.

  3. Krebs Cycle Moonlights in Caspase Regulation.

    Science.gov (United States)

    Minis, Adi; Steller, Hermann

    2016-04-04

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation.

  4. Krebs Cycle Moonlights in Caspase Regulation

    OpenAIRE

    Minis, Adi; Steller, Hermann

    2016-01-01

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation.

  5. Coxsackievirus B3-induced apoptosis and Caspase-3

    Institute of Scientific and Technical Information of China (English)

    JIAN PING YUAN; WEI ZHAO; HONG TAO WANG; KAI YU WU; TAO LI; XIAO KUI GUO; SHAN QING TONG

    2003-01-01

    Cell death can be classified into two categories: apoptosis and necrosis. Apoptotic pathway can beeither caspase-dependent or caspase-independent. Caspase-independent cytopathic effect (CPE) has beendescribed. In order to evaluate the pattern of HeLa cell death induced by Coxsackievirus B3 (CVB3)and whether apoptosis involves caspase activation, we co-cultivated HeLa cells with CVB3 and detectedthe cytopathic changes, the alteration of mRNA and protein expression of caspase-3 gene plus caspase-3activity, as well as analyzing DNA fragmentation before and after caspase-3 activity inhibition. Accordingto the results, we propose that CVB3 may induce apoptosis and necrosis in HeLa cells, the latter appearingmuch earlier. Caspase-3 is activated at the levels of both transcription and translation, and procaspase-3 isproteolytically cleaved, thus leading to the continuous increasing of both caspase-3 precursor protein and itssubunit. However, besides CPE, apoptosis induced by CVB3 is not a direct consequence of the activationof caspase-3, or caspase-3 is not the only effector molecule in apoptotic cell death, for caspase-3 inhibitorcan not decrease DNA fragmentation. Some other biochemical mechanisms may participate in the process,whose role weakens the effect of inhibiting caspase-3 activity.

  6. Serial killers: ordering caspase activation events in apoptosis.

    Science.gov (United States)

    Slee, E A; Adrain, C; Martin, S J

    1999-11-01

    Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.

  7. Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: caspase-8 and caspase-9 is associated with poor prognosis.

    Science.gov (United States)

    Sträter, Jörn; Herter, Ines; Merkel, Gaby; Hinz, Ulf; Weitz, Jürgen; Möller, Peter

    2010-08-15

    Apoptosis protease activating factor-1 (APAF-1), caspase-8 and caspase-9 are important factors in the execution of death signals. To study their prognostic influence in colon carcinoma, expression of APAF-1, caspase-8 and caspase-9 was determined by immunohistochemistry in normal colon mucosa (n = 8) and R0-resected stage II/III colon carcinomas (n >or= 124) using a semiquantitative score. Staining results were correlated with disease-free survival by Kaplan-Meier estimates, and multivariate Cox analyses were performed. In normal colon, APAF-1 and caspase-8 are most strongly expressed in the luminal surface epithelium, whereas caspase-9 is expressed all along the crypt axis. In colon carcinomas, there is considerable variability in the expression of these proapoptotic factors, although complete loss of caspase-8 and caspase-9 is rare. APAF-1 expression did not correlate with disease-free survival. Instead, both expression of caspase-9 and high-level expression of caspase-8 in a majority of tumor cells were significantly associated with adverse prognosis (p = 0.004 and p = 0.029, respectively). The influence of caspase-8 expression was mainly seen in patients with stage III colon carcinoma (p = 0.011), whereas the prognostic influence of caspase-9 expression was significant in stage II cases (p = 0.037) and just failed to be significant in stage III tumors (p = 0.0581). After adjusting for confounding factors in a multivariate Cox analysis, the effect of caspase-9 in predicting disease-free survival was confirmed (p = 0.003). Our data suggest that, in colon carcinomas, expression of caspase-8 and caspase-9 is significantly associated with poor survival. Caspase-9 may be an independent prognosticator in colon carcinoma.

  8. Limited caspase cleavage of human BAP31.

    Science.gov (United States)

    Määttä, J; Hallikas, O; Welti, S; Hildén, P; Schröder, J; Kuismanen, E

    2000-11-10

    Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.

  9. BDNF pro-peptide regulates dendritic spines via caspase-3.

    Science.gov (United States)

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-06-16

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.

  10. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles.

    Science.gov (United States)

    Orme, Mariam H; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S; Meier, Pascal

    2016-03-10

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.

  11. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus.

    Directory of Open Access Journals (Sweden)

    Arvind Suresh

    Full Text Available We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.

  12. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus.

    Science.gov (United States)

    Suresh, Arvind; Subedi, Kalpana; Kyathanahalli, Chandrashekara; Jeyasuria, Pancharatnam; Condon, Jennifer C

    2013-01-01

    We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.

  13. Twist haploinsufficiency in Saethre-Chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNFalpha expression and caspase-2 activation.

    Science.gov (United States)

    Yousfi, Malika; Lasmoles, Francoise; El Ghouzzi, Vincent; Marie, Pierre J

    2002-02-15

    Saethre-Chotzen syndrome (SCS) is a human autosomal dominant disorder characterized by premature fusion of cranial sutures caused by mutations of the Twist gene encoding a basic helix-loop-helix (bHLH) transcription factor. We previously showed that Twist haploinsufficiency caused by a Y103X nonsense mutation in SCS alters both proliferation and osteoblast gene expression in human calvarial osteoblasts, indicating that Twist is an important regulator of osteoblast differentiation. Here we show that Twist haploinsufficiency alters osteoblast apoptosis in SCS. Analysis of terminal deoxynucleotidyl transferase-mediated nick-end labelling (TUNEL) demonstrated increased osteoblast and osteocyte apoptosis in coronal sutures from two SCS patients with nonsense mutations (Y103X and Q109X) that result in the synthesis of bHLH-truncated proteins, and one patient with a missense mutation in the basic domain (R118C) that abolishes Twist DNA binding. To assess the mechanisms involved, we studied osteoblast apoptosis in mutant (M-Tw) calvarial cells bearing the Y103X mutation resulting in decreased Twist mRNA and protein levels. M-Tw cells cultured in low serum conditions showed enhanced DNA fragmentation compared to normal (Nl) age-matched calvarial cells. Biochemical analysis showed increased activity of initiator caspases-2 and -8 and downstream effector caspases-3, -6 and -7 in mutant osteoblasts. Caspase-2 was upstream of caspase-8 and effector caspases-3, -6 and -7 because their activities were suppressed by a specific caspase-2 inhibitor. M-Tw osteoblasts also showed increased cytochrome c release from the mitochondria. However, the activity of the downstream effector caspase-9 was not increased due to overexpression of the antagonist protein Hsp70. Detection of differentially expressed genes using cDNA expression array revealed increased Bax and TNFalpha mRNA levels in M-Tw compared to Nl cells, a finding confirmed by RT-PCR and western blot analyses. Neutralization of

  14. Alpha 1-antitrypsin does not inhibit human monocyte caspase-1.

    Directory of Open Access Journals (Sweden)

    Mohd Akhlakur Rahman

    Full Text Available Alpha 1-antitrypsin (A1AT is a 52 kDa serine protease inhibitor produced largely by hepatocytes but also by mononuclear phagocytes. A1AT chiefly inhibits neutrophil elastase and proteinase-3 but has also been reported to have immune modulatory functions including the ability to inhibit caspases. Its clinical availability for infusion suggests that A1AT therapy might modulate caspase related inflammation. Here we tested the ability of A1AT to modulate caspase-1 function in human mononuclear phagocytes.Purified plasma derived A1AT was added to active caspase-1 in a cell-free system (THP-1 lysates as well as added exogenously to cell-culture models and human whole blood models of caspase-1 activation. Functional caspase-1 activity was quantified by the cleavage of the caspase-1 specific fluorogenic tetrapeptide substrate (WEHD-afc and the release of processed IL-18 and IL-1β.THP-1 cell lysates generated spontaneous activation of caspase-1 both by WEHD-afc cleavage and the generation of p20 caspase-1. A1AT added to this cell free system was unable to inhibit caspase-1 activity. Release of processed IL-18 by THP-1 cells was also unaffected by the addition of exogenous A1AT prior to stimulation with LPS/ATP, a standard caspase-1 activating signal. Importantly, the A1AT exhibited potent neutrophil elastase inhibitory capacity. Furthermore, A1AT complexed to NE (and hence conformationally modified also did not affect THP-1 cell caspase-1 activation. Finally, exogenous A1AT did not inhibit the ability of human whole blood samples to process and release IL-1β.A1AT does not inhibit human monocyte caspase-1.

  15. Caspase-like activities accompany programmed cell death events in developing barley grains.

    Directory of Open Access Journals (Sweden)

    Van Tran

    Full Text Available Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development.

  16. Caspases regulate VAMP-8 expression and phagocytosis in dendritic cells.

    Science.gov (United States)

    Ho, Yong Hou Sunny; Cai, Deyu Tarika; Huang, Dachuan; Wang, Cheng Chun; Wong, Siew Heng

    2009-09-18

    During an inflammation and upon encountering pathogens, immature dendritic cells (DC) undergo a maturation process to become highly efficient in presenting antigens. This transition from immature to mature state is accompanied by various physiological, functional and morphological changes including reduction of caspase activity and inhibition of phagocytosis in the mature DC. Caspases are cysteine proteases which play essential roles in apoptosis, necrosis and inflammation. Here, we demonstrate that VAMP-8, (a SNARE protein of the early/late endosomes) which has been shown previously to inhibit phagocytosis in DC, is a substrate of caspases. Furthermore, we identified two putative conserved caspase recognition/cleavage sites on the VAMP-8 protein. Consistent with the up-regulation of VAMP-8 expression upon treatment with caspase inhibitor (CI), immature DC treated with CI exhibits lower phagocytosis activity. Thus, our results highlight the role of caspases in regulating VAMP-8 expression and subsequently phagocytosis during maturation of DC.

  17. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  18. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly.

    Directory of Open Access Journals (Sweden)

    Frédérique Végran

    Full Text Available Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.

  19. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.

    Science.gov (United States)

    Lüthi, Alexander U; Cullen, Sean P; McNeela, Edel A; Duriez, Patrick J; Afonina, Inna S; Sheridan, Clare; Brumatti, Gabriela; Taylor, Rebecca C; Kersse, Kristof; Vandenabeele, Peter; Lavelle, Ed C; Martin, Seamus J

    2009-07-17

    Interleukin-33 (IL-33) is a member of the IL-1 family and is involved in polarization of T cells toward a T helper 2 (Th2) cell phenotype. IL-33 is thought to be activated via caspase-1-dependent proteolysis, similar to the proinflammatory cytokines IL-1 beta and IL-18, but this remains unproven. Here we showed that IL-33 was processed by caspases activated during apoptosis (caspase-3 and -7) but was not a physiological substrate for caspases associated with inflammation (caspase-1, -4, and -5). Furthermore, caspase-dependent processing of IL-33 was not required for ST2 receptor binding or ST2-dependent activation of the NF-kappaB transcription factor. Indeed, caspase-dependent proteolysis of IL-33 dramatically attenuated IL-33 bioactivity in vitro and in vivo. These data suggest that IL-33 does not require proteolysis for activation, but rather, that IL-33 bioactivity is diminished through caspase-dependent proteolysis within apoptotic cells. Thus, caspase-mediated proteolysis acts as a switch to dampen the proinflammatory properties of IL-33.

  20. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    Science.gov (United States)

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  1. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro

    Institute of Scientific and Technical Information of China (English)

    姚克; 王凯军; 徐雯; 孙朝晖; 申屠形超; 邱培瑾

    2003-01-01

    Objective To investigate the role of caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen peroxide (H2O2) in vitro.Methods Rat lenses were incubated in modified Eagle' s medium containing 2 mmol/L H2O2 to induce apoptosis in vitro. Apoptosis in lens epithelial cells was assessed by transmission electron microscopy and annexin V-propidium iodide (PI) double staining flow cytometry after 12, 24 and 48 h of incubation. The activity of caspase-3 was analyzed by western blotting.Results Observations under transmission electron microscopy revealed that 2 mmol/L H2O2 could effectively induce lens epithelial cell apoptosis in vitro. Caspase-3 activity increased during cell apoptosis and the peak measurement occurred at 24 h after treatment with H2O2. Cell apoptosis was blocked by caspase-3 inhibitor Ac-DEVD-CHO.Conclusions The activation of caspase-3 plays an important role in executing apoptosis in H2O2-treated lens epithelial cells and in the formation of cataract. The caspase-3 inhibitor Ac-DEVD-CHO may effectively prevent lens epithelial cell apoptosis caused by oxidative injury.

  2. Cooperation of bisphenol A and leptin in inhibition of caspase-3 expression and activity in OVCAR-3 ovarian cancer cells.

    Science.gov (United States)

    Ptak, Anna; Rak-Mardyła, Agnieszka; Gregoraszczuk, Ewa L

    2013-09-01

    This study was designed to investigate the effect of bisphenol A and leptin on caspase-3 expression and activity in OVCAR-3 ovarian cancer cells. Caspase-3 and survivin expression was measured at the transcript level by real-time PCR and at the protein level by Western blotting. In addition, caspase-3 activity was measured, using a fluorometric assay, upon exposure to bisphenol A (40 nM) alone, leptin (2.5 nM) alone, and the combination of both agents. 17β-estradiol (40 nM) was used as a positive control for estrogenic properties of bisphenol A. Results showed that the interaction between bisphenol A and leptin, which was similar to that observed between 17β-estradiol and leptin, led to the inhibition of caspase-3 expression and activity in OVCAR-3 cells. Surprisingly, survivin was found to not be involved in the anti-apoptotic activity of either agent. Also, results showed that leptin inhibits caspase-3 activity by acting on the signal transducers and activators of transcription 3 (STAT3) pathway, but bisphenol A and 17β-estradiol by the extracellular-signal-regulated kinases 1/2 (ERK1/2) pathway. In conclusion, the study reveals that bisphenol A and leptin interact to inhibit caspase-3 expression and activity by modulating STAT3 and ERK1/2 signaling pathways in OVCAR-3 cells.

  3. Molecular and acute temperature stress response characterizations of caspase-8 gene in two mussels, Mytilus coruscus and Mytilus galloprovincialis.

    Science.gov (United States)

    Zhang, Duo; Wang, Hong-Wei; Yao, Cui-Luan

    2014-01-01

    The caspase family represents aspartate-specific cysteine proteases that play key roles in initiation of apoptosis in various cells response to environmental stress. In this study, two caspase-8 cDNA sequences were cloned from two Mytilus mussels, Mytilus coruscus (Mccaspase-8) and Mytilus galloprovincialis (Mgcaspase-8), respectively. The full-length cDNA of Mccaspase-8 was 1884bp, including a 5'-terminal untranslated region (UTR) of 140bp, a 3'-terminal UTR of 238bp and an open reading frame (ORF) of 1506bp encoding a polypeptide of 501 amino acids. The 1775bp full-length Mg caspase-8 cDNA sequence contained an ORF of 1488bp encoding a polypeptide of 495 amino acid residues, a 5'-UTR of 51bp and a 3'-UTR of 236bp. Both the Mccaspase-8 and Mgcaspase-8 amino acid sequences contained two highly conservative death effector domains (DEDs) at N-terminal, the caspase family domains P20 and P10 and the caspase family cysteine active site 'KPKLFFIQACQG'. Phylogenetic analysis revealed that Mccaspase-8 and Mgcaspase-8 were clustered with the caspase-8 from other organisms, with the close relationship with caspase-8 from mollusk. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis indicated that the predominant transcripts of Mccaspase-8 were in mantle and gonad tissue of M. coruscus and the high expression levels of Mgcaspase-8 were in digestive gland and gill tissue of M. galloprovincialis, respectively. The impacts of temperature stress on Mccaspase-8 and Mgcaspase-8 expressions were tested in gill tissue and hemocytes of both species. Our results showed that both Mccaspase-8 and Mgcaspase-8 transcripts and caspase-8 activity in gill tissue and hemocytes could be induced significantly after cold and heat stress (pgalloprovincialis.

  4. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria.

    Science.gov (United States)

    Nguyen, M; Breckenridge, D G; Ducret, A; Shore, G C

    2000-09-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the caspase recognition aspartate residues were mutated to alanine residues, and Fas-mediated activation of caspase 8 and cell death were examined in human KB epithelial cells stably expressing the caspase-resistant mutant crBAP31. crBAP31 only modestly slowed the time course for activation of caspases, as assayed by the processing of procaspases 8 and 3 and the measurement of total DEVDase activity. As a result, cleavage of the caspase targets poly(ADP-ribosyl) polymerase and endogenous BAP31, as well as the redistribution of phosphatidylserine and fragmentation of DNA, was observed. In contrast, cytoplasmic membrane blebbing and fragmentation and apoptotic redistribution of actin were strongly inhibited, cell morphology was retained near normal, and the irreversible loss of cell growth potential following removal of the Fas stimulus was delayed. Of note, crBAP31-expressing cells also resisted Fas-mediated release of cytochrome c from mitochondria, and the mitochondrial electrochemical potential was only partly reduced. These results argue that BAP31 cleavage is important for manifesting cytoplasmic apoptotic events associated with membrane fragmentation and reveal an unexpected cross talk between mitochondria and the endoplasmic reticulum during Fas-mediated apoptosis in vivo.

  5. Divergent modulation of neuronal differentiation by caspase-2 and -9.

    Directory of Open Access Journals (Sweden)

    Giuseppa Pistritto

    Full Text Available Human Ntera2/cl.D1 (NT2 cells treated with retinoic acid (RA differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2 or -9 (si-Casp9 was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM, microtubule associated protein-2 (MAP2 and tyrosine hydroxylase (TH mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.

  6. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and -7

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Juliano, E-mail: jalves@gnf.org [Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Wurdak, Heiko [Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Garay-Malpartida, Humberto M. [Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Lineu Prestes 1524, Sao Paulo, SP, CEP 05508-900 (Brazil); Harris, Jennifer L. [Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Protease Biochemistry, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (United States); Occhiucci, Joao M.; Belizario, Jose E. [Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Lineu Prestes 1524, Sao Paulo, SP, CEP 05508-900 (Brazil); Li, Jun, E-mail: jli2@gnf.org [Protease Biochemistry, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (United States)

    2009-07-10

    Caspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence {sup 106}DQPD/Y{sup 110} as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells.

  7. Skin presenting a higher level of caspase-14 is better protected from UVB irradiation according to in vitro and in vivo studies.

    Science.gov (United States)

    Bergeron, Laurine; Gondran, Catherine; Oberto, Gilles; Garcia, Noelle; Botto, Jean Marie; Cucumel, Karine; Dal Farra, Claude; Domloge, Nouha

    2012-06-01

    Caspase-14, a cysteine endoproteinase belonging to the conserved family of aspartate-specific proteinases, was shown to play an important role in the terminal differentiation of keratinocytes and barrier function of the skin. In the present study, we developed a biofunctional compound that we described as a modulator of caspase-14 expression. Using normal human keratinocytes (NHK) in culture and human skin biopsies, this compound was shown to increase caspase-14 expression and partially reverse the effect of caspase-14-specific siRNA on NHK. Moreover, the increase in filaggrin expression visualized on skin biopsies and the recovery of the barrier structure after tape-stripping indicated that this compound could exhibit a beneficial effect on the skin barrier function. Considering the possible link between caspase-14 and the barrier function, a UVB irradiation on NHK and skin biopsies previously treated with the caspase-14 inducer, was performed. Results indicated that pretreated skin biopsies exhibited less signs of UV damage such as active caspase-3 and cyclobutane pyrimidine dimers (CPDs). Likewise, pretreated NHK were protected from UV-induced genomic DNA damage, as revealed by the Comet Assay. Finally, a clinical test showed a reduction of transepidermal water loss (TEWL) on the treated skin compared with placebo, under UV stress condition, confirming a protecting effect. Taken together, these results strongly suggest that, by increasing caspase-14 expression, the biofunctional compound could exhibit a protective effect on the skin barrier function, especially in case of barrier damage and UV irradiation.

  8. 胱天蛋白酶(caspase)的前结构域%The Prodomain of Caspase

    Institute of Scientific and Technical Information of China (English)

    梁赤周; 马志章

    2001-01-01

    @@ 胱天蛋白酶(caspase)是白细胞介素-1β转化酶(interleukin-1 β enzyme,ICE)家族的总称,Caspase(cysteine aspartate-special proteases)的含义是该类蛋白酶的活性部位为极为保守的半胱氨酸(cysteine)残基(取第一个字母“c”),又特异性切割底物的天冬氨酸,用“aspase”表示,简称caspase,该酶在细胞凋亡过程中起关键作用,是目前研究的热点.现已发现的caspase有14种,它们均以无活性的酶原的形式存在,包括一个N末端前结构域(prodomain)及大、小两个亚单位.

  9. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics.

    Science.gov (United States)

    Delavallée, Laure; Cabon, Lauriane; Galán-Malo, Patricia; Lorenzo, Hans K; Susin, Santos A

    2011-04-01

    Cell death has been initially divided into apoptosis, in which the cell plays an active role, and necrosis, which is considered a passive cell death program. Intense research performed in the last decades has concluded that "programmed" cell death (PCD) is a more complex physiological process than initially thought. Indeed, although in most cases the PCD process is achieved via a family of Cys proteases known as caspases, an important number of regulated PCD pathways do not involve this family of proteases. As a consequence, active forms of PCD are initially referred to as caspase-dependent and caspase-independent. More recent data has revealed that there are also active caspase-independent necrotic pathways defined as necroptosis (programmed necrosis). The existence of necroptotic forms of death was corroborated by the discovery of key executioners such as the kinase RIP1 or the mitochondrial protein apoptosis-inducing factor (AIF). AIF is a Janus protein with a redox activity in the mitochondria and a pro-apoptotic function in the nucleus. We have recently described a particular form of AIF-mediated caspase-independent necroptosis that also implicates other molecules such as PARP-1, calpains, Bax, Bcl-2, histone H2AX, and cyclophilin A. From a therapeutic point of view, the unraveling of this new form of PCD poses a question: is it possible to modulate this necroptotic pathway independently of the classical apoptotic paths? Because the answer is yes, a wider understanding of AIF-mediated necroptosis could theoretically pave the way for the development of new drugs that modulate PCD. To this end, we present here an overview of the current knowledge of AIF and AIF-mediated necroptosis. We also summarize the state of the art in some of the most interesting therapeutic strategies that could target AIF or the AIF-mediated necroptotic pathway.

  10. Tau and Caspase 3 as Targets for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Anat Idan-Feldman

    2012-01-01

    Full Text Available The peptide drug candidate NAP (davunetide has demonstrated protective effects in various in vivo and in vitro models of neurodegeneration. NAP was shown to reduce tau hyperphosphorylation as well as to prevent caspase-3 activation and cytochrome-3 release from mitochondria, both characteristic of apoptotic cell death. Recent studies suggest that caspases may play a role in tau pathology. The purpose of this study was to evaluate the effect of NAP on tau hyperphosphorylation and caspase activity in the same biological system. Our experimental setup used primary neuronal cultures subjected to oxygen-glucose deprivation (OGD, with and without NAP or caspase inhibitor. Cell viability was assessed by measuring mitochondrial activity (MTS assay, and immunoblots were used for analyzing protein level. It was shown that apoptosis was responsible for all cell death occurring following ischemia, and NAP treatment showed a concentration-dependent protection from cell death. Ischemia caused an increase in the levels of active caspase-3 and hyperphosphorylated tau, both of which were prevented by either NAP or caspase-inhibitor treatment. Our data suggest that, in this model system, caspase activation may be an upstream event to tau hyperphosphorylation, although additional studies will be required to fully elucidate the cascade of events.

  11. Expression of Fas ligand and Caspase-3 contributes to formation of immune escape in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Hua-Chuan Zheng; Jin-llin Sun; Zheng-Li Wei; Xue-Fei Yang; Yin-Chang Zhang; Yan Xin

    2003-01-01

    (P>0.05). In contrast, Caspase-3 expression showed no correlation with any dinicopathological parameters described above in cancer cells of the primary foci (P>0.05).Interestingly, FasL expression in primary gastric cancer cells paralleled to Caspase-3 expression in infiltrating lymphocytes of the primary foci (P=0.016, X2=5.825).CONCLUSION: Up-regulated expression of FasL and downregulated expression of Caspase-3 in cancer cells of primary foci play an important role in gastric carcinogenesis. As an effective marker to reveal the biological behaviors, FasL is implicated in differentiation, growth, invasion and metastasis of gastric cancer by inducing apoptosis of infiltrating lymphocytes. Chemical substances derived from the primary foci and metastatic microenvironment can inhibit the growth of metastatic cells by enhancing Caspase-3 expression and diminishing FasL expression.

  12. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yu-Qin Zhang

    Full Text Available The role of Pokemon (POK erythroid myeloid ontogenic actor, a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  13. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    Science.gov (United States)

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.

  14. Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation.

    Science.gov (United States)

    de la Cadena, Selene García; Hernández-Fonseca, Karla; Camacho-Arroyo, Ignacio; Massieu, Lourdes

    2014-03-01

    Glucose is the main energy source in brain and it is critical for correct brain functioning. Type 1 diabetic patients might suffer from severe hypoglycemia if exceeding insulin administration, which can lead to acute brain injury if not opportunely corrected. The mechanisms leading to hypoglycemic brain damage are not completely understood and the role of endoplasmic reticulum (ER) stress has not been studied. ER stress resulting from the accumulation of unfolded or misfolded proteins in the ER is counteracted by the unfolded protein response (UPR). When the UPR is sustained, apoptotic death might take place. We have examined UPR activation during glucose deprivation (GD) in hippocampal cultured neurons and its role in the induction of apoptosis. Activation of the PERK pathway of the UPR was observed, as increased phosphorylation of eIF2α and elevated levels of the transcription factor ATF4, occurred 30 min after GD and the levels of the chaperone protein, GRP78 and the transcription factor CHOP, increased after 2 h of GD. In addition, we observed an early activation of caspase-7 and 12 during GD, while caspase-3 activity increased only transiently during glucose reintroduction. Inhibition of caspase-3/7 and the calcium-dependent protease, calpain, significantly decreased caspase-12 activity. The ER stress inhibitor, salubrinal prevented neuronal death and caspase-12 activity. Results suggest that the PERK pathway of the UPR is involved in GD-induced apoptotic neuronal death through the activation of caspase-12, rather than the mitochondrial-dependent caspase pathway. In addition, we show that calpain and caspase-7 are soon activated after GD and mediate caspase-12 activation and neuronal death.

  15. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  16. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection.

    Science.gov (United States)

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Chen, Shuang; Chiba, Norika; Ramanujan, V Krishnan; Vergnes, Laurent; Ojcius, David M; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the 'inflammasome', and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1⁻/⁻ mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1⁻/⁻ mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1⁻/⁻ mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.

  17. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection.

    Directory of Open Access Journals (Sweden)

    Kenichi Shimada

    Full Text Available Chlamydia pneumoniae (CP is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the 'inflammasome', and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1⁻/⁻ mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1⁻/⁻ mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1⁻/⁻ mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.

  18. Metabolic Regulation of Caspase 2 in Breast Cancer

    Science.gov (United States)

    2009-04-01

    optimizing caspase-2 overexpression experiments with various metabolic treatments (DHEA to inhibit glucose-6-phosphate dehydrogenase , thus inhibiting...DHEA and/or malate ii. Determine chemosensitivity using a cleaved caspase 3 antibody Status: Will pursue as soon as the appropriate...similar to Xenopus C2, the mC2 14-3-3 binding mutant was more potent than WT (Fig. 7G). A decrease in G6P dehydrogenase activity has been

  19. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats.

    Science.gov (United States)

    Fırat, Uğur; Kaya, Savaş; Cim, Abdullah; Büyükbayram, Hüseyin; Gökalp, Osman; Dal, Mehmet Sinan; Tamer, Mehmet Numan

    2012-01-01

    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.

  20. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  1. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.

    Directory of Open Access Journals (Sweden)

    Mathieu Kerbiriou

    Full Text Available In cystic fibrosis (CF, the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER. We previously showed that the unfolded protein response (UPR may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.

  2. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7

    OpenAIRE

    N. Ruocco; Varella, S; Romano, G.; Ianora, A.; Bentley, M. G.; Somma, D.; Leonardi, A.; Mellone, S.; Zuppa, A; Costantini, M

    2016-01-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites withcytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxy-acids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, thePUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; atlower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos ...

  3. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

    Science.gov (United States)

    Lee, Ho Won; Singh, Thoudam Debraj; Lee, Sang-Woo; Ha, Jeoung-Hee; Rehemtulla, Alnawaz; Ahn, Byeong-Cheol; Jeon, Young Hyun; Lee, Jaetae

    2014-07-01

    Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

  4. Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures

    Science.gov (United States)

    Pearce, John A.

    2013-02-01

    Apoptosis is an especially important process affecting disease states from HIV-AIDS to auto-immune disease to cancer. A cascade of initiator and executioner capsase functional proteins is the hallmark of apoptosis. When activated the various caspases activate other caspases or cleave structural proteins of the cytoskeleton, resulting in "blebbing" of the plasma membrane forming apoptotic bodies that completely enclose the disassembled cellular components. Containment of the cytosolic components within the apoptotic bodies differentiates apoptosis from necroptosis and necrosis, both of which release fragmented cytosol and other cellular constituents into the intracellular space. Biochemical models of caspase activation reveal the extensive feedback loops characteristic of apoptosis. They clearly explain the failure of Arrhenius models to give accurate predictions of cell survival curves in hyperthermic heating protocols. Nevertheless, each of the individual reaction velocities can reasonably be assumed to follow Arrhenius kinetics. If so, the thermal sensitivity of the reaction velocity to temperature elevation is: ∂k/∂T = Ea [k/RT2]. Particular reaction steps described by higher activation energies, Ea, are likely more thermally-sensitive than lower energy reactions and may initiate apoptosis in the absence of other stress signals. Additionally, while the classical irreversible Arrhenius formulation fails to accurately represent many cell survival and/or dye uptake curves - those that display an early stage shoulder region - an expanded reversible model of the law of mass action equation seems to prove effective and is directly based on a firm theoretical thermodynamic foundation.

  5. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  6. Caspase-2 protects against oxidative stress in vivo.

    Science.gov (United States)

    Shalini, S; Puccini, J; Wilson, C H; Finnie, J; Dorstyn, L; Kumar, S

    2015-09-17

    Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2(-/-)) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2(-/-) mice indicating increased inflammation. Interestingly, livers from Casp2(-/-) mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2(-/-) mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2(-/-) mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2(-/-) mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2(-/-) mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2(-/-) mice.

  7. Caspase-Mediated Apoptosis in the Cochleae Contributes to the Early Onset of Hearing Loss in A/J Mice

    Directory of Open Access Journals (Sweden)

    Xu Han

    2015-03-01

    Full Text Available A/J and C57BL/6 J (B6 mice share a mutation in Cdh23 (ahl allele and are characterized by age-related hearing loss. However, hearing loss occurs much earlier in A/J mice at about four weeks of age. Recent study has revealed that a mutation in citrate synthase (Cs is one of the main contributors, but the mechanism is largely unknown. In the present study, we showed that A/J mice displayed more severe degeneration of hair cells, spiral ganglion neurons, and stria vascularis in the cochleae compared with B6 mice. Moreover, messenger RNA accumulation levels of caspase-3 and caspase-9 in the inner ears of A/J mice were significantly higher than those in B6 mice at 2 and 8 weeks of age. Immunohistochemistry localized caspase-3 expression mainly to the hair cells, spiral ganglion neurons, and stria vascularis in cochleae. In vitro transfection with Cs short hairpin RNA (shRNA alone or cotransfection with Cs shRNA and Cdh23 shRNA significantly increased the levels of caspase-3 in an inner ear cell line (HEI-OC1. Finally, a pan-caspase inhibitor Z-VAD-FMK could preserve the hearing of A/J mice by lowering about 15 decibels of the sound pressure level for the auditory-evoked brainstem response thresholds. In conclusion, our results suggest that caspase-mediated apoptosis in the cochleae, which may be related to a Cs mutation, contributes to the early onset of hearing loss in A/J mice.

  8. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis.

    Directory of Open Access Journals (Sweden)

    Matthew C Exline

    Full Text Available OBJECTIVE: Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. DESIGN: Single-center cohort study. MEASUREMENTS: 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. MAIN RESULTS: Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07 AFU versus 0.0 AFU (0, 0.02 (p<0.001 on day 1 and this persisted on day 3, 0.12 (0.1, 0.2 versus 0.02 (0, 0.1 (p<0.001. MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001 and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. CONCLUSION: These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.

  9. Role and Association of Inflammatory and Apoptotic Caspases in Renal Tubulointerstitial Fibrosis

    Directory of Open Access Journals (Sweden)

    You Ke

    2016-09-01

    Full Text Available Background/Aims: Caspases, an evolutionary conserved family of aspartate-specific cystein proteases, play pivotal roles in apoptotic and inflammatory signaling. Thus far, 14 mammalian caspases are identified and categorized into 3 distinct sub-types: inflammatory caspases, apoptotic initiator and apoptotic executioner. Caspase-1 is an inflammatory caspase, while caspase-7 belongs to apoptotic executioner. The roles and association of these two distinct types of caspases in renal tubulointerstitial fibrosis (TIF have not been well recognized. Methods: Caspase-1 inhibitor Z-YVAD-FMK and caspase-7 siRNA were used in tubular epithelial cell line NRK-52E (TECs to test their effects on transforming growth factor-beta1 (TGF-β1 stimulation. In vivo, Unilateral ureteral obstruction (UUO animal model was employed in wild-type (WT and caspase-1 knock out (KO (caspase-1-/- mice. Results: In current study, we found that caspase-7 was obviously activated in cultured TECs stimulated by TGF-β1 and in UUO model of WT mice. While in UUO model of caspase-1 KO mice, the increased caspase-7 activation was suppressed significantly along with reduced trans-differentiation and minimized extracellular matrix (ECM accumulation, as demonstrated by western blot, Masson trichrome staining and immunohistochemistry. In addition, pharmacological inhibition of caspase-1 dampened caspase-7 activation and TECs' transdifferentiation induced by TGF-β1 exposure, which was consistent with in vivo study. Notably, caspase-7 gene knock down by specific siRNA abrogated TGF-β1 driven TECs' trans-differentiation and reduced ECM accumulation. Conclusions: Our study associated inflammatory and apoptotic caspases in TIF for the first time and we further confirmed that caspase-1 activation is an upstream event of apoptotic caspase-7 induction in TIF triggered by UUO and in TECs mediated by TGF-β1 induced transdifferentiation.

  10. SVM-based prediction of caspase substrate cleavage sites

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2006-12-01

    Full Text Available Abstract Background Caspases belong to a class of cysteine proteases which function as critical effectors in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of such cleavage sites will complement structural and functional studies on substrates cleavage as well as discovery of new substrates. Recently, different computational methods have been developed to predict the cleavage sites of caspase substrates with varying degrees of success. As the support vector machines (SVM algorithm has been shown to be useful in several biological classification problems, we have implemented an SVM-based method to investigate its applicability to this domain. Results A set of unique caspase substrates cleavage sites were obtained from literature and used for evaluating the SVM method. Datasets containing (i the tetrapeptide cleavage sites, (ii the tetrapeptide cleavage sites, augmented by two adjacent residues, P1' and P2' amino acids and (iii the tetrapeptide cleavage sites with ten additional upstream and downstream flanking sequences (where available were tested. The SVM method achieved an accuracy ranging from 81.25% to 97.92% on independent test sets. The SVM method successfully predicted the cleavage of a novel caspase substrate and its mutants. Conclusion This study presents an SVM approach for predicting caspase substrate cleavage sites based on the cleavage sites and the downstream and upstream flanking sequences. The method shows an improvement over existing methods and may be useful for predicting hitherto undiscovered cleavage sites.

  11. Ceramide mediates caspase-independent programmed cell death.

    Science.gov (United States)

    Thon, Lutz; Möhlig, Heike; Mathieu, Sabine; Lange, Arne; Bulanova, Elena; Winoto-Morbach, Supandi; Schütze, Stefan; Bulfone-Paus, Silvia; Adam, Dieter

    2005-12-01

    Although numerous studies have implicated the sphingolipid ceramide in the induction of cell death, a causative function of ceramide in caspase-dependent apoptosis remains a highly debated issue. Here, we show that ceramide is a key mediator of a distinct route to programmed cell death (PCD), i.e., caspase-independent PCD. Under conditions where apoptosis is either not initiated or actively inhibited, TNF induces caspase-independent PCD in L929 fibrosarcoma cells, NIH3T3 fibroblasts, human leukemic Jurkat T cells, and lung fibroblasts by increasing intracellular ceramide levels prior to the onset of cell death. Survival is significantly enhanced when ceramide accumulation is prevented, as demonstrated in fibroblasts genetically deficient for acid sphingomyelinase, in L929 cells overexpressing acid ceramidase, by pharmacological intervention, or by RNA interference. Jurkat cells deficient for receptor-interacting protein 1 (RIP1) do not accumulate ceramide and therefore are fully resistant to caspase-independent PCD whereas Jurkat cells overexpressing the mitochondrial protein Bcl-2 are partially protected, implicating RIP1 and mitochondria as components of the ceramide death pathway. Our data point to a role of caspases (but not cathepsins) in suppressing the ceramide death pathway under physiological conditions. Moreover, clonogenic survival of tumor cells is clearly reduced by induction of the ceramide death pathway, promising additional options for the development of novel tumor therapies.

  12. An overview of caspase: Apoptotic protein for silicosis

    Directory of Open Access Journals (Sweden)

    Tumane Rajani

    2010-01-01

    Full Text Available Silicosis is a chronic lung disease characterized by granulomatous and fibrotic lesions, which occurs due to accumulation of respirable silica mineral particles. Apoptosis is an important phenomenon of cell death in silicosis. The relationship between silica dust and its exposure is well established. But, the complex chain of cellular responses, which leads to caspase activation in silicosis, has not been fully discovered. Caspase activation plays a central role in the execution of apoptosis. Silica-induced apoptosis of the alveolar macrophages could potentially favor a proinflammatory state, occurring in the lungs of silicotic patients, resulting in the activation of caspase prior to induction of the intrinsic and extrinsic apoptosis pathways. Recent studies indicated that apoptosis may involve in pulmonary disorders. This review summarizes the current knowledge about the underling mechanism of biochemical pathways in caspase activation that have been ignored so far in silicosis. In addition, caspase could be a key apoptotic protein that can be used as an effective biomarker for the study of occupational diseases. It may provide an important link in understanding the molecular mechanisms of silica-induced lung pathogenesis.

  13. Caspase-2 deficiency accelerates chemically induced liver cancer in mice.

    Science.gov (United States)

    Shalini, S; Nikolic, A; Wilson, C H; Puccini, J; Sladojevic, N; Finnie, J; Dorstyn, L; Kumar, S

    2016-10-01

    Aberrant cell death/survival has a critical role in the development of hepatocellular carcinoma (HCC). Caspase-2, a cell death protease, limits oxidative stress and chromosomal instability. To study its role in reactive oxygen species (ROS) and DNA damage-induced liver cancer, we assessed diethylnitrosamine (DEN)-mediated tumour development in caspase-2-deficient (Casp2(-/-)) mice. Following DEN injection in young animals, tumour development was monitored for 10 months. We found that DEN-treated Casp2(-/-) mice have dramatically elevated tumour burden and accelerated tumour progression with increased incidence of HCC, accompanied by higher oxidative damage and inflammation. Furthermore, following acute DEN injection, liver injury, DNA damage, inflammatory cytokine release and hepatocyte proliferation were enhanced in mice lacking caspase-2. Our study demonstrates for the first time that caspase-2 limits the progression of tumourigenesis induced by an ROS producing and DNA damaging reagent. Our findings suggest that after initial DEN-induced DNA damage, caspase-2 may remove aberrant cells to limit liver damage and disease progression. We propose that Casp2(-/-) mice, which are more susceptible to genomic instability, are limited in their ability to respond to DNA damage and thus carry more damaged cells resulting in accelerated tumourigenesis.

  14. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1

    Institute of Scientific and Technical Information of China (English)

    Yong Zuo; Binggang Xiang; Jie Yang; Xuxu Sun; Yumei Wang; Hui Cang; Jing Yi

    2009-01-01

    Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interaction between caspase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/ Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H202-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can mediate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.

  15. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  16. Cystein cathepsin and Hsp90 activities determine the balance between apoptotic and necrotic cell death pathways in caspase-compromised U937 cells.

    Science.gov (United States)

    Imre, Gergely; Dunai, Zsuzsanna; Petak, Istvan; Mihalik, Rudolf

    2007-10-01

    Caspase-inhibited cells induced to die may exhibit the traits of either apoptosis or necrosis or both, simultaneously. However, mechanisms regulating the commitment to these distinct forms of cell death are barely identified. We found that staurosporine induced both apoptotic and necrotic traits in U937 cells exposed to the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone. Morphology and flow cytometry revealed that individual cells exhibited either apoptotic or necrotic traits, but not the mixed phenotype. Inhibition of cathepsin activity by benzyloxycarbonyl-Phe-Ala-fluoromethylketone rendered caspase-compromised cells resistant to staurosporine-induced apoptosis, but switched the cell death form to necrosis. Inhibition of heat shock protein 90 kDa (Hsp90) chaperon activity by geldanamycin conferred resistance to necrosis in caspase-compromised cells but switched the cell death form to apoptosis. Combination of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and geldanamycin halted the onset of both forms of cell death by saving mitochondrial trans-membrane potential and preventing acidic volume (lysosomes) loss. These effects of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and/or geldanamycin on cell death were restricted to caspase-inhibited cells exposed to staurosporine but influenced neither only the staurosporine-provoked apoptosis nor hydrogen peroxide (H2O2)-generated necrosis. Our results demonstrate that the staurosporine-induced death pathway bifurcates in caspase-compromised cells and commitment to apoptotic or necrotic phenotypes depends on cathepsin protease or Hsp90 chaperon activities.

  17. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    Science.gov (United States)

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  18. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    Energy Technology Data Exchange (ETDEWEB)

    S Vaidya; E Velazquez-Delgado; G Abbruzzese; J Hardy

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.

  19. Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling.

