WorldWideScience

Sample records for caso4 oxygen carrier

  1. Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor

    International Nuclear Information System (INIS)

    Chemical-looping combustion is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. Chemical-looping combustion of methane with calcium sulfate as a novel oxygen carrier was conducted in a laboratory scale fixed bed reactor. The effects of reaction temperature, gas flow rate, sample mass, and particle size on reduction reactions were investigated and an optimum operating condition was determined. The results show that this novel oxygen carrier has a high reduction reactivity and stability in a long-time reduction/oxidation test. The conversions of CH4 increased with a higher temperature, smaller gas flow rate, larger sample mass and smaller particle size. The suitable reaction temperature seems to be around 950 deg. C. Low temperatures lead to a low CH4 conversion, but a significant SO2 formation was observed at a higher temperature. The release of SO2, CO, H2 via a series of side reactions, carbon deposition and agglomeration were also discussed. The formation of SO2, CO, H2, and carbon can be avoided by optimization of the operating conditions

  2. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier☆

    Institute of Scientific and Technical Information of China (English)

    Yongzhuo Liu; Weihua Jia; Qingjie Guo; Hojung Ryu

    2014-01-01

    The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temper-ature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the begin-ning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.

  3. Investigation into Syngas Generation from Solid Fuel Using CaSO4-based Chemical Looping Gasification Process

    Institute of Scientific and Technical Information of China (English)

    LIU Yongzhuo; GUO Qingjie

    2013-01-01

    Chemical-looping gasification(CLG)is a novel process for syngas generation from solid fuels,sharing the same basic principles as chemical-looping combustion(CLC).It also uses oxygen carriers(mainly metal oxide and calcium sulfate)to transfer heat and oxygen to the fuel.In this paper,the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor.Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process,showing some different features from the CLC.The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios.It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance.The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and experimental results.It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.

  4. Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; HAO Zhengping

    2008-01-01

    A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carrier was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9Co0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.

  5. Enhanced optical oxygen sensing using a newly synthesized ruthenium complex together with oxygen carriers.

    Science.gov (United States)

    Ertekin, Kadriye; Kocak, Suleyman; Sabih Ozer, M; Aycan, Sule; Cetinkaya, Bekir

    2003-11-12

    In this article, an emission based, simple and fast method is proposed for the determination of gaseous oxygen. A newly synthesized fluorophore, dichloro-{2,6-bis[1-(4-dimethylamino-phenylimino) ethyl]pyridine}ruthenium(II) has been used for oxygen sensing together with oxygen carrier perfluorochemicals (PFCs) in silicon matrix. It should be noted that the solubility of oxygen in fluorocarbons is about three to ten times large as that observed in the parent hydrocarbons or in water, respectively. Employed PFCs are chemically and biochemically inert, have high dissolution capacities for oxygen, and, once doped into sensing film, considerably enhance the response of sensing agent. PMID:18969220

  6. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  7. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén;

    2011-01-01

    This work is a continuation of a previous paper by the authors [1] which analyzed the suitability of the Chemical Looping technology in biomass tar reforming. Four different oxygen carriers were tested with toluene as tar model compound: 60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg......–ZrO2 (Mn40) and FeTiO3 (Fe) and their tendency to carbon deposition was analyzed in the temperature range 873–1073K. In the present paper, the reactivity of these carriers to other compounds in the gasification gas is studied, also with special emphasis on the tendency to carbon deposition. Experiments...... were carried out in a TGA apparatus and a fixed bed reactor. Ni-based carriers showed a tendency to form carbon in the reaction with CH4, especially Ni60. The addition of water in H2O/CH4 molar ratios of 0.4–2.3 could decrease the carbon deposited, but not in the case of Ni60. Mn-based sample reacted...

  8. Thermal Analysis and Investigation of NiO-Based Oxygen Carriers for Chemical-Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jerndal, Erik, e-mail: erik.jerndal@chalmers.se

    2009-03-15

    Capture and storage of CO{sub 2} can be used to reduce greenhouse gas emissions from combustion of fossil fuels. Chemical-looping combustion is a two-step combustion process where CO{sub 2} is obtained in a separate stream, ready for compression and storage. The technology uses circulating oxygen carriers to transfer oxygen from an air reactor to a fuel reactor, thus avoiding an energy consuming gas separation unit. A thermal analysis of the process using a large number of possible oxygen carriers was performed by simulating chemical reactions. Based on the ability of the oxygen carriers to convert different gaseous fuels, stability in air and melting temperature some metal oxides based on Ni, Cu, Fe, Mn, Co, W and sulphates of Ba, Sr and Ca showed good thermodynamic properties and could be feasible as oxygen carriers. The promising systems were investigated further with respect to temperature changes in the fuel reactor as well as possible formation of carbon, sulphides and sulphates which may deactivate the oxygen carriers. Oxygen carriers of NiO, supported by NiAl{sub 2}O{sub 4}, were prepared and investigated experimentally with respect to parameters important for chemical-looping combustion. These oxygen carriers were based on commercially available raw materials in contrast to most of the previously tested oxygen carriers, which have been prepared from pure chemicals. Further, it was investigated if spray-drying, which is a production method suitable for large-scale particle preparation, can be used to produce high performing oxygen carriers instead of the small-scale freeze-granulation method. Generally, materials prepared from commercially available raw material showed high reactivity with methane and oxygen. Oxygen carriers prepared by spray-drying, displayed a remarkable similarity when compared to oxygen carriers prepared from the same starting material by freeze-granulation, both regarding physical properties and reactivity. Further, the up-scaling of

  9. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  10. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling

    International Nuclear Information System (INIS)

    Highlights: • Manganese-based combined oxides are examined for chemical-looping combustion applications. • Promising compositions includes (MnyFe1−y)Ox, (MnySi1−y)Ox and CaMnO3−δ. • Study includes thermodynamic analysis and overview of current experimental experiences. - Abstract: Oxygen-carrier materials for chemical-looping with oxygen uncoupling (CLOU) must be capable of taking up and releasing gas-phase O2 at conditions relevant for generation of heat and power. In principle, the capability of a certain material to do so is determined by its thermodynamic properties. This paper provides an overview of the possibility to design feasible oxygen carrier materials from combined oxides, i.e. oxides with crystal structures that include several different cations. Relevant literature is reviewed and the thermodynamic properties and key characteristics of a few selected combined oxide systems are calculated and compared to experimental data. The general challenges and opportunities of the combined oxide concept are discussed. The focus is on materials with manganese as one of its components and the following families of compounds and solid solutions have been considered: (MnyFe1−y)Ox, (MnySi1−y)Ox, CaMnO3−δ, (NiyMn1−y)Ox, (MnyCu1−y)Ox and (MnyMg1−y)Ox. In addition to showing promise from a thermodynamic point of view, reactivity data from experimental investigations suggests that the rate of O2 release can be high for all systems. Thus these combined oxides could also be very suitable for practical application

  11. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  12. Dosimetric properties of CaSO4: Dy thermoluminescent material

    International Nuclear Information System (INIS)

    The new ICRP regulations about radiological protection allows the different groups to study new high sensitivity thermoluminescent materials for dosimetric applications (personal and environmental). Different concentrations of Dy as dopant in the thermoluminescent material CaSO4 have been studied. The concentration usually encountered in bibliography for the CaSO4 is 0.1%. Our group have chosen the 1% Dy concentration due to its high sensitivity, the ratio for the CaSO4: Dy (1%) over the CaSO4: Dy (0.1%) is close to 3. The results obtained for the habitual set of tests (homogeneity, reproducibility, detection threshold, energy response and fading) reveals CaSO4: Dy (1%) as an excellent dosimetric material. We also present the good behavior of the CaSO4: Dy (0.1%) as a material for a retrospective dosimetry. (Author)

  13. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  14. Methodology for the assessment of oxygen as an energy carrier

    Science.gov (United States)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  15. Oxygen Carriers for Chemical Looping Combustion - 4 000 h of Operational Experience

    International Nuclear Information System (INIS)

    Chemical Looping Combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two interconnected fluidized beds, a fuel reactor and an air reactor, are used in the process. The outlet gas from the fuel reactor consists of CO2 and H2O, and the latter is easily removed by condensation. Considerable research has been conducted on CLC in the last years with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. Today, more than 700 materials have been tested and the technology has been successfully demonstrated in chemical looping combustors in the size range 0.3-140 kW, using different types of oxygen carriers based on oxides of the metals Ni, Co, Fe, Cu and Mn. The total time of operational experience is more than 4 000 hours. From these tests, it can be established that almost complete conversion of the fuel can be obtained and 100% CO2 capture is possible. Most work so far has been focused on gaseous fuels, but the direct application to solid fuels is also being studied. This paper presents an overview of operational experience with oxygen carriers in chemical looping combustors. (author)

  16. Feasibility study of CaSO4:Eu, CaSO4:Eu,Ag and CaSO4:Eu,Ag(NP) as thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    This work evaluates the dosimetric properties of crystals of CaSO4 doped with unusual elements, such as europium (Eu) and silver (Ag), including their nanoparticle forms, after the incorporation of glass or Teflon and compares them with well-known thermoluminescent dosimeters (TLD). X-ray diffraction analyses showed that samples of doped CaSO4 exhibit only a single phase corresponding to the crystal structure of anhydrite. Optical spectroscopy confirmed the presence of Eu3+ in the crystal matrix and a luminescent gain due the presence of silver nanoparticles. The composites showed thermoluminescent emission glow curves, with a single peak centered at approximately 200 °C for pellets with Teflon and at 230 °C for pellets with glass. The dosimeters based on calcium sulfate doped with europium and silver nanoparticles provided the most intense thermoluminescent (TL) emission of the composites studied. In comparison with commercial TLD, such as LiF:Mg,Ti and CaSO4:Dy, the CaSO4:Eu,Ag(NP)+glass produced in this work presented similar low detection limits and higher sensitivity. The new methods for the preparation of dosimeters and the incorporation of glass are shown to be viable because all of the samples presented a linear, reproducible and first order kinetic TL emission. - Highlights: • Thermoluminescent properties of CaSO4 doped with Eu, Ag and Ag nanoparticles were evaluated. • Crystals were grown using a production route based in the Yamashita method. • Glass or Teflon was incorporate to the crystals in order to obtain composites. • The TL responses of the composites are proportional to the dose absorbed. • The CaSO4:Eu,Ag(NP) + glass has potential to be used as a thermoluminescent dosimeter

  17. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  18. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  19. Methane combustion by moving bed fuel reactor with Fe2O3/Al2O3 oxygen carriers

    International Nuclear Information System (INIS)

    Highlights: • Moving bed reactor employed to methane combustion using iron-based oxygen carrier. • Fe2O3/Al2O3 oxygen carriers was prepared and provided with applicable performance. • Carbon formation was enhanced with increased retention time at 900 °C. • Full CH4 conversion was reached without carbon formation by moving bed operation. • FeO and FeAl2O4 were formed in the reacted oxygen carriers out of the reactor. - Abstract: Fe2O3/Al2O3 composite oxygen carriers were prepared for chemical looping combustion (CLC) with methane in a lab-scale moving bed fuel reactor provided with reasonable crush strength, reactivity and recyclability. Carbon formation was observed during the combustion process in the empty bed at 900 °C through methane decomposition reaction, and was enhanced for experiments conducted with increased retention time. Carbon formation was obviously reduced for experiments conducted in the moving bed fuel reactor with oxygen carrier-to-fuel ratio (ϕ) higher than 1.14. The oxygen carriers that moving out of the moving bed reactor were composed of mainly FeO and FeAl2O4, characterized by X-ray diffraction (XRD) analysis. The formation of FeO and FeAl2O4 indicated that further utilization of oxygen in iron-based oxygen carriers can be achieved by moving bed operation

  20. Artificial oxygen carriers--the new doping threat in endurance sport?

    Science.gov (United States)

    Schumacher, Y O; Schmid, A; Dinkelmann, S; Berg, A; Northoff, H

    2001-11-01

    Maximal oxygen uptake is the major performance limiting factor in endurance sports. Sophisticated training methods have been developed to increase this variable. On the other hand, attempts have been made to improve maximal oxygen uptake by artificial means: blood doping and the misuse of recombinant human erythropoietin have beneficial effects on aerobic exercise capacity. Both methods have been banned by international sporting federations. A new class of substances might represent the next step of fraudulent improvement of the maximal oxygen uptake: artificial oxygen carriers, such as solutions based on recombinant, bovine or human hemoglobin and perfluorocarbon-emulsions have been shown to improve oxygen delivery to the muscle. Hemoglobin-based solutions improve aerobic exercise capacity in animal and human testing. Both substances have potentially lethal side effects including renal toxicity, increased systemic and pulmonary blood pressure and impairment of the immune system. Hemoglobin-based carriers can be detected in drug testing with routine laboratory tests based on the detection of free hemoglobin. Perfluorocarbon is not metabolized by the body and exhaled through the lung and can be measured with chromatography. No screening for these substances in drug tests has been performed so far. International sporting federations should be aware of this new, emerging doping threat. PMID:11719891

  1. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    OpenAIRE

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in...

  2. A Study on CaSO4 Fouling Deposit

    Institute of Scientific and Technical Information of China (English)

    RenXiaoguang; LiCuiqing; LiuChanghou

    2002-01-01

    This paper reports the influences of heat transfer surface properties on the formation of CaSO4 fouling deposition during flow boiling heat transfer.The surfaces of several test heaters have been treated by surface modification techniques.such as dynamic mixing ion beam implantation and dynamic mixing magnetron sputtering to reduce surface energy.Fouling runs with these heaters were carried out at different heat fluxes,flow velocities and salt concentrations.The results show that heat transfer surfaces with low surface energy experienced significantly a reduced formation of CaSO4 deposit.

  3. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  4. Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue.

    Science.gov (United States)

    Eisenbrey, John R; Albala, Lorenzo; Kramer, Michael R; Daroshefski, Nick; Brown, David; Liu, Ji-Bin; Stanczak, Maria; O'Kane, Patrick; Forsberg, Flemming; Wheatley, Margaret A

    2015-01-15

    Radiation therapy is frequently used in the treatment of malignancies, but tumors are often more resistant than the surrounding normal tissue to radiation effects, because the tumor microenvironment is hypoxic. This manuscript details the fabrication and characterization of an ultrasound-sensitive, injectable oxygen microbubble platform (SE61O2) for overcoming tumor hypoxia. SE61O2 was fabricated by first sonicating a mixture of Span 60 and water-soluble vitamin E purged with perfluorocarbon gas. SE61O2 microbubbles were separated from the foam by flotation, then freeze dried under vacuum to remove all perfluorocarbon, and reconstituted with oxygen. Visually, SE61O2 microbubbles were smooth, spherical, with an average diameter of 3.1 μm and were reconstituted to a concentration of 6.5 E7 microbubbles/ml. Oxygen-filled SE61O2 provides 16.9 ± 1.0 dB of enhancement at a dose of 880 μl/l (5.7 E7 microbubbles/l) with a half-life under insonation of approximately 15 min. In in vitro release experiments, 2 ml of SE61O2 (1.3 E8 microbubbles) triggered with ultrasound was found to elevate oxygen partial pressures of 100ml of degassed saline 13.8 mmHg more than untriggered bubbles and 20.6 mmHg more than ultrasound triggered nitrogen-filled bubbles. In preliminary in vivo delivery experiments, triggered SE61O2 resulted in a 30.4 mmHg and 27.4 mmHg increase in oxygen partial pressures in two breast tumor mouse xenografts. PMID:25448552

  5. Validation of chemical-looping with oxygen uncoupling (CLOU using Cu-based oxygen carrier and comparative study of Cu, Mn and Co based oxygen carriers using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Xiao Zhang, Subhodeep Banerjee, Ramesh K. Agarwal

    2015-01-01

    Full Text Available The chemical-looping with oxygen uncoupling (CLOU has been demonstrated to be an effective technological pathway for high-efficiency low-cost carbon dioxide capture when particulate coal serves as the fuel. In this paper, complete process-level modeling of CLOU process conducted in ASPEN Plus is presented. The heat content of fuel and air reactors and air/flue gas heat exchangers is carefully examined. It is shown that the established model provides results which are in excellent agreement with the experiments for the overall power output of the CLOU process. Finally the effect of varying the air flow rate and three different types of coal as the solid fuel on energy output is investigated, and the performance of three – Copper (Cu, Manganese (Mn and Cobalt (Co based oxygen carriers in CLOU process is compared. It is shown that there exists an optimal air flow rate to obtain the maximum power output for a given coal feeding rate and coal type. The effect of three different oxygen carriers on energy output is also investigated using the optimal air flow rate. Among the three oxygen carriers - CuO, Mn2O3, and Co3O4; Mn2O3 shows the best performance on power output. The results presented in this paper can be used to estimate the amount of various quantities such as the air flow rate and oxygen carrier (and its type required to achieve near optimal energy output from a CLOU process based power plant.

  6. Hemoglobin-Vesicles as Oxygen Carriers : Influence on Phagocytic Activity and Histopathological Changes in Reticuloendothelial System

    OpenAIRE

    Sakai, Hiromi; Horinouchi, Hirohisa; Tomiyama, Kenichi; IKEDA, EIJI; Takeoka, Shinji; Kobayashi, Koichi; Tsuchida, Eishun

    2001-01-01

    Hemoglobin-vesicles (HbV) have been developed for use as artificial oxygen carriers (particle diameter, 250 nm) in which a purified Hb solution is encapsulated with a phospholipid bilayer membrane. The influence of HbV on the reticuloendothelial system was studied by carbon clearance measurements and histopathological examination. The HbV suspension ([Hb] = 10 g/dl) was intravenously infused in male Wistar rats at dose rates of 10 and 20 ml/kg, and the phagocytic activity was measured by moni...

  7. The Properties of CaSO4: Mn Thermoluminescence Dosimeters

    International Nuclear Information System (INIS)

    The properties of the radio thermoluminescence of CaSO4:Mn, used for dosimetry of gamma and roentgen radiation, have been investigated. The light yield of the luminophore has been determined to 1.5 percent for 1 MeV gamma radiation. The dependence of the thermoluminescence light sum on the exposure, the exposure rate, and the exposure time can qualitatively be described by the first order process model, modified by a broad energy distribution of the electron trap depths. Some applications are discussed. The cheapness of the dosimeters, the convenient read-out, and the broad range of measurable exposures suggest that CaSO4:Mn can be a valuable complement to other dosimetry systems

  8. Thermoluminescence mechanisms in CaSO4:Dy single crystals

    International Nuclear Information System (INIS)

    ESR studies of gamma-irradiated CaSO4:Dy have shown, in addition to the usual intrinsic defects, four new paramagnetic centres. An analysis of the g values and the g tensors in conjunction with the anhydrite crystal structure indicate that these centres are related to sulphate ions. Two of these centres (denoted 1a and 3a) are proposed as holes trapped and shared between two adjacent sulphate ions, this structure being stabilised by a neighbouring Ca vacancy. Centre 3b is suggested as a hole associated with one sulphate ion, again stabilised by an adjacent Ca vacancy. Because of the two distinct crystallographic directions in the anhydrite structure, centre 3b was found to consist of two distinguishable defects with slightly differing decay temperatures. The fourth centre appears to be an electron trapping site with structure similar to centre 3b. Decay temperatures of these ESR defects are correlated with the observance of TL peaks in CaSO4:Dy. Thermoluminescence studies as a function of impurity content confirmed the presence of calcium vacancies, which are formed during crystal growth, and that they play an important role in the TL process. TL models are proposed to account for the observed properties of CaSO4:Dy. (author)

  9. Physical properties of hemoglobin-poly(acrylamide) hydrogel-based oxygen carriers: effect of reaction pH.

    Science.gov (United States)

    Patton, Jaqunda N; Palmer, Andre F

    2006-02-28

    This work examines the physical properties of bovine hemoglobin (BHb) chemically cross-linked to a pH responsive polymer (poly(acrylamide)) with the goal of taking advantage of the polymer's pH sensitivity to generate low-P50 oxygen carriers for application in physiological conditions characterized by deviations from normal pH. BHb-hydrogel-based oxygen carriers encapsulating 10-16 g/dL BHb displayed P50s liposomes (i.e. Hb-LGs) and change conformations between the R and T states. The magnitude of the zeta potential of Hb-LGs and Hb-NHPs was shown to be within the range of stored red blood cells and within the range of limited flocculation. Taken together, this work describes the preparation and characterization of oxygen carriers with increased oxygen affinities compared to those of red blood cells. PMID:16489809

  10. Effect of oxygen precipitates in solar grade silicon on minority carrier lifetime and efficiency of solar cells

    Institute of Scientific and Technical Information of China (English)

    SUN Haizhi; LIU Caichi; HAO Qiuyan; WANG Lijian

    2006-01-01

    The effect of oxygen precipitates on minority carrier lifetime and performance of solar cell was studied by means of Fourier Transform Infrared Spectroscopy (FTIR), quasi-steady state photoconductance (QSSPCD), optical microscope, spectrumresponse and solar cell efficiency test. The minority carrier lifetime and performance of solar cell reduced depend on oxygen precipitates. A few of oxygen precipitates have formed after single-step annealing; and they do not impact the efficiency dramatically. Pre-annealing at 650 ℃ for 4 h enhances the oxygen precipitation when it is subjected to middle temperature annealing. The solar cells performance decayed sharply. Especially annealing at 950 ℃ for 3 h, the V os and I sc of cells decrease 12% and 25% respectively. Few oxygen precipitates have formed in silicon after high temperature annealing at about 1050 ℃ whether pre-annealing is used or not, and the performance of cells is notbe affected.

  11. High dose and phototransferred thermoluminescence in CaSO4, CaSO4:Dy, and CaSO4:Tm

    International Nuclear Information System (INIS)

    An investigation is presented to test the feasibility of extending the usefulness of the CaSO4 phosphor doped with Tm or Dy into the high dose/high temperature regime. The doses studied range from 1 kGy to 100 kGy obtained from γ ray and flash electron beam sources. Integrated glow curve signals in the 'dosimetry range' (∼100-350oC) and the high temperature range (∼350-600oC) are measured as a function of dose. Integrated UV phototransferred thermoluminescence signals (∼100-300oC) are similarly considered. For powdered samples doped to 0.1 mol%, the onset of saturation occurs near 10 kGy. This establishes that thermoluminescence doseimetry for industrial food processing (pasteurisation, disinfestation, radicidation and radurisation) is a possibility.( (author)

  12. Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas

    International Nuclear Information System (INIS)

    Highlights: • Fly-ash based oxygen carriers were synthesised for chemical looping combustion of synthesis gas. • Using fly-ash as the support of the oxygen carrier enhanced the thermal stability and oxidant transfer for fuel oxidation. • Fly-ash based nickel oxide reformed hydrocarbons into carbon monoxide with the presence of carbon dioxide. - Abstract: The performance of coal fly-ash based oxygen carriers for chemical looping combustion of synthesis gas has been investigated using both a thermogravimetric analyser and a packed bed reactor. Oxygen carriers with 50 wt% active metal compounds, including copper, nickel and iron oxides, supported on coal fly-ash were synthesised using the deposition–precipitation method. Copper oxide and nickel oxide supported on fly-ash showed high oxygen transfer efficiency and oxygen carrying capacity at 800 °C. The fly-ash based nickel oxide was effective in reforming hydrocarbons and for the conversion of carbon dioxide into carbon monoxide; a nickel complex with silicate was identified as a minor phase following the reduction reaction. The fly-ash based iron oxide showed various reduction steps and resulted in an extended reduction time. The carbon emission at the oxidation stage was avoided by reducing the length of the exposure to the reduction gas

  13. The use of ilmenite as oxygen carrier with kerosene in a 300 W CLC laboratory reactor with continuous circulation

    International Nuclear Information System (INIS)

    Graphical abstract: Experiments with sulfur-free and sulfurous kerosene were performed using ilmenite oxygen carrier. Fuel conversion improved significantly and lasting when sulfurous kerosene was used. - Highlights: • Experiments were performed in a 300 W reactor with continuous circulation. • Sulfurous and sulfur-free kerosene were used directly as fuel. • Ilmenite oxygen carrier (Norwegian rock ilmenite) was tested. • Combustion experiments were performed for 50 h (sulfur-free) and 30 h (sulphurous), respectively. • A significant and lasting improvement in the oxygen carrier’s reactivity was achieved by using sulfurous kerosene. - Abstract: An ilmenite oxygen carrier was tested in a laboratory scale chemical-looping reactor with a nominal thermal capacity of 300 Wth. Ilmenite is a mineral iron–titanium oxide, which has been used extensively as an oxygen carrier in chemical-looping combustion. Two different kinds of fuels were used, a sulfur-free kerosene and one kerosene that contained 0.57 mass% sulfur. Both fuels were continuously evaporated and directly fed into the chemical-looping reactor. Experiments were conducted for 50 h with the sulfur-free kerosene and for 30 h with the sulfurous kerosene. CO2 yields above 99% were achieved with both types of fuel. A significant and lasting improvement in the oxygen carrier’s reactivity was observed, presumably an effect of using sulfurous kerosene. No evidence of sulfur was found on the particles’ surface

  14. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor.

    Science.gov (United States)

    Sullivan, Jesse P; Gordon, Jason E; Palmer, Andre F

    2006-02-01

    A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors. PMID:16161160

  15. Molecular Design Properties of OxyVita Hemoglobin, a New Generation Therapeutic Oxygen Carrier: A Review

    Directory of Open Access Journals (Sweden)

    Hanna Wollocko

    2011-12-01

    Full Text Available OxyVita Hb is a new generation hemoglobin based oxygen carrier (HBOC produced through modification of a zero-linked polymerization mechanism using activators which incorporate cross-linked bovine tetramer hemoglobin into “super-polymeric” macromolecules (Average molecular weight = 17 MDa for the purpose of oxygen delivery when whole blood or packed red cells are not available. This molecular design approach was generated in order to address several fundamental biochemical and physiological weaknesses of previous generations of HBOCs. Observation during pre-clinical and clinical studies provided evidence that these early generation acellular HBOCs were directly associated with loss of retention within the circulatory system, extravasation across endothelial tissue membranes due to their small molecular size leading to arterial and venous vasoconstriction with coupled increases in mean arterial pressure (MAP. The inherent increase in molecular size and structural stability of the OxyVita Hb is a direct response to addressing these serious weaknesses that have occurred during the evolution of HBOC development within the past two decades. The nature of the zero-linked synthetic route eliminates any chemical linkers remaining in the product, eliminating side reaction concerns, such as reversibility and decomposition due to weak chemical bonds, dependency on temperature and pressure, and residual toxicity.

  16. [Effects of Hydraulic Retention Time and Dissolved Oxygen on a CANON Reactor with Haydite as Carrier].

    Science.gov (United States)

    Wang, Hui-fang; Fu, Kun-ming; Zuo, Zao-rong; Qiu, Fu-guo

    2015-11-01

    One Completely Autotrophic Nitrogen Removal Over Nitrite ( CANON) reactor with haydite as carrier was investigated to study the effects of different hydraulic retention time ( HRT) and dissolved oxygen (DO) on CANON reactors by seeding sludge from another mature CANON reactor and using synthetic inorganic ammonia-rich waste water as influent. During the experiment, the concentration of influent ammonia nitrogen was basically unchanged, the HRT of the reactor were 9, 7, 5 h in turn and the range of DO was 1.16-3.20 mg x L(-1). The results showed that: (1) When DO was 1.20-1.75 mg x L(-1), despite the increase of DO can improve AOB's activity and matrix mass transfer in the system, NH4(+) -N and TN removal efficiency were still fell with the shortening of HRT for the CANON reactor, especially when DO was higher than 2.50 mg x L(-1), TN removal efficiency dropped sharply; (2) Under the condition that DO was 1.20-1.75 mg x L(-1), with the shortening of HRT, partial nitritation tended to be stable in the CANON process, and when DO was higher than 1.75 mg x L(-1), even if HRT was shorter, partial nitritation was still severely damaged; (3) Under the condition that DO was 1.20-1.75 mg x L(-1) and HRT was 7 h, for the CANON reactor, partial nitritation and total nitrogen removal efficiency kept well. Hydraulic retention time and dissolved oxygen both are important operational parameters for biological wastewater treatment process, which could directly affect the effect of biological treatment and effluent quality, so to choose appropriate hydraulic retention time and dissolved oxygen coordinately is very important to improve the effect of treatment of ammonium-rich wastewater by CANON process. PMID:26911004

  17. Identification of deep trap energies and influences of oxygen plasma ashing on semiconductor carrier lifetime

    Science.gov (United States)

    Koprowski, A.; Humbel, O.; Plappert, M.; Krenn, H.

    2015-03-01

    We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H.

  18. Identification of deep trap energies and influences of oxygen plasma ashing on semiconductor carrier lifetime

    International Nuclear Information System (INIS)

    We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H. (paper)

  19. Atomistic modelling of the hydration of CaSO 4

    Science.gov (United States)

    Adam, Craig D.

    2003-08-01

    Atomistic modelling techniques, using empirical potentials, have been used to simulate a range of structures formed by the hydration of γ-CaSO 4 and described as CaSO 4· nH 2O (0commercial importance and has been subjected to much experimental study. These simulation studies demonstrate significant water-matrix interactions that influence the crystallography of the hydrated phase. The existence of two types of hydration site has been predicted, including one within the Ca 2+coordination sphere. Close correlation between water molecule bonding energy, Ca 2+-O w bond length and unit-cell volume have been established. This shows that as the number of water molecules within the unit cell increases, the bonding energy increases and the unit cell contracts. However around n=0.5, this process reaches a turning point with the incorporation of further waters resulting in reduced binding energy and an expanding unit cell.

  20. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    Science.gov (United States)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  1. Luminescent characteristics of CaSO4:Dy films obtained by spray pyrolysis method

    International Nuclear Information System (INIS)

    The present paper reports the experimental results of dysprosium doped calcium sulphate (CaSO4:Dy) films deposited by spray pyrolysis method. CaSO4:Dy films were deposited on three different surfaces: glass, aluminum and quartz substrates at temperatures in the range from 450 to 600 °C. Structural and morphological characteristics of CaSO4:Dy films were observed. Thermoluminescent characteristics of films were determined by irradiating ultraviolet energy region. Thermoluminescent glow curve of CaSO4:Dy films with glass and aluminum substrates showed a peak under environmental irradiation. Both TL response glow shape and intensity of CaSO4:Dy films UV irradiated as a function of substrates were studied. - Highlights: ► We carried out the preparation of calcium sulfate films doped with dysprosium (CaSO4:Dy) by spray paralysis method. ► SEM and EDS techniques were applied to study the surface topography and chemical composition of the CaSO4:Dy films. ► Thermoluminescent characteristics of films were determined by irradiating ultraviolet energy region. ► The thermoluminescent response of CaSO4:Dy films as a function of substrate was analyzed.

  2. Performance of Brazilian thermoluminescent CaSO4: Dy pellets in standard diagnostic radiology beams

    International Nuclear Information System (INIS)

    The high sensitivity of CaSO4: Dy as a thermoluminescent material is a great advantage when dealing with low dose levels, as in diagnostic radiology procedures. However, these kinds of dosemeters present a high energy dependence that must be precisely determined in the energy range of interest. Dosimetric pellets of CaSO4: Dy are produced at IPEN since the end of the 80 Th decade. These pellets are produced in three forms: conventional CaSO4: Dy (50 mg); thin CaSO4: Dy (20 mg) and CaSO4: Dy + 10% C (20 mg). The main applications of these dosemeters are in personal and environmental dosimetry. In this study, CaSO4: Dy pellets produced at IPEN were evaluated in diagnostic radiology standard beams. These qualities are based on the IEC 61267 standard, and they were established at an industrial X-ray system Pantak/Seifert, model ISOVOLT 160HS. Former studies evaluated CaSO4: Dy of different origins in diagnostic beams. In this study, a large energy interval was used to include computed tomography energy beams. The results obtained show the behavior of the IPEN CaSO4: Dy pellets in diagnostic standard beams. All results confirm that these pellets may be used for dosimetric procedures in diagnostic radiology beams. (Author)

  3. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers

    OpenAIRE

    Jiin-Yu Chen; Michelle Scerbo; George Kramer

    2009-01-01

    The complications associated with acquiring and storing whole blood for transfusions have launched substantial efforts to develop a blood substitute. The history of these efforts involves a complicated mixture of science, ethics, and business. This review focuses on clinical trials of the three hemoglobin-based oxygen carriers (HBOC) that have progressed to Phase II or III clinical trials: He-mAssist (Baxter; Deerfield, IL, US), PolyHeme (Northfield; Evanston, IL, US), and Hemopure (Biopure; ...

  4. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    Science.gov (United States)

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter. PMID:6823508

  5. Enhanced Photoexcited Carrier Separation in Oxygen-Doped ZnIn2 S4 Nanosheets for Hydrogen Evolution.

    Science.gov (United States)

    Yang, Wenlong; Zhang, Lei; Xie, Junfeng; Zhang, Xiaodong; Liu, Qinghua; Yao, Tao; Wei, Shiqiang; Zhang, Qun; Xie, Yi

    2016-06-01

    Limited by the relatively sluggish charge-carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2 S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in-depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen-doped ZIS nanosheets. As expected, the oxygen-doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h(-1)  g(-1) under visible-light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets. PMID:27100950

  6. EPR-TL correlation studies on Bi co-doped CaSO4:Dy phosphor

    International Nuclear Information System (INIS)

    CaSO4:Dy, CaSO4:(Dy, Bi) and CaSO4:Bi phosphors were prepared through re-crystallization method. Thermoluminescence (TL) characteristics of these phosphor samples were investigated. The radiation induced radical ions formed in these phosphors were investigated using electron paramagnetic resonance (EPR) spectroscopy. The main signals observed in both CaSO4:(Dy, Bi) and CaSO4:Bi were identified as SO4- (II), SO4- (-perpendicular ) and SO3- (isotropic) with 'g' values 2.023, 2.0089 and 2.004, respectively. In order to understand the TL mechanism, CaSO4:(Dy, Bi) phosphor samples were annealed between 100 and 250 oC and their EPR spectra were studied. It was observed that EPR signal intensities reduce drastically in 250 oC annealed phosphor confirming the role of SO4- and SO3- types of defect centers in the dosimetric peak. The reduction in the TL sensitivity with increase in Bi3+ co-dopant in the phosphor samples was correlated with quenching of TL by Bi3+ ions rather than the reduction in the concentration of the above defect centers. An effort was also made to use the Bi3+ co-doped CaSO4:Dy phosphor for dosimetry of chilled or frozen food irradiation.

  7. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-06-01

    Full Text Available Abstract Background Liquid perfluorochemicals (PFCs are interesting oxygen carriers in medicine and biotechnology with a high solubility for oxygen. They have been repeatedly used for improving oxygen transfer into prokaryotic and eukaryotic cell cultures, however their application is still limited. Here we show the great benefit of air/oxygen saturated perfluorodecalin (PFD for high cell density cultivation of Escherichia coli in microwell plates and their positive effect on the soluble production of a correctly folded heterologously expressed alcohol dehydrogenase. Results In EnBase® cultivations the best effect was seen with PFD saturated with oxygen enriched air (appr. 10 μM oxygen per ml when PFD was added at the time of induction. In contrast the effect of PFD was negligible when it was added already at the time of inoculation. Optimisation of addition time and content of loaded oxygen into the PFD resulted in an increased the cell density by 40% compared to control cultures, and correspondingly also the product yield increased, demonstrated at the example of a recombinant alcohol dehydrogenase. Conclusions PFCs are a valuable additive in miniaturized cell culture formats. For production of recombinant proteins in low cell density shaken cultures the addition of oxygen-enriched PFD makes the process more robust, i.e. a high product yield is not any more limited to a very narrow cell density window during which the induction has to be done. The positive effect of PFD was even more obvious when it was added during high cell density cultures. The effect of the PFD phase depends on the amount of oxygen which is loaded into the PFD and which thus is a matter of optimisation.

  8. Production of CaSO4:Dy thermoluminescence dosimeters from natural crystals of Iran

    International Nuclear Information System (INIS)

    Calcium sulphate (CaSO4:Dy) thermoluminescence (TL) phosphors were produced from natural CaSO4:2H2O crystals of Iran for large-scale dosimetry. The procedure of recrystallization of the natural crystals was followed. A known amount of Dy2O3 was added into diluted H2SO4 as dopant at 200 degree C. Also a known amount of CaSO4:2H2O powder was added to the solution heated up to final recrystallization stage. Different parameters such as washing of the crystal powder for sodium (Na) removal, Dy2O3 incorporation and oven-heating temperature were optimized. The TLD phosphor produced has a sensitivity over 1.3 times higher than that of Harshaw CaSO4:Dy phosphors. The results are presented and discussed. (7 figs.)

