WorldWideScience

Sample records for casimir force

  1. Repulsive casimir forces

    International Nuclear Information System (INIS)

    We discuss repulsive Casimir forces between dielectric materials with nontrivial magnetic susceptibility. It is shown that considerations based on the naive pairwise summation of van der Waals and Casimir-Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir force but even the wrong sign of the force when materials with high dielectric and magnetic responses are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces may be of importance both for experimental study and for nanomachinery applications

  2. Quantized Casimir Force

    OpenAIRE

    Tse, Wang-Kong; Macdonald, A. H.

    2012-01-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large separation (d) limit where retardation effects are essential we find i) that the Casimir force is quantized in units of 3\\hbar c \\alpha^2/(8\\pi^2 d^4), and ii) that the force is repulsive for mirrors with same type of carrier, and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore elec...

  3. Quantized Casimir force.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2012-12-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3ħcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state. PMID:23368242

  4. Casimir force for electrolytes

    OpenAIRE

    Høye, J. S.

    2009-01-01

    The Casimir force between a pair of parallell plates filled with ionic particles is considered. We use a statistical mechanical approach and consider the classical high temperature limit. In this limit the ideal metal result with no transverse electric (TE) zero frequency mode is recovered. This result has also been obtained by Jancovici and \\v{S}amaj earlier. Our derivation differs mainly from the latter in the way the Casimir force is evaluated from the correlation function. By our approach...

  5. Casimir force of expulsion

    OpenAIRE

    Fateev, Evgeny G.

    2012-01-01

    The possibility in principle is shown that the noncompensated Casimir force can exist in nanosized open metal cavities. The force shows up as time-constant expulsion of open cavities toward their least opening. The optimal parameters of the angles of the opening, of "generating lines" of cavities and their lengths are found at which the expulsive force is maximal. The theory is created for trapezoid configurations, in particular for parallel mirrors which experience both the transverse Casimi...

  6. Motional Casimir force

    OpenAIRE

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    We study the situation where two point like mirrors are placed in the vacuum state of a scalar field in a two-dimensional spacetime. Describing the scattering upon the mirrors by transmittivity and reflectivity functions obeying unitarity, causality and high frequency transparency conditions, we compute the fluctuations of the Casimir forces exerted upon the two motionless mirrors. We use the linear response theory to derive the motional forces exerted upon one mirror when it moves or when th...

  7. Repulsive Casimir and Casimir-Polder Forces

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A

    2012-01-01

    Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general "Lifshitz" configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso's group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be reviewed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, ...

  8. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  9. Casimir force driven ratchets

    OpenAIRE

    Emig, Thorsten

    2007-01-01

    We explore the non-linear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time-periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizeable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are descri...

  10. Is repulsive Casimir force physical?

    OpenAIRE

    Cho, Sung Nae

    2004-01-01

    The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investigated. The configurations are: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell. The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well as the specific boundary cond...

  11. Casimir force in absorbing multilayers

    OpenAIRE

    Tomas, M. S.

    2002-01-01

    The Casimir effect in a dispersive and absorbing multilayered system is considered adopting the (net) vacuum-field pressure point of view to the Casimir force. Using the properties of the macroscopic field operators appropriate for absorbing systems and a convenient compact form of the Green function for a multilayer, a straightforward and transparent derivation of the Casimir force in a lossless layer of an otherwise absorbing multilayer is presented. The resulting expression in terms of the...

  12. Casimir force between metallic mirrors

    OpenAIRE

    Lambrecht, Astrid; Reynaud, Serge

    1999-01-01

    We study the influence of finite conductivity of metals on the Casimir effect. We put the emphasis on explicit theoretical evaluations which can help comparing experimental results with theory. The reduction of the Casimir force is evaluated for plane metallic plates. The reduction of the Casimir energy in the same configuration is also calculated. It can be used to infer the reduction of the force in the plane-sphere geometry through the `proximity theorem'. Frequency dependent dielectric re...

  13. Casimir force on amplifying bodies

    OpenAIRE

    Sambale, Agnes; Welsch, Dirk-Gunnar; Buhmann, Stefan Yoshi; Dung, Ho Trung

    2009-01-01

    Based on a unified approach to macroscopic QED that allows for the inclusion of amplification in a limited space and frequency range, we study the Casimir force as a Lorentz force on an arbitrary partially amplifying system of linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate that the force on a weakly polarisable/magnetisable amplifying object in the presence of a purely absorbing environment can be expressed as a sum over the Casimir--Polder forces on the excite...

  14. Casimir force between liquid metals

    Science.gov (United States)

    Esquivel-Sirvent, R.; Escobar, J. V.

    2014-08-01

    We present a theoretical calculation of the Casimir force between liquid metals at room temperature using as case studies mercury (Hg) and eutectic indium gallium (EInGa). The surface tension of the liquids creates surfaces of zero roughness that are truly equipotential, an ideal characteristic for Casimir force experiments. As we show the dielectric properties of Au, EInGa and Hg are very similar and the difference on the Casimir force between Au and EInGa and Au and Hg is less than 4%. Based on these results, a modification of the IUPUI experiment for detecting deviations of Newtonian gravity is proposed.

  15. Casimir force between bimetallic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barcenas, J.; Reyes, L.; Esquivel Sirvent, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364 Ciudad Universitaria, Mexico, 01000 (Mexico)

    2005-05-01

    We present a general method for calculating the Casimir force between heterostructures using an effective surface impedance approach. Within this formalism we study the effect of thin film coatings on the force. As a case study we present results for a system made of alternate layers of Mg and Ni and evaluate the effect that Pd coatings have on the Casimir force. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Stochastic Quantization and Casimir Forces

    CERN Document Server

    Rodriguez-Lopez, Pablo; Soto, Rodrigo

    2011-01-01

    In this paper we show how the stochastic quantization method developed by Parisi and Wu can be used to obtain Casimir forces. Both quantum and thermal fluctuations are taken into account by a Langevin equation for the field. The method allows the Casimir force to be obtained directly, derived from the stress tensor instead of the free energy. It only requires the spectral decomposition of the Laplacian operator in the given geometry. The formalism provides also an expression for the fluctuations of the force. As an application we compute the Casimir force on the plates of a finite piston of arbitrary cross section. Fluctuations of the force are also directly obtained, and it is shown that, in the piston case, the variance of the force is twice the force squared.

  17. Casimir force between eccentric cylinders

    OpenAIRE

    Dalvit, Diego A. R.; Lombardo, Fernando C.; Mazzitelli, Francisco D.; Onofrio, Roberto

    2004-01-01

    We consider the Casimir interaction between a cylinder and a hollow cylinder, both conducting, with parallel axis and slightly different radii. The Casimir force, which vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the proximity approximation. The cylindrical configuration offers various experimental advantages with respect to the parallel planes or the plane-sphere geometries, leading to favourable conditions for the search of extra-gravitation...

  18. Repulsive Casimir Force: Sufficient Conditions

    OpenAIRE

    Rosa, Luigi; Lambrecht, Astrid

    2010-01-01

    In this paper the Casimir energy of two parallel plates made by materials of different penetration depth and no medium in between is derived. We study the Casimir force density and derive analytical constraints on the two penetration depths which are sufficient conditions to ensure repulsion. Compared to other methods our approach needs no specific model for dielectric or magnetic material properties and constitutes a complementary analysis.

  19. Comment on Repulsive Casimir Forces

    CERN Document Server

    Iannuzzi, D

    2003-01-01

    A recent theoretical calculation shows that the Casimir force between two parallel plates can be repulsive for plates with nontrivial magnetic properties (O. Kenneth et al., Phys. Rev. Lett. 89, 033001 (2002)). According to the authors, the effect may be observed with known materials, such as ferrites and garnets, and it might be possible to engineer micro- or nanoelectromechanical systems (MEMS or NEMS) that could take advantage of a short range repulsive force. Here we show that on the contrary the Casimir force between two parallel plates in vacuum at micron and submicron distance is always attractive.

  20. Casimir force between dispersive magnetodielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, M.S. [Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia)]. E-mail: tomas@thphys.irb.hr

    2005-07-25

    We extend our approach to the Casimir effect between absorbing dielectric multilayers [M.S. Tomas, Phys. Rev. A 66 (2002) 052103] to magnetodielectric systems. The resulting expression for the force is used to numerically explore the effect of the medium dispersion on the attractive/repulsive force in a metal-magnetodielectric system described by the Drude-Lorentz permittivities and permeabilities.

  1. Casimir force between dispersive magnetodielectrics

    OpenAIRE

    Tomas, M. S.

    2004-01-01

    We extend our approach to the Casimir effect between absorbing dielectric multilayers [M. S. Tomas, Phys. Rev. A 66, 052103 (2002)] to magnetodielectric systems. The resulting expression for the force is used to numerically explore the effect of the medium dispersion on the attractive/repulsive force in a metal-magnetodielectric system described by the Drude-Lorentz permittivities and permeabilities.

  2. Pulsating Casimir force

    OpenAIRE

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M.

    2007-01-01

    Based on the Lifshitz theory we show that the illumination of one (Si) plate in the three-layer systems Au--ethanol--Si, Si--ethanol--Si and $\\alpha$-Al${}_2$O${}_3$--ethanol--Si with laser pulses can change the Casimir attraction to Casimir repulsion and vice versa. The proposed effect opens novel opportunities in nanotechnology to actuate the periodic movement in electro- and optomechanical micromachines based entirely on the zero-point oscillations of the quantum vacuum without the action ...

  3. Pulsating Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany); Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Mostepanenko, V M [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2007-08-24

    Based on the Lifshitz theory we show that the illumination of one (Si) plate in the three-layer systems Au-ethanol-Si, Si-ethanol-Si and {alpha}-Al{sub 2}O{sub 3}-ethanol-Si with laser pulses can change the Casimir attraction to Casimir repulsion and vice versa. The proposed effect opens novel opportunities in nanotechnology to actuate the periodic movement in electro- and optomechanical micromachines based entirely on the zero-point oscillations of the quantum vacuum without the action of mechanical springs. (fast track communication)

  4. Casimir force on a piston

    OpenAIRE

    Cavalcanti, R. M.

    2003-01-01

    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a > b.

  5. Archimedes Force on Casimir Apparatus

    CERN Document Server

    Shevchenko, Vladimir

    2016-01-01

    We address a problem of Casimir apparatus in dense medium and weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle, with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  6. Nonadditivity of critical Casimir forces

    Science.gov (United States)

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-04-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

  7. Electrostatic patch potentials in Casimir force measurements

    Science.gov (United States)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  8. Detecting Chameleons through Casimir Force Measurements

    OpenAIRE

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Mota, David F.; Shaw, Douglas

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet ...

  9. The Casimir force for passive mirrors

    OpenAIRE

    Lambrecht, A.; Jaekel, M. -T.; Reynaud, S.

    1998-01-01

    We show that the Casimir force between mirrors with arbitrary frequency dependent reflectivities obeys bounds due to causality and passivity properties. The force is always smaller than the Casimir force between two perfectly reflecting mirrors. For narrow-band mirrors in particular, the force is found to decrease with the mirrors bandwidth.

  10. Casimir force: an alternative treatment

    OpenAIRE

    Silva, P. R.

    2009-01-01

    The Casimir force between two parallel uncharged closely spaced metallic plates is evaluated in ways alternatives to those usually considered in the literature. In a first approximation we take in account the suppressed quantum numbers of a cubic box, representing a cavity which was cut in a metallic block. We combine these ideas with those of the MIT bag model of hadrons, but adapted to non-relativistic particles. In a second approximation we consider the particles occupying the energy level...

  11. No-nonsense Casimir force

    OpenAIRE

    Herdegen, Andrzej

    2000-01-01

    Two thin conducting, electrically neutral, parallel plates forming an isolated system in vacuum exert attracting force on each other, whose origin is the quantum electrodynamical interaction. This theoretical hypothesis, known as Casimir effect, has been also confirmed experimentally. Despite long history of the subject, no completely convincing theoretical analysis of this effect appears in the literature. Here we discuss the effect (for the scalar field) anew, on a revised physical and math...

  12. Numerical calculation of Casimir forces

    OpenAIRE

    Kilen, Isak Ragnvald

    2012-01-01

    In this thesis a set of regularized boundary integral equation are introduced that can be used to calculate the Casimir force induced by a two dimensional scalar field. The boundary integral method is compared to the functional integral method and mode summation where possible. Comparisons are done for the case of two parallel plates, two concentric circles and two adjacent circles. The results indicate that the boundary integral method correctly predicts the geometry dependence of the C...

  13. Surface impedance and the Casimir force

    OpenAIRE

    Bezerra, V.B.; Klimchitskaya, G. L.; Romero, C.

    2001-01-01

    The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a shpere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general form...

  14. Reduction of the Casimir force using aerogels

    OpenAIRE

    Esquivel-Sirvent, R.

    2007-01-01

    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the por...

  15. Halving the Casimir force with Conductive Oxides

    OpenAIRE

    WIJNGAARDEN, R. J.; Man, de, F.H.; Heeck, K.; Iannuzzi, D

    2009-01-01

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presenc...

  16. QFT Limit of the Casimir Force

    OpenAIRE

    Scandurra, Marco

    2003-01-01

    High precision measurements of the Casimir effect and recent applications to micro electromechanical systems raise the question of how large the Casimir force can be made in an arbitrarily small device. Using a simple model for the metal boundary in which the metal is perfectly conducting at frequencies below plasma frequency omega_p and perfectly transparent above such frequency, I find that the Casimir force for plate separations a

  17. Nonequilibrium thermal Casimir-Polder forces

    International Nuclear Information System (INIS)

    We study the nonequilibrium Casimir-Polder force on an atom prepared in an incoherent superposition of internal energy eigenstates, which is placed in a magnetoelectric environment of nonuniform temperature. After solving the coupled atom-field dynamics within the framework of macroscopic quantum electrodynamics, we derive a general expression for the thermal Casimir-Polder force.

  18. Casimir-force-driven ratchets.

    Science.gov (United States)

    Emig, T

    2007-04-20

    We explore the nonlinear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise. PMID:17501407

  19. Halving the Casimir force with conductive oxides.

    Science.gov (United States)

    de Man, S; Heeck, K; Wijngaarden, R J; Iannuzzi, D

    2009-07-24

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of micro- and nanoelectromechanical systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals. PMID:19659332

  20. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  1. Casimir force: an alternative treatment

    CERN Document Server

    Silva, P R

    2009-01-01

    The Casimir force between two parallel uncharged closely spaced metallic plates is evaluated in ways alternatives to those usually considered in the literature. In a first approximation we take in account the suppressed quantum numbers of a cubic box, representing a cavity which was cut in a metallic block. We combine these ideas with those of the MIT bag model of hadrons, but adapted to non-relativistic particles. In a second approximation we consider the particles occupying the energy levels of the Bohr atom, so that the Casimir force depends explicitly on the fine structure constant alpha. In both treatments, the mean energies which have explicit dependence on the particle mass and on the maximum occupied quantum number (related to the Fermi level of the system) at the beginning of the calculations, have these dependences mutually canceled at the end of them. Finally by comparing the averaged energies computed in both approximations, we are able to make an estimate of the value of the fine structure consta...

  2. Resource Letter CF-1: Casimir Force

    Energy Technology Data Exchange (ETDEWEB)

    Lamoreaux, S.K. [University of California, Los Alamos National Laboratory, Physics Division P-23, M.S. H803, Los Alamos, New Mexico 87545 (United States)

    1999-10-01

    This resource letter provides an introductory guide to the literature on the Casimir force. Journal articles and books are cited for the following topics: introductory articles and books, calculations, dynamical Casimir effect, mechanical analogs, applications, and experiments. {copyright} {ital 1999 American Association of Physics Teachers.}

  3. Casimir force between integrable and chaotic pistons

    International Nuclear Information System (INIS)

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  4. The Casimir effect: a force from nothing

    International Nuclear Information System (INIS)

    The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micro machines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micro machined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)

  5. The Casimir effect: a force from nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, Astrid [Laboratoire Kastler Brossel, Universite Pierre et Marie Curie, Ecole Normale Superieure, Centre National de Recherche Scientifique, Campus Jussieu, Case 74, Paris (France)]. E-mail: lambrecht@spectro.jussieu.fr

    2002-09-01

    The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micromachines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micromachined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)

  6. Coupled surface polaritons and the Casimir force

    CERN Document Server

    Henkel, C; Mulet, J P; Greffet, J J; Henkel, Carsten; Joulain, Karl; Mulet, Jean-Philippe; Greffet, Jean-Jacques

    2004-01-01

    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple analytical estimate of the Casimir force at short distances. We recover the result known for Drude metals without absorption and compute the correction for weakly absorbing materials.

  7. Surface Screening in the Casimir Force

    OpenAIRE

    Contreras-Reyes, Ana M.; Mochán, W. Luis

    2005-01-01

    We calculate the corrections to the Casimir force between two metals due to the spatial dispersion of their response functions. We employ model-independent expressions for the force in terms of the optical coefficients. We express the non-local corrections to the Fresnel coefficients employing the surface $d_\\perp$ parameter, which accounts for the distribution of the surface screening charge. Within a self-consistent jellium calculation, spatial dispersion increases the Casimir force signifi...

  8. Sample dependence of the Casimir force

    OpenAIRE

    Pirozhenko, I.; Lambrecht, A.; Svetovoy, V.B.

    2006-01-01

    We have analysed available optical data for Au in the mid-infrared range which is important for a precise prediction of the Casimir force. Significant variation of the data demonstrates genuine sample dependence of the dielectric function. We demonstrate that the Casimir force is largely determined by the material properties in the low frequency domain and argue that therefore the precise values of the Drude parameters are crucial for an accurate evaluation of the force. These parameters can ...