    Science.gov (United States)

    Antonopoulos, Christina; Russo, Hana M; El Sanadi, Caroline; Martin, Bradley N; Li, Xiaoxia; Kaiser, William J; Mocarski, Edward S; Dubyak, George R

    2015-08-14

    We recently described the induction of noncanonical IL-1β processing via caspase-8 recruited to ripoptosome signaling platforms in myeloid leukocytes. Here, we demonstrate that activated NLRP3·ASC inflammasomes recruit caspase-8 to drive IL-1β processing in murine bone marrow-derived dendritic cells (BMDC) independent of caspase-1 and -11. Sustained stimulation (>2 h) of LPS-primed caspase-1-deficient (Casp1/11(-/-)) BMDC with the canonical NLRP3 inflammasome agonist nigericin results in release of bioactive IL-1β in conjunction with robust caspase-8 activation. This IL-1β processing and caspase-8 activation do not proceed in Nlrp3(-/-) or Asc(-/-) BMDC and are suppressed by pharmacological inhibition of caspase-8, indicating that caspase-8 can act as a direct IL-1β-converting enzyme during NLRP3 inflammasome activation. In contrast to the rapid caspase-1-mediated death of wild type (WT) BMDC via NLRP3-dependent pyroptosis, nigericin-stimulated Casp1/11(-/-) BMDC exhibit markedly delayed cell death via NLRP3-dependent apoptosis. Biochemical analyses of WT and Casp1/11(-/-) BMDC indicated that caspase-8 is proteolytically processed within detergent-insoluble ASC-enriched protein complexes prior to extracellular export during nigericin treatment. Although nigericin-stimulated caspase-1 activation and activity are only modestly attenuated in caspase-8-deficient (Casp8(-/-)Rip3(-/-)) BMDC, these cells do not exhibit the rapid loss of viability of WT cells. These results support a contribution of caspase-8 to both IL-1β production and regulated death signaling via NLRP3 inflammasomes. In the absence of caspase-1, NLRP3 inflammasomes directly utilize caspase-8 as both a pro-apoptotic initiator and major IL-1β-converting protease. In the presence of caspase-1, caspase-8 acts as a positive modulator of the NLRP3-dependent caspase-1 signaling cascades that drive both IL-1β production and pyroptotic death.

  20. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    Science.gov (United States)

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.

  1. MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes.Histone modification is associated with nuclear events in apoptotic cells.Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis.We report that activation of MAPKs (ERK1/2,JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis.UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner.Inhibition of ERK1/2,JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14).Furthermore,caspase-3 was activated by UVB to regulate Mst1 activity,which phosphorylates H2B at Ser14,leading to chromatin condensation.Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14),but ERK1/2,JNK1/2 and p38 activities were not affected.Taken together,these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.

  2. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were foun

  3. Proteolytic activation of ETK/Bmx tyrosine kinase by caspases.

    Science.gov (United States)

    Wu, Y M; Huang, C L; Kung, H J; Huang, C Y

    2001-05-25

    Etk/Bmx is a member of the Btk/Tec family of kinases, which are characterized by having a pleckstrin homology domain at the N terminus, in addition to the Src homology 3 (SH3), SH2, and the catalytic domains, shared with the Src family kinases. Etk, or Btk kinases in general, has been implicated in the regulation of apoptosis. To test whether Etk is the substrate for caspases during apoptosis, in vitro translated [(35)S]methionine-labeled Etk was incubated with different apoptotic extracts and recombinant caspases, respectively. Results showed that Etk was proteolyzed in all conditions tested with identical cleavage patterns. Caspase-mediated cleavage of Etk generated a C-terminal fragment, containing the complete SH2 and tyrosine kinase domains, but without intact pleckstrin homology and SH3 domains. This fragment has 4-fold higher kinase activity than that of the full-length Etk. Ectopic expression of the C-terminal fragment of Etk sensitized the PC3 prostate cancer cells to apoptosis in response to apoptosis-inducing stimuli. The finding, together with an earlier report that Etk is potentially antiapoptotic, suggests that Etk may serve as an apoptotic switch, depending on the forms of Etk existing inside the cells. To our knowledge, this is the first case where the activity of a tyrosine kinase is induced by caspase cleavage.

  4. Hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death.

    Science.gov (United States)

    Eisner, Verónica; Quiroga, Clara; Criollo, Alfredo; Eltit, José Miguel; Chiong, Mario; Parra, Valentina; Hidalgo, Karla; Toro, Barbra; Díaz-Araya, Guillermo; Lavandero, Sergio

    2006-06-12

    NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.

  5. Pseudolaric Acid B Induces Caspase-Dependent and Caspase-Independent Apoptosis in U87 Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Khan

    2012-01-01

    Full Text Available Pseudolaric acid B (PLAB is one of the major bioactive components of Pseudolarix kaempferi. It has been reported to exhibit inhibitory effect on cell proliferation in several types of cancer cells. However, there is no report elucidating its effect on glioma cells and organ toxicity in vivo. In the present study, we found that PLAB inhibited growth of U87 glioblastoma cells in a dose-dependent manner with IC50~10 μM. Flow cytometry analysis showed that apoptotic cell death mediated by PLAB was accompanied with cell cycle arrest at G2/M phase. Using Western blot, we found that PLAB induced G2/M phase arrest by inhibiting tubulin polymerization in U87 cells. Apoptotic cell death was only partially inhibited by pancaspase inhibitor, z-VAD-fmk, which suggested that PLAB-induced apoptosis in U87 cells is partially caspase-independent. Further mechanistic study demonstrated that PLAB induced caspase-dependent apoptosis via upregulation of p53, increased level of proapoptotic protein Bax, decreased level of antiapoptotic protein Bcl-2, release of cytochrome c from mitochondria, activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose polymerase (PARP and caspase-independent apoptosis through apoptosis inducing factor (AIF. Furthermore, in vivo toxicity study demonstrated that PLAB did not induce significant structural and biochemical changes in mouse liver and kidneys at a dose of 25 mg/kg. Therefore, PLAB may become a potential lead compound for future development of antiglioma therapy.

  6. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Merino, Joaquin [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Massimi, Paola [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy); Lizano, Marcela, E-mail: lizanosoberon@gmail.com [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Banks, Lawrence, E-mail: banks@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy)

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  7. Developing a powerful In Silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome

    Directory of Open Access Journals (Sweden)

    Ayyash Muneef

    2012-01-01

    Full Text Available Abstract Background Caspases are a family of cysteinyl proteases that regulate apoptosis and other biological processes. Caspase-3 is considered the central executioner member of this family with a wide range of substrates. Identification of caspase-3 cellular targets is crucial to gain further insights into the cellular mechanisms that have been implicated in various diseases including: cancer, neurodegenerative, and immunodeficiency diseases. To date, over 200 caspase-3 substrates have been identified experimentally. However, many are still awaiting discovery. Results Here, we describe a powerful bioinformatics tool that can predict the presence of caspase-3 cleavage sites in a given protein sequence using a Position-Specific Scoring Matrix (PSSM approach. The present tool, which we call CAT3, was built using 227 confirmed caspase-3 substrates that were carefully extracted from the literature. Assessing prediction accuracy using 10 fold cross validation, our method shows AUC (area under the ROC curve of 0.94, sensitivity of 88.83%, and specificity of 89.50%. The ability of CAT3 in predicting the precise cleavage site was demonstrated in comparison to existing state-of-the-art tools. In contrast to other tools which were trained on cleavage sites of various caspases as well as other similar proteases, CAT3 showed a significant decrease in the false positive rate. This cost effective and powerful feature makes CAT3 an ideal tool for high-throughput screening to identify novel caspase-3 substrates. The developed tool, CAT3, was used to screen 13,066 human proteins with assigned gene ontology terms. The analyses revealed the presence of many potential caspase-3 substrates that are not yet described. The majority of these proteins are involved in signal transduction, regulation of cell adhesion, cytoskeleton organization, integrity of the nucleus, and development of nerve cells. Conclusions CAT3 is a powerful tool that is a clear improvement over

  8. Expression and in vitro cleavage activity of anti-caspase-7 hammerhead ribozymes

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Qing Xie; Xia-Qiu Zhou; Shan Jiang; You-Xin Jin

    2004-01-01

    AIM: To prepare hammerhead ribozymes against mouse caspase-7 and identify their cleavage activityin vitro, in order to select a ribozyme with specific cleavage activity against mouse caspase-7 as a potential gene therapy for apoptosis-related diseases.METHODS: Anti-caspase-7 ribozymes targeting sites 333and 394 (named Rz333 and Rz394) were designed by computer software, and their DNA sequences encoding ribozymes were synthesized. Caspase-7 DNA sequence was acquired by RT-PCR. Ribozymes and caspase-7 DNA obtained byin vitro transcription were cloned into pBSKneo U6' and pGEM-T vectors, respectively. The cleavage activity of ribozymes against mouse caspase-7 was identified by cleavage experimentsin vitro.RESULTS: Rz333 and Rz394 were designed and their DNA sequences were synthesized respectively. The expression vector of caspase-7 and plasmids containing Rz333 and Rz394 were reconstructed successfully. Ribozymes and caspase-7 mRNA were expressed byin vitro transcription.In vitro cleavage experiment showed that 243-nt and 744-nt segments were produced after caspase-7 mRNA was mixed with Rz333 in equivalent, and the cleavage efficiency was 67.98%. No cleaved segment was observed when caspase-7 mRNA was mixed with Rz394.CONCLUSION: Rz333 can site-specific cleave mouse caspase-7 mRNA, and it shows a potential for gene therapy of apoptosis-related diseases by down-regulating gene expression of caspase-7.

  9. Caspase-1 but Not Caspase-11 Is Required for NLRC4-Mediated Pyroptosis and Restriction of Infection by Flagellated Legionella Species in Mouse Macrophages and In Vivo.

    Science.gov (United States)

    Cerqueira, Daiane M; Pereira, Marcelo S F; Silva, Alexandre L N; Cunha, Larissa D; Zamboni, Dario S

    2015-09-01

    Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo.

  10. CONSTRUCTION OF ACTIVE RECOMBINANT CASPASE-3 EUKARYOTIC EXPRESSION PLA SMID AND EFFECT OF r-CASPASE-3 ON APOPTOSIS OF PANCREATIC CARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To construct active recombinant cas pa ses-3 gene(r-caspases-3)eukaryotic expression plasmid and observe the apoptos is inducing activity of r-caspase-3 in pancreatic carcinoma cells. Methods pcDNA3.1(+)/r-caspase-3 was constructed and pan creatic carcinoma cells(PC-Ⅱ)were transfected with the pcDNA3.1(+)/r-caspases -3 by liposomes(LipofectAMINE).The expression of r-Caspase-3 mRNA in pancreat ic carcinoma cells was detected by reverse transcription process of the polymera se chain reaction(RT-PCR), and the signs of apoptosis were examined in pancreat ic carcinoma cells by the methods of the DNA electrophoresis and flow cytometry analysis(FACS).Results The sequence inserted in pBlueSKM/r-Caspase-3 p lasmid was coincident with that of the r-caspases-3. The evaluation result of pcDNA3.1(+)/r-caspases-3 through enzyme cutting was correct. A 894bp strap was observed by RT-PCR after pancreatic carcinoma cells being transfected with the pcDNA3.1(+)/r-caspases-3 by liposomes. No strap was found in control groups. A characteristic DNA ladder was observed in pancreatic carcinoma cells DNA elect r ophoresis, and transparent hypodiploid karyotype peak was found by FACS. Conclusion The plasmid of pcDNA3.1(+)/r-Caspase-3 was c onstructed successfully, the expression of r-Caspase-3 mRMA in pancreatic carc inoma cells was confirmed by RT-PCR, and pcDNA3.1(+)/r-Caspase-3 can induce a poptosis in pancreatic carcinoma cells.

  11. Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells.

    Science.gov (United States)

    Eguchi, Ryoji; Toné, Shigenobu; Suzuki, Akio; Fujimori, Yoshihiro; Nakano, Takashi; Kaji, Kazuhiko; Ohta, Toshiro

    2009-01-15

    We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.

  12. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda.

    Science.gov (United States)

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J; Clem, Rollie J

    2013-05-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X.

  13. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  14. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart.

    Science.gov (United States)

    Yacobi-Sharon, Keren; Namdar, Yuval; Arama, Eli

    2013-04-15

    In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.

  15. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity.

    Science.gov (United States)

    Ozmen, O; Mor, F

    2015-01-01

    Endosulfan is an insecticide that is composed of two stereoisomers: α- and β- endosulfan in an approximate ratio of 70:30. Owing to its widespread use, poisoning of both humans and animals is possible. We examined the toxic effects of endosulfan on New Zealand white rabbit kidneys. Rabbit kidneys were examined histopathologically and caspase-3 activity was detected using immunohistochemistry. Animals were divided into four groups: Group 1 was given a sublethal dose of endosulfan in corn oil by oral gavage daily for 6 weeks, Group 2 was given endosulfan + vitamin C during the same period, Group 3 was given corn oil daily and vitamin C on alternate days, Group 4 was given only corn oil daily throughout the experiment. By the end of experimental period, the concentration of α-endosulfan was greater than the β-endosulfan concentration in the kidneys of both of endosulfan treated groups (Groups 1 and 2). Decreased accumulation of α- and β-endosulfan was observed in Group 2, possibly because of the antioxidant effect of the vitamin C. Histopathological examination revealed hemorrhages, tubule cell necrosis, glomerular infiltration, glomerulosclerosis and proteinaceous material in the tubules, and Bowman spaces in the kidneys of Group 1. Caspase-3 reaction was stronger in Group 1 than in the other groups. Apoptotic activity was most frequent in proximal tubule cells. Endosulfan is toxic to rabbit kidneys. Vitamin C treatment reduced the accumulation of endosulfan in kidneys and reduced its toxicity.

  16. PIDDosome Expression and the Role of Caspase-2 Activation for Chemotherapy-Induced Apoptosis in RCCs

    Directory of Open Access Journals (Sweden)

    Sebastian Heikaus

    2010-01-01

    Full Text Available Background: The importance of caspase-2 activation for mediating apoptosis in cancer is not clear and seems to differ between different tumour types. Furthermore, only few data have been obtained concerning the expression of caspase-2, which can be alternatively spliced into caspase-2L and caspase-2S, and the other PIDDosome members PIDD and RAIDD in human tumours in vivo. We, therefore, investigated their expression in renal cell carcinomas (RCCs of the clear cell type in vivo and analysed the role of caspase-2 in chemotherapy-induced apoptosis in RCCs in vitro.

  17. Role of Caspase and MMPs in Amniochorionic during PROM

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To study the role of cysteine aspartic acid-specific protease-3 (caspase-3),matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metallo proteinase2 (TIMP-2) in human amniochorionic membranes during premature rupture of human fetal membranes (PROM).Methods Amniochorionic membranes were collected from the following groups of women: women with spontaneous PROM (n=8), women with normal labor in term after vaginal delivery(n=8) and women undergoing elective repeat cesarean section (C-section) before the onset of labor and who had no complications of pregnancy (n=8). Caspase-3 peptides were studies with use of immunohistochemistry. Messenger ribonucleic acid (mRNA) expression for MMP-2 and its specific inhibitors TIMP-2was studied with use of reverse transcriptase-polymerase chain reaction (RT-PCR).Results 1) The expressions of Caspase-3 peptides were 62.86 ± 3.83% in PROM group, 42.33 ±2.99% in vaginal delivery group, and 20.97 ± 2.94% in C- section group. There were statistically significant changes among the three groups (P<0.05).Immunohistochemistry demonstrated the presence of Caspase-3 in the amniotic epithelial cells and chorionic cytotrophoblast cells. 2) The expressions of MMP-2 were 84. 92 ±3.68% in PROM group, 32.65 ± 2.34% in vaginal delivery group, and 30.65 ±2.77% in C-section group. There were statistically significant changes between PROM and C-section group (P<0.05). 3) The expressions of TIMP-2 were 42. 01 ± 12.17% in PROM group, 73.01 ± 14.82% in vaginal delivery group, and 88.47 ± 6.51% in C- section group. There were statistically significant changes among the three groups (P<0.05).Conclusion Caspase-3 gene expressed more in PROM than in comparative group,which caused human fetal membranes cell apoptosis increased.The expression MMP-2increased and TIMP-2 dropped in PROM, which can increase the ECM decomposing.Cell apoptosis increased and extra cellular matrix degradation dropped, which may cause weakening of the

  18. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Directory of Open Access Journals (Sweden)

    Harald F. Krug

    2012-01-01

    Full Text Available Tributyltin (TBT is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines.

  19. Mechanism of mitochondrial respiratory control in caspase-3 induced positive feed back loop in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Caspase-3 plays a central role in the execution of apoptosis. Besides many substrates of caspase-3, mitochondria seem to be one of the candidate targets in the apoptotic process. We evaluated the effects of caspase-3 on the isolated mitochondria in detail, and especially focused on the mechanism involved in mitochondrial functions, which were not fully assessed till now. Our results showed that recombinant caspase-3 induced the increase of superoxide production, the dissipation of mitochondrial membrane potential and rate increasing of mitochondrial state 4 respiration. Caspases inhibitor, z-VAD-fmk can inhibit these effects of caspase-3 on mitochondria. Bcl-xL and cyclosporin A were also shown to be able to inhibit these changes. These results suggested a possible mechanism in caspase-3 induced disruption of mitochondrial membrane barrier which formed a positive feedback loop in apoptosis.

  20. Update of the Caspase-3 and Caspase-8 in lichen planus%Caspase-3和 Caspase-8与扁平苔藓的研究进展

    Institute of Scientific and Technical Information of China (English)

    李帅; 栗玉珍

    2016-01-01

    Caspase-3 and Caspase-8 are important proteins in the process of apoptosis. Caspase-8 can start apoptotic reaction which can mediate apoptosis in a variety of ways. Caspase-3 can accelerate cell apop-tosis after activation. The new studies reported high expression of Caspase-3, Caspase-8 in lichen planus le-sions, especially in the basal layer which showed that Caspase-3, Caspase-8 might be involved in the apop-totic response process of lichen planus.%Caspase-3和 Caspase-8作为含半胱氨酸的天冬氨酸蛋白水解酶家族成员,是参与细胞凋亡过程的两个重要蛋白。 Caspase-8是重要的凋亡启动蛋白,可通过多种途径介导凋亡反应的发生, Caspase-3作为凋亡过程中的执行者,活化后可以加速细胞凋亡的发生。最新研究发现 Caspase-3和Caspase-8在扁平苔藓皮损处(特别是基底层处)高表达,表明两者可能参与了扁平苔藓的凋亡过程,并导致了本病的病理变化。

  1. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta.

    NARCIS (Netherlands)

    Joosten, L.A.B.; Netea, M.G.; Fantuzzi, G.; Koenders, M.I.; Helsen, M.M.A.; Sparrer, H.; Pham, C.T.; Meer, J.W.M. van der; Dinarello, C.A.; Berg, W.B. van den

    2009-01-01

    OBJECTIVE: Caspase 1, a known cysteine protease, is a critical component of the inflammasome. Both caspase 1 and neutrophil serine proteases such as proteinase 3 (PR3) can process pro-interleukin-1beta (proIL-1beta), a crucial cytokine linked to the pathogenesis of rheumatoid arthritis. This study w

  2. Matrine inhibited the growth of rat osteosarcoma UMR-108 cells by inducing apoptosis in a mitochondrial-caspase-dependent pathway.

    Science.gov (United States)

    Yan, Feng; Liu, Yang; Wang, Wenbo

    2013-08-01

    Matrine, one of the main active components of the extracts from the dry roots of Sophora flavescens, has a potent antitumor activity in vitro and in vivo. However, the molecular mechanism of cell apoptosis induced by matrine remains elusive. Here, we investigated the apoptosis in matrine-treated rat osteosarcoma UMR-108 cells. The results showed that matrine could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed a disruption of mitochondrial transmembrane potential and an upregulation of reactive oxygen species in matrine-treated cells. By western blot analysis, we found the upregulation of cleaved poly(ADP-ribose) polymerase, cleaved caspase-3, and cleaved caspase-9 and the downregulation of Bax/Bcl-2 with different concentrations of matrine. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that matrine could be used as an effective antitumor agent in therapy of osteosarcoma targets the caspase-dependent signaling pathway.

  3. Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells

    Science.gov (United States)

    Asselin, Eric; Parent, Sophie; Côté, Jean-Charles; Sirois, Marc

    2015-01-01

    In previous studies, parasporin-2Aa1, originally isolated from Bacillus thuringiensis strain A1547, was shown to be cytotoxic against specific human cancer cells but the mechanisms of action were not studied. In the present study, we found that proteinase K activated parasporin-2Aa1 protein isolated from a novel B. thuringiensis strain, 4R2, was specifically cytotoxic to endometrial, colon, liver, cervix, breast and prostate cancer. It showed no toxicity against normal cells. Upon treatment with proteinase K-activated parasporin-2Aa1, morphological changes were observed and western blot analysis revealed the cleavage of poly (ADP-Ribose) polymerase, caspase-3 and caspase-9 in cancer cell lines exclusively, indicative of programmed cell death, apoptosis. Flow cytometry analyses,using propidium iodide and annexin V, as well as a caspases 3/7 assay confirmed apoptosis induction. Further analyses were performed to study survival pathways, including AKT, XIAP, ERK1/2 and PAR-4, a known inducer of apoptosis. These results indicate that parasporin-2Aa1 is a selective cytotoxic protein that induces apoptosis in various human cancer cell lines from diverse tissues. PMID:26263002

  4. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.

  5. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety

    Science.gov (United States)

    Ganesan, Rajkumar; Jelakovic, Stjepan; Mittl, Peer R. E.; Caflisch, Amedeo; Grütter, Markus G.

    2011-01-01

    Using a fragment-based docking procedure, several small-molecule inhibitors of caspase-3 were identified and tested and the crystal structures of three inhibitor complexes were determined. The crystal structures revealed that one inhibitor (NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC 89167 and NSC 251810) bind only to the prime part of the substrate-binding site. One of the major conformational changes observed in all three caspase-3–inhibitor complexes is a rotation of the Tyr204 side chain, which blocks the S2 subsite. In addition, the structural variability of the residues shaping the S1–S4 as well as the S1′ subsites supports an induced-fit mechanism for the binding of the inhibitors in the active site. The high-resolution crystal structures reported here provide novel insights into the architecture of the substrate-binding site, which might be useful for the design of more potent caspase inhibitors. PMID:21821879

  6. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  7. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production.

    Science.gov (United States)

    Man, Si Ming; Tourlomousis, Panagiotis; Hopkins, Lee; Monie, Tom P; Fitzgerald, Katherine A; Bryant, Clare E

    2013-11-15

    Nucleotide-binding oligomerization domain-like receptors (NLRs) detect pathogens and danger-associated signals within the cell. Salmonella enterica serovar Typhimurium, an intracellular pathogen, activates caspase-1 required for the processing of the proinflammatory cytokines, pro-IL-1β and pro-IL-18, and pyroptosis. In this study, we show that Salmonella infection induces the formation of an apoptosis-associated specklike protein containing a CARD (ASC)-Caspase-8-Caspase-1 inflammasome in macrophages. Caspase-8 and caspase-1 are recruited to the ASC focus independently of one other. Salmonella infection initiates caspase-8 proteolysis in a manner dependent on NLRC4 and ASC, but not NLRP3, caspase-1 or caspase-11. Caspase-8 primarily mediates the synthesis of pro-IL-1β, but is dispensable for Salmonella-induced cell death. Overall, our findings highlight that the ASC inflammasome can recruit different members of the caspase family to induce distinct effector functions in response to Salmonella infection.

  8. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    Science.gov (United States)

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  9. Caspase-dependent retinal ganglion cell apoptosis in the rat model of acute diabetes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Neural apoptosis is generally believed to be mediated by two distinct pathways, caspase-dependant and caspase-independent pathways. This study investigated the apoptotic pathways involved in retinal ganglion ceils in acute diabetes in rats. Methods Diabetes was induced in male Wistar rats by a peritoneal injection of streptozotocin (STZ). Expression and localization of caspase-3 and apoptosis-inducing factor (AIF) proteins in the retina of diabetic rats was examined by Western blotting and immunohistochemistry analyses. Terminal transferase dUTP nick end labeling (TUNEL) assay and immunofluorescent staining specific for caspase-3 and AIF were applied to analyze for apoptosis of retinal ganglion cells. In addition, a caspase-3 inhibitor DEVD-CHO was injected intravitreally to further determine the apoptotic pathways of retinal ganglion cells triggered in acute diabetes. Results Two weeks after induction of diabetes, a significant increase in caspase-3 protein expression and localization occurred in the nerve fiber layer, ganglion cell layer, and inner plexiform layer of the retina. Four weeks after the onset of diabetes, the increase in caspase-3 expression was profound eight weeks postinduction of diabetes (P<0.05). Meanwhile, no AIF protein expression was detected in this study. In addition, intravitreal administration of the caspase-3 inhibitor DEVD-CHO reduced apoptosis of retinal ganglion cells by its direct inhibitory action on caspase-3. Conclusion Caspase-dependent apoptotic pathways may be the main stimulant of STZ-induced retinal ganglion cell apoptosis in acute diabetes.

  10. Role of Caspase 3 in neuronal apoptosis after acute brain injury

    Institute of Scientific and Technical Information of China (English)

    杨新宇; 杨树源; 张建宁; 雪亮; 胡震

    2002-01-01

    To analyze the role of Caspase 3 in neuronal apoptosis after acute brain injury. Methods: Experiments were carried out with rat diffuse brain trauma model. The neuronal DNA injury in cortex and hippocampus was observed by TUNEL stain.The mRNA and protein expressions and enzyme activation of Caspase 3 were observed by Northern blot, in situ hybridization, immunohistochemistry stain and Western blot, respectively. Special Caspase 3 enzyme inhibitor was used to observe the therapeutic effect. Results: TUNEL positive neurons appeared 2 hours after severe trauma, peaked at 1 day and lasted for 7 days.Northern blot showed that the Caspase 3 mRNA expression was increased and peaked at 1 day, about twice higher than the control. In the area of cortex and hippocampus,positive mRNA staining neurons appeared most distinct on one day. With the antibody for Caspase 3 P20 subunit, the active Caspase 3 expression peaked at 1-3 days. The electrophoresis band of PARP degradation would be seen by Western blot. Caspase 3 enzyme inhibitor could reduce apoptotic neuronal death without any effect on Caspase 3 P20 subunit expression. Conclusions: After brain trauma, Caspase 3 mRNA and protein expressions and enzyme activation are enhanced in combination with neuronal apoptosis. Special Caspase 3 enzyme inhibitor can apparently decrease the neuronal apoptosis.

  11. Granzyme release and caspase activation in activated human T-lymphocytes.

    Science.gov (United States)

    Zapata, J M; Takahashi, R; Salvesen, G S; Reed, J C

    1998-03-20

    Recently it has been reported that caspase-3 activation occurs in stimulated T-lymphocytes without associated apoptosis (Miossec, C., Dutilleul, V., Fassy, F., and Diu-Hercend, A. (1997) J. Biol. Chem. 272, 13459-13462). To explore this phenomenon, human peripheral blood lymphocytes (PBLs) were stimulated with mitogenic lectins or anti-CD3 antibody, and the proteolytic processing of different caspases and caspase substrates was analyzed by immunoblotting. Proteolytic processing of caspases-3 and -7 and the caspase substrates poly(ADP-ribose) polymerase, GDP dissociation inhibitor, and PKCdelta was observed when PBLs were activated in vitro, and lysates were prepared using RIPA buffer which contains 1% Nonidet P-40, 0.5% deoxycholate, and 0.1% SDS. In contrast, when a lysis buffer containing 2% SDS was used, the caspases remained in their zymogen pro-forms, and no proteolytic processing of caspase substrates was detected. Moreover, in experiments using intact cells and a cell-permeable fluorigenic caspase substrate, no caspase activity was observed in activated T-cells, whereas it was clearly detected when PBLs were treated with the apoptosis-inducing anticancer drug etoposide. Since the granzyme B is a direct activator of caspase-3 and its expression is induced following T-cell activation, we tested the effects of anti-GraB, an engineered serpin that specifically inhibits GraB. When the activated T-lymphocytes were lysed in RIPA buffer containing anti-GraB, no proteolytic processing or activation of caspase-3 was observed, strongly suggesting that release of GraB or similar proteases from their storage sites in cytotoxic granules during the lysis procedure is responsible for caspase activation. These findings demonstrate that T-cells do not process caspases upon activation and caution about the method of cell lysis used when studying granzyme-expressing cells.

  12. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    Science.gov (United States)

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  13. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Science.gov (United States)

    Luyet, Camille; Schulze, Katja; Sayar, Beyza S; Howald, Denise; Müller, Eliane J; Galichet, Arnaud

    2015-01-01

    The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including

  14. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  15. Caspase-3活性改变对胆道梗阻大鼠中性粒细胞凋亡的影响%Altered caspase-3 activity results in delayed polymorphonuclear neutrophil apoptosis in rats with bile duct obstruction

    Institute of Scientific and Technical Information of China (English)

    邓雪松; 倪勇; 王成友; 詹勇强; 韩庆; 周尤星

    2012-01-01

    Objective To investigate the underlying mechanisms involved in the alteration of caspase - 3 activity on peripheral polymorphonuclear neutrophil( PMN ) apoptosis in rats with bile duct obstruction( BDO ). Methods 54 SD adult rats were divided into three groups at random: normal rats termed Group A, other rats underwent either sham - ligated operation or bile duct obstruction termed Group B or Group C. Subsequently, Group B and Group C were randomly separated into subgroups of day 1,3,7, and 10. Blood samples were collected , PMN apoptosis was evaluated by flow cytometry and caspase - 3 activity was detected by fluorescence staining. Results Group C displayed significantly decreased apoptosis of PMN from day l( 54. 34 ± 2. 35 ) to day 10( 36. 01 ± 2. 11 ), as well as attenuated activity of caspase - 3 on PMN from day l( 52. 33 ± 2. 35 ) to day 10( 34. 14 ± 3. 63 ), when compared to group A( 65. 53 ± 2. 25 ), ( 60. 58 ± 5. 35 ) and each subgroup B( P <0. 01 ). Conclusion BDO rats reveal attenuated activity of caspase - 3 , which take part in regulation on PMN apoptosis process. Delayed PMN apoptosis may contribute to the excessive inflammation and severe septic complications, which plays an important role in the initiation and development of obstructive jaundice.%目的 探讨半胱天冬酶-3(Caspase-3)活性的改变对胆道梗阻(BDO)大鼠外周血中性粒细胞(PMN)凋亡的影响.方法 54只SD大鼠随机分为正常组(A组)、假手术组(B组)和胆总管结扎组(C组),B、C组术后又分为1、3、7、10 d等4个时相,每个时相6只.留取血样标本分离PMN,应用流式细胞仪检测PMN凋亡率,采用荧光分光光度法检测Caspase-3活性.结果 C组PMN凋亡率从术后1 d的54.34±2.35降至10 d的36.01±2.11,低于A组(65.53±2.25)及B组相应时相,P<0.05;Caspase-3活性从术后1 d的52.33±2.35逐步下降至10 d的34.14±3.63,低于A组(60.58±5.35)及B组相应时相,(P<0.05).结论 BDO大鼠外周血Caspase-3活性降低,

  16. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis.

    Science.gov (United States)

    Sandow, J J; Dorstyn, L; O'Reilly, L A; Tailler, M; Kumar, S; Strasser, A; Ekert, P G

    2014-03-01

    A recent report claimed that endoplasmic reticulum (ER) stress activates the ER trans-membrane receptor IRE1α, leading to increased caspase-2 levels via degradation of microRNAs, and consequently induction of apoptosis. This observation casts caspase-2 into a central role in the apoptosis triggered by ER stress. We have used multiple cell types from caspase-2-deficient mice to test this hypothesis but failed to find significant impact of loss of caspase-2 on ER-stress-induced apoptosis. Moreover, we did not observe increased expression of caspase-2 protein in response to ER stress. Our data strongly argue against a critical role for caspase-2 in ER-stress-induced apoptosis.

  17. Design and Synthesis of a Novel Peptidomimetic Inhibitor of Caspase-3

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Caspases, a family of cysteine proteases, comprise of highly homologous enzymes that play an important role in apoptotic cell death. Caspase-3 shows key functions in apoptosis, mediating apoptotic cascade from the intrinsic and extrinsic activation pathways. Therefore, caspase-3 is an attractive target for therapeutic intervention. For instance,inhibitors of caspase-3 have been described as promising cardioprotectants, neuroprotectants and antiarthritic agents.A novel peptidomimetic inhibitor of caspase-3, has been designed, which still has the properties of a reversible inhibitor, while the P1 site at the C-terminal remains, and only L-amino acid has been replaced by D-amino acid. Also presented here is the synthesis of the inhibitor and its inhibitory activity against caspase-3, which was tested by the fluorescent activity assay.

  18. Regulation of NF-κB signaling by caspases and MALT1 paracaspase

    Institute of Scientific and Technical Information of China (English)

    Jens Staal; Tine Bekaert; Rudi Beyaert

    2011-01-01

    Caspases are intracellular proteases that are best known for their function in apoptosis signaling.It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation,but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing.Emerging evidence,however,indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB(NF-κB)signaling,which plays a key role in inflammation and immunity.Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases,and this review provides an update of this area.Whereas apoptosis signaling is dependent on the catalytic activity of caspases,they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling.Caspase proteolytic activity,however,counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules.A striking exception is the paracaspase mucosa-associated lymphoid tissue 1(MALT1),whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes.Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation.

  19. Caspase-3 activation as a bifurcation point between plasticity and cell death

    Institute of Scientific and Technical Information of China (English)

    Shikha Snigdha; Erica D Smith; G Aleph Prieto; Carl W Cotman

    2012-01-01

    Death-mediating proteases such as caspases and caspase-3 in particular,have been implicated in neurodegenerative processes,aging and Alzheimer's disease.However,emerging evidence suggests that in addition to their classical role in cell death,caspases play a key role in modulating synaptic function.It is remarkable that active caspases-3,which can trigger widespread damage and degeneration,aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death.Here,we evaluate this dichotomy,and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling,able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling.We propose that temporal,spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons.This concept has implications for differential roles of caspase-3 activation across the lifespan.Specifically,we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.

  20. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  1. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme

    Science.gov (United States)

    Li, Yini; Zhou, Mengying; Hu, Qi; Bai, Xiao-chen; Huang, Weiyun; Shi, Yigong

    2017-01-01

    Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain. PMID:28143931

  2. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes.

    Science.gov (United States)

    Sollberger, Gabriel; Strittmatter, Gerhard E; Grossi, Serena; Garstkiewicz, Martha; Auf dem Keller, Ulrich; French, Lars E; Beer, Hans-Dietmar

    2015-05-01

    Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.

  3. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna A Dunai

    Full Text Available For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3 and mixed lineage kinase domain-like protein (MLKL, as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribosepolymerase (PARP is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.

  4. pRb/E2F-1-mediated caspase-dependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-xL inhibitor ABT-737.

    Science.gov (United States)

    Bertin-Ciftci, J; Barré, B; Le Pen, J; Maillet, L; Couriaud, C; Juin, P; Braun, F

    2013-05-01

    Although Bcl-2 family members control caspase activity by regulating mitochondrial permeability, caspases can, in turn, amplify the apoptotic process upstream of mitochondria by ill-characterized mechanisms. We herein show that treatment with a potent inhibitor of Bcl-2 and Bcl-xL, ABT-737, triggers caspase-dependent induction of the BH3-only protein, Mcl-1 inhibitor, Noxa. RNA interference experiments reveal that induction of Noxa, and subsequent cell death, rely not only on the transcription factor E2F-1 but also on its regulator pRb. In response to ABT-737, pRb is cleaved by caspases into a p68Rb form that still interacts with E2F-1. Moreover, pRb occupies the noxa promoter together with E2F-1, in a caspase-dependent manner upon ABT-737 treatment. Thus, caspases contribute to trigger the mitochondrial apoptotic pathway by coupling Bcl-2/Bcl-xL inhibition to that of Mcl-1, via the pRb/E2F-1-dependent induction of Noxa.

  5. POSH misexpression induces caspase-dependent cell death in Drosophila.

    Science.gov (United States)

    Lennox, Ashley L; Stronach, Beth

    2010-02-01

    POSH (Plenty of SH3 domains) is a scaffold for signaling proteins regulating cell survival. Specifically, POSH promotes assembly of a complex including Rac GTPase, mixed lineage kinase (MLK), MKK7, and Jun kinase (JNK). In Drosophila, genetic analysis implicated POSH in Tak1-dependent innate immune response, in part through regulation of JNK signaling. Homologs of the POSH signaling complex components, MLK and MKK7, are essential in Drosophila embryonic dorsal closure. Using a gain-of-function approach, we tested whether POSH plays a role in this process. Ectopic expression of POSH in the embryo causes dorsal closure defects due to apoptosis of the amnioserosa, but ectodermal JNK signaling is normal. Phenotypic consequences of POSH expression were found to be dependent on Drosophila Nc, the caspase-9 homolog, but only partially on Tak1 and not at all on Slpr and Hep. These results suggest that POSH may use different signaling complexes to promote cell death in distinct contexts.

  6. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    Science.gov (United States)

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  7. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model.

    Science.gov (United States)

    Yang, Cheng; Zhao, Tian; Zhao, Zitong; Jia, Yichen; Li, Long; Zhang, Yufang; Song, Mangen; Rong, Ruiming; Xu, Ming; Nicholson, Michael L; Zhu, Tongyu; Yang, Bin

    2014-10-01

    The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.

  8. P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Qiao CUI; Jing-hua YU; Jin-nan WU; Shin-ichi TASHIRO; Satoshi ONODERA; Mutsuhiko MINAMI; Takashi IKEJIMA

    2007-01-01

    Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin-treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleoso-mal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated Dnase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pan-caspase inhibitor Z-VAD-fmk and calpain inhibitor Ⅱ both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Conclusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.

  9. Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Breast Cancer MCF-7 Cells by Promoting Caspase Activation and Fas/FasL Expression

    Science.gov (United States)

    Han, Zhe; Li, Xiao-Xia; Li, Mei; Han, Han; Chen, Jun; Zang, Sitao

    2015-01-01

    Abstract Virotherapy represents a promising new approach for treating cancer. Here the authors have analyzed the effect of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MCF-7 cells in vitro and in vivo. In vitro, UV-Tianjin inhibited the proliferation of MCF-7, MDA-MB-231, and T47D breast cancer cell lines, although MCF-7 cells were most susceptible to UV-Tianjin treatment. Hoechst staining and flow cytometric analysis of UV-Tianjin-treated MCF-7 cells revealed that UV-Tianjin induced apoptosis in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reductions in the mitochondria membrane potential of MCF-7 cells and regulated the levels and activities of Bcl-2, Bax, cyt c, caspases, Fas, and Fas ligand (FasL). In vivo, UV-Tianjin inhibited the growth of MCF-7 tumors in nude mice and increased tumor cell apoptosis compared with saline-treated controls. In addition, the percentage of tumor cells positive for cleaved versions of caspase-7, caspase-8, and caspase-9 was higher in UV-Tianjin-treated tumors than in saline-treated controls. In summary, UV-Tianjin exhibited the antitumor activity in human breast cancer MCF-7 cells both in vitro and in vivo. The UV-Tianjin treatment seemed to induce apoptosis by activating both the mitochondrial and death receptor apoptotic pathways. PMID:25517620

  10. Effect of infectious hypodermal and haematopoietic necrosis virus (IHHNV) infection on caspase 3c expression and activity in freshwater prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    Arockiaraj, Jesu; Easwvaran, Sarasvathi; Vanaraja, Puganeshwaran; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2012-01-01

    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.

  11. Caspase-3和bax在视网膜母细胞瘤中的表达%Expression of caspase-3 and bax gene protein in retinoblastoma

    Institute of Scientific and Technical Information of China (English)

    孙红; 惠延年; 王立勤; 马吉献

    2003-01-01

    目的: 观察凋亡及凋亡调控基因caspase-3/bax在视网膜母细胞瘤(retinoblastoma, RB)中的表达及与凋亡的相关性. 方法: 收集35例RB标本,对其分别进行caspase-3和bax免疫组织化学染色,观察表达情况及染色强度. 结果: Caspase-3及bax在未分化型(n=15)分别有较好的表达(11/12例),caspase-3及bax在分化型(n=20)中也有较好的表达(17/18例). 正常视网膜组织中无caspase-3及bax的表达. 结论: 凋亡在RB中是存在的,caspase-3及bax在RB的发生发展中起重要作用.

  12. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  13. Diosgenin induces apoptosis in HeLa cells via activation of caspase pathway

    Institute of Scientific and Technical Information of China (English)

    Rui HUO; Qiu-li ZHOU; Ben-xiang WANG; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of diosgenin-induced HeLa cell apoptosis. METHODS: HeLa cell growth was measured by MTr method. Apoptosis was detected by electron microscopy and agarose gel electrophoresis. Ratio of apoptotic cells was measured by APO-BRDU kit. Cell cycle distribution and changes of mitochondrial membrane potential were monitored by flow cytometry. Caspase activities were assayed by caspase apoptosis detection kit.Western blot analysis was used to evaluate the level of mitochondrial Bcl-2 expression. RESULTS: Diosgenin inhibited HeLa cell growth. HeLa cells treated with diosgenin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-9 inhibitor (Ac-AAVALPAVLLALLAPLEHD-CHO), and caspase-3 inhibitor (z-DEVD-fmk) partially prevented diosgenin-induced apoptosis, but not caspase-8 inhibitor (z-IETD-fmk) and caspase-10 inhibitor (z-AEVD-fmk). Diosgenin caused reduction of mitochondrial membrane potential and down-regulated Bcl-2 expression. CONCLUSION:Diosgenin induced HeLa cell apoptosis through caspase pathway.

  14. The effect of K(+) on caspase activity of corneal epithelial cells exposed to UVB.

    Science.gov (United States)

    Leerar, John R; Glupker, Courtney D; Schotanus, Mark P; Ubels, John L

    2016-10-01

    Exposure of human corneal limbal epithelial (HCLE) cells to UVB triggers rapid loss of K(+) and apoptosis via activation of caspases -9, -8 and -3. It has been shown that preventing loss of intracellular K(+) can inhibit apoptosis. The goal of this study was to investigate the effect of K(+) on the UVB-induced caspase activity. HCLE cells were exposed to 150 mJ/cm(2) UVB, followed by measurement of caspase activity in cell lysates. Caspase activity was measured in the presence and absence of 100 mM K(+) in the reaction buffer. UVB-induced activity of caspases -9, -8 and -3 all decreased in the presence of 100 mM K(+). These results suggest that a role of high [K(+)] in the cell is to inhibit caspase activity. Therefore, when cells lose K(+) in response to UVB, caspases are activated and cells go into apoptosis. This supports our hypothesis that K(+) inhibits caspase activity.