  9. Thermoluminescent properties of CaSO4:Dy prepared by precipitation method

    International Nuclear Information System (INIS)

    This paper reports the synthesis and thermoluminescent (Tl) characterization of CaSO4:Dy obtained by the precipitation method. Thermoluminescent CaSO4:Dy powder and Teflon (PTFE) were mixed in order to obtain samples in pellets form. Samples of CaSO4:Dy were exposed to a radiation gamma source of 60Co and 90Sr beta particles. Tl response of CaSO4:Dy showed a glow curve with two peaks centered at around 164 and 302 C. Tl phosphor showed a good linearity in the range from 0.5 to 30 Gy. Fading of the Tl information was 5.19 % in 37 days and presented a standard deviation of 4% for reproducibility. (Author)

  10. Thermoluminescent analysis of CaSO4 composites activated with rare earths

    International Nuclear Information System (INIS)

    Since the thermoluminescence started to be applied to the dosimetry of ionizing radiation in 1940 different materials detectors have been proposed, and one of the most common is CaSO4. The motivation of this work was to produce crystals of CaSO4 doped with rare earth elements such as europium (Eu), neodymium (Nd) and thulium (Tm). It was also produced crystals of CaSO4:Ag. The interest in the production of these materials was to investigate other methods of production of thermoluminescent materials. The results show that the CaSO4:Tm is more suitable for use in the thermoluminescent dosimetry. Although not the most intense peak, the peak at 170 °C could be a dosimetric peak. Analyses showed that all samples have a TL response proportional to the dose absorbed. (author)

  11. Preparation of CaSO4:Dy by precipitation method to gamma radiation dosimetry

    International Nuclear Information System (INIS)

    This paper presents the results of the preparation and characterization of dysprosium-doped calcium sulfate (CaSO4:Dy) phosphor, which was obtained by homogeneous precipitation from calcium acetate Ca(CH3COO-)2. Structural and morphological characteristics were studied using a scanning electronic microscope (SEM). The structure of all compounds was determined by X-ray diffraction method too. Thermoluminescence (TL) emission properties of CaSO4:Dy under gamma radiation effects were studied. This phosphor powder presented a TL glow curve with two peaks (Tmax) centered at around of 180 and 300 deg. C, respectively. The TL response of CaSO4:Dy as a function of gamma absorbed dose was linear in a wide range. Both emission and excitation spectra were also obtained. Results showed that this new preparation method of CaSO4:Dy TL phosphor is less expensive, cleaner and safer than the conventional preparation method.

  12. Syngas combustion in a 500 Wth Chemical-looping combustion system using an impregnated Cu-based oxygen carrier

    OpenAIRE

    Forero, C.R.; Gayán Sanz, Pilar; Diego Poza, Luis F. de; Abad Secades, Alberto; García Labiano, Francisco; Adánez Elorza, Juan

    2009-01-01

    Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherently to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC p...

  13. Soluble minerals in chemical evolution. I - Adsorption of 5-prime-AMP on CaSO4 - A model system

    Science.gov (United States)

    Orenberg, J. B.; Chan, S.; Calderon, J.; Lahav, N.

    1985-01-01

    The adsorption of 5-prime-AMP onto solid CaSO4-2H2O was studied in a saturated suspension as a function of pH and electrolyte concentration. The adsorption is pH-dependent and is directly correlated with the charge on the 5-prime-AMP molecule which is determined by the state of protonation of the N-1 nitrogen of the purine ring and the phosphate oxygens. It is proposed that the binding that occurs between the nucleotide and the salt is electrostatic in nature. The adsorption decreases with increasing ionic strength of the solution which means that in a fluctuating environment of wetting and drying cycles, a biomolecule similar to 5-prime-AMP could be expected to desorb during the drying phase. The results indicate that CaSO4-2H2O can serve as a concentrating surface for biomolecules. The significance of this is discussed with regard to the possible role of soluble minerals and their surfaces in a geochemical model consistent with the evolution of the earth and the origin of life.

  14. Development of Li compound embedded with CaSO4:Dy TL pellet for neutron measurement

    International Nuclear Information System (INIS)

    Personal neutron dosimetry is quite a difficult area because a neutron is always accompanied with gamma radiation, which is required of a the capability for mixed field dosimetry. CaSO4: Dy phosphor is known to have a very high sensitivity to gamma, but the neutron capture cross section of the constituents of CaSO4:Dy are so small that the interactions between the thermal neutron and the phosphor are rare. One method to improve the neutron interaction is by introducing an impurity ion with a large thermal neutron captures cross section into the phosphor to act as a neutron target centre such as 6Li. In neutron-gamma mixed radiation fields, if two detectors for the 6Li-7Li compounds embedded CaSO4:Dy TL pellets are used, a 6Li-compound embedded pellet can detect the neutron and gamma radiation together, and the other pellet can only detect the gamma radiation. Recently Korea Atomic Energy Research Institute (KEARI) has developed a new type of CaSO4:Dy TL materials embedded with phosphorous (KCT-300) to detect beta and gamma radiation with a very high sensitivity. This paper presents the development of CaSO4:Dy TL pellets embedded with 6Li compound for a thermal neutron measurement, and the detection method of the neutron and gamma dose in mixed fields with CaSO4:Dy TL pellets embedded with a 6Li compound(KCT-306) and CaSO4:Dy TL pellets embedded with a 7Li compound(KCT-307) is introduced. The net neutron sensitivity of CaSO4:Dy TL pellets embedded with 6Li compound developed in this study is about 2 times higher than that of the TLD-600 (Harshaw Co.) dosimeter which is available in the open market

  15. Feasibility study of CaSO4:Tb,Yb as a thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    A new composite based on CaSO4, using terbium as dopant and ytterbium as co-dopant (CaSO4:Tb,Yb), was developed for employment as a thermoluminescent (TL) dosimeter. The crystals used in this work were grown using a production route based on the Yamashita method (Yamashita et al., 1968). Crystal powder was calcined at 600 °C for 1 h. Pellets were made by adding commercial and colorless glass to improve physical resistance and sintered at 700 °C for 6 h. All samples were irradiated by a beta source (90Sr/90Y) and received doses from 1 Gy to 5 Gy. TL analyses have been performed and characteristics such as sensitivity, reproducibility, linearity, and fading have been studied. The CaSO4:Tb,Yb pellets glow curves presented two peaks, the first at around 115 °C, and the second at around 200 °C. The highest intensity was shown for CaSO4:Tb,Yb with a concentration of 0.1 mol% of Tb and Yb together. In all the samples the TL response was proportional to the absorbed dose. Therefore, the CaSO4:Tb,Yb has potential to be used as a thermoluminescent dosimeter. - Highlights: ► A new dosimeter based on CaSO4 and doped with Tb and Yb is proposed. ► The samples were grown using a production route based in the Yamashita method. ► CaSO4:Tb,Yb glow curves exhibited a TL emission in temperatures from 100 to 270 °C. ► The TL responses of the composites produced are proportional to the dose absorbed. ► The CaSO4:Tb,Yb has potential to be used as a thermoluminescent dosimeter

  16. Thermoluminescent response of CaSO4:Dy+PTFE induced by X-ray beams

    International Nuclear Information System (INIS)

    The aim of the present work was to evaluate the feasibility of the utilization of CaSO4:Dy pellets for X-ray measurements in a general radiology department. Thermoluminescence (TL) response of CaSO4:Dy+PTFE was compared to the TL response of commercial LiF:Mg,Ti (TLD-100) samples. TL pellets were exposed to X-ray beam from X-ray machine CMR for clinical diagnosis purpose. The calibration curve of CaSO4:Dy+PTFE was obtained and it showed a linear response as a function of absorbed dose in air at the studied dose interval. Despite this fact, this material can be used for X-ray beams measurements if appropriate calibration procedures are performed. - Highlights: ► Developing of CaSO4:Dy to quasimono-energetic X-ray low energy dosimetry. ► Thermoluminescent response of caSO4:Dy to X-ray low dose. ► TL characteristics of CaSO4:Dy for X-ray beam quality control.

  17. Preparation, characterization and in vivo investigation of blood-compatible hemoglobin-loaded nanoparticles as oxygen carriers.

    Science.gov (United States)

    Lu, Mingzi; Zhao, Caiyan; Wang, Quan; You, Guoxing; Wang, Ying; Deng, Hongzhang; Chen, Gan; Xia, Sha; Zhao, Jingxiang; Wang, Bo; Li, Xianlei; Shao, Leihou; Wu, Yan; Zhao, Lian; Zhou, Hong

    2016-03-01

    Although many attempts have been made to design advanced hemoglobin-based oxygen carriers (HBOCs), no clinically viable product has been widely approved, because they do not perform normal blood functions, such as coagulation, hematologic reactions and stability. Additionally, the in vivo oxygenation of hemoglobin-loaded nanoparticles (HbPs) encapsulated with polymers has seldom been proved. Herein, HbPs of approximately 200nm with good stability were successfully fabricated and exhibited oxygen-carrying capacity. The HbPs preserve the biological and structure features of hemoglobin according to UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectral analysis. In vitro, the HbPs showed a viscosity comparable to that of blood with no obvious effects on red blood cell aggregation. At the same time, blood compatibility was characterized in terms of platelet function, clot strength, speed of clot formation, degree of fibrin cross-linking and hemolysis rate. After intravenous administration of HbPs to mice with controlled hemorrhages, blood flow recovery and maintenance of systemic oxygenation were observed. PMID:26708138

  18. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen;

    2016-01-01

    ) porosity test. The performance of the prepared materials was first evaluated in a TGA reactor through a CO reduction and subsequent steam oxidation process. Then a complete redox process was conducted in a fixed-bed reactor, where the NiFe2O4 oxygen carrier was first reduced by simulated biomass pyrolysis...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement with the......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...

  19. Chemical-looping gasification of biomass in a 10k Wth interconnected fluidized bed reactor using Fe2 O3/Al2 O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    HUSEYIN Sozen; WEI Guo-qiang; LI Hai-bin; HE Fang; HUANG Zhen

    2014-01-01

    The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

  20. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    Xing Zhu; Hua Wang; Yonggang Wei; Kongzhai Li; Xianming Cheng

    2011-01-01

    CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM).Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor.Methane is directly converted to syngas at a H2/CO ratio close to 2∶ 1 at a high temperature (above 750 ℃) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 ℃ in methane isothermal reaction.CeO2-δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 ℃; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2).Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.

  1. CaSO4 and cationic polyelectrolyte as possible pectin precipitants in sugar beet juice clarification

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana

    2015-01-01

    Full Text Available Three pectin preparations were isolated from fresh sugar beet pulp during the 150 minutes of extraction, at pH values of 1, 3.5 and 8.5. CaSO4 precipitant was added to 100 cm3 of 0.1% (wt solution of pectin. Studies were performed with 9 different concentrations of CaSO4 solution (50-450 mg dm-3 with the addition of a cationic polyelectrolyte (cationic PAM in concentrations of 3 and 5 mg dm-3. The efficiency of pectin precipitation was monitored by measuring the zeta potential of pectin preparations. Optimal amounts of precipitant CaSO4, without the use of a cationic polyelectrolyte, were as follows: 490-678 mg CaSO4/g pectin. After the use of a cationic polyelectrolyte, the optimal amounts of CaSO4 were smaller (353-512 mg/g pectin. These quantities are significantly lower than the average amount of CaO used in the conventional clarification process of sugar beet juice (about 9 g/g pectin of sugar beet juice. [Projekat Ministarstva nauke Republike Srbije, br. TR -31055

  2. Analysis Of CaSO4 Precipitation At Seawater Desalination Process

    International Nuclear Information System (INIS)

    Analysis of CaSO4 precipitation has been undertaken. The experiment performed by heating seawater sample from Muara Karang at temperature series from 50, 60, 70, 80, 90 and 95oC for 30 minutes, respectively. CaSO4 precipitate observed through out it each temperatures heating predicted by .calcium ion content, pH and sulfate ion remains in seawater sample solution. According to the experiment result that the calcium sulfate precipitate of seawater desalination through the MSF installation should be exceed supersaturation condition which depend on concentration factor and heating temperatures. The heating temperature below 95oC with concentration factor is 1, 2 and 3 that CaSO4 precipitate unachievable. It means that the MSF desalination installation ,especially at heating range along the inlet pipe into before the brine heater calcium sulfate not occurs

  3. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor

    International Nuclear Information System (INIS)

    Biomass gasification using chemical looping (BGCL) is an innovative biomass gasification technology, which utilizes lattice oxygen from oxygen carrier instead of molecular oxygen from air. This work attempted to investigate the BGCL performance with nickel-based oxygen carrier in a 25 kWth reactor. The new prototype is composed of a high velocity fluidized bed as an air reactor, a cyclone, a bubbling fluidized bed as a fuel reactor, and a loop-seal. At first, the major reactions in the process were presented and chemical reaction thermodynamics in the fuel reactor was analyzed. The NiO/Al2O3 oxygen carrier was then applied in the reactor. Different variables, such as gasification temperature, steam-to-biomass (S/B) ratio and NiO content, were analyzed. The carbon conversion efficiency increased smoothly within the temperature range of 650–850 °C, while the syngas yield reached the maximum of 0.33 Nm3kg−1 at 750 °C. Additionally, based on the tradeoff between carbon conversion efficiency and syngas yield, it was concluded that 30 wt.% was the optimal NiO content. Besides, in order to get high quality syngas with low CO2 emission, CaO-decorated NiO/Al2O3 oxygen carrier was investigated. Experimental results showed that the addition of CaO enhanced the biomass gasification process and increased the syngas yield. - Highlights: • A new 25 kWth prototype was made in this study. • NiO was selected as oxygen carrier in the new prototype. • Gasification temperature, steam-to-biomass ratio and NiO content were investigated. • CaO-decorated NiO/Al2O3 was tested to produce high quality syngas

  4. CaSO4 and cationic polyelectrolyte as possible pectin precipitants in sugar beet juice clarification

    OpenAIRE

    Kuljanin Tatjana; Lončar Biljana; Pezo Lato; Nićetin Milica; Knežević Violeta; Jevtić-Mučibabić Rada

    2015-01-01

    Three pectin preparations were isolated from fresh sugar beet pulp during the 150 minutes of extraction, at pH values of 1, 3.5 and 8.5. CaSO4 precipitant was added to 100 cm3 of 0.1% (wt) solution of pectin. Studies were performed with 9 different concentrations of CaSO4 solution (50-450 mg dm-3) with the addition of a cationic polyelectrolyte (cationic PAM) in concentrations of 3 and 5 mg dm-3. The efficiency of pectin precipitation was monitored by measu...

  5. Temperature effect during the gamma irradiation of CaSO4: Dy

    International Nuclear Information System (INIS)

    The effect of the irradiation temperature of CaSO4 doped with Dy was investigated in the interval of 77-298 K. The difference in the response at different temperatures increases with the dose. The response for the system at 77 K was about 20% lower in relation to room-temperature readings. The behavior of CaSO4:Dy at low temperatures shows a linear pattern for doses in the range studied. The response is very reproducible and is a good dosimetric system for samples that are irradiated at low temperature.

  6. An alternative method for immediate dose estimation using CaSO4:Dy based TLD badges

    Science.gov (United States)

    Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Babu, D. A. R.

    2014-11-01

    CaSO4:Dy based Thermoluminescence dosimeters (TLDs) are being used in country wide personnel monitoring program in India. The TL glow curve of CaSO4:Dy consists of a dosimetric peak at 220 °C and a low temperature peak at 120 °C which is unstable at room temperature. The TL integral counts in CaSO4:Dy reduces by 15% in seven days after irradiation due to the thermal fading of 120 °C TL peak. As the dosimetric procedure involves total integrated counts for dose conversion, the dosimeters are typically read about a week after receiving. However in the event of a suspected over exposure, where urgent processing is expected, this poses limitation. Post irradiation annealing treatment is used in such cases of immediate readout of cards. In this paper we report a new and easier to use technique based on optical bleaching for the urgent processing of TLD cards. Optical bleaching with green LED (∼555 nm photons) of 25,000 lux for one and half hour removes the low temperature TL peak without affecting the dosimetric peak. This method can be used for immediate dose estimation using CaSO4:Dy based TLD badges.

  7. Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels

    International Nuclear Information System (INIS)

    Highlights: • A Cu based oxygen carrier for chemical looping combustion has been tested. • A 120 kW pilot plant designed as dual circulating fluidized bed has been used. • Solids inventory and circulation have been identified as critical for performance. • The results are compared with other pilot plants using the same oxygen carrier. • Recommendations for improved reactor designs have been made based on the results. - Abstract: A copper based oxygen carrier prepared by impregnation on a highly porous alumina support (14.2 wt% active CuO) has been tested in a 120 kW chemical looping pilot plant. This oxygen carrier has already been under investigation in other pilot plants up to 10 kW fuel power and showed very good performance, i.e. full fuel conversion was achieved. During the experiments, natural gas has been used as fuel and variations of several process parameters like temperature, fuel power, solids inventory and solids circulation rate have been performed. The copper particles showed good performance regarding conversion of CO and H2 (almost full conversion) but only moderate conversion of CH4 (up to 80%) was achieved. The three process parameters fuel reactor temperature, solids circulation between air and fuel reactor and solids inventory have been identified as significant parameters for fuel conversion, i.e. increasing one of these parameters improves fuel conversion. Continuous analysis of the oxygen carrier particles revealed an initial decay of active CuO content caused by attrition on the external surface of the particles. The CuO content stabilized after 30 h of operation at around 9 wt% and no further decrease was observed

  8. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers

    Directory of Open Access Journals (Sweden)

    Jiin-Yu Chen

    2009-01-01

    Full Text Available The complications associated with acquiring and storing whole blood for transfusions have launched substantial efforts to develop a blood substitute. The history of these efforts involves a complicated mixture of science, ethics, and business. This review focuses on clinical trials of the three hemoglobin-based oxygen carriers (HBOC that have progressed to Phase II or III clinical trials: HemAssist (Baxter; Deerfield, IL, US, PolyHeme (Northfield; Evanston, IL, US, and Hemopure (Biopure; Cambridge, MA, US. Published animal studies and clinical trials carried out in a perioperative setting have demonstrated that these products successfully transport and deliver oxygen, but all may induce hypertension and lead to unexpectedly low cardiac outputs. Overall, these studies suggest that HBOCs resulted in only modest blood saving during and after surgery, no improvement in mortality and an increased incidence of adverse reactions. To date, the results from these perioperative studies have not led to regulatory approval. All three companies instead chose to focus their efforts on large trials of trauma patients in the pre-hospital setting. Baxter abandoned the development of HemAssist after a trial in the U.S. was prematurely halted when the first 100 patients showed significantly increased mortality rates as compared to patients treated with blood products. Northfield's PolyHeme trial demonstrated a non-significant trend towards increased mortality and a very modest reduction in the subsequent need for blood. The testing of Biopure's Hemopure for trauma patients has been halted for several years because of FDA concerns over trial design and study justification. Ethical concerns have also been raised regarding the design and implementation of all HBOC clinical trials. Thus, the available evidence suggests that HemAssist, Polyheme, and Hemopure are associated with a significant level of cardiovascular dysfunction. The next generation of HBOCs remains

  9. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC unloading. We analyzed one volunteer study, 15 intraoperative trials, and 3 trauma studies using HBOCs. Perioperative studies generally suggest ability to deliver oxygen, but one trauma trial using HBOCs (HemAssist) for treatment of trauma resulted in a dramatic increase in mortality, while an intraoperative trauma study using Polyheme demonstrated reductions in blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new

  10. Development of sintered composites CaSO4 doped with Dy and Nd

    International Nuclear Information System (INIS)

    The main of this work was the developing of sintered composites in order to use as thermoluminescent dosimeters using a simple route to preparation, employing high temperature. The composites were prepared with CaSO4.2H2O doped with Dy2O3 and NdO3. Initially CaSO4.2H2O was dehydrated in oven at 100 deg C by 1h. After the addiction dopants and homogenization of compounds, PVA was incorporated to make easy to compaction of composites. The pellets with 6 mm of diameter and 1 mm thickness were sintered at 900 deg C and 1000 deg C by 6 h. The TL emission showed two peaks when the samples were irradiated with beta source (Sr90+Y90). In all cases, the calibration curves presented responses proportional to absorbed dose. The results showed that this material have potential to be used in dosimetry. (author)

  11. Suitability of CaSO4:Tm systems for occupational dosimetry

    International Nuclear Information System (INIS)

    Initial experiments using CaSO4:Tm powder for laboratory measurements of gamma, X and beta measurement exposures are reported. Powder has been embedded in a silastic rubber to study the possibility of using such an arrangement for automated readout of fast neutron exposures. The response of powder is very satisfactory for measuring X and gamma radiation although sensitivity to beta radiation is only 56% of the Radium 226 sensitivity. Light output per unit gamma dose drops by a factor of 100 when CaSO4:Tm powder is embedded in silastic rubber to a 10% loading. Although some enhancement is shown, the response to fast neutrons does not appear to be satisfactory below 1Rem. Extreme sensitivity to light appears to be a problem with this material. Silastic rubber impregnated with phosphor appears to be a suitable material for use in automated systems although further work to improve its sensitivity is required. (author)

  12. Method for compensation the energy dependence of the CaSO4:Dy Tl detector response

    International Nuclear Information System (INIS)

    In this work the results obtained in the compensation of the energy dependence of the response in the case of the CaSO4 doped with Dy detectors are presented. The detectors have been obtained in our laboratory. They are in the shape of tablets with the following dimensions: the diameter is 10 mm and the thickness is 0.8 mm. They are widely used for the monitoring of the environmental areas and personal exposure, mainly in the range of the low values of the absorbed doses. Another advantage of these detectors is their low sensitivity to neutrons and to the influence of the environmental climatic conditions. An acceptable method for reduction of the photon energy dependence of CaSO4:Dy is the use of the suitable metallic filters. A systematic study for a large number of different metallic filters (Pb, Cu, Sn, Stainless Steels, Al) or for different combinations of metallic filters has been carried out. (authors)

  13. Thermoluminescence characteristics of mixture of CaSO4 and SiO2

    International Nuclear Information System (INIS)

    The study on the characteristics of thermoluminescence (TL) spectra for the mixture of CaSO4 and SiO2 was carried out. Four kinds of mixture of CaSO4 and SiO2 with various mass ratios, such as 1:2, 1:1, 4:1, 9:1, were prepared and tested. Four TL peaks are 110, 160, 240, 380 degree C, and they show linearity and stabilization. Especially, the peak of 240 degree C can be used to dating. TL characteristics of gypsum and calcium sulfate were compared. The data can help us in analysis the glow curve for gypsum. It could be useful to luminescence dating for gypsum. (authors)

  14. Modeling the thermoluminescent response of CaSO4:Dy by the MCNPX method

    International Nuclear Information System (INIS)

    This work describes an algorithm for absorbed dose evaluation in the region of X-ray diagnostic energy based on the response of CaSO4:Dy thermoluminescence powder detectors. The absorbed dose was calculated using Monte Carlo simulation code (MCSC) and then compared to the experimental TLD results for X-rays effective energies 60Co gamma radiation. In order to study the photon interaction in the matter, a cylindrical model of 1 cm3 was used. The gamma radiation source was placed at 100 cm to the object; the source is considered as an isotropic source of 60Co. The energy deposited into the cylindrical model was determined by the Monte Carlo N-particle (MCNPX) method. Measurements of the TL phosphors were obtained by irradiating the powder by gamma radiation. TL glow curve of CaSO4:Dy after gamma irradiated at a 1 Gy of absorbed dose was then obtained.

  15. High energy electron beams characterization using CaSO4:Dy+PTFE Phosphors for clinical therapy applications

    International Nuclear Information System (INIS)

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO4:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO4:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 °C. TL response of CaSO4:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO4:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. - Highlights: ► Developing of CaSO4:Dy to electron beams dosimetry. ► Characterization of caSO4:Dy to radiation safety in LINACs. ► TL characteristics of CaSO4:Dy for electron beams quality control.

  16. Cathodoluminescence and green-thermoluminescence response of CaSO4:Dy,P films

    International Nuclear Information System (INIS)

    We herein report on the cathodoluminescence (CL) and green-thermoluminescence (TL) emission of CaSO4:Dy,P films deposited by the spray pyrolysis method at different temperatures. The samples have been previously structurally and chemically characterized by means of Raman spectroscopy and energy dispersive spectroscopy (EDS). The CL spectra show (i) a broad emission band centered at 374 nm that corresponds to the intrinsic emission of (SO4)2− and (ii) emission bands centered on 486, 574, 668, 758 nm assigned to the electronic transitions of the Dy3+ ions. The TL glow curves of the films showed three groups of components peaked at around of 98, 152 and 300 °C that exhibit a gradual and progressively linear shifting of the Tmax as function of Tstop. This TL behavior is related to a continuum in the trap distribution associated with general or multi-order kinetics and involving continuous processes of trapping–detrapping. The activation energy in the range of 0.97–1.53 eV has been estimated using the initial rise method. - Highlights: ► The CaSO4:Dy,P films were prepared by using the ultrasonic spray pyrolysis method. ► Luminescence spectra of the CaSO4:Dy,P films display the emission bands of the ions (SO4)2− and Dy3+. ► The CaSO4:Dy,P films were irradiated with a 90Sr/90Y beta source. ► The TL intensity of the films depends on the temperature of deposit.

  17. Measurements of Small Exposures of Gamma Radiation with CaSO4:Mn Radiothermoluminescence

    International Nuclear Information System (INIS)

    A system for measurements of small exposures of gamma radiation using CaSO4:Mn thermoluminescence has been developed. The construction and performance of a read-out apparatus is described as well as the construction and characteristics of a simple dosimeter. The reproducibility of the method at various exposures is estimated. 20 μR of 1 MeV gamma radiation can be measured with a reproducibility within ± 50 % (standard deviation)

  18. A study on fabrication and characteristics of CaSO4:Tb TLD

    International Nuclear Information System (INIS)

    In this study, the highly sensitive CaSO4:Tb glass capsule type TLDs are fabricated and their trap parameters are determined. The optimum conditions of fabricating of CaSO4:Tb phosphor was obtained to be in impurity concentration of Tb 1.0 mol percent and sintering of 600 deg C, 2 hr. The glow curve of CaSO4:Tb consists of three glow peaks and these peaks are isolated by thermal bleaching method. Activation energy of the three glow peaks measured by the initial rise, the peak shape and the heating rate method are 0.70, 0.87, and 1.03 eV. The frequency factors are 1.76 X 109, 1.74 X 109, and 9.77 X 108 s-1, and the kinetic orders are 1.12, 1.46, and 1.34, respectively. The isolated glow peals fitted by least square method and optimum temperature range of the main peak for radiation dosimetry is 230 ∼ 295 deg C. (author)

  19. Thermoluminescence properties of home-made CaSO4:Dy For Dosimetry Purposes

    International Nuclear Information System (INIS)

    Dysprosium doped Calcium Sulfate (CaSO4:Dy) had been first prepared by Yamashita in 1968 with method based on acid evaporation in an open system, which pose human health risks, corrosion and pollution to the environment due to sulfuric acid vapor. It has found increasing use in various applications in the field of radiation dosimetry due to their ease of preparation as compared to many other sensitive TL materials. Many researchers emphasized that the grain size and impurities influence the relative intensities of the broad glow peaks as well as overall sensitivities. In this paper, we introduce a new method of preparation for avoiding all of these disadvantages and improving the main TL materials properties, which required for dosimetric use. The main TL characteristics of home-made CaSO4:Dy .crystals with different concentrations are investigated alter the preparation and heat treatment conditions. The results indicated a linear response from 5μ .Gy up to 10 Gy with the highest sensitivity obtained at 0.25 mol % and optimum sensitivity at less than 75 jam grain sizes. Three peaks at 137 degree C, 222 degree C and 311 degree C were obtained. We conclude to use our home-made prepared CaSO4:Dy with 0.25 mol % concentration for gamma-ray dosimetry as more sensitive and cheaper than commercial phosphor (TLD-900). This will increase the routine and research work in the area of TL dosimetry

  20. Study on the response of indigenously developed CaSO4:Dy phosphor based neutron dosemeter

    International Nuclear Information System (INIS)

    In the present paper we report indigenous development of a neutron sensitive thermoluminescent (TL) dosemeter based on CaSO4:Dy Teflon TL disc. For large scale neutron monitoring of about 15,000 workers, engaged in the nuclear fuel cycle operation, the new dosemeter can be easily incorporated in the present TLD badge system used in personnel monitoring in our country just by a small change in the designing of the badge cassette. The study includes indigenous development of neutron dosemeter, response of the neutron dosemeter in terms of operational quantity to different energies of neutrons under various irradiation conditions. It was found that the thermal neutron sensitivity of the CaSO4:Dy Teflon neutron disc is about one third of TLD-600. However the thermal neutron sensitivity with respect to CaSO4:Dy Teflon gamma disc is about 42 times for in air irradiation and about 84 times for on-phantom irradiation conditions. This newly developed neutron disc can be used as a routine TL dosemeter in the mixed fields of gamma and neutron for neutron energy upto 500 keV for radiation workers engaged in nuclear fuel cycle operation. (author)

  1. Cathodoluminescence and Raman characteristics of CaSO4:Tm3+, Cu phosphor

    International Nuclear Information System (INIS)

    The physical characterization and phosphor emission spectra are presented for CaSO4 doped with Tm and Cu. All spectral wavelengths are related to electronic transitions of Tm3+ ions. The powder X-ray diffraction pattern showed that the compound exhibits orthorhombic structure and all reflections were indexed without any other secondary impurity phases. Chemical and structural properties of the samples have been characterized by means of Raman spectroscopy and environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS). Group frequencies concept is essential point to the interpretation of the bands due to the main SO4 vibrational units and these displayed main characteristic intensive Raman bands including typical strong intensity at 1016 cm−1 that corresponds to ν1SO4 vibrational mode. From the spatially-resolved cathodoluminescence (CL) spectrum, main emission bands of Tm3+ centered at 346, 362, and 452 nm, due to the respective transitions of 3P0→3H4, 1D2→3H6, 1D2→3F4 were clearly identified. The study is novel as no such CL-ESEM data are available for this doped compound. - Highlights: • Characteristic and cathodoluminescence properties of CaSO4:Tm3+, Cu have been investigated. • Several sharp and strong CL emission bands due to rare earth ion were observed for rare earth doped sample. • The nature and limitation of the interaction between CaSO4 and the activator ions were discussed

  2. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  3. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    Energy Technology Data Exchange (ETDEWEB)

    Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart [School of Photovoltaics and Renewable Energy Engineering, Level 1 Tyree Energy Technologies Building, University of New South Wales, Kensington, NSW 2052 (Australia)

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.

  4. Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films

    International Nuclear Information System (INIS)

    Electrical and structural properties of indium-tin-oxide (ITO) films with various Sn concentrations deposited under a high oxygen partial pressure were examined to find out how the excess oxygen behaves as a scattering and trapping center of electron carriers and to show evidence that excess oxygen is weakly bound with Sn4+ ions on In3+ sites with single-charge SnIn . ITO films with Sn concentrations of 1-25 wt % were deposited on glass substrates by rf sputtering under various oxygen concentrations in the discharge gas (0.3%-100%); the substrate temperature was kept at 773 K during deposition. With increasing O2 flow ratio in the discharge gas from 0.3% to 100%, the Hall mobility and the carrier density were found to decrease from ∼40 to ∼20 cm2 V-1 s-1 and from ∼5.0x1020 to ∼2.0x1018 cm-3, respectively. The dependence of the slope of mobility-temperature curve on the O2 flow ratio and Sn concentration has been examined. For high Sn concentration, the slope changes from negative to positive as the O2 flow rate increases. The slope of the curve for a film with Sn concentration of 8 wt % deposited at an O2 flow ratio of 100% changes from positive to negative after postannealing at 473 K for 30 min. in N2. These results suggest that the oxygen attaches weakly to Sn4+ and that the oxygen plays a role in the scattering and trapping center. It is also found that oxygen ions mainly exist not in interstitial quasianion sites but in the grain boundaries because of the constant lattice parameter after annealing

  5. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    International Nuclear Information System (INIS)

    In this study, the highly sensitive CaSO4: Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO4: Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm2) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO4: Tm-PTFE TLDs. The ranges determined were R100=3D14.5mm, R50=3D24.1mm and Rp=3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO4: Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  6. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  7. Validation of the stamping method for CaSO4:RE + Teflon® pellets production

    International Nuclear Information System (INIS)

    The IPEN method for the CaSO4:RE + Teflon® production, developed and patented at the Dosimetric Materials Laboratory - LMD/IPEN in the earlier 1980's, is highly time-demanding, so that the use of the stamping method, already widely industrially applied, would enhance the CaSO4:RE + Teflon® pellets production. Thus, validating the stamping method, by comparing the dosimetric properties of a batch of pellets produced by each method, became a must. The stamped batch presents the same mean non-irradiated signals either after sintering or annealing while IPEN batch mean non-irradiated signals vary in 23%. The mean TL signal after irradiation was about 50 nC, but the standard deviation varies from 20% to 33% for IPEN batch and keeps in 10% for the stamped batch. 24 h after the irradiation, the TL signal decreased to about 35 nC, with no differences in IPEN batch standard deviation and a decrease to 5% in stamped batch standard deviation, for the five performed essays. Calibration curves present a linear behavior over the entire studied dose range and the same coefficients for both methods, however, the uncertainties in the coefficients determined to the calibration curve obtained with stamped pellets are significantly smaller, leading to a more precise dose determination. This results show that the stamping method produces more homogeneous batches, with pellets that maintain the dosimetric characteristics of the detectors produced by IPEN method, in such a way that the stamping method can substitute with advantages the IPEN method in the CaSO4:RE + Teflon® dosimetric pellets production. (author)

  8. Development of CaSO4:Dy TL dosimetry badge system for mixed radiation fields

    International Nuclear Information System (INIS)

    A personnel dosimetry badge system is designed using CaSO4:Dy TL material for discriminating energy components in mixed radiation fields. The new badge system consists of four dosimetry filtered area. Each of these areas utilizes a unique set of filters to provide specific dosimetric information. This TLD badge system is designed by using MCNP code. The prototype TLD badge is also tested by experimental irradiation on PMMA slab phantom. The results of experimental test satisfy the criteria for testing personnel dosimetry systems specified in the ANSIN13.11(1983). (2 figs., 3 tabs.)

  9. Thermoluminescent response of CaSO4: Dy + PTFE to beta particles

    International Nuclear Information System (INIS)

    In this work the results of studying the thermoluminescent properties of CaSO4: Dy + PTFE are presented when it is irradiated with beta particles. The conclusion was the obtention of the Tl response curve in function of dose is that to desexcite the dosemeters at temperature 300 C during 30 minutes and after that were irradiated at different times in groups and to do the reading of dosemeter, it can be observed that a greater irradiation time major is the Tl response and this depends of the material has been used. (Author)

  10. Microscale electrochemical cell using plaster (CaSO4) as liquid junction

    OpenAIRE

    Yuthapong Udnan

    2008-01-01

    A microscale apparatus for electrochemical cell in which plaster (CaSO4) was used as liquid junction has been developed. A glass tube (0.5 cm ID x 5.0 cm) was used to prepare each half-cell. The potentials of the resulting galvanic cells were measured by a multimetre and were compared to those of the galvanic cells in which agar was used as liquid junction. It was found that the potentials produced by the galvanic cells with plaster as liquid junction are not significantly different from tho...

  11. Characteristics Of Dosimeter TL CaSO4:Dy Glass Capillaries For Environmental Radiation Dose Monitoring

    International Nuclear Information System (INIS)

    research on the characteristic of dosimeter TL CaSO4 : Dy glass capillaries for environmental dose radiation have been carried out. The results obtained are uniform response and reproducibility during three cycles consumption with average percentage standard deviation of 7.31 % and 5.45%. The response dose is linear and has a minimum detectable dose of 0.01 mGy, sunshine effect with non-penetrating light capsule of 4.65%, humidity effects is not significant by using non-penetrating light capsule. Radiation dose information during 30 days are fading 25%

  12. Improvement in the dosimetric CaSO4: Dy obtention method

    International Nuclear Information System (INIS)

    With the purpose of saving up in the dosimetric CaSO4: Dy production, a new method was developed to obtain single crystals. In this method the nitrogen flux used to carry the acid vapour was substituted by compressed air. It was compared all dosimetric properties of the crystals. There is no alteration in the glow curve. The sensitivity is the same in both cases and the lower detection limit is 3.8 x 10-8C.Kg-1 (150 μR)

  13. Effects of heliox as carrier gas on ventilation and oxygenation in an animal model of piston-type HFOV: a crossover experimental study

    Directory of Open Access Journals (Sweden)

    Hiroma Takehiko

    2010-11-01

    Full Text Available Abstract Objective This study aimed to compare gas exchange with heliox and oxygen-enriched air during piston-type high-frequency oscillatory ventilation (HFOV. We hypothesized that helium gas would improve both carbon dioxide elimination and arterial oxygenation during piston-type HFOV. Method Five rabbits were prepared and ventilated by piston-type HFOV with carrier 50% helium/oxygen (heliox50 or 50% oxygen/nitrogen (nitrogen50 gas mixture in a crossover study. Changing the gas mixture from nitrogen50 to heliox50 and back was performed five times per animal with constant ventilation parameters. Arterial blood gas, vital function and respiratory test indices were recorded. Results Compared with nitrogen50, heliox50 did not change PaCO2 when stroke volume remained constant, but significantly reduced PaCO2 after alignment of amplitude pressure. No significant changes in PaO2 were seen despite significant decreases in mean airway pressure with heliox50 compared with nitrogen50. Conclusion This study demonstrated that heliox enhances CO2 elimination and maintains oxygenation at the same amplitude but with lower airway pressure compared to air/O2 mix gas during piston-type HFOV.