  9. The Casimir force between rough metallic plates

    OpenAIRE

    Genet, Cyriaque; Lambrecht, Astrid; Neto, Paulo Maia; Reynaud, Serge

    2003-01-01

    The Casimir force between two metallic plates is affected by their roughness state. This effect is usually calculated through the so-called `proximity force approximation' which is only valid for small enough wavevectors in the spectrum of the roughness profile. We introduce here a more general description with a wavevector-dependent roughness sensitivity of the Casimir effect. Since the proximity force approximation underestimates the effect, a measurement of the roughness spectrum is needed...

  10. Quantitative non contact dynamic Casimir force measurements

    OpenAIRE

    Jourdan, Guillaume; Lambrecht, Astrid; Comin, Fabio; Chevrier, Joël

    2009-01-01

    We show that the Casimir force gradient can be quantitatively measured with no contact involved. Results of the Casimir force measurement with systematic uncertainty of 3% are presented for the distance range of 100-600 nm. The statistical uncertainty is shown to be due to the thermal fluctuations of the force probe. The corresponding signal to noise ratio equals unity at the distance of 600 nm. Direct contact between surfaces used in most previous studies to determine absolute distance separ...

  11. Casimir Force Between Quantum Plasmas

    International Nuclear Information System (INIS)

    Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)

  12. Casimir force between Chern-Simons surfaces

    OpenAIRE

    Bordag, M.; Vassilevich, D.V.(CMCC-Universidade Federal do ABC, Santo André, SP, Brazil)

    1999-01-01

    We calculate the Casimir force between two parallel plates if the boundary conditions for the photons are modified due to presence of the Chern-Simons term. We show that this effect should be measurable within the present experimental technique.

  13. Casimir forces of metallic microstructures into cavities

    Science.gov (United States)

    Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-08-01

    A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.

  14. Casimir force induced by imperfect Bose gas

    OpenAIRE

    Napiorkowski, Marek; Piasecki, Jaroslaw

    2011-01-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region the force decays exponentially fast when distance $D$ between the walls tends to infinity. When Bose-Einstein condensation...

  15. Temperature Dependence of the Casimir Force

    OpenAIRE

    Brevik, Iver; Høye, Johan S.

    2013-01-01

    The Casimir force - at first a rather unexpected consequence of quantum electrodynamics - was discovered by Hendrik Casimir in Eindhoven in 1948. It predicts that two uncharged metal plates experience an attractive force because of the zero-point fluctuations of the electromagnetic field. The idea was tested experimentally in the 1950's and 1960's, but the results were not so accurate that one could make a definite conclusion regarding the existence of the effect. Evgeny Lifshitz expanded the...

  16. Coupled surface polaritons and the Casimir force

    OpenAIRE

    Henkel, Carsten; Joulain, Karl; Mulet, Jean-Philippe; Greffet, Jean-Jacques

    2003-01-01

    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple ...

  17. The Casimir force: background, experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamoreaux, Steven K [Los Alamos National Laboratory, University of California, Physics Division P-23, M.S. H803, Los Alamos, NM 87545 (United States)

    2005-01-01

    The Casimir force, which is the attraction of two uncharged material bodies due to modification of the zero-point energy associated with the electromagnetic modes in the space between them, has been measured with per cent-level accuracy in a number of recent experiments. A review of the theory of the Casimir force and its corrections for real materials and finite temperature are presented in this report. Applications of the theory to a number of practical problems are discussed.

  18. Thermal Casimir force between nanostructured surfaces

    OpenAIRE

    Guérout, R.; Lussange, J.; Chan, H. B.; Lambrecht, A.; Reynaud, S.

    2012-01-01

    We present detailed calculations for the Casimir force between a plane and a nanostructured surface at finite temperature in the framework of the scattering theory. We then study numerically the effect of finite temperature as a function of the grating parameters and the separation distance. We also infer non-trivial geometrical effects on the Casimir interaction via a comparison with the proximity force approximation. Finally, we compare our calculations with data from experiments performed ...

  19. The Casimir force between metallic mirrors

    OpenAIRE

    Lambrecht, Astrid; Genet, Cyriaque; Reynaud, Serge

    2001-01-01

    In order to compare recent experimental results with theoretical predictions we study the influence of finite conductivity of metals on the Casimir effect. The correction to the Casimir force and energy due to imperfect reflection and finite temperature are evaluated for plane metallic plates where the dielectric functions of the metals are modeled by a plasma model. The results are compared with the common approximation where conductivity and thermal corrections are evaluated separately and ...

  20. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  1. Casimir forces beyond the proximity approximation

    CERN Document Server

    Bimonte, G; Jaffe, R L; Kardar, M

    2011-01-01

    The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly curved objects to the force between parallel plates. Precision experiments on Casimir forces necessitate, and spur research on, corrections to the PFA. We use a derivative expansion for gently curved surfaces to derive the leading curvature modifications to the PFA. Our methods apply to any homogeneous and isotropic materials; here we present results for Dirichlet and Neumann boundary conditions and for perfect conductors. A Pad\\'e extrapolation constrained by a multipole expansion at large distance and our improved expansion at short distances, provides an accurate expression for the sphere-plate Casimir force at all separations.

  2. Casimir Forces between Nanoparticles and Substrates

    CERN Document Server

    Román-Velázquez, C E; Villarreal, C; Esquivel-Sirvent, R; Noguez, Cecilia

    2002-01-01

    We study the Casimir force between a nanoparticle and a substrate. We consider the interaction of metal nanoparticles with different substrates within the dipolar approximation. We study the force as a function of the distance for gold and potassium spheres, which are over a substrate of titanium dioxide, sapphire and a perfect conductor. We show that Casimir force is important in systems at the nanometer scale. We study the force as a function of the material properties, radii of the spheres, and the distance between the sphere and the substrate.

  3. Scattering Theory Approach to Electrodynamic Casimir Forces

    CERN Document Server

    Rahi, Sahand Jamal; Graham, Noah; Jaffe, Robert L; Kardar, Mehran

    2009-01-01

    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by re-deriving the Lifshitz formula for infinite half spaces, by demonstrating the Casimir-Polder to van der Waals cross-over, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely the Casimir energies of a sphere or a cylinder oppos...

  4. Surface impedance and the Casimir force

    International Nuclear Information System (INIS)

    The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a sphere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general formulas of the impedance approach to the theory of the Casimir force are given and the formal substitution is found for connecting it with the Lifshitz formula. The range of micrometer separations between the test bodies, which is interesting from the experimental point of view, is investigated in detail. It is shown that at zero temperature the results obtained on the basis of the surface impedance method are in agreement with those obtained in framework of the Lifshitz theory within a fraction of a percent. The temperature correction to the Casimir force from the impedance method coincides with that from the Lifshitz theory up to four significant figures. The case of millimeter separations that corresponds to the normal skin effect is also considered. At zero temperature the obtained results have good agreement with the Lifshitz theory. At nonzero temperature the impedance approach is not subject to the interpretation problems peculiar to the zero-frequency term of the Lifshitz formula in dissipative media

  5. Demonstration of the lateral casimir force.

    Science.gov (United States)

    Chen, F; Mohideen, U; Klimchitskaya, G L; Mostepanenko, V M

    2002-03-11

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 to 0.3 microm using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. This demonstration opens new opportunities for the use of the Casimir effect for lateral translation in microelectromechanical systems. PMID:11909341

  6. Casimir force in noncommutative Randall-Sundrum models revisited

    OpenAIRE

    Teo, L. P.

    2010-01-01

    We propose another method to compute the Casimir force in noncommutative Randall-Sundrum braneworld model considered by K. Nouicer and Y. Sabri recently. Our method can be used to compute the Casimir force to any order in the noncommutative parameter. Contrary to the claim made by K. Nouicer and Y. Sabri that repulsive Casimir force can appear in the first order approximation, we show that the Casimir force is always attractive at any order of approximation.

  7. Casimir forces for inhomogeneous planar media

    International Nuclear Information System (INIS)

    Casimir forces arise from vacuum fluctuations. They are fully understood only for simple models, and are important in nano- and microtechnologies. We report our experience of computer algebra calculations towards the Casimir force for models involving inhomogeneous dielectrics. We describe a methodology that greatly increases confidence in any results obtained, and use this methodology to demonstrate that the analytic derivation of scalar Green's functions is at the boundary of current computer algebra technology. We further demonstrate that Lifshitz theory of electromagnetic vacuum energy can not be directly applied to calculate the Casimir stress for models of this type, and produce results that have led to alternative regularisations. Using a combination of our new computational framework and the new theory based on our results, we provide specific calculations of Casimir forces for planar dielectrics having permittivity that declines exponentially. We discuss the relative strengths and weaknesses of computer algebra systems when applied to this type of problem, and describe a combined numerical and symbolic computational framework for calculating Casimir forces for arbitrary planar models.

  8. Monte Carlo Simulation of Critical Casimir Forces

    Science.gov (United States)

    Vasilyev, Oleg A.

    2015-03-01

    In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.

  9. Repulsive Casimir force between Weyl semimetals

    Science.gov (United States)

    Wilson, Justin H.; Allocca, Andrew A.; Galitski, Victor

    2015-06-01

    Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness, we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough. In the thin-film limit, we study the appearance of an attractive Casimir force at shorter distances due to the longitudinal conductivity. Magnetic field, thickness, and chemical potential provide tunable nobs for this effect, controlling the Casimir force: whether it is attractive or repulsive, the magnitude of the effect, and the positions and existence of a trap and antitrap.

  10. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  11. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  12. Casimir forces in systems near jamming

    Science.gov (United States)

    Burton, Justin; Liétor-Santos, Juan-José

    Casimir forces arise when long-ranged fluctuations are geometrically confined between two surfaces. In most cases these fluctuations are quantum or thermal in nature, such as those near a classical critical point, yet this is not a requirement. The T = 0 jamming transition in frictionless, granular systems shares many properties with classical critical points, such as a diverging correlation length, although it has recently been identified as a unique example of a random first-order transition (RFOT). Here we show the existence of Casimir forces between two pinned particles immersed in systems near the frictionless jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir force. The Casimir force dominates when the pinned particles are much larger than the ambient jammed particles. In this case, we find that particles with the largest forces have the least number of contacts, and that these particles are clustered between the pinned particles, giving rise to a repulsive force which is independent of system preparation and inter-particle potential. We acknowledge support from NSF DMR-1455086.

  13. Lateral Casimir force beyond the Proximity Force Approximation

    OpenAIRE

    Rodrigues, Robson B.; Neto, Paulo A. Maia; Lambrecht, Astrid; Reynaud, Serge

    2006-01-01

    We argue that the appropriate variable to study a non trivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the Proximity Force Approximation (PFA). The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analy...

  14. Observation of the thermal Casimir force

    CERN Document Server

    Sushkov, A O; Dalvit, D A R; Lamoreaux, S K

    2010-01-01

    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 $\\mu$m and 7 $\\mu$m. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental resul...

  15. Repulsive Casimir Force between Dielectric Planes

    OpenAIRE

    Wetz, Karen Windmeier

    2001-01-01

    In 1948 H.B.G.Casimir predicted that an attractive force between two perfectly conducting neutral plates exists due to changes in the electromagnetic vacuum energy caused by the influence of the plates. In 1956 E.M. Lifshitz derived an extension of Casimir's expression applicable to finite temperatures and arbitrary dielectric constants for the two half-spaces and the gap in between them. It is shown in this brief report that, while the Lifshitz formula predicts an attractive force for the ca...

  16. Improved Precision Measurement of the Casimir Force

    OpenAIRE

    Roy, Anushree; Lin, Chiung-Yuan; Mohideen, U.

    1999-01-01

    We report an improved precision measurement of the Casimir force. The force is measured between a large Al coated sphere and flat plate using an Atomic Force Microscope. The primary experimental improvements include the use of smoother metal coatings, reduced noise, lower systematic errors and independent measurement of surface separations. Also the complete dielectric spectrum of the metal is used in the theory. The average statistical precision remains at the same 1% of the forces measured ...

  17. Casimir force between integrable and chaotic pistons

    OpenAIRE

    Alvarez, Ezequiel; Mazzitelli, Francisco Diego; Monastra, Alejandro G.; Wisniacki, Diego A.

    2010-01-01

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered as quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances, and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is ...

  18. Probing the Casimir force with optical tweezers

    CERN Document Server

    Ether, D S; Umrath, S; Martinez, D; Ayala, Y; Pontes, B; Araújo, G R de S; Frases, S; Ingold, G -L; Rosa, F S S; Viana, N B; Nussenzveig, H M; Neto, P A Maia

    2015-01-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double layer forces between polystyrene microspheres at distances above $400$ nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics an...

  19. Direct simulation of critical Casimir forces

    Science.gov (United States)

    Hobrecht, Hendrik; Hucht, Alfred

    2014-06-01

    We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are moved through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.

  20. Lorentz-force approach to the Casimir force

    International Nuclear Information System (INIS)

    An approach to the problem of the Casimir force on magnetodielectric bodies is outlined, which is based on the calculation of the ground-state Lorentz force acting on the polarization and magnetization charges and currents that constitute the bodies within the framework of linear, macroscopic electrodynamics. As an application, planar structures are considered and a correct generalization of Casimir's original formula to the case where the two highly reflecting plates are embedded in a medium is given

  1. Lorentz-force approach to the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, Christian; Welsch, Dirk-Gunnar [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2006-04-01

    An approach to the problem of the Casimir force on magnetodielectric bodies is outlined, which is based on the calculation of the ground-state Lorentz force acting on the polarization and magnetization charges and currents that constitute the bodies within the framework of linear, macroscopic electrodynamics. As an application, planar structures are considered and a correct generalization of Casimir's original formula to the case where the two highly reflecting plates are embedded in a medium is given.

  2. Casimir forces in a plasma: possible connections to Yukawa potentials

    Science.gov (United States)

    Ninham, Barry W.; Boström, Mathias; Persson, Clas; Brevik, Iver; Buhmann, Stefan Y.; Sernelius, Bo E.

    2014-10-01

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect.

  3. Casimir forces in a plasma: possible connections to Yukawa potentials

    International Nuclear Information System (INIS)

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect. (authors)

  4. Demonstration of the Lateral Casimir Force

    OpenAIRE

    Chen, F; Mohideen, U.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2002-01-01

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 $\\mu$m to 0.3 $\\mu$m using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. T...

  5. The Scattering Approach to the Casimir Force

    OpenAIRE

    Reynaud, S.; Canaguier-Durand, A.; Messina, R; Lambrecht, A.; Neto, P A Maia

    2010-01-01

    We present the scattering approach which is nowadays the best tool for describing the Casimir force in realistic experimental configurations. After reminders on the simple geometries of 1d space and specular scatterers in 3d space, we discuss the case of stationary arbitrarily shaped mirrors in electromagnetic vacuum. We then review specific calculations based on the scattering approach, dealing for example with the forces or torques between nanostructured surfaces and with the force between ...

  6. Sample dependence of the Casimir force

    OpenAIRE

    Svetovoy, V.B.

    2004-01-01

    Difference between bulk material and deposited film is shown to have an appreciable influence on the Casimir force. Analysis of the optical data on gold films unambiguously demonstrates the sample dependence: the dielectric functions of the films deposited in different conditions are different on the level that cannot be ignored in high precision prediction of the force. It is argued that the precise values of the Drude parameters are crucial for accurate evaluation of the force. The dielectr...

  7. The Casimir force at high temperature

    OpenAIRE

    Buenzli, P. R.; Martin, Ph. A.

    2005-01-01

    The standard expression of the high-temperature Casimir force between perfect conductors is obtained by imposing macroscopic boundary conditions on the electromagnetic field at metallic interfaces. This force is twice larger than that computed in microscopic classical models allowing for charge fluctuations inside the conductors. We present a direct computation of the force between two quantum plasma slabs in the framework of non relativistic quantum electrodynamics including quantum and ther...

  8. Casimir force in Schwarzschild metric: Progress report

    Science.gov (United States)

    Karim, Munawar

    2016-01-01

    In this paper I report progress on both theoretical and experimental aspects. I describe two approaches to calculating putative effects of gravitational curvature on the Casimir force. The work I describe continues the quest to answer the question: do virtual field excitations follow geodesics?

  9. Casimir force between doped silicon slabs

    Energy Technology Data Exchange (ETDEWEB)

    Duraffourg, Laurent [Laboratoire des Composants Microsystemes, CEA/LETI 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: laurent.duraffourg@cea.fr; Andreucci, Philippe [Laboratoire des Composants Microsystemes, CEA/LETI 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: philippe.andreucci@cea.fr

    2006-12-04

    We evaluate the Casimir force for the particular case of silicon material including mirror thickness impact and finite conductivity influence. We show a new interesting behavior related to the slab thickness. We compare the results for intrinsic and doped silicon with traditional metals such as gold.

  10. Does the Casimir force need corrections?

    CERN Document Server

    Altaisky, Mikhail

    2011-01-01

    The Casimir force $\\cF = -\\frac{\\pi^2\\hbar c}{240a^4}$, which attracts to each other two perfectly conducting parallel plates separated by the distance $a$ in vacuum, is one of the blueprints of the reality of vacuum fluctuations. Following the recent conjecture, that quantum fields should be described in terms of the fields depending on the resolution of measurement, rather than the position alone (M.V.Altaisky, Phys. Rev. D 81(2010)125003), we derive the correction to the Casimir energy depending on the ratio of the plate displacement amplitude to the distance between plates.

  11. Casimir-Polder Forces between Chiral Objects

    CERN Document Server

    Butcher, David T; Scheel, Stefan

    2012-01-01

    The chiral component of the Casimir-Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir-Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir-Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur.

  12. Normal and lateral Casimir force: Advances and prospects

    CERN Document Server

    Klimchitskaya, G L

    2010-01-01

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces...

  13. Matter-screened Casimir force and Casimir-Polder force in planar structures

    OpenAIRE

    Raabe, Christian; Welsch, Dirk-Gunnar

    2005-01-01

    Using a recently developed theory of the Casimir force (Raabe C and Welsch D-G 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened Casimir-Polder force actin...