  15. Expression and effect of Caspase-3 in neurons after tractive spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; TANG Kang-lai; XU Jian-zhong; LI Qi-hong

    2005-01-01

    Objective: To investigate Caspase-3 expression and its role in neuronal apoptosis.Methods: The T13-L2 spinal cord of rats was injured by traction after the amplitude of P1-N1 wave, monitored by a cortical somatosensory evoked potential (CSEP) monitor, decreased to seventy percent of that before operation. Then rats were killed in 6 h, 1 d, 4 d, 7 d, 14 d and 21 d respectively after operation. Flow cytometer terminal deoxynucleotldyl transferease-mediated biotinylated deoxynuridine triphosphate nick end labeling (TUNEL), Caspase-3 activity assay and immunohistochemical method were applied to investigate Caspase-3 expression in the spinal cord tissue and to study neuronal apoptosis in rats. Results: After spinal cord injury, apoptotic cells detected by flow cytometry and TUNEL-positive cells were significantly more, and positive immunohistochemical staining of Caspase-3 and Caspase-3 activity were significantly higher in Group injury than in Groups control and laminectomy, respectively (P>0.05, P>0.01). Similar trend of changes was noticed in apoptotic cells, TUNEL-positive cells and positive immunohistochemical staining of Caspase-3, all of which reached their respective peak 7 days after operation. Caspase-3 activity reached its peak, however, 4 days postoperatively. Conclusions: Increased expression and activity of Caspase-3 protein in neurons after tractive spinal cord injury is the biochemical signal of early spinal cell apoptosis. It is of great significance for understanding the mechanism of spinal cord injury.

  16. Octreotide induces caspase activation and apoptosis inhuman hepatoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Nikos J Tsagarakis; Ioannis Drygiannakis; Antonis G Batistakis; George Kolios; Elias A Kouroumalis

    2011-01-01

    AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells.METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apoptosis pathway involved, after treatment of HepG2 carcinomacells with octreotide in comparison with the apoptosis caused by tumor necrosis factor-α (TNF-α). Activities of caspase-3, caspase-9, caspase-8 and caspase-2 were studied, while apoptosis was investigated through detection of DNA fragmentation and through identification of apoptotic cells with the annexin-V/propidium iodide flow cytometric method.RESULTS: After an initial increase in HepG2 cellular proliferation, a significant inhibition was observed with 10-8 mol/L octreotide, while TNF-α dose-dependentlydecreased proliferation. Early and late apoptosis was significantly increased with both substances. Octreotide significantly increased caspase-3, caspase-8 andcaspase-2 activity. TNF-α significantly increased only caspase-2. Cellular proliferation was decreased after treatment with octreotide or TNF-α alone but, in contrast to TNF-α, octreotide decreased proliferation onlyat concentrations of 10-8 mol/L, while lower concentrations increased proliferation.CONCLUSION: Our findings are suggestive of caspasemediated signaling pathways of octreotide antitumor activity in HepG2 cells, and indicate that measurementsof serum octreotide levels may be important, at least in clinical trials, to verify optimal therapeutic drug concentrations.

  17. The loss of functional caspase-12 in Europe is a pre-neolithic event.

    NARCIS (Netherlands)

    Hervella, M.; Plantinga, T.S.; Alonso, S.; Ferwerda, B.; Izagirre, N.; Fontecha, L.; Fregel, R.; Meer, J.W.M. van der; de-la-Rúa, C.; Netea, M.G.

    2012-01-01

    BACKGROUND: Caspase-12 (CASP12) modulates the susceptibility to sepsis. In humans, the "C" allele at CASP12 rs497116 has been associated with an increased risk of sepsis. Instead, the derived "T" allele encodes for an inactive caspase-12. Interestingly, Eurasians are practically fixed for the inacti

  18. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion

    NARCIS (Netherlands)

    Diepen, J.A. van; Stienstra, R.; Vroegrijk, I.O.C.M.; Berg, S.A.A. van den; Salvatori, D.; Hooiveld, G.J.; Kersten, S.; Tack, C.J.; Netea, M.G.; Smit, J.W.A.; Joosten, L.A.B.; Havekes, L.M.; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by a

  19. Early activation of caspase-1 after retinal ischemia and reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    郑广瑛; 张成; 李志刚

    2004-01-01

    Background Caspases are important in the signaling pathway of cellular apoptosis. Caspase-3 protein expression has been shown to increase and parallel to neuronal apoptosis in retinal ischemia injury. This study was to determine whether caspase-1 is involved in neuronal cell death or in retinal ischemia and reperfusion injury. Methods In twenty-one adult mice, ischemia was induced by increasing the intraocular pressure. The animals were sacrificed at 1 hour, 3 hours, 6 hours, 1 day, 3 days and 7 days after reperfusion. Frozen sections were used for caspase-1 immunostaining and TUNEL labeling. Results In normal retina, no caspase-1 positive cells were seen. One hour after ischemia, numerous positive cells were noted in the ganglion cell layer (GCL) and inner side of inner nuclear layer (INL). At 3 hours, caspase-1 positive cells continued to increase and peaked at 6 hours, then decreased significantly at 1 day. TUNEL positive cells were detected at 3 hours and peaked at 1 day after ischemia. Double labeling of caspase-1 and TUNEL only showed few cells with co-localization after ischemia. Conclusion Caspase-1 immunoreactivity preceds to the TUNEL labeling in the GCL and INL after retinal ischemia and reperfusion injury and its early activation may play an important role in the initiation of neuronal apoptosis.

  20. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    DEFF Research Database (Denmark)

    Jalmar, Olivier; Franc¸ois-Moutal, Liberty; García-Sáez, Ana-Jesus

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activa...

  1. Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes

    NARCIS (Netherlands)

    Berger, Alicia B.; Witte, Martin D.; Denault, Jean-Bernard; Sadaghiani, Amir Masoud; Sexton, Kelly M.B.; Salvesen, Guy S.; Bogyo, Matthew

    2006-01-01

    Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active sit

  2. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria.

    Science.gov (United States)

    Miao, Edward A; Leaf, Irina A; Treuting, Piper M; Mao, Dat P; Dors, Monica; Sarkar, Anasuya; Warren, Sarah E; Wewers, Mark D; Aderem, Alan

    2010-12-01

    Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1β (IL-1β) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.

  3. Castration-induced expression of caspase-1 in epithelia of accessory sex organs in male rats

    Institute of Scientific and Technical Information of China (English)

    Masao Izawa; Mitunori Kimura; Tomiko Yamada; Makoto Saji

    2001-01-01

    Aim: As an attempt to clarify the molecular basis of castration-induced apoptosis, this study was undertaken to demonstrate the expression of caspase-1 in male accessory sex organs of rats. Methods and results: cDNA of rat caspase-1 was cloned by reverse transcription-polymerase chain reaction from the ventral prostates. The open reading frame predicts 402 amino acids, which shows more than 91% and 63 % identity to those of mouse and human, respec tively. Northern analyses demonstrated the presence of castration-induced up-regulation of the 1.6 kb transcript in the ventral prostate and the seminal vesicles. Finally, the authors demonstrated the caspase-1 transcripts in the epithelia of these tissues by in situ hybridization analyses. Conclusion: Castration induces the expression of caspase-1 tran scripts in the epithelia of ventral prostate and seminal vesicle. These observations suggest a possible role of caspase-1 in apoptosis in male accessory sex organs.

  4. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  5. CLINICOPATHOLOGICAL SIGNIFICANCE OF PTEN AND CASPASE-3 EXPRESSIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Xue-fei Yang; Yan Xin; Li-li Mao

    2008-01-01

    Objective To investigate the expressions of PTEN and Caspase-3 proteins in human breast carcinoma, and to evaluate their clinicopathological implications during the tumorigenesis and progression of breast cancer.Methods The expressions of PTEN and Caspase-3 proteins in 95 cases of breast cancer and 15 cases of benignbreast diseases were investigated immunohistochemically. Correlations between the expression of PTEN protein,Caspase-3 protein, and clinicopathological features of breast cancers were analyzed.Results The loss expression rate of PTEN protein in tumor tissues was significantly higher than that in benignbreast diseases (33.7% vs. 0, P 0. 05). In addition,the expression of PTEN protein had significantly positive correlation with the expression of Caspase-3 protein in breast cancer (P <0.01 ).Conclusion The combination detection of PTEN and Caspase-3 may serve as an important index to estimate the pathobiological behavior and pognosis of breast cancer.

  6. A quantitative method for the specific assessment of caspase-6 activity in cell culture

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Savill, Jane;

    2011-01-01

    are not well suited to specifically assess caspase-6 activity in the presence of other, confounding protease activities, as often encountered in cell and tissue samples. Here we report the development of a method that overcomes this limitation by using a protein substrate, lamin A, which is highly specific...... for caspase-6 cleavage at amino acid 230. Using a neo-epitope antibody against cleaved lamin A, we developed an electrochemiluminescence-based ELISA assay that is suitable to specifically detect and quantify caspase-6 activity in highly apoptotic cell extracts. The method is more sensitive than VEID......Aberrant activation of caspase-6 has recently emerged as a major contributor to the pathogeneses of neurodegenerative disorders such as Alzheimer's and Huntington disease. Commercially available assays to measure caspase-6 activity commonly use the VEID peptide as a substrate. However these methods...

  7. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function.

    Science.gov (United States)

    White, Michael J; Schoenwaelder, Simone M; Josefsson, Emma C; Jarman, Kate E; Henley, Katya J; James, Chloé; Debrincat, Marlyse A; Jackson, Shaun P; Huang, David C S; Kile, Benjamin T

    2012-05-03

    Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.

  8. Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis.

    Directory of Open Access Journals (Sweden)

    Darren Finlay

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL is potentially a very important therapeutic as it shows selectivity for inducing apoptosis in cancer cells whilst normal cells are refractory. TRAIL binding to its cognate receptors, Death Receptors-4 and -5, leads to recruitment of caspase-8 and classical activation of downstream effector caspases, leading to apoptosis. As with many drugs however, TRAIL's usefulness is limited by resistance, either innate or acquired. We describe here the development of a novel 384-well high-throughput screening (HTS strategy for identifying potential TRAIL-sensitizing agents that act solely in a caspase-8 dependent manner. By utilizing a TRAIL resistant cell line lacking caspase-8 (NB7 compared to the same cells reconstituted with the wild-type protein, or with a catalytically inactive point mutant of caspase-8, we are able to identify compounds that act specifically through the caspase-8 axis, rather than through general toxicity. In addition, false positive hits can easily be "weeded out" in this assay due to their activity in cells lacking caspase-8-inducible activity. Screening of the library of pharmacologically active compounds (LOPAC was performed as both proof-of-concept and to discover potential unknown TRAIL sensitizers whose mechanism is caspase-8 mediated. We identified known TRAIL sensitizers from the library and identified new compounds that appear to sensitize specifically through caspase-8. In sum, we demonstrate proof-of-concept and discovery of novel compounds with a screening strategy optimized for the detection of caspase-8 pathway-specific TRAIL sensitizers. This screen was performed in the 384-well format, but could easily be further miniaturized, allows easy identification of artifactual false positives, and is highly scalable to accommodate diverse libraries.

  9. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines.

    Science.gov (United States)

    Seda Vatansever, H; Sorkun, Kadriye; Ismet Deliloğlu Gurhan, S; Ozdal-Kurt, Feyzan; Turkoz, Elgin; Gencay, Omur; Salih, Bekir

    2010-11-01

    Propolis is a sticky substance that is collected from plants by honeybees that has anti-mutagenic and anti-carcinogenic properties with biological and therapeutic effects. The target of this study was to investigate the anti-apoptotic effect of propolis extracts (PE) on the caspase pathway in the human breast cell line MCF-7 in culture. Seven different propolis extracts, numbered PE 1-7, produced in their natural ecological environment, were collected from the Hacettepe University Beytepe Campus area in Ankara, Turkey. Individual extracts at 0.5, 0.25, 0.125 and 0.063mg/ml were incubated with MCF-7 cells during 2 days culture. Cell growth and cytotoxicity were measured colorimetrically by MTT assay. Apoptotic cell death was determined by the TUNEL method (terminal deoxynucleotidyltransferase-biotin nick end-labelling) and caspase activity was investigated by immunocytochemistry using antibodies directed against caspase 6, caspase 8 and caspase 9. The results showed that the PE 5 and 6 extracts at 0.125mg/ml dilution induced apoptosis in association with increased number of TUNEL positive cells. MTT results showed that cultures exposed to the same extracts and at the same dilution experienced better cell growth compared to those cultures exposed to the other extracts. Immunpositivity for all caspases was detected after treatment with all the extracts and at all dilutions, with stronger immunoreactivity for caspase 6 than caspases 8 and 9. Caspase 6 labelling was especially strong in PE 5 and PE 6. We conclude that propolis may have anti-tumour effects by increasing apoptosis through the caspase pathway. Such propolis extracts may be important economically and allow development of a relatively inexpensive cancer treatment.

  10. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  11. Expression of Survivin, CyclinD1, p21WAF1, Caspase-3 in Cervical Cancer and Its Relation with Prognosis

    Institute of Scientific and Technical Information of China (English)

    LU Shi; ZHANG Baohua; WANG Zehua

    2005-01-01

    The implications of Survivin, CyclinD1, p21WAF1, Caspase-3 in the development, progression and prognosis in cervical cancer were investigated. By using immunohistochemical SP method, the expression of Survivin, CyclinD1, p21WAF1 , Caspase-3 was detected in 41 cases of cervical cancer, 17 cases of cervical intraepithelial neoplasia (CIN) and 10 cases of normal tissues, and their relation with pathological grade, clinical stage, metastasis and survival time was analyzed.The results showed that the positive expression rate of Survivin, CyclinD1 in cervical cancer was significantly higher than in CIN group and normal control group (P<0.05). The median survival time in the patients with cervical cancer positive for Survivin and CyclinD1 was significantly shorter than in those with negative expression (P<0.05). The expression of both Survivin and CyclinD1 was not related with tumor grade, clinical stage and metastasis (P>0. 05). The positive expression rate of p21WAF1 , Caspase-3 in cervical ca rcer was significantly lower than in CIN group and normal control group (P<0.05), and had a close relation with tumor grade (P<0.05). The expression of Survivin in cervical cancer in cervical cancer was negatively associated with that of Caspase-3 (P<0.01), but positively with that of CyclinD1 (P<0.01). Cox Multivariate analysis revealed that Survivin was the independent prognostic indicator influencing the survival time of the patients with cervical cancer (P<0.05). It was suggested that the high expression of Survivin or CyclinD1, and low expression of p21WAF1 or Caspase-3 was closely correlated with the development of cervical cancer. Survivin and CyclinD1 could be used as a useful indicator to predict the prognosis of cervical cancer.

  12. In vitro effects of TCDD, PCB126 and PCB153 on estrogen receptors, caspases and metalloproteinase-2 mRNA expression in the chicken shell gland.

    Science.gov (United States)

    Hrabia, Anna; Leśniak, Agnieszka; Sechman, Andrzej

    2013-01-01

    Among the environmental chemicals which disturb endocrine functions, dioxins and polychlorinated biphenyls (PCBs) are known as the most toxic. Numerous studies in mammals revealed that dioxins and PCBs disrupt functions of the uterus, delay implantation and increase embryo loss. The direct effect of these chemicals on the avian oviduct is not known. Therefore, in the study chicken shell gland tissues were used to examine the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), coplanar PCB126 and non-coplanar PCB153 on estrogen receptors (ERs), initiator caspase-1, executioner caspase-3 and metalloproteinase-2 (MMP-2) mRNA expression. Fragments of shell gland tissue isolated from the laying chicken were incubated for 24h with TCDD (100nM), PCB126 (100nM) or PCB153 (100 microM). Quantitative PCR analysis showed that: (1) TCDD increased ER beta (ERbeta) mRNA expression, (2) PCB126 increased ER alpha (ERalpha), ERbeta and caspase-1, and decreased MMP-2 mRNA expression, (3) PCB153 elevated the ERbeta and caspase-1 expression levels and (4) expression of caspase-3 was not altered by any investigated xenobiotics. The results obtained using the shell gland explants model indicate that dioxins and PCBs have a direct effect on the chicken oviduct, especially the shell gland, by affecting the expression of genes involved in the function of this oviductal segment. It is suggested that coplanar PCBs such as PCB126, by changing cellular and extracellular regulators gene expression, may lead to disruption of shell gland activity and impair egg components formed in this organ.

  13. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  14. Acteoside Binds to Caspase-3 and Exerts Neuroprotection in the Rotenone Rat Model of Parkinson's Disease

    Science.gov (United States)

    Wang, Ying; He, Xiao; Zhao, Yuwu

    2016-01-01

    Parkinson’s disease (PD) is characterized by the progressive degeneration of the dopaminergic neurons in the substantia nigra (SN) region. Acteoside has displayed multiple biological functions. Its potential role against PD and the underlying signaling mechanisms are largely unknown. Here, we showed that oral administration of acteoside significantly attenuated parkinsonism symptoms in rotenone-induced PD rats. Further, acteoside inhibited rotenone-induced α-synuclein, caspase-3 upregulation and microtubule-associated protein 2 (MAP2) downregulation in PD rats. The molecular docking and molecular dynamics (MD) simulation results indicated that acteoside may directly bind to and inhibit caspase-3. Acteoside formed hydrogen bonds with at least six residues of caspase-3: ThrA177, SerA178, GlyA238, SerB339, ArgB341 and TrpB348. In addition, a pi-pi interaction was formed between acteoside and caspase-3’s HisA237, which might further stabilize the complex. MD simulation results demonstrated that the binding affinity of the caspase-3-acteoside complex was higher than that of caspase-3 and its native ligand inhibitor. Together, we show that acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of PD. PMID:27632381

  15. Caspase-3 and survivin expression in pediatric neuroblastoma and their roles in apoptosis

    Institute of Scientific and Technical Information of China (English)

    王家祥; 郑树

    2004-01-01

    Background Neuroblastoma, one of the common tumors in children, possesses the feature of natural regression that might be related to apoptosis caspase-3 and survivin are believed to respectively induce and inhibit apoptosis. We investigated the expression of caspase-3 and survivin in pediatric neuroblastoma and the role that these genes played in apoptosis.Methods The expression of caspase-3 and survivin in pediatric neuroblastoma tissue samples was detected using in situ hybridization, ter mintuesal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and immunohistochemical staining. The role that these genes played in apoptosis was then evaluated.Results A converse correlation was observed between the expression of survivin and caspase-3. When survivin was expressed at high levels in neuroblastoma samples, caspase-3 expression was downregulated, and the apoptotic index decreased simultaneously.Conclusion There is a converse correlation between the expression of caspase-3 and the expression of survivin in neuroblastoma cells, indicating that caspase-3 might induce apoptosis, and survivin may inhibit this process.

  16. Protective Roles for Caspase-8 and cFLIP in Adult Homeostasis

    Directory of Open Access Journals (Sweden)

    Ricardo Weinlich

    2013-10-01

    Full Text Available Caspase-8 or cellular FLICE-like inhibitor protein (cFLIP deficiency leads to embryonic lethality in mice due to defects in endothelial tissues. Caspase-8−/− and receptor-interacting protein kinase-3 (RIPK3−/−, but not cFLIP−/− and RIPK3−/−, double-knockout animals develop normally, indicating that caspase-8 antagonizes the lethal effects of RIPK3 during development. Here, we show that the acute deletion of caspase-8 in the gut of adult mice induces enterocyte death, disruption of tissue homeostasis, and inflammation, resulting in sepsis and mortality. Likewise, acute deletion of caspase-8 in a focal region of the skin induces local keratinocyte death, tissue disruption, and inflammation. Strikingly, RIPK3 ablation rescues both phenotypes. However, acute loss of cFLIP in the skin produces a similar phenotype that is not rescued by RIPK3 ablation. TNF neutralization protects from either acute loss of caspase-8 or cFLIP. These results demonstrate that caspase-8-mediated suppression of RIPK3-induced death is required not only during development but also for adult homeostasis. Furthermore, RIPK3-dependent inflammation is dispensable for the skin phenotype.

  17. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency.

  18. Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation.

    Science.gov (United States)

    Del Olmo, E; García-Álvarez, O; Maroto-Morales, A; Ramón, M; Jiménez-Rabadán, P; Iniesta-Cuerda, M; Anel-Lopez, L; Martinez-Pastor, F; Soler, A J; Garde, J J; Fernández-Santos, M R

    2016-01-15

    Estrous sheep serum (ESS) is considered the most efficient agent for in vitro capacitation of ram spermatozoa. We have explored the relationship between caspase activation and capacitation in ram. Semen samples from 17 rams were cryopreserved. In vivo fertility was evaluated after intrauterine artificial insemination. Samples were submitted to four treatments: control, ESS (10%), caspase inhibitor (Z-VAD-FMK), and estrous ewe serum plus caspase inhibitor (I + E). Sperm samples were incubated for 30 minutes at 38.5 °C and 5% CO2 and analyzed with flow cytometry for mitochondrial membrane potential (MitoTracker deep red), sperm viability and apoptosis-like changes (YO-PRO-1/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate), membrane fluidity (merocyanine 540), and caspase activity (Vybrant FAM kits for polycaspases, caspase-8, and caspases 3-7). Estrous sheep serum induced changes compatible with capacitation, doubling the proportion of viable spermatozoa with increased merocyanine 540 and increasing YO-PRO-1(+) and acrosome-reacted spermatozoa (P ram spermatozoa by using ESS suggests a downregulation in apoptotic pathways. However, males with the lowest fertility showed parameters similar to high-fertility males, suggesting that other factors were involved apart from capacitation and/or caspase activation.

  19. DMPD: A role for caspases in the differentiation of erythroid cells and macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17905508 A role for caspases in the differentiation of erythroid cells and macropha...;90(2):416-22. Epub 2007 Sep 2. (.png) (.svg) (.html) (.csml) Show A role for caspases in the differentiatio...n of erythroid cells and macrophages. PubmedID 17905508 Title A role for caspases

  20. Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice.

    Science.gov (United States)

    Parsons, M J; McCormick, L; Janke, L; Howard, A; Bouchier-Hayes, L; Green, D R

    2013-09-01

    Despite being the most evolutionarily conserved of the mammalian caspases, little is understood about the cellular function of caspase-2 in normal tissues or what role caspase-2 may have in the progression of human disease. It has been reported that deletion of the caspase-2 gene (Casp2), accelerates Eμ-myc lymphomagenesis in mice, and thus caspase-2 may act as a tumor suppressor in hematological malignancies. Here, we sought to extend these findings to epithelial cancers by examining the potential role of caspase-2 as a tumor suppressor in the mouse mammary carcinogenesis model; MMTV/c-neu. The rate of tumor acquisition was significantly higher in multiparous Casp2(-/-)/MMTV mice compared with Casp2(+/+)/MMTV and Casp2(+/-)/MMTV mice. Cells from Casp2(-/-)/MMTV tumors were often multinucleated and displayed bizarre mitoses and karyomegaly, while cells from Casp2(+/+)/MMTV and Casp2(+/-)/MMTV tumors never displayed this phenotype. Tumors from Casp2(-/-)/MMTV animals had a significantly higher mitotic index than tumors from Casp2(+/+)/MMTV and Casp2(+/-)/MMTV animals. Cell cycle analysis of Casp2(-/-) E1A/Ras-transformed mouse embryonic fibroblasts (MEF) also indicated a higher proliferative rate in the absence of caspase-2. In vitro assays further illustrated that MEF had increased genomic instability in the absence of caspase-2. This appears to be due to disruption of the p53 pathway because we observed a concomitant decrease in the induction of the p53 target genes, Pidd, p21 and Mdm2. Thus caspase-2 may function as a tumor suppressor, in part, through regulation of cell division and genomic stability.

  1. Norcantharidin induces apoptosis in HeLa cells through caspase, MAPK, and mitochondrial pathways

    Institute of Scientific and Technical Information of China (English)

    Wei-weiAN; Xian-fengGONG; Min-weiWANG; Shin-ichiTASHIRO; SatoshiONODERA; TakashiIKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of norcantharidin (NCTD)-induced HeLa cell apoptosis. METHODS: HeLa cell growth inhibition was measured by MTT method. Apoptosis was detected by Hoechst 33258 staining and agarose gel electrophoresis. Caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of ICAD, ERK/p-ERK, JNK/p-JNK, and Bcl-X.L/Bax expression. RESULTS: Norcantharidin inhibited HeLa cell growth in a time- and dose-dependent manner. HeLa cells treated with norcantharidin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO, respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevent norcantharidin-induced apoptosis, but initiator caspase-1 inhibitor (Ac-YVAD-fmk) did not. The activities of caspase-3, -8, and -9 were up-regulated after norcantharidin treatment. Furthermore, NCTD-induced activation of caspase-3 resulted in the degradation of the inhibitor of caspase-activated DNase (ICAD). Up-regulation of mitochondrial Bax expression and down-regulation of Bcl-xLexpression also participated in the apoptosis induced by NCTD. Although p38 MAPK inhibitor (SB203580) failed to block cell death, ERK MAPK inhibitor (PD98059) and JNK MAPK inhibitor (SP600125) had marked inhibitory effects on norcantharidin-induced apoptosis. Moreover, the phosphorylation of JNK were up-regulated followed by delayed ERK phosphorylation after treatment with NCTD, suggesting that ERK and JNK were both responsible for NCTD-induced apoptosis in HeLa cells and worked at different stages. CONCLUSION: The cytotoxic effect of NCTD on HeLa cells was mainly due to apoptosis. The anti-tumor mechanism of NCTD might involve caspses, mitochondrial, and MAPKs pathways.

  2. Norcantharidin induces apoptosis in HeLa cells through caspase,MAPK,and mitochondrial pathways

    Institute of Scientific and Technical Information of China (English)

    Wei-wei AN; Xian-feng GONG; Min-wei WANG; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of norcantharidin (NCTD)-induced HeLa cell apoptosis. METHODS: HeLa cell growth inhibition was measured by MTT method. Apoptosis was detected by Hoechst 33258 staining and agarose gel electrophoresis. Caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of ICAD, ERK/p-ERK, JNK/p-JNK, and Bcl-XL/Bax expression. RESULTS:Norcantharidin inhibited HeLa cell growth in a time- and dose-dependent manner. HeLa cells treated with norcantharidin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO,respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevent norcantharidin-induced apoptosis, but initiator caspase-1 inhibitor (Ac-YVAD-fmk) did not. The activities of caspase-3, -8, and -9 were up-regulated after norcantharidin treatment. Furthermore, NCTD-induced activation of caspase-3 resulted in the degradation of the inhibitor of caspase-activated DNase (ICAD). Up-regulation of mitochondrial Bax expression and down-regulation of Bcl-xL expression also participated in the apoptosis induced by NCTD. Although p38 MAPK inhibitor (SB203580)failed to block cell death, ERK MAPK inhibitor (PD98059) and JNK MAPK inhibitor (SP600125) had marked inhibitory effects on norcantharidin-induced apoptosis. Moreover, the phosphorylation of JNK were up-regulated followed by delayed ERK phosphorylation after treatment with NCTD, suggesting that ERK and JNK were both responsible for NCTD-induced apoptosis in HeLa cells and worked at different stages. CONCLUSION: The cytotoxic effect of NCTD on HeLa cells was mainly due to apoptosis. The anti-tumor mechanism of NCTD might involve caspses, mitochondrial, and MAPKs pathways.

  3. Caspase 9 promoter polymorphisms confer increased susceptibility to breast cancer.

    Science.gov (United States)

    Theodoropoulos, George E; Michalopoulos, Nikolaos V; Pantou, Malena P; Kontogianni, Panagiota; Gazouli, Maria; Karantanos, Theodoros; Lymperi, Maria; Zografos, George C

    2012-10-01

    Caspases (CASPs), play a crucial role in the development and progression of cancer. We evaluated the association between two polymorphisms (rs4645978 and rs4645981) of the CASP9 gene and the risk of breast cancer (BC). Genotypes and allelic frequencies for the two polymorphisms were determined in 261 patients with breast cancer and 480 healthy controls. Polymerase chain reaction-restriction fragment length polymorphisms were used, and statistical significance was determined by the χ(2) test. Carriers of the rs4645978G allele (AG and GG genotypes) were at higher risk for BC than individuals with other genotypes (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.07-2.37, P = 0.022). The rs4645978GG genotype, in particular, was associated with the highest risk for BC development (OR 2.25, 95% CI 1.45-3.49, P = 0.0003). Similarly, individuals with at least one rs4645981T allele were at a significantly increased risk of developing BC compared with those harboring the CC genotype (OR 2.75, 95% CI 1.99-3.78, P < 0.0001), and the risk of BC increased with increasing numbers of rs4645981T alleles (OR 2.66, 95% CI 1.91-3.69, P < 0.0001 for the CT genotype; OR 3.95, 95% CI 1.58-9.88, P = 0.004 for the TT genotype). The CASP9 promoter polymorphisms rs4645978 and rs4645981 are associated with BC susceptibility and suggest that CASP9 transcriptional regulation is an important factor during BC development.

  4. Caspases in plants: metacaspase gene family in plant stress responses.

    Science.gov (United States)

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.

  5. Human cell-death-inducing DFF45-1ike effector C induces apoptosis via caspase-8

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Zhen Xing; Hong Tang; Liang Liang; Mujun Zhao

    2011-01-01

    Human cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector C (CIDEC) is a potent apoptotic inducer.Previous studies have indicated that the Fatspecific protein 27 (Fsp27),a mouse homolog of CIDEC,induces apoptosis via caspase-3,-7,and -9 and triggers the release of cytocbrome c from mitochondria,which implies that the mitochondrial pathway is involved in Fsp27-induced apoptosis,in the current study,we found that CIDEC-inducedapoptosiswasmediatedby caspase-8.The caspase inhibitor assay showed that CIDEC-induced apoptosis was dramatically reduced in the presence of the general caspase inhibitor,the caspase-3 inhibitor,and the caspase-8 inhibitor,whereas the caspase-9 inhibitor only weakly inhibited CIDEC-induced apoptosis.These results confirmed that the activation of caspase-3 and caspase-8 were involved in CIDEC-induced apoptosis.Moreover,in caspase-3- or caspase-8-deficient cells,CIDEC-induced apoptosis were dramatically decreased,which demonstrated that CIDEC-induced apoptosis might require the activation of caspase-3 and caspase-8.Because caspase-8 in general is a key effecter of death-receptor pathway and activated by Fas-Associated protein with Death Domain (FADD),we examined whether FADD was involved in CIDEC-induced apoptosis.Our results demonstrated that CIDEC-induced apoptosis was independent of FADD,suggesting that CIDEC-induced apoptosis might be in a death-receptor-independent,caspase-8-dependent manner.It was also found that the region of amino acid 168-200 in carboxyl domain of CIDEC was critical for its crucial pro-apoptotic function.

  6. Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study

    Directory of Open Access Journals (Sweden)

    Luqiao Wang

    2016-11-01

    Full Text Available Abstract Background Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named “inflammasomes” for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1. Methods We conducted meticulous data analysis methods on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies. Results We made the following important findings: (1 Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2 Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3 Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4 Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5 In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation. Conclusions Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers.

  7. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.; Beyenal, Haluk; Noh, S.; Fransson, B.; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Call, Douglas R.

    2015-08-31

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  8. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-08-01

    A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MS(E)). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  9. Research progress of Caspase-1 and osteoarthritis%Caspase-1与骨关节炎的研究进展

    Institute of Scientific and Technical Information of China (English)

    龚明; 邱波

    2016-01-01

    骨关节炎的发病机制尚不完全清楚,目前认为软骨细胞死亡和细胞外基质的破坏是该病的主要病理改变。白介素(IL)-1β和IL-18在骨关节炎的发病过程中发挥着关键的作用,而IL-1β转化酶(Caspase-1)能将IL-1β和IL-18的前体加工成为成熟的活性形式,发挥二者的生物学作用,从而参与骨关节炎的发生发展。因此,Caspase-1在骨关节炎的发生发展中起着重要的作用,Caspase-1抑制剂有可能为骨关节炎的治疗提供新的策略。本文就Caspase-1与骨关节炎的相关研究进展作一综述。%The pathogenesis of osteoarthritis is not yet completely clear. It is recognized that the death of chondrocyte and the damage of extracellular matrix are the main pathological changes at present. Interleukin (IL)-1β and IL-8 play a vital role in the pathological process of osteoarthritis, while IL-1β invertase (Caspase-1) can process the precursor of IL-1β and IL-18 into ripe active form, play the biological effects of them, so as to participate in the occurrence and progress of osteoarthritis. Thus, Caspase-1 plays an important role in the occurrence and progress of osteoarthritis, Caspase-1 inhibitor may offer a new strategy for the treatment of osteoarthritis. This paper reviews the related research progress of Caspase-1 with osteoarthritis.

  10. Requirement for caspase-8 in NF-kappaB activation by antigen receptor.

    Science.gov (United States)

    Su, Helen; Bidère, Nicolas; Zheng, Lixin; Cubre, Alan; Sakai, Keiko; Dale, Janet; Salmena, Leonardo; Hakem, Razqallah; Straus, Stephen; Lenardo, Michael

    2005-03-04

    Caspase-8, a proapoptotic protease, has an essential role in lymphocyte activation and protective immunity. We show that caspase-8 deficiency (CED) in humans and mice specifically abolishes activation of the transcription factor nuclear factor kappaB (NF-kappaB) after stimulation through antigen receptors, Fc receptors, or Toll-like receptor 4 in T, B, and natural killer cells. Caspase-8 also causes the alphabeta complex of the inhibitor of NF-kappaB kinase (IKK) to associate with the upstream Bcl10-MALT1 (mucosa-associated lymphatic tissue) adapter complex. Recruitment of the IKKalpha, beta complex, its activation, and the nuclear translocation of NF-kappaB require enzyme activity of full-length caspase-8. These findings thus explain the paradoxical association of defective apoptosis and combined immunodeficiency in human CED.

  11. Caspase-3 activation and increased procollagen type I in irradiated hearts

    Directory of Open Access Journals (Sweden)

    Samara C. Ferreira-Machado

    2013-03-01

    Full Text Available The caspase-3-cleaved presence was evaluated in this study in the heart of irradiated rats, during the decline of ventricular function. Female Wistar rats were irradiated with a single dose of radiation (15 Gy delivered directly to the heart and the molecular, histological and physiological evaluations were performed at thirteen months post-irradiation. The expressions of procollagen type I, TGF-ß1 and caspase-3-cleaved were analyzed using Western blotting. Cardiac structural and functional alterations were investigated by echocardiography and electron microscopy. In the irradiated group, the levels of procollagen type I, TGF-ß1 and caspase-3-cleaved are increased. Significant histological changes (degeneration of heart tissue and collagen deposition and functional (reduced ejection fraction were observed. Data suggest that the cardiac function decline after exposure to ionizing radiation is related, in part, to increased collagen and increased caspase-3-cleaved.

  12. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  13. Caspase 3 siRNA decreases apoptosis in cultured neuronal cells

    Institute of Scientific and Technical Information of China (English)

    Chunting Ye; Yaoxiong Huang; Xiaohong Yang; Honghui Chen

    2009-01-01

    BACKGROUND: Lentiviral vectors, a type of retroviral vector, are able to infect cells at all phases of cell cycle. They are able to express exogenous target genes in vivo over long periods of time with limited immunological reaction. OBJECTIVE: To inhibit neuronal apoptosis by blocking the apoptotic cascade reaction, gene silencing of Caspase 3, and transfection of Caspase 3 short hairpin ribonucleic acid (shRNA) into Neuro 2a cells using a lentiviral vector. DESIGN, TIME AND SETTING: An observational, genetic engineering cellular biology experiment was performed in Guangzhou Red Cross Hospital and Guangzhou institute of Traumatic Surgery between March 2007 and June 2008.MATERIALS: PLL3.7, PCMV-VSV-G, and PH'8.9△PR plasmids were provided by the CBR institute for Biomedical Research, Harvard Medical School, USA. Staurosporine was purchased from Sigma, USA. METHODS: Caspase 3 siRNA was synthesized and cloned into the PLL3.7 plasmid. The Caspase 3 shRNA-PLL3.7 lentivirus was generated in 293T cells using a calcium phosphate transfection kit. After the lentivirus was transfected into Neuro 2a cells, apoptosis was induced in both the transfected and untransfected cells by staurosporine. Cell apoptosis was assessed by flow cytometry. MAIN OUTCOME MEASURES: Caspase 3 mRNA expression was measured by RT-PCR and Caspase protein expression was assessed by Western blot. Cellular apoptosis was determined by flow cytometry using Annevin V-PE/7aad-Cy7.RESULTS: The transfection rate of caspase 3 shRNA was>98% using the ientiviral vector. RT-PCR and Western blot results demonstrated that significantly reduced Caspase 3 mRNA and protein expression in the transfected Neuro 2a. The control group exhibited 38.7% Annexin V/7aad-positive cells, which suggested apoptotic anaphase, while only 5.0% cells in the Caspase 3 gene silencing group entered apoptotic anaphase. CONCLUSION: Caspase 3 shRNA inhibited Caspase 3 expression in Neuro 2a cells and decreased drug-induced apoptosis of

  14. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's Disease

    OpenAIRE

    D'Amelio M; Cavallucci V; Middei S; Marchetti C; Pacioni S; Ferri A; Diamantini A; De Zio D; Carrara P; Battistini L; Moreno S; Bacci A.,; Ammassari-Teule M; Marie H; Cecconi F

    2010-01-01

    Abstract Synaptic loss is the best pathological correlate of the cognitive decline in Alzheimer's Disease; yet, the molecular mechanisms underlying synaptic failure are unknown. Here we report a non-apoptotic baseline caspase-3 activity in hippocampal dendritic spines, and an enhancement of this activity at the onset of memory decline in the Tg2576-APPswe mouse model of Alzheimer's Disease. We show that, in spines, caspase-3 activates calcineurin which, in turn, triggers dephosphor...

  15. Expression of Caspase-3 in Laryngeal Squamous Cell Carcinoma and its Relationship with Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    YU Yuan-chen; ZHONG Zhao-kun; LI Ji-xia; YU Chuan-ting

    2015-01-01

    Objective:To investigate the expression of Caspase-3 in laryngeal squamous cell carcinoma (LSCC) and its relationship with cell apoptosis. Methods: The expression of Caspase-3 protein in 43 LSCC tissues and 21 vocal cord polyp tissues was detected using immunohistochemical SP method; the apoptosis of LSCC was measured by in situ end-labeling (TUNEL) assay, and the relationships between Caspase-3 expression and clinicopathological features as well as cell apoptosis in LSCC tissue were analyzed. Results:The positive rate of Caspase-3 expression in LSCC tissue was lower than in vocal cord polyp tissue dramatically, with statistical significance (51.2%vs. 85.7%,P=0.007). Caspase-3 expression in LSCC tissue was closely related to the tumor differentiated degrees, clinical staging and presence or absence of lymph node metastasis (P=0.009, 0.001, 0.018) instead of the gender, age and tumor size (P>0.05). The apoptosis index (AI) of Caspase-3 was (4.31±0.49)% in LSCC tissue, while (24.28±1.07)% in vocal cord polyp tissue. Significant difference was presented between two groups by comparison to the AI (P<0.001). Spearman correlation analysis displayed that Caspase-3 expression in LSCC tissue had a signiifcantly positive correlation with the number of positive TUNEL cells (r=0.435,P=0.000). Conclusion: Low expression of Caspase-3 protein might promote the tumorigenesis and progression by reducing the apoptosis of tumor cells, and detection to its protein can be considered as an important index for judging the differentiation, clinical staging, inifltration and metastasis of laryngeal carcinoma.

  16. Caspase-8 acts as a molecular rheostat to limit RIPK1- and MyD88-mediated dendritic cell activation.

    Science.gov (United States)

    Cuda, Carla M; Misharin, Alexander V; Gierut, Angelica K; Saber, Rana; Haines, G Kenneth; Hutcheson, Jack; Hedrick, Stephen M; Mohan, Chandra; Budinger, G Scott; Stehlik, Christian; Perlman, Harris

    2014-06-15

    Caspase-8, an executioner enzyme in the death receptor pathway, was shown to initiate apoptosis and suppress necroptosis. In this study, we identify a novel, cell death-independent role for caspase-8 in dendritic cells (DCs): DC-specific expression of caspase-8 prevents the onset of systemic autoimmunity. Failure to express caspase-8 has no effect on the lifespan of DCs but instead leads to an enhanced intrinsic activation and, subsequently, more mature and autoreactive lymphocytes. Uncontrolled TLR activation in a RIPK1-dependent manner is responsible for the enhanced functionality of caspase-8-deficient DCs, because deletion of the TLR-signaling mediator, MyD88, ameliorates systemic autoimmunity induced by caspase-8 deficiency. Taken together, these data demonstrate that caspase-8 functions in a cell type-specific manner and acts uniquely in DCs to maintain tolerance.

  17. Effect of Bcl-2 and caspase-3 on calcium distribution in apoptosis of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis manifests in two major execution programs downstream of the death signal: the caspase pathway and organelle dysfunction. An important antiapoptosis factor, Bcl-2 protein, contributes in caspase pathway of apoptosis. Calcium, an important intracellular signal element in cells, is also observed to have changes during apoptosis, which maybe affected by Bcl2 protein. We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells, there's a change of intracellular calcium distribution, moving from cytoplast especially Golgi's apparatus to nucleus and accumulating there with the highest concentration. We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells, which can be inhibited by overexpression of Bcl-2 protein. No sign of apoptosis or intracellular calcium movement from Golgi's apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO, a specific inhibitor of caspase-3. The results indicate that activated caspase-3 can promote the movement of intracellular calcium from Golgi's apparatus to nucleus, and the process is inhibited by Ac-DEVD-CHO (inhibitor of caspas-3), and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase3. Calcium relocalization in apoptosis seems to be irreversible, which is different from the intracellular calcium changes caused by growth factor.

  18. Avian leukosis virus subgroup J triggers caspase-1-mediated inflammatory response in chick livers.

    Science.gov (United States)

    Liu, Xue-lan; Shan, Wen-jie; Jia, Li-juan; Yang, Xu; Zhang, Jin-jing; Wu, Ya-rong; Xu, Fa-zhi; Li, Jin-nian

    2016-04-02

    Many pathogens trigger caspase-1-mediated innate immune responses. Avian leukosis virus subgroup J (ALV-J) causes serious immunosuppression and diverse tumors in chicks. The caspase-1 inflammasome mechanism of response to ALV-J invading remains unclear. Here we investigated the expression of caspase-1, the inflammasome adaptor NLRP3, IL-1β and IL-18 in response to ALV-J infection in the liver of chick. We found caspase-1 mRNA expression was elevated at 5 dpi and peaked at 7 dpi in ALV-J infected animals. Corresponding to this, the expressions of NLRP3 and proinflammatory cytokines IL-1β and IL-18 were significantly increased at 5 or 7 dpi. In addition, caspase-1 protein expression and inflammatory cell infiltration were induced after virus infection. These results indicated that ALV-J infection could trigger the caspase-1- mediated inflammatory response in chicks. Thus, an understanding of the inflammatory responses can provide a better insight into the pathogenicity of ALV-J and a possible anti-virus target for ALV-J infection.