  14. Measurement of gamma attenuation for ANR end shield model using CaSO4:Dy phosphor

    International Nuclear Information System (INIS)

    Highlights: ► Designing of Advanced Nuclear Reactor (ANR) end shield model. ► Measurement of gamma attenuation factor using CaSO4:Dy TL phosphor. ► Measurement of gamma attenuation factor under different conditions. ► Use of gamma attenuation factor for the actual end shield of ANR. ► Radiation level in the accessible area of ANR well below the permissible limit. - Abstract: In the present study, gamma attenuation factors were measured for End shield model of Advanced Nuclear Reactor (ANR). The model is of the size 700 × 700 × 1250 mm3 and made of steel ball and water mixture with 2 × 2 lattice locations at the centre of the model. The measurements were carried out using CaSO4:Dy TL phosphor. The streaming of gamma rays (includes core gamma, fission product gamma, activation gamma and capture gamma) was found to be attenuated by a factor of about 1500–4000 at a distance of 1125 mm from the incident face of the model, when it is filled with the mixture of water and steel ball. The corresponding exposure rate of streaming gamma rays was found to be about 1.2–2 R/h. The attenuation factors derived from the study was used for the designing of actual End shield for ANR

  15. CaSO4:Dy and/or Tm: study of its properties for dosimetry application

    International Nuclear Information System (INIS)

    In order obtain in practical and cheap solid state dosimeter with high sensitivity, a technique initially developed to cold press a mixture of suitable materials in their powder form sensitive to radiation. The material initially used was natural CaF2 (fluorite) for this salt was extensively studied in radiation dosimetry since it shows a thermoluminescent (TL) effect after radiation. However, natural calcium fluorite shows two main disadvantages: its high senstivity to room light and the impossibility to control its impurity content due to its natural origin. Calcium sulphate was thus used as a good substitute of fluorite. Rare earths doped calcium sulphate shows a high TL sensitivity and is not disturbed by light. It is also easily obtained in the laboratory under controlled conditions so to get reproducible impurity content. The best dosimeters that can be produced with rare earth doped calcium sulphate are CaSO4:Dy and CaSO4:Tm. Calcium sulphate, simultaneously doped with Tm and Dy was produced and 100% increase was obtained in the TL sensitivity when compared with the individually are earth doped calcium sulphate. (Author)

  16. NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods

    OpenAIRE

    Gayán Sanz, Pilar; Dueso, Cristina; Abad Secades, Alberto; Adánez Elorza, Juan; Diego Poza, Luis F. de; García Labiano, Francisco

    2009-01-01

    Ni-based oxygen carriers (OC) with different NiO content were prepared by incipient wet impregnation, at ambient (AI), and hot conditions (HI) and by deposition-precipitation (DP) methods using -Al2O3 and -Al2O3 as supports. The OC were characterized by BET, Hg porosimetry, mechanical strength, TPR, XRD and SEM/EDX techniques. Reactivity of the OC was measured in a termogravimetric analyzer and methane combustion selectivity towards CO2 and H2O, attrition rate, and agglomerat...

  17. A quantitative discussion on band-gap energy and carrier density of CdO in terms of temperature and oxygen partial pressure

    International Nuclear Information System (INIS)

    Calculations relative to the band-gap energy shift and carrier spatial density in cadmium oxide are performed in terms of the oxygen partial pressure and substrate temperature relative to the deposition process in the crystal growth of the above material, starting from the consideration of the Fermi energy of an exciton gas. In particular, the band-gap shift experienced by cadmium oxide in terms of the corresponding partial pressure of oxygen is considered as well as the electron spatial density as a function of the pressure in question. Influence of temperature is discussed by estimating the average rate of variation of the band-gap shift versus temperature. In addition, the sensitivity of the above-mentioned shift to temperature is studied by means of a suitable parameter

  18. Autoradiographic determination of regional cerebral blood flow and metabolism in conscious rats after fluid resuscitation from haemorrhage with a haemoglobin-based oxygen carrier.

    Science.gov (United States)

    Waschke, K F; Albrecht, D M; van Ackern, K; Kuschinsky, W

    1994-10-01

    The effects of resuscitation fluids on the brain have been investigated in previous studies by global measurements of cerebral blood flow and metabolism. In this study we have examined the effects of a novel haemoglobin-based oxygen carrier on local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) after resuscitation from a volume-controlled haemorrhage of 30 min (3.0 ml/100 g body weight) with ultrapurified, polymerized, bovine haemoglobin (UPBHB). LCBF and LCGU were measured in 34 brain structures of conscious rats 2 h after resuscitation using quantitative iodo(14C)antipyrine and 2-(14C)-deoxy-D-glucose methods. The data were compared with a control group without haemorrhage and fluid resuscitation. In the haemorrhage group, LCBF increased after resuscitation by 12-56% in the different brain structures (mean 36%). LCGU changed less (0 to +18%, mean +9%). In the control group there was a close relationship between LCGU and LCBF (r = 0.95). After fluid resuscitation the relationship was preserved (r = 0.95), although it was reset at a higher ratio of LCBF to LCGU (P < 0.05). We conclude that fluid resuscitation of a 30 min volume-controlled haemorrhage using the haemoglobin-based oxygen carrier, UPBHB, induced a moderate degree of heterogeneity in the resulting changes of LCGU and LCBF. Local disturbances of cerebral blood flow or metabolism were not observed. PMID:7999496

  19. Dosimetric characteristics and radiation monitoring with CaSO4(Dy):NaCl pellets

    International Nuclear Information System (INIS)

    CaSO4(Dy):NaCl Tl dosimeters, in the form of pellets, are used in the field for a period of one month. Before using these pellets for environmental and personnel radiation monitoring some of the important dosimetric characteristics like fading reusability and effect of ambient light are investigated and described. The pellets are used with plastic and lead filters for personnel and environmental radiation monitoring and the results obtained with the lead filters are in good agreement with those of the energy independent LiF dosimeters. A new combination of plastic, aluminium and lead filters is suggested for dose measurements in a mixed field of X, gamma and beta radiations. (Author)

  20. Optimization of the obtaining method of CaSO4: Dy + Ptfe dosimeters

    International Nuclear Information System (INIS)

    This work contain the obtained results of studying the response when irradiating to different dose of X-rays, dosimeters of CaSO4: Dy + Ptfe using different lapses of time in their preparation (a lot of selected dosimeters of an elaboration process of 3 days and another of an elaboration process of 2 hours). For the elaboration of the powdered material, the evaporation method was used; the irradiation were carried out in a lineal accelerator Elekta Synergy property of the National Medical Center, 20 de November. The similarities and differences are shown among the two dosimeters lots together with an analysis of the shine curves and of calibration selecting those that presented a better behaviour and a more rea liable response. (Author)

  1. Preparation and structural characterization of the thermoluminescent material CaSO4: Dy

    International Nuclear Information System (INIS)

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO4: Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 μm to 200 μm. (Author)

  2. Effect of the temperature in the sensitivity of CaSO4: Dy

    International Nuclear Information System (INIS)

    Sensitivity of a Tl material is one of the most important properties for dosimetry. This property is optimized by means of various processes such as the incorporation of different dopants into the matrix material, the application of certain doses of ionizing radiation and carefully controlled thermal treatments among others. Results obtained of studying the sensitivity of diverse preparations of CaSO4: Dy submitted different thermal treatments are presented. The material, which presented the highest sensitivity, was that one it was heated to 800 C during one hour. When the temperature was raised over this value it was observed that sensitivity drops again. In other hand, as the heating rate in lowing down, during the readout, the height of the glow curve decreases proportionally. The temperature of the maximum of the main peak also decreases. (Author)

  3. Isothermal gas chromatography of short-lived Hf isotopes and element 104 in chlorinating, oxygen containing carrier gas

    Energy Technology Data Exchange (ETDEWEB)

    Jost, D.T.; Dressler, R.; Eichler, B.; Piguet, D.; Tuerler, A.; Gaeggeler, H.W.; Gaertner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Grantz, M.; Huebener, S. [FZR (Germany); Buklanov, G.; Lebedev, V.; Timkhin, S.; Vedeneev, M.V.; Yakushev, A.; Zvara, I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    Based on thermodynamic state functions retention times of Hf and element 104 were calculated in the case of the simple adsorption of the tetrachlorides and the case of a complex adsorption involving a substitution process with oxygen in the chlorinating gas. Preliminary results for {sup 261}104 and Hf are shown. (author) 1 fig., 1 tab., 3 refs.

  4. CeO2 as the Oxygen Carrier for Partial Oxidation of Methane to Synthesis Gas in Molten Salts: Thermodynamic Analysis and Experimental Investigation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new technique - the direct partial oxidation of methane to synthesis gas using lattice oxygen in molten salts medium has been introduced. Using CeO2 as the oxygen carrier, thermodynamic data were calculated in the reaction process, and the results indicated that direct partial oxidation of methane to synthesis gas using lattice oxygen of cerium oxide is feasible in theory. In a stainless steel reactor, the effects of temperature and varying amounts of γ-Al2O3 supported CeO2 on CH4 conversion,H2 and CO selectivity, were investigated, respectively. The results show that 10% CeO2/γ-Al2O3 has the maximal reaction activity at a temperature of 865 ℃ and above, the H2/CO ratio in the gas that has been produced reaches 2 and the CH4 conversion, H2 and CO selectivity reached the following percentages: i.e.61%, 89%, and 91% at 870 ℃, respectively. In addition, increase of reaction temperature is favorable for the partial oxidation of methane.

  5. Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K

    Science.gov (United States)

    Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru

    2016-05-01

    Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.

  6. Confinement effects for ionic carriers in SrTiO3 ultrathin films: first-principles calculations of oxygen vacancies.

    Science.gov (United States)

    Kotomin, E A; Alexandrov, V; Gryaznov, D; Evarestov, R A; Maier, J

    2011-01-21

    One-dimensional confinement effects are modelled within the hybrid HF-DFT LCAO approach considering neutral and single-charged oxygen vacancies in SrTiO(3) ultrathin films. The calculations reveal that confinement effects are surprisingly short-range in this partly covalent perovskite; already for film thickness of 2-3 nm (and we believe, similar size nanoparticles) only the surface-plane defect properties differ from those in the bulk. This includes a pronounced decrease of the defect formation energy (by ∼1 eV), a much deeper defect band level and a noticeable change in the electronic density redistribution at the near-surface vacancy site with respect to that in the bulk. The results also show that the size effect pertains to the interactions between the oxygen vacancy and two neighboring titanium atoms and orientation (parallel or perpendicular to the surface) of the Ti-V(O)-Ti complex. In particular, we predict considerable oxygen vacancy segregation towards the surface. PMID:21116562

  7. Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement.

    Science.gov (United States)

    Del Sol Fernández, S; García-Salcedo, R; Mendoza, J Guzmán; Sánchez-Guzmán, D; Rodríguez, G Ramírez; Gaona, E; Montalvo, T Rivera

    2016-05-01

    Thermoluminescence (TL) characteristics for LiF:Mg, Cu, P, and CaSO4:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry are presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Juárez Norte of México. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and they were positioned in a generic phantom. The dose analysis, verification and comparison with the measurements obtained by the TLD-100 were performed. Results indicate that the dosimetric peak appears at 202°C and 277.5°C for LiF:Mg, Cu, P and CaSO4:Dy, respectively. TL response as a function of X-ray dose showed a linearity behavior in the very low dose range for all materials. However, the TLD-100 is not accurate for measurements below 4mGy. CaSO4:Dy is 80% more sensitive than TLD-100 and it show the lowest detection threshold, whereas LiF:Mg, Cu, P is 60% more sensitive than TLD-100. All materials showed very good repeatability. Fading for a period of one month at room temperature showed low fading LiF:Mg, Cu, P, medium and high for TLD-100 and CaSO4:Dy. The results suggest that CaSO4:Dy and LiF:Mg, Cu, P are suitable for measurements at low doses used in radiodiagnostic. PMID:26922395

  8. CaMn0.9Mg0.1O3-δ as Oxygen Carrier in a Gas-Fired 10 kWth Chemical-Looping Combustion Unit

    OpenAIRE

    Källen, Malin; Rydén, Magnus; Dueso, Cristina; Mattisson, Tobias; Lyngfelt, Anders

    2013-01-01

    Spray dried particles of the perovskite material CaMn0.9Mg0.1O3-δ have been examined as oxygen carrier for chemical-looping combustion of natural gas. The experiments have been conducted in a continuously operating reactor with the nominal size 10 kWth. The oxygen carrier particles showed excellent ability to convert fuel and complete combustion was reached at certain conditions. In general, the CO2 yield increased with increased fuel reactor temperature and with increased circulation rate. T...

  9. Microscale electrochemical cell using plaster (CaSO4 as liquid junction

    Directory of Open Access Journals (Sweden)

    Yuthapong Udnan

    2008-10-01

    Full Text Available A microscale apparatus for electrochemical cell in which plaster (CaSO4 was used as liquid junction has been developed. A glass tube (0.5 cm ID x 5.0 cm was used to prepare each half-cell. The potentials of the resulting galvanic cells were measured by a multimetre and were compared to those of the galvanic cells in which agar was used as liquid junction. It was found that the potentials produced by the galvanic cells with plaster as liquid junction are not significantly different from those of the cells with agar as liquid junction and close to the theoretical values. In addition, when the developed apparatus was used for the study of electrolysis of potassium iodide solution, it was found that the electrolytic cell made from the microscale apparatus with plaster liquid junction can distinctly separate the reactions occurring at the anode and the cathode. Moreover, the lifetime of the plaster liquid junction is much greater than that of the agar liquid junction.

  10. Thermal history and reusability of CaSO4 : Dy teflon TLD discs

    International Nuclear Information System (INIS)

    The effect of thermal history on the thermoluminescent (TL) sensitivity of CaSO4 : Dy teflon thermoluminescent dosimetry (TLD) discs has been studied in the temperature range of 250 - 4000 C from the point of view of their reusability in repeated measurements. 100 discs each of 13.5 mm diam. and 0.8 mm thickness were mechanically fixed on to the aluminium cards (three on each) used for the TLD personnel monitoring badge. The cards were subjected to readout-anneal cycle, annealing being done at 2500C for 1 hr duration and removing 1 card after each cycle. The procedure was continued till all the cards were removed. At the end all the cards were given a 2 R gamma radiation exposure from 60Co source and after two days were read. TL sensitivity of the cards was found to decrease and optical density increase with the number of cycles. Teflon discs are found to get coloured during the readout in a TLD reader or during the readout-anneal process when the maximum temperature reached by the heater strip is below 3500C, where as they do not get coloured if annealed isothermally at 4000C. The colouring is found to be independent of the heating and cooling rate. (M.G.B.)

  11. The Study Of Briquettes Produced With Bitumen, Caso4 And Starch As Binders.

    Directory of Open Access Journals (Sweden)

    ,Ikelle Issie Ikelle

    2014-06-01

    Full Text Available The work was based on production and study of the properties of smokeless briquettes of various compositions with coal and rice husk. Different briquettes were produced with starch, bitumen and CaSO4 as the binders while Ca(OH2 was the desulphurizing agent. The proximate analysis of the raw coal sample showed ash content 19.12%, moisture content 6.25%, volatile matter 41.12%, fixed carbon 33.51% and calorific value 117 KJ/g, the rice husk had the following values ash content 7.53%, moisture content 10.48%, volatile matter 68.74%, fixed carbon 13.25% and calorific value 65.24 KJ/g. The briquettes produced are in the following ratio of mixtures of coal and rice husk 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100 respectively. The prepared briquettes were sun dried for seven days, subjected to various tests to assess their fuel quality. The briquettes produced with starch as the binder had better results for faster ignition time, lower amounts of sulphur emissions during burning, highest calorific values and longer burning time for all the different compositions.

  12. Study of gaussian fitting methods applied to thermoluminescent emission spectrum of CaSO4:Dy

    International Nuclear Information System (INIS)

    In the present work, two methods used to represent the peaks of the thermoluminescence (TL) glow curve of CaSO4:Dy, from a gaussian approximation, are evaluated. Several glow curves with single and double peaks and known parameters were computationally simulated. Two procedures were applied to the data: gaussian curve fitting to the simulated data by the least squares method; and peak approximation by a gaussian function, from a method developed in the Applied Physics Division of IEAv/CTA. The obtained results (gaussian curve areas) in comparison with the original area of the TL glow curve generated for the single peak case show a tendency of underestimate the real area from 0.8 to 7.0%, depending on the fitting method applied. For the double peak case, it was observed an emphasized tendency of overestimate the original curve area from 3.7 to 6.2%, depending on the fitting method used. The obtained result is discussed in relation to the utilization of the method as a dosimetry routine, its implications and limitations. (author)

  13. Modelling of a hybrid culture system with a stationary layer of liquid perfluorochemical applied as oxygen carrier

    Directory of Open Access Journals (Sweden)

    Pilarek Maciej

    2016-03-01

    Full Text Available A mathematical model of a hybrid culture system supported with a stationary layer of liquid perfluorochemical (PFC as a source of O2 for cells which grow in the aqueous phase of culture medium has been developed and discussed. The two-substrate Monod kinetics without inhibition effects, i.e. the Tsao-Hanson equation, has been assumed to characterise the biomass growth. The Damköhler number which relates the growth rate to the mass transfer effects has been used to appraise the regime (i.e. diffusion-limited or kinetics of the whole process. The proposed model predicted accurately previously published data on the submerged batch cultures of Nicotiana tabacum BY-2 heterotrophic cells performed in a culture system supported with a stationary layer of hydrophobic perfluorodecalin as a liquid O2 carrier. Estimated values of the parameters of the model showed that the process proceeded in the kinetics regime and the growth kinetics, not the effects of the mass transfer between aqueous phase and liquid PFC, had essential influence on the growth of biomass.

  14. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    Science.gov (United States)

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  15. Effects of Support on the Performance of NiO-Based Oxygen Carriers Effets du support sur les performances de matériaux transporteurs d’oxygène à base d’oxyde de nickel

    Directory of Open Access Journals (Sweden)

    Baek J.-I.

    2011-05-01

    Full Text Available The performance of an oxygen carrier for Chemical Looping Combustion varies with the support material used. NiO oxygen carriers were prepared using 60 or 70 wt% NiO and different raw support materials (γ-Al2O3, pseudoboehmite, α-Al2O3, γ-Al2O3 mixed with MgO, hydrotalcite, MgAl2O4, and γ-Al2O3 with added graphite by the mechanical mixing method. Reactivity tests were conducted using a thermogravimetric analyzer (TGA at 950˚C. The oxygen carriers prepared using γ-Al2O3, γ-Al2O3 mixed with a small amount of MgO, hydrotalcite, and MgAl2O4 showed high oxygen transfer capacity, high oxygen utilization, and a high oxygen transfer rate. Graphite addition to γ-Al2O3 did not increase the surface area or reactivity. The use of pseudoboehmite as a support led to a significant decrease in oxygen transfer capacity and severe agglomeration of the oxygen carriers during the redox reaction. The increase in MgO content in the raw support materials decreased the reduction reactivity. The oxygen carriers prepared with α-Al2O3 showed less oxygen transfer capacity than the other oxygen carriers. The differences in the reactivity according to the support type were explained by the relative strength of NiO-support interaction obtained from the temperature-programmed reduction analysis. The reactivity test results in this work indicate that γ-Al2O3 and hydrotalcite could be desirable raw support materials to prepare highly reactive NiO oxygen carriers with high NiO content. Les performances des materiaux transporteurs d’oxygene varient en fonction du support utilise dans le procede de combustion en boucle chimique. Differents materiaux a base d’oxyde de Nickel ont ete synthetises avec des concentrations elevees en NiO, comprises entre 60 et 70 %, sur differents supports (γ-Al2O3, pseudobohemite, α-Al2O3, γ-Al2O3 melangee avec MgO, hydrotalcite, MgAl2O4 et γ-Al2O3 additivees avec du graphite par melange mecanique. Des tests de reactivite ont ete

  16. Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types.

    Science.gov (United States)

    Sakai, H; Yuasa, M; Onuma, H; Takeoka, S; Tsuchida, E

    2000-01-01

    A series of hemoglobin (Hb)-based O(2) carriers, acellular and cellular types, were synthesized and their physicochemical characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymerized XLHb (Poly-XLHb). The cellular type is Hb-vesicles (HbV) of which the surface is modified with POE (POE-HbV). Their particle diameters are 7 +/- 2, 22 +/- 2, 47 +/- 17, 68 +/- 24, and 224 +/- 76 nm, respectively, thus all the materials penetrate across membrane filters with 0.4 microm pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 microm pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-Hb ([Hb] = 5 g/dL) showed viscosity of 6.1 cP at 332 s(-1) and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiological conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, respectively, which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-Hb or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular Hbs (P(50) = 14-32 Torr) have their specific O(2) affinities determined by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amount of an allosteric effector (e.g., P(50) = 18, 32 Torr). These differences in physicochemical characteristics between the acellular

  17. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    International Nuclear Information System (INIS)

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry

  18. Operational experience of electronic active personal dosemeter and comparison with CaSo4:Dy TL dosemeter in Indian PHWR.

    Science.gov (United States)

    Singh, Vishwanath P; Managanvi, S S; Bihari, R R; Bhat, H R

    2013-01-01

    Direct reading dosemeter has been used for day-to-day radiation exposure control and management for last four decades in Indian nuclear power plants (NPPs). Recently new real time, alarm and pre-alarm on equivalent dose/dose rate, storage of dose/dose rate and maximum dose rate, user-friendly electronic active personal dosemeter (APD) has been implemented into practice for the first time at Kaiga Atomic Power Station-3&4,  of Indian NPPs. The dosemeter showed tolerance level (L) 0.1085±0.0450 compared with 0.1869±0.0729 (average±SD) for CaSO4:Dy, TL dosemeter, having narrow range trumpet curve, nil electromagnetic interference. Records of >29 000 for APD and TL dosemeter were analysed for comparasion of the measurement of the individual dose. APD followed general acceptance rule of ±25 % for dose >1 mSv. Monthly Station collective dose by TL dosemeters and APD for normal reactor operation as well as outage are found in good agreement. Operational experiences and statistical analysis support that an APD dosemeter is reasonably equivalent to CaSO4:Dy TL dosemeter. The accuracy, reproducibility and repeatability of the measurement of radiation for (137)Cs are comparable with CaSO4:Dy, TL dosemeter. Operational experience of APD during the normal operation as well as outage showed as one of the best ALARA tool for occupational dose monitoring, control, management and future outage planning. PMID:23528326

  19. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    ZHU

    2010-01-01

    Two-step steam reforming of methane(SRM)is a novel chemical looping process towards the production of pure hydrogen and syngas(synthesis gas),consisting ofa syngas production step and a water-splitting step.Renewable energy can be used to drive this process for hydrogen production,especially solar energy.CeO2-Fe2O3 complex oxide oxygen carrier was prepared by the impregnation method and characterized by means of X-ray diffractometer(XRD),Raman spectroscopy(Raman)and hydrogen programmed reduction(H2-TPR).CH4temperature programmed and isothermal reactions were adopted to test syngas production reactivity,and water splitting reaction was employed to investigate water-splitting activity.Moreover,two-step SRM performance was evaluated by a successive redox cycle.The results showed that CO-uncontaminated H2 and highly selective syngas(with H2/CO ratio close to 2)could be respectively obtained from two steps,and CeFeO3 formation was found in the first redox cycle and proved to be enhanced by the redox treatment.After 10 successive cycles,obvious CeFeO3 phase was detected,which may be responsible for favorable successive redox cycle performances.

  20. Effect of solution treatment on Mg galvanic anodes in CaSo4-Mg (OH)2 aqueous solution

    International Nuclear Information System (INIS)

    The effect of heat treatment on the Mg anode was investigated in CaSO4-Mg(OH)2 aqueous solution. The Mg sample was solutionised at 150 degree Celsius, pure and untreated Mg anodes were also studied as a reference. EOC and Tafel corrosion rate was determined by mean of potentiostat. It was found that solution treatment was significantly affecting the performance of Mg anode where it EOC was electro negatively increases to -1.6404 VSCE and the Tafel corrosion rate reduces to 12.23 mpy. (author)

  1. Low temperature dosimetry in LiF: Mg, Cu, P and CaSO4: Dy doped crystals

    International Nuclear Information System (INIS)

    It is presented a behavior study of LiF solid dosemeters doped with Mg, Cu and P also polycrystalline samples of CaSO4 with Dy sinterized in laboratory, both of them were subjected at low temperature. In order to analyse linear behavior to the dose of these dosemeters, it was used thermoluminescence. These materials were exposed to gamma radiation coming from a Co-60 source. The samples were irradiated at dose rates 1.08 ± 0.01 Gy/min at liquid nitrogen temperature (LNT) and also the response of dosemeters are compared at ambient temperature and LNT. (Author)

  2. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO4: Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author)

  3. Development of quality assurance procedures for thermoluminescent CaSO4:Dy-teflon skived tape dosemeter

    International Nuclear Information System (INIS)

    CaSO4:Dy-Teflon TLD dosemeter material has been manufactured locally in a 0.4 mm thick continuous tape form. Fourteen batches have been examined for physical thickness, density, spectral transmission, diffuse optical density, beta transmission and TL output per unit area for evolving a procedure for quality assurance of the TLD element for large scale production. With the exception of two batches, the TL output per unit area of the tape for a number of batches lies within ±7% of that for a standard batch. (author)

  4. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier

    International Nuclear Information System (INIS)

    Highlights: • Successful operation of a coupled fluidized bed system for CLC of coal. • Two-stage design worked well, i.e. the 2nd stage has an significant effect on fuel conversion. • Solids circulation rates were determined. • High carbon capture rate (ηCC > 96%), which might be attributed to the very fine coal. - Abstract: A system of coupled fluidized beds for chemical looping combustion of solid fuels was successfully commissioned. The facility has a rated thermal power of 25 kW and consists of a circulating fluidized bed coupled with a two-stage bubbling fluidized bed. The two-stage bubbling fluidized bed is the fuel reactor and the riser of the circulating fluidized bed is the air reactor. In the experiments Australian ilmenite with a particle size in the range of 100–400 μm was used as the oxygen carrier. The solid fuel was lignite dust with more than 70% of the mass having a particle size smaller than 150 μm. The influence of the operational parameters, i.e. reactor temperature, coal feed rate and composition of the fuel reactor feed gas on the operational behaviour of the system was investigated. The two-stage fuel reactor performed well and CO2-concentrations in the dry fuel reactor off-gas of above 90 vol.% were achieved. The reason for the appearance of unconverted combustible gases in the fuel reactor off-gas needs further investigation. Solids circulation rates based on the riser cross-section were determined under hot operating conditions and turned out to be between 56 and 70 kg/m2 s. The carbon slip to the air reactor was small in all tests: only 1.5–6.5 wt.% of the fixed carbon introduced with the coal were oxidized in the air reactor

  5. Hydration of calcium sulfate hemihydrate (CaSO 4· {1}/{2}H 2O) into gypsum (CaSO 4·2H 2O). The influence of the sodium poly(acrylate)/surface interaction and molecular weight

    Science.gov (United States)

    Boisvert, Jean-Philippe; Domenech, Marc; Foissy, Alain; Persello, Jacques; Mutin, Jean-Claude

    2000-12-01

    The retarding influence of sodium poly(acrylate) (PANa) on the hydration of calcium sulfate hemihydrate (CaSO 4· {1}/{2}H 2O) was investigated. This study reports the influence of sodium poly(acrylate) on hemihydrate dissolution, on homogenous and heterogeneous gypsum (CaSO 4·2H 2O) nucleation as well as on gypsum growth. It is shown that adsorption of PANa does not hinder the dissolution of hemihydrate in the present experimental conditions. The specific interaction of PANa with gypsum can explain the oriented growth of gypsum crystal. The gypsum growth is slowed down but cannot be blocked by the adsorption of PANa. On the other hand, PANa can block the heterogeneous and homogenous gypsum nucleation. As soon as a critical surface density of PANa onto the hemihydrate surface is reached, the heterogeneous gypsum nucleation is prevented and hemihydrate hydration is indefinitely blocked. The interaction between PANa and the hemihydrate surface is of prime importance to control hydration. Also, the influence of the molecular weight of PANa on homogenous nucleation has been investigated. The precipitation of calcium polyacrylate can explain the differences between the two molecular weights used (2100 and 20 000). This work leads to the conclusion that heterogeneous nucleation is the key process that controls hydration of a system in which hemihydrate dissolution, gypsum nucleation and growth are all occurring at the same time in a continuous manner.

  6. Optimizing a method to obtain CaSO4 activated with Dy for use in thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Results obtained from experiments in optimizing the variables in the preparation of CaSO4 activated with dysprosium, as phosphors to be used as low dose TL dosemeters for routine radiological protection are presented. The technique used combined those of T. Yamashita and of K. Becker. Heating 8.6 gm of CaSO4.H2O with 0.1 mol % of Dy2O3 in 115 ml of concentrated H2SO4 to 2850C to completely evaporate the acid and placing the obtained crystals in a 6000C oven for one hour gave a TL dosimeter with a sensitivity sufficient to measure 5 mR of 60Co gamma radiation and show a lineal response with this radiation in a 5 mR-5x104R interval. Fading, which appeared in the phosphor only after three weeks, was in the fourth week 4.0% and in the eighth week 6.2% with a σ=+-2.1%. The quality of the phosphor obtained and its ease of reproducibility deserves note. (author)

  7. Thermoluminescent characteristics of LiF:Mg,Cu,P and CaSO$_4$:Dy for low dose measurement

    CERN Document Server

    Fernández, S Del Sol; Mendoza, J Guzmán; Sánchez-Guzmán, D; Rodríguez, G Ramírez; Gaona, E; Montalvo, T Rivera

    2016-01-01

    Thermoluminescence (TL) characteristics for LiF:Mg,Cu,P, and CaSO$_4$:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry is presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Ju\\'arez Norte of M\\'exico. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and they were positioned in a generic phantom. The dose analysis, verification and comparison with the measurements obtained by the TLD-100 were performed. Results indicate that the dosimetric peak appears at 202$^o$C and 277.5$^o$C for LiF:Mg,Cu,P and CaSO$_4$:Dy, respectively. TL response as a function of X-ray dose showed a linearity behavior in the very low dose range for all materials. However...

  8. Measurement of the dose by dispersed radiation in a lineal accelerator using thermoluminescent dosimeters of CaSO4:Dy

    International Nuclear Information System (INIS)

    The thermoluminescence (Tl) is based on the principle of the luminescent in a material when is heated below their incandescence temperature. Is a technique very used in dosimetry that is based on the property that have most of the crystalline materials regarding the storage of the energy that they absorb when are exposed to the ionizing radiations. When this material has been irradiated previously, the radioactive energy that contains is liberated in form of light. In general, the principles that govern the thermoluminescence are in essence the same of those responsible for all the luminescent processes and, this way, the thermoluminescence is one of the processes that are part of the luminescence phenomenon. For this work, the dispersed radiation was measured in the therapy area of the lineal accelerator of medical use type Elekta, using thermoluminescent dosimeters of CaSO4:Dy + Ptfe developed and elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa. With the dosimeters already characterized and calibrated, we proceeded to measure the dispersed radiation being a patient in treatment. The results showed values for the dispersed radiation the order of a third of the dose received by the patient on the treatment table at 30 cm of the direct beam and the order of a hundredth in the control area (4 m of the direct beam, approximately). The conclusion is that the thermoluminescent dosimeters of CaSO4: Dy + Ptfe are appropriate to measure dispersed radiation dose in radiotherapy. (author)

  9. Phosphor plasters of CaSO4:Dy on the courtyard wall of Djehuty's tomb (Luxor, Egypt)

    International Nuclear Information System (INIS)

    The X-ray diffraction (XRD) and environmental scanning electron microscopy (ESEM) analyses of plasters collected from the courtyard walls of Djehuty's tomb show anhydrite, calcite, dolomite, quartz, alkali feldspars and accessorial amounts of halite and illite. The external outer bed is mainly composed by anhydrite, since the original hydrous phases of gypsum plaster were desiccated during thirty centuries in the dry land environment of the Luxor area, under low relative humidity and high temperatures. The luminescence analyses by thermoluminescence (TL) and cathodoluminescence (CL) demonstrate as one plaster sample (m8), i.e., 95% anhydrite, displays a gigantic TL emission of 33 555 a.u. and a SEM/CL emission of 2319 a.u. maxima peak. The spectra CL also exhibits a 484 nm peak attributable to the classic 4F9/2→6H15/2 transition circa 490 nm of Dy3+ and a 573 nm emission of Dy3+ masked in a broad emission band centered at 620 nm. The common presence of sodium minerals such as halite or albite together with the probable presence of sodium in waters points to Na+ ions acting as compensators of Dy3+ to maintain the electrical neutrality of the CaSO4:Dy phosphor lattice. Further analyses of more plaster CaSO4 micro-samples could demonstrate if this observation is just an isolated mineralogical chance or an intentional archaeological handling

  10. Dosimetric properties of a new high sensitive CaSO4:Dy thermostimulated luminescent phosphor and teflon discs

    International Nuclear Information System (INIS)

    This paper describes the dosimetric properties of a high sensitive CaSO4:Dy thermostimulated luminescence (TLD) phosphor (called N) and Teflon discs supplied by M/s Fluorokraft. The average grain size of this phosphor is very low (10 to 20 μm). Scanning electron microscope photograph reveals needle shaped crystals while that of CaSO4:Dy prepared by the presently used recrystallization technique (called P) is featureless. The TSL sensitivity of N (4 Gy, P exhibits drastic glow curve changes at dose levels ≥ 10 Gy. As a result, the supralinearity of N > 10 Gy is considerably less than that of P. The TSL and photoluminescent (PL) emission spectra show the characteristic 480 and 570 nm Dy3+ lines in both the samples but their relative intensity ratio seem to be sample dependent. In contrast to TSL, the PL intensity of N is just 1/5th that of P. Electron spin resonance and x-ray diffraction studies also show differences between the two samples. (author)

  11. Effects of Partial Substitutions of NaCl with KCl, CaSO4 and MgSO4 on the Quality and Sensorial Properties of Pork Patties

    Science.gov (United States)

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of NaCl replacers (KCl, CaSO4, and MgSO4) on the quality and sensorial properties of pork patty. In the characteristics of spray-dried salt particles, KCl showed the largest particle size with low viscosity in solution. Meanwhile CaSO4 treatment resulted in the smallest particle size and the highest viscosity (p<0.05). In comparison of the qualities of pork patties manufactured by varying level of Na replacers, MgSO4 treatment exhibited low cooking loss comparing to control (p<0.05). Textural properties of KCl and MgSO4 treatments showed similar pattern, i.e., low level of the replacers caused harder and less adhesive texture than those of control (p<0.05), whereas the hardness of these products was not different with control when the replacers were added more than 1.0%. The addition of CaSO4 also manifested harder and less adhesive than control (p<0.05), but the textural properties of CaSO4 treatment was not affected by level of Ca-salt. Eventually, sensorial properties indicated that KCl and CaSO4 influenced negative effects on pork patties. In contrast, MgSO4 showed better sensorial properties in juiciness intensity, tenderness intensity as well as overall acceptability than control, reflecting that MgSO4 was an effective Na-replacer in meat product formulation. PMID:26761288

  12. Heat capacities and entropies from 8 to 1000 K of langbeinite (K2Mg2(SO4)3), anhydrite (CaSO4) and of gypsum (CaSO4·2H2O)

    Science.gov (United States)

    Robie, Richard A.; Russell-Robinson, Susan; Hemingway, Bruce S.

    1989-01-01

    Heat capacities of K2Mg2(SO4)3 (langbeinite) and CaSO4 (anhydrite) were measured from approximately 8 to 1000 K by combined adiabatic shield calorimetry (8-365 K) and differential scanning calorimetry (350-1000 K). Heat capacities were also measured on natural crystals of gypsum (CaSO4 · 2H2O) between 8.1 and 323.5 K. The molar entropies at 298.15 K, Smo(298.15 K), are 378.8 ± 0.6, 107.4 ± 0.2 and 193.8 ± 0.3 J K−1 mol−1 for langbeinite, anhydrite and gypsum, respectively. The heat capacity in J K−1 mol−1 of langbeinite can be represented by the equation Cp,mo(K2Mg2(SO4)3T) = 535.9 + 0.11011T-1.0200 × 106/T2-4.909 × 10−5T2 -4040.2/T0.5 between 300 and 1000 K with an average deviation of ± 0.4%. For anhydrite the heat capacity between 300 and 1000 K is given by Cp,mo(CaSO4,T) = 372.8 - 0.1574 T +1.695 × 106/T2 + 7.993 × 10−5T2 - 4330.8/T0.5 with an average deviation of ±0.4%.

  13. Simulation Experiments on the Reaction of CH4-CaSO4 and Its Carbon Kinetic Isotope Fractionation

    Institute of Scientific and Technical Information of China (English)

    YueChangtao; LiShuyuan; DingKangle; ZhongNingning

    2005-01-01

    Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H,S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki(kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.