  14. Lateral Casimir force beyond the proximity-force approximation.

    Science.gov (United States)

    Rodrigues, Robson B; Neto, Paulo A Maia; Lambrecht, Astrid; Reynaud, Serge

    2006-03-17

    We argue that the appropriate variable to study a nontrivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the proximity-force approximation. The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation, and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the proximity-force approximation overestimates the force by up to 30%. PMID:16605712

  15. Lateral Casimir Force beyond the Proximity-Force Approximation

    International Nuclear Information System (INIS)

    We argue that the appropriate variable to study a nontrivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the proximity-force approximation. The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation, and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the proximity-force approximation overestimates the force by up to 30%

  16. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen; Andresen, Bjarne Bøgeskov

    2012-01-01

    that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on...... the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T......The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...

  17. Precise determination of the Casimir force and first realization of a "Casimir less" experiment

    OpenAIRE

    Decca, R. S.; Lopez, D.; Chan, H. B.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; Mostepanenkot, V. M.

    2004-01-01

    We present improved Casimir effect measurements. The attractive force between a metallized sphere and the coated plate of a Si microelectro mechanical oscillator is measured with unparalleled precision. The same setup, but in a dynamic scheme, yields a determination of the Casimir pressure between two infinite plates. Since the Casimir force is the dominant interaction in the 0.11 mum range under these experimental conditions, it acts as a background in the search for new forces in the submic...

  18. Extended Analysis of the Casimir Force

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-04-01

    Full Text Available There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measurements on the force between a pair po lished plane plates consisting of different metals, the plates having very small or zero air gaps. T his corre- sponds to the largest possible Casimir force. Even then, the re may arise problems with other adhering forces, possibly to be clarified in further experiments.

  19. Casimir force between sharp-shaped conductors

    CERN Document Server

    Maghrebi, Mohammad F; Emig, Thorsten; Graham, Noah; Jaffe, Robert L; Kardar, Mehran

    2010-01-01

    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force ...

  20. Matter-screened Casimir force and Casimir-Polder force in planar structures

    CERN Document Server

    Raabe, C; Raabe, Christian; Welsch, Dirk-Gunnar

    2005-01-01

    Using a recently developed theory of the Casimir force (Raabe C and Welsch D-G 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter.

  1. Matter-screened Casimir force and Casimir-Polder force in planar structures

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, Christian; Welsch, Dirk-Gunnar [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2005-12-01

    Using a recently developed theory of the Casimir force (Raabe and Welsch 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened, Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter.

  2. Matter-screened Casimir force and Casimir-Polder force in planar structures

    International Nuclear Information System (INIS)

    Using a recently developed theory of the Casimir force (Raabe and Welsch 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened, Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter

  3. Isotopic dependence of the Casimir force.

    Science.gov (United States)

    Krause, Dennis E; Fischbach, Ephraim

    2002-11-01

    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the isoelectronic effect to search at very short separations for new weak forces suggested by various unification theories. PMID:12443107

  4. Critical Casimir Force between Inhomogeneous Boundaries

    OpenAIRE

    Dubail, Jerome; Santachiara, Raoul; Emig, Thorsten

    2015-01-01

    To study the critical Casimir force between chemically structured boundaries immersed in a binary mixture at its demixing transition, we consider a strip of Ising spins subject to alternating fixed spin boundary conditions. The system exhibits a boundary induced phase transition as function of the relative amount of up and down boundary spins. This transition is associated with a sign change of the asymptotic force and a diverging correlation length that sets the scale for the crossover betwe...

  5. Repulsive Casimir force in chiral metamaterials.

    Science.gov (United States)

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  6. Casimir force between sharp-shaped conductors

    OpenAIRE

    Maghrebi, Mohammad F.; Rahi, Sahand Jamal; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.; Kardar, Mehran

    2010-01-01

    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interactio...

  7. Probing the Casimir force with optical tweezers

    OpenAIRE

    Ether Jr, D. S.; Pires, L. B.; Umrath, S.; Martinez, D; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G. -L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P A Maia

    2015-01-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double layer forces between polystyrene microspheres at distances above $400$ nm by employing very sof...

  8. Observation of the thermal Casimir force

    OpenAIRE

    Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K.

    2010-01-01

    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Ca...

  9. Isotopic Dependence of the Casimir Force

    OpenAIRE

    Krause, Dennis E.; Fischbach, Ephraim

    2002-01-01

    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the iso-electronic effect to search at very short separations for new weak forces suggested by various unification theories.

  10. Casimir forces between cylinders at different temperatures

    OpenAIRE

    Golyk, Vladyslav A.; Krüger, Matthias; Reid, M. T. Homer; Kardar, Mehran

    2012-01-01

    We study Casimir interactions between cylinders in thermal non-equilibrium, where the objects as well as the environment are held at different temperatures. We provide the general formula for the force, in a one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate summation of the corresponding result for spheres. We find that the non-equilibrium ...

  11. Critical Casimir forces for colloidal assembly

    International Nuclear Information System (INIS)

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. (topical review)

  12. Critical Casimir forces for colloidal assembly

    Science.gov (United States)

    Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P.

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  13. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  14. Change in the Casimir force between semiconductive bodies by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Norio [Graduate School of Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo, 671-2280 (Japan)

    2007-11-15

    Two topics relevant to the Casimir force (retarded van der Waals force), which is exerted between neutral objects due to the quantum vacuum fluctuations of the electromagnetic field are discussed- First, the enhancement of the Casimir between silicon plates by irradiation is considered. Irradiation generates free carriers inside silicon and it can cause enhancement of the Casimir force between silicon membranes. The temporal behavior of the Casimir force between two parallel silicon membranes after irradiating the surface with UV pulse laser is numerically studied. Based on the Lifshitz theory accounting for thickness of the slabs, the Casimir force as a function of time and the finite size effect of the thickness is calculated. The our experiment in progress to demonstrate the enhancement of the Casimir force by irradiation is also refer. Second, the influence of optical adsorption on the Casimir force acting between a metallic sphere and a semiconductive plate illuminated with Gaussian light beam is considered. The Casimir torque and the lateral Casimir force result form the inhomogeneous photonionization. Taking into account the spatial inhomogeneousness of the plasma frequency in the semiconductive plate, the dependence of the Casimir force on the distance between the optical axis and the center of the sphere is computed within the proximity force approximation.

  15. Change in the Casimir force between semiconductive bodies by irradiation

    International Nuclear Information System (INIS)

    Two topics relevant to the Casimir force (retarded van der Waals force), which is exerted between neutral objects due to the quantum vacuum fluctuations of the electromagnetic field are discussed- First, the enhancement of the Casimir between silicon plates by irradiation is considered. Irradiation generates free carriers inside silicon and it can cause enhancement of the Casimir force between silicon membranes. The temporal behavior of the Casimir force between two parallel silicon membranes after irradiating the surface with UV pulse laser is numerically studied. Based on the Lifshitz theory accounting for thickness of the slabs, the Casimir force as a function of time and the finite size effect of the thickness is calculated. The our experiment in progress to demonstrate the enhancement of the Casimir force by irradiation is also refer. Second, the influence of optical adsorption on the Casimir force acting between a metallic sphere and a semiconductive plate illuminated with Gaussian light beam is considered. The Casimir torque and the lateral Casimir force result form the inhomogeneous photonionization. Taking into account the spatial inhomogeneousness of the plasma frequency in the semiconductive plate, the dependence of the Casimir force on the distance between the optical axis and the center of the sphere is computed within the proximity force approximation

  16. Theory of Casimir Forces without the Proximity-Force Approximation

    Science.gov (United States)

    Lapas, Luciano C.; Pérez-Madrid, Agustín; Rubí, J. Miguel

    2016-03-01

    We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation.

  17. Critical Casimir force between inhomogeneous boundaries

    Science.gov (United States)

    Dubail, Jerome; Santachiara, Raoul; Emig, Thorsten

    2015-12-01

    To study the critical Casimir force between chemically structured boundaries immersed in a binary mixture at its demixing transition, we consider a strip of Ising spins subject to alternating fixed spin boundary conditions. The system exhibits a boundary phase transition as function of the relative amount of up and down boundary spins. This transition is associated with a sign change of the asymptotic force and a diverging length that sets the scale for the crossover between different universal force amplitudes. Using conformal field theory and a mapping to Majorana fermions, we obtain the universal scaling function of this crossover, and the force at short distances.

  18. Tailoring the thermal Casimir force with graphene

    OpenAIRE

    Svetovoy, V.; Moktadir, Z.; Elwenspoek, M; Mizuta, H.

    2011-01-01

    – The Casimir interaction is omnipresent source of forces at small separations between bodies, which is difficult to change by varying external conditions. Here we show that graphene interacting with a metal can have the best known force contrast to the temperature and the Fermi level variations. In the distance range 50–300nm the force is measurable and can vary a few times for graphene with a bandgap much larger than the temperature. In this distance range the main part of the force is due ...

  19. Casimir Force at a Knife's Edge

    OpenAIRE

    Graham, Noah; Shpunt, Alexander; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L.; Kardar, Mehran

    2009-01-01

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, $H$ and $\\theta$, and the cylinder's parabolic radius $R...

  20. Casimir force between partially transmitting mirrors

    OpenAIRE

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    The Casimir force can be understood as resulting from the radiation pressure exerted by the vacuum fluctuations reflected by boundaries. We extend this local formulation to the case of partially transmitting boundaries by introducing reflectivity and transmittivity coefficients obeying conditions of unitarity, causality and high frequency transparency. We show that the divergences associated with the infiniteness of the vacuum energy do not appear in this approach. We give explicit expression...

  1. Casimir force between atomically thin gold films

    OpenAIRE

    Boström, Mathias; Persson, Clas; Sernelius, Bo E.

    2013-01-01

    We have used density functional theory to calculate the anisotropic dielectric functions for ultrathin gold sheets (composed of 1, 3, 6, and 15 atomic layers). Such films are important components in nano-electromechanical systems. When using correct dielectric functions rather than bulk gold dielectric functions we predict an enhanced attractive Casimir-Lifshitz force (at most around 20%) between two atomically thin gold sheets. For thicker sheets the dielectric properties and the correspondi...

  2. Casimir electromotive force in periodic configurations

    OpenAIRE

    Fateev, Evgeny G.

    2016-01-01

    The possibility in principle of the existence of Casimir electromotive force (EMF) is shown for nonparallel nanosized metal plates arranged in the form of a periodic structure. It is found that EMF does not appear in strictly periodic structures with parallel plates. However, when the strict periodicity is disturbed in nonparallel plates, EMF is generated, and its value is equal to the number of pairs of plates in a configuration. Moreover, there are some effective parameters of the configura...

  3. Isoelectronic determination of the thermal Casimir force

    OpenAIRE

    G. Bimonte; Lopez, D.; Decca, R. S.

    2015-01-01

    Differential force measurements between spheres coated with either nickel or gold and rotating disks with periodic distributions of nickel and gold are reported. The rotating samples are covered by a thin layer of titanium and a layer of gold. While titanium is used for fabrication purposes, the gold layer (nominal thicknesses of 21, 37, 47 and 87 nm) provides an isoelectronic environment, and is used to nullify the electrostatic contribution but allow the passage of long wavelength Casimir p...

  4. New features of the thermal Casimir force at small separations.

    Science.gov (United States)

    Chen, F; Klimchitskaya, G L; Mohideen, U; Mostepanenko, V M

    2003-04-25

    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions. PMID:12731963

  5. Optical detection of the Casimir force between macroscopic objects.

    Science.gov (United States)

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  6. Matter-field theory of the Casimir force

    OpenAIRE

    Koashi, Masato; Ueda, Masahito

    1998-01-01

    A matter-field theory of the Casimir force is formulated in which the electromagnetic field and collective modes of dielectric media are treated on an equal footing. In our theory, the Casimir force is attributed to zero-point energies of the combined matter-field modes. We analyze why some of the existing theories favor the interpretation of the Casimir force as originating from zero-point energies of the electromagnetic field and others from those of the matter.

  7. On the Relation Between Casimir Forces and Bulk Correlations

    Science.gov (United States)

    Napiórkowski, Marek; Piasecki, Jarosław

    2014-09-01

    Within a microscopic approach we show that in the case of an ideal quantum gas enclosed in a slit the Casimir force can be simply expressed in terms of the bulk one-particle density matrix. The corresponding formula, which holds both for bosons and fermions, allows to relate the range of the Casimir force to the bulk correlation length. The low-temperature behavior of the Casimir forces is derived.

  8. Casimir Force in Non-Planar Geometric Configurations

    OpenAIRE

    Cho, Sung Nae

    2004-01-01

    The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investigated. The configurations were: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell. The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well as the specific boundary ...

  9. Casimir force on an interacting Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal; Majumder, Dwipesh; Saha, Kush [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Bhattacharjee, J K [S.N. Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata 700098 (India); Chakravarty, Nabajit, E-mail: tpsb2@iacs.res.i [Positional Astronomy Centre, Block AQ, Plot 8, Sector 5, Salt Lake, Kolkata 700091 (India)

    2010-04-28

    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wavefunction as well as for the phonon field. We have shown that the condensate wavefunction (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of the Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.

  10. Casimir force on interacting Bose-Einstein condensate

    OpenAIRE

    Biswas, Shyamal; Bhattacharjee, J K; Majumder, Dwipesh; Saha, Kush; Chakravarty, Nabajit

    2009-01-01

    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate (BEC) which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wave function as well as for the phonon field. We have shown that, the condensate wave function (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.

  11. Three-body critical Casimir forces

    Science.gov (United States)

    Mattos, T. G.; Harnau, L.; Dietrich, S.

    2015-04-01

    Within mean-field theory we calculate universal scaling functions associated with critical Casimir forces for a system consisting of three parallel cylindrical colloids immersed in a near-critical binary liquid mixture. For several geometrical arrangements and boundary conditions at the surfaces of the colloids we study the force between two colloidal particles in the direction normal to their axes, analyzing the influence of the presence of a third particle on that force. Upon changing temperature or the relative positions of the particles we observe interesting features such as a change of sign of this force caused by the presence of the third particle. We determine the three-body component of the forces acting on one of the colloids by subtracting the pairwise forces from the total force. The three-body contribution to the total critical Casimir force turns out to be more pronounced for small surface-to-surface distances between the colloids as well as for temperatures close to criticality. Moreover, we compare our results with similar ones for other physical systems such as three atoms interacting via van der Waals forces.

  12. Probing the Casimir force with optical tweezers

    Science.gov (United States)

    Ether, D. S., Jr.; Pires, L. B.; Umrath, S.; Martinez, D.; Ayala, Y.; Pontes, B.; Araújo, G. R. de S.; Frases, S.; Ingold, G.-L.; Rosa, F. S. S.; Viana, N. B.; Nussenzveig, H. M.; Neto, P. A. Maia

    2015-11-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double-layer forces between polystyrene microspheres at distances above 400 nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics and colloid science, while paving the way for novel quantitative applications of optical tweezers in cell and molecular biology.

  13. Conformal field theory of critical Casimir forces

    Science.gov (United States)

    Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran

    2015-03-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.

  14. Towards a Casimir force measurement between micromachined parallel plate structures

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theo S.J.; Berenschot, Erwin; Boer, de Meint; Ma, Ke-Chun; Elwenspoek, Miko C.; Wiegerink, Remco J.

    2012-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron

  15. Casimir force in the presence of a magnetodielectric medium

    CERN Document Server

    Kheirandish, Fardin; Sarabadani, Jalal

    2010-01-01

    In this article we investigate the Casimir effect in the presence of a medium by quantizing the Electromagnetic (EM) field in the presence of a magnetodielectric medium by using the path integral formalism. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained which are in agree with the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.

  16. Radiative Corrections to the Casimir Force and Effective Field Theories

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, Kirill

    2001-07-25

    Radiative corrections to the Casimir force between two parallel plates are considered in both scalar field theory of one massless and one massive field and in QED. Full calculations are contrasted with calculations based on employing ''boundary-free'' effective field theories. The difference between two previous results on QED radiative corrections to the Casimir force between two parallel plates is clarified and the low-energy effective field theory for the Casimir effect in QED is constructed.

  17. Radiative corrections to the Casimir force and effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, Kirill

    2001-08-15

    Radiative corrections to the Casimir force between two parallel plates are considered in both scalar field theory of one massless and one massive field and in QED. Full calculations are contrasted with calculations based on employing 'boundary-free' effective field theories. The difference between two previous results on QED radiative corrections to the Casimir force between two parallel plates is clarified and the low-energy effective field theory for the Casimir effect in QED is constructed.

  18. New Challenges and Directions in Casimir Force Experiments

    OpenAIRE

    Iannuzzi, Davide; Gelfand, Ian; Lisanti, Mariangela; Capasso, Federico

    2003-01-01

    This article is divided in three sections. In the first section we briefly review some high precision experiments on the Casimir force, underlying an important aspect of the analysis of the data. In the second section we discuss our recent results in the measurement of the Casimir force using non-trivial materials. In the third section we present some original ideas for experiments on new phenomena related to the Casimir effects.

  19. The Casimir Force in Randall Sundrum Models

    OpenAIRE

    Frank, Mariana; Turan, Ismail; Ziegler, Lorric

    2007-01-01

    We discuss and compare the effects of one extra dimension in the Randall Sundrum models on the evaluation of the Casimir force between two parallel plates. We impose the condition that the result reproduce the experimental measurements within the known uncertainties in the force and the plate separation, and get an upper bound kR < 20 if the curvature parameter k of AdS_5 is equal to the Planck scale. Although the upper bound decreases as k decreases, kR ~ 12, which is the required value for ...