  19. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy

    Science.gov (United States)

    Guo, Rui; Lin, Bin; Pan, Jing Fei; Liong, Emily C.; Xu, Ai Min; Youdim, Moussa; Fung, Man Lung; So, Kwok Fai; Tipoe, George L.

    2016-01-01

    Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury. PMID:27580936

  20. Expression of Hsp70 and Caspase-3 in rabbits after severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; TAO Dai-qin; ZHAO Hui; YIN Zhi-yong

    2012-01-01

    Objective:To investigate the expression of Caspase-3 and Hsp70 in rabbits after severe traumatic brain injury (TBI) and to explore the feasibility of its application in estimation of injury time in forensic medicine.Methods:A rabbit model of heavy TBI was developed by high velocity impact on the parietal bone with an iron stick.Totally 8 healthy adult New Zealand white rabbits were randomly divided into control group (n=2) and injury group (n=6).Four hours after injury,tissue specimens from the parietal lobe,temporal lobe,occipital lobe,cerebellum and brainstem were harvested to detect the expression of Hsp70 and Caspase-3 by immunohistochemistry.Besides,the gray values of cells positive for Hsp70 and Caspase-3 were analyzed with an image analyzer.Results:Immunohistochemistry staining demonstrated a low level of Caspase-3 and Hsp70 expression in normal control group.While in injury group,both the Caspase-3and Hsp70 expression was significantly elevated (P<0.05).Positive cells gathered around the lesion focus.Occipital lobe and cerebellum had fewer positive cells while temporal and brainstem had the fewest.Conclusion:The expression of Caspase-3 and Hsp70 at an early stage following severe TBI is characteristic and can be applied to estimate the time of injury.

  1. A novel fluorescence derivatization method combined with HPLC for determining the activities of endogenous caspase.

    Science.gov (United States)

    Liu, Jiachi; Lu, Ye; Liang, Jianying

    2012-11-07

    A novel fluorescence derivatization method combined with HPLC was developed to detect the activity of caspase-3 and -8 in two cell lines (Hela cells and A549 cells) which were activated by low temperature-assisted ultraviolet irradiation (LT-UV), mitomycin C (MMC) and camptothecin during the apoptosis, respectively. Two peptide substrates for either caspase-3 or -8 were designed, of which peptide fragments were obtained by enzymatic modification, followed by fluorescence derivatization. A single fluorescent product was formed when a peptide was heated at 120 °C for 10 min in a neutral aqueous medium (pH 7.0) containing catechol, sodium periodate and sodium borate. Commercial kits for detecting the activity of caspase-3 and -8 were used as a control. The relative activity of the caspases detected by fluorescence derivatization was similar to that obtained by commercial kits, which indicated that the novel method is reliable. The activity assays of recombinant human caspases showed that the novel method provided higher selectivity than that of commercial kits, which proved it to be more accurate for determining the activity of caspases in apoptosis.

  2. A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death.

    Science.gov (United States)

    Bucur, Octavian; Gaidos, Gabriel; Yatawara, Achani; Pennarun, Bodvael; Rupasinghe, Chamila; Roux, Jérémie; Andrei, Stefan; Guo, Bingqian; Panaitiu, Alexandra; Pellegrini, Maria; Mierke, Dale F; Khosravi-Far, Roya

    2015-05-11

    Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer's interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer.

  3. Cas Ilgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2005-06-01

    Full Text Available In this work, we investigated the effects of Casiopeina Il-gly (Cas ILgly—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas Ilgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas Ilgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas Ilgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas Ilgly. ROS formation induced by Cas Ilgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas Ilgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas Ilgly for the treatment of malignant gliomas.

  4. Effects of Modified Gandou Decoction on Protein and mRNA Expression of X-linked Inhibitor of Apoptosis, Caspase-9, and Caspase-3 in Brain Tissue of TX Mice%肝豆汤改良方对TX小鼠脑组织XIAP、Caspase-9和Caspase-3蛋白及其mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵雯; 马艳红; 韩咏竹; 程楠; 饶娆; 王训

    2015-01-01

    目的 探究肝豆汤改良方抑制肝豆状核变性(Wilson's disease,WD)脑神经细胞凋亡的分子机制.方法 选取1月龄TX小鼠120只,随机分为TX模型组(40只)、肝豆汤改良方组(40只)、丁苯酞组(20只),另选DL小鼠40只作为正常组;每组再分成2组,各20只,分别予以生理盐水、肝豆汤改良方、丁苯酞灌胃2个月和4个月.分别采用免疫组织化学法和Western blot法检测小鼠脑组织中X-连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)、胱冬肽酶-9(Caspase-9)及胱冬肽酶-3(Caspase-3)蛋白表达水平,采用RT-PCR技术检测小鼠脑组织中XIAP、Caspase-9及Caspase-3 mRNA表达水平.结果 免疫组织化学检测显示,肝豆汤改良方组XIAP表达水平较同月龄模型组明显增多,Caspase-9和Caspase-3表达水平较同月龄模型组下降,5月龄和3月龄肝豆汤改良方组XIAP和Caspase-3表达水平有所差异.Western blot检测结果显示,月龄因素对脑组织XIAP、Caspase-9、Caspase-3蛋白表达水平的主效应均无统计学意义(P>0.05);月龄因素和分组因素对3种蛋白表达水平的交互作用均无统计学意义(P>0.05);对于同月龄小鼠,模型组脑组织XIAP表达水平显著低于正常组(P<0.05),Caspase-9和Caspase-3蛋白表达水平显著高于正常组(P<0.05);肝豆汤改良方组XIAP表达水平显著高于模型组(P<0.05),Caspase-9和Caspase-3蛋白表达水平显著低于模型组(P<0.05).RT-PCR检测结果显示,月龄因素对小鼠脑组织XIAP mRNA表达水平的主效应无统计学意义(P>0.05),但对Caspase-9、Caspase-3 mRNA表达水平的主效应具有统计学意义(P<0.05);月龄因素和分组因素对XIAP、Caspase-9、Caspase-3 mRNA表达水平的交互作用均无统计学意义(P>0.05).对于相同月龄小鼠,模型组脑组织XIAP mRNA表达水平显著低于正常组(P<0.05),而Caspase-9、Caspase-3 mRNA表达水平显著高于正常组(P<0.05);与模型组比较,丁苯酞

  5. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway.

    Science.gov (United States)

    Wu, Chun-Yan; Tang, Zhi-Han; Jiang, Lu; Li, Xue-Fei; Jiang, Zhi-Sheng; Liu, Lu-Shan

    2012-01-01

    This paper investigated the effects of ox-LDL on PCSK9, and the molecular mechanisms of PCSK9 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cells (HUVECs), to clarify the role of PCSK9 in atherosclerogenesis. HUVECs were incubated with ox-LDL for 24 h. The apoptosis was observed by Hoechst 33258 staining. The expression of PCSK9, LOX-1 mRNAs and proteins was detected by RT-PCR, western blot, respectively. The PCSK9 siRNAs labeled with fluorescence were transfected into HUVECs by Lipofectamine 2000. After transfection for 24 h, cells were treated with ox-LDL for 24 h, HUVECs apoptosis transfected siRNA was detected by Hoechst 33258 staining and flow cytometer. The expression of Bcl-2, Bax, caspase3, 8, 9 was detected by western blot. The activity of caspase3, 9 was detected by kits. Our results showed that apoptosis of HUVECs and the expressions of PCSK9 and LOX-1 were upregulated secondary to induction by ox-LDL in a concentration-dependent manner. However, ox-LDL-induced HUVEC apoptosis and PCSK9 expression, but not LOX-1 expression, were significantly reduced by PCSK9 siRNA. These results demonstrate a linkage between HUVEC apoptosis and PCSK9 expression. Furthermore, we detected the possible pathway involved in apoptotic regulation by PCSK9 siRNA; our results showed that the expression of Bcl-2 decreased, whereas that of Bax increased. In addition, ox-LDL enhanced the activity of caspase9 and then caspase3. Pretreatment of HUVECs with PCSK9 siRNA blocked these effects of ox-LDL. These findings suggest that ox-LDL-induced HUVECs apoptosis could be inhibited by PCSK9 siRNA, in which Bcl/Bax-caspase9-caspase3 pathway maybe was involved through reducing the Bcl-2/Bax ratio and inhibited the activation of both caspase9 and 3.

  6. Occurrence of pre-MBT synthesis of caspase-8 mRNA and activation of caspase-8 prior to execution of SAMDC (S-adenosylmethionine decarboxylase)-induced, but not p53-induced, apoptosis in Xenopus late blastulae.

    Science.gov (United States)

    Shiokawa, Koichiro; Takayama, Eiji; Higo, Takayasu; Kuroyanagi, Shinsaku; Kaito, Chikara; Hara, Hiroshi; Kajitani, Masayuki; Sekimizu, Kazuhisa; Tadakuma, Takushi; Miura, Kin-Ichiro; Igarashi, Kazuei; Yaoita, Yoshio

    2005-10-21

    Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus fertilized eggs activates caspase-9 and executes maternal program of apoptosis shortly after midblastula transition (MBT). We find that overexpression of caspase-8 and p53, like that of SAMDC, induces apoptosis in Xenopus late blastulae. The apoptosis induced by p53 was abolished by injection of mRNA for xdm-2, a negative regulator of p53, and by injection of a peptide inhibitor or a dominant-negative type mutant of caspase-9, but not caspase-8. The apoptosis induced by SAMDC was not abolished by injection of xdm-2 mRNA, but was abolished by injection of a peptide inhibitor or a dominant-negative type mutant mRNA of both caspase-9 and caspase-8. Unlike caspase-9 mRNA, caspase-8 mRNA did not occur as a maternal mRNA rather induced to be expressed during cleavage stage (pre-MBT stage) by overexpression of SAMDC but not p53. Furthermore, while activities to process procaspase-8 and procaspase-9 appeared in SAMDC-overexpressed apoptotic embryos, the activity to process procaspase-8 did not appear in p53-overexpressed apoptotic embryos. We conclude there are at least two pathways in the execution of the maternal program of apoptosis in Xenopus embryos; one being through do novo expression of caspase-8 gene during cleavage stage, and the other without involvement of caspase-8.

  7. Truncation of Caspase-3 on Phosphorylated tau%Caspase-3对磷酸化tau蛋白截断作用的研究

    Institute of Scientific and Technical Information of China (English)

    段萍; 李夏春; 邓艳秋; 张蕲; 王建枝

    2005-01-01

    磷酸化tau是阿尔茨海默病(Alzheimer's disease,AD)的特征性病理改变--神经原纤维缠结(neurofibrillarytangles,NFTs)的主要组成部分.最近的研究显示:NFT存在Glu391和Asp421位点被截断的tau片段,然而,tau蛋白的磷酸化是否会影响caspase-3的切割作用尚不清楚.首先纯化重组tau蛋白,然后利用蛋白激酶A(PKA)、钙/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)和乳鼠海马组织抽提液对其磷酸化,并用caspase-3对不同磷酸化的tau蛋白进行切割,比较caspase-3对非磷酸化和不同蛋白激酶磷酸化的tau蛋白的切割特性.结果显示:除切割非磷酸化tau蛋白外,caspase-3在体外可分别切割被PKA、CaMKⅡ和乳鼠海马组织抽提液磷酸化的tau蛋白.这一结果提示:磷酸化修饰的tau蛋白仍然是caspase-3的底物.

  8. Estudo da expressão citofotométrica do marcador tumoral Caspase-3 no adenocarcinoma de cólon Citophotometric expression study of tumoral marker Caspase-3 on colon adenocarcinoma

    Directory of Open Access Journals (Sweden)

    João Batista Monteiro Tajra

    2007-12-01

    -3. Following this process, marked slides were submitted SAMBA reading using software IMUNNO 4.00. Three indexes were analyzed: label index, heterogeneity and optical density. Individual labeling, marker expression evaluation and predefined tumors groups under Dukes Classification and side of tumor occurrence were considered. RESULTS: The average labeling index for caspase-3 was 85,24, where as for optical density was 39,55 pixels. According to Dukes Classification, 12 type B presented labeling index of 86,20 and optical density of 37,72 and for 7 samples type C labeling index corresponded to 85,66 and optical density equals to 42,71, unable to identify the difference regarding to Dukes Classification. Regarding to the side of tumor occurrence, 11 left-sided tumors had labeling index of 86,65 and optical density of 43,29 and the 8 right-sided tumors had labeling index of 83,29 and optical density of 39,44, unable to observe significant statistical difference. CONCLUSION: Caspase-3 presents a distinct value expression, revealing as useful marker in colon adenocarcinoma study and its proapoptotic phase at the tumorigenesis due to its high labeling index and optical density. Regarding to Dukes Classification there was no difference between types B and C, as well as right and left sided-related colon tumor occurrence.

  9. Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects.

    Science.gov (United States)

    Yang, Peixin; Li, Xuezheng; Xu, Cheng; Eckert, Richard L; Reece, E Albert; Zielke, Horst Ronald; Wang, Fang

    2013-08-27

    Neural tube defects result from failure to completely close neural tubes during development. Maternal diabetes is a substantial risk factor for neural tube defects, and available evidence suggests that the mechanism that links hyperglycemia to neural tube defects involves oxidative stress and apoptosis. We demonstrated that maternal hyperglycemia correlated with activation of the apoptosis signal-regulating kinase 1 (ASK1) in the developing neural tube, and Ask1 gene deletion was associated with reduced neuroepithelial cell apoptosis and development of neural tube defects. ASK1 activation stimulated the activity of the transcription factor FoxO3a, which increased the abundance of the apoptosis-promoting adaptor protein TRADD, leading to activation of caspase 8. Hyperglycemia-induced apoptosis and the development of neural tube defects were reduced with genetic ablation of either FoxO3a or Casp8 or inhibition of ASK1 by thioredoxin. Examination of human neural tissues affected by neural tube defects revealed increased activation or abundance of ASK1, FoxO3a, TRADD, and caspase 8. Thus, activation of an ASK1-FoxO3a-TRADD-caspase 8 pathway participates in the development of neural tube defects, which could be prevented by inhibiting intermediates in this cascade.

  10. Standardized bioactive fraction of Phaleria macrocarpa(Proliverenol) prevents ethanol-induced hepatotoxicity via down-regulation of NF-kB-TNFα-caspase-8 pathway

    Institute of Scientific and Technical Information of China (English)

    Guntur Berlian; Olivia Mayasari Tandrasasmita; Raymond Rubianto Tjandrawinata

    2016-01-01

    Objective: To verify that Proliverenol has a potential ability in protecting cells from ethanol-induced hepatotoxicity.Methods: Activity of Proliverenol against ethanol-induced apoptosis was evaluated at m RNA and protein levels in Hep G2 cell exposed to Proliverenol for 1 and 3 h.Results: Proliverenol conferred hepatoprotective activity through increasing cell survival up to 53%–69% via up-regulation of APEX1 DNA repair enzyme for 3.0–4.7 fold and down-regulating of nuclear factor-kB, tumor necrosis factora and caspase-8 expression,allowing them to prevent 4.5–6.9 fold of alanine aminotransferase(ALT) leakage in Hep G2 cells. Our finding revealed that Proliverenol repressed expression of ALT, which is significantly important as possible alternative mechanism for increased blood transaminase activities. In addition, the result also showed that caspase-8 pathway seemed to be involved in the molecular pathway rather than directly inducing mitochondrial damage.Conclusions: The data support our hypothesis that Proliverenol has a potential ability in protecting cells from ethanol-induced hepatotoxicity. We propose that Proliverenol provides hepatoprotective activity through up-regulating expression of APEX1 that repress DNA fragmentation, and down-regulating expression of nuclear factor-kB, tumor necrosis factora and caspase-8, which therefore repress ALT leakage and its expression.

  11. Amplification activation loop between caspase-8 and -9 dominates artemisinin-induced apoptosis of ASTC-a-1 cells.

    Science.gov (United States)

    Xiao, Fenglian; Gao, Weijie; Wang, Xiaoping; Chen, Tongsheng

    2012-06-01

    Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.

  12. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  13. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  14. ROLE OF CASPASE-3 IN ACUTE LIGHT DAMAGE TO RETINA OF RATS

    Institute of Scientific and Technical Information of China (English)

    Xiao Wang; Shi-xing Hu; Wei Li; Shao-chun Lin

    2007-01-01

    Objective To investigate the role of Caspase-3 in retinal damage caused by light exposure in rats.Methods Light injury to retina was induced by persistent exposure to illumination (intensity; 30000±50 lux) of operating microscope for 30 minutes in the right eyes of Sprague-Dawley rats. The pathological changes of retina were observed under optical and electron microscopies at different time points, which were 6 hours, 1,3,7,and 15 days after the light exposure. Apoptosis of retinal cells was analyzed by flow cytometry. The activity of Caspase-3 was evaluated by using the Caspase-3 assay kit. At the same time, the expression of Caspase-3 protease was determined with Western blot analysis.Results The examination results of optical and transmission electron microscopes showed that edema of inner and outer segments of the retina, espectially the chondriosome inside the inner segment, became obvious 6 hours after the light exposure. The change was deteriorated along with the increasing time. The structures of the discoidal valve dissociated in the outer segment simultaneously. Disorderly arranged nuclei, karyopycnosis, and thinning in the outer nuclear layer were observed. The retinal pogment epithelium almost disappeared during the later stage. The staining results of Annexin-V combined with PI demonstrated that the proportion of apoptotic cells increased with time. The proportion between 7th day (82.7%) and 15th day (80.4%), however, showed no significant difference. Caspase-3 became remarkably active with the lapse of time, which increased from 0.02 at 6th hour to the peak of 9.8 at 7th day before it started to descend. The Western blot detected a expression of the active form of Caspase-3 at 7th day and 15th day.Conclusion Apoptosis of photoreceptor cells is markedly involved in the light damage and Caspase-3 protease may play an important role in the apoptotic process of the retina after light exposure in rats.

  15. Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection.

    Science.gov (United States)

    Gomes, Marco Tulio R; Campos, Priscila C; Oliveira, Fernanda S; Corsetti, Patricia P; Bortoluci, Karina R; Cunha, Larissa D; Zamboni, Dario S; Oliveira, Sergio C

    2013-04-01

    Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition. Therefore, we decided to investigate the function of NLRC4, NLRP3, and AIM2 in sensing Brucella. In this study, we showed that NLRC4 is not required to induce caspase-1 activation and further secretion of IL-1β by B. abortus in macrophages. In contrast, we determined that AIM2, which senses Brucella DNA, and NLRP3 are partially required for caspase-1 activation and IL-1β secretion. Additionally, mitochondrial reactive oxygen species induced by Brucella were implicated in IL-1β production. Furthermore, AIM2, NLRP3, ASC, and caspase-1 knockout mice were more susceptible to B. abortus infection than were wild-type animals, suggesting that multiple ASC-dependent inflammasomes contribute to host protection against infection. This protective effect is due to the inflammatory response caused by IL-1β and IL-18 rather than pyroptosis, because we observed augmented bacterial burden in IL-1R and IL-18 knockout mice. Finally, we determined that bacterial type IV secretion system VirB and live, but not heat-killed, Brucella are required for full inflammasome activation in macrophages during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.

  16. 宫颈癌术前介入化疗前后组织中Survivin、Caspase-3和Caspase-7的表达变化及意义%The significance of different expression of survivin,caspase-3 and caspase-7 in cervical carcinoma cells before and after the ameba femoralis interventional chemotherapy

    Institute of Scientific and Technical Information of China (English)

    杨斌; 陈赛英; 史佃云; 张佃乾

    2009-01-01

    目的:研究宫颈癌术前行动脉介入化疗前后组织中细胞凋亡相关蛋白Survivin、caspase-3、Caspase-7的表达变化及其临床意义.方法:对54例宫颈癌患者术前行介入化疗前宫颈活检组织和介入化疗后手术切除的标本,免疫组化检测Survivin、Caspase-3、Caspase-7的表达,同时检测38例正常宫颈组织以及28例宫颈上皮内瘤变组织作为对照.结果:Survivin在介入化疗前宫颈癌组织中呈高表达,介入化疗后Survivin呈现不同程度的下降,而凋亡相关蛋白Caspase-3、Caspase-7的表达则呈不同程度的上升.相关性分析表明,介入化疗后Survivin的表达变化与Caspase-3及Capase-7的表达变化呈负相关,介入前后3种蛋白表达变化越大,临床有效率越高.结论:Survivin高表达及Caspase-3、Caspase-7低表达在官颈癌的发生发展中有一定作用,宫颈癌患者术前动脉介入化疗可以通过促进肿瘤细胞的凋亡来达到抑制肿瘤生长、缩小肿瘤体积进而抑制其远处转移.

  17. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  18. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    Science.gov (United States)

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation.

  19. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    Science.gov (United States)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  20. A novel serine protease with caspase- and legumain-like activities from edible basidiomycete Flammulina velutipes.

    Science.gov (United States)

    Iketani, Aya; Nakamura, Mayumi; Suzuki, Yuya; Awai, Koichiro; Shioi, Yuzo

    2013-03-01

    A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.

  1. Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions?

    Indian Academy of Sciences (India)

    Entsar Saheb; Wendy Trzyna; John Bush

    2014-12-01

    Caspases are cysteine proteases that are important regulators of programmed cell death in animals. Two novel relatives to members of the caspase families metacaspases and paracaspase have been discovered. Metacaspase type-1 was identified in Acanthamoeba castellanii, an opportunistic protozoan parasite that causes severe diseases in humans. Paracaspase was found in the non-pathogenic protozoan Dictyostelium discoideum. Since their discovery in Acanthamoeba and Dictyostelium, metacaspases and paracaspases have remained poorly characterized. At present we do not have sufficient data about the molecular function of these caspase-like proteins or their role, if any, in programmed cell death. How these caspase proteins function at the molecular level is an important area of study that will provide insight into their potential for treatment therapies against Acanthamoeba infection and other similar parasitic protozoan. Additionally, finding the molecular functions of these caspase-like proteins will provide information concerning their role in more complex organisms.The aim of this article was to review recent discoveries about metacaspases and paracaspases as regulators of apoptotic and non-apoptotic processes.

  2. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    Science.gov (United States)

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  3. Caspase-Mediated Apoptosis in Sensory Neurons of Cultured Dorsal Root Ganglia in Adult Mouse

    Directory of Open Access Journals (Sweden)

    Hamid Reza Momeni

    2013-01-01

    Full Text Available Objective: Sensory neurons in dorsal root ganglia (DRG undergo apoptosis after peripheral nerve injury. The aim of this study was to investigate sensory neuron death and the mechanism involved in the death of these neurons in cultured DRG.Materials and Methods: In this experimental study, L5 DRG from adult mouse were dissected and incubated in culture medium for 24, 48, 72 and 96 hours. Freshly dissected and cultured DRG were then fixed and sectioned using a cryostat. Morphological and biochemical features of apoptosis were investigated using fluorescent staining (Propidium iodide and Hoechst 33342 and the terminal Deoxynucleotide transferase dUTP nick end labeling (TUNEL method respectively. To study the role of caspases, general caspase inhibitor (Z-VAD.fmk, 100 μM and immunohistochemistry for activated caspase-3 were used.Results: After 24, 48, 72 and 96 hours in culture, sensory neurons not only displayed morphological features of apoptosis but also they appeared TUNEL positive. The application of Z-VAD.fmk inhibited apoptosis in these neurons over the same time period. In addition, intense activated caspase-3 immunoreactivity was found both in the cytoplasm and the nuclei of these neurons after 24 and 48 hours.Conclusion: Results of the present study show caspase-dependent apoptosis in the sensory neurons of cultured DRG from adult mouse.

  4. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun; Liu, Zong-Ping

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs.

  5. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release

    Institute of Scientific and Technical Information of China (English)

    Yushan Zhu; Min Li; Xiaohui Wang; Haijing Jin; Shusen Liu; Jianxin Xu; Quan Chen

    2012-01-01

    Mitochondrial catastrophe can be the cause or consequence of apoptosis and is associated with a number of pathophysiological conditions.The exact relationship between mitochondrial catastrophe and caspase activation is not completely understood.Here we addressed the underlying mechanism,explaining how activated caspase could feedback to attack mitochondria to amplify further cytochrome e (cyto.c) release.We discovered that cytochrome c1 (cyto.c1) in the bc1 complex of the mitochondrial respiration chain was a novel substrate of caspase 3 (casp.3).We found that cyto.c1 was cleaved at the site of D106,which is critical for binding with cyto.c,following apoptotic stresses or targeted expression of casp.3 into tbe mitochondrial intermembrane space.We demonstrated that this cleavage was closely linked with further cyto.c release and mitochondrial catastrophe.These mitochondrial events could be effectively blocked by expressing non-cleavable cyto.c1 (D106A) or by caspase inhibitor z-VAD-fmk.Our results demonstrate that the cleavage of cyto.c1 represents a critical step for the feedback amplification of cyto.c release by caspases and subsequent mitochondrial catastrophe.

  6. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Science.gov (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  7. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Science.gov (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton.

  8. Astragalus saponins induce apoptosis in human gastric adenocarcinoma cells via a caspase 3-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    JOSHUA K S Ko; Kathy K W Auyeung

    2008-01-01

    Objective Many Asian countriea including China, Japan and Korea have very high incidence of gastric cancer, in which about 42 % cases occur in mainland China. The precise targets and underlying mechanisms are not well understood. Our previous study revealed that Astragalus saponins (AST) showed promising effects on the suppression of the growth of HT-29 human colon cancer cells and tumor xenograft by inhibiting cell proliferation and promoting apoptosis. In the present study, we investigated the anti-carcinogenic effects of AST in AGS human gastric adenocarcinoma cells and attempted to elucidate the underlying mechanisms. Methods Growth inhibition of AGS cells was determined by using the MTT viability test. Involvement of different members of the apoptotic cascade and other growth-related factors was explored by assessment of their protein expression using Western blot analysis. Distribution of cells in different phases of the cell cycle was assessed by flow eytometry. Results Our data indicate that AST induced growth-inhibition and apoptosis in AGS cells by activating caspase 3 with subsequent poly (ADP-ribose) polymerase (PARP) cleavage. Cell cycle arrest at the G2/M phase had been observed in AST-treated AGS cells. The anti-proliferative effect of AST was associated with modulation of eydin B1 and p21. We then demonstrate that AST could downregulate the expression of VEGF, of which interaction with its receptors is important for angiogenesis during tumor formation. Conclusions Our findings suggest that AST is an effective agent in gastric cancer treatment by inducing cell cycle arrest and apoptosis, of which anti-angiogenesis could be an alternative mode of action.

  9. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    Science.gov (United States)

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  10. Caspase-Resistant BAP31 Inhibits Fas-Mediated Apoptotic Membrane Fragmentation and Release of Cytochrome c from Mitochondria

    OpenAIRE

    Nguyen, Mai; Breckenridge, David G.; Ducret, Axel; Shore, Gordon C

    2000-01-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the ...

  11. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    Science.gov (United States)

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  12. New insights into the regulation of innate immunity by caspase-8.

    Science.gov (United States)

    Sagulenko, Vitaliya; Lawlor, Kate E; Vince, James E

    2016-01-13

    Caspase-8 is required for extrinsic apoptosis, but is also central for preventing a pro-inflammatory receptor interacting protein kinase (RIPK) 3-mixed lineage kinase domain-like (MLKL)-dependent cell death pathway termed necroptosis. Despite these critical cellular functions, the impact of capase-8 deletion in the myeloid cell lineage, which forms the basis for innate immune responses, has remained unclear. In a recent article in Arthritis Research & Therapy, Cuda et al. report that myeloid cell-restricted caspase-8 loss leads to a very mild RIPK3-dependent inflammatory phenotype. The presented results suggest that inflammation does not arise exclusively because of RIPK3-mediated necroptotic death but that, in the absence of caspase-8, RIPK1 and RIPK3 enhance microbiome-driven Toll-like receptor-induced pro-inflammatory cytokine production.

  13. Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death.

    Science.gov (United States)

    Lai, S-K; Wong, C-H; Lee, Y-P; Li, H-Y

    2011-06-01

    Mitotic death is a major form of cell death in cancer cells that have been treated with chemotherapeutic drugs. However, the mechanisms underlying this form of cell death is poorly understood. Here, we report that the loss of chromosome integrity is an important determinant of mitotic death. During prolonged mitotic arrest, caspase-3 is activated and it cleaves Cap-H, a subunit of condensin I. The depletion of Cap-H results in the loss of condensin I complex at the chromosomes, thus affecting the integrity of the chromosomes. Consequently, DNA fragmentation by caspase-activated DNase is facilitated, thus driving the cell towards mitotic death. By expressing a caspase-resistant form of Cap-H, mitotic death is abrogated and the cells are able to reenter interphase after a long mitotic delay. Taken together, we provide new insights into the molecular events that occur during mitotic death.

  14. Correlation between neuronal injury and Caspase-3 after focal ischemia in human hippocampus

    Institute of Scientific and Technical Information of China (English)

    戚基萍; 吴爱萍; 王德生; 王立峰; 李淑霞; 徐凤琳

    2004-01-01

    Background Cerebral ischemia is a significant clinical problem, and cerebral ischemia usually causes neuron injury such as apoptosis in various brain areas, including hippocampus. Cysteinyl aspartate-specific protease (Caspases) are fundamental factors of apoptotic mechanism. Caspase-3 inhibitors show effect in attenuating brain injury after ischemia. But all the results were from animal models in research laboratories. This study aimed at investigating the correlation between the change of ischemic neuronal injury and Caspase-3 post-ischemia in human hippocampus. Methods We selected and systematized 48 post-mortem specimens from 48 patients, who died of cerebral infarction. Morphological change was firstly analyzed by observing hematoxyline/eosin-staining hippocampal sections. The expression of Caspase-3 was investigated using the methods of in situ hybridization and immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick-end labeling (TUNEL) method was used to clarify the involvement of Caspase-3 in neuron death. The loss of MAP 2 (MAP-2) was applied to judging the damaged area and degree of neuronal injury caused by ischemia.Results In the CA1 sector of hippocampus, Caspase-3 immunostaining modestly increased at 8 hours [8.05/high-power field (hpf)], dramatically increased at 24 hours (24.85/hpf), decreased somewhat after 72 hours. Caspase-3 mRNA was detectable at 4 hours (6.75/hpf), reached a maximum at 16 hours (17.60/hpf), faded at 72 hours. TUNEL-positive cells were detectable at 24 hours (10.76/hpf), markedly increased at 48-72 hours. The loss of MAP-2 was obviously detected at 4 hours, progressed significantly between 24 and 72 hours; MAP-2 immunoreactivity was barely detectable at 72 hours. Before 72 hours, the Caspase-3 evolution was related with the upregulation of TUNEL and the loss of MAP-2. The positive correlation between Caspase-3 mRNA and TUNEL was significant at the 0.05 level (correlation

  15. Caspase Inhibitors may Attenuate Opioid-induced Hyperalgesia and Tolerance via Inhibiting Microglial Activation and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Jiancheng Zhang

    2013-07-01

    Full Text Available Prolonged exposure to an opioid induces hyperalgesia and tolerance, which negatively affect pain management in turn and significantly hamper the application of opioids. A growing body of evidence has demonstrated that glial activation contributes to the development of these two side effects. Recent studies have demonstrated that morphine, binding to an accessory protein of Toll-like receptor 4 (TLR4, activates microglia and produces neuroinflammation in amanner parallel to lipopolysaccharide. Meanwhile, lipopolysaccharide activates microglia through TLR4/caspase signalling. Therefore, we hypothesise that morphine may activate microglia throughTLR4/caspase signalling and that caspase inhibitors may attenuate opioid-induced hyperalgesia and tolerance via inhibiting microglial activation and neuroinflammation

  16. Caspase-8 Activation Precedes Alterations of Mitochondrial Membrane Potential during Monocyte Apoptosis Induced by Phagocytosis and Killing of Staphylococcus aureus

    Science.gov (United States)

    Węglarczyk, Kazimierz; Baran, Jarosław; Zembala, Marek; Pryjma, Juliusz

    2004-01-01

    Human peripheral blood monocytes become apoptotic following phagocytosis and killing of Staphylococcus aureus. Although this type of monocyte apoptosis is known to be initiated by Fas-Fas ligand (FasL) interactions, the downstream signaling pathway has not been determined. In this work the involvement of mitochondria and the kinetics of caspase-8 and caspase-3 activation after phagocytosis of S. aureus were studied. Caspase-8 activity was measured in cell lysates by using the fluorogenic substrate Ac-IETD-AFC. Active caspase-3 levels and mitochondrial membrane potential (Δψm) were measured in whole cells by flow cytometry using monoclonal antibodies reacting with activated caspase-3 and chloromethyl-X-rosamine, respectively. The results show that caspase-8 was activated shortly after phagocytosis of bacteria. Caspase-8 activation was followed by progressive disruption of Δψm, which is associated with the production of reactive oxygen intermediates. The irreversible caspase-8 inhibitor zIETD-FMK prevented the disruption of Δψm and the release of cytochrome c from S. aureus-exposed monocytes. Caspase-3 activation occurred following disruption of Δψm. These results strongly suggest that apoptosis of monocytes that have phagocytosed and killed S. aureus is driven by the Fas-FasL-initiated pathway, which is typical for type II cells. PMID:15102767

  17. Biological Characteristics of Caspase-14 and Its Expression in Neoplastic Diseases in the View of Translational Medicine

    Institute of Scientific and Technical Information of China (English)

    LIU Kang-sheng; LYU Juan; LI Ping; ZHONG Tian-ying

    2016-01-01

    Caspase-14, a member of caspase family, only exists in mammals. As the most divergent member in the family of mammalian caspases, caspase-14 displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. At present, it has been found that caspase-14 is functionally different from the inlfammatory reaction group of typical caspase family members. It exerts a certain effect in the promotion of ifnal differentiation of epidermal cells and hydration of stratum corneum so as to maintain the steady state of skin barrier. In recent years, caspase-14 expression has been discovered in neoplastic diseases. Translational medicine integrates experimental research results and clinical guidance into the optimal implementation criteria for promoting the prediction, prevention and treatment of diseases. Via human genomics and molecular biology, translational medicine offers a possibility of screening molecular markers so that it can be used to diagnose the neoplastic diseases. In this article, the biological characteristics and substrates of caspase-14 as well as its expression in embryonic period and neoplastic diseases were reviewed.

  18. Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors.

    Directory of Open Access Journals (Sweden)

    Tanja Musch

    Full Text Available BACKGROUND: Stem cell characteristics are an important feature of human cancer cells and play a major role in the therapy resistance of tumours. Strategies to target cancer stem cells are thus of major importance for cancer therapy. Differentiation therapy by nucleoside drugs represents an attractive approach for the elimination of cancer stem cells. However, even if it is generally assumed that the activity of these drugs is mediated by their ability to modulate epigenetic pathways, their precise mode of action remains to be established. We therefore analysed the potential of three nucleoside analogues to induce differentiation of the embryonic cancer stem cell line NTERA 2 D1 and compared their effect to the natural ligand retinoic acid. METHODOLOGY/PRINCIPAL FINDINGS: All nucleoside analogues analyzed, but not retinoic acid, triggered proteolytic degradation of the Polycomb group protein EZH2. Two of them, 3-Deazaneplanocin A (DZNep and 2'-deoxy-5-azacytidine (decitabine, also induced a decrease in global DNA methylation. Nevertheless, only decitabine and 1beta-arabinofuranosylcytosine (cytarabine effectively triggered neuronal differentiation of NT2 cells. We show that drug-induced differentiation, in contrast to retinoic acid induction, is caused by caspase activation, which mediates depletion of the stem cell factors NANOG and OCT4. Consistent with this observation, protein degradation and differentiation could be counteracted by co-treatment with caspase inhibitors or by depletion of CASPASE-3 and CASPASE-7 through dsRNA interference. In agreement with this, OCT4 was found to be a direct in-vitro-target of CASPASE-7. CONCLUSIONS/SIGNIFICANCE: We show that drug-induced differentiation is not a consequence of pharmacologic epigenetic modulation, but is induced by the degradation of stem-cell-specific proteins by caspases. Our results thus uncover a novel pathway that induces differentiation of embryonic cancer stem cells and is triggered by

  19. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  20. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone

    2011-10-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  1. FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4.

    Directory of Open Access Journals (Sweden)

    Yuji Kajiwara

    Full Text Available The Alzheimer disease (AD amyloid protein precursor (APP can bind the FE65 adaptor protein and this complex can regulate gene expression. We carried out yeast two-hybrid studies with a PTB domain of FE65, focusing on those genes that might be involved in nuclear signaling, and identified and validated Teashirt proteins as FE65 interacting proteins in neurons. Using reporter systems, we observed that FE65 could simultaneously recruit SET, a component of the inhibitor of acetyl transferase, and Teashirt, which in turn recruited histone deacetylases, to produce a powerful gene-silencing complex. We screened stable cell lines with a macroarray focusing on AD-related genes and identified CASP4, encoding caspase-4, as a target of this silencing complex. Chromatin immunoprecipitation showed a direct interaction of FE65 and Teashirt3 with the promoter region of CASP4. Expression studies in postmortem samples demonstrated decreasing expression of Teashirt and increasing expression of caspase-4 with progressive cognitive decline. Importantly, there were significant increases in caspase-4 expression associated with even the earliest neuritic plaque changes in AD. We evaluated a case-control cohort and observed evidence for a genetic association between the Teashirt genes TSHZ1 and TSHZ3 and AD, with the TSHZ3 SNP genotype correlating with expression of Teashirt3. The results were consistent with a model in which reduced expression of Teashirt3, mediated by genetic or other causes, increases caspase-4 expression, leading to progression of AD. Thus the cell biological, gene expression and genetic data support a role for Teashirt/caspase-4 in AD biology. As caspase-4 shows evidence of being a primate-specific gene, current models of AD and other neurodegenerative conditions may be incomplete because of the absence of this gene in the murine genome.

  2. Peripheral Neuropathy in the Twitcher Mouse Involves the Activation of Axonal Caspase 3

    Directory of Open Access Journals (Sweden)

    Benjamin Smith

    2011-09-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  3. Effect of tenuigenin on the Caspase-3 and Par-4 expression of neural stem cells induced by beta-amyloid protein%远志总皂苷干预β-淀粉样蛋白致伤神经干细胞Caspase-3及Par-4的表达

    Institute of Scientific and Technical Information of China (English)

    张晓梅; 孙光涛; 黄作义; 吴成吉; 戚询中; 朱晓峰

    2011-01-01

    BACKGROUND: The effect of tenuigenin which has a good nerve protection to neural stem cells has not been reported. OBJECTIVE: To investigate the protective effect and mechanism of tenuigenin for neural stem cells in the hippocampus impaired by β-amyloid protein.METHODS: The third passage neural stem cells generated from the hippocampi of Kunming mice which injured by β-amyloid protein in vitro were incubated with different concentrations of tenuigenin.RESULTS AND CONCLUSION: Immunocytochemical technique was used to detect Caspase3-positive neural stem cells. The study revealed that the expression of Par-4 and caspase-3 positive neural stem cells in the tenuigenin group were significantly lower than that in the control group with statistical significance (P < 0.05). Tenuigenin can reduce the expression of Par-4 and Caspase-3 in neural stem cells impaired by β-amyloid protein.%背景:远志总皂苷具有良好的神经保护作用.目的:分析远志总皂苷对β-淀粉样蛋白致伤海马神经干细胞的保护作用及机制.方法:自昆明小鼠海马分离培养神经干细胞,取第3代神经干细胞,用含不同质量浓度远志总皂苷与β-淀粉样蛋白致伤体外培养的神经干细胞共孵育.结果:应用免疫组织化学法检测Caspase-3阳性神经干细胞,与对照组相比,远志总皂苷组Caspase-3阳性细胞率及Par-4的表达明显降低,差异具有显著性意义(P<0.05).提示远志总皂苷能够降低β-淀粉样蛋白致伤神经干细胞中Caspase-3及Par-4的表达.

  4. BCL9L Dysfunction Impairs Caspase-2 Expression Permitting Aneuploidy Tolerance in Colorectal Cancer

    DEFF Research Database (Denmark)

    López-García, Carlos; Sansregret, Laurent; Domingo, Enric

    2016-01-01

    Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, ...... contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution....

  5. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Ke-Wang Sun; Ying-Yu Ma; Tian-Pei Guan; Ying-Jie Xia; Chang-Ming Shao; Le-Gao Chen; Ya-Jun Ren

    2012-01-01

    /ethidium bromide staining.After treatment with oridonin,the cells became round,shrank,and developed small buds around the nuclear membrane while forming apoptotic bodies.Lactate dehydrogenase (LDH) release assay showed that after treated with 1.25 μg/mL and 20 μg/mL oridonin for 24 h,LDH release of HGC-27 caused by apoptosis increased from 22.94% ± 3.8% to 52.68% ± 2.4% (P < 0.001).However,the change in the release of LDH caused by necrosis was insignificant,suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis.Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).And the apoptosis rates of HGC-27 induced by the four different concentrations of oridonin were 5.3% ± 1.02%,12.8% ± 2.53%,28.5% ± 4.23% and 49.6% ± 3.76%,which were in a dose-dependent manner (P < 0.05).After treatment for 24 h,DNA ladder showed that oridonin induced a significant increase in DNA fragmentation in a dosedependent manner.RT-PCR revealed that mRNA expression levels were up-regulated compared with the controls in caspase-3 (0.917 ± 0.103 vs 0.357 ± 0.019,P < 0.05),cytochrome c (1.429 ± 0.111 vs 1.002 ±0.014,P < 0.05),Apaf-1 (0.688 ± 0.101 vs 0.242 ±0.037,P < 0.05) and Bax (0.856 ± 0.101 vs 0.278 ±0.027,P < 0.05) (P < 0.05),whereas down-regulated in Bd-2 (0.085 ± 0.012 vs 0.175 ± 0.030,P < 0.05).Western blotting analysis also confirmed this result.CONCLUSION:Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1,caspase-3 and cytochrome c,which are highly dependent upon the mitochondrial pathway.