  14. THE THERMOLUMINESCENCE EFFICIENCY OF Li(2)B(4)O(7):Cu AND OF CaSO(4):Tm FOR PHOTONS

    CERN Document Server

    Otto, T; Gindraux, L

    2011-01-01

    The intrinsic thermoluminescence (TL) efficiency of a TL detector relates the absorbed dose in the detector material to the light yield observed upon evaluation. Knowledge of the TL efficiency is of interest when performing numerical simulations of detector response, where only absorbed dose can be predicted. Here, the experimental determination of TL efficiency for calcium sulphate (CaSO(4):Tm) and lithium borate (Li(2)B(4)O(7):Cu) is reported. These materials are widely used in Panasonic dosemeter badges. The results of the study are in agreement with predictions from track structure theory and microdosimetry, relating an enhanced light yield at low X-ray energies to supralinear behaviour of the TL phosphor.

  15. Testing of CaSO-4:Dy in teflon discs as a thermoluminescent dosimetry material for personal monitoring of uranium mine and mill workers

    International Nuclear Information System (INIS)

    Some studies of the spectroscopic and thermoluminescent properties of CaSO4:Dy are discussed. Measurements were also made in the field. Exposures measured using TLD, film and spot monitoring were in agreement, and these observations, together with measurements made at various heights above the ore stockpile have shown that CaSO4:Dy in teflon discs, shielded by 2mm of copper, give a reliable measure of the exposure at the appropriate position on the wearer's body. This exposure may then be converted into the dose equivalent for the whole body

  16. Study on the Development and Dosimetric Properties of New CaSO4:Dy TL Detectors Bonded by P-compounds for Gamma, Beta and Neutron Measurement

    International Nuclear Information System (INIS)

    A thermoluminescence dosimeter (TLD) has been generally accepted as the most accurate and reliable method of personal dosimetry because of its superior and long term stability comparing with other type dosimeter, such as Film Badge. Among many TL (thermoluminescence) materials investigated and suggested so far, the CaSO4:Dy TL material has been most widely used as a personal or environmental dosimeter because of its high sensitivity and low fading. A solid or crystalline form dosimeter is generally preferred for routine dosimetric applications since it has an advantage of handling convenience over the loose TL powder. For this reason, sintered TL pellets are usually used. However a difficulty is still in manufacturing the dosimeter in the form of sintered pellets in which the TL characteristics of original powder remain unchanged. It is not possible to make a solid dosimeter composed of 100 % pure CaSO4:Dy TL powder. One of the most frequent methods is mixing CaSO4:Dy TL powder with binding substances. A Teflon is a good binding material currently used because it does not change the TL characteristics of CaSO4:Dy TL powder. In the case of the Teflon pellet, due to the reduction of CaSO4:Dy powder content by 15 ∼ 20 wt% in TL pellets, the TL sensitivity of the Teflon pellet accordingly decreases, and moreover the re-usability of this Teflon pellet is not sufficient due to its color changing. To overcome this disadvantage, many researchers have prepared CaSO4:Dy TL pellets by mixing the powder with different binding substances. But even with these efforts, they could not significantly improve the TL intensity and other TL characteristics required for radiation dosimeter. In Korea, studies on the development of high sensitivity TL pellet using CaSO4:Dy TL material have been conducted in Korea Atomic Energy Research Institute (KAERI). This thesis presents the development of CaSO4:Dy TL pellet by bonding the TL powder with small amount of P-compounds designated as KCT-300 (KAERI CaSO4:Dy TLD). Dosimetric properties of the KCT-300 TL dosimeter have been investigated by using the method presented in the IEC 1066 international Standard. The sensitivity of the KCT-300 was about 6 times higher than that of the Teflon CaSO4:Dy TL dosimeter (Teledyne, USA). The dose response of KCT-300 was linear over the range from 10-5 Gy to 10 Gy and supralinear at higher dose. The energy response of the KCT-300 has been also investigated for photon energies from 20 keV to 663 keV. The result of strong energy dependence below 100 keV is attributed to the high effective atomic number of CaSO4. Hence, when the CaSO4:Dy pellet is used for a personnel dosimeter, energy-compensation filters should be considered for the low energy region. The coefficients of variation for KCT-300 did not exceed 0.075, which the IEC requires as a standard value. This means that reproducibility of the KCT-300 well satisfies the IEC requirements. The lower limit of detection (LLD) of the KCT-300 was 0.6 μ Gy, which was measured by Harshaw 4500 TLD Reader. When CaSO4:Dy TL material is used to measure the thermal neutron, it cannot be directly applied to the thermal neutron dosimeters in spite of its good TL characteristics because the thermal neutron capture cross section of the constituents of CaSO4:Dy is small. One method to enhance the neutron interaction is obtained by introducing an element of 6Li into TL powder because 6Li has a large thermal neutron capture cross section and acts as a neutron absorption centre. Several studies for thermal neutron dosimetry using CaSO4:Dy TLD have been performed so far. Most of the neutron dosimetry results reported in the literature have been obtained by using powder type CaSO4:Dy TL dosimeters rather than pellet type dosimeters. In this thesis a development of pellet type TL dosimeters for neutron measurement, designated as KCT-306 has been presented. If a 6Li-compound is embedded in CaSO4:Dy TL phosphor as a thermal neutron absorption material, α particle and 3H particle are produced via the 6Li(n,α)3H reaction when exposed to thermal neutron, and their energies are absorbed by the CaSO4:Dy TL phosphor to produce a TL. The TL pellets combination of our KCT-306/KCT-300, the commercially avaliable TLD-600/TLD-700, and TLD-600H/TLD-700H (Harshaw, USA) have been irradiated in the neutron/gamma mixed fields of a D2O moderated (30 cm dia.) 252Cf neutron source in KAERI. The TLD-700, TLD-700H and KCT-300 were used at the same time for gamma ray discriminators in the neutron/gamma mixed fields. It was found that the neutron/gamma response ratio of KCT-306/KCT-300, which is developed in this study, was about 4 times higher than that of the commercial TLD-600/TLD-700 or TLD-600H/TLD-700H. This means that the KCT-306 in combination with KCT-300 could be used as a thermal neutron dosimeter in a mixed radiation field. The TL materials KCT-300 and KCT-306 developed in this study could be utilized in a more precise measurement and evaluation of the personal as well as environmental radiation doses by using TLD

  17. O2.04TREATMENT WITH OMX-4.80, A TUMOR-PENETRATING TUNABLE OXYGEN CARRIER, REDUCES TUMOR HYPOXIA AND DRAMATICALLY ENHANCES RADIATION THERAPY IN INTRACRANIAL MODELS OF GLIOBLASTOMA

    OpenAIRE

    Krtolica, A; Le Moan, N.; Serwer, L.; Yoshida, Y.; Ozawa, T; Butowski, N.; James, D; Cary, S.

    2014-01-01

    We have developed OMX-4.80, a tunable oxygen carrier from the H-NOX protein family, that preferentially accumulates in tumor tissue, reduces hypoxia and enhances radiotherapy (RT). Tumor hypoxia is associated with poor patient outcomes in multiple solid tumors including glioblastoma (GB) and is thought to be a major contributor to poor cancer responses to chemo and radiation therapy. Here, we show that OMX-4.80 administered i.v. into the tail vein of mice bearing orthotopic GB passes the bloo...

  18. Forecasting of phase equilibriums in the K, Mg, Ca//SO4, Cl-H2O system by translation method

    International Nuclear Information System (INIS)

    The purpose of this work is constructing of diagrams of phase equilibriums of five-component K, Mg, Ca//SO4, Cl-H2O system, composing its four-component systems by translation method and elaboration of proposals on reprocessing of potassium-magnesium-calcium chloride-sulfate raw materials

  19. A comparative study of thermoluminescent properties of CaSO4:Dy+PTFE and TLD-110 irradiated with X-ray

    International Nuclear Information System (INIS)

    This paper presents the results of studying the thermoluminescent (TL) properties of CaSO4:Dy+PTFE and TLD-100 when they are exposed to X-rays in the range from 60 to 300 kV with a mean energy ranged from 48 to 250 keV. The CaSO4:Dy+PTFE glow curve exhibited two peaks at 200 and 290 deg C with the maximum emission at the first peak. Its TL response as a function of dose was linear in the range from 0.25 up to 5 Gy. The TL response of both materials as a function of photon energy was also investigated. The CaSO4:Dy+PTFE showed the same glow curve at different energies exhibiting the main peak centered on 200 deg C and variable sensitivity as a function of energy. These results showed that CaSO4:Dy+PTFE has potential to be used as a TL dosimeter for X-rays in the range of energies used in radiation diagnosis. (author)

  20. Radionuclide carriers

    International Nuclear Information System (INIS)

    A new carrier for radionuclide technetium 99m has been prepared for scintiscanning purposes. The new preparate consists of physiologically acceptable water-insoluble Tcsup(99m)-carrier containing from 0.2 to 0.8 weight percent of stannic ion as reductor, bound to an anionic starch derivative with about 1-20% of phosphate substituents. (EG)

  1. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    the majority of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status...... information is pieced together, then a picture is created of a Chinese aircraft carrier program, where Varyag will be made operational for training purposes. With this as the model, China will build a similar sized carrier themselves. If this project does become a reality, then it will take many years for...... Kuznetsov carrier. The SU-33 is, in its modernized version, technologically at the same level as western combat aircraft in both the offensive as well as the defensive roles. But Russia and China currently have an arms trade 6 dispute that is likely to prevent a deal, unless the dispute is resolved. As an...

  2. The effect of heating rate on the dose dependence and thermoluminescence characteristics of CaSO4: Dy (TLD-900)

    International Nuclear Information System (INIS)

    Highlights: • The effect of heating rate on the dose dependence of TLD-900 has been investigated by using f(D) function at different linear heating rates. • The experimental results have shown that the linearity of the main dosimetric peak continues nearly up to 100 Gy at heating rates of 3 oC/s and 5 oC/s. • The peak temperatures are shifted higher temperatures as the heating rate increases. • The integrated peak area of the curves decreases by about 50% as the heating rate increases. - Abstract: CaSO4: Dy (TLD-900) is a well-known phosphor for radiation dosimetry using thermoluminescence. In the given study, the effect of heating rate on the dose dependence and thermoluminescence characteristics of TLD-900 has been investigated by using the dose response function f(D) at different linear heating rates. It was observed that, the peak temperature of the main dosimetric glow peak (P2) shifts to higher temperature sides and the integrated peak area decreases by about 50% as the heating rate increases due to thermal quenching

  3. Dosimetric intercomparison in Cobalt 60 unities using TLD-100 crystals and CaSO4: Dy + Ptfe

    International Nuclear Information System (INIS)

    The purpose of this work is to design and construct a phantom in basis of thermoplastic polymer of methyl methacrylate that is reutilizable and which allows to do an analysis of the absorbed doses in thermoluminescent crystals (Tl) exposed to cobalt 60 to establish the dosimetric intercomparison in cobalt units which allows to do the follow-up of the Quality assurance programs, standardization of calibration procedures, dosimetry and TLD post intercomparison in radiotherapy. This work allows also prove new thermoluminescent materials of national manufacture developed by Juan Azorin and collaborators as the CaSO4: Dy + Ptfe. This is a first study which is realized in Mexico with the system crystal-phantom for aims to intercomparison in cobalt 60 units. In this work participate eight unities of cobalt 60 of different trades belonging at four radiotherapy centers. The results of the dose intercomparison of the eight unities of cobalt 60 were in the range 0.95-1.13, taking in account that the values between 0.95 and 1.05 were considered acceptable in terms of the requirements by the standing legislation. (Author)

  4. Characterization and standardization of a thermoluminescent dosimetric system to ultraviolet and laser radiation using CaSO4:Dy

    International Nuclear Information System (INIS)

    The photo transferred thermoluminescence (PTTL) was used to characterize a dosimetric system to the laser and ultraviolet radiation. Dysprosium activated calcium sulphate samples (CaSO4:Dy) used are produced at Instituto de Pesquisas Energeticas e Nucleares (IPEN) and have proved been an excellent dosimetric material for non ionizing radiation. PTTL signal was studied for UV radiation detection in the 220 to 450 nm range and for laser radiation in the 193 to 1.160 nm range. The samples presented more sensibility to the 193, 250, 310 and 337 nm wavelengths and no sensibility to infrared region. The samples presented linear PTTL in function of radiant exposure, excitation gamma dose in the range between 5 and 100 Gy and laser beam diameter between 2 and 6 nm. Another parameters studied were the angular dependence, UV lower exposure limit and PTTL signal optical fading. Spread laser radiation analysis was performed in the Ophthalmologic Department of Universidade Federal de Sao Paulo (UNIFESP) surgical center, showing that samples positioned as far as 4 m from laser source are sensitized to the laser radiation, as well as evaluating the laser exposure received by workers of medical area. A method to send the samples by mail was developed to the studies performed in the UNIFESP. (author)

  5. Triplicate genes for mitochondrial ADP/ATP carriers in the aerobic yeast Yarrowia lipolytica are regulated differentially in the absence of oxygen

    DEFF Research Database (Denmark)

    Mentel, M.; Piskur, Jure; Neuveglise, C.; Rycovska, A.; Cellengova, G.; Kolarov, J.

    2005-01-01

    Yarrowia lipolytica is a strictly aerobic fungus, which differs from the extensively studied model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its physiology, genetics and dimorphic growth habit. We isolated and sequenced cDNA and genomic clones (YlAAC1) from Y....... lipolytica that encode a mitochondrial ADP/ATP carrier. The YlAAC1 gene can complement the S. cerevisiae Delta aac2 deletion mutant. Southern hybridization, analysis of Yarrowia clones obtained in the course of the Genolevures project, and further sequencing revealed the existence of two paralogs of the Yl...

  6. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as a great power in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with...... offensive capabilities, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy...... to a more assertive strategy, with potentially far-reaching consequences for the countries of the region. The Chinese have bought several retired carriers, which they have studied in great detail. The largest is the Russian-built carrier Varyag of the Kuznetsov class, which today is anchored in the...

  7. Bioconjugation of Serum Albumin to a Maleimide-appended Porphyrin/Cyclodextrin Supramolecular Complex as an Artificial Oxygen Carrier in the Bloodstream.

    Science.gov (United States)

    Kitagishi, Hiroaki; Kawasaki, Hiroki; Kano, Koji

    2015-08-01

    HemoCD is an inclusion complex of per-O-methylated β-cyclodextrin dimer and an iron(II) porphyrin, which forms a stable O2 complex in water. Therefore, hemoCD has the potential for use as a synthetic O2 carrier in mammalian blood. In this study, a hemoCD derivative having a maleimide group (Mal-hemoCD) was conjugated to a Cys residue of serum albumin via a Michael addition reaction in order to increase the circulation time of the O2 carrier. The O2 -binding affinities (P1/2 [Torr]) and half-lives (t1/2 [h]) of the O2 adducts at pH 7.4 and 25 °C were determined to be 9 Torr and 23 h for Mal-hemoCD, and 10 Torr and 14 h for albumin-conjugated hemoCD (Alb-hemoCD). Our pharmacokinetic study revealed that renal excretion of Alb-hemoCD was effectively suppressed and that half of injected Alb-hemoCD remained in blood at 3 h after injection. It is noteworthy that Mal-hemoCD also had a long circulation time because of the bioconjugation reaction that occurred during circulation in the bloodstream. PMID:26053595

  8. An In Vitro Comparison of PMMA and Calcium Sulfate as Carriers for the Local Delivery of Gallium(III) Nitrate to Staphylococcal Infected Surgical Sites.

    Science.gov (United States)

    Garcia, Rebecca A; Tennent, David J; Chang, David; Wenke, Joseph C; Sanchez, Carlos J

    2016-01-01

    Antibiotic-loaded bone cements, including poly(methyl methacrylate) (PMMA) and calcium sulfate (CaSO4), are often used for treatment of orthopaedic infections involving Staphylococcus spp., although the effectiveness of this treatment modality may be limited due to the emergence of antimicrobial resistance and/or the development of biofilms within surgical sites. Gallium(III) is an iron analog capable of inhibiting essential iron-dependent pathways, exerting broad antimicrobial activity against multiple microorganisms, including Staphylococcus spp. Herein, we evaluated PMMA and CaSO4 as carriers for delivery of gallium(III) nitrate (Ga(NO3)3) to infected surgical sites by assessing the release kinetics subsequent to incorporation and antimicrobial activity against S. aureus and S. epidermidis. PMMA and to a lesser extent CaSO4 were observed to be compatible as carriers for Ga(NO3)3, eluting concentrations with antimicrobial activity against planktonic bacteria, inhibiting bacterial growth, and preventing bacterial colonization of beads, and effective against established bacterial biofilms of S. aureus and S. epidermidis. Collectively, our in vitro results indicate that PMMA is a more suitable carrier compared to CaSO4 for delivery of Ga(NO3)3; moreover they provide evidence for the potential use of Ga(NO3)3 with PMMA as a strategy for the prevention and/or treatment for orthopaedic infections. PMID:26885514

  9. TL and EPR studies of CaSO4:Dy phosphor to investigate its efficacy in measurement of food irradiation dose at sub-ambient temperatures

    International Nuclear Information System (INIS)

    The effects of sub-ambient temperatures of irradiation and dose response of CaSO4:Dy phosphor was investigated. The irradiation dose in the range 0.5-7.0 kGy was chosen to meet the requirement of commercial food irradiation at low temperature. Commercially available phosphor showed no significant change in glow curve structure with low temperature of irradiation. In order to enhance the sensitivity of the low temperature glow peak (142 oC), the phosphor was subjected to different post-preparation thermal treatments at 700-900 oC. The change in glows and improvement in dose response characteristics were explained by Electron Paramagnetic Resonance (EPR) spectroscopy. At sub-ambient temperature of irradiation, the behavior of thermally treated CaSO4:Dy phosphor with increasing dose revealed improved linear response of the low temperature glow peak and could be an efficient dosimetry system for the food commodities irradiated at low temperatures.

  10. Triplicate genes for mitochondrial ADP/ATP carriers in the aerobic yeast Yarrowia lipolytica are regulated differentially in the absence of oxygen

    DEFF Research Database (Denmark)

    Mentel, M.; Piskur, Jure; Neuveglise, C.;

    2005-01-01

    phylogenetic tree, suggesting that YlAAC3 is derived from a more ancient duplication within the Y. lipolytica lineage. A similar branching pattern for the three ScAAC paralogs in the facultative anaerobe S. cerevisiae demonstrates that two rounds of duplication of AAC genes occurred independently at least......AAC1 gene, which were named YlAAC2 and YlAAC3, respectively. Phylogenetic analysis showed that YlAAC1 and YlAAC2 were more closely related to each other than to YlAAC3, and are likely to represent the products of a recent gene duplication. All three Y. lipolytica YlAAC genes group together on the...... twice in the evolution of hemiascomycetous yeasts. Surprisingly, in both the aerobic Y. lipolytica and the facultative anaerobe S. cerevisiae, the three paralogs are differentially regulated in the absence of oxygen. Apparently, Y. lipolytica can sense hypoxia and down-regulate target genes in response....

  11. A novel oxygen carrier “YQ23” suppresses the liver tumor metastasis by decreasing circulating endothelial progenitor cells and regulatory T cells

    International Nuclear Information System (INIS)

    Surgical therapies are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor metastasis after liver surgery remains a severe problem. We aim to investigate the roles and the underlying mechanism of YQ23, stabilized non-polymeric diaspirin cross-linked tetrameric hemoglobin, in liver tumor metastasis after major hepatectomy and partial hepatic ischemia reperfusion (I/R) injury. An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Major hepatectomy for tumor-bearing lobe and partial hepatic I/R injury were performed at two weeks after orthotopic liver tumor implantation. YQ23 (0.2 g/kg) was administered at 1 hour before ischemia and immediately after reperfusion. Blood samples were collected at day 0, 1, 7, 14, 21 and 28 for detection of circulating endothelial progenitor cells (EPCs) and regulatory T cells (Tregs). Our results showed that YQ23 treatment effectively inhibited intrahepatic and lung metastases together with less tumor angiogenesis at 4 weeks after major hepatectomy and partial hepatic I/R injury. The levels of circulating EPCs and Tregs were significantly decreased in YQ23 treatment group. Furthermore, YQ23 treatment also increased liver tissue oxygenation during hepatic I/R injury. Up-regulation of HO1 and down-regulation of CXCR3, TNF-α and IL6 were detected after YQ23 treatment. YQ23 treatment suppressed liver tumor metastasis after major hepatectomy and partial hepatic I/R injury in a rat liver tumor model through increasing liver oxygen and reducing the populations of circulating EPCs and Tregs

  12. Living with Oxygen Therapy

    Science.gov (United States)

    ... transportation carrier (for example, the airline or bus company). If you need oxygen while traveling, plan in ... NEXT >> Updated: February 24, 2012 Twitter Facebook YouTube Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA OIG CONTACT ...

  13. The effect of ultraviolet and visible radiation on the readout obtained from γ-irradiated and unirradiated CaSO4:Dy in teflon discs

    International Nuclear Information System (INIS)

    The effect of ultraviolet and visible radiation on the readout obtained from the main dosimetry peak of CaSO4:Dy in teflon discs is explained by the net result of three separate factors, namely (i) an inherent response, (ii) a phototransfer and (iii) an optical bleaching. Their dependence on wavelength, irradiance and radiant exposure has been studied using a fluorescent light enclosed in a perspex diffuser and a 200W mercury-xenon lamp in conjunction with narrow bandpass filters to isolate specific wavelengths

  14. Oxygen isotopes separation during fluorination of oxygen-containing compounds

    International Nuclear Information System (INIS)

    The mechanisms of separation of oxygen isotopes in the reaction of water with BrF5 and CoF3 and of calcium sulphate with CsBrF4 are considered. The reaction of water with BrF5 is accompanied by enrichment of the oxygen released with the light isotope 16O, and with CoF3, by enrichment with the heavy isotope 18O. The separation of the oxygen isotopes attending the reaction of water with CoF3 is due to the establishment of isotopic equilibrium between the oxygen and the intermediate reaction product, i.e. the hydroderivative of cobalt trifluoride (α=1.016 at 350 deg C). In the case of BrF5 a kinetic isotopic effect takes place (α=0.994sup(*) at 25 deg C and α=0.996 at 120 deg C), which is due to the preferential rupture of the H-16O bond (α is the separation coefficient). The incomplete release of oxygen in the form of O2 from CaSO4 does not lead to separation of the oxygen isotopes, probably becaused of the equivalence of all the peripheral oxygen atoms in the SO4-2 anion from the point of view of the reaction with CsBrF4

  15. Preconception Carrier Screening

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preconception Carrier Screening Home For Patients Search FAQs Preconception Carrier Screening ... Screening FAQ179, August 2012 PDF Format Preconception Carrier Screening Pregnancy What is preconception carrier screening? What is ...

  16. Thermoluminescent response to thermal neutrons of mixture of CaSO4: Tm and non-luminous 6LiF

    International Nuclear Information System (INIS)

    Thermoluminescent property of the mixture of CaSO4: Tm powder and non-luminous 6LiF powder was studied with a view to developing a personnel monitor for thermal neutrons. Its thermoluminescent response to thermal neutrons as a function of the particle size or the mixing ratio of both powders was investigated theoretically and experimentally. The phosphor sample, which was prepared according to the most favorable conditions that the particle size of both powders was between 100 -- 150 μm and the mixing weight ratio of CaSO4: Tm to 6LiF was 1 : 1, was found to have the following dosimetric properties. (1) The thermoluminescence output is linear against neutron dose in a dose range from 10 μrem up to 6 rem. (2) The thermoluminescent efficiency remains constant even after 5,000 repetitions of exposure-reading-annealing procedure. (3) A thermal neutron dose of 1 mrem can be determined with a standard deviation of 5.2% even under a γ-ray background of 10 mR. (auth.)

  17. Study of Thermodynamics and Kinetics of CH4-CaSO4 and H2S-Fe2O3 Systems

    Institute of Scientific and Technical Information of China (English)

    岳长涛; 李术元; 丁康乐; 钟宁宁

    2003-01-01

    The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.

  18. Dosimetric properties and stability of thermoluminescent foils made from LiF:Mg,Cu,P or CaSO4:Dy during long-term use

    International Nuclear Information System (INIS)

    A few dosimetric systems based on thermoluminescence [TL] foils were developed in recent years (Nariyama et al. 2006, Radiat. Prot. Dosim. 120, 213–218; Olko et al. 2006 Radiat. Prot. Dosim. 118, 213–218) (Czopyk et al. 2008, Radiat. Meas., 43, 977–980; Kłosowski et al. 2010, Radiat. Meas., 45, 719–721; Kopeć et al. 2013, Radiat.Meas., 56, 380–383). Major application of these systems is mapping of 2D dose distribution for medical treatment plan verification, similarly to photochromic or radiochromic films. The advantage of TL foils compared to other films is their re-usability. In this work we present dosimetric properties as dose linearity and fadding of the foils made from LiF:Mg,Cu,P or CaSO4:Dy phosphors and high temperature polymers. Both types of the foils have good linearity in the range 1–20 Gy for LiF:Mg,Cu,P and 0.1–2 Gy for CaSO4:Dy. Their long term fading does not exceed 3.7% and 9% respectively. We additionally investigated effects of sensitivity loss and emission spectra for both types of the foils. One shortcoming of TL foils is that every heat process may have negative influence on their properties, causing changes of their sensitivity. Register signal of the foils after 15 readouts may be reduced by 16% of the initial. We consider that the main reason of these changes is oxidation of organic contamination on the surface and degradation of a polymer which is one of the components of the foils. Effect of sensitivity decreasing may be slowed down by proper use and cleaning detectors by solvent. - Highlights: • Dosimetric properties of the detectors foils made from LiF:Mg,Cu,P and CaSO4:Dy are present. • Sensitivity loss of the detectors during usage is observed. • 2D detector foils should be cleaned thorough the solvent to increase its use time

  19. 生物质灰对铁矿石载氧体性能的影响%Effect of biomass ash on performance of iron ore as oxygen carrier in chemical looping combustion

    Institute of Scientific and Technical Information of China (English)

    周玉飞; 沈来宏; 顾海明; 牛欣

    2015-01-01

    在小型固定床上以铁矿石为载氧体、CO为燃料,进行了化学链燃烧试验。通过在铁矿石中加入生物质灰,探讨了生物质灰的种类(玉米秆灰、油菜秆灰和稻草灰)、灰的添加量(5%~20%)及灰中碱金属对铁矿石载氧体反应活性的影响。试验结果表明:生物质灰中无机组分不同,对铁矿石载氧体反应活性的影响也不同。由于玉米秆灰和油菜秆灰中碱金属K含量较高,高温下K以气态形式迁移到铁矿石表面,生成了K3 FeO2,从而提高了铁矿石的还原反应活性。稻草灰中Si含量很高,高温下碱金属K及FeO与铁矿石反应,生成低熔点共晶体,加剧了铁矿石表面的烧结,减少了气固反应的接触面积,导致CO总转化率急剧下降。%Experiment on chemical looping combustion was conducted in a fixed bed reactor with iron ore as oxygen carrier and CO as fuel.The effect of biomass ash addition on the performance of the iron ore oxygen carrier was investigated.Several key factors were discussed, including the bio-mass ash type (corn stalk ash, rape stalk ash, straw ash), the ash ratio (5%to 20%) and the alkali metal in the ash.The results indicate that the effect of the biomass ash on the reactivity of iron ore depends on the chemical composition of the ash.The alkali metal K abundant in corn ash and rape ash is released in gaseous state and captured by iron ore through complicated reactions, forming K3 FeO2 which enhances the reduction reactivity of the iron ore.However, the high content of Si in the straw ash leads to a reaction of Si with K and FeO under high temperature to form low melting point compounds which causes serious sintering on the surface of the iron ore.The decrease of con-tact surface causes the decrease of the total CO conversion.

  20. Oxygen Carriers for Chemical Looping Combustion - 4 000 h of Operational Experience Transporteurs d’oxygène pour la combustion en boucle chimique : expérience accumulée pendant 4 000 h d’opération

    OpenAIRE

    Lyngfelt A.

    2011-01-01

    Chemical Looping Combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two interconnected fluidized beds, a fuel reactor and an air reactor, are used in the process. The outlet gas from the fuel reactor consists of CO2 and H2O, and the latter is easily removed by c...

  1. O2.04TREATMENT WITH OMX-4.80, A TUMOR-PENETRATING TUNABLE OXYGEN CARRIER, REDUCES TUMOR HYPOXIA AND DRAMATICALLY ENHANCES RADIATION THERAPY IN INTRACRANIAL MODELS OF GLIOBLASTOMA

    Science.gov (United States)

    Krtolica, A.; Le Moan, N.; Serwer, L.; Yoshida, Y.; Ozawa, T.; Butowski, N.; James, D.; Cary, S.

    2014-01-01

    We have developed OMX-4.80, a tunable oxygen carrier from the H-NOX protein family, that preferentially accumulates in tumor tissue, reduces hypoxia and enhances radiotherapy (RT). Tumor hypoxia is associated with poor patient outcomes in multiple solid tumors including glioblastoma (GB) and is thought to be a major contributor to poor cancer responses to chemo and radiation therapy. Here, we show that OMX-4.80 administered i.v. into the tail vein of mice bearing orthotopic GB passes the blood-tumor barrier, penetrates deep into intracranial tumors, and significantly reduces tumor hypoxia in a dose-dependent manner. Hypoxia reduction is demonstrated by a significant decrease in levels of hypoxia inducible factor, HIF1α, and the external hypoxia marker pimonidazole as assessed by IHC and image analysis. Furthermore, hypoxia before and after treatment is compared in the individual tumors by concurrent immunostaining of tumors with a long-term hypoxia marker, Glut1, and short-lived HIF-1α. These data reveal >50% reduction in hypoxic tumor area after OMX-4.80 treatment confirming the effectiveness of OMX-4.80 in reducing hypoxia in individual tumors. When OMX-4.80 treatment was coupled with a single high dose of RT, we observed a 2.7-fold increase in tumor growth delay and 2.9-fold longer survival (p < 0.05, by logrank). Toxicology studies in rodents and dogs with single and multiple supratherapeutic doses of OMX-4.80 revealed a good safety profile affirming its suitability for clinical development. In conclusion, our results indicate that OMX-4.80 is an effective and promising RT enhancer that warrants clinical development in GB patients.

  2. Determination of exposure rates from natural background radiation in Khartoum using LiF:Mg,Cu,P (GR-200) and CaSo4: Mn TLD chips

    International Nuclear Information System (INIS)

    The exposure rates from natural background radiation - including terrestrial gamma radiation and the ionizing component of cosmic rays - were measured for the first time in the city of khartoum using two types of TLD materials: LiF:Mg,Cu,P (GR-200) and CaSo4:Mn TLD chips. Measurements were performed at two sites simultaneously, one site was selected on land in the vicinity of the Sudan Atomic Energy Commission, for the purposes of the measurement of the total exposure rate outdoors, while the other site was located on a buoy anchored in the Blue Nile, and was selected to measure the exposure rate due to the ionizing component of cosmic rays. The investigations were conducted for periods of between 5 and 28 days. Calibration was performed on a selected number of dosimeters to determine the exposure rates at each site. The exposure rates from the ionizing component of cosmic rays in Khartoum were found to be respectively 33 nGy.h-1 and 30 nGy.h-1, in the measurements performed within the scope of this work using GR-200 and CaSo4:Mn dosimeters, while the total values for exposure on land were found to be 45 nGy.h-1 and 42 nGy.h-1 respectively. These values compare reasonably well with other national averages reported in the UNSCEAR publication. The comparison of the results for the two dosimetric materials demonstrates both the sensitivity and suitability of GR-200 for the purposes of environmental monitoring (orig.)

  3. 批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究%Batch Preparation of Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Combustion of Lignite

    Institute of Scientific and Technical Information of China (English)

    郭磊; 赵海波; 马琎晨; 梅道锋; 方彦飞; 郑楚光

    2013-01-01

    Freeze granulation,spray drying,impregnation and mechanical mixing methods were adopted to prepare Fe2O3/Al2O3 oxygen carriers.To identify the appropriate technologies for batch preparation of the oxygen carriers,the four preparation methods were compared in terms of yield rate,preparation period,physical and chemical characteristics and performance in chemical looping combustion (CLC) of lignite.The experimental results show that freeze granulation has the highest yield rate of carrier with the best mechanical strength.CLC tests of lignite demonstrate that the oxygen carriers prepared by freeze granulation and spray drying bring the highest carbon conversion rate,followed by impregnation and mechanical mixing; and the oxygen carriers prepared by the first two methods have higher chemical reactivity and more stable performance.In the four reduction processes with oxygen carriers prepared by all the four preparation methods,CO2 capture efficiencies exceed 88%; the yield rate of CO2 increases with the rate of carbon conversion,finally approaching 100%; and the combustion efficiencies are above 90%.These indicate that the oxygen carriers prepared by the four methods all have good performances for CO2 capture and high utilization degree of the combustible components.Freeze granulation and spray drying methods can be considered preferentially for batch preparation of oxygen carriers for the CLC of lignite.%采用冷冻成粒法、喷雾干燥法、浸渍法、机械混合法批量制备了Fe2O3/Al2O3氧载体,从氧载体产率、制备周期、物理化学表征、煤化学链燃烧中氧载体性能等角度比较各种批量制备方法,确定合适的批量制备技术.实验结果表明,冷冻成粒法的氧载体产率较高,机械性能最优;与褐煤的化学链燃烧实验中,喷雾干燥法和冷冻成粒法制备的氧载体导致碳转化速率较快,然后依次为浸渍法和机械混合法;且前两种方法制备的氧载体的循环稳定性

  4. What Is Carrier Screening?

    Science.gov (United States)

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  5. Using Low-Cost Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion Utilisation de matériaux bon marché à base de fer comme transporteur d’oxygène dans la combustion en boucle chimique

    Directory of Open Access Journals (Sweden)

    Jerndal E.

    2011-03-01

    Full Text Available In chemical looping combustion with solid fuels, the oxygen-carrier lifetime is expected to be shorter than with gaseous fuels. Therefore, it is particularly important to use low-cost oxygen carriers in solid fuel applications. Apart from being cheap, these oxygen carriers should be able to convert the CO and H2 produced from the solid fuel gasification and be sufficiently hard to withstand fragmentation. Several low-cost iron-based materials displayed high conversion of syngas and high mechanical strength and can be used for further development of the technology. These materials include oxide scales from Sandvik and Scana and an iron ore from LKAB. All tested oxygen carriers showed higher gas conversion than a reference sample, the mineral ilmenite. Generally, softer oxygen carriers were more porous and appeared to have a higher reactivity towards syngas. When compared with ilmenite, the conversion of CO was higher for all oxygen carriers and the conversion of H2 was higher when tested for longer reduction times. The oxygen carrier Sandvik 2 displayed the highest conversion of syngas and was therefore selected for solid fuel experiments. The conversion rate of solid fuels was higher with Sandvik 2 than with the reference sample, ilmenite. Pour appliquer la combustion en boucle chimique à des charges solides, il est important d’utiliser des matériaux transporteurs d’oxygène bon marché. En effet, la durée de vie du transporteur d’oxygène risque d’être plus courte sur charge solide que sur charge gazeuse. Ces matériaux doivent également bien convertir le monoxyde de carbone et l’hydrogène résultant de la gasification, tout en étant suffisamment durs pour résister à la fragmentation. Plusieurs matériaux ont montré un potentiel de conversion élevé sur le gaz de synthèse ainsi qu’une résistance mécanique élevée, ce qui permet d’envisager leur utilisation lors des développements futurs de la technologie. Parmi ces

  6. CaSO4溶液中表面处理对流动沸腾传热系数的影响%Effect of Surface Treatment on Flow Boiling Heat Transfer Coefficient in CaSO4 Containing Water

    Institute of Scientific and Technical Information of China (English)

    任晓光; 李铁凤; 赵起

    2006-01-01

    This paper reports the influence of heat transfer surface treatment on the formation of calcium sulphate deposit during flow boiling heat transfer. The surface of several test heaters was treated by surface modification techniques,such as dynamic mixing magnetron sputtering [DLC (diamond-like carbon), DLC-F (diamond-like carbon-fluorine) and AC (amorphous carbon)] and polishing to reduce surface energy. The results showed that heat transfer surface with low surface energy experienced significant reduction of formation of CaSO4 deposit. (1) Magnetron sputtering stainless steel heat transfer surface with DLC, DLC-F and plasma arc sputtering with AC did not change the surface roughness, but they reduced surface energy and improved heat transfer coefficient, so hindered CaSO4 deposit formation significantly. The DLC-F surface performed better than the DLC surface. (2) Surface energy played an important pole in improving heat transfer coefficient. The less the surface energy the more significant the heat transfer coefficient improved with other experimental conditions identical. (3) The polished surface improved the roughness of the heater, but owing to the high surface energy it was not better than the DLC-F surface for a long-term consideration on improving the heat transfer coefficient.