  20. Casimir-Polder forces on moving atoms

    International Nuclear Information System (INIS)

    Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

  1. Boundary conditions and critical Casimir forces in helium

    International Nuclear Information System (INIS)

    If a fluid near its critical point is confined between two interfaces, the long-ranged critical fluctuations in the order parameter will mediate a force. This force, known as the critical Casimir force, is a direct analog of the Casimir force in electromagnetism. Dielectric constant measurements of helium films adsorbed on Cu electrodes provide evidence for the existence of the critical Casimir force near the superfluid transition in 4He and near the tricritical point in 3He-4He mixtures. In pure 4He, we find the force is attractive but near the tricritical point the force appears repulsive, a change due to the extraordinary boundary conditions at the tricritical point

  2. Membrane actuation by Casimir force manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Fabrizio [InterStellar Technologies Corporation, 115 North Fifth Avenue, Monrovia, CA 91016 (United States)], E-mail: fabrizio.pinto@interstellartechcorp.com

    2008-04-25

    In our laboratory, we have been developing a practical demonstration of actuation by means of the Casimir force inspired by the capacitive detection approach originally described by Arnold, Hunklinger and Dransfeld (1972 Rev. Sci. Instrum. 43 584-7). In this paper, we first describe the mathematical challenges pertaining to the electrostatic calibration of our measuring device, which has been enhanced by our recently published results regarding the computation of electrostatic fields in axial systems, such as the long-standing classical circular capacitor problem. We also discuss our computational approach to the calculation of the Casimir force in our system, including our adoption of analytical descriptions of the dielectric functions of semiconductors extended to the case of axial geometries. We will illustrate how the original AHD apparatus has been drastically improved upon, for instance by means of modern nanopositioner technology, and we shall discuss our published experimental results on the dynamics of a vibrating membrane with a central disc, which have provided the first direct verification of the mechanical resonances of such a system. The emphasis of our effort is not exclusively directed to fundamental physics research but is focused on, and ultimately motivated by, our goal of identifying viable industrial applications leading to commercially marketable products based on Casimir force actuation. Therefore we conclude this paper by briefly discussing the contribution we believe these results will offer to some current technological problems, in particular in nanotechnology, including some thoughts on the possibility that dispersion forces may enable a new and rapidly expanding industry to develop in the near future.

  3. Normal and lateral Casimir force: Advances and prospects

    International Nuclear Information System (INIS)

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.

  4. Normal and lateral Casimir force: Advances and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L, E-mail: galina.klimchitskaya@itp.uni-leipzig.d [Department of Physics, North-West Technical University, Millionnaya Street 5, St.Petersburg, 191065 (Russian Federation); Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2010-11-01

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.

  5. Casimir force between parallel plates separated by anisotropic media

    Science.gov (United States)

    Deng, Gang; Tan, Bao-Hua; Pei, Ling; Hu, Ni; Zhu, Jin-Rong

    2015-06-01

    The Casimir force between two parallel plates separated by anisotropic media is investigated. We theoretically calculate the Casimir force between two parallel plates when the interspace between the plates is filled with anisotropic media. Our result shows that the anisotropy of the material between the plates can significantly affect the Casimir force, especially the direction of the force. If ignoring the anisotropy of the in-between material makes the force repulsive (attractive), by contrast taking the anisotropy into account may produce an extra attractive (repulsive) force. The physical explanation for this phenomenon is also discussed.

  6. Controlling the Casimir force via the electromagnetic properties of materials

    International Nuclear Information System (INIS)

    The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.

  7. Repulsive Casimir force at zero and finite temperature

    International Nuclear Information System (INIS)

    We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.

  8. Repulsive Casimir force at zero and finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my

    2009-01-15

    We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.

  9. Extended Analysis of the Casimir Force

    OpenAIRE

    Lehnert B.

    2014-01-01

    There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measuremen...

  10. Casimir electromotive force in periodic configurations

    CERN Document Server

    Fateev, Evgeny G

    2016-01-01

    The possibility in principle of the existence of Casimir electromotive force (EMF) is shown for nonparallel nanosized metal plates arranged in the form of a periodic structure. It is found that EMF does not appear in strictly periodic structures with parallel plates. However, when the strict periodicity is disturbed in nonparallel plates, EMF is generated, and its value is equal to the number of pairs of plates in a configuration. Moreover, there are some effective parameters of the configuration (angles between plates, plate lengths and length to length ratios), at which the EMF generation per unit of the length of the periodic structure is maximal.

  11. Repulsive Casimir force between Weyl semimetals

    OpenAIRE

    Wilson, Justin H.; Allocca, Andrew A.; Galitski, Victor M.

    2015-01-01

    Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness, we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough. In the thin-film limit, we study the appearance of an ...

  12. Casimir forces between cylinders at different temperatures

    CERN Document Server

    Golyk, Vladyslav A; Reid, M T Homer; Kardar, Mehran

    2012-01-01

    We study Casimir interactions between cylinders in thermal non-equilibrium, where the objects as well as the environment are held at different temperatures. We provide the general formula for the force, in a one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate summation of the corresponding result for spheres. We find that the non-equilibrium forces are generally larger than their equilibrium counterpart at separations greater than the thermal wavelength. They may also exhibit oscillations as function of separation, leading to stable points of zero net force. These effects are particularly pronounced for thin conducting cylinders (e.g. 40nm diameter nano-wires of tungsten) due to their large emissivity.

  13. Intermolecular Casimir-Polder forces in water and near surfaces

    Science.gov (United States)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  14. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  15. Casimir energy and geometry: beyond the proximity force approximation

    International Nuclear Information System (INIS)

    We review the relation between the Casimir effect and geometry, emphasizing deviations from the commonly used proximity force approximation (PFA). We use, to this aim, the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non-planar mirrors give rise to non-specular reflection with wavevectors and field polarizations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this paper, we focus our attention to the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of the geometry and Casimir effect

  16. Isoelectronic apparatus to probe the thermal Casimir force

    Science.gov (United States)

    Bimonte, Giuseppe

    2015-05-01

    Isoelectronic differential force measurements provide a unique opportunity to probe controversial features of the thermal Casimir effect that are still much debated in the current literature. Isolectronic setups offer two major advantages over conventional Casimir setups. On the one hand, they are immune from electrostatic forces caused by potential patches on the plates surfaces that plague present Casimir experiments, especially for separations in the micron range. On the other hand, they can strongly enhance the discrepancy between alternative theoretical models that have been proposed to estimate the thermal Casimir force for metallic and magnetic surfaces. Thanks to these two features, isoelectronic differential experiments should allow one to establish conclusively which among these models correctly describes the thermal Casimir force.

  17. Casimir energy and geometry: beyond the proximity force approximation

    Energy Technology Data Exchange (ETDEWEB)

    Reynaud, S; Lambrecht, A [Laboratoire Kastler Brossel, CNRS, ENS, Universite Pierre et Marie Curie (UPMC), Campus Jussieu, 75252 Paris (France); Neto, P A Maia [Instituto de Fisica, UFRJ, CP 68528, Rio de Janeiro, RJ 21941-972 (Brazil)], E-mail: serge.reynaud@spectro.jussieu.fr

    2008-04-25

    We review the relation between the Casimir effect and geometry, emphasizing deviations from the commonly used proximity force approximation (PFA). We use, to this aim, the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non-planar mirrors give rise to non-specular reflection with wavevectors and field polarizations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this paper, we focus our attention to the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of the geometry and Casimir effect.

  18. Nanomechanical sensing of gravitational wave-induced Casimir force perturbations

    Science.gov (United States)

    Pinto, Fabrizio

    2014-06-01

    It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.

  19. Casimir Friction Force for Moving Harmonic Oscillators

    CERN Document Server

    Høye, Johan S

    2011-01-01

    Casimir friction is analyzed for a pair of dielectric particles in relative motion. We first adopt a microscopic model for harmonically oscillating particles at finite temperature T moving non-relativistically with constant velocity. We use a statistical-mechanical description where time-dependent correlations are involved. This description is physical and direct, and, in spite of its simplicity, is able to elucidate the essentials of the problem. This treatment elaborates upon, and extends, an earlier theory of ours back in 1992. The energy change Delta E turns out to be finite in general, corresponding to a finite friction force. In the limit of zero temperature the formalism yields, however, Delta E ->0, this being due to our assumption about constant velocity, meaning slowly varying coupling. For couplings varying more rapidly, there will also be a finite friction force at T=0. As second part of our work, we consider the friction problem using time-dependent perturbation theory. The dissipation, basically...

  20. Repulsive Casimir and Casimir–Polder forces

    International Nuclear Information System (INIS)

    Casimir and Casimir–Polder repulsions have been known for more than 50 years. The general ‘Lifshitz’ configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso’s group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on some recent developments will be surveyed. Here, stress will be placed on analytic developments, especially on Casimir–Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  1. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Norio [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2201 (Japan)

    2011-11-15

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  2. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    International Nuclear Information System (INIS)

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  3. Critical Casimir forces between planar and crenellated surfaces

    Science.gov (United States)

    Tröndle, M.; Harnau, L.; Dietrich, S.

    2015-06-01

    We study critical Casimir forces between planar walls and geometrically structured substrates within mean-field theory. As substrate structures, crenellated surfaces consisting of periodic arrays of rectangular crenels and merlons are considered. Within the widely used proximity force approximation, both the top surfaces of the merlons and the bottom surfaces of the crenels contribute to the critical Casimir force. However, for such systems the full, numerically determined critical Casimir forces deviate significantly from the pairwise addition formalism underlying the proximity force approximation. A first-order correction to the proximity force approximation is presented in terms of a step contribution arising from the critical Casimir interaction between a planar substrate and the right-angled steps of the merlons consisting of their upper and lower edges as well as their sidewalls.

  4. Observing the Casimir-Lifshitz force out of thermal equilibrium

    Science.gov (United States)

    Bimonte, Giuseppe

    2015-09-01

    The thermal Casimir-Lifshitz force between two bodies held at different temperatures displays striking features that are absent in systems in thermal equilibrium. The manifestation of this force has been observed so far only in Bose-Einstein condensates close to a heated substrate, but never between two macroscopic bodies. Observation of the thermal Casimir-Lifshitz force out of thermal equilibrium with conventional Casimir setups is very difficult because for experimentally accessible separations the thermal force is small compared to the zero-temperature quantum Casimir force unless prohibitively large temperature differences among the plates are considered. We describe an apparatus that allows for direct observation of the thermal force out of equilibrium for submicron separations and for moderate temperature differences between the plates.

  5. Critical Casimir forces in a magnetic system: An experimental protocol

    Science.gov (United States)

    Lopes Cardozo, David; Jacquin, Hugo; Holdsworth, Peter C. W.

    2014-11-01

    We numerically test an experimentally realizable method for the extraction of the critical Casimir force based on its thermodynamic definition as the derivative of the excess free energy with respect to system size. Free energy differences are estimated for different system sizes by integrating the order parameter along an isotherm. The method could be developed for experiments on magnetic systems and could give access to the critical Casimir force for any universality class. By choosing an applied field that opposes magnetic ordering at the boundaries, the Casimir force is found to increase by an order of magnitude over zero-field results.

  6. Lateral Casimir force between self-affine rough surfaces

    Science.gov (United States)

    Tajik, Fatemeh; Masoudi, Amir Ali; Khorrami, Mohammad

    2016-03-01

    The effect of self-affine roughness on the lateral Casimir force between two plates is studied using a perturbative expansion method. The PWS (pairwise summation) method is applicable only at lateral correlation lengths much larger than the separation between two plates. The effect of the roughness parameters on the lateral Casimir force is investigated, and it is seen that this effect is significant, enabling one to tailor roughness parameters so that to obtain the desirable Casimir force and increase the yield of micro- or nano-electromechanical devices based on the vacuum fluctuations.

  7. Casimir-Polder forces: A nonperturbative approach

    International Nuclear Information System (INIS)

    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields

  8. Oscillating Casimir force between two slabs in a Fermi sea

    International Nuclear Information System (INIS)

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T c, where Tc is the critical temperature of the Bose—Einstein condensation. (general)

  9. Strong Casimir force reduction through metallic surface nanostructuring.

    Science.gov (United States)

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A Alec; Davids, Paul S; Decca, Ricardo S; Aksyuk, Vladimir A; Dalvit, Diego A R; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  10. Thermal Casimir Force between Magnetic Materials

    OpenAIRE

    Klimchitskaya, G. L.; Geyer, B.; Mostepanenko, V. M.

    2009-01-01

    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectr...

  11. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.

    Science.gov (United States)

    Chan, H B; Aksyuk, V A; Kleiman, R N; Bishop, D J; Capasso, F

    2001-03-01

    The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range. PMID:11239149

  12. New approach to the thermal Casimir force between real metals

    Energy Technology Data Exchange (ETDEWEB)

    Mostepanenko, V M; Geyer, B [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009 Leipzig (Germany)

    2008-04-25

    The new approach to the theoretical description of the thermal Casimir force between real metals is presented. It uses the plasma-like dielectric permittivity that takes into account the interband transitions of core electrons. This permittivity precisely satisfies the Kramers-Kronig relations. The respective Casimir entropy is positive and vanishes at zero temperature in accordance with the Nernst heat theorem. The physical reasons why the Drude dielectric function, when substituted in the Lifshitz formula, is inconsistent with electrodynamics are elucidated. The proposed approach is the only one consistent with all measurements of the Casimir force performed to date. The application of this approach to metal-type semiconductors is considered.

  13. Effect of hydrogen-switchable mirrors on the Casimir force.

    Science.gov (United States)

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  14. New approach to the thermal Casimir force between real metals

    International Nuclear Information System (INIS)

    The new approach to the theoretical description of the thermal Casimir force between real metals is presented. It uses the plasma-like dielectric permittivity that takes into account the interband transitions of core electrons. This permittivity precisely satisfies the Kramers-Kronig relations. The respective Casimir entropy is positive and vanishes at zero temperature in accordance with the Nernst heat theorem. The physical reasons why the Drude dielectric function, when substituted in the Lifshitz formula, is inconsistent with electrodynamics are elucidated. The proposed approach is the only one consistent with all measurements of the Casimir force performed to date. The application of this approach to metal-type semiconductors is considered

  15. Collective behaviors of the Casimir force in microelectromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. B.; Yelton, J.

    2013-01-23

    Our goal was to explore the strong dependence of the Casimir force on the shape of the interacting bodies. We made significant progress and measured the Casimir force on silicon surface with rectangular corrugation and showed that the results agree with theoretical calculations, provided that the optical properties of silicon are taken into account. Furthermore, we performed measurement of the Casimir force within a single chip for the first time, between a doubly clamped beam and a movable, on-chip electrode at liquid helium temperature. This experiment represents a new way of studying the Casimir effect, a significant advance from the conventional approach of placing an external surface close to a force transducer.

  16. Quantum-electrodynamical approach to the Casimir force problem

    CERN Document Server

    Schuller, Frederic

    2012-01-01

    We derive the Casimir force expression from Maxwell's stress tensor by means of original quantum-electro-dynamical cavity modes. In contrast with similar calculations, our method is straightforward and does not rely on intricate mathematical extrapolation relations.

  17. Measuring the conductivity dependence of the Casimir force

    Science.gov (United States)

    Xu, Jun; Schafer, Robert; Banishev, Alexandr; Mohideen, Umar

    2015-03-01

    The strength and distance dependence of the Casimir force can be controlled through the conductivity of the material bodies, with lower conductivity in general leading to lower Casimir forces. However low conductivity, large bandgap materials which are insulating, have drawbacks as any surface electrostatic charges cannot be easily compensated. This restricts experiments to metallic or highly doped semiconductor materials. We will report on measurements of the Casimir force gradient using the frequency shift technique. Improvements in the measurement technique will be discussed. Measurements of the Casimir force gradient using low and high conductivity silicon surfaces will be reported. The authors thank G.L. Klimchitskaya and V.M. Mostepanenko for help with the theory and the US National Science Foundation for funding the research.

  18. Parameter estimation in dynamic Casimir force measurements with known periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Song, E-mail: cuis@imre.a-star.edu.sg [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Soh, Yeng Chai, E-mail: eycsoh@ntu.edu.sg [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-12-05

    It is important to have an accurate estimate of the unknown parameters such as the separation distance between interacting materials in Casimir force measurements. Current methods tend to produce large estimation errors. In this Letter, we present a novel method based on an adaptive control approach to estimate the unknown parameters using large amplitude dynamic Casimir measurements at separation distances of below 1 μm where both electrostatic force and Casimir force are significant. The estimate is proved to be accurate and the effectiveness of our method is demonstrated via a numerical example. -- Highlights: ► Unknown parameters like separation gap are nonlinearly parameterized in Casimir force measurements ► A two-stage parameter estimation method is proposed to estimate unknown parameters accurately. ► Our method is proved to be effective by theoretical derivation and simulations. ► Our method can be applied to a broad range of nonlinear parameter estimation problems.

  19. Casimir-Polder forces, boundary conditions and fluctuations

    International Nuclear Information System (INIS)

    We review different aspects of atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited to extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation

  20. Casimir-Polder forces, boundary conditions and fluctuations

    CERN Document Server

    Messina, Riccardo; Rizzuto, Lucia; Spagnolo, Salvatore; Vasile, Ruggero; 10.1088/1751-8113/41/16/164031

    2012-01-01

    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.

  1. Towards a Casimir Force Measurement between Micromachined Parallel Plate Structures

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-11-01

    Full Text Available Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed.

  2. Strong Casimir force reduction through metallic surface nanostructuring

    OpenAIRE

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves sign...

  3. Effect of hydrogen-switchable mirrors on the Casimir force

    OpenAIRE

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory tha...

  4. Evanescent character of the repulsive thermal Casimir force

    OpenAIRE

    Svetovoy, Vitaly B.

    2007-01-01

    The physical origin of the negative thermal correction to the Casimir force between metals is clarified. For this purpose the asymptotic behavior of the thermal Casimir force is analyzed at large and small distances in the real frequency representation. Contributions from propagating and evanescent waves are considered separately. At large distances they cancel each other in substantial degree so that only the attractive Lifshitz limit survives. At smaller separations the repulsive evanescent...