  6. Low Dose and Long Term Toxicity of Sodium Arsenite Caused Caspase Dependent Apoptosis Based on Morphology and Biochemical Character

    Directory of Open Access Journals (Sweden)

    Mohammad Hussein Abnosi

    2012-01-01

    Full Text Available Objective: Although arsenite is toxic it is currently recommended for the treatment of malignancies. In this study the effects of sub-micromolar concentrations of sodium arsenite on the viability, morphology and mechanism of cell death of rat bone marrow mesenchymal stem cells (BMCs over 21 days was investigated.Materials and Methods: In this experimental study, BMCs were extracted in Dulbecco’s Modified Eagles Medium (DMEM containing 15% of fetal bovine serum (FBS and expanded till the 3rd passage. The cells were treated with 1, 10, 25, 50, 75 and 100 nM of sodium arsenite for 21 days and the viability of the cells estimated using 3-(4, 5-dimethylthiazol-2-yl-2, 5 diphenyl tetrazolium (MTT and trypan blue staining. Cells were then treated with the selected dose (25 nM of sodium arsenite to determine their colony forming ability (CFA and population doubling number (PDN. Morphology of the cells was studied using florescent dyes, and the integrity of the DNA was investigated using the comet assay and agarose gel electrophoresis. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and the caspase 3 assay were then applied to understand the mechanism of cell death. Data was analyzed using one way ANOVA, Tukey test.Results: A significant reduction of viability, PDN and CFA was found following treatment of BMCs with 25 nM sodium arsenite (p<0.05. Cytoplasm shrinkage and a significant decrease in the diameter of the nuclei were also seen. Comet assay and agarose gel electrophoresis revealed DNA breakage, while positive TUNEL and activated caspase 3 confirmed the apoptosis.Conclusion: A low concentration of sodium arsenite (25 nM caused reduction of viability due to induction of apoptosis. Therefore, long term exposure to low dose of this chemical may have unwanted effects on BMCs.

  7. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  8. Ambiguity Revealed

    OpenAIRE

    Subir Bose; Matthew Polisson; Ludovic Renou

    2012-01-01

    We derive necessary and suffcient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under ambiguity: variational preferences and smooth ambiguity. The revealed preference conditions for the maxmin expected utility and subjective expected utility models are characterized as special cases.

  9. Ambiguity revealed

    OpenAIRE

    Bayer, Ralph-C; Bose, Subir; Polisson, Matthew; Renou, Ludovic

    2013-01-01

    We derive necessary and sufficient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under uncertainty: variational preferences and smooth ambiguity. The revealed preference conditions for subjective expected utility, maxmin expected utility, and multiplier preferences are characterised as special cases. We implement our tests on data from a portfolio choice experiment.

  10. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-02-22

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  11. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Rodrigo Ramirez-Tagle

    2016-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1 and 3′-bromo-3,4-dimethoxy-chalcone (CH2, over human hepatoma cells (HepG2 and Huh-7 and cultured mouse hepatocytes (HepM. Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i a caspase-dependent intrinsic pathway; and (ii by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  12. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  13. An Efficient Piecewise Linear Model for Predicting Activity of Caspase-3 Inhibitors

    Directory of Open Access Journals (Sweden)

    Alireza Foroumadi

    2012-09-01

    Full Text Available Background and purpose of the study Multimodal distribution of descriptors makes it more difficult to fit a single global model to model the entire data set in quantitative structure activity relationship (QSAR studies.Methods:The linear (Multiple linear regression; MLR, non-linear (Artificial neural network; ANN, and an approach based on "Extended Classifier System in Function approximation" (XCSF were applied herein to model the biological activity of 658 caspase-3 inhibitors. Results:Various kinds of molecular descriptors were calculated to represent the molecular structures of the compounds. The original data set was partitioned into the training and test sets by the K-means classification method. Prediction error on the test data set indicated that the XCSF as a local model estimates caspase-3 inhibition activity, better than the global models such as MLR and ANN. The atom-centered fragment type CR2X2, electronegativity, polarizability, and atomic radius and also the lipophilicity of the molecule, were the main independent factors contributing to the caspase-3 inhibition activity. Conclusions:The results of this study may be exploited for further design of novel caspase-3 inhibitors.

  14. Interaction of CSR1 with XIAP reverses inhibition of caspases and accelerates cell death.

    Science.gov (United States)

    Zheng, Zhong-Liang; Tan, Lang-Zhu; Yu, Yan P; Michalopoulos, George; Luo, Jian-Hua

    2012-08-01

    Cellular Stress Response 1 (CSR1) is a tumor suppressor gene that is located at 8p21, a region that is frequently deleted in prostate cancer as well as a variety of human malignancies. Previous studies have indicated that the expression of CSR1 induces cell death. In this study, we found that CSR1 interacts with X-linked Inhibitor of Apoptosis Protein (XIAP), using yeast two-hybrid screening analyses. XIAP overexpression has been found in many human cancers, and forced expression of XIAP blocks apoptosis. Both in vitro and in vivo analyses indicated that the C-terminus of CSR1 binds XIAP with high affinity. Through a series of in vitro recombinant protein-binding analyses, the XIAP-binding motif in CSR1 was determined to include amino acids 513 to 572. Targeted knock-down of XIAP enhanced CSR1-induced cell death, while overexpression of XIAP antagonized CSR1 activity. The binding of CSR1 with XIAP enhanced caspase-9 and caspase-3 protease activities, and CSR1-induced cell death was dramatically reduced on expression of a mutant CSR1 that does not bind XIAP. However, a XIAP mutant that does not interact with caspase-9 had no impact on CSR1-induced cell death. These results suggest that cell death is induced when CSR1 binds XIAP, preventing the interaction of XIAP with caspases. Thus, this study may have elucidated a novel mechanism by which tumor suppressors induce cell death.

  15. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents

    NARCIS (Netherlands)

    Hatting, M.; Zhao, G.; Schumacher, F.; Sellge, G.; Masaoudi, Al M.; Gaßler, N.; Boekschoten, M.V.; Müller, M.R.; Liedtke, C.; Cubero, F.J.; Trautwein, C.

    2013-01-01

    In human and murine models of nonalcoholic steatohepatitis (NASH), increased hepatocyte apoptosis is a critical mechanism contributing to inflammation and fibrogenesis. Caspase 8 (Casp8) is essential for death-receptor-mediated apoptosis activity and therefore its modulation might be critical for th

  16. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  17. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer

    DEFF Research Database (Denmark)

    Gyrd-Hansen, Mads; Meier, Pascal

    2010-01-01

    . The development of such inhibitors has radically changed our knowledge of the signalling processes that are regulated by IAPs. Recent studies indicate that IAPs not only regulate caspases and apoptosis, but also modulate inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis...

  18. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    Science.gov (United States)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  19. Staphylococcus aureus alpha-toxin-induced cell death : predominant necrosis despite apoptotic caspase activation

    NARCIS (Netherlands)

    Essmann, F; Bantel, H; Totzke, G; Engels, I H; Sinha, B; Schulze-Osthoff, K; Jänicke, R U

    2003-01-01

    Recent data suggest that alpha-toxin, the major hemolysin of Staphylococcus aureus, induces cell death via the classical apoptotic pathway. Here we demonstrate, however, that although zVAD-fmk or overexpression of Bcl-2 completely abrogated caspase activation and internucleosomal DNA fragmentation,

  20. Inhibition of caspases but not of calpains temporarily protect against C2-ceramide-induced death of CAD cells.

    Science.gov (United States)

    Arboleda, Gonzalo; Waters, Catherine; Gibson, Rosemary

    2007-06-29

    Evidence has implicated apoptosis as a mechanism underlying cell death in diverse neurodegenerative diseases including Parkinson's disease (PD). Endogenous agents such as TNF-alpha, INF-gamma, IL-1beta and others stress signals activate the sphingomyelin pathway increasing ceramide levels. Ceramide triggers apoptotic pathways while inhibiting survival signalling, and is involved in the regulation of intracellular Ca(2+) homeostasis and compartmentalisation. The contribution of caspases in neuronal apoptosis has been highlighted by the increased survival exerted by caspase inhibition, but the involvement of calpains during neuronal apoptosis and the potential benefit of their inhibition is still controversial. In the present paper, we have analysed the contribution of caspases and calpains to cell death of CAD cells, a catecholaminergic cell line of mesencephalic origin, following C2-ceramide exposure. Ceramide caused CAD cell death by a dose and time dependant mechanism. 25microM of C2-ceramide caused apoptosis. Analysis of activation of caspases and calpains by differential cleavage of alpha-fodrin showed that although calpains are activated before caspases following C2-ceramide exposure, only caspase inhibition increased cell survival. These results demonstrate the activation of caspases and calpains in C2-ceramide-induced cell death, and support the role of caspase inhibition as a neuroprotective strategy and a plausible therapeutic approach to decrease catecholaminergic cell death.

  1. Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation.

    Science.gov (United States)

    Bidère, Nicolas; Snow, Andrew L; Sakai, Keiko; Zheng, Lixin; Lenardo, Michael J

    2006-08-22

    Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known role in apoptosis [3]. Caspase-8 is activated after TCR stimulation and nucleates a complex with B cell lymphoma 10 (BCL10), paracaspase MALT1, and the inhibitors of kappaB kinase (IKK) complex [4]. We now report that the ubiquitin ligase TRAF6 binds to active caspase-8 upon TCR stimulation and facilitates its movement into lipid rafts. We identified in silico two putative TRAF6 binding motifs in the caspase-8 sequence and found that mutation of critical residues within these sites abolished TRAF6 binding and diminished TCR-induced NF-kappaB activation. Moreover, RNAi-mediated silencing of TRAF6 abrogated caspase-8 recruitment to the lipid rafts. Protein kinase Ctheta (PKCtheta), CARMA1, and BCL10 are also required for TCR-induced caspase-8 relocation, but only PKCtheta and BCL10 control caspase-8 activation. Our results suggest that PKCtheta independently controls CARMA1 phosphorylation and BCL10-dependent caspase-8 activation and unveil an essential role for TRAF6 as a critical adaptor linking these two convergent signaling events.

  2. TRAF2 Sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer.

    Science.gov (United States)

    Gonzalvez, Francois; Lawrence, David; Yang, Becky; Yee, Sharon; Pitti, Robert; Marsters, Scot; Pham, Victoria C; Stephan, Jean-Philippe; Lill, Jennie; Ashkenazi, Avi

    2012-12-28

    Apoptotic caspase activation mechanisms are well defined, yet inactivation modes remain unclear. The death receptors (DRs), DR4, DR5, and Fas, transduce cell-extrinsic apoptotic signals by recruiting caspase-8 into a death-inducing signaling complex (DISC). At the DISC, Cullin3-dependent polyubiquitination on the small catalytic subunit of caspase-8 augments stimulation. Here we report that tumor necrosis factor receptor-associated factor 2 (TRAF2) interacts with caspase-8 at the DISC, downstream of Cullin3. TRAF2 directly mediates RING-dependent, K48-linked polyubiquitination on the large catalytic domain of caspase-8. This modification destines activated caspase-8 molecules to rapid proteasomal degradation upon autoprocessing and cytoplasmic translocation. TRAF2 depletion lowers the signal threshold for DR-mediated apoptosis, altering cell life versus death decisions in vitro and in vivo. Thus, TRAF2 sets a critical barrier for cell-extrinsic apoptosis commitment by tagging activated caspase-8 with a K48-ubiquitin shutoff timer. These results may have important implications for caspase regulation mechanisms.

  3. Review: Lamin A/C, caspase-6, and chromatin configuration during meiosis resumption in the mouse oocyte.

    Science.gov (United States)

    Arnault, Emilie; Doussau, Mireille; Pesty, Arlette; Lefèvre, Brigitte; Courtot, Anne-Marie

    2010-02-01

    After in vitro maturation (IVM), isolation of the healthiest oocytes is essential for successful in vitro fertilization. As germinal vesicle (GV) oocytes resume meiosis through healthy or apoptotic pathways without discernable morphological criteria, we checked for an apoptotic element acting at the nucleus level. We hypothesized that caspase-6 with its corresponding substrate, lamin A/C, could be a potential target candidate, because caspase-6 is the only functional caspase for lamin A/C. We used immunohistochemistry methods, Western blots, and a specific caspase-6 inhibitor to determine the presence of lamin A/C and caspase-6 during oogenesis and in isolated oocytes. Our results demonstrated that these proteins were always present and that their distributions were related to oocyte maturity, determined by chromatin configuration and oocyte diameter. Caspase-6 inhibition slowed meiosis resumption suggesting the involvement of caspase-6 in the oocyte apoptotic pathway. Lamin A/C and caspase-6 could be valuable tools in the knowledge of oocyte in vitro destiny.

  4. Combined fluorimetric caspase 3/7 assay and bradford protein determination for assessment of polycation-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik

    2013-01-01

    and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well...

  5. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas.

    NARCIS (Netherlands)

    Muris, J.J.; Cillessen, S.A.; Vos, W.; Houdt, I.S. van; Kummer, J.A.; Krieken, J.H.J.M. van; Jiwa, N.M.; Jansen, P.A.M.; Kluin-Nelemans, H.C.; Ossenkoppele, G.J.; Gundy, C.; Meijer, C.J.M.; Oudejans, J.J.

    2005-01-01

    We used biopsy specimens of primary nodal diffuse large B-cell lymphoma (DLBCL) to investigate whether the inhibition of caspase 8 and/or 9 apoptosis signaling pathways predicts clinical outcome. Expression levels of cellular FLICE inhibitory protein (c-Flip) and numbers of active caspase 3-positive

  6. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas

    NARCIS (Netherlands)

    Muris, JJF; Cillessen, SAGM; Vos, W; van Houdt, IS; Kummer, JA; van Krieken, JHJM; Jiwa, NM; Jansen, PM; Kluin-Nelemans, HC; Ossenkoppele, GJ; Gundy, C; Meijer, CJLM; Oudejans, JJ

    2005-01-01

    We used biopsy specimens of primary nodal diffuse large B-cell lymphoma (DLBCL) to investigate whether the inhibition of caspase 8 and/or 9 apoplosis signaling pathways predicts clinical outcome. Expression levels of cellular FLICE inhibitory protein (c-Flip) and numbers of active caspase 3-positive

  7. Dual Vulnerability of Tau to Calpains and Caspase-3 Proteolysis Under Neurotoxic and Neurodegenerative Conditions

    Directory of Open Access Journals (Sweden)

    Ming Cheng Liu

    2010-11-01

    Full Text Available Axonally specific microtubule-associated protein tau is an important component of neurofibrillary tangles found in AD (Alzheimer's disease and other tauopathy diseases such as CTE (chronic traumatic encephalopathy. Such tau aggregate is found to be hyperphosphorylated and often proteolytically fragmented. Similarly, tau is degraded following TBI (traumatic brain injury. In the present study, we examined the dual vulnerability of tau to calpain and caspase-3 under neurotoxic and neurodegenerative conditions. We first identified three novel calpain cleavage sites in rat tau (four-repeat isoform as Ser130 ↓ Lys131, Gly157 ↓ Ala158 and Arg380 ↓ Glu381. Fragment-specific antibodies to target the major calpain-mediated TauBDP-35K (35 kDa tau-breakdown product and the caspase-mediated TauBDP-45K respectively were developed. In rat cerebrocortical cultures treated with excitotoxin [NMDA (N-methyl-D-aspartate], tau is significantly degraded into multiple fragments, including a dominant signal of calpain-mediated TauBDP-35K with minimal caspase-mediated TauBDP-45K. Following apoptosis-inducing EDTA treatment, tau was truncated only to TauBDP-48K/45K-exclusively by caspase. Cultures treated with another apoptosis inducer STS (staurosporine, dual fragmentation by calpain (TauBDP-35K and caspase-3 (TauBDP-45K was observed. Tau was also fragmented in injured rat cortex following TBI in vivo to BDPs of 45-42 kDa (minor, 35 kDa and 15 kDa, followed by TauBDP-25K. Calpain-mediated TauBDP-35K-specific antibody confirmed robust signals in the injured cortex, while caspase-mediated TauBDP-45K-specific antibody only detected faint signals. Furthermore, intravenous administration of a calpain-specific inhibitor SNJ-1945 strongly suppressed the TauBDP-35K formation. Taken together, these results suggest that tau protein is dually vulnerable to calpain and caspase-3 proteolysis under different neurotoxic and injury conditions.

  8. Effects of methylation status of caspase-8 promoter on antitumor activity of TRAIL to human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ru-gang; FANG Dian-chun; YANG Liu-qin; LUO Yuan-gang

    2004-01-01

    Objective: To study the effects of the methylation status of caspase-8 promoter on the antitumor activity of TRAIL to the human gastric cancer cells. Methods: The methylation of caspase-8 was measured with methylation specific PCR (MSP) and the antitomor capability of TRAIL to human gastric cancer cells was determined with MTT. Results: No methylation of caspase-8 in the human gastric cancer cells was found. The sensitivity of 5 lines of gastric cancer cells to the antitumor activity of TRAIL was different. The administration of the demethylation agent 5-Aza-2'-deoxycytidine ( 5-AzaCdR) increased the sensitivity of gastric cancer cells to TRAIL but did not change the methylation status of caspase-8 promoter in gastric cancer cells. Conclusion: 5-Aza-CdR increases the sensitivity of most of gastric cancer cells to TRAIL but caspase-8 is not involved in the antitumor activity of TRAIL.

  9. TNF-α Contributes to Caspase-3 Independent Apoptosis in Neuroblastoma Cells: Role of NFAT

    Science.gov (United States)

    Álvarez, Susana; Blanco, Almudena; Fresno, Manuel; Muñoz-Fernández, Ma Ángeles

    2011-01-01

    There is increasing evidence that soluble factors in inflammatory central nervous system diseases not only regulate the inflammatory process but also directly influence electrophysiological membrane properties of neurons and astrocytes. In this context, the cytokine TNF-α (tumor necrosis factor-α) has complex injury promoting, as well as protective, effects on neuronal viability. Up-regulated TNF-α expression has also been found in various neurodegenerative diseases such as cerebral malaria, AIDS dementia, Alzheimer's disease, multiple sclerosis, and stroke, suggesting a potential pathogenic role of TNF-α in these diseases as well. We used the neuroblastoma cells SK-N-MC. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of NFAT (nuclear factor of activated T cells) promoter constructed with a dominant negative version of NFAT (dn-NFAT). Cell death was performed by MTT (3-(4,5-dimethylthiazol-2-yl)5,5-diphenyltetrazolium bromide) and TUNEL assays. NFAT translocation was confirmed by Western blot. Involvement of NFAT in cell death was assessed by using VIVIT. P53, Fas-L, caspase-3, and caspase-9 expressions were carried out by Western blot. The mechanisms involved in TNF-α-induced cell death were assessed by using microarray analysis. TNF-α causes neuronal cell death in the absence of glia. TNF-α treatment results in nuclear translocation of NFAT through activation of calcineurin in a Ca2+ independent manner. We demonstrated the involvement of FasL/Fas, cytochrome c, and caspase-9 but the lack of caspase-3 activation. NB cell death was absolutely reverted in the presence of VIVIT, and partially diminished by anti-Fas treatment. These data demonstrate that TNF-α promotes FasL expression through NFAT activation in neuroblastoma cells and this event leads to increased apoptosis through independent caspase-3 activation. PMID:21298033

  10. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation.

    Science.gov (United States)

    Ramasamy, Vijay Sankar; Islam, Md Imamul; Haque, Md Aminul; Shin, Song Yub; Park, Il-Seon

    2016-06-01

    β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6 h (4+6 h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6 h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6 h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6 h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD.

  11. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    Science.gov (United States)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  12. Study on HepG-2 apoptosis induced by saponins isolated from Asparagus and the effects on the activities of caspase-3,8,9

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; XU He; JI Chen-feng

    2008-01-01

    Objective To study the effect of saponins of asparagus on apoptosis and the variations of caspaseS, caspase-9 and caspase-3 activity in the process of asparagus induced apoptosis in HepG-2, to investigate the apoptosis mechanism further. Methods Asparagus on apoptosis effects on tumor cells cultured-HepG-2 with different concentrations at different time, IC50 value was measured by MTT assay, the apoptosis rate was determined by FCM with AnnexinV/PI staining, their apoptotic morphology were observed by electron microscopy and Colorimetric method was used to measure caspase-8,9 and caspase-3 activities. Results Experiments of antitumour in vivo showed that saponins of asparagus can inhibit the growth of tumor cell of HepG-2 in evidence, IC50 was 101.15 mg·L-1. Cultured for 72 h, the apoptosis rate had positive increased with concentrations. Apoptotic morphology was observed by electron microscopy. The activities of caspase-8, easpase-9 and caspase-3 had positive increased with concentrations. And have significant difference compared with negative control group(P<0.01). The activities of caspase-8 were high at 24 h, but the activities of caspase-9 and caspase-3 is high at 48 h. Conclusions Aaponins of asparagus can inhibit the growth of tumor cell of HepG2, and the underlying mechanism might be related to up regulation of caspase-8, 9 activity which subsequently transforms caspase-3 into its active form.

  13. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice.

    Directory of Open Access Journals (Sweden)

    Tim Hendrikx

    Full Text Available While non-alcoholic steatohepatitis (NASH is characterized by hepatic steatosis combined with inflammation, the mechanisms triggering hepatic inflammation are unknown. In Ldlr(-/- mice, we have previously shown that lysosomal cholesterol accumulation in Kupffer cells (KCs correlates with hepatic inflammation and cholesterol crystallization. Previously, cholesterol crystals have been shown to induce the activation of inflammasomes. Inflammasomes are protein complexes that induce the processing and release of pro-inflammatory cytokines IL-1b and IL-18 via caspase-1 activation. Whereas caspase-1 activation is independent of caspase-11 in the canonical pathway of inflammasome activation, caspase-11 was found to trigger caspase-1-dependent IL-1b and IL-18 in response to non-canonical inflammasome activators. So far, it has not been investigated whether inflammasome activation stimulates the formation of cholesterol crystals. We hypothesized that inflammasome activation in KCs stimulates cholesterol crystallization, thereby leading to hepatic inflammation.Ldlr (-/- mice were transplanted (tp with wild-type (Wt or caspase-1/11(-/- (dKO bone marrow and fed either regular chow or a high-fat, high-cholesterol (HFC diet for 12 weeks. In vitro, bone marrow derived macrophages (BMDM from wt or caspase-1/11(-/- mice were incubated with oxLDL for 24h and autophagy was assessed.In line with our hypothesis, caspase-1/11(-/--tp mice had less severe hepatic inflammation than Wt-tp animals, as evident from liver histology and gene expression analysis in isolated KCs. Mechanistically, KCs from caspase-1/11(-/--tp mice showed less cholesterol crystals, enhanced cholesterol efflux and increased autophagy. In wt BMDM, oxLDL incubation led to disturbed autophagy activity whereas BMDM from caspase-1/11(-/- mice had normal autophagy activity.Altogether, these data suggest a vicious cycle whereby disturbed autophagy and decreased cholesterol efflux leads to newly formed

  14. Peperphentonamine hydrochloride protects against gentamicin-induced cochlea damage by lowering cochlear caspase-3 expression in guinea pigs%盐酸椒苯酮胺通过降低caspase-3表达减轻庆大霉素豚鼠耳蜗损伤

    Institute of Scientific and Technical Information of China (English)

    陈浩; 谢民强; 吴剑; 李威; 李永贺

    2014-01-01

    Objective To study the protective effect of peperphentonamine hydrochloride (PPTA) against gentamicin-induced cochlear damage and its mechanism to inhibit cell apoptosis. Methods Guinea pigs with normal hearing were randomized into control, gentamicin, and PPTA treatment groups, and the guinea pigs models of gentamicin-induced cochlear damage received intraperitoneal injection of PPTA. The changes of hearing of the guinea pigs were evaluated with auditory brainstem response (ABR) test, and the protein expression of caspase-3 in the cochlear tissue was detected using Western blotting. TUNEL staining, scanning and transmission electron microscopy were performed to observe the morphological changes of the cochlea. Results The threshold in ABR in PPTA treatment group was significantly higher than that in the control group (P<0.05) but significantly lower than that in gentamicin group. Western blotting showed a significantly increased caspase-3 expression in gentamicin group (P<0.001); caspase-3 expression in PPTA group was obviously higher than that in the control group but much lower than that in gentamicin group (P<0.001). TUNEL assay and electron microscopy revealed serious damages of the hair cells in gentamicin group with numerous apoptotic cells in the organ of Corti, stria vascularis and spiral ganglion, and such cochlear damages were obviously alleviated in PPTA group. Conclusion PPTA can protect against gentamicin-induced cochlear damage in guinea pigs by decreasing the protein expression of caspase-3 to inhibit cell apoptosis.%目的:研究盐酸椒苯酮胺(PPTA)对庆大霉素耳蜗损伤的保护作用及抗凋亡机制。方法听力正常豚鼠分3组:正常组、GM组和PPTA组。采用庆大霉素致豚鼠耳蜗损伤模型,PPTA腹腔注射,ABR分析听力变化,Western blot检测耳蜗组织中caspase-3蛋白表达,TUNEL染色、扫描电镜和透射电镜观察形态学改变。结果 ABR反应阈:GM组、PPTA组显

  15. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion.

    Science.gov (United States)

    Jana, Kuladip; Jana, Narayan; De, Dipak Kumar; Guha, Sujoy Kumar

    2010-09-01

    Although it has been well established that spermatogenic cells undergo apoptosis when treated with ethanol, the molecular mechanisms behind it remain to be investigated. Adult male mice were given intra-peritoneal injection (IP) of ethanol at a dose of 3 g (15%, v/v) per kg body weight per day during the period of 14 days. Testicular androgenesis and apoptotic germ cell death, along with different interrelated proteins expression, were evaluated. Ethanol treatment induced apoptotic spermatogenic cell death with a decrease in the plasma and intra-testicular testosterone concentration. Western blot analysis revealed that repeated ethanol treatment decreased the expression of steroidogenic acute regulatory protein (StAR), 3 beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17 beta-hydroxysteroid dehydrogenase (17beta-HSD); increased the expression of active caspase-3, p53, Fas and Fas-L; and led to up-regulation of Bax/Bcl-2 ratio and translocation of cytochrome c from mitochondria to cytosol in testis. It has also been shown in our study that repeated ethanol treatment led to up-regulation of caspase-3, p53, Fas, Fas-L transcripts; increase in caspase-3 and caspase-8 activities; diminution of 3beta-HSD, 17beta-HSD, and GPx activities; decrease in the mitochondrial membrane potential along with ROS generation and depletion of glutathione pool in the testicular tissue. The present study has indicated that the ethanol treatment induced apoptosis in the mouse testis through the increased expression of Fas/Fas-L and p53, up-regulation of Bax/Bcl-2 ratio, cytosolic translocation of cytochrome c along with caspase-3 activation and glutathione depletion.

  16. 前列腺癌组织中Apaf-1和Caspase-9表达及临床意义%Expression of Apaf-1 and Caspase-9 in prostate cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    张丙信; 赵霞; 贾喜花; 刘洋; 张金库

    2015-01-01

    目的:检测凋亡蛋白酶活化因子-1(Apaf-1)和细胞凋亡蛋白酶-9(Caspase-9)在前列腺癌(prostatic carcinoma, PCa)和良性前列腺增生( benign prostatic hyperplasia, BPH)中的表达,探讨Apaf-1、Caspase-9表达与PCa临床病理特征的关系。方法采用免疫组化SP法检测45例PCa和60例BPH组织中Apaf-1和Caspase-9蛋白的表达。结果 PCa组中Apaf-1和Caspase-9的阳性率明显低于BPH组,差异有统计学意义(P0. 05), but it was correlated with the pathological grade and clinical stage of PCa (P<0. 05). Conclusion Apaf-1 and Caspase-9 are lowly expressed in PCa. There is positive correlation between the expression of Apaf-1 and Caspase-9 (rs =0. 645, P<0. 01). Apaf-1 and Caspase-9 might be correlated with the carcinogenesis and development of PCa.

  17. Study on the enzymatic activity of Caspase-3 in response to alginic acid decomposing bacteria in Laminaria japonica Aresch.(Phaeophyta)

    Institute of Scientific and Technical Information of China (English)

    Wang Gaoge; Lin Wei; Yan Xiaojun; Duan Delin

    2005-01-01

    Caspase-3 is the major factor in apoptosis triggered by various stimuli, and plays a critical role during the apoptosis process. By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 enzymatic activities were detected in response to alginic acid bacteria in Laminaria japonica sporophytic tissues. Results showed that caspase-3 enzymatic activities were observed at 5 min after the infection. Caspase-3 enzymatic activity increased with the infection time, and had a tendency of moving from the infection site to outside. By applying caspase-specific peptide inhibitor Z-VAD-FMK, caspase-3 activation could be effectively abolished in the infected tissues. Our results indicate that programmed cell death (PCD) may be involved in the infected Laminaria japonica sporophytic tissues, and provide the evidence that defense mechanisms in algae may have similar caspase cascade events in animals.

  18. Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes

    Institute of Scientific and Technical Information of China (English)

    Amy; J; Galliher-Beckley; Li-Qiong; Lan; Shelly; Aono; Lei; Wang; Jishu; Shi

    2013-01-01

    AIM:To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β(pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events.METHODS:All experiments were performed on fresh or overnight cultured human peripheral blood monocytes(PBMCs) that were isolated from healthy donors.PBMCs were activated by lipopolysaccharide(LPS) stimulation before being treated with Adenosine triphosphate(ATP,1 mmol/L),human α-defensin-5(HD-5,50 μg/mL),and/or nigericin(Nig,30 μmol/L).For each experiment,the culture supernatants were collected separately from the cells.Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies.RESULTS:We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation.In the presence of HD-5,this release of IL-1β,but not the processing of pro-IL-1β to IL-1β,was completely inhibited.Similarly,in the presence of HD-5,the release of IL-1β,but not the processing of IL-1β,was significantly inhibited from LPS-activated monocytes stimulated with Nig.Finally,we treated LPS-activated monocytes with ATP and Nig and collected the supernatants.We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes.Interestingly,and contrary to IL-1β processing and release,caspase-1 cleavage and release was not blocked by HD-5.All images are representative of three independent experiments.CONCLUSION:These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.

  19. Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion.

    Directory of Open Access Journals (Sweden)

    V M Sangeetha

    Full Text Available BACKGROUND: Expansion of hematopoietic stem/progenitor cells (HSPCs is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB derived CD34(+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. CONCLUSION/SIGNIFICANCE: Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant

  20. Selective inhibition of caspases in skeletal muscle reverses the apoptotic synaptic degeneration in slow-channel myasthenic syndrome.

    Science.gov (United States)

    Zhu, Haipeng; Pytel, Peter; Gomez, Christopher M

    2014-01-01

    Slow-channel syndrome (SCS) is a congenital myasthenic disorder caused by point mutations in subunits of skeletal muscle acetylcholine receptor leading to Ca(2+) overload and degeneration of the postsynaptic membrane, nuclei and mitochondria of the neuromuscular junction (NMJ). In both SCS muscle biopsies and transgenic mouse models for SCS (mSCS), the endplate regions are shrunken, and there is evidence of DNA damage in the subsynaptic region. Activated caspase-9, -3 and -7 are intensely co-localized at the NMJ, and the Ca(2+)-activated protease, calpain, and the atypical cyclin-dependent kinase (Cdk5) are overactivated in mSCS. Thus, the true mediator(s) of the disease process is not clear. Here, we demonstrate that selective inhibition of effector caspases, caspase-3 and -7, or initiator caspase, caspase-9, in limb muscle in vivo by localized expression of recombinant inhibitor proteins dramatically decreases subsynaptic DNA damage, increases endplate area and improves ultrastructural abnormalities in SCS transgenic mice. Calpain and Cdk5 are not affected by this treatment. On the other hand, inhibition of Cdk5 by expression of a dominant-negative form of Cdk5 has no effect on the degeneration. Together with previous studies, these results indicate that focal activation of caspase activity at the NMJ is the principal pathological process responsible for the synaptic apoptosis in SCS. Thus, treatments that reduce muscle caspase activity are likely to be of benefit for SCS patients.

  1. Biochemical Analysis of Initiator Caspase-Activating Complexes: The Apoptosome and the Death-Inducing Signaling Complex.

    Science.gov (United States)

    Langlais, Claudia; Hughes, Michelle A; Cain, Kelvin; MacFarlane, Marion

    2015-12-02

    Apoptosis is a highly regulated process that can be initiated by activation of death receptors or perturbation of mitochondria causing the release of apoptogenic proteins. This results in the activation of caspases, which are responsible for many of the biochemical and morphological changes associated with apoptosis. Caspases are normally inactive and require activation in a cascade emanating from an "initiator" or activating caspase, which in turn activates a downstream or "effector" caspase. Activation of initiator caspases is tightly regulated and requires the assembly of caspase-9 (via mitochondrial perturbation) or caspase-8/10 (via death receptor ligation) activating complexes, which are termed the apoptosome and the death-inducing signaling complex (DISC), respectively. These large multiprotein complexes can initially be separated according to size by gel filtration chromatography and subsequently analyzed by affinity purification or immunoprecipitation. The advantage of combining these techniques is one can first assess the assembly of individual components into a multiprotein complex, and then assess the size and composition of the native functional signaling platform within a particular cell type alongside a biochemical analysis of the enriched/purified complex. Here, we describe various methods currently used for characterization of the apoptosome and DISC.

  2. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease.

    Science.gov (United States)

    Chu, J; Lauretti, E; Praticò, D

    2017-01-31

    The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.Molecular Psychiatry advance online publication, 31 January 2017; doi:10.1038/mp.2016.214.

  3. Evaluation of caspase3 and 9 gene polymorphisms in gastric cancer patients in Mazandaran province: a brief report

    Directory of Open Access Journals (Sweden)

    Saeid Abediankenari

    2013-11-01

    Full Text Available Background: Gastric cancer is the most prevalent cancer with poor survival in gastrointestinal tract. Caspase 3 and 9 play an important role in the development and progression of cancer. Polymorphisms in the genes for these enzymes can affect gene activity and thus may influence susceptibility to gastric cancer. In this study, caspase 3 and 9 genes polymorphisms in patients with gastric cancer were examined.Methods: In a case - control study, 100 patients with gastric cancer and 100 healthy individuals were evaluated in the region rs4647601: G> T for caspase-3 and -1263 A> G gene promoter for caspase 9. DNA extraction was performed from whole blood according to manufacture protocol. RFLP-PCR method was carrying out for detection of caspase 3 and 9 genes genotype in two groups.Results: In this study, 143 men and 57 women were evaluated. All of them were selected from the same race and geographical area. The results indicated an increase of the mutant G allele in the control group, which leads to a decreasing in the incidence of gastric cancer (P caspase 9 polymorphism could be a useful marker in personal sensitivity to gastric cancer and help to cancer treatment and prevention process. It is concluded that caspase gene variation may be a diagnostic factor in the gastric cancer.

  4. Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2016-08-01

    Full Text Available The pathological changes of Parkinson’s disease (PD are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1 and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2 for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways.

  5. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  6. Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis.

    Science.gov (United States)

    Stefanelli, C; Bonavita, F; Stanic', I; Pignatti, C; Flamigni, F; Guarnieri, C; Caldarera, C M

    1999-05-21

    Polyamines are ubiquitous organic cations required for cell proliferation. However, some evidence suggested that their excessive accumulation can induce apoptosis. We show here that, in a post-nuclear extract from U937 cells, the addition of spermine triggers the death program, represented by cytochrome c exit from mitochondria, the dATP-dependent processing of pro-caspase-3 and the onset of caspase activity. Spermine is more effective than spermidine, whereas putrescine has no effect. Polyamine acetylation abolishes their pro-apoptotic power. These data demonstrate a direct mechanism responsible for polyamine toxicity and also suggest that an excessive elevation of free polyamines could be involved in the transduction of a death signal.

  7. Purification, crystallization and preliminary crystallographic characterization of the caspase-recruitment domain of human Nod1

    Energy Technology Data Exchange (ETDEWEB)

    Srimathi, Thiagarajan; Robbins, Sheila L.; Dubas, Rachel L. [Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Seo, Jang-Hoon [Department of Clinical Laboratory Science, Shinheung College, Uijeongbu, Kyungki-Do 480-701 (Korea, Republic of); Park, Young Chul, E-mail: young.park@fccc.edu [Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States)

    2007-01-01

    The caspase-recruitment domain of the cytosolic pathogen receptor Nod1 was crystallized. X-ray diffraction data were collected to 1.9 Å resolution. The caspase-recruitment domain (CARD) is known to play an important role in apoptosis and inflammation as an essential protein–protein interaction domain. The CARD of the cytosolic pathogen receptor Nod1 was overexpressed in Escherichia coli and purified by affinity chromatography and gel filtration. The purified CARD was crystallized at 277 K using the microseeding method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals belong to space group P3{sub 1} or P3{sub 2}, with unit-cell parameters a = b = 79.1, c = 80.9 Å. Preliminary analysis indicates that there is one dimeric CARD molecule in the asymmetric unit.

  8. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP.

    Science.gov (United States)

    Goto, Eiji; Tokunaga, Fuminori

    2017-02-09

    NF-κB is crucial to regulate immune and inflammatory responses and cell survival. LUBAC generates a linear ubiquitin chain and activates NF-κB through ubiquitin ligase (E3) activity in the HOIP subunit. Here, we show that HOIP is predominantly cleaved by caspase at Asp390 upon apoptosis, and that is subjected to proteasomal degradation. We identified that FADD, as well as NEMO, is a substrate for LUBAC. Although the C-terminal fragment of HOIP retains NF-κB activity, linear ubiquitination of NEMO and FADD decreases upon apoptosis. Moreover, the N-terminal fragment of HOIP binds with deubiquitinases, such as OTULIN and CYLD-SPATA2. These results indicate that caspase-mediated cleavage of HOIP divides critical functional regions of HOIP, and that this regulates linear (de)ubiquitination of substrates upon apoptosis.

  9. Pharmacological modulation of caspase-8 in thymus-related medical conditions.

    Science.gov (United States)

    Pozzesi, Nicola; Fierabracci, Alessandra; Thuy, Trinh Thy; Martelli, Maria Paola; Liberati, Anna Marina; Ayroldi, Emira; Riccardi, Carlo; Delfino, Domenico V

    2014-10-01

    The thymus is a lymphoid organ that governs the development of a diverse T-cell repertoire capable of defending against nonself-antigens and avoiding autoimmunity. However, the thymus can also succumb to different diseases. Hypertrophic diseases, such as thymomas, are typically associated with impairment of negative selection, which leads to autoimmune disease, or disruption of positive selection, which results in immunodeficiency. Hypotrophic diseases of the thymus can manifest during acute infections, cancer, allogeneic bone marrow transplantation, or with aging. This condition leads to decreased immune function and can be treated by either replacing lost thymic tissue or by preventing thymic tissue death. Studies have demonstrated the critical role of caspase-8 in regulating apoptosis in the thymus. In this review, we discuss how pharmacological activation and inhibition of caspase-8 can be used to treat hypertrophic and hypotrophic diseases of the thymus, respectively, to improve its function.

  10. Anticancer Effect of Ursodeoxycholic Acid in Human Oral Squamous Carcinoma HSC-3 Cells through the Caspases

    Directory of Open Access Journals (Sweden)

    Liang Pang

    2015-05-01

    Full Text Available Bear bile was used as a traditional medicine or tonic in East Asia, and ursodeoxycholic acid (UDCA is the most important compound in bear bile. Further, synthetic UDCA is also used in modern medicine and nutrition; therefore, its further functional effects warrant research, in vitro methods could be used for the fundamental research of its anticancer effects. In this study, the apoptotic effects of UDCA in human oral squamous carcinoma HSC-3 cells through the activation of caspases were observed by the experimental methods of MTT (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide assay, DAPI (4’,6-diamidino-2-phenylindole staining, flow cytometry analysis, RT-PCR (reverse transcription-polymerase chain reaction assay and Western blot assay after HSC-3 cells were treated by different concentrations of UDCA. With 0 to 400 μg/mL UDCA treatment, UDCA had strong growth inhibitory effects in HSC-3 cells, but had almost no effect in HOK normal oral cells. At concentrations of 100, 200 and 400 μg/mL, UDCA could induce apoptosis compared to untreated control HSC-3 cells. Treatment of 400 μg/mL UDCA could induce more apoptotic cancer cells than 100 and 200 μg/mL treatment; the sub-G1 DNA content of 400 μg/mL UDCA treated cancer cells was 41.3% versus 10.6% (100 μg/mL and 22.4% (200 μg/mL. After different concentrations of UDCA treatment, the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, Fas/FasL (Fas ligand, TRAIL (TNF-related apoptosis-inducing ligand, DR4 (death receptor 4 and DR5 (death receptor 5 were increased in HSC-3 cells, and mRNA and protein expressions of Bcl-2 (B-cell lymphoma 2, Bcl-xL (B-cell lymphoma-extra large, XIAP (X-linked inhibitor of apoptosis protein, cIAP-1 (cellular inhibitor of apoptosis 1, cIAP-2 (cellular inhibitor of apoptosis 2 and survival were decreased. Meanwhile, at the highest concentration of 400 μg/mL, caspase-3, caspase-8, caspase-9, Bax, Fas/FasL, TRAIL, DR4, DR5, and

  11. Caspases and p38 MAPK regulate endothelial cell adhesiveness for mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Irina A Potapova

    Full Text Available Mesenchymal stem cells natively circulating or delivered into the blood stream home to sites of injury. The mechanism of mesenchymal stem cell homing to sites of injury is poorly understood. We have shown that the development of apoptosis in endothelial cells stimulates endothelial cell adhesiveness for mesenchymal stem cells. Adhesion of mesenchymal stem cells to apoptotic endothelial cells depends on the activation of endothelial caspases and p38 MAPK. Activation of p38 MAPK in endothelial cells has a primary effect while the activation of caspases potentiates the mesenchymal stem cell adhesion. Overall, our study of the mesenchymal stem cell interaction with endothelial cells indicates that mesenchymal stem cells recognize and specifically adhere to distressed/apoptotic endothelial cells.

  12. Prediction of a caspase-like fold in Tannerella forsythia virulence factor PrtH.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2009-05-01

    Tannerella forsythia is a bacterial pathogen involved in periodontal disease. A cysteine protease PrtH has been characterized in this bacterium as a virulence factor. PrtH has the activity of detaching adherent cells from substratum, and the level of PrtH is associated with periodontal attachment loss. No reports exist on the structure, active site, and catalytic mechanism of PrtH. Using comparative sequence and structural analyses, we have identified homologs of PrtH in a number of bacterial and archaeal species. PrtH was found to be remotely related to caspases and other proteases with a caspase-like fold, such as gingipains from another periodontal pathogen Porphyromonas gingivalis. Our results offer structural and mechanistic insights into PrtH and its homologs, and help classification of this protease family.