  7. Development of a technique for improving coefficient of variation of CaSO4:Dy teflon-based TLD personnel monitoring system in low-dose region

    International Nuclear Information System (INIS)

    In view of the importance of zero-dose background (null signal) in influencing the coefficient of variation in low-dose region, a technique for the estimation of the same from composite (gross) signal is developed for CaSO4:Dy-based personnel monitoring system being used in India. The technique is based on simple analysis of glow curves (GCs) of unexposed and exposed dosemeters, evolution of trend/model for the zero-dose curves, generation of simulation protocol for individual zero-dose curves, establishment of characteristics of GCs of exposed dosemeters and finally preparation of an algorithm to segregate the components from composite signal. The technique offers the separation of real-time background and gives superior results over other method of approximation of the background. The results also prove efficiency of the empirical trending and simulation protocol of background GCs. The proposed technique can be implemented in routine monitoring without any extra man hours and reader time. (authors)

  8. Studying dosimetric parameters of thermoluminescent dosemeter of CaSO4:Dy powder made in the Nuclear Research Institute for personal radiation dosimetry

    International Nuclear Information System (INIS)

    The research group of the Nuclear Research Institute (NRI) itself studied and successfully made thermoluminescent dosemeters (TLDs) using powder material of CaSO4:Dy in 2014. For external personal dosimetry, dosimetric parameters of the TLDs were surveyed by radiating with various gamma doses of 137Cs source and measured by Rexon-320 Reader such as glow curve with temperature, calibration factor (or response value), homogeneity of the batch, reproducibility of measurement, linearity of dose response, limit of detection, fading, light sensitivity, dose-rate dependence, and energy dependence of the response, etc. The studied results were shown that the dosemeters were ensured for personal dosimetry according to the standards of IEC-61066:2006. Besides, the TLDs were also radiated with standard doses of gamma (137Cs) and X-rays at the Secondary Standards Dosimetry Laboratory (SSDL) of the Institute for Nuclear Science and Technology in Hanoi. Comparison results on dose were shown that the TLDs have been confident. Therefore, they have been used for routinely external personal dosimetry for radiation workers in the NRI and other radiation installations from the beginning of 2015. (author)

  9. Gypsum (CaSO4·2H2O Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    Directory of Open Access Journals (Sweden)

    Tai-Shung Chung

    2013-11-01

    Full Text Available We have examined the gypsum (CaSO4·2H2O scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO processes. Three hollow fiber membranes made of (1 cellulose acetate (CA, (2 polybenzimidazole (PBI/polyethersulfone (PES and (3 PBI-polyhedral oligomeric silsesquioxane (POSS/polyacrylonitrile (PAN were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface.

  10. Development and evaluation of a new baDge/filter for thermoluminescent monitoring with CaSO4: Dy/PTFE

    International Nuclear Information System (INIS)

    Calcium Sulfate (CaSO4:Dy) phosphor Thermoluminescent Dosimeter (TLD) has been used by the Instituto de Pesquisas Energeticas e Nucleares (IPEN), SP, Brazil since 70's and 80's, due to important work of its researchers and collaborators. This phosphor advantages, beside the fact that it is produced by IPEN itself, begin to be more required and its disadvantages have became more apparent, in a global market more and more competitive. This phosphors was used primarily in environmental and area monitoring at IPEN facilities and in a few external institutions, once it presents more sensibility than other phosphors, like LiF:Mg. Its mainly disadvantage is a strong energetic dependence response to ionizing radiation, which must be corrected for its application in every radiation field. This phosphor has been used inside a badge which is an adaptation from photographic film badges used in the past. This badge permits a reasonable correction in the energetic dependence, only for orthogonal beam incidence. With the objective of improve the performance and reduce the energetic dependence on any incidence angle, reducing the dose measurement uncertainty too, this work presents a study on a new badge, with a new filter geometry, and its performance was compared to the actual dosimeter in use, with significant improve on results. Gamma irradiations of 60Co and x-rays of 25,1; 33; 37,3 and 82,1 keV, on incidence angles of 0 deg, 30 deg, 45 deg and 90 deg were done at facility conditions of IPEN. Semi-empirical computational simulation using finite differences in three dimensions were done. The results pointed out the best filter thickness and width for initiate the prototype production, in order to optimize the correction on energetic dependence on irradiation of photons of 33, 48, 118 and 1250 keV energies under many incidence angles. (author)

  11. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    Science.gov (United States)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  12. The optically stimulated luminescence (OSL) properties of LiF:Mg,Ti, Li2B4O7:Cu, CaSO4:Tm, and CaF2:Mn thermoluminescent (TL) materials

    International Nuclear Information System (INIS)

    This paper reports on an investigation into the optically stimulated luminescence (OSL) properties of several known thermoluminescent materials, namely LiF:Mg,Ti, Li2B4O7:Cu, CaSO4:Tm, and CaF2:Mn. Samples were irradiated to air doses of 15 mGy, 150 mGy and 1.5 Gy and analyzed using a commercially available OSL reader system to determine their luminescence response to continuous blue and infrared light (IR) excitation, centered at 470 nm and 830 nm wavelengths, respectively. CaF2:Mn did not show an OSL response with either IR or blue light stimulation. Li2B4O7:Cu and LiF:Mg,Ti demonstrated relatively weak OSL signals only under blue light excitation. CaSO4:Tm exhibited OSL under both IR and blue light stimulation at sensitivities roughly one order of magnitude less than the OSL response of α-Al2O3:C under the same conditions. - Highlights: • Optically stimulated luminescence (OSL) properties of several known thermoluminescent materials were investigated. • CaF2:Mn did not show an OSL response with either IR or blue light stimulation. • Li2B4O7:Cu and LiF:Mg,Ti demonstrated very weak OSL signals only under blue light excitation. • CaSO4:Tm exhibited OSL under both IR and blue light stimulation. • OSL properties of CaSO4:Tm indicated an optimal OSL readout regime

  13. Study of LiF:Mg,Ti and CaSO4:Dy dosimeters TL response to electron beams of 6 MeV applied to radiotherapy using PMMA and solid water phantoms

    International Nuclear Information System (INIS)

    The performance of CaSO4:Dy and LiF:Mg,Ti dosimeters to electron beams applied to radiotherapy was investigated. The TL response of these dosimeters was studied for 6 MeV electron beams using PMMA and Solid Water (SW) phantoms. The dosimeters were previously separated in groups according to their TL individual sensitivities to 60Co gamma-radiation in air under electronic equilibrium conditions. After that, they were irradiated with 6 MeV electron doses of 0.1, 0.5, 1, 5 and 10 Gy using a linear accelerator Clinac 2100C Varian of Hospital Israelita Albert Einstein – HIAE. The electron beam irradiations were performed using a 10 × 10 cm2 field size, 100 cm source-phantom surface distance and the dosimeters were positioned at the depth of maximum dose (1.2 cm). The TL readings were carried out between 24 and 32 h after irradiation using a Harshaw 3500 TL reader. The TL dose–response of both type of dosimeters and phantoms presented linear behavior on the electron dose range from 0.1 to 5 Gy CaSO4:Dy dosimeter is 21 times more sensitive than LiF:Mg,Ti, dosimeter commonly used in clinical dosimetry. The obtained results indicate that the performance of CaSO4:Dy dosimeters is similar to LiF:Mg,Ti dosimeters and this material can be an alternative dosimetric material to be used to clinical electron beams dosimetry.

  14. Determination of self attenuation coefficient and relative TL efficiency of CaSO 4 :Dy, LiF:Mg,Cu,P and LiF:Mg,Ti TLDs - An alternate approach

    Science.gov (United States)

    Bakshi, A. K.; Chatterjee, S.; Palani Selvam, T.; Joshi, V. J.; Chougaonkar, M. P.

    2011-10-01

    Self attenuation of TL and relative TL efficiency of polytetra fluoro ethylene (PTFE) embedded CaSO 4:Dy disc, LiF:Mg,Ti (MTS) disc and LiF:Mg,Cu,P (MCP-N) chip were determined in the present study for photons of energy 10-34 keV. The relative TL efficiency was determined using an alternative approach in which ratio of experimental response and corrected theoretical response was used instead of measuring the absolute TL emission in photon counting mode. For CaSO 4:Dy disc, it was found that with increasing the proportion of CaSO 4:Dy phosphor in the disc, the light attenuation coefficient increases. The light attenuation coefficient of MTS disc and MCP-N chip was found to be 23.4 and 45.5 cm -1, respectively. The relative TL efficiency in the photon energy range of 10-34 keV for MTS discs and MCP-N chips, evaluated in the present study matches well with the reported values in the literature.

  15. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  16. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  17. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...

  18. Supplemental Oxygen

    Science.gov (United States)

    ... Disease Lookup > COPD > Diagnosing and Treating COPD Supplemental Oxygen Sometimes with chronic obstructive pulmonary disease (COPD), lung ... in people with severe lung disease Three Ways Oxygen Therapy Is Supplied Compressed oxygen gas and liquid ...

  19. A design of a personal dosimeter based on a new TL material CaSO4:Dy,P for use in photon-beta radiation fields

    International Nuclear Information System (INIS)

    A personal dosimeter containing TL elements, KCT-300, based on a new TL material CaSO4:Dy,P was developed to be used in measurement of Hp(10) and Hp(0.07) in photon-beta radiation fields. The performance requirements provided by ANSI were adopted as a design criteria. The MCNPX Monte Carlo code was utilized to obtain design parameters affecting dosimeter response and successfully functioned as a desk-top design tool predicting dosimeter responses upon change of parameters. The fundamental response functions of the new TL dosimeter were acquired from experiments in the reference radiation field established in the Korea Atomic Energy Research Institute. The personal dosimeter designed in this study, KCT-300PB3, consists of three areas: the window area, the energy information area and the energy compensation area. The energy compensation area was designed to give a measurement of deep dose Hp(10) incurred by Photons with energy ranging from 54 to 662 keV. The shallow dose Hp(0.07) was calculated by applying an average shallow dose conversion factor of those photons to the deep dose determined. Consequently it was not necessary to resolve quality of photon beyond 54keV. To compensate for overkill of low energy photons by the front filter, a hole of 1.3 mm in diameter was placed on the front primary filter. By tapering entrance of hole at 60 .deg. angle, response of the energy compensation area for photons ranging from 54 to 662 keV with incidence angles below 60 .deg. met the isodirectional criteria specified in the ANSI N13.11 within ±6%. The energy information area was designed to focus on low energy X-rays below 54keV which wee easy to be identified. As a consequence, chances of wrong identification of photon energy in either X-rays or X-rays/137Cs gamma mixed field followed by large deviations in the evaluated doses were inherently reduced. The energy compensation area and the energy information area were designed to shield at least 96% of 90Sr/90Y beta particles for resolving beta-137Cs gamma mixed field. For photons beyond 35keV and beta radiation, TL outputs of the dosimeter elements at the energy compensation area and the window area directly relate to the deep dose and the shallow dose, respectively. This simplifies the dose evaluation algorithm. The results of performance test for the K CT-300PB3 after the ANSI N13.11 guidelines showed the values of performance indicator, B + S, were in the range of 0.026∼0.115 and met the prescribed performance limits. Compared to other types of contemporary TLD systems, it has been shown that performance of this dosimeter was to be improved. Of all design parameters, it was proved to be an effective way for response compensation to install rear filter of larger size than that of front filter. A rear filter of large size made the front filter thinner and simpler than in existing designs. Another finding is that the TL elements and the filters should be in contact as far as possible because any gap between them significantly alters the response. The approaches and techniques of personal dosimeter design used in this study can be generally applicable to design of any personal dosimeter incorporating some elements of a passive detector. To extend capacity of the Monte Carlo design tool, further study is recommended to resolve causes of the discrepancies between the measured and calculated responses of TL dosimeter for lower energy photons found in this study

  20. Using oxygen at home

    Science.gov (United States)

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  1. Metabolic Response of Perfused Livers to Various Oxygenation Conditions

    OpenAIRE

    Orman, Mehmet A.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.; Berthiaume, Francois

    2011-01-01

    Isolated liver perfusion systems have been used to characterize intrinsic metabolic changes in liver as a result of various perturbations, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were done using hyperoxic conditions (95% O2) but without the use of oxygen carriers in the perfusate. Prior literature data do not clearly establish the impact of oxygenation, and in particular that of adding oxygen carriers to the perfusate, on the metabolic functio...

  2. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  3. Oxygen analyzer

    Science.gov (United States)

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  4. Zaria Universal Oxygenator Holder Phase I

    OpenAIRE

    Sunday Adoga Edaigbini; Ibrahim Zira Delia; Muhammad Balarabe Aminu

    2014-01-01

    Introduction: The conduct of cardiopulmonary bypass surgery requires the use of equipment and devices like the oxygenator. The oxygenator comes in different makes and each manufacturer customizes the carrier or ′holder′ of this device specific to their design. Aim: This paper presents an innovation designed to overcome the need to purchase a different holder for every oxygenator thereby cutting the cost. Materials and Methods: A sheet of iron measuring 1.9 cm (width) × 0.1 cm (thickness) was ...

  5. Oxygen Carriers for Chemical Looping Combustion - 4 000 h of Operational Experience Transporteurs d’oxygène pour la combustion en boucle chimique : expérience accumulée pendant 4 000 h d’opération

    Directory of Open Access Journals (Sweden)

    Lyngfelt A.

    2011-04-01

    Full Text Available Chemical Looping Combustion (CLC is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two interconnected fluidized beds, a fuel reactor and an air reactor, are used in the process. The outlet gas from the fuel reactor consists of CO2 and H2O, and the latter is easily removed by condensation. Considerable research has been conducted on CLC in the last years with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. Today, more than 700 materials have been tested and the technology has been successfully demonstrated in chemical looping combustors in the size range 0.3-140 kW, using different types of oxygen carriers based on oxides of the metals Ni, Co, Fe, Cu and Mn. The total time of operational experience is more than 4 000 hours. From these tests, it can be established that almost complete conversion of the fuel can be obtained and 100% CO2 capture is possible. Most work so far has been focused on gaseous fuels, but the direct application to solid fuels is also being studied. This paper presents an overview of operational experience with oxygen carriers in chemical looping combustors. La combustion en boucle chimique (CLC est une nouvelle technique de combustion permettant la séparation intrinsèque du CO2. Dans ce procédé, un oxyde métallique est utilisé comme transporteur d’oxygène pour véhiculer l’oxygène de l’air vers le combustible, ce qui permet d’éviter un contact direct entre le combustible et l’air. Deux lits fluidisés interconnectés sont utilisés, le réacteur air et le réacteur de combustion. Les fumées du réacteur de combustion contiennent le CO2 et la vapeur d’eau qui peut être facilement éliminée par condensation. Des recherches consid

  6. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger; Eriksson, André Huss; Andersen, Rikke; Frokjaer, Sven

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  7. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well as...

  8. Information and Its Carriers.

    Science.gov (United States)

    Herrmann, F.; And Others

    1985-01-01

    Describes: (1) the structure of a data transmission source, carrier, and receiver; (2) a quantitative measure for the amount of data, followed by some quantitative examples of data transmission processes; (3) the concept of data current; (4) data containers; and (5) how this information can be used to structure physics courses. (JN)

  9. Oxygen Delivering Biomaterials for Tissue Engineering

    Science.gov (United States)

    Farris, Ashley L.; Rindone, Alexandra N.; Grayson, Warren L.

    2016-01-01

    Tissue engineering (TE) has provided promising strategies for regenerating tissue defects, but few TE approaches have been translated for clinical applications. One major barrier in TE is providing adequate oxygen supply to implanted tissue scaffolds, since oxygen diffusion from surrounding vasculature in vivo is limited to the periphery of the scaffolds. Moreover, oxygen is also an important signaling molecule for controlling stem cell differentiation within TE scaffolds. Various technologies have been developed to increase oxygen delivery in vivo and enhance the effectiveness of TE strategies. Such technologies include hyperbaric oxygen therapy, perfluorocarbon- and hemoglobin-based oxygen carriers, and oxygen-generating, peroxide-based materials. Here, we provide an overview of the underlying mechanisms and how these technologies have been utilized for in vivo TE applications. Emerging technologies and future prospects for oxygen delivery in TE are also discussed to evaluate the progress of this field towards clinical translation.

  10. Hungarian students’ carrier aspirations

    Directory of Open Access Journals (Sweden)

    A.S. Gubik

    2014-06-01

    Full Text Available The article analyzes the students’ carrier aspiration, right after their graduation and five years after their studies. It examines the differences arising from the students’ family business background and their most important social variables (gender, age. Then the study highlights the effects of study field on the students’ intention. The direct effect of education on starting an enterprise is undiscovered in the literature, the paper deals with the influence of availability and services use, offered by higher institutions.

  11. Comparison of human solute carriers

    OpenAIRE

    Schlessinger, Avner; Matsson, Pär; Shima, James E.; Pieper, Ursula; Yee, Sook Wah; Kelly, Libusha; Apeltsin, Leonard; Stroud, Robert M.; Ferrin, Thomas E; Giacomini, Kathleen M.; Sali, Andrej

    2010-01-01

    Solute carriers are eukaryotic membrane proteins that control the uptake and efflux of solutes, including essential cellular compounds, environmental toxins, and therapeutic drugs. Solute carriers can share similar structural features despite weak sequence similarities. Identification of sequence relationships among solute carriers is needed to enhance our ability to model individual carriers and to elucidate the molecular mechanisms of their substrate specificity and transport. Here, we desc...

  12. Hydrogen monitoring in sodium loops using the carrier gas technique

    International Nuclear Information System (INIS)

    Analysis for hydrogen in liquid sodium is made by combination of membranes permeable to hydrogen and appropriate methods of hydrogen detection. Membranes are usually made of nickel. Hydrogen has been determined with a solid electrolyte cell consisting of a galvanic cell with zirconium oxide ceramic as the electrolyte and of an electrolytic oxygen dosage device with the same electrolyte. The oxygen stream has been controlled with the aid of the signal of the galvanic cell. Thus, a continuous coulometric control of hydrogen in the carrier gas stream has been achieved. A significant interfering factor in applying the carrier gas technique is the possible coverage of the nickel surface of the diffusion cell with oxide. High purity of the carrier gas is necessary for eliminating this effect, especially in the case of low hydrogen content of sodium. (author)

  13. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism are...

  14. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  15. Appreciating Oxygen

    Science.gov (United States)

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  16. Comparison of airline passenger oxygen systems.

    Science.gov (United States)

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma. PMID:7487813

  17. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...

  18. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén;

    2011-01-01

    /oxidizing cycles. Several variables affecting the reducing cycle were analyzed: temperature, time for the reduction step and H2O/C7H8 molar ratio. Ni40 and Mn40 presented interesting characteristics for CLR of biomass tar. Both showed stable reactivity to C7H8 after a few cycles. Ni40 showed a high tendency to...... carbon deposition compared to Mn40, specially at high temperatures. Carbon deposition could be controlled by decreasing the temperature and the time for the reduction step. The addition of water also reduced the amount of carbon deposited, which was completely avoided working with a H2O/C7H8 molar ratio...

  19. Materials for Chemical-Looping with Oxygen Uncoupling

    OpenAIRE

    Tobias Mattisson

    2013-01-01

    Chemical-looping with oxygen uncoupling (CLOU) is a novel combustion technology with inherent separation of carbon dioxide. The process is a three-step process which utilizes a circulating oxygen carrier to transfer oxygen from the combustion air to the fuel. The process utilizes two interconnected fluidized bed reactors, an air reactor and a fuel reactor. In the fuel reactor, the metal oxide decomposes with the release of gas phase oxygen (step 1), which reacts directly with the fuel through...

  20. Particle temperature measurements in closed chamber detonations using thermoluminescence from Li2B4O7:Ag,Cu, MgB4O7:Dy,Li and CaSO4:Ce,Tb

    International Nuclear Information System (INIS)

    The present work describes the procedures and results from the first temperature measurements in closed chamber detonations obtained using the thermoluminescence (TL) of particles specifically developed for temperature sensing. Li2B4O7:Ag,Cu (LBO), MgB4O7:Dy,Li (MBO) and CaSO4:Ce,Tb (CSO) were tested separately in a total of 12 independent detonations using a closed detonation chamber at the Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division (NSWC IHEODTD). Detonations were carried out using two different explosives: a high temperature plastic bonded explosive (HPBX) and a low temperature plastic bonded explosive (LPBX). The LPBX and HPBX charges produced temperatures experienced by the TL particles to be between ~550–670 K and ~700–780 K, respectively, depending on the shot. The measured temperatures were reproducible and typically higher than the thermocouple temperatures. These tests demonstrate the survivability of the TL materials and the ability to obtain temperature estimates in realistic conditions, indicating that TL may represent a reliable way of estimating the temperature experienced by free-flowing particles inside an opaque post-detonation fireball. - Highlights: • TL materials were tested in closed chamber detonations. • Temperatures experienced by the particles were ~550–670 K and ~700–780 K. • TL temperatures were reproducible and higher than thermocouple measurements. • Tests demonstrate TL material survival and ability to obtain temperature estimates

  1. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  2. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  3. Chemical Looping Pilot Plant Results Using a Nickel-Based Oxygen Carrier Résultats de l’expérimentation sur un pilote opérant en boucle chimique avec un matériau transporteur d’oxygène à base de nickel

    Directory of Open Access Journals (Sweden)

    Pröll T.

    2011-04-01

    Full Text Available A chemical looping pilot plant was designed, built and operated with a design fuel power of 120 kW (lower heating value, natural gas. The system consists of two Circulating Fluidized Bed (CFB reactors. Operating results are presented and evaluated for a highly reactive nickel-based oxygen carrier, total system inventory 65 kg. The performance in fuel conversion achieved is in the range of 99.8% (CH4 conversion and 92% (CO2 yield. In chemical looping reforming operation, it can be reported that thermodynamic equilibrium is reached in the fuel reactor and that all oxygen is absorbed in the air reactor as soon as the global stoichiometric air/fuel ratio is below 1 and the air reactor temperature is 900°C or more. Even though pure natural gas (98.6 vol.% CH4 without steam addition was fed to the fuel reactor, no carbon formation has been found as long as the global stoichiometric air/fuel ratio was larger than 0.4. Based on the experimental findings and on the general state of the art, it is concluded that niche applications such as industrial steam generation from natural gas or CO2-ready coupled production of H2 and N2 can be interesting pathways for immediate scale-up of the technology. Un pilote d’étude de la combustion en boucle chimique d’une puissance thermique de 120 kW a été dimensionné, construit et opéré. Il est constitué de deux lits circulants interconnectés. Les résultats d’opération qui sont présentés ont été obtenus avec un matériau transporteur d’oxygène très réactif à base de nickel. L’inventaire total du matériau est de 65 kg dans le pilote. La conversion du méthane atteinte est voisine de 99,8 % et le rendement en CO2 est de 92 %. Lorsqu’on opère en mode de reformage, l’équilibre thermodynamique est atteint dans le réacteur fioul. Tout l’oxygène est capté dans le réacteur air dès que le rapport stoechiométrique entre l’air et le méthane est inférieur à 1 et que la temp

  4. Thermodinamically stable phases in the CaO-SiO2-Al2O3-CaSO4-H2O closed system at 25 ºC. Application to cementitious systems

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2009-06-01

    Full Text Available One of the chief causes of cement and concrete deterioration is the loss of durability prompted by sulphate attack. The existing standards call for long test periods (2- 12 months. Thermodynamic modelling is a particularly appropriate technique for studying systems that only reach equilibrium in the long term. Used in the present study to establish the fields of thermodynamic stability for the phases in the CaO-SiO2-Al2O3-CaSO4-H2O system at 25 ºC. According to the model, gypsum is stable at sulphate ion concentrations of 1.23e-2 mol/kg and over, while ettringite exhibits stability at concentrations ranging from 7.64e-6 to 1.54e-2 mol/kg. Ettringite is compatible with all system phases except SH and gypsum only with ettringite, the C-S-H gels, AH3 and SH. None of the calcium aluminates or silicoaluminates in the system is compatible with gypsum: in its presence, they all decompose to cement deteriorating ettringite. Finally, the model revealed that the maximum sulphate concentration at which C-S-H gel is stable is slightly higher in systems with than without Al2O3.Uno de los principales problemas asociados al deterioro de cementos y hormigones es la pérdida de durabilidad por ataque de sulfatos. La normativa existente requiere largos tiempos de ensayo (2-12 meses. La modelización termodinámica es una técnica particularmente adecuada para el estudio de sistemas que alcanzan el equilibrio en tiempos largos. Aplicando esta metodología se han establecido los campos de estabilidad termodinámica de las fases del sistema CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. El yeso es estable a partir de la [SO42-] = 1,23e-2 mol/kg, y la ettringita es estable en un rango de [SO42-] = 7,64e-6 -1,54e-2 mol/kg. La ettringita es compatible con todas las fases del sistema excepto con SH y el yeso sólo con la ettringita, los geles C-S-H, el AH3 y el SH. Ninguno de los aluminatos o silicoaluminatos cálcicos son compatibles con el yeso, en su presencia se descomponen dando etringita. Finalmente, la máxima [SO42-] en la que es estable el gel C-S-H es ligeramente superior en sistemas que contienen Al2O3 con respecto a los que no lo poseen.

  5. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism are...... worked out with respect to net transport rate, initial rate, unidirectional fluxes including back-flow through the pump, maximum accumulation ratio, competitive inhibition and acceleration, counter transport, and metabolic poisoning. The energetics of the system are treated. The fact that the system...

  6. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  7. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-07-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.

  8. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  9. Content Distribution for Telecom Carriers

    Directory of Open Access Journals (Sweden)

    Ben Falchuk

    2006-08-01

    Full Text Available Distribution of digital content is a key revenue opportunity for telecommunications carriers. As media content moves from analog and physical media-based distribution to digital on-line distribution, a great opportunity exists for carriers to claim their role in the media value chain and grow revenue by enhancing their broadband “all you can eat” high speed Internet access offer to incorporate delivery of a variety of paid content. By offering a distributed peer to peer content delivery capability with authentication, personalization and payment functions, carriers can gain a larger portion of the revenue paid for content both within and beyond their traditional service domains. This paper describes an approach to digital content distribution that leverages existing Intelligent Network infrastructure that many carriers already possess, as well as Web Services.

  10. Sustainable bioenergy carriers from wastes

    OpenAIRE

    Pereira, M.A.; Cavaleiro, A. J.; Abreu, A. A.; Costa, J.C.; Sousa, D. Z.; Alves, M.M.

    2012-01-01

    The development of new technologies for renewable energy production is crucial for decreasing the reliance in fossil fuels and improving global sustainability. Waste materials are valuable resources that can be used for the production of energy carriers. Organic wastes can be anaerobically digested to ultimately produce methane. Hydrogen can be recovered from this process, if methanogenesis is inhibited. These energy carriers can also be derived from recalcitrant materials in a two step-proce...

  11. Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu; Qiong Wu

    2008-01-01

    Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen cartier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction. Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox re-action decreased over La0.8Sr0.2Fe0.9Co0.1O3 oxide, while LaFeO3 and Lao.sSro.2FeO3 exhibited excellent structural stability and continuous oxygen supply.

  12. Monitoring oxygenation.

    Science.gov (United States)

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  13. Motor Carrier Evaluation Program procedure

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Transportation Management Division (DOE-TMD) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned material. In the performance of these duties, the DOE-TMD has established an exemplary safety record in the transportation of hazardous materials. The DOE recognizes that its responsibility for hazardous material does not end when the shipments leave the DOE sites. A special partnership is needed between the DOE, the DOE contractors, and the carriers chosen to transport hazardous materials. As in any partnership, it is critical that DOE know essential information about its partner in this joint venture. In fulfillment of its responsibility for the safe transportation of radioactive materials as well as other hazardous commodities and wastes routinely shipped from many DOE locations nationwide, the DOE-TMD has developed this policy for a motor carrier evaluation program. It is the intent of the DOE-TMD that this Motor Carrier Evaluation Program be implemented at all DOE locations to the fullest extent practicable. This program will assist in the evaluation of carriers transporting Highway Route Controlled Quantities (HRCQ) of radioactive material, because these shipments frequently are in the ''public eye.'' The program will also evaluate truckload (TL) quantity transporters of hazardous materials, including radioactive material and chemical wastes. The program has also recently been expanded to include motor carriers transporting less-than-truckload (LTL) quantities of these materials

  14. Difficulty of carrier generation in orthorhombic PbO

    Science.gov (United States)

    Liao, Min; Takemoto, Seiji; Xiao, Zewen; Toda, Yoshitake; Tada, Tomofumi; Ueda, Shigenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-01

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O3) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 102 S cm-1) but it is the result of the formation of an n-type PbO2 phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  15. Carrier sense data highway system

    Science.gov (United States)

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  16. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    International Nuclear Information System (INIS)

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices

  17. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    Science.gov (United States)

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-01

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  18. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1415 (United States)

    2015-07-07

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V{sub 2}) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  19. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  20. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  1. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  2. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  3. Effect of Ash on Oxygen Carriers for the Application of Chemical Looping Combustion to a High Carbon Char Effet des cendres sur l’activité des porteurs d’oxygène dans la combustion du charbon en boucle chimique

    Directory of Open Access Journals (Sweden)

    Rubel A.

    2011-02-01

    Full Text Available The application of Chemical Looping Combustion (CLC to solid fuels is being investigated at the University of Kentucky, Center for Applied Energy Research (CAER with the aim of the development of a Pressurized Chemical Looping Combustion/Gasification (PCLC/G process for the generation of electricity from coal. One important aspect of the CLC of solid fuel is the understanding of the effect of ash on the reactivity of Oxygen Carriers (OCs. The effect of ash on the redox capabilities of two different iron oxide OCs and on their ability to oxidize coal char was studied. To determine the effect of ash on the reactivity and recycle of the OCs through multiple redox cycles, fly ash from a coal-fired power plant was used. These experiments were performed in a TGMS system using 500 mg of ash/OC mixtures containing different ash concentrations up to 75%. The reducing gas was composed of 10% H2, 15% CO, 20% CO2, and a balance of Ar and the oxidizing gas was 20% O2 in Ar. Oxidation/reductions were carried to near completion. The ash was found to contain OC activity related to inherent iron present in the ash confirmed by XRD. This resulted in increased weight gain/loss on oxidation/reduction. The rate of oxidation/reduction increased with ash concentration due to increased porosity of the OC/ash mixture and better access of the reactive gases to the OC target sites. The two OCs were then used to combust a beneficiated coal char in the TGMS with the only oxygen supplied by an iron oxide OC. The starting mixture was 10% char and 90% of one of two OCs studied. The spent material containing reduced OC and ash was re-oxidized and 10% more char was added for a second reduction of the OC and oxidation of the added char. This procedure was repeated for 5 cycles increasing the ash concentrations from 5 to 25% in the char/ash/OC mixture. Carbon removal was 92 to 97.8 and 97.3 to 99.7% for the two different iron oxide OCs tested. Ash was not detrimental to the

  4. Effect of oxygen on the response of a constant-current 63Ni electron-capture detector

    International Nuclear Information System (INIS)

    A constant-current electron-capture detector (ECD) with a 63Ni ionization cell has been used in a study of the effect of oxygen in nitrogen carrier gas on its response to several compounds. Because of the greatly increased linear dynamic range and the high temperature capabilities of this instrument, oxygen contamination of the carrier gas was found to be much less harmful to the chromatogram baseline than had been previously reported for earlier ECD models. Measurements of the changes in the molar responses of several compounds caused by the addition of up to 2000 ppm of oxygen to the nitrogen carrier gas have been made. For the chlorinated hydrocarbons studied, an effect of oxygen on their molar responses was observed only with the highest oxygen dopings. Anthracene behaved differently, showing an increased molar response at very low levels of oxygen doping. These results suggest that constant-current ECD analyses of polynuclear aromatics may be very sensitive to uncontrolled oxygen contamination of carrier gas, while those of halocarbons will not. For 1-chlorobutane a greatly enhanced response factor is caused by doping of the carrier gas with large amounts of oxygen. As this effect is observed at high detector temperatures where the baseline frequency is only moderately impared by oxygen, oxygen doping is suggested as a means of improving the ECD sensitivity to molecules that have only one or a few halogen atoms. Two reaction mechanisms are proposed to account for the oxygen effects observed. (Auth.)

  5. Carrier Deformability in Drug Delivery.

    Science.gov (United States)

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  6. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  7. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Martínez, José L.; Liu, Lifang; Petranovic, Dina;

    2015-01-01

    Efficient production of appropriate oxygen carriers for transfusions (blood substitutes or artificial blood) has been pursued for many decades, and to date several strategies have been used, from synthetic polymers to cell-free hemoglobin carriers. The recent advances in the field of metabolic en...

  8. Home Oxygen Therapy

    Science.gov (United States)

    ... Oxygen Therapy Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition Exercise Coming Of Age Older Adults Allergy ... oxygen is so cold it can hurt your skin. Keep a fire extinguisher close by, and let ...

  9. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  10. Recursive SDN for Carrier Networks

    OpenAIRE

    McCauley, James; Liu, Zhi; Panda, Aurojit; Koponen, Teemu; Raghavan, Barath; Rexford, Jennifer; Shenker, Scott

    2016-01-01

    Control planes for global carrier networks should be programmable (so that new functionality can be easily introduced) and scalable (so they can handle the numerical scale and geographic scope of these networks). Neither traditional control planes nor new SDN-based control planes meet both of these goals. In this paper, we propose a framework for recursive routing computations that combines the best of SDN (programmability) and traditional networks (scalability through hierarchy) to achieve t...

  11. Biocheese: A Food Probiotic Carrier

    OpenAIRE

    J. M. Castro; M. E. Tornadijo; Fresno, J. M.; H. Sandoval

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The ph...

  12. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-02-01

    Full Text Available Background: Robotic vehicles such as straddle carriers represent a popular form of cargo handling amongst container terminal operators.Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers.Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier.Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles.Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  13. Responsible implementation of expanded carrier screening.

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-06-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  14. Nanoporous nanocrystalline monoclinic zirconia for luminescent oxygen sensors

    Science.gov (United States)

    Fidelus, Janusz D.; Zhou, Wuzong; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2015-09-01

    In this work we present a nanocrystalline monoclinic ZrO2 with large free volumen open towards the nanocrystals surface dedicated for optical oxygen sensors. Nanoporous zirconia nanopowder was fabricated in hydrothermal microwave-driven process followed by annealing at 800°C. Metal-coated optical fibers are proposed as a light carrier when the working temperature exceeds 500°C. The obtained results may also find application in luminescent fiber optic oxygen sensors.

  15. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  16. Investigating thermal donors in n-type Cz silicon with carrier density imaging

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2012-09-01

    Full Text Available A new method to map the thermal donor concentration in silicon wafers using carrier density imaging is presented. A map of the thermal donor concentration is extracted with high resolution from free carrier density images of a silicon wafer before and after growth of thermal donors. For comparison, free carrier density mapping is also performed using the resistivity method together with linear interpolation. Both methods reveal the same distribution of thermal donors indicating that the carrier density imaging technique can be used to map thermal donor concentration. The interstitial oxygen concentration can also be extracted using the new method in combination with Wijaranakula's model. As part of this work, the lifetime at medium injection level is correlated to the concentration of thermal donors in the as-grown silicon wafer. The recombination rate is found to depend strongly on the thermal donor concentration except in the P-band region.

  17. Low-cost carriers fare competition effect

    OpenAIRE

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should be operated by a low-cost carrier with better possibilities to subsist. The proposed model in this paper was set up by analyzing The United States domestic air transport market 2005 year database fr...

  18. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans; Steffansen, Bente

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...... with K(m) 44microM and 38microM, respectively. BCRP inhibition affected both absorptive an exsorptive P(EPA) and P(APP) for ES. Glipizide apical P(UP) and absorptive P(APP) were not inhibitable. Basolateral P(UP) for glipizide was inhibitable, its P(EPA) prevented, and P(UP) was saturable with K(m) 56......microM, but exsorptive P(APP) was not affected. Carrier mediated exsorption kinetics for ES are seen at both apical and basolateral membranes, resulting in predominant exsorption despite presence of absorptive carrier(s). Carrier mediated basolateral P(UP) for glipizide was observed, but glipizide P...

  19. Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure

    International Nuclear Information System (INIS)

    Selection and evaluation of biofilm carrier represent the two significant ways for improving the anaerobic digesters. This study investigated the performances of the AD (anaerobic digestion) reactors using three types of fibrous biofilm carriers, including the ACF (activated carbon fiber), the PVAF (polyvinyl alcohol fiber) and the GF (glass fiber). The biogas and methane production, pH, COD (chemical oxygen demand), TS (total solids), VS (volatile solids), residual coenzyme F420 as well as the residual amount of methanogen were measured periodically during the experimental run. Also, the SEM (scanning electron microscopy) was used to identify the microbial consortium and their attachments onto the surface of ACF carrier. The ACF carrier performed better than the other two types of carriers in achieving higher amount of biogas and methane production and pollutants' removal. The experimental results also demonstrated that the ACF carrier could make the reactor keep higher biogas and methane productions than the control blank reactor during the long run. -- Highlights: → ACF as biofilm carrier is superior to PVAF and GF in AD treatment of cattle manure. → ACF makes the reactor keep higher biogas and methane productions. → ACF enhances microorganism's immobilization.