  5. Opposites attract: a theorem about the Casimir Force.

    Science.gov (United States)

    Kenneth, Oded; Klich, Israel

    2006-10-20

    We consider the Casimir interaction between (nonmagnetic) dielectric bodies or conductors. Our main result is a proof that the Casimir force between two bodies related by reflection is always attractive, independent of the exact form of the bodies or dielectric properties. Apart from being a fundamental property of fields, the theorem and its corollaries also rule out a class of suggestions to obtain repulsive forces, such as the two hemisphere repulsion suggestion and its relatives. PMID:17155375

  6. Present status of controversies regarding the thermal Casimir force

    OpenAIRE

    Mostepanenko, V. M.; Bezerra, V.B.; Decca, R. S.; Geyer, B.; Fischbach, E.; Klimchitskaya, L.; Krause, D. E.; Lopez, D.; Romer, C.

    2005-01-01

    It is well known that, beginning in 2000, the behaviour of the thermal correction to the Casimir force between real metals has been hotly debated. As was shown by several research groups, the Lifshitz theory, which provides the theoretical foundation for the calculation of both the van der Waals and Casimir forces, leads to different results depending on the model of metal conductivity used. To resolve these contr...

  7. Pseudo-Casimir force in confined nematic polymers

    OpenAIRE

    Dobnikar, Jure; Podgornik, Rudi

    2000-01-01

    We investigate the pseudo-Casimir force in a slab of material composed of nematically ordered long polymers. We write the total mesoscopic energy together with the constraint connecting the local density and director fluctuations and evaluate the corresponding fluctuation free energy by standard methods. It leads to a pseudo-Casimir force of a different type than in the case of standard, short molecule nematic. We investigate its separation dependence and its magnitude and explicitly derive t...

  8. Observation of the Thermal Casimir Force is Open to Question

    OpenAIRE

    Klimchitskaya, G. L.; Bordag, M.; Fischbach, E.; Krause, D.; Mostepanenko, V. M.

    2011-01-01

    We discuss theoretical predictions for the thermal Casimir force and compare them with available experimental data. Special attention is paid to the recent claim of the observation of that effect, as predicted by the Drude model approach. We show that this claim is in contradiction with a number of experiments reported so far. We suggest that the experimental errors, as reported in support of the observation of the thermal Casimir force, are significantly underestimated. Furthermore, the expe...

  9. Opposites Attract: A Theorem about the Casimir Force

    OpenAIRE

    Kenneth, Oded; Klich, Israel

    2006-01-01

    We consider the Casimir interaction between (non-magnetic) dielectric bodies or conductors. Our main result is a proof that the Casimir force between two bodies related by reflection is always attractive, independent of the exact form of the bodies or dielectric properties. Apart from being a fundamental property of fields, the theorem and its corollaries also rule out a class of suggestions to obtain repulsive forces, such as the two hemisphere repulsion suggestion and its relatives.

  10. Non-local thin films in Casimir force calculations

    OpenAIRE

    Esquivel, R.; Svetovoy, V.

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic ...

  11. Casimir force at both nonzero temperature and finite conductivity.

    Science.gov (United States)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M

    2000-07-17

    We find the combined effect of nonzero temperature and finite conductivity onto the Casimir force between real metals. Configurations of two parallel plates and a sphere (lens) above a plate are considered. Perturbation theory in two parameters (the relative temperature and the relative penetration depth of zero-point oscillations into the metal) is developed. Perturbative results are compared with computations. Recent improper computations based on the Lifshitz formula for the temperature Casimir force are discussed. PMID:10991326

  12. Thermal Casimir versus Casimir-Polder Forces: Equilibrium and Nonequilibrium Forces

    International Nuclear Information System (INIS)

    We critically discuss whether and under what conditions Lifshitz theory may be used to describe thermal Casimir-Polder forces on atoms or molecules. An exact treatment of the atom-field coupling reveals that for a ground-state atom (molecule), terms associated with virtual-photon absorption lead to a deviation from the traditional Lifshitz result; they are identified as a signature of nonequilibrium dynamics. Even the equilibrium force on a thermalized atom (molecule) may be overestimated when using the ground-state polarizability instead of its thermal counterpart

  13. Lateral Casimir Force between Two Sinusoidally Corrugated Eccentric Cylinders Using Proximity Force Approximation

    CERN Document Server

    Setare, M R

    2014-01-01

    This paper is devoted to the presentation of the lateral Casimir force between two sinusoidally corrugated eccentric cylinders. Despite that applying scattering matrix method explains the problem exactly, procedure of applying this method is somehow complicated specially at nonzero temperature. Using the proximity force approximation (PFA) helps to achieve the lateral Casimir force in a truly explicit manner. We assume the cylinders to be slightly eccentric with similar radiuses and separations much smaller than corrugations' wave length for the validity of PFA. For such short distances the effect of finite conductivity would be non negligible. In addition to the effect of finite conductivity, we investigate thermal corrections of the lateral Casimir force to reduce the inaccuracy of the result obtained by PFA. Assuming the Casimir force density between two parallel plates, the normal Casimir force between two cylinders is obtained. With the aid of additive summation of the Casimir energy between cylinders wi...

  14. Temperature dependence of the Casimir force for bulk lossy media

    International Nuclear Information System (INIS)

    We discuss the limitations for the applicability of the Lifshitz theory to describe the temperature dependence of the Casimir force between bulk lossy metal slabs of finite sizes. We pay attention to the important fact that Lifshitz's theory is not applicable when the characteristic wavelength of the fluctuating field, responsible for the temperature-dependent terms in the Casimir force, are longer than the size of the sample. As a result, the widely discussed linearly decreasing temperature dependence of the Casimir force can be observed only for dirty and large metal samples at high enough temperatures. Moreover, for the correct description of the Casimir effect at low enough temperatures, a careful consideration of the concrete geometry of the interacting samples is essential.

  15. Repulsive Casimir-Polder forces from cosmic strings

    CERN Document Server

    Saharian, A A

    2011-01-01

    We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence of the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely as the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays as the inverse fourth power of the distance. In the case of anisotropic polarizability, th...

  16. Fluctuations of the Casimir-like force between two membrane inclusions.

    Science.gov (United States)

    Bitbol, Anne-Florence; Dommersnes, Paul G; Fournier, Jean-Baptiste

    2010-05-01

    Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as -1/d2. This distance dependence shares a common physical origin with the Casimir force itself. PMID:20866178

  17. Dynamics of thermal Casimir-Polder forces on polar molecules

    International Nuclear Information System (INIS)

    We study the influence of thermal Casimir-Polder forces on the near-surface trapping of cold polar molecules, with emphasis on LiH and YbF near a Au surface at room temperature. We show that even for a molecule initially prepared in its electronic and rovibrational ground state, the Casimir-Polder force oscillates with the molecule-wall separation. The nonresonant force and the evanescent part of the resonant force almost exactly cancel at high temperature which results in a saturation of the (attractive) force in this limit. This implies that the Casimir-Polder force on a fully thermalized molecule can differ dramatically from that obtained using a naive perturbative expansion of the Lifshitz formula based on the molecular ground-state polarizability. A dynamical calculation reveals how the spatial oscillations die out on a typical time scale of several seconds as thermalization of the molecule with its environment sets in.

  18. New approach to the thermal Casimir force between real metals

    OpenAIRE

    Mostepanenko, V. M.; Geyer, B.

    2008-01-01

    The new approach to the theoretical description of the thermal Casimir force between real metals is presented. It uses the plasma-like dielectric permittivity that takes into account the interband transitions of core electrons. This permittivity precisely satisfies the Kramers-Kronig relations. The respective Casimir entropy is positive and vanishes at zero temperature in accordance with the Nernst heat theorem. The physical reasons why the Drude dielectric function, when substituted in the L...

  19. Dynamics of thermal Casimir-Polder forces on polar molecules

    OpenAIRE

    Ellingsen, S. A.; Buhmann, S. Y.; Scheel, S.

    2008-01-01

    We study the influence of thermal Casimir-Polder forces on the near-surface trapping of cold polar molecules, with emphasis on LiH and YbF near an Au surface at room temperature. We show that for a molecule initially prepared in its electronic and rovibrational ground state, the Casimir-Polder force oscillates with the molecule-wall separation. The non-resonant force contribution and the evanescent part of the resonant force contribution almost exactly cancel at high temperature which results...

  20. Demonstration of angle-dependent Casimir force between corrugations.

    Science.gov (United States)

    Banishev, A A; Wagner, J; Emig, T; Zandi, R; Mohideen, U

    2013-06-21

    The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems. PMID:23829717

  1. Isoelectronic determination of the thermal Casimir force

    Science.gov (United States)

    Bimonte, G.; López, D.; Decca, R. S.

    2016-05-01

    Differential force measurements between spheres coated with either nickel or gold and rotating disks with periodic distributions of nickel and gold are reported. The rotating samples are covered by a thin layer of titanium and a layer of gold. While titanium is used for fabrication purposes, the gold layer (nominal thicknesses of 21, 37, 47, and 87 nm) provides an isoelectronic environment, and is used to nullify the electrostatic contribution but allow the passage of long wavelength Casimir photons. A direct comparison between the experimental results and predictions from Drude and plasma models for the electrical permittivity is carried out. In the models, the magnetic permeability of nickel is allowed to change to investigate its effects. Possible sources of errors, both in the experimental and theoretical sides, are taken into account. It is found that a Drude response with magnetic properties of nickel taken into account is unequivocally ruled out. The full analysis of the data indicates that a dielectric plasma response with the magnetic properties of Ni included shows good agreement with the data. Neither a Drude nor a plasma dielectric response provide a satisfactory description if the magnetic properties of nickel are disregarded.

  2. Casimir force and in situ surface potential measurements on nanomembranes.

    Science.gov (United States)

    Garcia-Sanchez, Daniel; Fong, King Yan; Bhaskaran, Harish; Lamoreaux, Steve; Tang, Hong X

    2012-07-13

    We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with gold. A Kelvin probe method is used in situ to image the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-domain measurements of the nanomembrane motion allow for very high resolution measurements of the Casimir force gradient (down to a force gradient sensitivity of 3  μN/m). Using this technique, the Casimir force in the range of 100 nm to 2  μm is accurately measured. Experimental data thus obtained indicate that the device system in the measured range is best described with the Drude model. PMID:23030202

  3. Casimir Friction Force Between Polarizable Media

    OpenAIRE

    Høye, Johan S.; Brevik, Iver

    2012-01-01

    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL...

  4. The Casimir force between real materials: Experiment and theory

    International Nuclear Information System (INIS)

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  5. The Casimir force between real materials: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M. [Institute for Theoretical Physics, Leipzig University, Postfach 100920, Leipzig D-04009 (Germany) and North-West Technical University, Millionnaya Street 5, St. Petersburg 191065 (Russian Federation); Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Institute for Theoretical Physics, Leipzig University, Postfach 100920, Leipzig D-04009 (Germany) and Noncommercial Partnership ' ' Scientific Instruments' ' , Tverskaya Street 11, Moscow 103905 (Russian Federation)

    2009-10-15

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  6. Casimir Force on a Piston in Randall-Sundrum Models

    International Nuclear Information System (INIS)

    The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall-Sundrum models is studied. In these scenarios we derive and calculate the expression for the Casimir force on the piston. We also discuss the Casimir force in the limit that one outer plate is moved to the remote place to show that the nature of the reduced force between the parallel plates left. In the Randall-Sundrum model involving two branes the two plates attract each other when they locate very closely, but the reduced Casimir force turns to be repulsive as the plates separation is not extremely tiny, which is against the experimental phenomena, meaning that the RSI model can not be acceptable. In the case of one brane model the shape of the reduced Casimir force is similar to that of the standard two-parallel-system in the four-dimensional flat spacetimes while the sign of force remains negative. (physics of elementary particles and fields)

  7. CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries

    International Nuclear Information System (INIS)

    The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 μm where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force

  8. Repulsive Casimir force from fractional Neumann boundary conditions

    International Nuclear Information System (INIS)

    This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.

  9. Apparatus for Measuring the Thermal Casimir Force at Large Distances

    Science.gov (United States)

    Bimonte, Giuseppe

    2014-12-01

    We describe a Casimir apparatus based on a differential force measurement between a Au-coated sphere and a planar slab divided in two regions, one of which is made of high-resistivity (dielectric) Si, and the other of Au. The crucial feature of the setup is a semitransparent plane parallel conducting overlayer, covering both regions. The setup offers two important advantages over existing Casimir setups. On one hand, it leads to a large amplification of the difference between the Drude and the plasma prescriptions that are currently used to compute the thermal Casimir force. On the other hand, thanks to the screening power of the overlayer, it is in principle immune from electrostatic forces caused by potential patches on the plates surfaces, that plague present large distance Casimir experiments. If a semitransparent conductive overlayer with identical patch structure over the Au-Si regions of the plate can be manufactured, similar to the opaque overlayers used in recent searches of non-Newtonian gravitational forces based on the isoelectronic technique, the way will be paved for a clear observation of the thermal Casimir force up to separations of several microns, and an unambiguous discrimination between the Drude and the plasma prescriptions.

  10. Repulsive Casimir force from fractional Neumann boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.C. [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: sclim@mmu.edu.my; Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-08-17

    This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.

  11. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  12. Nonmonotonic thermal Casimir force from geometry-temperature interplay.

    Science.gov (United States)

    Weber, Alexej; Gies, Holger

    2010-07-23

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect. PMID:20867823

  13. Reversing the critical Casimir force by shape deformation

    Energy Technology Data Exchange (ETDEWEB)

    Bimonte, Giuseppe, E-mail: bimonte@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario MSA, Via Cintia, I-80126 Napoli (Italy); INFN Sezione di Napoli, I-80126 Napoli (Italy); Emig, Thorsten [Laboratoire de Physique Théorique et Modèles Statistiques, CNRS UMR 8626, Bât. 100, Université Paris-Sud, 91405 Orsay Cedex (France); Massachusetts Institute of Technology, MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory (UMI 3466), Cambridge, MA 02139 (United States); Kardar, Mehran [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02139 (United States)

    2015-04-09

    The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator), along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.

  14. Reversing the critical Casimir force by shape deformation

    Science.gov (United States)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran

    2015-04-01

    The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator), along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.

  15. Reversing the critical Casimir force by shape deformation

    Directory of Open Access Journals (Sweden)

    Giuseppe Bimonte

    2015-04-01

    Full Text Available The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator, along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.

  16. Nonequilibrium Casimir-like Forces in Liquid Mixtures

    Science.gov (United States)

    Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V.

    2015-07-01

    In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.

  17. Calculation of the Casimir force between imperfectly conducting plates

    International Nuclear Information System (INIS)

    The Lifshitz formalism for determining the attractive force between material bodies with generalized electromagnetic susceptibility is applied numerically to gold, copper, and aluminum. The deviation from the perfect conductivity Casimir force approximately agrees with a first-order plasma model calculation at large separation, but at separations corresponding to the plasma frequency, deviations of over 50% from the first-order model are found, while deviations from corrections up to second order are about 10%. These results are discussed in the context of recent measurements of the Casimir force. copyright 1999 The American Physical Society

  18. Casimir switch: steering optical transparency with vacuum forces

    Science.gov (United States)

    Liu, Xi-Fang; Li, Yong; Jing, H.

    2016-06-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  19. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    International Nuclear Information System (INIS)

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented

  20. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Mohideen, U [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2006-05-26

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented.

  1. Fluctuations of the Casimir-like force between two membrane inclusions

    OpenAIRE

    Bitbol, Anne-Florence; Dommersnes, Paul G.; Fournier, Jean-Baptiste

    2010-01-01

    Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the var...

  2. Casimir forces in multilayer magnetodielectrics with both gain and loss

    CERN Document Server

    Amooghorban, Ehsan; Mortensen, N Asger; Kheirandish, Fardin

    2011-01-01

    A path-integral approach to the quantization of the electromagnetic field in a linearly amplifying magnetodielectric medium is presented. Two continua of inverted harmonic oscillators are used to describe the polarizability and magnetizability of the amplifying medium. The causal susceptibilities of the amplifying medium, with negative imaginary parts in finite frequency intervals, are identified and their relation to microscopic coupling functions are determined. By carefully relating the two-point functions of the field theory to the optical Green functions, we calculate the Casimir energy and Casimir forces for a multilayer magnetodielectric medium with both gain and loss. We point out the essential differences with a purely passive layered medium. For a single layer, we find different bounds on the Casimir force for fully amplifying and for lossy media. The force is attractive in both cases, also if the medium exhibits negative refraction. From our Lagrangian we also derive by canonical quantization the p...

  3. Casimir force induced by an imperfect Bose gas.

    Science.gov (United States)

    Napiórkowski, Marek; Piasecki, Jarosław

    2011-12-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038

  4. Some new results of the Casimir force for rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X.-H.; Li, X.-Z. [Shanghai Normal University, Dept. of Physics, Shanghai (China)

    2001-10-01

    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is analytically approached for a p-dimensional rectangular cavity with the Dirichlet boundary conditions and different spacetime dimensions D. The Casimir force is attractive in the cases: i) p-odd hypercube when D is less than the critical dimension D{sub c} and p {<=} 29; ii) o =2 and the length ratio is less than a critical value; iii) p = 1. The Casimir force is repulsive in the cases: i) p = 2 and the length ratio is larger than a critical value; ii) the length of q edges is equal and others are much longer than q edges, in the direction of (p-q) edges; iii) (p-q) edges are much longer than q edges, in the direction of (p-q) edges.

  5. Quantum field theory of the Casimir force for graphene

    Science.gov (United States)

    Klimchitskaya, G. L.

    2016-01-01

    We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.

  6. Repulsive Casimir-Polder forces from cosmic strings

    International Nuclear Information System (INIS)

    We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence on the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely with the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays with the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir-Polder potential on the orientation of the polarizability tensor principal axes also leads to a moment of force acting on the particle. (orig.)

  7. Radiation Pressure Approach to the Repulsive Casimir Force

    OpenAIRE

    Hushwater, V.