  13. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Koerner, Michael R., E-mail: mkoern2@illinois.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Lampe, Jed N. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Farhood, Anwar [Department of Pathology, Brackenridge Hospital, Austin, TX 78701 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2011-12-15

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase

  14. An activity of caspase-3 and cathepsin D at the different subtypes of ischemic stroke

    Directory of Open Access Journals (Sweden)

    Наталія Романівна Сохор

    2015-06-01

    Full Text Available Aim of research – To define the dynamics of activity of caspase-3, cathepsin D, apoptosis of leukocytes at the different subtypes of ischemic stroke (IS in an acute period.Methods. There were examined 232 patients in an acute period of ІS: 56 (24,1%- with hemodynamic (HDS, 62 (2,.7% – with atherothrombotic (АТS, 60 (25,9% – with cardioembolic (CЕS і 54 (23,3% – with lacunar stroke (LS. There was defined the number of leukocytes at the stage of apoptosis (ANV+-cells, necrosis (PI+-cells, with an increased content of the active forms of oxygen (AFO+-cells and with lowered mitochondrial potential (Mito+-cells, activity of caspase-3 and cathepsin D.Results. It was established that at all subtypes of IS mitochondrial dysfunction, apoptosis and necrosis of leukocytes are observed on the 1st day it were presented in increase of content of  ANV+-, PI+-, АFO+- and Mito+-cells and were the mostly apparent at ATS.   The highest activity of caspase-3 on the 1st day was noticed at LS it did not correlate with a number of cells at the stage of apoptosis and probably was connected with a predominant impact of caspase-3 on endothelium and with hyperpermeability of hematoencephalic barrier. In patients with ATS an activity of cathepsin D increased during the 1st week of disease that can indicate an activation of lysosomal way of activation of apoptosis that courses parallel to an apoptosis connected with mitochondrial dysfunction.Conclusions.  The different ways of apoptotic cellular death that depends on subtype of stroke activate in an acute period of IS

  15. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD

    DEFF Research Database (Denmark)

    Riechers, Sean-Patrick; Butland, Stefanie; Deng, Yu;

    2016-01-01

    Caspase-6 (CASP6) has emerged as an important player in Huntington disease (HD), Alzheimer disease (AD) and cerebral ischemia, where it is activated early in the disease process. CASP6 also plays a key role in axonal degeneration, further underscoring the importance of this protease in neurodegen...... network provides important new information regarding key pathways of interactors of CASP6 and highlights potential novel therapeutic targets for HD, AD and cerebral ischemia....

  16. The loss of functional caspase-12 in Europe is a pre-neolithic event.

    Directory of Open Access Journals (Sweden)

    Montserrat Hervella

    Full Text Available BACKGROUND: Caspase-12 (CASP12 modulates the susceptibility to sepsis. In humans, the "C" allele at CASP12 rs497116 has been associated with an increased risk of sepsis. Instead, the derived "T" allele encodes for an inactive caspase-12. Interestingly, Eurasians are practically fixed for the inactive variant, whereas in Sub-Saharan Africa the active variant is still common (~24%. This marked structure has been explained as a function of the selective advantage that the inactive caspase-12 confers by increasing resistance to infection. As regards to both when positive selection started acting and as to the speed with which fixation was achieved in Eurasia, estimates depend on the method and assumptions used, and can vary substantially. Using experimental evidence, we propose that, least in Eurasia, the increase in the frequency of the T allele might be related to the selective pressure exerted by the increase in zoonotic diseases transmission caused by the interplay between increased human population densities and a closer contact with animals during the Neolithic. METHODOLOG/PRINCIPAL FINDINGS: We genotyped CASP12 rs497116 in prehistoric individuals from 6 archaeological sites from the North of the Iberian Peninsula that date from Late Upper Paleolithic to Late Neolithic. DNA extraction was done from teeth lacking cavities or breakages using standard anti-contamination procedures, including processing of the samples in a positive pressure, ancient DNA-only chamber, quantitation of DNAs by qPCR, duplication, replication, genotyping of associated animals, or cloning of PCR products. Out of 50, 24 prehistoric individuals could finally be genotyped for rs497116. Only the inactive form of CASP12 was found. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the loss of caspase-12 in Europe predates animal domestication and that consequently CASP12 loss is unlikely to be related to the impact of zoonotic infections transmitted by livestock.

  17. Evodiamine induces caspase-dependent apoptosis and S phase arrest in human colon lovo cells.

    Science.gov (United States)

    Zhang, Chun; Fan, Xia; Xu, Xiang; Yang, Xue; Wang, Xi; Liang, Hua-Ping

    2010-09-01

    Evodiamine, one of the major bioactive components derived from Wu-Chu-Yu, a long-standing Chinese herb, was reported to possess anticancer activity. In this study, we investigated the in-vitro and in-vivo anticancer effects of evodiamine on human colon lovo cells and their potential mechanisms. The 3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the in-vitro proliferation of lovo cells was inhibited by evodiamine of various concentrations. Flow cytometry showed a time-dependent increase in the percentage of apoptotic cells and cells arrested in the S phase after treatment with 60 micromol/l evodiamine. Western blot indicated that evodiamine treatment decreased the expression of procaspase-8, procaspase-9, and procaspase-3 in lovo cells, accompanied by the activation of caspase-8, caspase-9, and caspase-3. However, the translocation of apoptosis-inducing factor and endonuclease G was not affected by evodiamine. Moreover, western blot assay also suggested that evodiamine-induced S phase arrest in lovo cells was associated with a marked decrease in the protein expression of cyclinA, cyclinA-dependent kinase 2, and cdc25c. In-vivo antineoplastic characteristics of evodiamine were examined in a human colon carcinoma lovo xenograft model and results showed that evodiamine increased the number of TUNEL-positive cells accompanied by the downregulated expression of procaspase-8, procaspase-9, and procaspase-3. In conclusion, these findings indicated that evodiamine could inhibit the in-vitro and in-vivo proliferation of human colon lovo cells by inducing caspase-dependent apoptosis and S phase arrest.

  18. A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage.

    Science.gov (United States)

    Cavailles, Pierre; Flori, Pierre; Papapietro, Olivier; Bisanz, Cordelia; Lagrange, Dominique; Pilloux, Ludovic; Massera, Céline; Cristinelli, Sara; Jublot, Delphine; Bastien, Olivier; Loeuillet, Corinne; Aldebert, Delphine; Touquet, Bastien; Fournié, Gilbert J; Cesbron-Delauw, Marie France

    2014-04-01

    Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights

  19. IFI16 Protein Mediates the Anti-inflammatory Actions of the Type-I Interferons through Suppression of Activation of Caspase-1 by Inflammasomes

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2011-01-01

    Background Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome. Methodology/ Principal Findings We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. Conclusions/Significance Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti

  20. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes.

    Directory of Open Access Journals (Sweden)

    Sudhakar Veeranki

    Full Text Available BACKGROUND: Type-I interferons (IFNs are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other inflammasome. METHODOLOGY/ PRINCIPAL FINDINGS: We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14(+ and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β or type-II (IFN-γ IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. CONCLUSIONS/SIGNIFICANCE: Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a

  1. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells.

    Science.gov (United States)

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2016-02-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  2. STEREOLOGIC ESTIMATION OF KI-67, CASPASE 3 AND GSTP1 POSITIVE CELLS IN PROSTATE LESIONS

    Directory of Open Access Journals (Sweden)

    Luis Santamaría

    2011-05-01

    Full Text Available Cell proliferation, caspase 3 and pi-form of glutathione S transferase (GSTP1 were evaluated in prostate carcinoma (PCA, proliferative inflammatory atrophy (PIA and prostate intraepithelial neoplasia (PIN. Forty biopsies were classified as: without morphological lesions (controls: CTR, PIA, PIN and PCA. Ki67, caspase3 and GSTP1 were immunostained. The following estimates were performed: Numerical densities of Ki67+ cells (NVEPKi67, of all epithelial cells (NVEPtotal and of GSTP1+ cells (NVEPGSTP1; labelling index for Ki67 (LIKi67; volume fraction to caspase 3 positive tissue (VVcaspase 3 and of GSTP1 positive tissue (VVGSTP1. ANOVA was performed to compare the groups. NVEPtotal and NVEPKi67 were increased in PIA. LIKi67 was only increased in PCA. VVcaspase 3 was decreased in PIN and PCA. VVEGSTP1 was decreased in PCA. In our results PIA lacks the characteristics of a premalignant lesion. The result may be explained by the use of unbiased quantitative methods, the inadequate definition of PIA and the scarce inflammation observed in the samples with PIA included in this study.

  3. INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1beta generation.

    Science.gov (United States)

    Lamkanfi, Mohamed; Denecker, Geertrui; Kalai, Michael; D'hondt, Kathleen; Meeus, Ann; Declercq, Wim; Saelens, Xavier; Vandenabeele, Peter

    2004-12-10

    Using in silico methods for screening the human genome for new caspase recruitment domain (CARD) proteins, we have identified INCA (Inhibitory CARD) as a protein that shares 81% identity with the prodomain of caspase-1. The INCA gene is located on chromosome 11q22 between the genes of COP/Pseudo-ICE and ICEBERG, two other CARD proteins that arose from caspase-1 gene duplications. We show that INCA mRNA is expressed in many tissues. INCA is specifically upregulated by interferon-gamma in the monocytic cell lines THP-1 and U937. INCA physically interacts with procaspase-1 and blocks the release of mature IL-1beta from LPS-stimulated macrophages. Unlike COP/Pseudo-ICE and procaspase-1, INCA does not interact with RIP2 and does not induce NF-kappaB activation. Our data show that INCA is a novel intracellular regulator of procaspase-1 activation, involved in the regulation of pro-IL-1beta processing and its release during inflammation.

  4. Salmonella and Caspase-1: a complex interplay of detection and evasion

    Directory of Open Access Journals (Sweden)

    Edward A Miao

    2011-04-01

    Full Text Available Salmonellae are intracellular pathogens that replicate within epithelial cells and macrophages, and are a significant public health threat in both developed and developing countries. The innate immune system detects microbes through pattern recognition receptors, which are compartmentalized on the subcellular level to detect either extracellular (e.g. TLRs or cytosolic (e.g. NLRs perturbations. Salmonella infection is detected by the NLRC4 and NLRP3 inflammasomes, which activate Caspase-1, resulting in reduced bacterial burdens during infection. NLRC4 responds to the SPI1 type III secretion system via detection of inadvertently translocated flagellin and rod protein. The signals for NLRP3 detection during Salmonella infection remain undefined. Salmonella have evolved evasion strategies to attenuate Caspase-1 responses. We review recent findings describing the interplay between detection and evasion of S. typhimurium infection by the inflammasome. We discuss how the interplay between detection and evasion affects Caspase-1 effector functions mediated by IL-1β secretion, IL-18 secretion, and pyroptosis.

  5. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases.

    Science.gov (United States)

    Meunier, Etienne; Dick, Mathias S; Dreier, Roland F; Schürmann, Nura; Kenzelmann Broz, Daniela; Warming, Søren; Roose-Girma, Merone; Bumann, Dirk; Kayagaki, Nobuhiko; Takeda, Kiyoshi; Yamamoto, Masahiro; Broz, Petr

    2014-05-15

    Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.

  6. Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Özdemir B Handan

    2006-06-01

    Full Text Available Abstract Background Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3 in patients with generalized aggressive periodontitis (GAP Methods Eight patients with GAP, who had sites with probing depths (PD > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry Results There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05. Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. Conclusion The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction.

  7. Julibroside J8-induced HeLa cell apoptosis through caspase pathway.

    Science.gov (United States)

    Zheng, L; Zheng, J; Wu, L-J; Zhao, Y-Y

    2006-01-01

    The julibroside J8 was isolated from the Albizia julibrissin and evaluated for antiproliferatived on six cancer cell lines (BGC-823, Bel-7402, HeLa, PC-3MIE8, MDA-MB-435 and LH-60) in vitro. Julibroside J8 at 100 microg mL- 1 (46.08 micromol.L- 1) significantly inhibited growth in the first three cell lines. In addition, in HeLa cells typical apoptotic changes in morphology were observed, and further, nuclear damage was observed by Giemsa staining and DNA fragmentation was exhibited. Effects of julibrosideJ8 on induction of DNA fragmentation, caspase-3 activation and downregulation of ICAD expression were effectively inhibited by a caspase-3 inhibitor, z-DEVD-fmk. In addition, apoptosis induced with julibroside J8 was associated with an increase in expression of the apoptosis inducer Bax, and a significant reduction in expression of the apoptosis suppressor Bcl-2 in mitochondria. These results suggest that julibroside J8 induces HeLa death through caspase pathway.

  8. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release.

    Science.gov (United States)

    Thornton, Peter; Pinteaux, Emmanuel; Gibson, Rosemary M; Allan, Stuart M; Rothwell, Nancy J

    2006-07-01

    Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases.

  9. Caspase-3在大鼠中枢神经系统的表达研究%Study on the expression of caspase-3 in central nervous system of rat

    Institute of Scientific and Technical Information of China (English)

    陈雪梅; 杜显刚; 官鹏; 谭志巍; 王亚琴

    2005-01-01

    目的研究caspase-3在大鼠中枢神经系统的表达及其意义.方法用western-blot方法对出生1天和3个月SD大鼠的大脑皮质、中脑和小脑组织的caspase-3进行半定量测定.结果出生1天大鼠脑的caspase-3表达较高,出生3个月大鼠脑的caspase-3表达较低.结论caspase-3在中枢神经系统的发育成熟过程中对神经元的凋亡起着关键性作用.

  10. Effects of Berberine on the Expression of Caspase-3 Gene in Human Cervical Cancer Hela Cell%小檗碱对宫颈癌Hela细胞Caspase-3基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    张丽萍; 张志军; 程萍; 肖劲松

    2010-01-01

    日的:研究小檗碱(berberlne)对人宫颈癌Hela细胞体外增殖、凋亡及凋亡相关基因Caspase-3表达的影响.方法:WIT法测定不同浓度(0~40 μmol/L)berberine干预Hela细胞后的凋亡率;RT-PCR检测Caspase-3 mRNA表达水平.结果:berberine呈剂量-时间依赖方式抑制Hela细胞的生长(P<0.01);且随着berberine浓度增高,细胞凋亡增加,Caspase-3 mRNA表达上调(P<0.001).结论:berberine抑制人宫颈癌Hela细胞生长、诱导凋亡的机制可能与上调Caspase-3 mRNA表达有关.

  11. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease

    Science.gov (United States)

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection. PMID:28280602

  12. Human keratinocyte caspase-14 expression is altered in human epidermal 3D models by dexamethasone and by natural products used in cosmetics.

    Science.gov (United States)

    Kataoka, Saori; Hattori, Kenji; Date, Akira; Tamura, Hiroomi

    2013-10-01

    Caspase-14 is a cysteinyl-aspartate-specific proteinase that is specifically expressed in epidermal keratinocytes. Dysregulation of caspase-14 expression is implicated in impaired skin barrier formation. To elucidate the regulation of caspase-14 in differentiated keratinocytes, we characterized the expression of caspase-14 in normal human epidermal keratinocytes (NHEKs) and two types of three-dimensional (3D) human epidermis culture models, EPI-200 and EPI-201, via RT-PCR and immunoblot analyses. Caspase-14 expression was absent in subconfluent NHEKs, but was present in confluent NHEKs as well as those induced to differentiate by calcium. Caspase-14 expression levels in the 3D epidermis models were almost equal to that in the Ca(2+)-treated differentiated NHEKs. Despite the presence of caspase-14 expression in these models, caspase-14 activity was found only in the mature 3D skin model, EPI-200. This was confirmed by detection of a 17 kDa cleaved fragment of caspase-14 present only in the EPI-200 model. Since glucocorticoid (GC) receptor is required for skin barrier competence, we investigated whether the GC dexamethasone (Dex) and various natural components of common skin moisturizers affect caspase-14 expression in keratinocytes. Dex decreased caspase-14 expression in undifferentiated, but not differentiated, NHEKs. Conversely, Dex increased caspase-14 expression in both 3D skin models, although it did not alter caspase protease activity. Similar to treatment with Dex, treatment of the premature 3D skin mode, EPI-201 with a Galactomyces ferment filtrate markedly increased expression of caspase-14. Further, these results suggest that the effect of Dex, or lack thereof, on caspase-14 expression is dependent on the stage of keratinocyte differentiation.

  13. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression.

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC.

  14. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC. PMID:27642320

  15. Impact of Curcuma mangga Val. Rhizome Essential Oil to p53, Bcl-2, H-Ras and Caspase-9 expression of Myeloma Cell Line

    Directory of Open Access Journals (Sweden)

    Endang Astuti

    2015-12-01

    Full Text Available Cancer is a disease, a public health problem, which is found in the world as well as in Indonesia. Ingeneral, some of cancer theraphies are ineffective, characterized by the resistance performance of cancer cell line,the exposed normal cell and by the side effects. Nowadays, studies to fi nd the specifi c and safely anti-cancerdrugs were increased by the time. Several studies revealed that Curcuma mangga Val. Rhizome contains somesecondary metabolites, essential or non-essential oil, which has cytotoxic activities to the cancer cells. Basedon these anti-cancer potentials, this study has several aims to recognize anti-cancer selectivity and molecularmechanism by inducting apoptosis and inhibiting myeloma cell proliferation. To C. mangga Val. essential oil,immunocyto chemical test was performed to determine the expression of p53, caspase-9, Bcl-2, H-Ras proteinwhile TUNEL test was performed to determine the number of apoptosis cells.The results of this study shown that anti-cancer molecular mechanism of C. mangga Val. essential oil tomyeloma cell line was performed by increasing apoptosis; by increasing the expression of pro-apoptosis p53,caspase-9 protein and reducing protein which is increasing proliferation Bcl-2 and H-Ras.

  16. Rational Design of a GFP-Based Fluorogenic Caspase Reporter for Imaging Apoptosis In Vivo.

    Science.gov (United States)

    To, Tsz-Leung; Schepis, Antonino; Ruiz-González, Rubén; Zhang, Qiang; Yu, Dan; Dong, Zhiqiang; Coughlin, Shaun R; Shu, Xiaokun

    2016-07-21

    Fluorescence resonance energy transfer-based executioner caspase reporters using GFP are important tools for imaging apoptosis. While these reporters are useful for imaging apoptosis in cultured cells, their in vivo application has been handicapped by poor signal to noise. Here, we report the design and characterization of a GFP-based fluorogenic protease reporter, dubbed ZipGFP. ZipGFP-based TEV protease reporter increased fluorescence 10-fold after activation by protease. A ZipGFP-based executioner caspase reporter visualized apoptosis in live zebrafish embryos with spatiotemporal resolution. Thus, the ZipGFP-based caspase reporter may be useful for monitoring apoptosis during animal development and for designing reporters of proteases beyond the executioner caspases.

  17. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  18. Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments.

    Science.gov (United States)

    Schlesinger, Thomas K; Bonvin, Christelle; Jarpe, Matthew B; Fanger, Gary R; Cardinaux, Jean-Rene; Johnson, Gary L; Widmann, Christian

    2002-03-22

    MEKK1, a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase, generates anti-apoptotic signaling as a full-length protein but induces apoptosis when cleaved by caspases. Here, we show that caspase-dependent cleavage of MEKK1 relocalizes the protease-generated 91-kDa kinase fragment from a particulate fraction to a soluble cytoplasmic fraction. Relocalization of MEKK1 catalytic activity is necessary for the pro-apoptotic function of MEKK1. The addition of a membrane-targeting signal to the 91-kDa fragment inhibits caspase activation and the induction of apoptosis but does not change the activation of JNK, ERK, NFkappaB, or p300. These results identify the caspase cleavage of MEKK1 as a dynamic regulatory mechanism that alters the subcellular distribution of MEKK1, changing its function to pro-apoptotic signaling, which does not depend on the currently described MEKK1 effectors.

  19. Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment.

    Science.gov (United States)

    Amna, Touseef; Van Ba, Hoa; Vaseem, M; Hassan, M Shamshi; Khil, Myung-Seob; Hahn, Y B; Lee, Hak-Kyo; Hwang, I H

    2013-06-01

    We report herein the synthesis and characterization of copper oxide quantum dots and their cytotoxic impact on mouse C2C12 cells. The utilized CuO quantum dots were prepared by the one-pot wet chemical method using copper acetate and hexamethylenetetramine as precursors. The physicochemical characterization of the synthesized CuO quantum dots was carried out using X-ray diffraction, energy-dispersive X-ray analysis, and transmission electron microscopy. To examine the in vitro cytotoxicity, C2C12 cell lines were treated with different concentrations of as-prepared quantum dots and the viability of cells was analyzed using Cell Counting Kit-8 assay at regular time intervals. The morphology of the treated C2C12 cells was observed under a phase-contrast microscope, whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. To gain insight into the mechanism of cell death, we examined the effect of CuO quantum dots on the candidate genes such as caspases 3 and 7, which are key mediators of apoptotic events. In vitro investigations of the biological effect of CuO quantum dots have shown that it binds genomic DNA, decreases significantly the viability of cells in culture in a concentration (10-20 μg/mL) dependent manner, and inhibits mitochondrial caspases 3 and 7. To sum up, the elucidation of the pathways is to help in understanding CuO quantum dot-induced effects and evaluating CuO quantum dot-related hazards to human health.

  20. Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells.

    Science.gov (United States)

    Kim, Byeong Mo; Maeng, Kyungah; Lee, Kee-Ho; Hong, Sung Hee

    2011-01-28

    The present study was performed to investigate the possible combined use of the Cox-2 inhibitor niflumic acid and the PPARγ ligand ciglitazone and to elucidate the mechanisms underlying enhanced apoptosis by this combination treatment in human lung cancer cells. Combined niflumic acid-ciglitazone treatment synergistically induced apoptotic cell death, activated caspase-9, caspase-3, and induced caspase-3-mediated PARP cleavage. The combination treatment also triggered apoptosis through caspase-8/Bid/Bax activation, and the inhibition of caspase-8 suppressed caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and concomitant apoptosis. In addition, combined niflumic acid-ciglitazone treatment significantly induced ER stress responses, and suppression of CHOP expression significantly attenuated the combined niflumic acid-ciglitazone treatment-induced activation of caspase-8 and caspase-3, and the subsequent apoptotic cell death, indicating a role of ER stress in caspase-8 activation and apoptosis. Interestingly, the pro-apoptotic effects of combined niflumic acid-ciglitazone treatment were realized through Cox-2- and PPARγ-independent mechanisms. Taken together, these results suggest that sequential ER stress and caspase-8 activation are critical in combined niflumic acid-ciglitazone treatment-induced apoptosis in human lung cancer cells.

  1. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells.

    Science.gov (United States)

    Antonopoulos, Christina; El Sanadi, Caroline; Kaiser, William J; Mocarski, Edward S; Dubyak, George R

    2013-11-01

    The identification of noncanonical (caspase-1-independent) pathways for IL-1β production has unveiled an intricate interplay between inflammatory and death-inducing signaling platforms. We found a heretofore unappreciated role for caspase-8 as a major pathway for IL-1β processing and release in murine bone marrow-derived dendritic cells (BMDC) costimulated with TLR4 agonists and proapoptotic chemotherapeutic agents such as doxorubicin (Dox) or staurosporine (STS). The ability of Dox to stimulate release of mature (17-kDa) IL-1β was nearly equivalent in wild-type (WT) BMDC, Casp1(-/-)Casp11(-/-) BMDC, WT BMDC treated with the caspase-1 inhibitor YVAD, and BMDC lacking the inflammasome regulators ASC, NLRP3, or NLRC4. Notably, Dox-induced production of mature IL-1β was temporally correlated with caspase-8 activation in WT cells and greatly suppressed in Casp8(-/-)Rip3(-/-) or Trif(-/-) BMDC, as well as in WT BMDC treated with the caspase-8 inhibitor, IETD. Similarly, STS stimulated robust IL-1β processing and release in Casp1(-/-)Casp11(-/-) BMDC that was IETD sensitive. These data suggest that TLR4 induces assembly of caspase-8-based signaling complexes that become licensed as IL-1β-converting enzymes in response to Dox and STS. The responses were temporally correlated with downregulation of cellular inhibitor of apoptosis protein 1, suggesting suppressive roles for this and likely other inhibitor of apoptosis proteins on the stability and/or proteolytic activity of the caspase-8 platforms. Thus, proapoptotic chemotherapeutic agents stimulate the caspase-8-mediated processing and release of IL-1β, implicating direct effects of such drugs on a noncanonical inflammatory cascade that may modulate immune responses in tumor microenvironments.

  2. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.

  3. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.

    Science.gov (United States)

    Lee, Wing-Kee; Thévenod, Frank

    2008-12-01

    Apoptosis is a tightly regulated physiological process, which can be initiated by toxic stimuli, such as cadmium (Cd2+). Cd2+ (10-50 microM) induces a rapid increase in reactive oxygen species (ROS) (> or = 30 min) in a cell line derived from the S1 segment of rat kidney proximal tubule, without any apparent mitochondrial dysfunction. The sphingolipid ceramide is an important second messenger in apoptosis. Short exposure to Cd2+ (3h) causes an increase in ceramides, which occurs downstream of ROS formation, and may interact with cellular components, such as endoplasmic reticulum and mitochondria. Following apoptosis initiation, execution must take place. The classical executioners of apoptosis are caspases, a family of cysteine proteases. However, increasing studies report caspase-independent apoptosis, which questions the essentiality of caspases for apoptosis implementation. With low micromolar Cd2+ concentrations (calpains, has emerged. Calpain activation by Cd2+ (3-6h) seems to be regulated by ceramide levels, in order to induce apoptosis. Calpain and caspase substrates overlap but yield different fragments, which may explain their diverse downstream targets. Furthermore, calpains and caspases may interact with one another to enhance, as seen by Cd2+, or diminish apoptosis. In this review, we discuss novel roles for ceramides, calpains and caspases as part of Cd2+-induced apoptotic signalling pathways in the kidney proximal tubule and their in vivo relevance to Cd2+-induced nephrotoxicity.

  4. Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival.

    Science.gov (United States)

    Hain, Karolina O; Colin, Didier J; Rastogi, Shubhra; Allan, Lindsey A; Clarke, Paul R

    2016-05-27

    A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis.

  5. Activation of caspase 8 in the pituitaries of streptozotocin-induced diabetic rats: implication in increased apoptosis of lactotrophs.

    Science.gov (United States)

    Arroba, Ana I; Frago, Laura M; Argente, Jesús; Chowen, Julie A

    2005-10-01

    Lactotroph cell death is increased in streptozotocin-induced diabetic rats. To determine the mechanism involved, cell death proteins were accessed in pituitaries of diabetic (streptozotocin at 65 mg/kg, 2 months evolution) and control male rats by Western blot analysis and double immunohistochemistry. The intact and cleaved forms of caspase 9 were increased in diabetic rat pituitaries compared with controls. Although the proforms of caspases 3, 6, and 7 were increased in diabetic rat pituitaries, their activated forms were either unchanged or decreased. Activation of these effector caspases may be blocked by the increased expression of X-chromosome-linked inhibitor of apoptosis protein (XIAP) in diabetic rat pituitaries. However, in diabetic rats, XIAP expression in lactotrophs was decreased, suggesting that this cell type is not protected. Caspase 8, p53, and nuclear factor kappaB were more highly activated in diabetic rat pituitaries, with caspase 8 colocalization in lactotrophs being increased. These results suggest that, in the pituitaries of diabetic rats, the cascades of normal cell turnover are partially inhibited, possibly via XIAP, and this may be cell specific. Furthermore, activation of the extrinsic cell-death pathway, including activation of caspase 8, may underlie the diabetes-associated increase in lactotroph death.

  6. Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice.

    Science.gov (United States)

    Turmel, H; Hartmann, A; Parain, K; Douhou, A; Srinivasan, A; Agid, Y; Hirsch, E C

    2001-03-01

    In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of Parkinson's disease (PD), dopaminergic (DA) neurons have been shown to die by apoptosis. Moreover, recent postmortem and in vitro results have indicated that apoptotic cell death induced by 1-methyl-4-phenylpyridinium (MPP(+)) may be mediated by caspase-3. To establish whether caspase-3 activation may indeed play a role in an in vivo model of PD, we studied caspase-3 activation in C57Bl/6 mice subchronically intoxicated with MPTP. We show that caspase-3 activation peaks early, at days 1 and 2 after the end of MPTP intoxication. In contrast, pycnotic neurons persist until day 7 postintoxication, indicating that caspase-3 activation is an early and transient phenomenon in apoptotic death of DA neurons. We further demonstrate that loss of tyrosine hydroxylase (TH) immunoreactivity in this model is indeed due to cell loss rather than to loss of TH protein expression. We conclude that mice subchronically intoxicated with MPTP represent a valid PD model to study and manipulate caspase activation in vivo.

  7. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Wang, La; Song, Juan; Bao, Xi-Yan; Chen, Peng; Yi, Hua-Shan; Pan, Min-Hui; Lu, Cheng

    2016-10-15

    The identification and analysis of the caspases is essential to research into apoptosis in lepidoptera insects. The domesticated silkworm, Bombyx mori, is the model system for lepidopterans. In this study, we cloned and characterized a B. mori Dredd gene, BmDredd, the proposed insect homologue of human caspase-8, which encoded a polypeptide of 543 amino acids. BmDredd possesses a long N-terminal prodomain, a p20 domain, and a p10 domain. When transiently expressed in Escherichia coli cells, BmDredd underwent spontaneous cleavage and exhibited high proteolytic activity for caspase-8 substrate but relatively low for caspase-3 or -9 substrate. In addition, BmDredd induced apoptosis when transiently expressed in BmN-SWU1 cells, an ovarian cell line of B. mori. Moreover, after the treatment of Emodin, a novel apoptosis inducer, endogenous BmDredd expression level, the caspase-8 activity and the apoptotic rate increased notably in BmN-SWU1 cells. When BmDredd was subjected to interference in BmN-SWU1 cells and Emodin treatment, BmDredd expression levels decreased and the apoptotic rate also decreased significantly. These results suggest BmDredd is the homologue of human caspase-8 and plays a role in Emodin-induced apoptosis in BmN-SWU1 cells of B. mori.

  8. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors

    Directory of Open Access Journals (Sweden)

    Park Sung

    2008-12-01

    Full Text Available Abstract Background Caspase-3, a principal apoptotic effector that cleaves the majority of cellular substrates, is an important medicinal target for the treatment of cancers and neurodegenerative diseases. Large amounts of the protein are required for drug discovery research. However, previous efforts to express the full-length caspase-3 gene in E. coli have been unsuccessful. Results Overproducers of thrombin-activatable full-length caspase-3 precursors were prepared by engineering the auto-activation sites of caspase-3 precursor into a sequence susceptible to thrombin hydrolysis. The engineered precursors were highly expressed as soluble proteins in E. coli and easily purified by affinity chromatography, to levels of 10–15 mg from 1 L of E. coli culture, and readily activated by thrombin digestion. Kinetic evaluation disclosed that thrombin digestion enhanced catalytic activity (kcat/KM of the precursor proteins by two orders of magnitude. Conclusion A novel method for a large-scale preparation of active caspase-3 was developed by a strategic engineering to lack auto-activation during expression with amino acid sequences susceptible to thrombin, facilitating high-level expression in E. coli. The precursor protein was easily purified and activated through specific cleavage at the engineered sites by thrombin, generating active caspase-3 in high yields.

  9. Contributions of caspase-8 and -9 to liver injury from CYP2E1-produced metabolites of halogenated hydrocarbons.

    Science.gov (United States)

    Ijiri, Yoshio; Kato, Ryuji; Sadamatsu, Maiko; Takano, Mina; Yasuda, Yuki; Tanaka, Fumiaki; Oishi, Chiyo; Imano, Hideki; Okada, Yoshikatsu; Tanaka, Kazuhiko; Hayashi, Tetsuya

    2017-01-12

    1. Drug-induced liver injury is difficult to predict at the pre-clinical stage. This study aimed to clarify the roles of caspase-8 and -9 in CYP2E1 metabolite-induced liver injury in both rats and cell cultures in vitro treated with carbon tetrachloride (CCl4), halothane or sevoflurane. The human hepatocarcinoma functional liver cell line was maintained in 3-dimensional culture alone or in co-culture with human acute monocytic leukemia cells. 2. In vivo, laboratory indices of liver dysfunction and histology were normal after administration of sevoflurane. CCl4 treatment increased blood AST/ALT levels, liver caspase-3 and -9 activities and liver malondialdehyde, accompanied by centrilobular hepatocyte necrosis. Halothane increased AST/ALT levels, caspase-3 and -8 activities (but not malondialdehyde) concomitant with widespread hepatotoxicity. In vitro, CCl4 treatment increased caspase-9 activity and decreased both mitochondrial membrane potential (MMP) and cell viability. In co-culture, halothane increased caspase-8 activity and decreased MMP and cellular viability. There were no toxic responses in CYP2E1 knockdown in monoculture and co-culture. 3. CYP2E1-inducing compounds play a pivotal role in halogenated hydrocarbon toxicity. 4. Changes in hepatocyte caspase-8 and -9 activities could be novel biomarkers of metabolites causing DILI, and in pre-clinical development of new pharmaceuticals can predict nascent DILI in the clinical stage.

  10. Expression of caspase-3 and -9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage.

    Directory of Open Access Journals (Sweden)

    Matsuo M

    2001-12-01

    Full Text Available To clarify the involvement of the caspase family in the pathway of NO-induced chondrocyte apoptosis, osteoarthritis (OA cartilage obtained from 8 patients undergoing total hip arthroplasty were used for histopathological study. Cartilage samples taken from non-fibrillated areas of femoral head resected during surgery for femoral neck fracture were used for comparison. DNA fragmentation of chondrocytes was detected by the nick end-labeling (TUNEL method. Apoptosis was further confirmed by transmission electron microscopy. The distributions of nitrotyrosine (NT, caspase-3, and -9 were examined immunohistochemically. The populations of apoptotic as well as NT-, caspase-3-, and -9-positive cells were quantified by counting the number of cells in the superficial, middle, and deep layers, respectively. The TUNEL-positive cells were observed primarily in superficial proliferating chondrocytes, clustering chondrocytes, and deep-layer chondrocytes of OA cartilage. Few positive cells were seen in the proliferating chondrocytes in the middle layer. Positive reactions for caspase-3 and -9 were observed in chondrocytes in similar areas. Histological OA grade showed significant correlations with the mean populations of apoptotic chondrocytes (% apoptosis over the 3 areas. The populations of NT-positive cells (% NT over the same areas also showed significant correlation with OA grade. Positivity for caspase-3 closely correlated with the OA grade, % apoptosis and %NT. It was concluded that caspase-3 and -9 could play a role in NO-induced chondrocyte apoptosis in OA cartilage.

  11. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer

    Science.gov (United States)

    LEITE, Ana Flávia Schueler de Assumpção; BERNARDO, Vagner Gonçalves; BUEXM, Luisa Aguirre; da FONSECA, Eliene Carvalho; da SILVA, Licínio Esmeraldo; BARROSO, Danielle Resende Camisasca; LOURENÇO, Simone de Queiroz Chaves

    2016-01-01

    ABSTRACT Objective This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. Material and Methods A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. Results From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Conclusions Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors. PMID:27556207

  12. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  13. Expression and significance of caspase-3 in CD34+ cord blood cells%Caspase-3在脐血CD34+造血干/祖细胞中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    马艳萍; 邹萍; 肖娟; 黄士昂

    2002-01-01

    目的:探讨脐血CD34+ 干/祖细胞在不同细胞因子支持下的体外扩增过程中Caspase-3表达及意义.方法:采用RT-PCR、Wester blot和流式细胞仪分析技术测定脐血CD34+ 细胞在体外扩增过程中的生物学特性及Caspase-3的表达.结果:Caspase-3 mRNA在新鲜分离的脐血CD34+ 细胞中低水平表达,在细胞因子支持下体外培养3 d,扩增的CD34+ 细胞中Caspase-3 mRNA和蛋白质表达上调,但在该两种细胞中仅能检测到分子量为32 000的无活性酶原形式的Caspase-3,随着体外培养时间的延长,在IL-3、IL-6和GM-CSF组合条件下,Caspase-3被激活,可检测到分子量为20 000的裂解片段.结论:虽然造血干细胞的凋亡是个复杂的过程,但在脐血CD34+ 干/祖细胞体外扩增过程中,Caspase-3参与了凋亡事件并发挥着重要的作用.

  14. Study on Caspase-3 activity on trichloroethylene-induced human keratinocyte apoptosis%三氯乙烯诱导人角质形成细胞凋亡中Caspase-3活力的研究

    Institute of Scientific and Technical Information of China (English)

    汪立杰; 叶良平; 沈彤; 朱启星

    2009-01-01

    目的 观察三氯乙烯(TCE)诱导离体培养的人角质形成细胞(KC)Caspase-3活力变化及细胞凋亡情况,探讨TCE诱导KC凋亡的可能信号通路.方法 以不同浓度(0.125、0.250、0.500、1.000、2.000 mmol/L)TCE对离体分离培养的KC分别染毒至4、8、12、24 h;Caspase-3抑制剂(Z-DEVD-FMK)预处理组,先用100 μmol/L Z-DEVD-FMK预处理细胞1 h,然后再用2.000 mmol/L TCE染毒12 h.用分光光度法检测细胞Caspase-3活力变化,借助Annexin-V/PI双染和流式细胞仪检测细胞凋亡情况.结果 与空白对照相比,TCE染毒4 h,各TCE剂量组Caspase-3活力无明显变化(P>0.05);染毒8 h,1.000 mmol/LTCE组Caspase-3活力和2.000 mmol/LTCE组Caspase-3活力,与对照组相比差异有显著性(P0.01).结论 在TCE诱导离体培养的KC凋亡中,Caspase-3的活化可能发挥了重要的作用.

  15. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis.

    Science.gov (United States)

    Yang, Li; Wu, Gang; Poethig, R Scott

    2012-01-03

    Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3. suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants.

  16. DeadEasy caspase: automatic counting of apoptotic cells in Drosophila.

    Directory of Open Access Journals (Sweden)

    Manuel G Forero

    Full Text Available Development, cancer, neurodegenerative and demyelinating diseases, injury, and stem cell manipulations are characterised by alterations in cell number. Research into development, disease, and the effects of drugs require cell number counts. These are generally indirect estimates, because counting cells in an animal or organ is paradoxically difficult, as well as being tedious and unmanageable. Drosophila is a powerful model organism used to investigate the genetic bases of development and disease. There are Drosophila models for multiple neurodegenerative diseases, characterised by an increase in cell death. However, a fast, reliable, and accurate way to count the number of dying cells in vivo is not available. Here, we present a method based on image filtering and mathematical morphology techniques, to count automatically the number of dying cells in intact fruit-fly embryos. We call the resulting programme DeadEasy Caspase. It has been validated for Drosophila and we present examples of its power to address biological questions. Quantification is automatic, accurate, objective, and very fast. DeadEasy Caspase will be freely available as an ImageJ plug-in, and it can be modified for use in other sample types. It is of interest to the Drosophila and wider biomedical communities. DeadEasy Caspase is a powerful tool for the analysis of cell survival and cell death in development and in disease, such as neurodegenerative diseases and ageing. Combined with the power of Drosophila genetics, DeadEasy expands the tools that enable the use of Drosophila to analyse gene function, model disease and test drugs in the intact nervous system and whole animal.

  17. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution.

    Science.gov (United States)

    Sakamaki, Kazuhiro; Shimizu, Kouhei; Iwata, Hiroaki; Imai, Kenichiro; Satou, Yutaka; Funayama, Noriko; Nozaki, Masami; Yajima, Mamiko; Nishimura, Osamu; Higuchi, Mayura; Chiba, Kumiko; Yoshimoto, Michi; Kimura, Haruna; Gracey, Andrew Y; Shimizu, Takashi; Tomii, Kentaro; Gotoh, Osamu; Akasaka, Koji; Sawasaki, Tatsuya; Miller, David J

    2014-12-01

    The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit.

  18. Influence of ellagic acid on prostate cancer cell proliferation:A caspase-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    Arshi Malik; Sarah Afaq; Mohammad Shahid; Kafil Akhtar; Abdullah Assiri

    2011-01-01

    Objective:To evaluate the effect of allagic acid treatment on the cell viability of human prostate cancer cells.Methods: Ellagic acid (10-100mol/L) treatment (48 h) of human prostate carcinomaPC3 cells was found to result in a dose-dependent inhibition of cell growth and apoptosis ofPC3 cells as assessed by MTTassay, western blotting, flow cytometry and confocal microscopy.Results: We observed that ellagic acid treatment ofPC3 cells resulted in a dose dependent inhibition of cell growth/cell viability. This ellagic acid caused cell growth inhibition was found to be accompanied by induction of apoptosis, as assessed by the cleavage of poly (ADP-ribose) polymerase(PARP) and morphological changes. Further, induction of apoptosis accompanied a decrease in the levels of antiapoptotic protein Bcl-2 and increase in proapoptotic protein Bax, thus shifting the Bax: Bcl-2 ratio in favor of apoptosis. Ellagic acid treatment of PC3 cells was also found to result in significant activation of caspases, as shown by the dose dependent decrease in the protein expression of procaspase-3, -6, -8 and-9. This ellagic acid-mediated induction of apoptosis was significantly (80%-90%) inhibited by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethylketone(Z-VAD-FMK). Thus these data suggested an essential role of caspases in ellagic acid-mediated apoptosis ofPC3 cells.Conclusions:It is tempting to suggest that consumption of tropical pigmented fruits and vegetables could be an effective strategy to combat prostate cancer.