  20. Artificial oxygen transport protein

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  1. Neural nets and chaotic carriers

    CERN Document Server

    Whittle, Peter

    2010-01-01

    ""Neural Nets and Chaotic Carriers"" develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels. Design is based on the criterion that an associative memory must be able to cope with 'fading data', i.e., to form an inference from the data even as its memory of that data degrades. The resultant net shows striking biological parallels. When these principles are combined with the Freeman speci

  2. Carrier frequencies, holomorphy and unwinding

    CERN Document Server

    Coifman, Ronald R; Wu, Hau-tieng

    2016-01-01

    We prove that functions of intrinsic-mode type (a classical models for signals) behave essentially like holomorphic functions: adding a pure carrier frequency $e^{int}$ ensures that the anti-holomorphic part is much smaller than the holomorphic part $ \\| P_{-}(f)\\|_{L^2} \\ll \\|P_{+}(f)\\|_{L^2}.$ This enables us to use techniques from complex analysis, in particular the \\textit{unwinding series}. We study its stability and convergence properties and show that the unwinding series can stabilize and show that the unwinding series can provide a high resolution time-frequency representation, which is robust to noise.

  3. Technetium diagnostic agent and carrier

    International Nuclear Information System (INIS)

    A stable sup(99m)Tc-labelled radioactive diagnostic agent is produced by contacting sup(99m)Tc-containing pertechnetate with a non-radioactive carrier comprising a chelating agent, a water-soluble reducing agent and a stabilizer. The stabilizer is chosen from ascorbic acid and erythorbic acid and their pharmaceutically acceptable salts and esters. A mole ratio of more than 100 moles ascorbic or erythorbic acid to 1 mole of reducing agent provides a stable composition at high levels of radioactivity

  4. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  5. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  6. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    Science.gov (United States)

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-01

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508

  7. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  8. Improvement of Thermoelectric Properties of a-InGaZnO Thin Film by Optimizing Carrier Concentration

    Science.gov (United States)

    Fujimoto, Yuta; Uenuma, Mutsunori; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2016-03-01

    We have investigated the thermoelectric properties of amorphous InGaZnO (a-IGZO) thin films optimized by adjusting the carrier concentration. The a-IGZO films were produced under various oxygen flow ratios [O2/(Ar + O2)] using radiofrequency magnetron sputtering. The Seebeck coefficient and electrical conductivity were measured from 100 K to 400 K. The measured Seebeck coefficient and electrical conductivity show a trade-off relation. The carrier concentration in the a-IGZO films increased with decreasing oxygen flow ratio. This result can be adequately explained by the increment of oxygen vacancies. We found that the power factor (PF) at 300 K had a maximum value of 82 × 10-6 W/m-K2, where the carrier density was 7.7 × 1019 cm-3. These results indicate that a-IGZO shows maximal PF in the transition region from nondegenerate to degenerate state.

  9. Evidence of low-mobile charge carriers in YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    The present work results reveal that the heterogeneous system is one of the forms of oxygen nonstoichiometry, realization of oxygen-deficient YBa2Cu3O6+x. It is noteworthy that NMP is formed above 980 C through labile oxygen redistribution and leaves the lattice of heavy ions invariable. Being a random microscopically inhomogeneous media the NW exhibits a number of anomalous dielectric properties absent for each separate component. Probably the degree of labile oxygen segregation in NMP is so high, that static permittivity of dielectric phase is completely determined by small polarons. On the other hand the NMP DF measurements provide an effective values of mobility and its activation energy giving a rough idea of small polarons dynamics. At low temperature the picture is complicated by nonequilibrium charge carriers excitation. To elaborate an adequate model of the entire phenomenon, more detailed information on oxygen positions and phase percolation threshold is necessary

  10. Carrier detection in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    We were able to detect clinically normal carriers of xeroderma pigmentosum (XP) genes with coded samples of either peripheral blood lymphocytes or skin fibroblasts, using a cytogenetic assay shown previously to detect individuals with cancer-prone genetic disorders. Metaphase cells of phytohemagglutinin-stimulated T-lymphocytes from eight individuals who are obligate heterozygotes for XP were compared with those from nine normal controls at 1.3, 2.3, and 3.3 h after x-irradiation (58 R) during the G2 phase of the cell cycle. Lymphocytes from the XP heterozygotes had twofold higher frequencies of chromatid breaks or chromatid gaps than normal (P less than 10(-5)) when fixed at 2.3 or 3.3 h after irradiation. Lymphocytes from six XP homozygotes had frequencies of breaks and gaps threefold higher than normal. Skin fibroblasts from an additional obligate XP heterozygote, when fixed approximately 2 h after x-irradiation (68 R), had a twofold higher frequency of chromatid breaks and a fourfold higher frequency of gaps than fibroblasts from a normal control. This frequency of aberrations in cells from the XP heterozygote was approximately half that observed in the XP homozygote. The elevated frequencies of chromatid breaks and gaps after G2 phase x-irradiation may provide the basis of a test for identifying carriers of the XP gene(s) within known XP families

  11. Carrier localization in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, C. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States); Walukiewicz, W. [Lawrence Berkeley National Lab., CA (United States); Haller, E.E. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States)] [and others

    1996-09-01

    In wide bandgap GaN, a large number of interesting and important scientific questions remain to be answered. For example, the large free electron concentration reaching 10{sup 19} to 10{sup 20} cm{sup - 3} in nominally undoped material are ascribed to intrinsic defects because no chemical impurity has been found at such high concentrations. According to theoretical models, a nitrogen vacancy acts as a donor but its formation energy is very large in n-type materials, making this suggestion controversial. We have investigated the nature of this yet unidentified donor at large hydrostatic pressure. Results from infrared reflection and Raman scattering indicate strong evidence for localization of free carriers by large pressures. The carrier density is drastically decreased by two orders of magnitude between 20 and 30 GPa. Several techniques provide independent evidence for results in earlier reports and present the first quantitative analysis. A possible interpretation of this effect in terms of the resonant donor level is presented.

  12. Oxygen chemisorption cryogenic refrigerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  13. Recent Advances in Subunit Vaccine Carriers.

    Science.gov (United States)

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  14. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al2O3) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  15. Global Telecommunications Services: Strategies of Major Carriers

    OpenAIRE

    Jerry Mccreary; William R. Boulton; Chetan Sankar

    1993-01-01

    The globalization of telecommunications markets is of primary concern for today’s large telecommunications carriers. International business telecommunications is growing at a rate twice that of domestic traffic. Multi-national customers with offices around the world are demanding integrated solutions to their telecommunications needs. As telecommunication carriers respond to these customers’ needs, the carriers are beginning to expand outside their national boundaries. This paper identifi...

  16. Free carrier absorption in quantum cascade structures

    OpenAIRE

    Carosella, F.; Ndebeka-Bandou, C.; Ferreira, R.; Dupont, E; K. Unterrainer; Strasser, G.; Wacker, Andreas; Bastard, G.

    2011-01-01

    We show that the free carrier absorption in Quantum Cascade Lasers is very small and radically different from the classical Drude result on account of the orthogonality between the direction of the carrier free motion and the electric field of the laser emission. A quantum mechanical calculation of the free carrier absorption and inter-subband oblique absorption induced by interface defects, coulombic impurities and optical phonon absorption/emission is presented for QCL's with a double quant...

  17. Secure quantum carriers for quantum state sharing

    OpenAIRE

    Karimipour, Vahid; Marvian, Milad

    2010-01-01

    We develop the concept of quantum carrier and show that messages can be uploaded and downloaded from this carrier and while in transit, these messages are hidden from external agents. We explain in detail the working of the quantum carrier for different communication tasks, including quantum key distribution, classical secret and quantum state sharing among a set of $n$ players according to general threshold schemes. The security of the protocol is discussed and it is shown that only the legi...

  18. Heterozygote advantage in Tay-Sachs carriers?

    OpenAIRE

    Spyropoulos, B; Moens, P B; Davidson, J.; Lowden, J. A.

    1981-01-01

    Chi-square analyses of new data as well as data previously reported by Myrianthopoulos have shown that grandparents of Tay-Sachs carriers die from proportionally the same causes as grandparents of noncarriers. It is unlikely that there is any advantage to being a Tay-Sachs carrier insofar as resistance to tuberculosis is concerned. Our results are further evidence to support Fraikor's claim that the high carrier frequency of the allele in Ashkenazi Jews is probably caused by a combination of ...

  19. Anemia and Oxygen Delivery.

    Science.gov (United States)

    Bliss, Stuart

    2015-09-01

    Clinical assessment of tissue oxygenation is challenging. Anemia reflects a decreased oxygen carrying capacity of the blood and its significance in the perioperative setting relates largely to the associated risk of insufficient oxygen delivery and cellular hypoxia. Until meaningful clinical measures of tissue oxygenation are available in veterinary practice, clinicians must rely on evaluation of a patient's hemodynamic and ventilatory performance, along with biochemical and hemogasometric measurements. Blood transfusion is used commonly for treatment of perioperative anemia, and may improve tissue oxygenation by normalizing the rheologic properties of blood and enhancing perfusion, independent of increases in oxygen carrying capacity. PMID:26033442

  20. The effect of oxygenation on the radiation hardness of silicon studied by surface photovoltage method

    CERN Document Server

    Härkönen, J; Tuovinen, E; Lassila-Perini, K M; Mehtälä, P; Nummela, S; Nysten, J; Heikkilä, P; Ovchinnikov, V; Palokangas, M; Ylikoski, M; Palmu, L; Kallijärvi, S; Alanko, T; Laitinen, P

    2002-01-01

    The effect of oxygenation on the radiation hardness of silicon detectors was studied. Oxygen-enriched and standard float-zone silicon pin-diodes and oxidized samples were processed and irradiated with 15-MeV protons. After the irradiations, the surface photovoltage (SPV) method was applied to extract minority carrier diffusion lengths of the silicon samples. Adding oxygen to silicon was found to improve the radiation hardness of silicon. The effect was visible in minority carrier diffusion lengths as well as in reverse bias leakage currents. The suitability of SPV method for characterizing irradiated silicon samples was proved. 14 Refs.

  1. Multi-carrier technologies for wireless communication

    CERN Document Server

    Nassar, Carl R; Wu, Zhiqiang; Wiegandt, David A; Zekavat, S Alireza; Shattil, Steve

    2006-01-01

    1. Introduction. 2. Overview of Multi-Carrier Technologies. 3. High-Performance High-Capacity MC-CDMA for Future Generations: The CI Approach. 4. High Performance, High Throughput TDMA via Multi-Carrier Implementations. 5. High-Performance, High-Capacity DS-CDMA via Multicarrier Implementation. 6. High-Performance, High-Throughput OFDM with Low PAPR via Carrier Interferometry Phase Coding. 7. The Marriage of Smart Antenna Arrays and Multi-Carrier Systems: Spatial Sweeping, Transmit Diversity, and Directionality. Index.

  2. Simulation Experiments on the Reaction of CH4-CaSO4 and Its Carbon Kinetic Isotope Fractionation%甲烷和硫酸钙反应体系热模拟实验及碳同位素分馏研究

    Institute of Scientific and Technical Information of China (English)

    岳长涛; 李术元; 丁康乐; 钟宁宁

    2005-01-01

    Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.

  3. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Electronically Filed Tariffs § 221.204... carrier, the effective and prospective fares of the adopted carrier shall be changed to reflect the...

  4. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  5. Hyperbaric oxygen therapy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  6. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  7. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Weng Zhen-Zhen; Zhang Jian-Min; Huang Zhi-Gao; Lin Wen-Xiong

    2011-01-01

    The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.

  8. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  9. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  10. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  11. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  12. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang; Manolova, Anna Vasileva; Rasmussen, Anders; Dittmann, Lars; Berger, Michael Stübert

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...

  13. Towards 100 gigabit carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2010-01-01

    OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  14. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...... that the availability of a multicast connection can be significantly increased by applying relevant resilience techniques....

  15. Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols

    OpenAIRE

    Kapoor, Dhriti; Sharma, Resham; Handa, Neha; Kaur, Harpreet; Rattan, Amandeep; Yadav, Poonam; Gautam, Vandana; Kaur, Ravdeep; Bhardwaj, Renu

    2015-01-01

    Contemporaneous presence of both oxidized and reduced forms of electron carriers is mandatory in efficient flux by plant electron transport cascades. This requirement is considered as redox poising that involves the movement of electron from multiple sites in respiratory and photosynthetic electron transport chains to molecular oxygen. This flux triggers the formation of superoxide, consequently give rise to other reactive oxygen species (ROS) under adverse environmental conditions like droug...

  16. Selection of Carrier Waveforms for PWM Inverter

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 屈克庆; 许春雨; 孙承波

    2003-01-01

    In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.

  17. Brain Oxygenation Monitoring.

    Science.gov (United States)

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  18. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  19. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    Science.gov (United States)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  20. Effects of carrier-carrier scattering on population inversion in graphene under pulse photoexcitation

    Science.gov (United States)

    Satou, Akira; Ryzhii, Victor; Otsuji, Taiichi

    2015-01-01

    We study the carrier relaxation dynamics in intrinsic graphene after pulse photoexcitation and reveal effects of intraband carrier-carrier scattering on population inversion in the terahertz region, by conducting simulation based on the quasi-classical Boltzmann equation. It is demonstrated that by changing the dielectric constant of the surrounding materials the rate of carrier-carrier scattering can be controlled and the relaxation dynamics differs for cases with low and high dielectric constants. It is also found that the Pauli blocking of photogeneration in case of the pulse photoexcitation causes decrease in the photocarrier concentration and thus weakening of population inversion with higher dielectric constant.

  1. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  2. How Does Oxygen Therapy Work?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. How Does Oxygen Therapy Work? Oxygen therapy provides you with extra ... be delivered to your lungs in several ways. Oxygen Therapy Systems Oxygen is supplied in three forms: ...

  3. Electric Properties of Obsidian: Evidence for Positive Hole Charge Carriers

    Science.gov (United States)

    Nordvik, R.; Freund, F. T.

    2012-12-01

    The blackness of obsidian is due to the presence of oxygen anions in the valence state 1-, creating broad energy levels at the upper edge of the valence band, which absorb visible light over a wide spectral range. These energy states are associated with defect electrons in the oxygen anion sublattice, well-known from "smoky quartz", where Al substituting for Si captures a defect electron in the oxygen anion sublattice for charge compensation [1]. Such defect electrons, also known as positive holes, are responsible for the increase in electrical conductivity in igneous rocks when uniaxial stresses are applied, causing the break-up of pre-existing peroxy defects, Si-OO-Si [2]. Peroxy defects in obsidian cannot be so easily activated by mechanical stress because the glassy matrix will break before sufficiently high stress levels can be reached. If peroxy defects do exist, however, they can be studied by activating them thermally [3]. We describe experiments with rectangular slabs of obsidian with Au electrodes at both ends. Upon heating one end, we observe (i) a thermopotential and (ii) a thermocurrent developing at distinct temperatures around 250°C and 450°C, marking the 2-step break-up of peroxy bonds. [1] Schnadt, R., and Schneider, J.: The electronic structure of the trapped-hole center in smoky quartz, Zeitschrift Physik B Condensed Matter 11, 19-42, 1970. [2] Freund, F. T., Takeuchi, A., and Lau, B. W.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Physics and Chemistry of the Earth, 31, 389-396, 2006. [3] Freund, F., and Masuda, M. M.: Highly mobile oxygen hole-type charge carriers in fused silica, Journal Material Research, 8, 1619-1622, 1991.

  4. 49 CFR 369.2 - Classification of carriers-motor carriers of property, household goods carriers, and dual...

    Science.gov (United States)

    2010-10-01

    ... operating revenues after applying the revenue deflator formula shown in Note A. (3) When a business combination occurs such as a merger, reorganization, or consolidation, the surviving carrier shall...

  5. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao; Fu, Rong; Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2009-01-01

    technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  6. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  7. ISRAEL’S NATIONAL WATER CARRIER

    OpenAIRE

    Nathan Cohen

    2008-01-01

    The National Water Carrier of Israel (Ha Movil Ha' Artzi). It is the main water project of Israel and its main task is to transfer water from the rainy north to the center and to the arid south. The National Water Carrier connects the Sea of Galilee with Israel's water system. The original goal was to provide irrigation water to Negev. Today 80% of the water is utilized for Israel's domestic consumption. Most of the water works in Israel are combined with the National Water Carrier for about...

  8. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  9. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  10. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  11. Atomic Oxygen Effects

    Science.gov (United States)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  12. Sediment Oxygen Demand Kinetics

    OpenAIRE

    Olinde, Lindsay

    2007-01-01

    Hypolimnetic oxygen diffusers increase sediment oxygen demand (SOD) and, if not accounted for in design, can further exacerbate anoxic conditions. A study using extracted sediment cores, that included both field and laboratory experiments, was performed to investigate SOD kinetics in Carvinâ s Cove Reservoir, a eutrophic water supply reservoir for Roanoke, Virginia. A bubble-plume diffuser is used in Carvinâ s Cove to replenish oxygen consumed while the reservoir is thermally stratified. ...

  13. Measuring tissue oxygenation

    Science.gov (United States)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  14. Clusters of dislocations in a carrier wave

    International Nuclear Information System (INIS)

    Clusters of point dislocations (wave vortices) may be present within an otherwise perfect plane scalar wave, a carrier wave in two dimensions, which may be evanescent. The question arises: is it possible to deduce the orientation of the distant undisturbed carrier wave purely from local information about the cluster itself? For groups of two and four dislocations in a carrier wave, this may be done by using no other information than the local phase map or the individual positions of the singularities. The maximum number possible in a cluster with a carrier wave is 4 and the total strength (topological charge) of a cluster is always zero or ± 2. The study includes an examination of degenerate dislocations of strength zero or ± 1

  15. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the...... substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine and......, with the result that a certain asymmetry of inhibition (stronger inhibition of exit than of entrance) is to be expected. This asymmetry was termed “first order asymmetry”. In experiments with each of the three inhibitors an asymmetry of inhibition in the expected direction was observed which however...

  16. Physician Fee Schedule Carrier Specific Files

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) has condensed all 56 Physician Fee Schedule (PFS) carrier specific pricing files into one zip file. It is...

  17. Intraoral radiation carrier for edentulous patients

    International Nuclear Information System (INIS)

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location

  18. Intraoral radiation carrier for edentulous patients

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Taicher, S.

    1983-12-01

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location.

  19. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    Science.gov (United States)

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation. PMID:27416514

  20. Protection switching for carrier ethernet multicast

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2010-01-01

    This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carrier...... recovery path length, recovery time, number of branch nodes and operational complexity. The integrated approach therefore shows significant potential to increase the QoE for IPTV users in case of network failures and recovery actions....

  1. Airport Congestion When Carriers Have Market Power

    OpenAIRE

    Brueckner, Jan K.

    2002-01-01

    This paper analyzes airport congestion when carriers are nonatomistic, showing how the results of the road-pricing literature are modified when the economic agents causing congestion have market power. The analysis shows that when an airport is dominated by a monopolist, congestion is fully internalized, yielding no role for congestion pricing under monopoly conditions. Under a Cournot oligopoly, however, carriers are shown to internalize only the congestion they impose on themselves. A toll ...

  2. Evaluating multicast resilience in carrier ethernet

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2010-01-01

    This paper gives an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we show how multicast traffic, which is essential for IPTV can be protected. We detail the ackground for resilience mechanisms and their control and e present Carrier Ethernet...... resilience methods for linear nd ring networks. By simulation we show that the vailability of a multicast connection can be significantly increased by applying protection methods....

  3. Preparation and application of magnetic microsphere carriers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; XING Jianmin; LIU Huizhou

    2007-01-01

    Magnetic microsphere carriers have received considerable attention,primarily because of their wide applications in the fields of biomedicine and bioengineering.In this paper,preparation methods,surface modification and application of magnetic carriers are reviewed.Emphasis will be placed on recent biological and biomedical developments and trends such as enzyme immobilization,cell isolation,protein purification,target drugs and DNA separation.

  4. Hot carrier solar cell absorbers: investigation of carrier cooling properties of candidate materials

    Science.gov (United States)

    Conibeer, G.; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Smyth, Suntrana; Liao, Yuanxun; Lin, Shu; Wang, Pei; Dai, Xi; Chung, Simon; Yang, Jianfeng; Zhang, Yi

    2015-09-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  5. Radio Science Measurements with Suppressed Carrier

    Science.gov (United States)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  6. Transparent anodes for polymer photovoltaics: Oxygen permeability of PEDOT

    DEFF Research Database (Denmark)

    Andersen, M.; Carlé, Jon Eggert; Cruys-Bagger, N.;

    2007-01-01

    The oxygen permeability of the transparent organic anode poly(3,4,-ethylene dioxythiophene) with paratoluenesulphonate as the anion (PEDOT:pTS) was determined to be 2.5 +/- 0.7 x 10(-15) cm(3) (STP) CM cm(-2) S-1 Pa-1, and is thus comparable in magnitude to the oxygen permeability of......-(2-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) and [6,6]-phenyt-C-61-butanoicacidmethylester (PCBM) as the active layer and aluminium as the cathode. The oxygen permeability of the layers and the aluminium cathode was correlated with the lifetime of the solar cell devices. It was found that the performance of...... the devices with PET as the carrier substrate degraded more slowly due to the lower oxygen and water permeability, whereas devices using PE as the carrier substrate gave devices with a very short lifetime. It was found that PEDOT:pTS on its own is a not a significant barrier for oxygen in the context...

  7. Redox Homeostasis in Plants under Abiotic Stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols

    Directory of Open Access Journals (Sweden)

    Dhriti eKapoor

    2015-03-01

    Full Text Available Contemporaneous presence of both oxidized and reduced forms of electron carriers is mandatory in efficient flux by plant electron transport cascades. This requirement is considered as redox poising that involves the movement of electron from multiple sites in respiratory and photosynthetic electron transport chains to molecular oxygen. This flux triggers the formation of superoxide, consequently give rise to other reactive oxygen species (ROS under adverse environmental conditions like drought, high or low temperature, heavy metal stress etc. that plants owing during their life span. Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect the plants against oxidative challenge. Large pools of antioxidants also preside over the redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such as thioredoxin, peroxiredoxin and glutaredoxin, electron carriers and energy metabolism mediators phosphorylated (NADP and non-phosphorylated (NAD+ coenzyme forms interact with ROS, metabolize and maintain redox homeostasis.

  8. Highest Oxygen Bar

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The world’s highest altitude Lhalu Wetland in Tibet is rebounding from past environmental damage In Lhasa, where the oxygen content is just 60 percent of that of the plain area, a place known as the "natural oxygen bar"is highly prized by residents.

  9. Traveling with Portable Oxygen

    Science.gov (United States)

    ... that is right for you depends on your travel plans, your health requirements, and your personal preferences. Compressed Oxygen Compressed ... notice before your ight if you plan to travel with oxygen. For this ... to review procedures and complete all necessary paperwork required by ...

  10. Anaesthesia in a patient with subarachanoidal haemorrhage and high oxygen affinity haemoglobinopathy (HB york): case report

    OpenAIRE

    Monaca Enrico; Jüttner Tobias; Gattermann Norbert; Winterhalter Michael

    2012-01-01

    Abstract Background Approximately 90 haemoglobinopathies have been identified that result in abnormally high oxygen affinity. One of these is haemoglobinopathy York (HbY), first described in 1976. HbY causes an extreme leftward shift of the oxygen dissociation curve with the P50 value changing to 12.5 - 15.5 mmHg (normal value 26.7 mmHg), indicating that approximately half of the haemoglobin is not available as oxygen carrier. Patients with haemoglobinopathies with increased oxygen affinity c...

  11. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  12. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  13. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    OpenAIRE

    Gonçalves, Renata L. S.; Oliveira, Jose Henrique M.; Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Pedro L Oliveira; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses ...

  14. A Method to Perform Direct Oxygen Analysis on Lunar Simulants and Other Complex Oxide Materials

    Science.gov (United States)

    Santiago-Maldonado, Edgardo

    2007-01-01

    An essential requirement for making space travel and long term missions more efficient and affordable to NASA includes finding innovative ways to supply oxygen for life support and propulsion. In this experiment, carrier gas hot extraction was investigated as a possible method for measuring the oxygen from samples of lunar soil simulants before and after oxygen extraction. The determination of oxygen using the R0600 Oxygen Determinator is usually limited to oxides with low oxygen concentrations, but after the manipulation of certain furnace operating parameters such as analysis time and ramp rate, the R0600 was used to determine the oxygen content of high concentration oxides such as Fe 2O3 , Al2O3 , and SiO2.

  15. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus.

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  16. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  17. 49 CFR 1139.22 - Revenue data for study carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Revenue data for study carriers. 1139.22 Section... BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity Bus Industry § 1139.22 Revenue data for study carriers. The study carriers, as identified...

  18. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  19. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... sessions announced on January 5, 2010 (75 FR 285), and elsewhere in today's Federal Register, and to... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety...

  20. Charge carrier transport in liquid crystals

    International Nuclear Information System (INIS)

    The materials exhibiting charge carrier mobility ranging from 10−3 to 0.1 cm2/Vs, i.e., between those of amorphous and crystalline materials, had been missing before the 1990s when the electronic conduction in liquid crystals was discovered. Since then, various liquid crystalline materials including discotic and calamitic liquid crystals have been studied in order to clarify their charge carrier transport properties in liquid crystalline mesophases. In this article, the historical background of the discovery of electronic conduction in liquid crystals, intrinsic and extrinsic conductions, unique properties of the charge carrier transport, the effect of molecular alignment on it, and the conduction mechanism in liquid crystalline mesophases are shortly described on the basis of the experimental and theoretical studies accumulated in these two decades, noting that the missing materials were liquid crystals. - Highlights: • Liquid crystals exhibit charge mobility ranging from 10–3 to 0.1 cm2/Vs. • Electronic (intrinsic) and ionic (extrinsic) conductions in liquid crystals • Unique charge carrier transport properties in liquid crystals • Effect of molecular alignment in mesophases on charge carrier transport • Conduction mechanism in smectic liquid crystals

  1. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  2. Carbon: Hydrogen carrier or disappearing skeleton?

    International Nuclear Information System (INIS)

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently developed Shell Middle Distillate Hydrogenation process for the manufacture of high quality diesel from aromatic refinery streams fits this picture. In the future, the hydrogen required to raise the product H/C ratio will be increasingly produced via gasification of large amounts of heavy residues. In the light of the strong preference towards using liquid fuels in the transport sector, the Shell Middle Distillate Synthesis process to convert natural gas into diesel of very high quality is discussed. Finally, a few comments on the use of hydrogen without a carbon carrier are made. Long lead times and the likelihood of producing the 'first' hydrogen from fossil fuel are highlighted. 13 figs., 6 tabs., 5 refs

  3. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  4. Stimulating accumulation of nitrifying bacteria in porous carrier by addition of inorganic carbon in a continuous-flow fluidized bed wastewater treatment reactor.

    Science.gov (United States)

    Jun, B H; Tanji, Y; Unno, H

    2000-01-01

    Porous polyurethane carrier particles have been successfully applied for microbial immobilization to simultaneously remove carbonaceous and nitrogenous substances from wastewater by a fill-and-draw operation. This reactor system was extended to a continuous-flow operation mode, by which inorganic carbon (IC) was supplemented in order to stimulate the growth of autotrophic nitrifying bacteria. By addition of sodium bicarbonate, the ammonia oxidation reaction proceeded remarkably in the porous particle fluidized bed reactor, while a small increase in the nitrification was observed in a reactor with suspended microbes. Dissolved oxygen profile was obtained using an oxygen microelectrode to measure the microbial consumption of oxygen in the porous carrier. The size of ammonia-oxidizing bacterial populations in the carrier was proportional to the volume of the aerobic region of the carrier. The aerobic region decreased with the increase in sodium bicarbonate concentration, which improved the ammonia-oxidizing activity of retained nitrifiers in the carrier. The maximum ammonia oxidation rate was up to 55.6 gN/m3/h within the aerobic region of the carrier under the following feed conditions: 100 mg/l of total organic compound, 55 mg/l of ammonium concentration and 48 mg/l of inorganic carbon. PMID:16232755

  5. Dedicated Carrier Deployment in Heterogeneous Networks with Inter-site Carrier Aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    picos with dedicated carrier deployment. Collaborative inter-site carrier aggregation (CA) is proposed in scenarios with macro+RRH deployment to make an efficient use of the fragmented spectrum from multiple cells. While in scenarios with macro+pico deployment, UEs can only connect to either the...

  6. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  7. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  8. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect the...... optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen at...... similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  9. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  10. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  11. Biogenesis of the mitochondrial phosphate carrier

    OpenAIRE

    Zara, Vincenzo; Rassow, Joachim; Wachter, Elmar; Tropschug, Maximilian; Palmieri, Ferdinando; Neupert, Walter; Pfanner, Nikolaus

    1991-01-01

    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct...

  12. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  13. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T;

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  14. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne;

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high, signi......, significant homogeneous line broadening of the order of several meV can result....

  15. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    International Nuclear Information System (INIS)

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (nH). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as ∼160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  16. Zaria Universal Oxygenator Holder phase I

    Directory of Open Access Journals (Sweden)

    Sunday Adoga Edaigbini

    2014-01-01

    Full Text Available Introduction: The conduct of cardiopulmonary bypass surgery requires the use of equipment and devices like the oxygenator. The oxygenator comes in different makes and each manufacturer customizes the carrier or ′holder′ of this device specific to their design. Aim: This paper presents an innovation designed to overcome the need to purchase a different holder for every oxygenator thereby cutting the cost. Materials and Methods: A sheet of iron measuring 1.9 cm (width × 0.1 cm (thickness was used to design the holder circular main frame. Another sheet measuring 2 cm (width × 0.6 cm (thickness × 24 cm (length was used to construct a V-shaped handle with the arms of the V attached to the main frame 7 cm apart. At the narrow base of the handle is a latch requiring two 13-gauge screws to attach the holder to the heart-lung machine. Within the circumference of the main frame are four T-shaped side arms which grip the oxygenator; located at 2, 5, 7 and 11 O′clock positions. The stem of the T consist of a 0.6 cm (thickness × 13 cm (length rod drilled through the main frame. The cross of the T consists of variable lengths of the same sheet as the mainframe attached to the stem by a screw mechanism. At the base of the T, is attached a circular handle (4 cm in diameter made of 0.4 cm iron rod. Result: An oxygenator holder which weighs 1.75 kg with a total length of 54 cm (the diameter of the mainframe is 30 cm. Its advantages include (i affordability, (ii materials are locally accessible, (iii versatility (iv reproducibility. The disadvantages include, (i it requires some time to fit, (ii caution is required in fitting the oxygenator to avoid breakage, (iii a spanner is required to lock the latch. Conclusion: The concept of a universal holder is pertinent, especially in resource poor environments to avoid purchasing a new holder whenever the usual oxygenator common to the centre is unavailable. This device is amenable to further modifications to

  17. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag.

    Science.gov (United States)

    Han, Chong; Jiao, Yanan; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-08-01

    Basic oxygen furnace slag (BOFS) has the potential to remove hexavalent chromium (Cr(VI)) from wastewater by a redox process due to the presence of minerals containing Fe(2+). The effects of the solution pH, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system and X-ray diffractometer (XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe(2+) released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe(2+) responsible for Cr(VI) removal was primarily derived from the dissolution of FeO and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum (CaSO4·2H2O) could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe(2+) and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps. PMID:27521937

  18. Electric disc brakes hold nuclear aircraft carriers

    International Nuclear Information System (INIS)

    Two nuclear-powered aircraft carriers, the U.S.S. Nimitz and the soon-to-be-completed U.S.S. Dwight D. Eisenhower, use electric disc brakes to stop and hold lines on warping and mooring capstans during docking maneuvers and mooring operations

  19. Managing photons and carriers for photocatalysis

    Science.gov (United States)

    Thomann, Isabell; Robatjazi, Hossein; Bahauddin, Shah; Doiron, Chloe; Liu, Xuejun; Tumkur, Thejaswi; Wang, Wei-Ren; Wray, Parker

    While small plasmonic nanoparticles efficiently generate energetic hot carriers, light absorption in a monolayer of such particles is inefficient, and practical utilization of the hot carriers in addition requires efficient charge-separation. Here we describe our approach to address both challenges. By designing an optical cavity structure for the plasmonic photoelectrode, light absorption in these particles can be significantly enhanced, resulting in efficient hot electron generation. Rather than utilizing a Schottky barrier to preserve the energy of the carriers, our structure allows for their direct injection into the adjacent electrolyte. On the substrate side, the plasmonic particles are in contact with a wide band gap oxide film that serves as an electron blocking layer but accepts holes and transfers them to the counter electrode. The observed photocurrent spectra follow the plasmon spectrum, and demonstrate that the extracted electrons are energetic enough to drive the hydrogen evolution reaction. A similar structure can be designed to achieve broadband absorption enhancement in monolayer MoS2. Time permitting, I will discuss charge carrier dynamics in hybrid nanoparticles composed of plasmonic / two-dimensional materials, and applications of photo-induced force microscopy to study photocatalytic processes.

  20. Polyester Dendrimers: Smart Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jean–d’Amour K. Twibanire

    2014-01-01

    Full Text Available Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  1. Polyester Dendrimers: Smart Carriers for Drug Delivery

    OpenAIRE

    Jean–d’Amour K. Twibanire; T. Bruce Grindley

    2014-01-01

    Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  2. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  3. Biodegradable PEG-based drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Braunová, Alena; Ulbrich, Karel; Jelínková, Markéta; Říhová, Blanka; Seymour, L. W.

    Glasgow : University of Strathclyde, 2005, s. 7-9. [Conference on New Approaches to Drug Delivery "Nanomedicines of the Future". Glasgow (GB), 18.11.2005] R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable polymers * drug carriers Subject RIV: EI - Biotechnology ; Bionics

  4. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  5. Mass, energy, and exergy balance analysis of chemical looping with oxygen uncoupling (CLOU) process

    International Nuclear Information System (INIS)

    Highlights: • A CLOU reactor system using a CuO-based OC and coal as fuel is analyzed. • Possible operational regions for the chosen OC are identified. • Different heat balance scenarios are investigated. • The second-law efficiency of the system is evaluated. • Various design aspects and process modelling relationships are discussed. - Abstract: Chemical looping with oxygen uncoupling (CLOU) is a promising concept for efficient combustion of solid fuels with an inherent capture of the greenhouse gas CO2. This paper presents a CLOU process scheme with stoichiometric mass, energy, and exergy balances. A CLOU reactor system using medium volatile bituminous coal as fuel and silica-supported CuO as an oxygen carrier is analyzed. The analysis includes the estimation of various design and operational parameters, thermal considerations, and evaluation of the overall performance. The operation of a reactor system of two interacting circulating fluidized beds (CFBs) is greatly influenced by the hydrodynamics. For the CuO oxygen carrier, the hydrodynamic operating range appeared feasible considering the maximum solid circulation rates in current CFB boilers. Depending upon the reactor temperatures, oxygen carrier inventories of 400–680 kg/MW in the system were found necessary for stoichiometric combustion of the fuel. The temperature difference between the reactors should not exceed 50 °C, as otherwise, problems may arise with the heat balance. Exergetic efficiencies in the range of 63–70% were obtained for different combinations of relevant design parameters. It is evident that the possible operating conditions in the system are closely related to the properties of the chosen oxygen carrier. However, the calculation procedure and design criteria presented here are applicable to any oxygen carrier to be used in the process

  6. Influence of structural defects in subsurface layers of silicon on charge carrier mobility in the channel of MOS-transistors threshold voltage

    International Nuclear Information System (INIS)

    The influence of structural imperfections, the impurity composition, and the doping inhomogeneity on the basic parameters of the I - V characteristics of MOS-transistors has been found out with aid of modern research methods. Oxygen and carbon are the basic impurities in initial and oxidized silicons. Oxygen reveals electrical activity and influences the parameters of structural defects that, in turn, affect the charge carrier mobility and the threshold voltage

  7. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  8. Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2).

    Science.gov (United States)

    Martens, K; Jeong, J W; Aetukuri, N; Rettner, C; Shukla, N; Freeman, E; Esfahani, D N; Peeters, F M; Topuria, T; Rice, P M; Volodin, A; Douhard, B; Vandervorst, W; Samant, M G; Datta, S; Parkin, S S P

    2015-11-01

    The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-κ dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to ∼5×10(13)  cm(-2) which are trongly localized, as shown by their low, thermally activated mobility (∼1×10(-3)  cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2). PMID:26588400

  9. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  10. Effect of ferroelectric substrate on carrier mobility in graphene field-effect transistors

    Science.gov (United States)

    Bidmeshkipour, S.; Vorobiev, A.; Andersson, M. A.; Kompany, A.; Stake, J.