    1999-01-01

    We study the Casimir force between a perfectly conducting and an infinitely permeable plate with the radiation pressure approach. This method illustrates how a repulsive force arises as a consequence of the redistribution of the vacuum-field modes corresponding to specific boundary conditions. We discuss also how the method of the zero-point radiation pressure follows from QED.

  8. Casimir Friction Force Between Polarizable Media

    CERN Document Server

    Høye, Johan S

    2012-01-01

    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL 91, 60003 (2010), which was restricted to a pair of particles with longitudinal polarization only. For simplicity the particles are taken to interact via the electrostatic dipole-dipole interaction. Thereafter, we consider the Casimir friction between one particle and a dielectric half-space, and also the friction between two dielectric half-spaces. Finally, we consider general polarizabilities (beyond the simple one-oscillator form), and show how friction occurs at finite temperature when finite frequency regions of the...

  9. Casimir force in presence of multi layer magnetodielectric slabs

    International Nuclear Information System (INIS)

    Research highlights: → The Casimir force has been obtained in the presence of some dielectrics. → The approach is based on a Lagrangian. → It can be generalized to include the rough surfaces. → Finite temperature correction can be easily obtained. - Abstract: By using the path-integral formalism, electromagnetic field in the presence of some linear, isotropic magnetodielectric slabs is quantized and related correlation functions are found. In the framework of path-integral techniques, Casimir force between two infinitely large, parallel and ideal conductors, with a different number of magnetodielectric slabs in between, is obtained by calculating the Green's function corresponding to each geometry.

  10. Computing the Casimir force using regularized boundary integral equations

    Science.gov (United States)

    Kilen, Isak; Jakobsen, Per Kristen

    2014-11-01

    In this paper we use a novel regularization procedure to reduce the calculation of the Casimir force for 2D scalar fields between compact objects to the solution of a classical integral equation defined on the boundaries of the objects. The scalar fields are subject to Dirichlet boundary conditions on the object boundaries. We test the integral equation by comparing with what we get for parallel plates, concentric circles and adjacent circles using mode summation and the functional integral method. We show how symmetries in the shapes and configuration of boundaries can easily be incorporated into our method and that it leads to fast evaluation of the Casimir force for symmetric situations.

  11. Frequency-dependent Drude damping in Casimir force calculations

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)

    2009-04-01

    The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.

  12. Fulfillment of expectations of precise measurements of the Casimir force

    OpenAIRE

    Svetovoy, V.B.; Lokhanin, M. V.

    2000-01-01

    We compare theoretical expectations for the Casimir force with the results of precise measurements. The force is calculated at finite temperature for multilayered covering of the bodies using the Lifshitz theory. We argue that the dielectric function of the metallization has to be directly measured to reach the necessary precision in the force calculation. Without knowledge of this function one can establish a well defined upper limit on the force using parameters of perfect single-crystal ma...

  13. Engineering Casimir force reduction through metallic surface nanostructuring

    CERN Document Server

    Intravaia, Francesco; Jung, Il Woong; Talin, A Alec; Davids, Paul S; Decca, Ricardo S; Aksyuk, Vladimir A; Dalvit, Diego A R; Lopez, Daniel

    2012-01-01

    The Casimir force is an interaction arising from quantum-mechanical fluctuations of the electromagnetic (EM) field, and is technologically significant as it results in stiction in micro- and nano-electromechanical systems (MEMS and NEMS). Control of the Casimir force has remained elusive, as many complex EM modes over a broad range of energy and length scales contribute simultaneously. Here we engineer one of two interacting gold surfaces into a high aspect ratio lamellar grating with 100 nm features, and demonstrate for the first time a strong Casimir force reduction by metallic nanostructuring. For inter-surface separations d above \\approx 400 nm, the measured Casimir force in vacuum decreases faster than the usual d^{-4} power-law reaching a value more than 2 times smaller than the one predicted by the proximity force approximation for planar-like geometries. The observed force suppression is in agreement with our ab-initio numerical analysis, and cannot be explained by either perfect electrical conductor ...

  14. Electromagnetic Energy, Absorption, and Casimir Forces. Inhomogeneous Dielectric Media

    CERN Document Server

    Rosa, F S S; Milonni, P W

    2011-01-01

    A general, exact formula is derived for the expectation value of the electromagnetic energy density of an inhomogeneous absorbing and dispersive dielectric medium at zero temperature, assuming that the medium is well approximated as a continuum. From this formula we obtain the formal expression for the Casimir force density. Unlike most previous approaches to Casimir effects in which absorption is either ignored or admitted implicitly through the required analytic properties of the permittivity, we include dissipation explicitly via the coupling of each dipole oscillator of the medium to a reservoir of harmonic oscillators. We obtain the energy density and the Casimir force density as a consequence of the van der Waals interactions of the oscillators and also from Poynting's theorem.

  15. Casimir force due to condensed vortices in a plane

    CERN Document Server

    Neto, J F de Medeiros; Santos, Carlos Rafael M

    2012-01-01

    The Casimir force between parallel lines in a theory describing condensed vortices in a plane is determined. We make use of the relation between a Chern-Simons-Higgs model and its dualized version, which is expressed in terms of a dual gauge field and a vortex field. The dual model can have a phase of condensed vortices and, in this phase, there is a mapping to a model of two non-interacting massive scalar fields from which the Casimir force can readily be obtained. The choice of boundary conditions required for the mapped scalar fields and their association with those for the vectorial field and the issues involved are discussed. We also briefly discuss the implications of our results for experiments related to the Casimir effect when vortices can be present.

  16. Present status of controversies regarding the thermal Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Mostepanenko, V M [Noncommercial Partnership ' Scientific Instruments' , Moscow (Russian Federation); Bezerra, V B [Department of Physics, Federal University of Paraiba, Joao Pessoa (Brazil); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Geyer, B [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Augustusplatz 10/11, D-04109 Leipzig (Germany); Fischbach, E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Klimchitskaya, G L [North-West Technical University, Millionnaya Street 5, St Petersburg (Russian Federation); Krause, D E [Department of Physics, Wabash College, Crawfordsville, IN 47933 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States); Romero, C [Department of Physics, Federal University of Paraiba, Joao Pessoa (Brazil)

    2006-05-26

    It is well known that, beginning in 2000, the behaviour of the thermal correction to the Casimir force between real metals has been hotly debated. As was shown by several research groups, the Lifshitz theory, which provides the theoretical foundation for the calculation of both the van der Waals and Casimir forces, leads to different results depending on the model of metal conductivity used. To resolve these controversies, theoretical considerations based on the principles of thermodynamics and new experimental tests were invoked. We analyse the present status of the problem (in particular, the advantages and disadvantages of the approaches based on the surface impedance and on the Drude model dielectric function) using rigorous analytical calculations of the entropy of a fluctuating field. We also discuss the results of a new precise experiment on the determination of the Casimir pressure between two parallel plates by means of a micromechanical torsional oscillator.

  17. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    OpenAIRE

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2014-01-01

    Measurements of the Casimir force require the elimination of electrostatic interactions between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential (SP) of e-beamed, sputtered, sputtere...

  18. Precision measurements of the Casimir force using an atomic force microscope

    International Nuclear Information System (INIS)

    The Casimir force results from the alteration by boundaries of the zero point electromagnetic energy. We have used the atomic force microscope to make precision measurements of the Casimir force between a large gold coated sphere and a flat plate. The complete dielectric spectrum of the metal is used in the comparison of theory to the experiment. The average statistical precision is around 1% of the forces measured at the closest separation

  19. A microscopic approach to Casimir and Casimir-Polder forces between metallic bodies

    Science.gov (United States)

    Barcellona, Pablo; Passante, Roberto

    2015-04-01

    We consider the Casimir-Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir-Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed.

  20. Normal and lateral Casimir forces between deformed plates

    International Nuclear Information System (INIS)

    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length λ: For λ-4, compared to the H-5 behavior predicted by PWS which we show to be valid only for λ>>H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of λ≅2.5 H. With increasing H/λ > or approx. 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices

  1. Three-dimensional Casimir force between absorbing multilayer dielectrics

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Kn\\"{o}ll, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    Recently the influence of dielectric and geometrical properties on the Casimir force between dispersing and absorbing multilayered plates in the zero-temperature limit has been studied within a 1D quantization scheme for the electromagnetic field in the presence of causal media [R. Esquivel-Sirvent, C. Villarreal, and G.H. Cocoletzi, Phys. Rev. Lett. 64, 052108 (2001)]. In the present paper a rigorous 3D analysis is given, which shows that for complex heterostructures the 1D theory only roughly reflects the dependence of the Casimir force on the plate separation in general. Further, an extension of the very recently derived formula for the Casimir force at zero temperature [M.S. Toma\\v{s}, Phys. Rev. A 66, 052103 (2002)] to finite temperatures is given, and analytical expressions for specific distance laws in the zero-temperature limit are derived. In particular, it is shown that the Casimir force between two single-slab plates behaves asymptotically like $d^{-6}$ in place of $d^{-4}$ ($d$, plate separation).

  2. Higher-order conductivity corrections to the Casimir force

    International Nuclear Information System (INIS)

    Full text follows: Considerable recent attention has been focused on the new experiments on measuring the Casimir force. To be confident that experimental data fit theory at a level of several percent, a variety of corrections to the ideal expression for the Casimir force should be taken into account. One of the main corrections at small separations between interacting bodies is the one due to finite conductivity of the boundary metal. This correction has its origin in non-zero penetration depth δ0 of electromagnetic vacuum oscillations into the metal (for a perfect metal of infinitely large conductivity δ0 = 0). The other quantity of the dimension of length is the space separation a between two plates or a plate and a sphere. Their relation δ0/a is the natural perturbation parameter in which powers the corrections to the Casimir force due to finite conductivity can be expanded. Such an expansion works good for all separations a >> δ0 (i.e. for separations larger than 100-150 nm). The first-order term of this expansion was calculated almost forty years ago, and the second-order one in 1985 [1]. These two terms are not sufficient for the comparison of the theory with precision modern experiments. In this talk we report the results of paper [2] where the third- and fourth-order terms in δ0 /a expansion of the Casimir force were calculated first. They gave the possibility to achieve an excellent agreement of a theory and experiment. (author)

  3. Casimir-Polder force out of thermal equilibrium

    OpenAIRE

    Dedkov, G. V; Kyasov, A. A.

    2009-01-01

    We calculate equilibrium and nonequilibrium Casimir-Polder force felt by a small particle (an atom)near a flat substrate using the framework of fluctuation electrodynamics in configuration of a small sphere above a flat substrate. A numerical example is given for a SiC micron -sized particle above a SiC substrate. Different temperature configurations are considered.

  4. Born-series approach to the calculation of Casimir forces

    Science.gov (United States)

    Bennett, Robert

    2014-06-01

    The Casimir force between two objects is notoriously difficult to calculate in anything other than parallel-plate geometries due to its nonadditive nature. This means that for more complicated, realistic geometries one usually has to resort to approaches such as making the crude proximity force approximation (PFA). Another issue with calculation of Casimir forces in real-world situations (such as with realistic materials) is that there are continuing doubts about the status of Lifshitz's original treatment as a true quantum theory. Here we demonstrate an alternative approach to the calculation of Casimir forces for arbitrary geometries which sidesteps both of these problems. Our calculations are based upon a Born expansion of the Green's function of the quantized electromagnetic vacuum field, interpreted as multiple scattering, with the relevant coupling strength being the difference in the dielectric functions of the various materials involved. This allows one to consider arbitrary geometries in single or multiple scattering simply by integrating over the desired shape, meaning that extension beyond the PFA is trivial. This work is mostly dedicated to illustration of the method by reproduction of known parallel-slab results—a process that turns out to be nontrivial and provides several useful insights. We also present a short example of calculation of the Casimir energy for a more complicated geometry; namely, that of two finite slabs.

  5. Higher order conductivity corrections to the Casimir force

    OpenAIRE

    Bezerra, V.B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    1999-01-01

    The finite conductivity corrections to the Casimir force in two configurations are calculated in the third and fourth orders in relative penetration depth of electromagnetic zero oscillations into the metal. The obtained analytical perturbation results are compared with recent computations. Applications to the modern experiments are discussed.

  6. Three-dimensional Casimir force between absorbing multilayer dielectrics

    International Nuclear Information System (INIS)

    Recently the influence of dielectric and geometrical properties on the Casimir force between dispersing and absorbing multilayered plates in the zero-temperature limit has been studied within a one-dimensional (1D) quantization scheme for the electromagnetic field in the presence of causal media [R. Esquivel-Sirvent, C. Villarreal, and G.H. Cocoletzi, Phys. Rev. Lett. 64, 052108 (2001)]. In the present paper a rigorous 3D analysis is given, which shows that for complex heterostructures the 1D theory only roughly reflects the dependence of the Casimir force on the plate separation in general. Further, an extension of the very recently derived formula for the Casimir force at zero temperature [M.S. Tomas, Phys. Rev. A 66, 052103 (2002)] to finite temperatures is given, and analytical expressions for specific distance laws in the zero-temperature limit are derived. In particular, it is shown that the Casimir force between two single-slab plates behaves asymptotically like d-6 instead of d-4 (d, plate separation)

  7. Casimir force between a microfabricated elliptic cylinder and a plate

    Energy Technology Data Exchange (ETDEWEB)

    Decca, R. S. [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202 (United States); Fischbach, E. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Klimchitskaya, G. L. [North-West Technical University, Millionnaya Street 5, St.Petersburg, 191065 (Russian Federation); Krause, D. E. [Physics Department, Wabash College, Crawfordsville, Indiana 47933 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Lopez, D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Mostepanenko, V. M. [Noncommercial Partnership ' ' Scientific Instruments' ' , Tverskaya Street 11, Moscow, 103905 (Russian Federation)

    2011-10-15

    We investigate the Casimir force between a microfabricated elliptic cylinder (cylindrical lens) and a plate made of real materials. After a brief discussion of the fabrication procedure, which typically results in elliptic rather than circular cylinders, the Lifshitz-type formulas for the Casimir force and for its gradient are derived. In the specific case of equal semiaxes, the resulting formulas coincide with those derived previously for circular cylinders. The nanofabrication procedure may also result in asymmetric cylindrical lenses obtained from parts of two different cylinders, or rotated through some angle about the axis of the cylinder. In these cases, the Lifshitz-type formulas for the Casimir force between a lens and a plate and for its gradient are also derived, and the influence of lens asymmetry is determined. Additionally, we obtain an expression for the shift of the natural frequency of a micromachined oscillator with an attached elliptic cylindrical lens interacting with a plate via the Casimir force in a nonlinear regime.

  8. A dispersive correction to the Casimir force

    OpenAIRE

    Ravndal, Finn; Teo, Lee-Peng

    2010-01-01

    Using perturbation theory the first order dispersive correction to the Casimir energy between two plates separated by a dielectric material is calculated. It falls off with the plate separation as 1/L^6. The result is derived both from evaluation of the zero-point energy and within the Lifshitz formulation. It is pointed out that a possible surface term can be more important, varying like 1/L^5.

  9. Casimir Friction Force for Moving Harmonic Oscillators

    OpenAIRE

    Høye, Johan S.; Brevik, Iver

    2011-01-01

    Casimir friction is analyzed for a pair of dielectric particles in relative motion. We first adopt a microscopic model for harmonically oscillating particles at finite temperature T moving non-relativistically with constant velocity. We use a statistical-mechanical description where time-dependent correlations are involved. This description is physical and direct, and, in spite of its simplicity, is able to elucidate the essentials of the problem. This treatment elaborates upon, and extends, ...

  10. Electromagnetic Casimir Forces in Elliptic Cylinder Geometries

    OpenAIRE

    Graham, Noah

    2013-01-01

    The scattering theory approach makes it possible to carry out exact calculations of Casimir energies in any geometry for which the scattering T-matrix and a partial wave expansion of the free Green's function are available. We implement this program for the case of a perfectly conducting elliptic cylinder, thereby completing the set of geometries where electromagnetic scattering is separable. Particular emphasis is placed on the case of zero radius, where the elliptic cylinder reduces to a st...

  11. Experimental investigation of the Casimir force beyond the proximity-force approximation.

    Science.gov (United States)

    Krause, D E; Decca, R S; López, D; Fischbach, E

    2007-02-01

    The analysis of all Casimir force experiments using a sphere-plate geometry requires the use of the proximity-force approximation (PFA) to relate the Casimir force between a sphere and a flat plate to the Casimir energy between two parallel plates. Because it has been difficult to assess the PFA's range of applicability theoretically, we have conducted an experimental search for corrections to the PFA by measuring the Casimir force and force gradient between a gold-coated plate and five gold-coated spheres with different radii using a microelectromechanical torsion oscillator. For separations z<300 nm, we find that the magnitude of the fractional deviation from the PFA in the force gradient measurement is, at the 95% confidence level, less than 0.4z/R, where R is the radius of the sphere. PMID:17358830

  12. Experimental Investigation of the Casimir Force beyond the Proximity-Force Approximation

    International Nuclear Information System (INIS)

    The analysis of all Casimir force experiments using a sphere-plate geometry requires the use of the proximity-force approximation (PFA) to relate the Casimir force between a sphere and a flat plate to the Casimir energy between two parallel plates. Because it has been difficult to assess the PFA's range of applicability theoretically, we have conducted an experimental search for corrections to the PFA by measuring the Casimir force and force gradient between a gold-coated plate and five gold-coated spheres with different radii using a microelectromechanical torsion oscillator. For separations z<300 nm, we find that the magnitude of the fractional deviation from the PFA in the force gradient measurement is, at the 95% confidence level, less than 0.4z/R, where R is the radius of the sphere

  13. Non-equilibrium Casimir force between vibrating plates.

    Directory of Open Access Journals (Sweden)

    Andreas Hanke

    Full Text Available We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.

  14. Non-equilibrium Casimir force between vibrating plates.

    Science.gov (United States)

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  15. Pseudo-Casimir force in chiral smectic liquid crystals.