  19. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  20. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  1. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  2. 甲状腺癌组织中Caspase-9、Livin表达的临床意义%Clinical significance of expression of Caspase-9,Livin in thyroid cancer tissue

    Institute of Scientific and Technical Information of China (English)

    林建山; 郑剑忠; 黄冬凌; 李蜜; 邹桂华

    2015-01-01

    Objective To investigate the clinical significance of expression of cysteine aspartic acid protease(caspase)-9,Livin in thy-roid cancer tissue. Methods The expression of Caspase-9,Livin of thyroid cancer tissue in 65 patients and normal thyroid tissue in 40 patients were detected. The positive rate of expression of Caspase-9,Livin were compared in two different kind of tissues. The relationship between the expression of Livin,Caspase-9 and clinical pathological factors were analyzed withχ2 test. The relationship of expression of Livin,Caspase-9 in thyroid carcinoma tissue were analyzed with Spearman rank correlation test. Results Livin,Caspase-9 positive staining was mainly located in cytoplasm,and it was showed brown yellow patchy distribution or yellow brown granular. The positive expression rate of Caspase-9 was lower than that of normal thyroid tissue in thyroid cancer tissue(χ2 =38. 149,P =0. 000),the positive expression rate of Livin was higher than that of nor-mal thyroid tissue(χ2 =43. 161,P =0. 000). The expression of Livin,Caspase-9 in thyroid cancer tissue had nothing to do with the age,gen-der,tumor size and histologic types of patients( P ﹥0. 05),but it related to the tumor staging,lymph node metastasis and diolame invasion( P﹤0. 05). The expression of Livin,Caspase-9 in thyroid cancer tissues presented negative correlation( r = -0. 346,P ﹤0. 05). Conclusion Expression of Caspase-9 down-regulated in thyroid cancer tissue,while the expression of Livin increased,the abnormal expression participa-ted in the occurrence and development of thyroid cancer. The combined detection of Livin,Caspase-9 can be used as an important reference in-dex in judging the prognosis in patients with thyroid carcinoma.%目的:探讨甲状腺癌组织中半胱氨酸天冬氨酸蛋白酶( caspase)-9和凋亡抑制蛋白因子( Livin)表达的临床意义。方法检测65例甲状腺癌组织和40例正常甲状腺组织中Caspase-9、Livin表达情况,分别比较Caspase

  3. Ziyuglycoside II-induced apoptosis in human gastric carcinoma BGC-823 cells by regulating Bax/Bcl-2 expression and activating caspase-3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, A.K. [Department of General Surgery, Nanjing Medical University, Affiliated Hangzhou Hospital, Hangzhou (China); Zhou, H.; Xia, J.Z. [Department of General Surgery, Nanjing Medical University, Affiliated Wuxi Second Hospital, Wuxi (China); Jin, H.C. [Department of General Surgery, Nanjing Medical University, Affiliated Hangzhou Hospital, Hangzhou (China); Wang, K. [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Yan, J.; Zuo, J.B. [Department of General Surgery, Nanjing Medical University, Affiliated Wuxi Second Hospital, Wuxi (China); Zhu, X. [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Shan, T. [Department of General Surgery, Nanjing Medical University, Affiliated Wuxi Second Hospital, Wuxi (China)

    2013-08-13

    Ziyuglycoside II is an active compound of Sanguisorba officinalis L. that has anti-inflammation, antioxidation, antibiosis, and homeostasis properties. We report here on the anticancer effect of ziyuglycoside II on human gastric carcinoma BGC-823 cells. We investigated the effects of ziyuglycoside II on cell growth, cell cycle, and cell apoptosis of this cell line. Our results revealed that ziyuglycoside II could inhibit the proliferation of BGC-823 cells by inducing apoptosis but not cell cycle arrest, which was associated with regulation of Bax/Bcl-2 expression, and activation of the caspase-3 pathway. Our study is the first to report the antitumor potential of ziyuglycoside II in BGC-823 gastric cancer cells. Ziyuglycoside II may become a potential therapeutic agent against gastric cancer in the future.

  4. Hepatitis C virus core protein induces apoptosis-like caspase independent cell death

    Directory of Open Access Journals (Sweden)

    Gregor Michael

    2009-12-01

    Full Text Available Abstract Background Hepatitis C virus (HCV associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. Methods and Results The use of a tightly adjustable tetracycline (Tet-dependent HCV protein expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95 antibody. To further characterize cell death induction, a variety of different methods like fluorescence microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT-catalyzed deoxyuridinephosphate (dUTP-nick end labeling assay, Annexin V staining, Western blot and caspase activation assays were included into our analysis. Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect, while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated morphological features like the membrane blebbing and nuclei condensation and fragmentation could be clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated apoptosis. Conclusion Our data showed a caspase

  5. Loss of caspase-2 accelerates age-dependent alterations in mitochondrial production of reactive oxygen species

    OpenAIRE

    Lopez-Cruzan, Marisa; Herman, Brian

    2013-01-01

    Mitochondria are known to be a major source and target of oxidative stress. Oxidative stress increases during aging and is suggested to underlie in part the aging process. We have previously documented an increase in endogenous caspase-2 (casp2) activity in hepatocytes obtained from old (28 months) vs. young mice (5 months). More recently, we have shown that casp2 is activated by oxidative stress and is critical for mitochondrial oxidative stress-induced apoptosis. Since casp2 appears integra...

  6. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy.

    Science.gov (United States)

    Granville, D J; Carthy, C M; Jiang, H; Shore, G C; McManus, B M; Hunt, D W

    1998-10-16

    Photodynamic therapy (PDT) is a clinical approach that utilizes light-activated drugs for the treatment of a variety of pathologic conditions. The initiating events of PDT-induced apoptosis are poorly defined. It has been shown for other proapoptotic stimuli that the integral endoplasmic reticulum protein Bap31 is cleaved by caspases 1 and 8, but not by caspase-3. Further, a 20 kDa Bap31 cleavage fragment is generated which can induce apoptosis. In the current report, we sought to determine whether Bap31 cleavage and generation of p20 is an early event in PDT-induced apoptosis. The mitochondrial release of cytochrome c, involvement of caspases 1, 2, 3, 4, 6, 7, 8, and 10 and the status of several known caspase substrates, including Bap31, were evaluated in PDT-treated HeLa cells. Cytochrome c appeared in the cytosol immediately following light activation of the photosensitizer benzoporphyrin derivative monoacid ring A. Activation of caspases 3, 6, 7, and 8 was evident within 1-2 h post PDT. Processing of caspases 1, 2, 4, and 10 was not observed. Cleavage of Bap31 was observed at 2-3 h post PDT. The caspase-3 inhibitor DEVD-fmk blocked caspase-8 and Bap31 cleavage suggesting that caspase-8 and Bap31 processing occur downstream of caspase-3 activation in PDT-induced apoptosis. These results demonstrate that release of mitochondrial cytochrome c into the cytoplasm is a primary event following PDT, preceding caspase activation and cleavage of Bap31. To our knowledge, this is the first example of a chemotherapeutic agent inducing caspase-8 activation and demonstrates that caspase-8 activation can occur after cytochrome c release.

  7. Imaging of caspase-3 activation by a novel FRET probe composed of CFP and DsRed

    Science.gov (United States)

    Lin, Juquiang; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Caspases-3 is a kind of cysteine proteases and plays an important role in cell apoptosis. It has been reported that caspase-3 activation can be real-time detected in living cells by fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein and enhanced yellow fluorescent protein. However, the large spectral overlap between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) emission and the highly sensitivity to pH of YFP restricted their detecting sensitivity and reliability. CFP and red fluorescent protein (DsRed) possess superb wavelength separation of donor and acceptor emission spectra and DsRed was insensitive to pH, so the FRET probe composed of CFP and DsRed would be more suitable for imaging caspase-3 activation than the FRET probe composed of CFP and YFP. We constructed a vector that encoded CRS (caspase-3 recognition site) fused with CFP and DsRed (CFP-CRS-DsRed). In CFP-CRS-DsRed expressing tumor cells, FRET from CFP to DsRed could be detected. In the Clinical applications of cancer chemotherapy, cisplatin is one of the most broadly used drugs. It was already confirmed that caspase-3 was activated in HeLa cell treated by cisplatin. When the cells were stimulated with cisplatin, we found that the FRET efficient was remarkably decreased and then disappeared. It indicated that actived caspase-3 cleaved the CFP-CRS-DsRed fusion protein at CRS site. Thus, the FRET probe of CFP-CRS-DsRed could sensitively and reliably monitor caspase-3 activation in living cell. This probe will be highly useful for rapid-screening potential drugs that may target the apoptotic process and for imaging tumors in vivo.

  8. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion.

    Science.gov (United States)

    Plenchette, S; Moutet, M; Benguella, M; N'Gondara, J P; Guigner, F; Coffe, C; Corcos, L; Bettaieb, A; Solary, E

    2001-10-01

    Platelet transfusion is widely used to prevent bleeding in patients with severe thrombocytopenia. The maximal storage duration of platelet concentrates is usually 5 days, due to the platelet storage lesion that impairs their functions when stored for longer times. Some of the morphological and biochemical changes that characterize this storage lesion are reminiscent of cell death by apoptosis. The present study analyzed whether proteins involved in nucleated cell apoptosis could play a role in the platelet storage lesion. Storage of leukocyte-depleted platelets obtained by apheresis is associated with a late and limited activation of caspases, mainly caspase-3. This event correlates with an increased expression of the pro-apoptotic BH3-only protein Bim in the particulate fraction and a slight and late release of the pro-apoptotic mitochondrial protein Diablo/Smac in the cytosol. Platelets do not express the death receptors Fas, DR4 and DR5 on their plasma membrane, while the expression of the decoy receptor DcR2 increases progressively during platelet storage. Addition of low concentrations of the cryoprotector dimethylsulfoxide accelerates platelet caspase activation during storage, an effect that is partially prevented by the caspase inhibitor z-VAD-fmk. Altogether, DcR2 expression on the plasma membrane is an early event while caspase activation is a late event during platelet storage. These observations suggest that caspases are unlikely to account for the platelet storage lesion. As a consequence, addition of caspase inhibitors may not improve the quality of platelet concentrates stored in standard conditions.

  9. Effects of Fas, NF-κB and caspases on rat microvascular endothelial cell apoptosis induced by TNFα

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the apoptotic effect of TNFα on rat pulmonary microvascular endothelial cells (PMVEC) and the influences of Fas, NF-κB in its mechanism. METHODS: Apoptosis of PMVEC was analyzed and quantitated with TUNEL, flow cytometer. The distribution of NF-κB was detected via histoimmunochemical staining in TNF-treated cells and the control. Northern blot was applied to assess the influence of TNF on PMVEC Fas expression. Fas antibody was used to investigate the apoptotic effect of Fas on PMVEC. Activation of caspase-8 was detected with Western blot. Expression of caspase-3 was analyzed with histoimmunochemical staining. RESULTS: After treatment with 5×108 U/L TNF for 24 hours, viable PMVEC significantly diminished. Apoptosis rate was 14.0%±3.1% detected with TUNEL, and 13.1% with flow cytometer. Histoimmunochemical staining showed that NF-κB relocated from cytoplasm to the nuclear. When the cells were co-cultured with TNF and APDC, an NF-κB inhibitor, less cells were viable and more cells were positively stained with TUNEL. Fas expression in PMVEC was elevated treated with TNF. Apoptosis in PMVEC was found aggravated, when the cells were co-cultured with TNF and anti-Fas antibody. The positive rate was 24.1%±1.5% with TUNEL. Increase of caspase-8 activation was manifested by Western blot following TNF stimulation. Caspase-3 expression was found elevated using histoimmunochemical staining. Cell permeable caspase-3 inhibitor significantly ameliorated PMVEC apoptosis induced by TNF. CONCLUSION: 1. Large dose of TNF(5×108 U/L) can induce apoptosis in rat PMVEC. 2. NF-κB has a protective effect on PMVEC apoptosis. 3. TNF up-regulates Fas expression in PMVEC. And the latter takes a part in apoptosis. 4. TNF induced caspase-8 activation in PMVEC, and more caspase-3 was expressed. These may be involved in PMVEC apoptosis induced by TNF.

  10. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells

    Directory of Open Access Journals (Sweden)

    Kessler Thomas

    2009-02-01

    Full Text Available Abstract Background During apoptosis cells become profoundly restructured through concerted cleavage of cellular proteins by caspases. In epithelial tissues, apoptotic cells loose their apical/basal polarity and are extruded from the epithelium. We used the Drosophila embryo as a system to investigate the regulation of components of the zonula adherens during apoptosis. Since Armadillo/beta-catenin (Arm is a major regulator of cadherin-mediated adhesion, we analyzed the mechanisms of Arm proteolysis in apoptosis. Results We define early and late apoptotic stages and find that early in apoptosis Dα-catenin remains relatively stable, while Arm and DE-cadherin protein levels are strongly reduced. Arm is cleaved by caspases in embryo extracts and we provide evidence that the caspase-3 homolog drICE cleaves Arm in vitro and in vivo. Cleavage by drICE creates a stable protein fragment that remains associated with the plasma membrane early in apoptosis. To further understand the role of caspase-mediated cleavage of Arm, we examined potential caspase cleavage sites and found that drICE cleaves Arm at a unique DQVD motif in the N-terminal domain of the protein. Mutation of the drICE cleavage site in Arm results in a protein that is not cleaved in vitro and in vivo. Furthermore we provide evidence that cleavage of Arm plays a role in the removal of DE-cadherin from the plasma membrane during apoptosis. Conclusion This study defines the specificity of caspase cleavage of Arm in Drosophila apoptotic cells. Our data suggest that N-terminal truncation of Arm by caspases is evolutionarily conserved and thus might provide a principal mechanism involved in the disassembly of adherens junctions during apoptosis.

  11. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1β maturation

    Directory of Open Access Journals (Sweden)

    Zamboni Dario S

    2010-10-01

    Full Text Available Abstract Background Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1β and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold using caspase-1 deficient mice (casp1-/-. Results Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE2 and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL-1β and cyclooxygenase (COX-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNFα and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1β and PGE2 did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-α and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1β was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE2 production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1β maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE2 production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.

  12. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients.

    Science.gov (United States)

    Maellaro, Emilia; Leoncini, Silvia; Moretti, Daniele; Del Bello, Barbara; Tanganelli, Italo; De Felice, Claudio; Ciccoli, Lucia

    2013-08-01

    An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.

  13. The expression and significance of Smac、 XIAP、 caspase-3 in nonasal inverted papilloma%Smac、XIAP、caspase-3在鼻腔鼻窦内翻性乳头状瘤中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    杨莉晖; 单春光; 黄红梅; 许秋荣; 赵颖; 孟雅静; 张志红

    2012-01-01

    目的:研究Smac、XIAP、caspase-3在鼻腔鼻窦内翻性乳头状瘤(NIP)的发生、发展及癌变过程中的表达及意义.方法:选取正常鼻腔黏膜(NM)10例,NIP 45例.其中的NIP组根据不同的病理分级分为3组,即无不典型增生组(25例)、伴有不典型增生组(11例)、恶变组(9例),通过免疫组织化学SP法进行Smac、XIAP、caspase-3的检测.结果:Smac、Caspase-3在NIP组中的阳性表达强度弱于在NM组中的表达,在NIP不同病理分级中,阳性表达强度随病理分化程度的降低而降低,无不典型增生组及恶变组间的表达差异有统计学意义.XIAP在NM、NIP组中的阳性表达强度呈增强趋势,在NIP不同病理分级中,组织的分化程度越低,阳性表达强度越高,无不典型增生组及恶变组间的表达具有统计学意义.Smac与XIAP的表达为负相关(rs=-0.323,P<0.05),XIAP与caspase-3的表达负相关(rs=-0.408,P<0.01),Smac与caspase-3的表达为正相关(rs=0.424,P<0.01).结论:Smac、XIAP、caspase-3与NIP的发病及恶变有关.%Objective: To explore the expression and significance of second mitochondria derived activator of caspase(Smac) ,X-linked inhibitor of apoptosis protein(XIAP)and cysteine containing aspartate specific protease 3 (caspase-3)in the growth,development and carcinogenesis of the nonasal inverted papilloma(NIP). Method:lmmu-nohistochemical method was used to detect the expression of Smac,XIAP, caspase-3 in 10 cases of nasal cavity mu-cosae(NM)and 45 cases of NIP, the group of NIP including 25 cases of NIP without dysplasia, 11 cases of NIP with dysplasia, and 9 cases of NIP with malignant transformation to squamous cell carcinoma (SCO. Result: The intensity of the positive expression of Smac., Caspase-3 in NIP were lower than NM, the intensity of the positive expression decreased with the decreasing degree of histological differentiation. There was a significant difference between NIP without dysplasia and SCC. It was presented

  14. The expression of caspase-10 in differentiated thyroid carcinoma and association with its development and metastasis%caspase-10在甲状腺分化癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    尹大龙; 杨海彦; 刘连新; 陈曦; 田蓝天; 张树庚; 姜洪池

    2009-01-01

    Objective To investigate the expression of caspase-10 in differentiated thyroid carcinoma and association with its development and metastasis. Methods Thyroid samples from 37 patients in a period from January 2006 to December 2007, with differentiated thyroid carcinoma were retrospectively analyzed for caspase-10 by immunohistocbemistry(streptavidin-perosidase, S-P), compared to control group of 46 cases with nodtdar goiter. The relationship between the expression of caspase-10 and the clinical pathologic characteristics of thyroid carcinoma were also explored simultaneously. Results caspase-10 were observed as brown or yellow particles located in the cytoplasm or cell membrane of nodular goiter but there were no significant evidence for its positive expression in thyroid carcinoma, caspase-10 expression was markedly down-regulated in differentiated thyroid carcinoma(29.73%,11/37) compared with benign nodules(71.74%,33/46, χ2=14.528, P 0.05) between the expression of caspase-10 and the clinical pathologic characteristics including male, age, TNM stage and pathologic type. Conclusion Down-regulation of caspase-10 may play a critical role in carcinogenesis and development of differentiated thyroid carcinoma.%目的 探讨caspase-10表达在甲状腺分化癌(DTC)发生、发展及预后中的作用.方法 37例DTC来自于2006年1月至2007年12月行甲状腺切除术患者.取DTC患者病理标本,链霉菌抗生物素蛋白-过氧化物酶连结法(S-P)染色,光镜下检测DTC患者caspase-10表达,分析caspase-10在DTC中的表达与临床病理特征之间的关系.取同期46例结节性甲状腺肿组织标本作为对照.结果 结节性甲状腺肿细胞质或细胞膜,可见到较多的棕色或黄色caspase-10表达颗粒,但在DTC中棕色或黄色表达颗粒不明显.caspase-10表达阳性率在DTC患者中为29.73%(11/37),在结节性甲状腺肿患者中为71.74%(33/46),二者比较差异有统计学意义(χ2=14528,P0.05).结论 caspase-10表达

  15. 寻常型银屑病皮损处ASC和caspase-1的表达%Expressions of apoptosis-associated speck-like protein and caspase-1 in psoriasis vulgaris

    Institute of Scientific and Technical Information of China (English)

    胡坚; 杨闰平; 李恒进; 赵华

    2013-01-01

    Objective To study the role of apoptosis-associated speck-like protein (ASC) and caspase-1 in pathogenesis of psoriasis vulgaris. Methods Expression and distribution of ASC and caspase-1 in 30 psoriasis vulgaris patients were detected by immunohistochemistry. Results The ASC was intensely stained and expressed in cytoplasm and nuclei of psoriasis vulgaris patients and mainly expressed in middle and lower epidermis of normal persons. The caspase-1 was weakly stained and expressed in cytoplasm and full epidermis of psoriasis vulgaris patients and in basal and lower spinous cells of normal persons(t=49, 55, respectively, P<0.01). Conclusion ASC and caspase-1 play a significant role in the inflammation of psoriasis vulgarpsoriasis.%  目的探讨凋亡相关斑点样蛋白(apoptosis-associated speck-like protein,ASC)和半胱氨酸蛋白酶-1(caspase-1)在银屑病发病中的作用。方法采用免疫组化方法检测30例寻常型银屑病患者皮损处ASC和caspase-1的表达和分布。结果银屑病患者皮损处表皮全层强阳性表达ASC,主要分布在胞浆、胞核;正常人对照ASC主要表达于表皮中、下部,以轻、中度表达为主。银屑病患者皮损处caspase-1亦表达于表皮全层,位于胞浆,染色呈强阳性;正常人对照caspase-1表达于基底细胞和棘细胞层下部,染色强度较弱,两组比较差异均有统计学意义(t值分别为49和55,P均<0.01)。结论 ASC和caspase-1在银屑病的炎症过程中可能发挥重要作用。

  16. 口腔白斑及口腔鳞状细胞癌中Livin和Caspase-3蛋白表达研究%Expression of Livin and Caspase- 3 protein in oral leukoplakia and oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    随丽娜

    2011-01-01

    Objective Study the expressions of Livin and caspase -3 proteins in the normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. Methods Expression of Livin and caspase- 3 protein were detected by immunohistochemistry S -P methods in the normal oral mucosa,oral leukoplakia and oral squamous cell carcinoma. Results Positive rates of Livin protein in the normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma were 20.00%, 33.33% and 86.49%; Positive rates of caspase-3 protein in the normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma were 100%, 83.33% and 43.24%. The expression of caspase -3 protein was obviously negative related to livin protein (P < 0.05 ). Conclusions Deletion of Caspase - 3 protein and abnormal expression of survivin protein were related to OLK cancer, and early detection of them can help to identify OLK cancer.%目的 研究Livin和caspase-3蛋白在正常口腔黏膜、口腔白斑和口腔鳞状细胞癌中的表达.方法 免疫组化SP法检测正常口腔黏膜、口腔白斑和口腔鳞状细胞癌中Livin和easpase-3蛋白的表达.结果 Livin蛋白在正常口腔黏膜、口腔白斑和口腔鳞状细胞癌中的表达率为20%、33.33%和86.49%;caspase-3蛋白在正常口腔黏膜、口腔白斑和口腔鳞状细胞癌中的表达率为100%、83.33%和43.24%;caspase-3蛋白表达与iivin蛋白表达有明显的负相关关系(P<0.05).结论 Caspase-3的缺失和Livin的高表达与口腔白斑癌变的发生发展相关,两者联合检测有助于早期识别口腔白斑癌变.

  17. Caspase-9在肉用绵羊主要生殖器官中的分布研究%Light Microscope Immunocytochemical Studies of the Distribution of Caspase-9 in the Reproductive Organs of Meat Sheep

    Institute of Scientific and Technical Information of China (English)

    张涛杰; 崔燕; 余四九; 樊江峰; 刘犇; 郑凯

    2011-01-01

    通过试验研究凋亡因子Caspase-9在肉用绵羊主要生殖器官中的表达,并探讨其生理意义.利用免疫组织化学的方法对Caspase-9在肉用绵羊主要生殖器官中的表达进行研究.研究结果显示,Caspase-9只在细胞质中表达,其在卵巢中主要分布于原始卵泡、初级卵泡及颗粒性黄体细胞,而卵泡膜性黄体细胞中未见表达;黄体期,主要表达于子宫的浅层腺体腺上皮细胞、子宫内膜上皮细胞、子宫颈黏膜固有层的淋巴小结、输卵管黏膜上皮分泌细胞和纤毛细胞、峡部的浆液性腺的腺上皮细胞;卵泡期,子宫和输卵管各个部位阳性反应不明显.在正常生理情况下,Caspase-9参与了肉用绵羊主要生殖器官周期性变化的调控和子宫黏膜免疫,对生殖器官功能的稳定发挥起着重要作用.%The expression of the apoptotic gene caspase-9 in the reproductive organs of meat sheep was observed and its physiological significance was determined by using immunohistochemistric technology. Caspase-9 was only found in the cytoplasm. The majority of positive cells in the ovary were observed in primordial and primary follicles. In the later luteal phase, Caspase-9 was positive in granular lutein cells but negative in theca lutein cells; during the luteal phase, Caspase-9 was positive in endometrial epithelium and shallow glands of the oviduct, the lymphatic nodule of the cercix uteri, the ciliated cell and secretory cell of the mucous epithelium in ampulla tubae uterinae ,and the epithelium of serous gland of the tubal isthmus; during the follicular phase, no obvious positive expression was found. All results mentioned above indicate that Caspase-9 participate in the regulation of apoptosis and immunological tissue of the major reproductive organs of meat sheep. It is important for the stability of reproductive organs in meat sheep.

  18. TRAIL Activates a Caspase 9/7-Dependent Pathway in Caspase 8/10-Defective SK-N-SH Neuroblastoma Cells with Two Functional End Points: Induction of Apoptosis and PGE2 Release

    Directory of Open Access Journals (Sweden)

    Giorgio Zauli

    2003-09-01

    Full Text Available Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2 release by SKN-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX, showed an additive effect on SKN-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERKi/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERKi/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD4mk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.

  19. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent.

    Science.gov (United States)

    Nejadnik, Hossein; Ye, Deju; Lenkov, Olga D; Donig, Jessica S; Martin, John E; Castillo, Rostislav; Derugin, Nikita; Sennino, Barbara; Rao, Jianghong; Daldrup-Link, Heike

    2015-02-24

    About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix-associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report an approach for noninvasive detection of stem cell apoptosis with magnetic resonance imaging (MRI), based on a caspase-3-sensitive nanoaggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of (1)H MR signal and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging probe for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites.

  20. A nonapoptotic role for CASP2/caspase 2: modulation of autophagy.

    Science.gov (United States)

    Tiwari, Meenakshi; Sharma, Lokendra K; Vanegas, Difernando; Callaway, Danielle A; Bai, Yidong; Lechleiter, James D; Herman, Brian

    2014-06-01

    CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2(-/-)) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2(-/-) cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer.

  1. The IAP family: endogenous caspase inhibitors with multiple biological acti- viti

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains. These proteins have multiple biological activities that include binding and inhibiting caspases, regulating cell cycle progression, and modulating receptor-mediated signal transduction. Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptoticstimuli in T cells, and their degradation appears to be important for T cells to commit to death. In addition to three BIR domains, each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase (E3) activity to IAPs, and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus. Given the fact that IAPs can bind a variety of proteins, such as caspases and TRAFs, it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction, cell cycle, and apoptosis.

  2. Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells.

    Science.gov (United States)

    Belichenko, I; Morishima, N; Separovic, D

    2001-06-01

    Oxidative stress, such as photodynamic therapy, is an apoptosis inducer. Apoptosis, as well as photosensitization, have been associated with disruption of the cytoskeletal network. The purpose of the present study was to assess the role of vimentin, a major cytoskeletal protein, in apoptosis after photodynamic treatment (PDT) with the silicon phthalocyanine Pc 4 in human Jurkat T cells. Here we show for the first time that photosensitization with Pc 4 initiates vimentin cleavage and that this event precedes poly(ADP-ribose) polymerase (PARP) degradation. Similar findings were obtained in the presence of C2-ceramide, an inducer of oxidative stress and apoptosis. In the presence of benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fluoromethylketone, a pan-caspase inhibitor, Pc 4-PDT-induced vimentin and PARP cleavage were abolished. In Jurkat cells transfected with a caspase-resistant vimentin apoptosis was partly suppressed and delayed post-Pc 4-PDT. We suggest that the full-length vimentin confers resistance to nuclear apoptosis after PDT with Pc 4.

  3. Inactivation of cystein-aspartic acid protease (caspase)-1 by saikosaponin A.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hyung-Min; Jeong, Hyun-Ja

    2011-01-01

    This work investigates the anti-inflammatory mechanism of saikosaponin A (SA), a major component of Bupleurum falcatum LINNE. SA significantly inhibited phorbol myristate acetate (PMA) plus A23187-induced the production and expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in human mast cell (HMC)-1 cells. SA suppressed PMA plus A23187-induced phosphorylation of extracellular signal-regulated kinase and p38. When HMC-1 cells were treated with SA, translocation of nuclear factor (NF)-κB/Rel A into nucleus and degradation of inhibitor of NF-κB (IκB) in cytoplasm were inhibited. SA decreased PMA plus A23187-induced cysteine-aspartic acid protease (caspase)-1 activity. IL-1β production was also inhibited by SA. Finally, SA significantly decreased the number of nasal rubs and serum TNF-α level in the ovalbumin-sensitized allergic rhinitis mouse model. The underlying mechanism involves, at least in part, inactivation of caspase-1, which provides new evidence for therapeutic application of SA to target inflammatory processes.

  4. NP24 induces apoptosis dependent on caspase-like activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Higuchi, Naoki; Ito, Yasuhiro; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2016-06-01

    Tomato NP24 is a homolog of osmotin, a PR-5 protein from tobacco that can initiate apoptosis in yeast via PHO36 in the plasma membrane. We cloned and sequenced NP24 from tomato cv. Momotaro. Based on phylogenetic analysis, NP24 from Momotaro belonged to the Solanaceae clade. The amino acid sequence was identical to that of cv. Ailsa Craig including signal peptide, but the residues predicted to interact with the adiponectin receptor, ADIPOR, were slightly different from osmotin. Recombinant NP24 (rNP24) was expressed in a reductase-deficient mutant of Escherichia coli as host cell, and purified from cell extract by affinity chromatography. Purified rNP24 significantly inhibited growth of Saccharomyces cerevisiae wild-type spheroplasts. In contrast, growth of PHO36 deletion mutant (ΔIzh2) spheroplasts was not inhibited. Moreover, rNP24 induced significant activity of reactive oxygen species, caspase-like activity, and also nuclear fragmentation in wild-type spheroplast cells. These results demonstrated that rNP24 from Momotaro greatly influenced cell viability due to triggering apoptosis through PHO36. Notably, apoptosis induced by NP24 was caspase-like protease dependent.

  5. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells.

    Science.gov (United States)

    Wolff, Svenja; Groseth, Allison; Meyer, Bjoern; Jackson, David; Strecker, Thomas; Kaufmann, Andreas; Becker, Stephan

    2016-04-01

    The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.

  6. Molecular cloning and characterization of the first caspase in the Striped Stem Borer, Chilo suppressalis.

    Science.gov (United States)

    Lu, Ming-Xing; Du, Yu-Zhou; Cao, Shuang-Shuang; Liu, Pingyang; Li, Jianyong

    2013-05-15

    Apoptosis is executed through the activity of the caspases that are aspartyl-specific proteases. In this study, we isolated the caspase gene (Cscaspase-1) of Chilo suppressalis (one of the leading pests responsible for destruction of rice crops). It possesses the open reading frame (ORF) of 295 amino acids including prodomain, large subunit and small subunits, and two cleavage sites (Asp23 and Asp194) were found to be located among them. In addition to these profiles, Cscaspase-1 contains two active sites (His134 and Cys176). Genomic analysis demonstrated there was no intron in the genome of Cscaspase-1. The Cscaspase-1 transcripts were found in all tissues of the fifth instar larvae, and higher levels were found in the midgut, hindgut and Malpighian tubules. Examination of Cscaspase-1 expression in different developmental stages indicated low constitutive levels in the eggs and early larvae stages, and higher abundances were exhibited in the last larvae and pupae stages. The relative mRNA levels of Cscaspase-1 were induced by heat and cold temperatures. For example, the highest increase of Cscaspase-1 transcription was at -3 °C and 36 °C respectively. In a word, Cscaspase-1 plays a role of effector in the apoptosis of C. suppressalis. It also correlates with development, metamorphosis and thermotolerance of C. suppreassalis.

  7. Molecular Cloning and Characterization of the First Caspase in the Striped Stem Borer, Chilo suppressalis

    Directory of Open Access Journals (Sweden)

    Pingyang Liu

    2013-05-01

    Full Text Available Apoptosis is executed through the activity of the caspases that are aspartyl-specific proteases. In this study, we isolated the caspase gene (Cscaspase-1 of Chilo suppressalis (one of the leading pests responsible for destruction of rice crops. It possesses the open reading frame (ORF of 295 amino acids including prodomain, large subunit and small subunits, and two cleavage sites (Asp23 and Asp194 were found to be located among them. In addition to these profiles, Cscaspase-1 contains two active sites (His134 and Cys176. Genomic analysis demonstrated there was no intron in the genome of Cscaspase-1. The Cscaspase-1 transcripts were found in all tissues of the fifth instar larvae, and higher levels were found in the midgut, hindgut and Malpighian tubules. Examination of Cscaspase-1 expression in different developmental stages indicated low constitutive levels in the eggs and early larvae stages, and higher abundances were exhibited in the last larvae and pupae stages. The relative mRNA levels of Cscaspase-1 were induced by heat and cold temperatures. For example, the highest increase of Cscaspase-1 transcription was at −3 °C and 36 °C respectively. In a word, Cscaspase-1 plays a role of effector in the apoptosis of C. suppressalis. It also correlates with development, metamorphosis and thermotolerance of C. suppreassalis.

  8. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  9. 脑缺血再灌注时半暗带calpain和caspase-3的相互作用

    Institute of Scientific and Technical Information of China (English)

    孙明; 赵育梅; 徐超

    2006-01-01

    calpain和caspase-3都属于半胱氨酸蛋白酶家族。calpain主要参与兴奋毒性引起的神经细胞死亡,caspase-3主要参与细胞的凋亡。一些研究提示calpain和caspase-3之间存在功能上的关联。本研究探讨了大鼠大脑中动脉阻断1h后再灌注期间半暗带内calpain和caspase-3的相互作用。在缺血前15min经脑室给予calpain抑制剂1或caspase-3抑制剂z—DEVD—CHO。在再灌注3h和23h时留取半暗带组织,采用酪蛋白酶谱法、荧光法和免疫印迹法分别测定胞浆部分μ-和m—calpain的活性、caspase-3的活性以及calpastatin(内源性calpain抑制剂)、微管相关蛋白-2(MAP-2)和血影蛋白的含量。结果和结论如下:(1)在再灌注早期(3h)和晚期(23h),半暗带内μ-和m—calpain及caspase-3的活性明显升高,MAP-2和血影蛋白的含量明显降低,calpain和caspase-3抑制剂均可明显升高MAP-2血影蛋白的含量,表明局灶性脑缺血再灌注早期和晚期半暗带内calpain及caspase-3可被同时活化,继而水解细胞骨架蛋白;(2)在再灌注早期和晚期,半暗带内calpastatin的蛋白含量明显升高,提示局灶性脑缺血再灌注可诱导calpastatin蛋白的表达;

  10. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways.

    Science.gov (United States)

    Li, Weishan; Jiang, Binghua; Cao, Xianglin; Xie, Yongjiang; Huang, Ting

    2017-01-05

    Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 μM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway.

  11. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    Directory of Open Access Journals (Sweden)

    Tao eSun

    2012-09-01

    Full Text Available Stefin B (cystatin B is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB gene were reported in patients with Unverricht-Lundborg disease (EPM1. Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C inhibitor staurosporin (STS than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and-7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition.

  12. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases.

    Science.gov (United States)

    Gianni, M; Ponzanelli, I; Mologni, L; Reichert, U; Rambaldi, A; Terao, M; Garattini, E

    2000-05-01

    In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.

  13. BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng

    2014-02-28

    In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.

  14. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  15. Caspase-cleaved cytokeratin-18 and tumour regression in gastro-oesophageal adenocarcinomas treated with neoadjuvant chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Khaleel R Fareed; Irshad N Soomro; Khalid Hameed; Arvind Arora; Dileep N Lobo; Simon L Parsons; Srinivasan Madhusudan

    2012-01-01

    AIM:To examine cytokeratin-18 (CK-18) and caspasecleaved CK-18 expression in tumouts and correlate with clinicopathological outcomes including tumour regression grade (TRG) response.METHODS:Formalin-fixed human gastro-oesophageal cancers were constructed into tissue microarrays.The first set consisted of 122 gastric/gastro-oesophageal cancer cases not exposed to neoadjuvant chemotherapy and the second set consisted of 97 gastric/gastrooesophageal cancer cases exposed to pre-operative platinum-based chemotherapy.Expression of CK-18 and caspase-cleaved CK-18 was investigated using immunohistochemistry.RESULTS:CK18 was commonly expressed in gastrooesophageal tumours (92.6%).Fifty-six point seven percent of tumours previously exposed to neoadjuvant chemotherapy were positive for caspase-cleaved CK-18 expression compared to only 24.6% of tumours not previously exposed to neoadjuvant chemotherapy (P =0.009).In patients who received neoadjuvant chemotherapy,caspase-cleaved cytokeratin-18 expression correlated with favourable TRG response (TRG 1,2 or 3,P =0.043).CONCLUSION:This is the largest study to date of CK-18 and caspase-cleaved CK-18 expression in gastrooesophageal tumours.We provide the first evidence that caspase-cleaved CK-18 predicts tumour regression with neoadjuvant chemotherapy.

  16. Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA.

    Science.gov (United States)

    Liu, Kun; Zhou, Shengli; Kim, Ji-Young; Tillison, Kristin; Majors, David; Rearick, David; Lee, Jun Ho; Fernandez-Boyanapalli, Ruby F; Barricklow, Katherine; Houston, M Sue; Smas, Cynthia M

    2009-12-01

    The adipocyte-specific protein FSP27, also known as CIDEC, is one of three cell death-inducing DFF45-like effector (CIDE) proteins. The first known function for CIDEs was promotion of apoptosis upon ectopic expression in mammalian cells. Recent studies in endogenous settings demonstrated key roles for CIDEs in energy metabolism. FSP27 is a lipid droplet-associated protein whose heterologous expression enhances formation of enlarged lipid droplets and is required for unilocular lipid droplets typical of white adipocytes in vivo. Here, we delineate relationships between apoptotic function and lipid droplet localization of FSP27. We demonstrate that ectopic expression of FSP27 induces enlarged lipid droplets in multiple human cell lines, which is indicative that its mechanism involves ubiquitously present, rather than adipocyte-specific, cellular machinery. Furthermore, promotion of lipid droplet formation in HeLa cells via culture in exogenous oleic acid offsets FSP27-mediated apoptosis. Using transient cotransfections and analysis of lipid droplets in HeLa cells stably expressing FSP27, we show that FSP27 does not protect lipid droplets from action of ATGL lipase. Domain mapping with eGFP-FSP27 deletion constructs indicates that lipid droplet localization of FSP27 requires amino acids 174-192 of its CIDE C domain. The apoptotic mechanism of FSP27, which we show involves caspase-9 and mitochondrial cytochrome c, also requires this 19-amino acid region. Interaction assays determine the FSP27 CIDE C domain complexes with CIDEA, and Western blot reveals that FSP27 protein levels are reduced by coexpression of CIDEA. Overall, our findings demonstrate the function of the FSP27 CIDE C domain and/or regions thereof for apoptosis, lipid droplet localization, and CIDEA interaction.

  17. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Maryla Krajewska

    Full Text Available Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8(-/-, in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system.Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml or TRAIL (250 ng/mL plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI model of traumatic brain injury (TBI and seizure-induced brain injury caused by kainic acid (KA. Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8(-/- mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging.Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this

  18. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Yi; Yang, Dehua; Song, Lin; Li, Ting; Yang, Juan; Zhang, Xiaojie; Le, Weidong

    2012-02-01

    Embryonic stem cell (ESC)-based therapy is a promising treatment for neurodegenerative diseases. But there is always a risk of tumor formation that is due to contamination of undifferentiated ESCs. To reduce the risk and improve ESC-based therapy, we have established a novel strategy by which we can selectively eliminate tumor cells derived from undifferentiated ESCs but spare differentiated cells. In this study, we generated a caspase-1-ESC line transfected with a mifepristone-regulated caspase-1 expression system. Mifepristone induced caspase-1 overexpression both in differentiated and undifferentiated caspase-1-ESCs. All the undifferentiated caspase-1-ESCs were induced to death after mifepristone treatment. Tumors derived from undifferentiated caspase-1-ESCs were eliminated following 3 weeks of mifepristone treatment in vivo. However, differentiated caspase-1-ESCs survived well under the condition of mifepristone-induced caspase-1 overexpression. To examine in vivo the impact of mifepristone-induced caspase-1 activation on grafted cells, we transplanted wild-type ESCs or caspase-1-ESCs into nude mice brains. After 8 weeks of mifepristone treatment, we could not detect any tumor cells in the caspase-1-ESC grafts in the brains of mice. However, we found that donor dopamine neurons survived in the recipient brains. These data demonstrate that mifepristone-induced caspase-1 overexpression in ESCs can eliminate the potential tumor formation meanwhile spares the differentiated cells in the host brains. These results suggest that this novel ESC-based therapy can be used in Parkinson's disease and other related disorders without the risk of tumor formation.

  19. Elevated Ambient Temperature Increases Expression of Apaf-1 and Caspase-9 in Boar Testis%环境高温促进猪睾丸Apaf-1和Caspase-9的表达

    Institute of Scientific and Technical Information of China (English)

    范小瑞; 张禛; 席华明; 梁亚俊; 贺俊平

    2016-01-01

    高温热应激条件下,凋亡蛋白表达量升高,生殖细胞凋亡增加.凋亡蛋白酶活化因子1(apoptosis protease activating factor 1,Apaf-1)和凋亡蛋白酶活化起始者含半胱氨酸的天冬氨酸蛋白水解酶9,(cysteine aspartic acid specific protease 9,Caspase-9)是细胞凋亡内源途径中的重要调节蛋白,热应激条件下猪睾丸Apaf-1和Caspase-9的表达未见报道.本研究发现,夏季畜舍高温使Apaf-1和Caspase-9表达量升高.qRT-PCR和Western印迹结果显示,与对照组(正常舍温20℃)相比,短时热应激组(40~42℃,1 h/d,7d)和长时热应激组(40 ~ 42℃,1 h/d,42 d),Apaf-1和Caspase-9 mRNA和蛋白的相对表达量均显著升高.免疫组织化学研究发现,Apaf-1在猪睾丸组织中免疫反应阳性物定位于间质细胞、支持细胞和各个发育阶段生精细胞.热应激处理导致精母细胞和精子细胞Apaf-1表达量升高.在各实验猪睾丸组织中,Caspase-9定位于间质细胞、支持细胞和各个发育阶段生精细胞的胞质中.与对照组相比,热应激处理导致减数分裂以后的生精细胞和支持细胞Caspase-9表达量升高.上述结果表明,高温热应激促进Apaf-1和Caspase-9的表达,提示Apaf-1和Caspase-9表达的变化可能与猪舍高温导致的猪精液品质下降存在关联.

  20. Interference of Caspase-3 shRNA on neural cells apoptosis induced by aluminum%Caspase-3 shRNA对染铝神经细胞凋亡的干预

    Institute of Scientific and Technical Information of China (English)

    张勤丽; 教霞; 徐丽; 李娜; 牛侨

    2012-01-01

    目的 通过体外实验来研究铝的神经毒性,探讨慢病毒载体Caspase-3 RNA于扰对染铝神经细胞凋亡的干预效果.方法 原代培养神经细胞,用AlCl3·6H2O染毒,选用病毒为载体的Caspase-3 shRNA试剂感染神经细胞,荧光标记感染成功的细胞计算神经细胞的感染效率,荧光定量PCR技术检测干预后Caspase-3基因的表达情况计算慢病毒载体的Caspase-3 shRNA的抑制率.光学显微镜、荧光染色观察神经细胞的形态学变化,并检测细胞活力;AnnexinV-PI双染法检测神经细胞感染后的凋亡坏死率.结果 慢病毒载体的Caspase-3 RNA干扰试剂的感染效率大于90%,抑制率为66.47%.用慢病毒载体的Caspase-3 shRNA感染原代培养神经细胞后可见染铝神经细胞活力显著上升(P<0.01);吖啶橙(AO)-溴化乙啶(EB)双荧光染色法可以清楚地观察到染铝细胞的早期凋亡和晚期凋亡现象明显减少;Annexin V-PI双染法检测结果显示,感染后染铝神经细胞凋亡率显著降低(P<0.01).结论 馒病毒载体的Caspase-3shRNA感染细胞后,可以显著抑制Caspase-3基因的表达,神经细胞活力明显增高,凋亡细胞的数量显著降低.%Objective To study the neurotoxicity of aluminum ( Al) , and explore the intervention effect of Caspase-3 shRNA on Al-induced apoptosis. Methods Primary cultured nerve cells were exposed to AlCl3 -6H2O, Caspase-3 shRNAs were infected in the cells. Fluorescent labeled shRNAs were used to label the successfully infected cells, and infectious rates were calculated. Interference rate of Caspase-3 shRNAs on Caspase-3 gene expression was calculated with QRT-PCR method. Morphologic characteristics of Caspase-3 shRNAs treated neural cells were observed under light microscope, and fluorescent microscope stained with AO-EB staining, the alternations of apoptosis rates were analyzed by cytometry. Results The infectious rate of Caspase-3 shRNA was above 90% , the inhibition rate was 66

  1. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells

    Science.gov (United States)

    Uslu, Ruchan; Kara, Mikail; Soner, Burak Cem; Oktem, Gulperi

    2015-01-01

    Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in

  2. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Eda Acikgoz

    Full Text Available Trabectedin (Yondelis, ET-743 is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs. Cluster of differentiation (CD 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates

  3. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Karman, Bethany N; Wang, Wei; Gupta, Rupesh K; Flaws, Jodi A

    2012-12-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48-96 h, MXC induced morphological atresia. At 24-96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles.