    2015-10-01

    Effect of LiNbO3 ferroelectric substrate on the carrier mobility in top gated graphene field-effect transistors (G-FETs) is demonstrated. It is shown that, at the same residual concentration of the charge carriers, the mobility in the G-FETs on the LiNbO3 substrate is higher than that on the SiO2/Si substrate. The effect is associated with reduction of Coulomb scattering via screening the charged impurity field by the field induced in the ferroelectric substrate, but significant only for mobilities below 1000 cm2/V s. Raman spectra analysis and correlations established between mobility and microwave loss tangent of the Al2O3 gate dielectric indicate that the charged impurities are located predominantly at the gate dielectric and/or at the gate dielectric/graphene interface and are likely associated with oxygen vacancies.

  11. Minority carrier recombination in spherical silicon crystals: measurement and process-induced effects

    International Nuclear Information System (INIS)

    Minority carrier recombination kinetics in defective, sphere-shaped silicon crystals is studied and a methodology is developed to evaluate the carrier lifetime. A theoretical model has been developed for the conductivity transient taking into account the spherical crystal geometry. The recombination rates are extracted using the experimentally obtained conductivity transient through analytical consideration of the different decay components specific to the spherical crystals. The methodology and analytical interpretation of the recombination kinetics provide an efficient tool to demonstrate the sensitivity of the recombination process to changes in bulk and interfacial electronic properties. We also show that the method is very useful in monitoring process-induced effects in various stages of crystal formation (oxygen denuding, annealing, diffusion) and in defect deactivation (gettering, precipitation, passivation) processes

  12. PAPR Reduction in OFDM Systems with Large Number of Sub-Carriers by Carrier Interferometry Approaches

    Institute of Scientific and Technical Information of China (English)

    HE Jian-hui; QUAN Zi-yi; MEN Ai-dong

    2004-01-01

    High Peak-to-Average Power Ratio (PAPR) is one of the major drawbacks of Orthogonal Frequency Division Multiplexing ( OFDM) systems. This paper presents the structures of the particular bit sequences leading to the maximum PAPR (PAPRmax) in Carrier-Interferometry OFDM (CI/OFDM) and Pseudo Orthogonal Carrier-Interferometry OFDM (PO-CI/OFDM) systems for Binary Phase Shift Keying (BPSK) modulation. Furthermore, the simulation and analysis of PAPRmax and PAPR cumulative distribution in CI/OFDM and PO-CI/OFDM systems with 2048 sub-carriers are presented in this paper. The results show that the PAPR of OFDM system with large number of sub-carriers reduced evidently via CI approaches.

  13. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... effect and anion adsorption on the performance of Pt based electrocatalysts. The anion adsorption is additionally studied by in situ electrochemical infrared spectroscopy during the oxygen reduction reaction (ORR). For this purpose an in situ FTIR setup in attenuated total refection (ATR) configuration...... influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level of...

  14. Electrochemical oxygen meter

    International Nuclear Information System (INIS)

    An electrochemical (electrolytic cell) device is specified for measuring the concentration of oxygen in a liquid alkali metal (e.g. in the liquid sodium heat transfer loops of liquid metal cooled fast breeder reactors). The oxygen content is determined by measuring the e.m.f. generated between a reference electrode and the molten metal by the conduction of oxygen ions there between through a solid electrolyte. A salient feature of the invention is the use, for the reference electrode, of a uniform mixture of either Ga, In or Sn and its oxide, the mixture being liquid at the temperature of operation and in intimate contact with the solid electrolyte. Another salient feature of the invention is the use, for the solid electrolyte, of high purity thoria doped with yttria, the material being sintered and fired to a high temperature to obtain a density of 98 to 99% theoretical. (U.K.)

  15. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 5000C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 7500C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 7500C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 12000C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 7500C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 7500C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  16. LWS/SET Technology Experiment Carrier

    Science.gov (United States)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  17. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers

    OpenAIRE

    Landauer, K.; Dürrschmid, M.; Klug, H.; Wiederkum, S.; Blüml, G.; Doblhoff-Dier, O.

    2002-01-01

    In this publication different detachment factors were tested for enhancing carrier to carrier transfer for scale-up of macroporous microcarrier based bioprocesses. Two Chinese hamster ovary cell lines, CHO-K1 and a genetically engineered CHO-K1 derived cell line (CHO-MPS), producing recombinant human Arylsulfatase B, were examined. The cells were grown on Cytoline 1microcarriers (Amersham Biosciences, Uppsala, Sweden) in protein-free and chemically defined medium respectively. Fully colonised...

  18. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    Science.gov (United States)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  19. Hyperbaric oxygen and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, R. [Medical Univ. of Graz (Austria). Dept. of Radiation; Hamilton-Farrell, M.R. [Whipps Cross Hospital, Leytonstone, London (United Kingdom). Hyperbaric Unit; Kleij, A.J. van der [Academic Medical Center, Amsterdam (NL). Dept. of Surgery] [and others

    2005-02-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  20. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  1. Cerebral oxygenation after birth

    DEFF Research Database (Denmark)

    Hessel, Trine W; Hyttel-Sorensen, Simon; Greisen, Gorm

    2014-01-01

    AIM: To compare absolute values of regional cerebral tissue oxygenation (cStO2 ) during haemodynamic transition after birth and repeatability during steady state for two commercial near-infrared spectroscopy (NIRS) devices. METHODS: In a prospective observational study, the INVOS 5100C and FORE...... INVOS and FORE-SIGHT cStO2 estimates showed oxygenation-level-dependent difference during birth transition. The better repeatability of FORE-SIGHT could be due to the lower response to change in saturation....

  2. Oxygen ion conductors

    Directory of Open Access Journals (Sweden)

    Stephen J Skinner

    2003-03-01

    A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.

  3. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen...... through a mechanism of vasodilatation and lowering of the intraocular pressure. Carbonic anhydrase inhibition reduces the removal of CO2 from the tissue and the CO2 accumulation induces vasodilatation resulting in increased blood flow and improved oxygen supply. This effect is inhibited by the cyclo...

  4. The Appropriate Use of Oxygen

    OpenAIRE

    Lubin, Stan

    1988-01-01

    The scientific evidence for the efficacy of oxygen therapy in acute hypoxemia is limited. In chronic hypoxemia continuous oxygen therapy appears to decrease mortality. Current indications for oxygen treatment are PaO2 less than 60 in acute hypoxemia and less than 55 in chronic hypoxemia. Physical and physiological hazards of oxygen are reviewed. Three syndromes of pulmonary oxygen toxicity are described: tracheobronchitis, adult respiratory distress syndrome, and bronchopulmonary dysplasia.

  5. Retinal oxygen extraction in humans

    OpenAIRE

    René M. Werkmeister; Doreen Schmidl; Gerold Aschinger; Veronika Doblhoff-Dier; Stefan Palkovits; Magdalena Wirth; Gerhard Garhöfer; Linsenmeier, Robert A.; Rainer A. Leitgeb; Leopold Schmetterer

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal b...

  6. Functional Oxygen Sensitivity of Astrocytes

    OpenAIRE

    Angelova, P. R.; Kasymov, V.; I. Christie; Sheikhbahaei, S.; Turovsky, E.; Marina, N.; Korsak, A.; Zwicker, J; Teschemacher, A. G.; Ackland, G. L.; Funk, G. D.; Kasparov, S; Abramov, A.Y.; Gourine, A V

    2015-01-01

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental...

  7. Benchmark and gap analysis of current mask carriers vs future requirements: example of the carrier contamination

    Science.gov (United States)

    Fontaine, H.; Davenet, M.; Cheung, D.; Hoellein, I.; Richsteiger, P.; Dejaune, P.; Torsy, A.

    2007-02-01

    In the frame of the European Medea+ 2T302 MUSCLE project, an extensive mask carriers benchmark was carried out in order to evaluate whether some containers answer to the 65nm technology needs. Ten different containers, currently used or expected in the future all along the mask supply chain (blank, maskhouse and fab carriers) were selected at different steps of their life cycle (new, aged, aged & cleaned). The most critical parameters identified for analysis versus future technologies were: automation, particle contamination, chemical contamination (organic outgassing, ionic contamination), cleanability, ESD, airtightness and purgeability. Furthermore, experimental protocols corresponding to suitable methods were then developed and implemented to test each criterion. The benchmark results are presented giving a "state of the art" of mask carriers currently available and allowing a gap analysis for the tested parameters related to future needs. This approach is detailed through the particular case of carrier contamination measurements. Finally, this benchmark / gap analysis leads to propose advisable mask carrier specifications (and the test protocols associated) on various key parameters which can also be taken as guidelines for a standardization perspective for the 65nm technology. This also indicates that none of tested carriers fulfills all the specifications proposed.

  8. 48 CFR 1615.470 - Carrier investment of FEHB funds.

    Science.gov (United States)

    2010-10-01

    ... CONTRACTING BY NEGOTIATION Contract Pricing 1615.470 Carrier investment of FEHB funds. (a) Except for contracts based on a combination of cost and price analysis (community-rated), the carrier is required...

  9. Screening-induced carrier transport in silicene

    International Nuclear Information System (INIS)

    Based on the Boltzmann transport equation in the MRT approximation, we present a theory to investigate low-field carrier transport in dual-gated silicene FETs by taking into account screened charged impurity scattering, which is the most likely scattering mechanism limiting the conductivity. Static RPA dielectric screening is also included in the conductivity calculation to study temperature-dependent silicene transport. It is found that both calculated conductivity and band gap not only depend strongly on carrier sheet density, but also depend strongly on effective offset density. More importantly, screening-induced metal-insulator-transition phenomena in buckled silicene can be observed theoretically, which is similar to that obtained in monolayer graphene. (paper)

  10. Energy carriers in Norway; Energibaerere i Norge

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Within the Norwegian energy consumption, electricity is by far the most dominant energy carrier. In the last thirty years electricity has had an increased significance, while oil has been reduce. A trend that is likely to continue. Energy politics has among others these objectives: environment, reliability of supply and effective energy supply. These objectives are somewhat contradictory. In agreement with the environmental politic phasing out oil leads to a reduction in greenhouse gases. However this politic will have a local impact only effecting Norway, in a larger European connection it might lead to a larger net emission of CO{sub 2}. A political intervention in the energy market might also lead to a reduction in the energy markets effectiveness and flexibility. This report addresses this problem: If a total phase out of the stationary oil consumption is conducted, what energy carriers will this consumption convert to?

  11. Some remarks on the carrier distillation method

    International Nuclear Information System (INIS)

    The method described by SCRIBNER and MULLIN makes possible the spectrographic analysis of the refractory oxides of uranium and plutonium. It uses a distillation of the elements which is more or less selective. The influence of the carrier is the subject of as many hypotheses as there are parameters involved in the process. The measurements of the arc temperature carried out on the leading edges of the vibration bands and of certain copper lines have made it possible to show the influence of the nature of the carrier and to establish a relationship between the values of the excitation potentials of the atoms and the temperatures produced. Further, this result makes it possible to explain certain contradictions between the principle of a fractional distillation in the arc which is incompatible with the refractory properties of certain elements and their spectrographic sensitivity. (author)

  12. Carrier synchronization and detection of polyphase signals.

    Science.gov (United States)

    Lindsey, W. C.; Simon, M. K.

    1972-01-01

    Digital communication networks used for the distribution of high-speed digital information are currently the subject of design studies for many civil and military applications. This paper presents results that are useful in such studies as well as in network planning. In particular, the paper is concerned with the problems of carrier synchronization and noisy reference detection of polyphase signals. Reconstruction of coherent references for the detection of polyphase signals is considered and analyzed for three carrier reconstruction loops, namely, Nth power (multiply-and-divide) loops, generalized Costas (I-Q) loops, and extensions of data-aided (modulation wipeoff) loops. General expressions for the error probability are developed when the reconstructed reference signals are noisy.

  13. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  14. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  15. High carrier mobilities in black diamond

    Science.gov (United States)

    Williams, Oliver A.; Jackman, Richard B.; Nebel, Christoph; Foord, John S.

    2003-03-01

    Hydrogen plasma treatment of diamond renders the surface p-type, with the carriers emerging with little thermal activation, in sharp contrast to the use of boron for the formation of p-type material. To date, it has been thought that only the highest quality 'white' polycrystalline material is useful for electronic device applications, with many regarding single-crystal diamond as ultimately the substrate material of choice. In this paper it is shown that when p-type material is produced through hydrogenation, this is not the case. 'Black' polycrystalline diamond, which can be grown much more rapidly than white, shows carrier concentrations and mobility values similar to both white polycrystalline diamond and single-crystal material. This result has important implications for the provision of low-cost black-diamond substrates for device applications.

  16. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T;

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  17. Calibration Of Oxygen Monitors

    Science.gov (United States)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  18. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  19. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  20. Atlas V Aft Bulkhead Carrier Rideshare System

    OpenAIRE

    Willcox, Maj Travis

    2012-01-01

    This paper gives the background and details of the Atlas V Aft Bulkhead Carrier to be flown on the National Recoinnassance Office Launch 36 with the Operationally Unique Technologies Satellite Auxiliary Payload. The CubeSats included are from a number of labs, universities and government entities for the purpose of technology demonstration, science experimentation and operational proof of concepts. This mission will pave the way for rideshare on NRO missions and other Atlas V launches.

  1. Nanogel Carrier Design for Targeted Drug Delivery

    OpenAIRE

    Eckmann, D.M.; Composto, R. J.; Tsourkas, A; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanoge...

  2. Crude Carrier Consolidation and Capital Cost

    OpenAIRE

    T T Gilje; J Dinwoodie; J Challacombe

    2002-01-01

    This paper investigates the role of consolidation strategies amongst crude carrier operators anxious to reduce costs and attract institutional capital. Could consolidation combat erratic tonnage demand, mounting regulatory pressure to provide quality service at reduced costs, rising costs of finance and unpredictable long-term returns that deter institutional capital? A questionnaire survey of capital providers' and charterers' attitudes towards consolidation found that long-term vessel emplo...

  3. Electroactuation with Single Charge Carrier Ionomers

    OpenAIRE

    Lee, Alpha A; Colby, Ralph H.; Kornyshev, Alexei A.

    2012-01-01

    A simple theory of electromechanical transduction for single-charge-carrier double-layer electroactuators is developed, in which the ion distribution and curvature are mutually coupled. The obtained expressions for the dependence of curvature and charge accumulation on the applied voltage, as well as the electroactuation dynamics, are compared with literature data. The mechanical- or sensor- performance of such electroactuators appears to be determined by just three cumulative parameters, wit...

  4. Uptake Carriers and Oncology Drug Safety

    OpenAIRE

    Sprowl, Jason A.; Sparreboom, Alex

    2014-01-01

    Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics in multiple tissues. Many of these transporters are highly expressed in the gastrointestinal tract, liver, and kidney and are considered to be of particular importance in governing drug absorption, elimination, and cellular sensitivity of specific organs to a wide variety of oncology drugs. Although the majority of studies on the interacti...

  5. Software defined networking: meeting carrier grade requirements

    OpenAIRE

    Staessens, Dimitri; Sharma, Sachin; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2011-01-01

    Software Defined Networking is a networking paradigm which allows network operators to manage networking elements using software running on an external server. This is accomplished by a split in the architecture between the forwarding element and the control element. Two technologies which allow this split for packet networks are ForCES and Openflow. We present energy efficiency and resilience aspects of carrier grade networks which can be met by Openflow. We implement flow restoration and ru...

  6. Food proteins as potential carriers for phenolics

    OpenAIRE

    Bohin, M.C.

    2013-01-01

    The development of phenolic-rich functional foods is often limited by the off-tastes of phenolics that might be counteracted by sequestering these compounds using a carrier, thereby preventing them to interact with bitter taste receptors and salivary proteins. A range of common animal food proteins were tested for binding of phenolics. It appeared that a proline-rich open protein structure, as in β-casein, favored binding of phenolics. Globular proteins other than bovine serum albumin sh...

  7. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  8. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2012-04-18

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies that influence the effective mass of carriers in SLTO films can be tuned by varying the laser energy. The highest power factor of 0.433 W K−1 m−1 has been achieved at 636 K for a filmdeposited using the highest laser fluence of 7 J cm−2 pulse−1.

  9. 24 CFR 17.46 - Claims involving carriers or insurers.

    Science.gov (United States)

    2010-04-01

    ... amount recoverable from the carrier or insurer may result in reducing the amount recoverable from the Government by the maximum amount which would have been recoverable from the carrier or insurer, had the claim... from the carrier or insurer before his claim under this subpart is settled, the amount or...

  10. 44 CFR 11.75 - Claims involving carriers and insurers.

    Science.gov (United States)

    2010-10-01

    ... prosecute rights available against a carrier or insurer and to collect the amount recoverable from the carrier or insurer may result in reducing the amount recoverable from the Government by the maximum amount which would have been recoverable from the carrier or insurer, had the claim been timely or...

  11. 29 CFR 15.25 - Claims involving carriers or insurers.

    Science.gov (United States)

    2010-07-01

    ... carrier or insurer and to collect the amount recoverable from the carrier or insurer may result in reducing the amount recoverable from the Government by the maximum amount which would have been recoverable... the loss from the carrier or insurer before his or her claim under this subpart is settled, the...

  12. A Multi-Carrier Scheduling Algorithm for LTE-Advanced

    DEFF Research Database (Denmark)

    Vulpe, Alexander; Mihovska, Albena D.; Prasad, Ramjee; Fratu, Octavian

    LTE-Advanced aims to provide a transmission bandwidth of 100 MHz by using Carrier Aggregation to aggregate LTE Rel. 8 carriers. In order to increase the system capacity, resource allocation becomes a very good tool, and, in the context of the existence of multiple Component Carriers in LTE...

  13. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan;

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  14. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    OpenAIRE

    Pavel Dolezal; Margareta Aili; Janette Tong; Jhih-Hang Jiang; Marobbio, Carlo M.T.; Sau Fung Lee; Ralf Schuelein; Simon Belluzzo; Eva Binova; Aurelie Mousnier; Gad Frankel; Giulia Giannuzzi; Ferdinando Palmieri; Kipros Gabriel; Thomas Naderer

    2012-01-01

    Author Summary Mitochondrial carrier proteins evolved during endosymbiosis to transport substrates across the mitochondrial inner membrane. As such the proteins are associated exclusively with eukaryotic organisms. Despite this, we identified putative mitochondrial carrier proteins in the genomes of different intracellular bacterial pathogens, including Legionella pneumophila, the causative agent of Legionnaire's disease. We named the mitochondrial carrier protein from L. pneumophila LncP and...

  15. Literature review of the passenger airline business models: Full service carrier, low-cost carrier and charter airlines

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2008-01-01

    The deregulation and liberalization of the air transportation industry have developed three main passenger business models: full service carriers, low-cost carriers, and charter airlines. Deregulation removed regulated fares and routes increasing competition and yields. Airlines business models main

  16. Influence of Oxygen Partial Pressure on the Fermi Level of ZnO Films Investigated by Kelvin Probe Force Microscopy

    International Nuclear Information System (INIS)

    The influence of oxygen partial pressure on the Fermi level of ZnO films prepared by pulsed laser deposition is investigated. The contact potential difference of the ZnO films fabricated under various oxygen partial pressures is studied systematically using Kelvin probe force microscopy. The Fermi level shifted by 0.35 eV as oxygen partial pressure increased. This indicates a significant change in the electronic structure and energy balance in ZnO films. This fact provides a consistent explanation that the changes in carrier concentration, resistivity and mobility of ZnO films are attributed to oxygen vacancy induced shift of the Fermi level

  17. Influence of Oxygen Partial Pressure on the Fermi Level of ZnO Films Investigated by Kelvin Probe Force Microscopy

    Science.gov (United States)

    Su, Ting; Zhang, Hai-Feng

    2012-12-01

    The influence of oxygen partial pressure on the Fermi level of ZnO films prepared by pulsed laser deposition is investigated. The contact potential difference of the ZnO films fabricated under various oxygen partial pressures is studied systematically using Kelvin probe force microscopy. The Fermi level shifted by 0.35 eV as oxygen partial pressure increased. This indicates a significant change in the electronic structure and energy balance in ZnO films. This fact provides a consistent explanation that the changes in carrier concentration, resistivity and mobility of ZnO films are attributed to oxygen vacancy induced shift of the Fermi level.

  18. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2015-12-01

    Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  19. The role of oxygen vacancy in fluorine-doped SnO2 films

    Science.gov (United States)

    Zhang, B.; Tian, Y.; Zhang, J. X.; Cai, W.

    2011-04-01

    The fluorine-doped tin oxide films (FTO) were prepared with SnCl2 and SnCl4 precursors using the spray pyrolysis method. The vibrational feature of oxygen vacancy in FTIR has been identified. The oxygen vacancy plays a role of donor in FTO films, although it becomes inconspicuous with an increase in fluorine concentration in the solution. The substitution of fluorine for oxygen has also been confirmed by FTIR spectrum, and it further indicates the production of fluorine doping is α-SnF2. The reflectivity shows a close relation with the carrier concentration, suggested by the Drude theory. The discussion of scattering mechanism in FTO films suggests that impurity ions are the main scattering centers for free carriers.

  20. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Kumar, Sunil R Sarath

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  1. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers.

    Science.gov (United States)

    Shidhaye, S S; Vaidya, Reshma; Sutar, Sagar; Patwardhan, Arati; Kadam, V J

    2008-10-01

    The first generation of solid lipid carrier systems in nanometer range, Solid Lipid Nanoparticles (SLN), was introduced as an alternative to liposomes. SLN are aqueous colloidal dispersions, the matrix of which comprises of solid biodegradable lipids. SLN are manufactured by techniques like high pressure homogenization, solvent diffusion method etc. They exhibit major advantages such as modulated release, improved bioavailability, protection of chemically labile molecules like retinol, peptides from degradation, cost effective excipients, improved drug incorporation and wide application spectrum. However there are certain limitations associated with SLN, like limited drug loading capacity and drug expulsion during storage, which can be minimized by the next generation of solid lipids, Nanostructured lipid carriers (NLC). NLC are lipid particles with a controlled nanostructure that improves drug loading and firmly incorporates the drug during storage. Owing to their properties and advantages, SLN and NLC may find extensive application in topical drug delivery, oral and parenteral administration of cosmetic and pharmaceutical actives. Cosmeceuticals is emerging as the biggest application target of these carriers. Carrier systems like SLN and NLC were developed with a perspective to meet industrial needs like scale up, qualification and validation, simple technology, low cost etc. This paper reviews present status of SLN and NLC as carrier systems with special emphasis on their application in Cosmeceuticals; it also gives an overview about various manufacturing techniques of SLN and NLC. PMID:18855604

  2. Performance of Uplink Carrier Aggregation in LTE-Advanced Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2010-01-01

    paper, we evaluate the performance of uplink CA in LTE-Advanced systems with different CC allocation schemes. We first present the radio resource management (RRM) framework of multi-component carrier LTE-Advanced systems, with special attention on CC selection, adaptive transmission bandwidth, and......Carrier aggregation (CA) has been proposed to aggregate two or more component carriers (CCs) to support a much wider transmission bandwidth for LTE-Advanced systems. With carrier aggregation, it is possible to schedule a user equipment (UE) on multiple component carriers simultaneously. In this...... traffic conditions....

  3. Thermodynamic Analysis and Experimental Investigation into Nonflame Combustion Technology(NFCT) with Thermal Cyclic Carrier

    Institute of Scientific and Technical Information of China (English)

    HE Fang; WANG Hua; DAI Yong-nian

    2004-01-01

    The utilization of fossil fuels causes serious negative impacts on the environment and human life. To mitigate greenhouse gases and other pollutants, a novel combustion process-the nonflame combustion technology with a thermal cyclic carrier of molten salt is introduced. In this technology, a whole combustion is divided into two steps, i.e., the section of producing oxide and the section of combustion. In the first step, oxygen is separated from air, and pure N2 is simultaneously formed which is easily recovered. In the other step, the fuels react with lattice oxygen in the oxides formed in the first step, and at the same time, thermal energy,CO2 and H2O vapor are produced. It is noted that the CO2 is easily separated from water vapor and ultimately captured. Theoretically, there are no environmental-unfriendly gases such as CO2, NOx and SO2 discharged in the whole combustion process. Some metal oxides scattered into molten salts play the roles of oxygen carriers in the combustion system, and they can constantly charge and discharge oxygen element from air to fuels during the combustion process. A nonflame combustion system with Li2CO3+K2CO3+Na2SO4 as the molten salt system, CH4 as the fuel and CuO as the catalyst was experimentally investigated. The experimental results show that the combustion process proceeded as it was theoretically analyzed, and CO2 with a high volume fraction of 77.0%-95.0% and N2 with a high volume fraction of 91.9%-99.3% were obtained. The high concentration of CO2 is favorable for capturing and storing subsequently. Therefore, the potential of reducing CO2 emissions of this nonflame combustion technology is huge.

  4. Effect of surface stoichiometry and interfacial interactions on ultrafast carrier dynamics of crystalline CdTe (Presentation Recording)

    Science.gov (United States)

    He, Xing; Punpongjareorn, Napat; Wu, Chengyi; Rajagopal, Karjini; Yang, Ding-Shyue

    2015-08-01

    To improve the efficiency of optoelectronic devices, it is critical to understand the carrier dynamics of photoactive materials and the mechanisms involved, including those effects caused by different surface stoichiometry and/or interfacial interactions. A good example is CdTe, which exhibits cost-effective high performance in thin-film photovoltaic cells; it is also known to show surface oxidation, which may affect device efficiency and hence limit the production methods used. In this contribution, we present ultrafast carrier dynamics of crystalline CdTe specimens with different surface conditions using transient reflectivity measurements, following a femtosecond above-gap excitation. The distinct differences observed in the dynamics and the time constants for oxidized and stoichiometrically restored specimens indicate the major role of surface tellurium oxide on the relaxation of photoinduced carriers. The much slower recovery observed on oxidized surfaces is attributed to a transfer (and trapping) of electrons to the tellurium atoms with a high oxidation state, which signifies a charge separation near the surface. To distinguish the effect caused by oxygen adsorption, we also examined the carrier dynamics of CdTe surfaces covered by a thin layer of water molecules for comparison. These results, which show clear interfacial effects, may have broader implications for the understanding of carrier dynamics in nanostructured and polycrystalline specimens under different chemical environments, as such materials exhibit a high surface-to-volume ratio.

  5. Oxygenic photosynthesis without galactolipids

    OpenAIRE

    Awai, Koichiro; Ohta, Hiroyuki; Sato, Naoki

    2014-01-01

    Cyanobacteria, as well as chloroplasts of plants and algae, are the sites of photosynthesis that produces oxygen. Photosynthetic membranes, also known as thylakoid membranes, in these organisms contain galactolipids, without exception, as the major components. Galactolipids are thus believed to be important for photosynthesis or at least for the formation of the flattened shape of thylakoid membranes. The biosynthetic pathway of galactolipids is definitely different in plants and cyanobacteri...

  6. Krypton recovery by cryogenic distillation without preceding oxygen elimination

    International Nuclear Information System (INIS)

    By applying the proper operation mode for cryogenic distillation, ozone accumulation can be reduced or even be prevented to the extent that oxygen might be allowed in the feed gas of a cryogenic krypton recovery unit in future installations. The behavior of oxygen and ozone in the S.C.K./C.E.N. cryogenic distillation unit was investigated. The presence of oxygen resulted in new temperature and concentration profiles in the first rectification column, without affecting the operation of this column. No oxygen was detected in the liquid krypton-xenon bottom product, so that no oxygen was transferred to the second batch distillation column. Ozone accumulated in the krypton-xenon mixture. Its decay was measured in absence and in presence of a thulium-170 radiation source. The higher decay rate, observed with the radiation source, indicates that ozone accumulation might be prevented by providing the proper radiation intensity in the kettle of the rectification column. The feasibility of cryogenic distillation for krypton removal from an air carrier stream was demonstrated with an inventory of 4.44 TBq krypton-85, during a 900 hours campaign

  7. SINGLET OXYGEN IN NATURAL WATERS

    Science.gov (United States)

    Singlet oxygen is a reactive, electronically excited form of molecular oxygen that rapidly oxidizes a wide variety of organic substances, such as the polycyclic aromatics in petroleum hydrocarbon and the amino acids, histidine, tryptophan, and methionine. Studies of water samples...

  8. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster...

  9. Evolution of Oxygenic Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2016-06-01

    The origin of oxygenic photosynthesis was the most important metabolic innovation in Earth history. It allowed life to generate energy and reducing power directly from sunlight and water, freeing it from the limited resources of geochemically derived reductants. This greatly increased global primary productivity and restructured ecosystems. The release of O2 as an end product of water oxidation led to the rise of oxygen, which dramatically altered the redox state of Earth's atmosphere and oceans and permanently changed all major biogeochemical cycles. Furthermore, the biological availability of O2 allowed for the evolution of aerobic respiration and novel biosynthetic pathways, facilitating much of the richness we associate with modern biology, including complex multicellularity. Here we critically review and synthesize information from the geological and biological records for the origin and evolution of oxygenic photosynthesis. Data from both of these archives illustrate that this metabolism first appeared in early Paleoproterozoic time and, despite its biogeochemical prominence, is a relatively late invention in the context of our planet's history.

  10. Therapeutic reactive oxygen generation.

    Science.gov (United States)

    Scharff, Peter; Ritter, Uwe; Matyshevska, Olga P; Prylutska, Svitlana V; Grynyuk, Iryna I; Golub, Alexandr A; Prylutskyy, Yuriy I; Burlaka, Anatoliy P

    2008-01-01

    An increase of the intracellular reactive oxygen species (ROS) concentration leads to the development of oxidative stress and, thus, to the damage of cell components. The cause-and-effect relations between these processes have not been fully established yet. The ability of photo excited supramolecular composites containing fullerenes C60 immobilized at nanosilica particles to generate reactive oxygen species (ROS) in cells of two types (rat thymocytes, and transformed cells of ascite Erlich carcinoma, EAC, and leucosis L1210) is demonstrated. The damaging effect of photo excited C60-composites are shown, which appeared to be selective and manifested in transformed cells, but not in thymocytes. It has been shown that after the irradiation of aqueous solutions or cell suspensions in the presence of fullerene C60, the generation of reactive oxygen species is observed. It has been shown that the influence of photo excited fullerene C60 on metabolic processes depends on the composition of C60-containing complex and on the type of the cells. The damaging effects of photo excited fullerene C60-containing composites were demonstrated to be selective. The data presented suggest that the application of fullerene C60-containing composites for the selective activation of ROS-dependent death program in certain types of tumor cells is very promising. PMID:18564617

  11. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  12. Carrier Load Balancing and Packet Scheduling for Multi-Carrier Systems

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus; Sørensen, Troels Bundgaard;

    2010-01-01

    Abstract-In this paper we focus on resource allocation for next generation wireless communication systems with aggregation of multiple Component Carriers (CCs), i.e., how to assign the CCs to each user, and how to multiplex multiple users in each CC. We first investigate two carrier load balancing...... methods for allocating the CCs to the users- Round Robin (RR) and Mobile Hashing (MH) balancing by means of a simple theoretical formulation, as well as system level simulations. At Layer-2 we propose a simple cross-CC packet scheduling algorithm that improves the coverage performance and the resource...... allocation fairness among users, as compared to independent scheduling per CC. The Long Term Evolution (LTE)-Advanced is selected for the case study of a multi-carrier system. In such a system, RR provides better performance than MH balancing, and the proposed simple scheduling algorithm is shown to be...

  13. Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion.

    Science.gov (United States)

    Matsubara, Kohei; Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously. PMID:27451638

  14. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    Science.gov (United States)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  15. A first-principle investigation of the oxygen defects in Si3N4-based charge trapping memories

    International Nuclear Information System (INIS)

    Based on first principle calculations, a comprehensive study of substitutional oxygen defects in hexagonal silicon nitride (β-Si3N4) has been carried out. Firstly, it is found that substitutional oxygen is most likely to form clusters at three sites in Si3N4 due to the intense attractive interaction between oxygen defects. Then, by using three analytical tools (trap energy, modified Bader analysis and charge density difference), we discuss the trap abilities of the three clusters. The result shows that each kind of cluster at the three specific sites presents very different abilities to trap charge carriers (electrons or holes): two of the three clusters can trap both kinds of charge carriers, confirming their amphoteric property; While the last remaining one is only able to trap hole carriers. Moreover, our studies reveal that the three clusters differ from each other in terms of endurance during the program/erase progress. Taking full account of capturing properties for the three oxygen clusters, including trap ability and endurance, we deem holes rather than electrons to be optimal to act as operational charge carriers for the oxygen defects in Si3N4-based charge trapping memories. (semiconductor devices)

  16. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels;

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10...... oxygen sensors can be used....

  17. How Europe's Low-Cost Carriers Sidestepped Traditional Carriers' Competitive Advantages

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    The initial appearance of U.S. low-cost carriers forced incumbents to create new forms of competitive advantage. These were successful hindrances for nearly two decades. Concurrently, incumbents in Europe implemented similar tools, although within a regulated market. However, Europe's low...... sidestepped traditional carriers' competitive advantages.......-cost airlines were more successful and had a greater initial impact in their early years than their U.S. compatriots. This paper will attempt to highlight some of the differences between the two markets and explain why European low-cost airlines had more advantages following their market deregulation and...

  18. Studies on carrier free promethium-147

    International Nuclear Information System (INIS)

    The present investigation was intended to study the state of Pm-147 in solution and its adsorbed state on membrane filters by varying the concentrations of Pm-147 solution and its pH. Also, the study on the coprecipitation of Pm-147 with Fe(OH)3 was carried out by varying amounts of Fe(OH)3 and pH of the solution. The carrier-free Pm-147 exists in an ionic state of pm3+ in solution, and is adsorbed on membrane filter in filtration process. The adsorbed state of Pm-147 on the membrane filter shows various ionic state at a constant ionic strength of 0.1M NaCl, that is, Pm3+ state exists until pH value of 5.0, then gradually Pm(OH)2+ state appears between pH value of 5.0 to 6.0, and the state of Pm(OH)2+ and Pm(OH)3 would be expected at the higher pH value of 6.0. Coprecipitation of Pm-147 on Fe(OH)3 is an adsorption penomenon in an ionic state of Pm3+ in acidic condition. At higher pH and larger amount of Fe carrier, the adsorbed state of Pm-147 shows Pm(OH)2+ and Pm(OH)2+ state. As a results of the present studies, it is seen that the characteristic of carrier free radioisotopes is not due to the radioactivity, but due to the adsorption of ultramicroquantity of radioisotopes. Therefore, the knowledge on the ultramicroquantity of radioisotopes could help for the solution of decontamination in handing and chemical procedure with radioisotopes. (author)

  19. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  20. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  1. Carbon-neutral fuels and energy carriers

    CERN Document Server

    Muradov, Nazim Z

    2011-01-01

    Concerns over an unstable energy supply and the adverse environmental impact of carbonaceous fuels have triggered considerable efforts worldwide to find carbon-free or low-carbon alternatives to conventional fossil fuels. Carbon-Neutral Fuels and Energy Carriers emphasizes the vital role of carbon-neutral energy sources, transportation fuels, and associated technologies for establishing a sustainable energy future. Each chapter draws on the insight of world-renowned experts in such diverse fields as photochemistry and electrochemistry, solar and nuclear energy, biofuels and synthetic fuels, ca

  2. Recent advancements in the cardiovascular drug carriers.

    Science.gov (United States)

    Singh, Baljeet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Cardiovascular disease is the disease that affects the cardiovascular system, vascular diseases of the brain and kidney, and peripheral arterial disease. Despite of all advances in pharmacological and clinical treatment, heart failure is a leading cause of morbidness and mortality worldwide. Many new therapeutic advance strategies, including cell transplantation, gene delivery or therapy, and cytokines or other small molecules, have been research to treat heart failure. The main aim of this review article is to focus on nano carriers advancement and addressing the problems associated with old and modern therapeutics such as nonspecific effects and poor stability. PMID:25046615

  3. Investigation of sugar sulfur carrier in nickel

    International Nuclear Information System (INIS)

    For the purposes of galvanotechnics it is necessary to have nickel which is easely subjected to the anode dissolving (the so called depolarized nickel). In the industry, nickel of such a quality is produced by the method of electrolytic sedimentation from the nickel solution in the presence of sulfur carriers, usually in the presence of saccharin. To study behaviour of saccharin in the process of electrolysis, investigations of saccharin labelled by sulfur-35 have been done. These investigations have permitted to determine the type and quantity of products of decomposition formed, as well as to determine possibilities for rising the quantity of introducer sulfur due to the variants of technological process

  4. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  5. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  6. Hall effect and charge carrier generation in Y1Ba2Cu3Ox

    International Nuclear Information System (INIS)

    The Hall coefficient, and hence the charge carrier density, of the system of Y1Ba2Cu3Ox was measured at room temperature as a function of oxygen content, x, in its entire homogeneity range (6 p/σn > 70) and of extrinsic origin for x > ∼ 6.37, below which the electron contribution grows appreciably, and hole generation mechanisms differ depending on crystal structure: one hole is generated for every oxygen atom added in the orthorhombic structure (x > ∼ 6.5) and for every two oxygen atoms added in the tetragonal structure (x 2(g) = O'i + h and O2(g) = (Oi,Oi)' + h, respectively, are proposed as responsible for the hole generation, and their equilibrium constants are evaluated with the reaction enthalpies of 0.75 ± 0.05 and 2.7 ± 0.2 eV, respectively. Based on these data, predictions about such properties as the oxygen potential dependencies of isothermal conductivity are compared with reported results, and the numerical values for hole mobility are extracted. In this paper, other proposed redox reactions are discussed in light of the present findings

  7. 77 FR 60507 - Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting

    Science.gov (United States)

    2012-10-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Meeting of Compliance, Safety, Accountability (CSA) Subcommittee of Motor Carrier Safety...