    Science.gov (United States)

    Markun, B; Zumer, S

    2003-08-01

    We present a theoretical study of the pseudo-Casimir force in two chiral smectic systems: a homeotropic cell and a free-standing film. We consider the interaction induced by the fluctuations of orientational order. We demonstrate how the character of the force depends on the type of fluctuation modes and on boundary conditions. We focus on the temperature dependence of the force, which is marked by the vicinity of the smectic-A*-->smectic-C* phase transition. We find that at this transition the force diverges if the system is frustrated; otherwise it remains finite. We expose the analogy between the force in these smectic systems and in previously studied nematic systems, thus demonstrating the universality of the pseudo-Casimir interaction. PMID:14524990

  16. Numerical calculation of the Casimir forces between a gold sphere and a nanocomposite sheet

    International Nuclear Information System (INIS)

    The repulsive Casimir force is expected as a force which enables to levitate small objects such as machine parts used in Micro Electro Mechanical Systems (MEMS), and superlubricity in MEMS may be realized by this levitation. We study the Casimir force between a gold sphere and a nanocomposite sheet containing many nickel nanoparticles. In particular, we focus on the dependence of the Casimir force on the separation between the gold sphere and the surface of the nanocomposite sheet. The Casimir force changes from the attractive force to the repulsive force as the separation increases. The strength of the repulsive force is, however, too small to levitate MEMS parts.

  17. Long range Casimir force induced by transverse electromagnetic modes

    CERN Document Server

    Alvarez, Ezequiel

    2009-01-01

    We consider the interaction of two perfectly conducting plates of arbitrary shape that are inside a non-simply connected cylinder with transverse section of the same shape. We show that the existence of transverse electromagnetic (TEM) modes produces a Casimir force that decays only as $1/a^2$, where $a$ is the distance between plates. The TEM force does not depend on the area of the plates and dominates at large distances over the force produced by the transverse electric (TE) and transverse magnetic (TM) modes. These geometries provide a physical realization of the 1+1 dimensional Casimir effect. For the particular case of a coaxial circular cylindrical cavity, we compute the TE, TM and TEM contributions to the force, and find the critical distance for which the TEM modes dominate.

  18. Small object limit of the Casimir effect and the sign of the Casimir force

    International Nuclear Information System (INIS)

    We suggest a simple derivation of the Casimir-Polder interaction, and present some general arguments on the finiteness and sign of mutual Casimir interactions. Finally we derive a simple expression for Casimir radiation from small accelerated objects

  19. Small object limit of Casimir effect and the sign of the Casimir force

    OpenAIRE

    Kenneth, O.; Nussinov, S.

    1999-01-01

    We show a simple way of deriving the Casimir Polder interaction, present some general arguments on the finiteness and sign of mutual Casimir interactions and finally we derive a simple expression for Casimir radiation from small accelerated objects.

  20. Roughness correction to the Casimir force beyond perturbation theory

    OpenAIRE

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly B.

    2011-01-01

    Up to now there has been no reliable method to calculate the Casimir force when surface roughness becomes comparable with the separation between bodies. Statistical analysis of rough Au films demonstrates rare peaks with heights considerably larger than the root-mean-square (rms) roughness. These peaks define the minimal distance between rough surfaces and can be described with extreme value statistics. We show that the contributions of high peaks to the force can be calculated independently ...

  1. Lateral Casimir-Polder force with corrugated surfaces

    OpenAIRE

    Dalvit, Diego A. R.; Neto, Paulo A. Maia; Lambrecht, Astrid; Reynaud, Serge

    2007-01-01

    We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wav...

  2. Casimir force for a sphere in front of a plane beyond proximity force approximation

    International Nuclear Information System (INIS)

    For the configuration of a sphere in front of a plane, we calculate the first two terms of the asymptotic expansion for small separation of the Casimir force. We consider both Dirichlet and Neumann boundary conditions

  3. Casimir force for a sphere in front of a plane beyond proximity force approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bordag, M [Institute for Theoretical Physics, Leipzig University, Vor dem Hospitaltore 1, D-04103 Leipzig (Germany); Nikolaev, V [Halmstad University, Box 823, S-30118 Halmstad (Sweden)], E-mail: bordag@itp.uni-leipzig.de, E-mail: Vladimir.Nikolaev@ide.hh.se

    2008-04-25

    For the configuration of a sphere in front of a plane, we calculate the first two terms of the asymptotic expansion for small separation of the Casimir force. We consider both Dirichlet and Neumann boundary conditions.

  4. Proof that Casimir force does not originate from vacuum energy

    CERN Document Server

    Nikolic, H

    2016-01-01

    We present a simple general proof that Casimir force cannot originate from the vacuum energy of electromagnetic (EM) field. The full QED Hamiltonian consists of 3 terms: the pure electromagnetic term $H_{\\rm em}$, the pure matter term $H_{\\rm matt}$ and the interaction term $H_{\\rm int}$. The $H_{\\rm em}$-term commutes with all matter fields because it does not have any explicit dependence on matter fields. As a consequence, $H_{\\rm em}$ cannot generate any forces on matter. Since it is precisely this term that generates the vacuum energy of EM field, it follows that the vacuum energy does not generate the forces. The erroneous statements in the literature that vacuum energy generates Casimir force can be boiled down to the fact that $H_{\\rm em}$ attains an implicit dependence on matter fields by the use of the equations of motion and the erroneous treatment of the implicit dependence as if it was explicit. The true origin of the Casimir force is van der Waals force generated by $H_{\\rm int}$.

  5. Optical properties of gold films and the Casimir force

    International Nuclear Information System (INIS)

    Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 μm. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%-14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range

  6. Observation of the Thermal Casimir Force is Open to Question

    CERN Document Server

    Klimchitskaya, G L; Fischbach, E; Krause, D; Mostepanenko, V M

    2011-01-01

    We discuss theoretical predictions for the thermal Casimir force and compare them with available experimental data. Special attention is paid to the recent claim of the observation of that effect, as predicted by the Drude model approach. We show that this claim is in contradiction with a number of experiments reported so far. We suggest that the experimental errors, as reported in support of the observation of the thermal Casimir force, are significantly underestimated. Furthermore, the experimental data at separations above $3\\,\\mu$m are shown to be in agreement not with the Drude model approach, as is claimed, but with the plasma model. The seeming agreement of the data with the Drude model at separations below $3\\,\\mu$m is explained by the use of an inadequate formulation of the proximity force approximation.

  7. Casimir Force on Real Materials - the Slab and Cavity Geometry

    CERN Document Server

    Ellingsen, S A; Brevik, Iver; Ellingsen, Simen A.

    2006-01-01

    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.

  8. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    Science.gov (United States)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  9. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, T [Binnotec, Bouchestr. 12, 12435 Berlin (Germany)], E-mail: DrLudwig@thorstenludwig.de

    2008-04-25

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed.

  10. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    International Nuclear Information System (INIS)

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed

  11. Measurement of the Casimir force between parallel metallic surfaces.

    Science.gov (United States)

    Bressi, G; Carugno, G; Onofrio, R; Ruoso, G

    2002-01-28

    We report on the measurement of the Casimir force between conducting surfaces in a parallel configuration. The force is exerted between a silicon cantilever coated with chromium and a similar rigid surface and is detected by looking at the shifts induced in the cantilever frequency when the latter is approached. The scaling of the force with the distance between the surfaces was tested in the 0.5-3.0 microm range, and the related force coefficient was determined at the 15% precision level. PMID:11801108

  12. Numerical calculation of the force on some Generalized Casimir Pistons

    Energy Technology Data Exchange (ETDEWEB)

    Schaden, Martin, E-mail: mschaden@andromeda.rutgers.ed [Department of Physics, Rutgers University, Newark, NJ 07102 (United States)

    2009-04-01

    In this talk I presented numerical calculations of the Casimir force due to a scalar field on a piston in a cylinder of radius tau with a spherical cap of radius R > tau. Geometrical subtractions give a finite interaction energy. Due to reflection positivity, the vacuum force on the piston by a scalar field satisfying Dirichlet boundary conditions is attractive for these geometries, but the strength and short-distance behavior of the force depends strongly on the shape of the piston casing. For a cylindrical casing with a hemispherical head of large radius, the attractive force on the piston is inversely proportional to the square of the height of the piston.

  13. Casimir-like tunnelling-induced electronic forces

    International Nuclear Information System (INIS)

    We study the quantum forces that act between two nearby conductors due to electronic tunnelling. We derive an expression for these forces by calculating the flux of momentum arising from the overlap of evanescent electronic fields. Our result is written in terms of the electronic reflection amplitudes of the conductors and it has the same structure as Lifshitz's formula for the electromagnetically mediated Casimir forces. We evaluate the tunnelling force between two semiinfinite conductors and between two thin films separated by an insulating gap. We discuss some applications of our results

  14. La force de Casimir et les plasmons de surface

    Science.gov (United States)

    Intravaia, F.; Lambrecht, A.; Reynaud, S.

    2004-11-01

    La présence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreux effets bien connus, dont l'archétype est la force de Casimir apparaîssant entre deux miroirs placés dans le vide par suite de la pression de radiation du vide. Elle a été récemment mesurée avec une précision de l'ordre du %. De nombreux travaux sont consacrés à l'évaluation théorique de cette force en visant une précision du même ordre. Ici nous étudions la force de Casimir dans la configuration de deux miroirs métalliques plans parallèles à température nulle. En supposant les miroirs décrits par un modèle plasma nous interprétons la force de Casimir comme le résultat de l'interaction entre les plasmons de surface des deux miroirs.

  15. Finite-temperature Casimir force between perfectly metallic corrugated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sarabadani, Jalal; Miri, MirFaez [Department of Physics, University of Isfahan, Isfahan 81746 (Iran, Islamic Republic of); Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran (Iran, Islamic Republic of) and School of Physics, Institute for Research in Fundamental Sciences, (IPM) Tehran 19395-5531 (Iran, Islamic Republic of)

    2011-09-15

    We study the Casimir force between two corrugated plates due to thermal fluctuations of a scalar field. For arbitrary corrugations and temperature T, we provide an analytical expression for the Casimir force, which is exact to second order in the corrugation amplitude. We study the specific case of two sinusoidally corrugated plates with corrugation wavelength {lambda}, lateral displacement b, and mean separation H. We find that the lateral Casimir force is F{sub l}(T,H)sin(2{pi}b/{lambda}). In other words, at all temperatures, the lateral force is a sinusoidal function of the lateral shift. In the limit {lambda}>>H, F{sub l}(T{yields}{infinity},H){proportional_to}k{sub B}TH{sup -4}{lambda}{sup -1}. In the opposite limit {lambda}<

  16. Precision measurements of the material and boundary geometry dependence of the Casimir force

    International Nuclear Information System (INIS)

    The Casimir force results from the modification of the electromagnetic zero point energy which pervades all of space as predicted by quantum field theory. It depends on the conductivity, dielectric properties and shape of the metal boundaries. For example while the Casimir force is attractive between two flat metal plates it can be repulsive between two hemispheres. In order to measure such material and boundary dependences of the Casimir force, precision measurements of the force and the separation between the two surfaces is necessary. We will discuss experimental techniques to perform such precision measurements of the Casimir force. We will present some of our recent measurements to probe such material and shape dependences

  17. Material dependence of Casimir forces: gradient expansion beyond proximity

    CERN Document Server

    Bimonte, G; Kardar, M

    2011-01-01

    The widely used method for estimating Casimir interactions between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) and insulators (SiO$_2$) at room temperature. We derive an explicit expression for the amplitude $\\hat\\theta_1$ of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, $\\hat\\theta_1$ has an unusually large temperature dependence.

  18. Thermal Issues in Casimir Forces Between Conductors and Semiconductors

    CERN Document Server

    Milton, K A; Ellingsen, Simen A

    2012-01-01

    The Casimir effect between metal surfaces has now been well-verified at the few-percent level experimentally. However, the temperature dependence has never been observed in the laboratory, since all experiments are conducted at room temperature. The temperature dependence for the related Casimir-Polder force between an atom and a bulk material has, in contrast, been observed between a BEC and a silica substrate, with the environment and the silica held at different temperatures. There is a controversy about the temperature dependence for the force between metals, having to do with the magnitude of the linear temperature term for both low and high temperature, the latter being most prominent at large distances. There are also related anomalies pertaining to semiconductors. The status of this controversy, and of the relevant experiments, are reviewed in this report.

  19. An exact solution for the Casimir force in a spherically symmetric medium

    CERN Document Server

    Leonhardt, Ulf

    2011-01-01

    We calculated the force of the quantum vacuum, the Casimir force, in a spherically symmetric medium, Maxwell's fish eye, surrounded by a perfect mirror and derived an exact analytic solution. Our solution questions the idea that the Casimir force of a spherical mirror is repulsive - we found an attractive force that diverges at the mirror.

  20. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Anushree Roy; U Mohideen

    2001-02-01

    Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.

  1. Higher-order conductivity corrections to the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Valdir Barbosa [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Klimchitskaya, Galina; Mostepanenko, Vladimir [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Full text follows: Considerable recent attention has been focused on the new experiments on measuring the Casimir force. To be confident that experimental data fit theory at a level of several percent, a variety of corrections to the ideal expression for the Casimir force should be taken into account. One of the main corrections at small separations between interacting bodies is the one due to finite conductivity of the boundary metal. This correction has its origin in non-zero penetration depth {delta}{sub 0} of electromagnetic vacuum oscillations into the metal (for a perfect metal of infinitely large conductivity {delta}{sub 0} = 0). The other quantity of the dimension of length is the space separation a between two plates or a plate and a sphere. Their relation {delta}{sub 0}/a is the natural perturbation parameter in which powers the corrections to the Casimir force due to finite conductivity can be expanded. Such an expansion works good for all separations a >> {delta}{sub 0} (i.e. for separations larger than 100-150 nm). The first-order term of this expansion was calculated almost forty years ago, and the second-order one in 1985 [1]. These two terms are not sufficient for the comparison of the theory with precision modern experiments. In this talk we report the results of paper [2] where the third- and fourth-order terms in {delta}{sub 0} /a expansion of the Casimir force were calculated first. They gave the possibility to achieve an excellent agreement of a theory and experiment. (author)

  2. Tuning the mass of chameleon fields in Casimir force experiments.

    Science.gov (United States)

    Brax, Ph; van de Bruck, C; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-06-18

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long-range Casimir force experiments. PMID:20867290

  3. Optical properties of gold films and the Casimir force

    OpenAIRE

    Svetovoy, V.B.; van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2008-01-01

    Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 mum to 33 mum. The films at various thickness were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the d...

  4. Influence of slab thickness on the Casimir force

    OpenAIRE

    Pirozhenko, I. G.; Lambrecht, A.

    2008-01-01

    We calculate the Casimir force between slabs of finite thickness made of intrinsic and doped silicon with different concentration of carriers and compare the results to those obtained for gold slabs. We use the Drude and the plasma models to describe the dielectric function for the carriers in doped Si. We discuss the possibility of experimentally testing the appropriateness of these models. We also investigate the influence of finite thickness on $VO_2$, which has recently been proposed for ...

  5. Casimir-Lifshitz force out of thermal equilibrium

    OpenAIRE

    Antezza, M; Pitaevskii, L. P.; Stringari, S.; Svetovoy, V.

    2007-01-01

    We study the Casimir-Lifshitz interaction out of thermal equilibrium, when the interacting objects are at different temperatures. The analysis is focused on the surface-surface, surface-rarefied body, and surface-atom configurations. A systematic investigation of the contributions to the force coming from the propagating and evanescent components of the electromagnetic radiation is performed. The large distance behaviors of such interactions is discussed, and both analytical and numerical res...

  6. Spatial dispersion in Casimir forces: a brief review

    International Nuclear Information System (INIS)

    We present the basic principles of non-local optics in connection with the calculation of the Casimir force between half-spaces and thin films. At currently accessible distances L, non-local corrections amount to about half a per cent, but they increase roughly as 1/L at smaller separations. Self-consistent models lead to corrections with the opposite sign as models with abrupt surfaces

  7. Halving the Casimir force with conductive oxides: experimental details

    CERN Document Server

    de Man, Sven; Iannuzzi, Davide

    2010-01-01

    This work is an extended version of a paper published last year in Physical Review Letters [S. de Man et al., Phys. Rev. Lett. 103, 040402 (2009)], where we presented measurements of the Casimir force between a gold coated sphere and a plate coated with either gold or an indium-tin-oxide (ITO) layer. The experiment, which was performed in air, showed that ITO is sufficiently conducting to prevent charge accumulation, but still transparent enough to halve the Casimir attraction when compared to gold. Here, we report all the experimental details that, due to the limited space available, were omitted in the previous article. We discuss the performance of our setup in terms of stability of the calibration procedure and reproducibility of the Casimir force measurement. We also introduce and demonstrate a new technique to obtain the spring constant of our force sensor. Furthermore, we present a thorough description of the experimental method, a comprehensive explanation of data elaboration and error analysis, and a...