  4. HJC, a new arylnaphthalene lignan isolated from Justicia procumbens, causes apoptosis and caspase activation in K562 leukemia cells.

    Science.gov (United States)

    Luo, Jiaoyang; Kong, Weijun; Yang, Meihua

    2014-01-01

    The aim of this study is to investigate whether HJC, isolated from Justicia procumbens for the first time, can suppress the proliferation and induce apoptosis of human leukemia K562 cells and finally clarify its related mechanism. The chemical structure of HJC was validated by LC-ESI-MS/MS, cytotoxicity was assayed using MTT, and apoptosis was investigated by flow cytometry. These assays indicated that HJC remarkably inhibited the growth in K562 cells by decreasing cell proliferation, reducing the SOD activity, enhancing ROS levels and inducing apoptosis. Activation of caspase-3 indicated that HJC may be inducing intrinsic and extrinsic apoptosis pathways and that HJC-induced apoptosis was caspase-dependent. This study suggests that HJC is a high-potency anti-tumor agent, and it induces apoptosis through a caspase-dependent pathway in human leukemia K562 cells. It also presents a potential alternative to leukemia therapy.

  5. CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways

    Directory of Open Access Journals (Sweden)

    Blay Jean-Yves

    2006-03-01

    Full Text Available Abstract Background CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. Methods The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. Results Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89% the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. Conclusion These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively.

  6. Expression and Significance of Bcl-2, Bax, Fas and Caspase-3 in Different Phases of Human Hemangioma

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; DENG Chenguo; SHEN Shengguo; ZHANG Duanlian; YUYing

    2006-01-01

    The relationship between Bcl-2, Bax, Fas, caspase-3 and development of hemangioma and the molecular mechanism was investigated. By using immunohistochemical S-P method, proliferating cell nuclear antigen was detected. According to the classification of Mulliken in combination with PCNA expression, 27 cases were identified as proliferating hemangioma and 22 cases as involutive hemangioma. Five normal skin tissues around the tumor tissue served as controls. By using immunohistochemical technique, the expression of Bcl-2, Bax, Fax and Caspase-3 was detected. The cells expressing Bcl-2, Bax, Fax and cappase-3 were identified as hemangioma endothelia by immunohistochemical staining of Ⅷ factor. The average absorbance (A) and average positive area rate of Bcl-2, Bax, Fas and caspase-3 expression were measured by using HPIAS-2000 imaging analysis system. The results showed that the expression of Bcl-2 in the endothelia of proliferating hemangioma was significantly higher that in involutive degenerative hemangioma endothelia and vascular endothelia of normal skin tissue (P<0.01). The expression of Bax, Fas and Caspase-3 in the endothelia of involutive hemangioma was obviously higher than in the endothelia of proliferating hemangioma and normal skin tissue (P<0.01). The expression of BAx and Fas in endothelia of proliferating hemangioma was higher than in those of normal skin tissue (P<0.05). It was suggested that Bcl-2,Bax, Fas and caspase-3 might be involved in the development and involution of hemangioma. Bcl-2 could promote the growth of hemangioma by inhibiting apoptosis of endothelia. Bax, Fas and caspase-3 promote the switch of hemangioma from proliferation to involution by inducing the apoptosis of hemangioma endothelia.

  7. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

    Directory of Open Access Journals (Sweden)

    Marco A Ataide

    2014-01-01

    Full Text Available Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+CD16(-Caspase-1(+ and CD14(dimCD16(+Caspase-1(+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.

  8. Ritonavir and disulfiram have potential to inhibit caspase-1 mediated inflammation and reduce neurological sequelae after minor blast exposure.

    Science.gov (United States)

    Foley, Kevin; Kast, Richard E; Altschuler, Eric L

    2009-02-01

    Caspase-1 triggers cytokine release following acceleration-induced concussive head injury. Minor blast injury in which no physical tissue injury occurs, results in the release of cytokines in a similar fashion. Ritonavir, a generically available protease inhibitor with a benign short-term side-effect profile, has been shown to inhibit expression of caspase-1. We review the relevant literature and propose that ritonavir may be of benefit in reducing adverse neuropsychiatric outcomes and hastening recovery following mild blast injury. Further research in animal models of blast injury followed by clinical studies would determine whether this therapy is effective.

  9. Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC regulates inflammasomes

    Directory of Open Access Journals (Sweden)

    Rojanasakul Yon

    2010-05-01

    Full Text Available Abstract Background The apoptotic speck-like protein containing a caspase recruitment domain (ASC is the essential adaptor protein for caspase 1 mediated interleukin (IL-1β and IL-18 processing in inflammasomes. It bridges activated Nod like receptors (NLRs, which are a family of cytosolic pattern recognition receptors of the innate immune system, with caspase 1, resulting in caspase 1 activation and subsequent processing of caspase 1 substrates. Hence, macrophages from ASC deficient mice are impaired in their ability to produce bioactive IL-1β. Furthermore, we recently showed that ASC translocates from the nucleus to the cytosol in response to inflammatory stimulation in order to promote an inflammasome response, which triggers IL-1β processing and secretion. However, the precise regulation of inflammasomes at the level of ASC is still not completely understood. In this study we identified and characterized three novel ASC isoforms for their ability to function as an inflammasome adaptor. Methods To establish the ability of ASC and ASC isoforms as functional inflammasome adaptors, IL-1β processing and secretion was investigated by ELISA in inflammasome reconstitution assays, stable expression in THP-1 and J774A1 cells, and by restoring the lack of endogenous ASC in mouse RAW264.7 macrophages. In addition, the localization of ASC and ASC isoforms was determined by immunofluorescence staining. Results The three novel ASC isoforms, ASC-b, ASC-c and ASC-d display unique and distinct capabilities to each other and to full length ASC in respect to their function as an inflammasome adaptor, with one of the isoforms even showing an inhibitory effect. Consistently, only the activating isoforms of ASC, ASC and ASC-b, co-localized with NLRP3 and caspase 1, while the inhibitory isoform ASC-c, co-localized only with caspase 1, but not with NLRP3. ASC-d did not co-localize with NLRP3 or with caspase 1 and consistently lacked the ability to function as an

  10. Preparation of anti-mouse caspase-12 mRNA hammerhead ribozyme and identification of its activity in vitro

    Institute of Scientific and Technical Information of China (English)

    Shan Jiang; Qing Xie; Wei Zhang; Xia-Qiu Zhou; You-Xin Jin

    2005-01-01

    AIM: To prepare and identify specific anti-mouse caspase12 hammerhead ribozymes in vitro, in order to select a more effective ribozyme against mouse caspase-12 as a potential tool to rescue cells from endoplasmic reticulum stress induced apoptosis.METHODS: Two hammerhead ribozymes directed separately against 138 and 218 site of nucleotide of mouse caspase-12 mRNA were designed by computer software,and their DNA sequences were synthesized. The synthesized ribozymes were cloned into an eukaryotic expression vector-neorpBSKU6 and embedded in U6 SnRNA context for further study. Mouse caspase-12 gene segment was cloned into PGEM-T vector under the control of T7 RNA polymerase promoter (containing gene sequence from positions nt 41 to nt 894) as target. In vitro transcription both the ribozymes and target utilize T7 promoter. The target was labeled with [α-32P]UTP, while ribozymes were not labeled. After gel purification the RNAs were dissolved in RNase free water. Ribozyme and target were incubated for 90 min at 37 ℃ in reaction buffer (40 mmol/L Tris-HCL,pH 7.5, 10 mmol/L Mg2+). Molar ratio of ribozyme vs target was 30:1. Samples were analyzed on 6% PAGE (containing 8 mol/L urea).RESULTS: Both caspase-12 and ribozyme gene sequences were successfully cloned into expression vector confirmed by sequencing. Ribozymes and caspase-12 mRNA were obtained by in vitro transcription. Cleavage experiment showed that in a physiological similar condition (37 ℃,pH 7.5), Rz138 and Rz218 both cleaved targets at predicted sites, for Rz138 the cleavage efficiency was about 100%,for Rz218 the value was 36.66%.CONCLUSION: Rz138 prepared in vitro can site specific cleave mouse caspase-12 mRNA with an excellent efficiency. It shows a potential to suppress the expression of caspase-12 in vivo, thus provided a new way to protect cells from ER stress induced apoptosis.

  11. Expression of caspase 14 in keratinocytes from people of different skin color%不同肤色个体表皮角质形成细胞Caspase14表达的研究

    Institute of Scientific and Technical Information of China (English)

    侯麦花; 卢新政; Peter M Elias

    2013-01-01

    目的 探讨不同肤色人群角质形成细胞中Caspase14表达变化,明确黑素细胞和(或)黑素对其表达的影响.方法 以Western印迹检测不同肤色个体原代角质形成细胞Caspase14的表达.取体外培养不同肤色的2代角质形成细胞,分别加人不同肤色的黑素细胞在分化培养基下共同培养24 h,以不加黑素细胞组为对照,Western印迹检测Caspase14的表达.结果 浅、深肤色个体包皮原代角质形成细胞Caspase 14的表达存在显著差异,深肤色者(Fitzpatrick Ⅳ/Ⅴ)原代角质形成细胞中Caspase14的表达显著高于浅肤色者(Fitzpatrick Ⅰ/Ⅱ)(P<0.01);深、浅肤色个体的角质形成细胞在与不同肤色个体的黑素细胞在分化培养基中共培养后24 h后,检测发现,与对照组相比,浅肤色个体角质形成细胞Caspase14表达的增加,差异无统计学意义(P>0.05),而深肤色个体角质形成细胞Caspase14的表达则显著上调(P<0.05).结论 深肤色个体角质形成细胞Caspase14表达显著高于浅肤色个体者.黑素细胞显著增加深肤色者角质形成细胞中Caspase 14水平的表达.%Objective To compare the expression of caspase 14 in keratinocytes from people of different skin color,and to evaluate the effect of melanocytes and/or melanin on the expression of caspase 14.Methods Epidermal keratinocytes and melanocytes were isolated from the foreskin of fair-and dark-skinned neonates,and subjected to a primary culture.The second-passage keratinocytes were divided into 6 groups to be cultured with or without the presence of melanocytes from individuals with fair or dark skin at a ratio of 10 ∶ 1 for 24 hours.Western blot was performed to measure the expression of caspase 14 in these keratinocytes.The difference in caspase 14 expression between keratinocytes receiving different treatment was assessed by t test and analysis of variance (ANOVA).Results The expression of caspase 14 was significantly higher in

  12. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    Energy Technology Data Exchange (ETDEWEB)

    Jeyaraj, M. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Arun, R. [Department of Biomedical Sciences, Bharathidasan University, Tiruchirappalli 620024 (India); Sathishkumar, G. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); MubarakAli, D. [Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry 607402 (India); Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Thajuddin, N. [Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024 (India); Ganapathi, A., E-mail: aganapathi2007@gmail.com [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.

  13. PI-PLCβ1b affects Akt activation, cyclin E expression, and caspase cleavage, promoting cell survival in pro-B-lymphoblastic cells exposed to oxidative stress.

    Science.gov (United States)

    Piazzi, Manuela; Blalock, William L; Bavelloni, Alberto; Faenza, Irene; Raffini, Mirco; Tagliavini, Francesca; Manzoli, Lucia; Cocco, Lucio

    2015-04-01

    The phosphoinositide-dependent signal transduction pathway has been implicated in the control of a variety of biologic processes, such as the regulation of cellular metabolism and homeostasis, cell proliferation and differentiation, and apoptosis. One of the key players in the regulation of inositol lipid signaling is the phospholipase Cβ1 (PI-PLCβ1), that hydrolyzes phosphatidylinositol 4,5-bisphosphate [PtIns(4,5)P2], giving rise to the second messengers inositol triphosphate and diacylglicerol. PI-PLCβ1 has been associated with the regulation of several cellular functions, some of which have not yet been fully understood. In particular, it has been reported that PI-PLCβ1 protects murine fibroblasts from oxidative stress-induced cell death. The mediators of oxidative stress, reactive oxygen species (ROS), have been shown to regulate major epigenetic processes, causing the silencing of tumor suppressors and enhancing the proliferation of leukemic cells under oxidative stress. Investigation of the interplay between ROS, PI-PLCβ1, and their signaling mediators in leukemia might therefore reveal innovative targets of pharmacological therapy in the treatment for leukemia. In this work, we demonstrate that in pro-B-lymphoblastic cells (Ba/F3), treated with H2O2, PI-PLCβ1b conferred resistance to cell death, promoting cell cycle progression and cell proliferation and influencing the expression of cyclin A and E. Interestingly, we found that, expression of PI-PLCβ1b affects the activity of caspase-3, caspase-7, and of several protein kinases induced by oxidative stress. In particular, PI-PLCβ1b expression completely abolished the phosphorylation of Erk1/2 MAP kinases, down-regulated phosphatase and tensin homolog (PTEN), and up-regulated the phosphorylation of Akt, thereby sustaining cellular proliferation.

  14. Traumatic brain injury and caspase%脑损伤与半胱天冬酶

    Institute of Scientific and Technical Information of China (English)

    陈溪萍; 陶陆阳; 丁梅; 官大威

    2003-01-01

    脑损伤(brain injury)后脑组织发生的一系列病理、生理和生化改变,由许多基因、细胞因子参与调节并影响着损伤程度的转归.CED基因家族中的半胱天冬酶(cystein-dependent aspanate-specific protease,caspase)与脑损伤后细胞死亡有关,控制着引起细胞死亡的不同层面.细胞凋亡(Apoptosis)参与了神经细胞损伤的发病机制.

  15. Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Iodinated contrast media (ICM) can induce apoptosis (programmed cell death) in renal, myocardial and endothelial cells. Following intravascular injection, circulating immune cells are exposed to high concentrations of ICM. As neutrophils constitutively undergo apoptosis we hypothesized that ICM may adversely affect neutrophil survival. Our aim was to investigate the effect of ICM on neutrophil apoptosis. Neutrophils were isolated from healthy subjects and cultured in vitro with ionic (diatrizoate and ioxaglate) and non-ionic (iohexol and iotrolan) ICM. The effect of ICM on neutrophil apoptosis in both unstimulated and lipopolysaccharide-stimulated neutrophils was determined by annexin V flow cytometry. The influence of physicochemical properties of the different ICM on apoptosis of neutrophils was also studied. We further investigated the effects of ICM on key intracellular signal pathways, including p38 mitogen-activated protein kinase (MAPK) by Western blotting, and mitochondrial depolarization and caspase activity by flow cytometry. Isoiodine concentrations (20 mg ml(-1)) of ionic (diatrizoate 69.6+\\/-2.9%; ioxaglate 58.9+\\/-2.0%) and non-ionic (iohexol 57.3+\\/-2.9%; iotrolan 57.1+\\/-2.6%) ICM significantly induced neutrophil apoptosis over control levels (47.7+\\/-1.4%). The apoptotic effect of ICM was influenced by their chemical structure, with ionic ICM having a more significant (p<0.01) apoptotic effect than non-ionic ICM (p<0.05). Furthermore, ICM reversed the anti-apoptotic effect of lipopolysaccharide (1000 ng ml(-1)) treated neutrophils to control levels (23.0+\\/-3.5% to 61.2+\\/-5.3%; n=4; p<0.05). These agents induce apoptosis through a p38 MAPK independent pathway that results in mitochondrial depolarization, and is dependent on caspase activation. As neutrophils play a central role in host response to infection and injury, ICM, through induction of neutrophil apoptosis, could have a significant deleterious effect on host immune defence and

  16. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    Directory of Open Access Journals (Sweden)

    John C Means

    2015-05-01

    Full Text Available While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in

  17. Nascent histamine induces α-synuclein and caspase-3 on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis, E-mail: jlurdial@uma.es

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  18. Caspase Mediated Synergistic Effect of Boswellia serrata Extract in Combination with Doxorubicin against Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mohammad Ahmed Khan

    2014-01-01

    Full Text Available The study investigated the growth-inhibiting and apoptosis mediating effects of B. serrata extract as monotherapy and combination therapy with DOX against hepatocellular carcinoma cell lines. Boswellic acid rich fraction of B. serrata extract was prepared. MTT assay on HepG2 and Hep3B cells was carried out using B. serrata alone and in combination with DOX. Further, caspase-3 activity, TNF-α level, and IL-6 level were estimated. Isobolographic analysis was carried out to evaluate the effect of combination therapy. Additionally, protective effect of B. serrata extract on DOX induced hepatic toxicity was also evaluated in Wistar rats. B. serrata extract inhibited growth of HepG2 (IC50 value of 21.21±0.92 μg/mL as well as HepG2 (IC50 value of 18.65±0.71 μg/mL. DOX inhibited growth in HepG2 and Hep3B cells with an IC50 of 1.06±0.04 μg/mL and 1.92±0.09 μg/mL. Isobolographic analysis showed combination index (CI of DOX and B. serrata extract of 0.53±0.03 to 0.79±0.02 suggesting synergistic behavior against the two cell lines. B. serrata extract also caused dose dependent increase in caspase-3 activity, TNF-α level, and IL-6 level which was higher (P<0.001 with DOX (1 μM and B. serrata extract (20 μg/mL combination. B. serrata extract also protected Wistar rats against DOX induced hepatic toxicity.

  19. Caspase Mediated Synergistic Effect of Boswellia serrata Extract in Combination with Doxorubicin against Human Hepatocellular Carcinoma

    Science.gov (United States)

    Khan, Mohammad Ahmed; Singh, Mhaveer; Khan, Masood Shah; Najmi, Abul Kalam

    2014-01-01

    The study investigated the growth-inhibiting and apoptosis mediating effects of B. serrata extract as monotherapy and combination therapy with DOX against hepatocellular carcinoma cell lines. Boswellic acid rich fraction of B. serrata extract was prepared. MTT assay on HepG2 and Hep3B cells was carried out using B. serrata alone and in combination with DOX. Further, caspase-3 activity, TNF-α level, and IL-6 level were estimated. Isobolographic analysis was carried out to evaluate the effect of combination therapy. Additionally, protective effect of B. serrata extract on DOX induced hepatic toxicity was also evaluated in Wistar rats. B. serrata extract inhibited growth of HepG2 (IC50 value of 21.21 ± 0.92 μg/mL) as well as HepG2 (IC50 value of 18.65 ± 0.71 μg/mL). DOX inhibited growth in HepG2 and Hep3B cells with an IC50 of 1.06 ± 0.04 μg/mL and 1.92 ± 0.09 μg/mL. Isobolographic analysis showed combination index (CI) of DOX and B. serrata extract of 0.53 ± 0.03 to 0.79 ± 0.02 suggesting synergistic behavior against the two cell lines. B. serrata extract also caused dose dependent increase in caspase-3 activity, TNF-α level, and IL-6 level which was higher (P < 0.001) with DOX (1 μM) and B. serrata extract (20 μg/mL) combination. B. serrata extract also protected Wistar rats against DOX induced hepatic toxicity. PMID:25177685

  20. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  1. Expression of Ki-67/caspase-3 cocktail double staining in prostatic adenocarcinoma%前列腺腺癌中双染鸡尾酒抗体Ki-67/caspase-3的表达及意义

    Institute of Scientific and Technical Information of China (English)

    孙平丽; 金仁顺

    2010-01-01

    目的 探讨Ki-67/caspase-3鸡尾酒抗体在前列腺腺癌(PAC)、高级别前列腺上皮内瘤(HGPIN)及良性前列腺增生(BPH)组织中的表达及意义.方法 收集40例PAC、30例HGPIN和BPH标本,按常规方法石蜡包埋,制作蜡块连续切片,进行HE染色及Ki-67/caspase-3鸡尾酒抗体双重免疫组化染色.结果 Ki-67表达阳性率及增殖指数在PAC组织中明显高于HGPIN和BPH组织,且随着Gleason分级增高其增殖指数存在递增趋势(P0.05).Ki-67和caspase-3在PAC和HGPIN组织中的表达呈负相关,而在BPH中的表达呈正相关.结论 Ki-67/caspase-3在不同病变中表达不同,鸡尾酒抗体联合检测可用于前列腺良恶性疾病的诊断、鉴别诊断及预后的判断.

  2. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  3. MDMA诱导大鼠神经元凋亡及凋亡相关因子caspase-3的表达%Neuron apoptosis induced by 3,4-methylenedioxy methamphetamine and the expression of caspase-3

    Institute of Scientific and Technical Information of China (English)

    王雪; 李静; 祝三平

    2007-01-01

    目的 探讨3,4 -亚甲基二氧基甲基苯丙胺(MDMA)对实验大鼠神经元凋亡的诱导及凋亡相关因子半胱氨酸天冬氨酸特异性蛋白酶-3(caspase-3)的表达.方法 将20只Wistar雄性大鼠随机均分为1组对照组(A)、3组MDMA实验组(B、C、D).B组予MDMA(20 mg · kg-1, ip, single),C组予MDMA(20 mg · kg-1, 8 am,8 pm,ip×2 d),D组予MDMA (20 mg · kg-1 ,8 am,8 pm,ip×4 d);A组给予等体积生理盐水.采用TUNEL法检测神经元凋亡,免疫组织化学方法检测Caspase-3的表达.结果 给予MDMA后,大鼠各相关脑区有凋亡细胞形成,Caspase-3有不同程度的表达.结论 MDMA可导致神经元的凋亡,并诱导凋亡相关因子Caspase-3的表达.

  4. 类风湿性关节炎患者caspase-7β亚型基因的多态性分析%Genetic polymorphism of caspase-7 isoform β in patients with rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    江雨霏; 沈波; 金翔; 陈佳喜; 朱敏

    2011-01-01

    AIM: To investigate the association between the rs2227309 polymorphism of cysteinyl aspartate -specific protease - 7 ( caspase - 7 ) isoform (3 and the genetic susceptibility in rheumatoid arthritis ( RA ) patients in Taizhou of China. METHODS: Genotyping of rs2227309 of caspase - 7 isoform (3 gene was performed in 204 RA patients and 203 matched healthy controls using TaqMan single nucleotide polymorphism ( SNP ) genotyping assays. RESULTS: The genotype frequencies of GG, AG and AA of caspase -7 polymorphism in the RA patients were 33. 3% , 53. 4% and 13. 2% , respectively, and 33. 0% , 44. 3% and 22. 7% in the healthy individuals, respectively. There was a significant difference in caspase -7 genotype frequencies between the RA patients and healthy controls ( P 0. 05, OR = 1. 221, 95% CI: 0. 924 ~ 1. 613 ). CONCLUSION: The rs2227309 polymorphism of caspase - 7 isoform (3 gene is associated with the susceptibility to rheumatoid arthritis. The high production of the non -functional variant of caspase - 7 may reduce the apoptosis of rheumatoid synovial cells, indicating the mechanism of this association.%目的:探讨中国台州地区caspase-7 β亚型基因rs2227309多态性与类风湿性关节炎(rheumatoid arthritis,RA)易感性的关系.方法:对204位类风湿性关节炎患者与203位健康体检者进行研究,采用荧光定量单核苷酸多态性(single nucleotide polymorphism,SNP)分析的方法对caspase-7 β亚型基因rs2227309多态性进行检测.结果:RA患病组中GG、AG、AA基因型频率分别为33.3%、53.4%、13.2%,健康对照组中GG、AG、AA基因型频率分别为33.0%、44.3%、22.7%.RA患者组与健康对照组相比,caspase-7 β亚型基因rs2223709基因型分布的差异显著(P0.05,OR=1.221,95%CI为0.924~1.613).结论:Caspase-7 β亚型基因rs2227309可能与中国台州地区人群类风湿性关节炎易感性有关,这种关系可能是由于caspase-7非功能亚型转录水平相对升高致使滑膜细胞凋亡活性减弱所致.

  5. 青蒿琥酯对人胚肺成纤维细胞Caspase-3表达的影响%Effect of Artesunate on the Expression of Caspase-3 in Human Embryonic Lung Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    王昌明; 黎洪秀; 张孝飞

    2011-01-01

    OBJECTIVE To study the effect of artesunate on the growth of human embryonic lung fibroblast HFL-Ⅰ cells in vitro and provide experimental data for anti-fibrosis activity of artesunate. METHODS CCK-8 assay was used to determine the effect of artesunate on the growth of HFL-Ⅰ cells in vitro. Apoptosis ratio was examined by flow cytometry (FCM). The mRNA level of Caspase-3, one of apoptosis related proteins, were assessed by RT-PCR. The expression of Caspase-3 protein was detected by Western blot. RESULTS Artesunate has a significantly inhibitory effect on the proliferation of HFL-Ⅰ cells in a dose-dependent manner in vitro. Flow cytometry assay demonstrated a higher distribution in G1 phase of HFL-Ⅰ cells with artesunate. And apoptosis rate of HFL-Ⅰ cells was significantly increased in artesunate-treated group compared with control group (P<0.01). RT-PCR analysis showed the levels of Caspase-3 mRNA were significantly increased in artesunate-treated group,compared with control group. Western bloting also showed a significant enhancement of Caspase-3 protein levels in artesunate-treated group, when compared to control group. CONCLUSION Artesunate may exert marked anti-pulmonary fibrosis effect by up-regulating the mRNA and protein level of Caspase-3, which could induce the growth inhibition and apoptosis in HFL-Ⅰ cells.%目的 研究青蒿琥酯对人胚肺成纤维细胞(human embryonic lung fibroblast,HELF)系HFL-Ⅰ细胞体外生长的影响,为青蒿琥酯抗纤维化提供实验依据.方法 采用CCK-8法检测青蒿琥酯对体外培养的HFL-Ⅰ细胞生长的影响,用流式细胞术测定细胞凋亡率;RT-PCR法测定凋亡相关蛋白Caspase-3的mRNA表达水平,Western blot法分析Caspase-3蛋白的表达情况.结果 青蒿琥酯呈浓度依赖性抑制HFL-Ⅰ细胞增殖,HFL-Ⅰ细胞经青蒿琥酯作用后细胞主要停滞于G1期,凋亡率明显增加(P<0.01),Caspase-3 mRNA的表达显著高于对照组,Caspase-3蛋白的表达亦

  6. Caspase-3 expression in spinal tissue of retinoic acid induce spiua bifida fetal rat%维甲酸诱导脊柱裂胎鼠脊髓组织中Caspase-3表达情况

    Institute of Scientific and Technical Information of China (English)

    马英桓; 袁正伟

    2012-01-01

    Objective To explore caspase-3 expression in spinal tissue of retinoic acid induced spina bifida fetal rat. Methods Pregnant Wister rats with 10 days were used. Retinoic acid dissolved in olive oil (40mg /ml) were stomach fed for preparing the rat model of spina bifida malformations 135mg / kg). Control group only received olive oil. The animals were divided into 4 groups: pregnancy of 12 days, 15 days, 17 days and 20 days. Immunohistochemical method was used to detect and compare caspase-3 expression in different groups. Results The expression of caspase-3 increased at the day 15 after pregnancy, and maintained until day 20 in the spinal tissue of modeled fetal rat, which presented significant difference compared to that of control groups at the same pregnant time. At day 15, day 17 and day 20 of pregnancy, the number of caspase-3 positive cells was more in model animals than the control. Conclusions Retinoic acid induced spina bifida fetal rat demonstrates the increased caspase-3 expression in spinal tissue of fetal rats.%目的 本文旨在探讨维甲酸诱导脊柱裂胎鼠脊髓组织Caspase-3表达情况.方法 选取孕10d Wistar大鼠,实验组用溶有维甲酸(40mg/ml)的橄榄油,以135mg/kg经胃管注入给药制作脊柱裂畸形大鼠模型;对照组选取孕10 d Wistar大鼠给等量橄榄油.将实验组及对照组按照孕12、15、17和20 d分为4组.应用免疫组织化学方法比较分析Caspase-3在对照组、畸形组胎鼠脊髓组织细胞中的分布和表达情况.结果 脊柱裂大鼠脊髓神经组织中Caspase-3在15d开始增多,一直持续到20 d胚胎大鼠.其增高情况明显高于同一时间点对照组大鼠.胚胎15、17和20 d显性脊柱裂畸形鼠脊髓组织Caspase-3阳性细胞数多于对照组,荧光强度高于对照组.结论 维甲酸诱导的脊柱裂胎鼠Caspase-3表达明显高于正常发育胎鼠.

  7. The caspase-generated cleavage product of Ets-1 p51 and Ets-1 p27, Cp17, induces apoptosis.

    Science.gov (United States)

    Choul-Li, Souhaila; Tulasne, David; Aumercier, Marc

    2016-11-04

    The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis. However, the caspase cleavage of the second spliced variant Ets-1 p27 remains to investigate. In the present study, we demonstrate that Ets-1 p27 is a cleavage substrate of caspases. We show that Ets-1 p27 is processed in vitro by caspase-3, resulting in three C-terminal fragments Cp20, Cp17 and Cp14. Similarly, Ets-1 p27 was cleaved during apoptotic cell death induced by anisomycin, producing fragments consistent with those observed in in vitro cleavage assay. These fragments are generated by cleavage at three sites located in the exon VII-encoded region of Ets-1 p27. As a functional consequences, Cp17 fragment, the major cleavage product generated during apoptosis, induced itself apoptosis when transfected into cells. Our results show that Ets-1 p27 is cleaved in the same manner as Ets-1 p51 within the exon VII-encoded region, thus generating a stable C-terminal fragment that induces cell death by initiating apoptosis.

  8. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  9. Location of Caspase 3-like Protease in the Development of Sieve Element and Tracheary Element of Stem in Cucurbita moschata

    Institute of Scientific and Technical Information of China (English)

    Xia Hao; Jie Qian; Shan Xu; Xin Song; Jian Zhu

    2008-01-01

    The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, extemal phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.

  10. Persistence of full-length caspase-12 and its relation to malaria in West and Central African populations.

    NARCIS (Netherlands)

    McCall, M.B.B.; Ferwerda, B.; Hopman, J.; Ploemen, I.H.J.; Maiga, B.; Daou, M.; Dolo, A.; Hermsen, C.C.; Doumbo, O.K.; Bedu-Addo, G.; Meer, J.W.M. van der; Troye-Blomberg, M.; Ven, A.J.A.M. van der; Schumann, R.R.; Sauerwein, R.W.; Mockenhaupt, F.P.; Netea, M.G.

    2010-01-01

    BACKGROUND: The full-length (L-) variant of caspase-12 is believed to predispose to sepsis. It has been replaced in the genome of most human populations by the (S-) variant, which leads to premature termination of translation. Strikingly, the L-allele is still widely prevalent in African populations

  11. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    Science.gov (United States)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  12. Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741.

    Science.gov (United States)

    Chun, H S; Lee, H; Son, J H

    2001-12-04

    Chronic exposure to manganese causes Parkinson's disease (PD)-like clinical symptoms (Neurotoxicology 5 (1984) 13; Arch. Neurol. 46 (1989) 1104; Neurology 56 (2001) 4). Occupational exposure to manganese is proposed as a risk factor in specific cases of idiopathic PD (Neurology 56 (2001) 8). We have investigated the mechanism of manganese neurotoxicity in nigral dopaminergic (DA) neurons using the DA cell line, SN4741 (J. Neurosci. 19 (1999) 10). Manganese treatment elicited endoplasmic reticulum (ER) stress responses, such as an increased level of the ER chaperone BiP, and simultaneously activated the ER resident caspase-12. Peak activation of other major initiator caspases-like activities, such as caspase-1, -8 and -9, ensued, resulting in activation of caspase-3-like activity during manganese-induced DA cell death. The neurotoxic cell death induced by manganese was significantly reduced in the Bcl-2-overexpressing DA cell lines. Our findings suggest that manganese-induced neurotoxicity is mediated in part by ER stress and considerably ameliorated by Bcl-2 overexpression in DA cells.

  13. Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes.

    Science.gov (United States)

    Liu, Na; Scofield, Virginia L; Qiang, Wenan; Yan, Mingshan; Kuang, Xianghong; Wong, Paul K Y

    2006-05-10

    The murine retrovirus, MoMuLV-ts1, induces progressive paralysis and immune deficiency in FVB/N mice. We have reported previously that ts1 infection causes apoptosis in astrocytes via endoplasmic reticulum (ER) and mitochondrial stress (Liu, N., Kuang, X., Kim, H.T., Stoica, G., Qiang, W., Scofield, V.L., Wong, P.K.Y. Wong. 2004. Possible involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J. NeuroVirol. 10, 189-198). In the present study, we show that caspase 8 activation in these cells is mediated through ER stress-associated elevation of death receptor DR5 and the C/EBP homologous protein (GADD153/CHOP), an ER stress-initiated transcription factor, rather than through TNFalpha and TNF-R1 interactions on the cell surface. Treatment with Z-IETD-FMK, a specific inhibitor of caspase 8 enzymatic activity, reduced ER stress by two mechanisms: by inhibiting caspase 8 activation, and by preventing cleavage of the ER-associated membrane protein BAP31 into BAP20, which exacerbates the ER stress response. These findings suggest that caspase 8- and ER stress-associated apoptotic pathways are linked in ts1-infected astrocytes.

  14. Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells.

    Science.gov (United States)

    Iizaka, Toru; Tsuji, Mayumi; Oyamada, Hideto; Morio, Yuri; Oguchi, Katsuji

    2007-11-30

    The accumulation of hydrophobic bile acid, such as glycochenodeoxycholic acid (GCDCA), in the liver has been thought to induce hepatocellular damage in human chronic cholestatic liver diseases. We previously reported that GCDCA-induced apoptosis was promoted by both mitochondria-mediated and endoplasmic reticulum (ER) stress-associated pathways in rat hepatocytes. In this study, we elucidated the relationship between these pathways in GCDCA-induced apoptotic HepG2 cells. HepG2 cells were treated with GCDCA (100-500microM) with or without a caspase-8 inhibitor, Z-IETD-fluoromethyl ketone (Z-IETD-FMK) (30microM) for 3-24h. We demonstrated the presence of both apoptotic pathways in these cells; that is, we showed increases in cleaved caspase-3 proteins, the release of cytochrome c from mitochondria, and the expression of ER resident molecular chaperone Bip mRNA and ER stress response-associated transcription factor Chop mRNA. On the other hand, pretreatment with Z-IETD-FMK significantly reduced the increases, compared with treatment with GCDCA alone. Immunofluorescence microscopic analysis showed that treatment with GCDCA increased the cleavage of BAP31, an integral membrane protein of ER, and pretreatment with Z-IETD-FMK suppressed the increase of caspase-8 and BAP31 cleavage. In conclusion, these results suggest that intact activated caspase-8 may promote and amplify the ER stress response by cleaving BAP31 in GCDCA-induced apoptotic cells.

  15. Location of caspase 3-like protease in the development of sieve element and tracheary element of stem in Cucurbita moschata.

    Science.gov (United States)

    Hao, Xia; Qian, Jie; Xu, Shan; Song, Xin; Zhu, Jian

    2008-12-01

    The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, external phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.

  16. Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Ballabeni, Andrea; Maellaro, Emilia;

    2004-01-01

    -induced cell death. We have investigated the molecular mechanisms involved in executing doxorubicin-induced apoptosis and show caspase-3 activation by both mitochondria-dependent and -independent pathways. Moreover, serine proteases participate in doxorubicin-induced apoptosis partly by contributing to caspase...

  17. Involvement of caspase-9 in execution of the maternal program of apoptosis in Xenopus late blastulae overexpressed with S-adenosylmethionine decarboxylase.

    Science.gov (United States)

    Takayama, Eiji; Higo, Takayasu; Kai, Masatake; Fukasawa, Masashi; Nakajima, Keisuke; Hara, Hiroshi; Tadakuma, Takushi; Igarashi, Kazuei; Yaoita, Yoshio; Shiokawa, Koichiro

    2004-12-24

    We previously demonstrated that overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus early embryos induces execution of maternal program of apoptosis shortly after midblastula transition, which likely serves as a fail-safe mechanism of early development to eliminate physiologically damaged cells before they entering the gastrula stage. To determine how caspases are involved in this process, we microinjected peptide inhibitors and "dominant-negative forms" of caspase-9 and -1 into Xenopus fertilized eggs, and found that inhibitors of caspase-9, but not caspase-1, completely suppress SAMDC-induced apoptosis. The lysate of SAMDC-overexpressing late blastulae contained activity to cleave in vitro-synthesized [(35)S]procaspase-9, but not [(35)S]procaspase-1, and mRNA for caspase-9, but not caspase-1, occurred abundantly in the unfertilized egg as maternal mRNA. We also found that overexpression of caspase-9 and -1 equally executes the apoptosis, but the apoptosis executed by these mRNAs was only partially rescued by Bcl-2 and rescued embryos did not develop beyond neurula stage. These results indicate that activation of caspase-9 is a key step for execution of the maternally preset program of apoptosis in Xenopus early embryos.

  18. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  19. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    Directory of Open Access Journals (Sweden)

    Choi Jung-Hye

    2009-12-01

    Full Text Available Abstract Background Compound K [20-O-β-(D-glucopyranosyl-20(S-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. Methods We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Results Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1 the activation of caspases-3, -8, and -9; (2 the loss of mitochondrial membrane potential; (3 the release of cytochrome c and Smac/DIABLO to the cytosol; (4 the translocation of Bid and Bax to mitochondria; and (5 the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. Conclusions The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through

  20. Oleifolioside A mediates caspase-independent human cervical carcinoma HeLa cell apoptosis involving nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG.

    Science.gov (United States)

    Yu, Hai Yang; Jin, Cheng-Yun; Kim, Kyoung-Sook; Lee, Young-Choon; Park, Shin-Hyung; Kim, Gi-Young; Kim, Wun-Jae; Moon, Hyung-In; Choi, Yung Hyun; Lee, Jai-Heon

    2012-05-30

    Apoptosis, the main type of programmed cell death, plays an essential role in a variety of biological events. Whereas "classical" apoptosis is dependent on caspase activation, caspase-independent death is increasingly recognized as an alternative pathway. To develop new anticancer agents, oleifolioside A was isolated from Dendropanax morbifera Leveille and the biochemical mechanisms of oleifolioside A-induced apoptosis in HeLa cells were investigated. Exposure to oleifolioside A resulted in caspase activation and typical features of apoptosis, although cell death was not prevented by caspase inhibition. Oleifolioside A treatment induced up-regulation of Bad, loss of mitochondrial membrane potential, nuclear relocation of mitochondrial factors, apoptosis-inducing factor (AIF), endonuclease G (EndoG), and apoptosis induction. This is the first report of anticancer activity of oleifolioside A, and nuclear translocation of AIF and EndoG in oleifolioside A-treated HeLa cells might represent an alternative death signaling pathway in the absence of caspase activity.

  1. In Vitro and Ex Vivo Evaluation of Smart Infra-Red Fluorescent Caspase-3 Probes for Molecular Imaging of Cardiovascular Apoptosis

    Directory of Open Access Journals (Sweden)

    Manuelle Debunne

    2011-01-01

    Procedure. We developed quenched near-infrared probes which become fluorescent upon cleavage by caspase-3, the key regulatory enzyme of apoptosis. Results. Probes were shown to be selectively cleaved by recombinant caspase-3. Apoptosis of cultured endothelial cells was associated with an increased fluorescent signal for the cleaved probes, which colocalized with caspase-3 and was reduced by the addition of a caspase-3 inhibitor. Flow cytometry demonstrated a similar profile between the cleaved probes and annexin V. Ex vivo experiments showed that sections of hearts obtained from mice treated with the proapoptotic drug doxorubicin displayed an increase in the fluorescent signal for the cleaved probes, which was reduced by a caspase-3 inhibitor. Conclusion. We demonstrated the capacity of these novel probes to detect apoptosis by optical imaging in vitro and ex vivo.

  2. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria.

    Science.gov (United States)

    Häcker, Hans; Fürmann, Christine; Wagner, Hermann; Häcker, Georg

    2002-09-15

    A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.

  3. Microbiota Composition, HSP70 and Caspase-3 Expression as Marker for Colorectal Cancer Patients in Aceh, Indonesia

    Directory of Open Access Journals (Sweden)

    Fauzi Yusuf

    2017-02-01

    Full Text Available Aim: to investigate the relationship between microbiota composition with HSP70 and Caspase-3 expressions in colon tissue as an initial study to develop the candidate for early detection of colorectal cancer for Indonesian patients. Methods: this is a cross-sectional study on 32 patients undergoing colonoscopy; 16 patients of colorectal cancer (CRC while the other 16 patients are not (colitis and internal hemorrhoid. The composition of microbiota in stool samples was examined using 16S rRNA Denaturing Gradient Gel Electrophoresis (DDGE while expression of HSP70 was examined by immunohistochemistry and Caspase-3 by using Haematoxylin-Eosin(HE staining to determine the morphological changes in colon tissue. Results: analysis of PCR-DDGE shows a different composition of microbiota between patients with CRC and non-CRC. All CRC patients showed disappearance of dominant band from Bifidobacterium groups. Histological observation based on Inter Class Correlation (ICC test from all slide showed a high scores (5.2-9.2 in CRC patients and low scores (1.7-2.4 in non-CRC patients. HSP70 expression was increased significantly in CRC patients with the highest percentage of 84%, while expression of caspase-3 decreased with the highest percentage of 21%. Statistical analysis showed that the incidence of colorectal cancer was associated with the expression of HSP 70 (p<0.001, and Caspase 3 (p<0.001. Conclusion: bifidobacterium is an important indicator for colorectal cancer patients that show disappearance of dominant band, while expression of HSP70 increased and the Caspase-3 expression decreased significantly.

  4. Immunoexpression of the COX-2, p53, and caspase-3 proteins in colorectal adenoma and non-neoplastic mucosa

    Science.gov (United States)

    Nogueira, Renan Brito; Pires, Andréa Rodrigues Cordovil; Soares, Thélia Maria Santos; Rodrigues, Simone Rabello de Souza; Campos, Mariane Antonieta Menino; Toloi, Giovanna Canato;