  8. O2 sensing dynamics of BiFeO3 nanofibers: effect of minor carrier compensation.

    Science.gov (United States)

    Sobhan, Mushtaq; Xu, Qiang; Katoch, Akash; Anariba, Franklin; Kim, Sang Sub; Wu, Ping

    2015-05-01

    In this paper we investigate O(2) sensing dynamics in BiFeO(3) (BFO) nanofibers at various concentrations and temperatures, by using a combined experiment and computer simulation approach. Samples of pristine BFO, Ni-doped BFO, and Pb-doped BFO nanofibers were prepared. By incorporating Ni and Pb, additional acceptor states are introduced in BFO. Density functional theory calculations show that Ni prefers to substitute Fe site while Pb substitutes Bi site, resulting in a new deep donor originating from Ni interstitial defects, along with oxygen vacancies (V(o)). We find that both the sensing response and recovery time are shorter in samples made of pristine BFO nanofibers than in Ni- and Pb-doped nanofiber samples. We interpret the observed sensing dynamics through charge transport theory of the major (acceptors) and minor (donors) carriers, and found that the minor carrier compensation plays a significant role in determining the response and recovery time of the sensor device. This minor carrier compensation charge transport mechanism will provide new insights into more robust sensor development strategies, and into the research of ion-electron coupling in chemical dynamics of semiconductors. PMID:25850830

  9. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  10. Gamma herpesvirus carrier status of captive artiodactyls.

    Science.gov (United States)

    Flach, E J; Reid, H; Pow, I; Klemt, A

    2002-08-01

    Between 1998 and 2000, 103 individuals of 19 species of the order Artiodactyla at Whipsnade Wild Animal Park were tested for evidence of infection with gamma herpesviruses in order to distinguish between species which are susceptible to malignant catarrhal fever (MCF), caused by alcelaphine herpesvirus-1 (AlHV-1) of wildebeest (Connochaetes sp.) or ovine herpesvirus-2 (OvHV-2) of domestic sheep, and species which carry related viruses sub-clinically. Gamma herpesvirus DNA was detected in the known, or suspected, carrier species: roan antelope (Hippotragus equinus), scimitar-horned oryx (Oryx dammah), gemsbok (Oryx gazella), musk ox (Ovibos muschatus) and mouflon (Ovis musimon). In six other species: lowland anoa (Bubalus depressicornis) yak (Bos grunniens), sitatunga (Tragelaphus spekei), greater kudu (Tragelaphus strepsiceros), waterbuck (Kobus ellipsiprymnus) and Nile lechwe (Kobus megaceros), DNA was present in some newborn calves and over 30% of adults, strongly suggesting a carrier state. In contrast five Père David's deer (Elaphurus davidianus) and two swamp deer (Cervus duvauceli) died of MCF during the study. A virus isolated from scimitar-horned oryx calves produced cytopathic effects in scimitar-horned oryx kidney cell-culture and caused MCF in a rabbit. PMID:12208112

  11. Probiotics and immunosenescence: cheese as a carrier.

    Science.gov (United States)

    Ibrahim, Fandi; Ruvio, Suvi; Granlund, Linda; Salminen, Seppo; Viitanen, Matti; Ouwehand, Arthur C

    2010-06-01

    Oral intake of specific probiotics has been reported to enhance the immunity of the elderly. Earlier studies have used milk or yoghurt as a probiotic carrier. We chose a commercial probiotic cheese to evaluate its potential as a probiotic food. Thirty-one healthy elderly volunteers (21 female, 10 male) aged from 72 to 103 (median 86) consumed a commercial probiotic cheese containing approximately 10(9) CFU day(-1) of Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM. The 4-week probiotic intervention was preceded by a 2-week consumption of probiotic-free cheese (run-in) and followed by a 4-week wash-out period with the same control cheese. The cytotoxicity of peripheral blood mononuclear cells (PBMCs), the relative numbers of natural killer (NK) and NKT cells in the total PBMCs, and phagocytic activity were assessed. Consumption of the probiotic cheese significantly increased the cytotoxicity of NK cells. A significant increase in phagocytosis was observed for both the control and the probiotic cheese. Cheese was found to be an effective carrier for the study of probiotics, and daily consumption of the probiotic enhanced parameters of innate immunity in elderly volunteers. It remains to be determined whether this enhancement correlates with a beneficial effect on the health of the elderly population. PMID:20236323

  12. Analysing the risk of LNG carrier operations

    International Nuclear Information System (INIS)

    This paper presents a generic, high-level risk assessment of the global operation of ocean-going liquefied natural gas (LNG) carriers. The analysis collects and combines information from several sources such as an initial hazid, a thorough review of historic LNG accidents, review of previous studies, published damage statistics and expert judgement, and develops modular risk models for critical accident scenarios. In accordance with these risk models, available information from different sources has been structured in the form of event trees for different generic accident categories. In this way, high-risk areas pertaining to LNG shipping operations have been identified. The major contributions to the risk associated with LNG shipping are found to stem from five generic accident categories, i.e. collision, grounding, contact, fire and explosion, and events occurring while loading or unloading LNG at the terminal. Of these, collision risk was found to be the highest. According to the risk analysis presented in this paper, both the individual and the societal risk level associated with LNG carrier operations lie within the As Low As Reasonable Practicable (ALARP) area, meaning that further risk reduction should be required only if available cost-effective risk control options could be identified. This paper also includes a critical review of the various components of the risk models and hence identifies areas of improvements and suggests topics for further research

  13. Influence of carrier on the performance of dry powder inhalers.

    Science.gov (United States)

    Saint-Lorant, G; Leterme, P; Gayot, A; Flament, M P

    2007-04-01

    The aim of this work is to study carriers which can become alternatives to monohydrate lactose in dry powder inhalers and to consider particle parameters that influence adhesion between drug and carrier in dry powder inhalers. Different forms of mannitol, lactose and maltitol were mixed with either terbutaline sulphate or formoterol fumarate. The blends were submitted to different adhesion tests where drug detachment from the carrier was obtained either through mechanical vibration or by aspiration. Parameters like particle shape, roughness, amorphous content and cristalline form may affect interactions between drug and carrier. In our case, crystallized forms of the carrier offered lower adhesion but better release of the active ingredient than spray-dried forms. The crystallized mannitol produced maximal fine particle dose. The blends of the mannitols and the two active ingredients gave different results. The two techniques used to assess the adhesion of drugs to carrier particles provide complementary information about drug/carrier interactions and detachment. The mechanical sieving allows to assess blend stability and the air-jet sieving makes it possible to determine how easily the drug separates from carrier. For the drugs tested, the results of fine particle doses are in agreement with the Alpine air-jet sieve results. The tests used are helpful for the choice of a new carrier in the field of the development of new carriers for dry powder inhalers. PMID:17113733

  14. Features of charge carrier transport determined from carrier extraction current in .mu.c-Si:H

    Czech Academy of Sciences Publication Activity Database

    Juška, G.; Arlauskas, K.; Nekrašas, N.; Stuchlík, Jiří; Niquille, X.; Wyrsch, N.

    299-302, - (2002), s. 375-379. ISSN 0022-3093 Grant ostatní: VMSF(LT) 01SP-02 Institutional research plan: CEZ:AV0Z1010914 Keywords : mobility of majority carriers * photoconductivity transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.435, year: 2002

  15. 47 CFR 69.105 - Carrier common line for non-price cap local exchange carriers.

    Science.gov (United States)

    2010-10-01

    ... residential and single-line business lines multiplied by the difference between the residential and single-line business End User Common Line rate cap and the lesser of $6.50 or the non-price cap local exchange... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier common line for non-price cap...

  16. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  17. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation < or = 92%) and increased heart rate (> 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p < 0.002). Thus, postoperative supplementary oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  18. Oxygen treatment of cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads C J; Jensen, Rigmor H

    2014-01-01

    PURPOSE: Our aim was to review the existing literature to document oxygen's therapeutic effect on cluster headache. METHOD: A PubMed search resulted in 28 hits, and from these and their references we found in total 11 relevant studies. We included six studies that investigated the efficacy of...... oxygen treatment. One study is observational and the remaining five are RCTs. Another five studies were on hyperbaric oxygen treatment hereof two case studies. CONCLUSION: Oxygen therapy can be administered at different flow rates. Three studies investigate the effect of low-flow oxygen, 6-7 l/min, and...... found a positive response in 56%, 75% and 82%, respectively, of the patients. One study investigates high-flow oxygen, 12 l/min, and found efficacy in 78% of attacks. The effect of hyperbaric oxygen therapy has been investigated in a few small studies and there is evidence only for an acute, but not a...

  19. Oxygen isotopes and lakes

    OpenAIRE

    Leng, Melanie; Dean, Jonathan

    2014-01-01

    Isotopes are variations of a particular chemical element. It is all to do with the number of neutrons. Oxygen has two main isotopes: 18O which has 10 neutrons and 8 protons; and 16O which has 8 neutrons and 8 protons. Although these variants have a different number of neutrons (and therefore a different atomic mass), the number of protons remains the same, and they are still classed as the same element. Isotopes are analysed in terms of ratios such as 18O/16O which is shortened to δ18O (δ...

  20. Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers.

    Science.gov (United States)

    Ghasemzadeh-Moghaddam, H; Neela, V; van Wamel, W; Hamat, R A; Shamsudin, M Nor; Hussin, N Suhaila Che; Aziz, M N; Haspani, M S Mohammad; Johar, A; Thevarajah, S; Vos, M; van Belkum, A

    2015-11-01

    We performed a prospective observational study in a clinical setting to test the hypothesis that prior colonization by a Staphylococcus aureus strain would protect, by colonization interference or other processes, against de novo colonization and, hence, possible endo-infections by newly acquired S. aureus strains. Three hundred and six patients hospitalized for >7 days were enrolled. For every patient, four nasal swabs (days 1, 3, 5, and 7) were taken, and patients were identified as carriers when a positive nasal culture for S. aureus was obtained on day 1 of hospitalization. For all patients who acquired methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus via colonization and/or infection during hospitalization, strains were collected. We note that our study may suffer from false-negative cultures, local problems with infection control and hospital hygiene, or staphylococcal carriage at alternative anatomical sites. Among all patients, 22% were prior carriers of S. aureus, including 1.9% whom carried MRSA upon admission. The overall nasal staphylococcal carriage rate among dermatology patients was significantly higher than that among neurosurgery patients (n = 25 (55.5%) vs. n = 42 (16.1%), p 0.005). This conclusion held when the carriage definition included individuals who were nasal culture positive on day 1 and day 3 of hospitalization (p 0.0001). All MRSA carriers were dermatology patients. There was significantly less S. aureus acquisition among non-carriers than among carriers during hospitalization (p 0.005). The mean number of days spent in the hospital before experiencing MRSA acquisition in nasal carriers was 5.1, which was significantly lower than the score among non-carriers (22 days, p 0.012). In conclusion, we found that nasal carriage of S. aureus predisposes to rather than protects against staphylococcal acquisition in the nose, thereby refuting our null hypothesis. PMID:26183299

  1. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    Science.gov (United States)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  2. Composite oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  3. Cerebral oxygenation and hyperthermia

    Directory of Open Access Journals (Sweden)

    AnthonyRichardBain

    2014-03-01

    Full Text Available Hyperthermia is associated with marked reductions in cerebral blood flow (CBF. Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g. posture and degree of hyperthermia. The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2 causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g. hemorrhage or orthostatic challenges, an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e. 1.0°C to 2.0°C increase in body core temperature levels of hyperthermia. Future research directions are provided.

  4. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  5. Sterilization by oxygen plasma

    International Nuclear Information System (INIS)

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy

  6. Fires and Burns Involving Home Medical Oxygen

    Science.gov (United States)

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  7. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  8. DYNAMIC RESPONSE ANALYSIS OF CARRIER-BASED AIRCRAFT DURING LANDING

    Institute of Scientific and Technical Information of China (English)

    段萍萍; 聂宏; 魏小辉

    2013-01-01

    In view of the complexity of landing on the deck of aircraft carrier ,a systematic model ,composed of six-degree-of-freedom mathematic model of carrier-based aircraft ,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier , is established in the Matlab-Simulink environment , with damping function of landing gears and dynamic characteristics of tires being considered .The model ,where the car-rier movement is introduced ,is applicable for any abnormal landing condition .Moreover ,the equations of motion and relevant parameter are also derived .The dynamic response of aircraft is calculated via the variable step-size Runge-Kuta algorithm .The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details .The analytical results can provide some reference for carrier-based aircraft design and main-tenance .

  9. Computer assisted analysis of hand radiographs in infantile hypophosphatasia carriers

    International Nuclear Information System (INIS)

    Hand radiographs of 49 carriers of infantile hypophosphatasia and 67 non-carriers were evaluated using two Apple IIe Computer Programs and Apple Graphics Tablet. CAMPS was used to determine the bone lengths and calculate the metacarpophalangeal profiles. A newly developed program (ADAM) was used to determine bone density based on percent cortical area of the second metacarpal. Carriers of infantile hypophosphatasia had significantly less dense bones. (orig.)

  10. A Silicon Micromachined Gyroscope Driven by the Rotating Carrier Self

    Institute of Scientific and Technical Information of China (English)

    Fuxue Zhang; Xu Mao; Yu Liu; Nan Zhang; Wei Zhang

    2006-01-01

    This paper reported a silicon micromachined gyroscope which is driven by the rotating carrier's angular velocity, the silicon was manufactured by anisotropy etching. The design, fabrication and packing of the sensing element were introduced in the paper. The imitation experimentation and performance test have certificated that the principle of the gyroscope is correct and the gyroscope can be used to sense yawing or pitching angular velocity of the rotating carrier, and the angular velocity of the rotating carrier itself.

  11. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  12. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents

    OpenAIRE

    Bamber, Lisa; Harding, Marilyn; Butler, P. Jonathan G.; Kunji, Edmund R.S.

    2006-01-01

    Mitochondrial carriers are believed widely to be homodimers both in the inner membrane of the organelle and in detergents. The dimensions and molecular masses of the detergent and protein–detergent micelles were measured for yeast ADP/ATP carriers in a range of different detergents. The radius of the carrier at the midpoint of the membrane, its average radius, its Stokes' radius, its molecular mass, and its excluded volume were determined. These parameters are consistent with the known struct...

  13. Blind Estimation of Multiple Carrier Frequency Offsets

    CERN Document Server

    Yu, Yuanning; Poor, H Vincent; Koivunen, Visa

    2007-01-01

    Multiple carrier-frequency offsets (CFO) arise in a distributed antenna system, where data are transmitted simultaneously from multiple antennas. In such systems the received signal contains multiple CFOs due to mismatch between the local oscillators of transmitters and receiver. This results in a time-varying rotation of the data constellation, which needs to be compensated for at the receiver before symbol recovery. This paper proposes a new approach for blind CFO estimation and symbol recovery. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual Multiple-Input Multiple-Output (MIMO) problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently transform the multiple CFOs estimation problem into many independent single CFO estimation problems. Furthermore, an initial estimate of the CFO is obtained from the phase of the MIMO system response. The Cramer-Rao Lower bound is also derived, and the la...

  14. Hot carrier injection degradation under dynamic stress

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under Vg=0V and Vd = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under Vg = -1.8 V and Vd = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained.

  15. Microemulsions as carriers for therapeutic molecules.

    Science.gov (United States)

    Mehta, Surinder K; Kaur, Gurpreet

    2010-01-01

    The thrust for finding newer drug delivery systems for exiting therapeutic molecules has opened a wide window for colloidal systems. Due to the presence of different domains of variable polarity in the microemulsion systems, they show a huge potential to be used as drug delivery vehicles for a variety of drugs. The use of microemulsion as drug delivery vehicles through a number of routes has engaged a large number of research groups in this area. Microemulsion media finds several applications ranging from drug delivery to drug nanoparticle templating due to its ability to enhance solubility, stability and bioavailability. This review on patent articles recounts the patent literature dealing with different kind of microemulsion carriers used via different routes, solubility and permeability enhancement and its use as a template for nanoparticle synthesis. PMID:19807681

  16. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  17. Carrier Aggregation for LTE-Advanced

    DEFF Research Database (Denmark)

    Pedersen, Klaus Ingemann; Frederiksen, Frank; Rosa, Claudio;

    2011-01-01

    aggregated. This paper presents a summary of the supported CA scenarios as well as an overview of the CA functionality for LTE-Advanced with special emphasis on the basic concept, control mechanisms, and performance aspects. The discussion includes definitions of the new terms primary cell (PCell) and......Carrier aggregation (CA) is one of the key features for LTE-Advanced. By means of CA, users gain access to a total bandwidth of up to 100 MHz in order to meet the IMT-Advanced requirements. The system bandwidth may be contiguous, or composed of several non-contiguous bandwidth chunks, which are...... secondary cell (SCell), mechanisms for activation and deactivation of CCs, and the new cross-CC scheduling functionality for improved control channel optimizations. We also demonstrate how CA can be used as an enabler for simple yet effective frequency domain interference management schemes. In particular...

  18. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  19. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease.

    Science.gov (United States)

    Jiang, Shan; Tang, Ling; Zhao, Na; Yang, Wanling; Qiu, Yu; Chen, Hong-Zhuan

    2016-01-01

    APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD

  20. Light emission from hot carriers in polar semiconductor devices

    Science.gov (United States)

    Lugli, Paolo; Di Carlo, Aldo; Vogl, Peter; Zandler, G.

    1993-11-01

    We present a theoretical study of hot-carrier induced light emission in III-V semiconductor devices. Carrier heating under the intense electric fields present under high bias conditions are studied via a selfconsistent Monte Carlo simulation. The carrier distribution functions obtained from the simulation are then incorporated into a pseudo-potential algorithm that describes the direct optical transitions and calculates the corresponding spectra. We show that the light emission due to hot carriers is dominated by direct radiative interband transitions within the conduction and valence bands. Good agreement between theory and experiment is obtained for GaAs MESFET and GaAs/AlGaAs HBTs.

  1. Preparation of microorganism free carrier for biofertilizer product

    International Nuclear Information System (INIS)

    Biofertilizer has been identified as an alternative or complementary to chemical fertilizer to increase soil fertility and crop production in sustainable farming. Biofertilizers are products containing living cells of different types of known microorganisms that may increase crop productivity through N2 fixation, phosphate solubilization or stimulation of plant growth by synthesising phytohormones. A good biofertilizer product needs a good carrier or substrate. A good carrier is free from microbial contamination and can optimise the growth of the biofertilizer microorganisms. Compost is commonly used as carrier or substrate for biofertilizer microorganisms. In the present study, compost produced by Nuclear Malaysia using the Natural Farming was used as a carrier for the biofertilizer products. Gamma irradiation has been used to produce a ?clean? or sterile carrier. The sterilization effect of the carrier was checked by using serial dilution technique. Carriers that were irradiated at 50 kGy of gamma irradiation were found to be sterile. The shelf life of the sterile carriers was also determined. After six months the compost carriers were still free from microbial contamination. (Author)

  2. Carrier-Density-Dependent Lattice Stability in InSb

    International Nuclear Information System (INIS)

    The ultrafast decay of the x-ray diffraction intensity following laser excitation of an InSb crystal has been utilized to observe carrier dependent changes in the potential energy surface. For the first time, an abrupt carrier dependent onset for potential energy surface softening and the appearance of accelerated atomic disordering for a very high average carrier density have been observed. Inertial dynamics dominate the early stages of crystal disordering for a wide range of carrier densities between the onset of crystal softening and the appearance of accelerated atomic disordering

  3. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  4. Fertility preservation in BRCA mutation carriers.

    Science.gov (United States)

    Revelli, Alberto; Salvagno, Francesca; Delle Piane, Luisa; Casano, Simona; Evangelista, Francesca; Pittatore, Giulia; Razzano, Alessandra; Marchino, Gian L; Gennarelli, Gianluca; Benedetto, Chiara

    2016-10-01

    According to enhanced long-term survival rates of these patients, interest in fertility preservation for young women facing gonadotoxic therapies is increasing. Women who carry a mutation in the BRCA1 or BRCA2 gene have a specifically increased lifetime risk of developing breast and tubo-ovarian cancer. Moreover, they are at high risk of undergoing premature infertility due to the medical interventions that are often performed in order to reduce cancer risk or treat an already existing malignancy. Fertility issues are relevant for healthy BRCA mutation carriers, whose family-planning decisions are often influenced by the need of prophylactic bilateral salpingo-oophorectomy at young age. In BRCA mutation carriers who have a breast cancer at young age, the oncostatic treatment is associated with a significant ovarian toxicity linked to chemotherapy as well as to the long lasting hormonotherapy and to the need of delaying pregnancy for several years. Prompt counselling about different fertility preservation options should be offered to all young girls and women at high risk of ovarian insufficiency and infertility. Validated techniques to preserve fertility include oocyte and embryo cryopreservation, while experimental techniques include ovarian suppression with GnRH-analogs during chemotherapy and ovarian tissue cryopreservation. The choice of the best strategy depends on age, type of chemotherapy, partner status, cancer type, time available for fertility preservation intervention and the risk of ovarian metastasis. All available options should be offered and can be performed alone or in combination. A crucial point is to avoid a significant delay to cancer treatment. PMID:26997146

  5. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  6. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  7. Localized Charge Carrier Transport Properties of Zn1- x Ni x O/NiO Two-Phase Composites

    Science.gov (United States)

    Joshi, D. C.; Dasari, K.; Nayak, S.; Palai, R.; Suresh, P.; Thota, S.

    2016-04-01

    We report the localized charge carrier transport of two-phase composite Zn1- x Ni x O/NiO (0 ≤ x ≤ 1) using the temperature dependence of ac-resistivity ρ ac(T) across the Néel temperature T N (= 523 K) of nickel oxide. Our results provide strong evidence to the variable range hopping of charge carriers between the localized states through a mechanism involving spin-dependent activation energies. The temperature variation of carrier hopping energy ɛ h(T) and nearest-neighbor exchange-coupling parameter J ij(T) evaluated from the small poleron model exhibits a well-defined anomaly across T N. For all the composite systems, the average exchange-coupling parameter (J ij)AVG nearly equals to 70 meV which is slightly greater than the 60-meV exciton binding energy of pure zinc oxide. The magnitudes of ɛ h (˜0.17 eV) and J ij (˜11 meV) of pure NiO synthesized under oxygen-rich conditions are consistent with the previously reported theoretical estimation based on Green's function analysis. A systematic correlation between the oxygen stoichiometry and, ɛ h(T) and J ij(T) is discussed.

  8. Epoxidation of alkenes through oxygen activation over a bifunctional CuO/Al2O3 catalyst.

    Science.gov (United States)

    Scotti, Nicola; Ravasio, Nicoletta; Zaccheria, Federica; Psaro, Rinaldo; Evangelisti, Claudio

    2013-03-01

    The epoxidation of alkenes was carried out over a CuO/Al(2)O(3) catalyst using cumene as an oxygen carrier, through a one-pot reaction, giving high conversion and selectivity with different substrates. Trans-β-methylstyrene gave the corresponding epoxide in 95% yield after 3 h. PMID:23358661

  9. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  10. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems.

    Science.gov (United States)

    Ooi, Jesslynn; Traini, Daniela; Hoe, Susan; Wong, William; Young, Paul M

    2011-07-15

    There is plenty of evidence supporting the notion that the size of the carrier influences the aerosolisation performance of drug from a drug-carrier blend. Interestingly, that evidence is contradictory in places and the study of such mechanisms is fraught by the compounding variables associated with comparing crystalline powders (e.g. as size is varied so may the shape, surface chemistry, roughness and the amount of fine excipients). To overcome these limitations, a series of model polystyrene spheres were used to study the influence of size on aerosol performance. Three polystyrene sphere carriers (TS-80, TS-250 and TS-500, describing their approximate diameters) were characterised using laser diffraction, atomic force microscopy, colloid probe microscopy, electron microscopy, true density and dynamic vapour sorption. The model carriers were blended with micronized salbutamol sulphate (67.5:1 ratios) and the aerosolisation performance was tested using a multistage liquid impinger at a range of flow rates (40-100 lmin(-1)). Physico-chemical analysis of the carriers indicated that all carriers were spherical with similar roughness and densities. Furthermore, the adhesion force of drug to the carrier surfaces was independent of carrier size. Significant differences in drug aerosolisation were observed with both flow rate and carrier size. In general, as carrier size was increased, aerosol performance decreased. Furthermore, as flow rate was increased so did performance. Such observations suggest that higher energy processes drive aerosolisation, however this is likely to be due to the number of impaction events (and associated frictional and rotational forces) rather than the actual collision velocity (since the larger carriers had increased momentum and drag forces). This study shows that, in isolation of other variables, as carrier size increases, a concurrent decrease in drug aerosolisation performance is observed. PMID:21501674

  11. Carrier-added and no-carrier-added syntheses of [18F]spiroperidol and [18F]haloperidol

    International Nuclear Information System (INIS)

    Syntheses of [18F]haloperidol and [18F]spiroperidol in both no-carrier-added and carrier-added forms have been accomplished. The no-carrier-added [18F]butyrophenone neuroleptics were prepared in low (18F-neuroleptics were prepared in better (5-17%) yields by 18F-for-19F nucleophilic aromatic substitution. The preparation of all synthetic precursors, and procedures for radiolabeling are fully described. (author)

  12. Trapping of the Enoyl-Acyl Carrier Protein Reductase-Acyl Carrier Protein Interaction.

    Science.gov (United States)

    Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G; Beld, Joris; La Clair, James J; Burkart, Michael D

    2016-03-30

    An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein-protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP-triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266

  13. Retinal oxygen extraction in humans

    Science.gov (United States)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  14. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer’s Disease

    Science.gov (United States)

    Jiang, Shan; Tang, Ling; Zhao, Na; Yang, Wanling; Qiu, Yu; Chen, Hong-Zhuan

    2016-01-01

    APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer’s disease (AD) and accounts for 50–65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers’ module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson’s disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes

  15. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG)

  16. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Tingkun, E-mail: gutk@sdu.edu.cn [School of Electrical Engineering, Shandong University, Jinan 250061 (China)

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  17. Carrier-carrier and carrier-phonon scattering in the low-density and low-temperature regime for resonantly pumped semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lorke, M.; Jahnke, F. [Institute for Theoretical Physics, University of Bremen (Germany); Gartner, P. [Institute for Theoretical Physics, University of Bremen (Germany); National Institute for Materials Physics, POB MG-7, Bucharest-Magurele (Romania); Seebeck, J.

    2009-02-15

    We study carrier relaxation due to Coulomb scattering and interaction with LO-phonons in semiconductor quantum dots at low temperatures. Scattering for different relaxation process are evaluated for various carrier distributions that correspond to stages of the typical relaxation kinetics after optical excitation with a weak pulse, generating on average less than one electron per quantum dot. Even when the spacing of the quantum dot energy levels does not match the LO-phonon energy, we.nd that carrier-LO-phonon scattering, in addition to electronelectron and electron-hole interaction, provides efficient carrier relaxation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Subsurface Imaging and Sensing of Charge Carrier Movements in the Earth’s Crust

    Science.gov (United States)

    Dahlgren, R.; Freund, F. T.; Lazarus, M.; Wang, J. S.; Rekenthaler, D.; Peters, R. D.; Duma, G.

    2009-12-01

    The DUSEL facility will enable unique opportunities for field experiments that would otherwise not be possible at surface facilities (Lesko, K.T., TAUP, 2007) and support a host of undergraduate and graduate educational projects. In this presentation, some of the proposed geophysics experiments will be described as part of the subsurface Imaging and Sensing (SIS) project to study charge carrier movement in crustal rock as a function of various perturbations. The electric conductivity of the Earth’s crust is dominated by positive hole charge carriers, e.g. mobile electron vacancy defects (EVD) in the oxygen anion sublattice of minerals that make up the bulk of crustal rocks. We are interested in (i) coupling of fundamental processes linked to the activation of additional EVDs in rocks deep in the crust subjected to tectonic stresses and the outflow of these charge carriers into the surrounding rocks, (ii) their manifestation across the electromagnetic spectrum and other measuands, (iii) induced forces that arise when these charge carriers are subjected to the episodic or daily magnetic field variations coming from geomagnetic storms or from the ionospheric current vortex, and (iv) in the movement of positive holes in the shallow crust when a thunderstorm system drifts overhead, dragging along a charge cloud in the ground. We propose to conduct active rock stressing experiments in situ using expanding grout technique (performing electrical, electromagnetic, and VolksMeter tilt measurements) and to monitor the electric and magnetic field variations penetrating into the Earth’s crust. Additionally optical phenomena will be investigated (anomalous infrared signatures, visible light arising from atomic oxygen and corona discharge, and infrared imaging). If budget permits, measurement of changes of acoustic velocity, evolution of chemical species (H2, O*, Rn, etc) and radar reflectivity as a function of stresses will also be attempted. We propose to study the charge

  19. A Lanchester model of submarine attack on a carrier battlegroup

    OpenAIRE

    Eagle, James N.

    1987-01-01

    A Lanchester model is developed for a battlegroup ASW engagement. Two variations are included. In the first, long-range missile firing submarines, short-range missile or torpedo firing submarines, and submarines firing only torpedoes distribute their attack uniformly over battlegroup escort ships and carriers. In the second variation, the attack is concentrated on the carriers.

  20. Carriers of foot-and-mouth disease virus: a review

    NARCIS (Netherlands)

    Moonen, P.; Schrijver, R.

    2000-01-01

    This review describes current knowledge about persistent foot-and-mouth disease virus (FMDV) infections, the available methods to detect carrier animals, the properties of persisting virus, the immunological mechanisms, and the risk of transmission. In particular, knowledge about the carrier state,

  1. Modeling of carrier dynamics in quantum-well electroabsorption modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate...

  2. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: foreign air carriers. 252.5 Section 252.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers....

  3. 14 CFR 252.3 - Smoking ban: air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: air carriers. 252.3 Section 252.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air...

  4. 27 CFR 26.117 - Action by carrier.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Procedure at Port of Arrival § 26.117 Action by carrier. The carrier of the merchandise specified on the Form 487B shall, at the time of unlading at the port of...

  5. Proposal for tutorial: Resilience in carrier Ethernet transport

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Wessing, Henrik; Ruepp, Sarah Renée

    2009-01-01

    This tutorial addresses how Carrier Ethernet technologies can be used in the transport network to provide resilience to the packet layer. Carrier Ethernet networks based on PBB-TE and T-MPLS/MPLS-TP are strong candidates for reliable transport of triple-play services. These technologies offer...

  6. Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso; Rasmussen, Peter Omand; Pedersen, John Kim

    2012-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on simulations and experimental measurements, it is shown that the spread effect of the discrete components from the motor current spectra and acoustic spectra is...

  7. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  8. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  9. 50 CFR 14.105 - Consignment to carrier.

    Science.gov (United States)

    2010-10-01

    ... Wild Mammals and Birds to the United States § 14.105 Consignment to carrier. (a) No carrier shall accept any live wild mammal or bird for transport to the United States that has not been examined within... attendant. (c) A sick or injured wild mammal or bird shall be permitted transport to the United States...

  10. Heat to electricity conversion by cold carrier emissive energy harvesters

    Science.gov (United States)

    Strandberg, Rune

    2015-12-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  11. Heat to electricity conversion by cold carrier emissive energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, Rune [Department of Engineering Sciences, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad (Norway)

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  12. Current Consumption Measurements with a Carrier Aggregation Smartphone

    DEFF Research Database (Denmark)

    Sanchez-Mejias, Rafael; Guo, Yu; Lauridsen, Mads; Mogensen, Preben; Ángel Maestro Ruiz de Temiño, Luis

    Carrier Aggregation (CA) is introduced in LTE release 10 to improve data rates by allowing the User Equipment (UE) to receive data on more than one LTE carrier. The related increased complexity is expected to affect the UE current consumption, but yet no empirical evaluation has been published on...

  13. Quality of service modeling and analysis for carrier ethernet

    NARCIS (Netherlands)

    Malhotra, R.

    2008-01-01

    Today, Ethernet is moving into the mainstream evolving into a carrier grade technology. Termed as Carrier Ethernet it is expected to overcome most of the shortcomings of native Ethernet. It is envisioned to carry services end-to-end serving corporate data networking and broadband access demands as w

  14. AQUASOMES: A NOVEL CARRIER FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Vishal Sutariya

    2012-03-01

    Full Text Available Nanobiopharmaceutics involves delivery of biopharmaceutical product through different biomaterials like multifunctional nanoparticles, quantum dots, aquasomes, superparamagnetic iron oxide crystals, and liposomes dendrimers. Nanotechnology has emerged fields of biomedical research in the last few decades the presents context is an attempt to present the brief information about nanobiotechnological applications. Aquasomes are nanoparticulate carrier system but instead of being simple nanoparticles these arse three layered self assembled structures, comprised of a solid phase nanocrystalline core coated with oligomeric film to which biochemically active molecules are adsorbed with or without modification. Aquasomes are spherical 60–300 nm particles used for drug and antigen delivery. Aquasomes discovery comprises a principle from microbiology, food chemistry, biophysics and many discoveries including solid phase synthesis, supramolecular chemistry, molecular shape change and self assembly. Three types of core materials are mainly used for producing aquasomes: tin oxide, nanocrystalline carbon ceramics (diamonds and brushite (calcium phosphate dihydrate. Calcium phosphate is the core of interest, owing to its natural presence in the body. The brushite is unstable and converts to hydroxyapatite upon prolong storage. Hydroxyapatite seems, therefore, a better core for the preparation of aquasomes. It is widely used for the preparation of implants for drug delivery. The solid core provides the structural stability, while the carbohydrate coating protects against dehydration and stabilizes the biochemically active molecules. This property of maintaining the conformational integrity of bioactive molecules has led to the proposal that aquasomes have potential as a carrier system for delivery of peptide, protein, hormones, antigens and genes to specific sites. Aquasome deliver their content through specific targeting, molecular sheiling and slow

  15. Vital Organ Tissue Oxygenation After Serial Normovolemic Exchange Transfusion With HBOC-201 in Anesthetized Swine

    OpenAIRE

    Muir, William W; Ilangovan, Govindasamy; Zweier, Jay L.; Moon-Massat, Paula F.; Rentko, Virginia T.

    2011-01-01

    This study determined the effects of serial, normovolemic, stepwise exchange transfusions with either 6% human serum albumin (HSA) or the hemoglobin-based oxygen carrier, HBOC-201, on tissue oxygenation of the heart, brain and kidney in intact anaesthetized pigs. Exchange transfusions to 10%, 30% and 50% of the pigs total blood volume were completed at a withdrawal rate of 1.0 ml/kg/min followed by an infusion rate of 0.5 ml/kg/min of HBOC-201 or iso-oncotically matched 6% HSA. Measurements i...

  16. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus;

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and...... attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to...

  17. Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Estaran Tolosa, Jose Manuel;

    2014-01-01

    . The algorithm is tested in a mixed line rate optical transmission scenario employing dual polarization 448 Gb/s 16-QAM signal surrounded by eight on-off keying channels in a 50 GHz grid. It is shown that joint carrier synchronization and data detection are more robust towards optical transmitter......In this paper, joint estimation of carrier frequency, phase, signal means and noise variance, in a maximum likelihood sense, is performed iteratively by employing expectation maximization. The parameter estimation is soft decision driven and allows joint carrier synchronization and data detection...... impairments and nonlinear phase noise, compared to digital phase-locked loop (PLL) followed by hard decisions. Additionally, soft decision driven joint carrier synchronization and detection offers an improvement of 0.5 dB in terms of input power compared to hard decision digital PLL based carrier...

  18. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Schwartzberg, Adam M; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast pump-probe measurements of plasmonic nanostructures probe the non-equilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions which allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly non-thermal excited carriers and longer-lived thermalizing carriers.

  19. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  20. Fundamental limitations of hot-carrier solar cells

    Science.gov (United States)

    Kirk, A. P.; Fischetti, M. V.

    2012-10-01

    Sunlight-generated hot-carrier transport in strongly absorbing direct band-gap GaAs—among the most optimal of semiconductors for high-efficiency solar cells—is simulated with an accurate full-band structure self-consistent Monte Carlo method, including short- and long-range Coulomb interaction, impact ionization, and optical and acoustic phonon scattering. We consider an ultrapure 100-nm-thick intrinsic GaAs absorber layer designed with quasiballistic carrier transport that achieves complete photon absorption down to the band edge by application of careful light trapping and that has a generous hot-carrier retention time of 10 ps prior to the onset of carrier relaxation. We find that hot-carrier solar cells can be severely limited in performance due to the substantially reduced current density caused by insufficient extraction of the widely distributed hot electrons (holes) through the requisite energy selective contacts.