  8. Casimir force in the rotor model with twisted boundary conditions.

    Science.gov (United States)

    Bergknoff, Jonathan; Dantchev, Daniel; Rudnick, Joseph

    2011-10-01

    We investigate the three-dimensional lattice XY model with nearest neighbor interaction. The vector order parameter of this system lies on the vertices of a cubic lattice, which is embedded in a system with a film geometry. The orientations of the vectors are fixed at the two opposite sides of the film. The angle between the vectors at the two boundaries is α where 0≤α≤π. We make use of the mean field approximation to study the mean length and orientation of the vector order parameter throughout the film--and the Casimir force it generates--as a function of the temperature T, the angle α, and the thickness L of the system. Among the results of that calculation are a Casimir force that depends in a continuous way on both the parameter α and the temperature and that can be attractive or repulsive. In particular, by varying α and/or T one controls both the sign and the magnitude of the Casimir force in a reversible way. Furthermore, for the case α=π, we discover an additional phase transition occurring only in the finite system associated with the variation of the orientations of the vectors. PMID:22181114

  9. Dispersion forces in micromechanics: Casimir and Casimir-Polder forces affected by geometry and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Simen Andreas Aadnoey

    2011-01-15

    The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic

  10. Repulsive Casimir force between silicon dioxide and superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Phan, Anh D. [Department of Physics, University of South Florida, Tampa, Florida (United States); Viet, N.A. [Institute of Physics, Badinh, Hanoi (Viet Nam)

    2012-06-15

    We present a detailed investigation of the Casimir interaction between the superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (BSCCO) and silicon dioxide with bromobenzene present in between. We found that the dispersion force is repulsive and the magnitude of the force can be changed by varying the thickness of the object and the temperature. The repulsive force would provide a method to deal with stiction problems and provide much significant from the practical point of view. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The asymptotic behavior of Casimir force in the presence of compactified universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hongbo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)]. E-mail: hbcheng@public4.sta.net.cn

    2006-12-28

    The Casimir effect for parallel plates in the presence of compactified universal extra dimensions within the frame of Kaluza-Klein theory is analyzed. Having regularized and discussed the expressions of Casimir force in the limit, we show that the nature of Casimir force is repulsive if the distance between the plates is large enough and the higher-dimensional spacetime is, the greater the value of repulsive Casimir force between plates is. The repulsive nature of the force is not consistent with the experimental phenomena.

  12. Microstructure effects for Casimir forces in chiral metamaterials

    International Nuclear Information System (INIS)

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized ''omega''-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.

  13. The Casimir Forces in a Single Conducting Cylindrical Cavity

    CERN Document Server

    Razmi, H

    2013-01-01

    We want to study the Casimir effect for a single conducting microscopic cylindrical cavity. The mathematical technique is based on the Green function of the geometry of the inside of the cavity, and the integral regularization is based on the plasma frequency cutoff for real conductors. Using the symmetric electromagnetic energy-momentum tensor, in terms of four potential, the total Casimir energy for the inside of the Cavity is calculated. Considering the fundamental cutoff applied by the uncertainty relations' limit on virtual particles' frequency in the quantum vacuum, it is shown that the contribution of the external (outside of the cavity) Casimir energy is negligible. Finally, the forces experienced by the lateral surface of the cavity and its circular bases are calculated. The resulting expressions show that these forces are repulsive. The numerical computation is done for the real problem of a cavity with a basis of a radius in the same order of its height at the scale of 100 nanometers made of the be...

  14. Casimir force between dielectric media with free charges.

    Science.gov (United States)

    Høye, Johan S; Brevik, Iver

    2009-07-01

    The statistical mechanical approach to Casimir problems for dielectrics separated by a vacuum gap turns out to be compact and effective. A central ingredient of this method is the effect of interacting fluctuating dipole moments of the polarizable particles. At arbitrary temperature the path-integral formulation of quantized particles, developed by Høye-Stell and others, is needed. At high temperature-the limit considered in the present paper-the classical theory is, however, sufficient. Our present theory is related to an idea put forward earlier by Jancovici and Samaj (2004), namely, to evaluate the Casimir force between parallel plates invoking an electronic plasma model and the Debye-Hückel theory for electrolytes. Their result was recently recovered by Høye (2008), using a related statistical mechanical method. In the present paper we generalize this by including a constant permittivity in the description. The present paper generalizes our earlier theory for parallel plates (1998), as well as for spherical dielectrics (2001). We also consider the Casimir force between a polarizable particle and a conductor with a small density of charges, finding agreement with the result recently derived by Pitaevskii (2008). PMID:19658650

  15. Massive scalar Casimir interaction beyond proximity force approximation

    CERN Document Server

    Teo, L P

    2015-01-01

    Since massive scalar field plays an important role in theoretical physics, we consider the interaction between a sphere and a plate due to the vacuum fluctuation of a massive scalar field. We consider combinations of Dirichlet and Neumann boundary conditions. There is a simple prescription to obtain the functional formulas for the Casimir interaction energies, known as TGTG formula, for the massive interactions from the massless interactions. From the TGTG formulas, we discuss how to compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. Unlike the massless case, the results could not be expressed as simple algebraic expressions, but instead could only be expressed as infinite sums over some integrals. Nonetheless, it is easy to show that one can obtain the massless limits which agree with previously established results. We also show that the leading terms agree with that derive using proximity force approximation. The dependence of the le...

  16. First-order correction to the Casimir force within an inhomogeneous medium

    CERN Document Server

    Bao, Fanglin; He, Sailing

    2015-01-01

    For the Casimir piston filled with an inhomogeneous medium, the Casimir energy is regularized and expressed with cylinder kernel coefficients by using the first-order perturbation theory. When the refraction index of the medium is smoothly inhomogeneous (i.e., derivatives of all orders exist), logarithmically cutoff-dependent term in Casimir energy is found. We show that in the piston model this term vanishes in the force and thus the Casimir force is always cutoff-independent, but this term will remain in the force in the half-space model and must be removed by additional regularization. We investigate the inhomogeneity of an exponentially decaying profile, and give the first-order corrections to both free Casimir energy and Casimir force. The present method can be extended to other inhomogeneous profiles. Our results should be useful for future relevant calculations and experimental studies.

  17. First-order correction to the Casimir force within an inhomogeneous medium

    Science.gov (United States)

    Bao, Fanglin; Luo, Bin; He, Sailing

    2015-06-01

    For the Casimir piston filled with an inhomogeneous medium, we regularized and expressed the Casimir energy with cylinder kernel coefficients by using the first-order perturbation theory. When the refractive index of the medium is smoothly inhomogeneous (i.e., derivatives of all orders exist), a logarithmically cutoff-dependent term and a quadratically cutoff-dependent term in the Casimir energy are found. We show that in the piston model these terms vanish in the force and thus the Casimir force is always cutoff independent, but these terms will remain in the force in the half-space model and must be removed by additional regularizations. We give explicit benchmark solutions to the first-order corrections of both Casimir energy and Casimir force for an exponentially decaying profile. The present method can be extended to other inhomogeneous profiles. Our results should be useful for future relevant calculations and experimental studies.

  18. Multiple Scattering Casimir Force Calculations: Layered and Corrugated Materials, Wedges, and Casimir-Polder Forces

    OpenAIRE

    Milton, Kimball A.; Parashar, Prachi; Wagner, Jef; Cavero-Pelaez, Ines

    2009-01-01

    Various applications of the multiple scattering technique to calculating Casimir energy are described. These include the interaction between dilute bodies of various sizes and shapes, temperature dependence, interactions with multilayered and corrugated bodies, and new examples of exactly solvable separable bodies.

  19. A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle

    CERN Document Server

    Markle, C D

    2012-01-01

    In this paper we describe an approach to Casimir Force problems that is ultimately generalizable to all fields, boundary conditions, and cavity geometries. This approach utilizes locally defined reflection amplitudes to express the energy per unit area of any Casimir interaction. To demonstrate this approach we solve a number of Casimir Force problems including the case of uniaxial boundary conditions in a parallel-plate cavity.

  20. Modeling electrostatic patch effects in Casimir force measurements

    CERN Document Server

    Behunin, R O; Dalvit, D A R; Neto, P A Maia; Reynaud, S

    2011-01-01

    Electrostatic patch potentials give rise to forces between neutral conductors at distances in the micrometer range and must be accounted for in the analysis of Casimir force experiments. In this paper we develop a quasi-local model for describing random potentials on metallic surfaces. In contrast to some previously published results, we find that patches may provide a significant contribution to the measured signal, and may render the experimental data at distances below 1 micrometer compatible with theoretical predictions based on the Drude model.

  1. Mixing rules and the Casimir force between composite systems

    CERN Document Server

    Esquivel-Sirvent, R

    2011-01-01

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  2. Comparison between experiment and theory for the thermal Casimir force

    CERN Document Server

    Klimchitskaya, G L; Mostepanenko, V M

    2012-01-01

    We analyze recent experiments on measuring the thermal Casimir force with account of possible background effects. Special attention is paid to the validity of the proximity force approximation (PFA) used in the comparison between the experimental data and computational results in experiments employing a sphere-plate geometry. The PFA results are compared with the exact results where they are available. The possibility to use fitting procedures in theory-experiment comparison is discussed. On this basis we reconsider experiments exploiting spherical lenses of centimeter-size radii.

  3. Mixing rules and the Casimir force between composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Schatz, George C.

    2011-04-20

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  4. Measurement of the Casimir force between dissimilar metals

    OpenAIRE

    Decca, R. S.; Lopez, D.; Fischbach, E.; Krause, D. E.

    2003-01-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator, and an Au layer deposited on an Al$_2$O$_3$ sphere, was measured dynamically with a noise level of 6 fN/$\\sqrt{\\rm{Hz}}$. Measurements were performed for separations in the 0.2-2 $\\mu$m range. The results agree to better than 1% in the 0.2-0.5 $\\mu$m range with a theoretical model that takes into account...

  5. Comment on "Cutoff dependence of the Casimir force within an inhomogeneous medium"

    CERN Document Server

    Bao, Fanglin

    2015-01-01

    Horsley and Simpson [Phys. Rev. A 88, 013833 (2013)] recently claimed that the inhomogeneous Casimir pressure in a piston model is cutoff dependent, and diverges when the cutoff parameter is removed ({\\xi}->0). We demonstrate that, there is a miscalculation in their derivation, and our correction results in a cutoff independent Casimir pressure, based on first-order perturbation theory. We give the general expressions of first-order perturbative inhomogeneous Casimir energy which make it convenient to analyze the divergence problem or to yield the Casimir force. The Casimir pressure contribution of parallel waves (with wave vector parallel to the Casimir plates) together with the non-commutativity of limit and summation operators, are discussed and found to be useful for understanding the inhomogeneous divergence declared in another paper [Phys. Rev. A 87, 043806 (2013)]. We should emphasize that we cannot yet give an exact expression of inhomogeneous Casimir pressure beyond first-order perturbation, which is...

  6. Towards all-optical control and measurement of Casimir forces via evanescent optical forces

    CERN Document Server

    Rodriguez, Alejandro W; Hui, Pui-Chuen; Iwase, Eiji; McCauley, Alexander P; Capasso, Federico; Loncar, Marko; Johnson, Steven G

    2011-01-01

    We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above enable all-optical control and actuation of stiction effects induced by the Casimir force. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.

  7. Casimir force in O(n) systems with a diffuse interface.

    Science.gov (United States)

    Dantchev, Daniel; Grüneberg, Daniel

    2009-04-01

    We study the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry infinity;{d-1}xL , where 2infinity limit of O(n) models with antiperiodic boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel}) of the anisotropic d -dimensional system is related to that of the isotropic system Delta_{Casimir}(d) via Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel})=(J_{ perpendicular}J_{ parallel});{(d-1)2}Delta_{Casimir}(d) . For d=3 we derive the exact Casimir amplitude Delta_{Casimir}(3,mid R:J_{ perpendicular},J_{ parallel})=[Cl_{2}(pi3)3-zeta(3)(6pi)](J_{ perpendicular}J_{ parallel}) , as well as the exact scaling functions of the Casimir force and of the helicity modulus Upsilon(T,L) . We obtain that beta_{c}Upsilon(T_{c},L)=(2pi;{2})[Cl_{2}(pi3)3+7zeta(3)(30pi)](J_{ perpendicular}J_{ parallel})L;{-1} , where T_{c} is the critical temperature of the bulk system. We find that the contributions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in the whole temperature region. PMID:19518169

  8. Possibility of measuring thermal effects in the Casimir force

    International Nuclear Information System (INIS)

    We analyze the possibility of measuring small thermal effects in the Casimir force between metal test bodies in configurations of a sphere above a plate and two parallel plates. For the sphere-plate geometry used in many experiments, we investigate the applicability of the proximity force approximation (PFA) to calculation of thermal effects in the Casimir force and its gradient. It is shown that for real metals the two formulations of the PFA used in the literature lead to relative differences in the results obtained being less than a small parameter equal to the ratio of separation distance to sphere radius. For ideal metals, PFA results for the thermal correction are obtained and compared with available exact results. It is emphasized that in the experimental region in the zeroth order of the small parameter already mentioned, the thermal Casimir force and its gradient calculated using the PFA (and thermal corrections in their own right) coincide with the respective exact results. For real metals, available exact results are outside the application region of the PFA. However, the exact results are shown to converge with the PFA results when the small parameter goes down to experimental values. We arrive at the conclusion that the large thermal effects predicted by the Drude-model approach, if they exist, could be measured in both static and dynamic experiments in sphere-plate and plate-plate configurations. As for the small thermal effects predicted by the plasma-model approach, the static experiment in the configuration of two parallel plates is found to be the best for their observation.

  9. What is credible and what is incredible in the measurements of the Casimir force

    CERN Document Server

    Klimchitskaya, G L

    2010-01-01

    We comment on progress in measurements of the Casimir force and discuss what is the actual reliability of different experiments. In this connection a more rigorous approach to the usage of such concepts as accuracy, precision, and measure of agreement between experiment and theory, is presented. We demonstrate that all measurements of the Casimir force employing spherical lenses with centimeter-size curvature radii are fundamentally flawed due to the presence of bubbles and pits on their surfaces. The commonly used formulation of the proximity force approximation is shown to be inapplicable for centimeter-size lenses. New expressions for the Casimir force are derived taking into account surface imperfections. Uncontrollable deviations of the Casimir force from the values predicted using the assumption of perfect sphericity vary by a few tens of percent within the separation region from 1 to $3\\,\\mu$m. This makes impractical further use of centimeter-size lenses in experiments on measuring the Casimir force.

  10. What is Credible and what is Incredible in the Measurements of the Casimir Force

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2011-06-01

    We comment on progress in measurements of the Casimir force and discuss what is the actual reliability of different experiments. In this connection a more rigorous approach to the usage of such concepts as accuracy, precision, and measure of agreement between experiment and theory, is presented. We demonstrate that all measurements of the Casimir force employing spherical lenses with centimeter-size curvature radii are fundamentally flawed due to the presence of bubbles and pits on their surfaces. The commonly used formulation of the proximity force approximation is shown to be inapplicable for centimeter-size lenses. New expressions for the Casimir force are derived taking into account surface imperfections. Uncontrollable deviations of the Casimir force from the values predicted using the assumption of perfect sphericity vary by a few tens of percent within the separation region from 1 to 3 μm. This makes impractical further use of centimeter-size lenses in experiments on measuring the Casimir force.

  11. Precision measurement of the Casimir-Lifshitz force in a fluid

    International Nuclear Information System (INIS)

    The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory

  12. Precision measurement of the Casimir-Lifshitz force in a fluid

    CERN Document Server

    Munday, Jeremy N

    2007-01-01

    The Casimir force, which results from the confinement of the quantum mechanical zero-point fluctuations of the electromagnetic fields, has received significant attention in recent years for its effect on micro- and nano-scale mechanical systems. With few exceptions, experimental observations have been limited to conductive bodies interacting separated by vacuum or air. However, interesting phenomena including repulsive forces are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed the first precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consist...

  13. Non-equilibrium Casimir forces: Spheres and sphere-plate

    CERN Document Server

    Krüger, Matthias; Bimonte, Giuseppe; Kardar, Mehran

    2011-01-01

    We discuss non-equilibrium extensions of the Casimir force (due to electromagnetic fluctuations), where the objects as well as the environment are held at different temperatures. While the formalism we develop is quite general, we focus on a sphere in front of a plate, as well as two spheres, when the radius is small compared to separation and thermal wavelengths. In this limit the forces can be expressed analytically in terms of the lowest order multipoles, and corroborated with results obtained by diluting parallel plates of vanishing thickness. Non-equilibrium forces are generally stronger than their equilibrium counterpart, and may oscillate with separation (at a scale set by material resonances). For both geometries we obtain stable points of zero net force, while two spheres may have equal forces in magnitude and direction resulting in a self-propelling state.

  14. Macroscopic approach to the Casimir friction force

    Science.gov (United States)

    Nesterenko, V. V.; Nesterenko, A. V.

    2014-07-01

    The general formula is derived for the vacuum friction force between two parallel perfectly flat planes bounding two material media separated by a vacuum gap and moving relative to each other with a constant velocity v. The material media are described in the framework of macroscopic electrodynamics whereas the nonzero temperature and dissipation are taken into account by making use of the Kubo formulas from non-equilibrium statistical thermodynamics. The formula obtained provides a rigorous basis for calculation of the vacuum friction force within the quantum field theory methods in the condensed matter physics. The revealed v dependence of the vacuum friction force proves to be the following: for zero temperature ( T = 0) it is proportional to (v/ c)3 and for T > 0 this force is linear in v/ c.

  15. CASIMIR FORCE IN CRITICAL TERNARY POLYMER SOLUTIONS

    Directory of Open Access Journals (Sweden)

    H.Ridouane

    2004-01-01

    Full Text Available Consider a mixture of two incompatible polymers A and B in a common good solvent, confined between two parallel plates separated by a finite distance L. We assume that these plates strongly attract one of the two polymers close to the consolute point (critical adsorption. The plates then experience an effective force resulting from strong fluctuations of the composition. To simplify, we suppose that either plates have the same preference to attract one component (symmetric plates or they have an opposed preference (asymmetric plates. The force is attractive for symmetric plates and repulsive for asymmetric ones. We first exactly compute the force using the blob model, and find that the attractive and repulsive forces decay similarly to L-4. To go beyond the blob model that is a mean-field theory, and in order to get a correct induced force, we apply the Renormalization-Group to a φ4-field theory (φ is the composition fluctuation, with two suitable boundary conditions at the surfaces. The main result is that the expected force is the sum of two contributions. The first one is the mean-field contribution decaying as L-4, and the second one is the force deviation originating from strong fluctuations of the composition that decreases rather as L-3. This implies the existence of some cross-over distance L* ~ aN φ1/2 (a is the monomer size, N is the polymerization degree of chains and φ is the monomer volumic fraction, which separates two distance-regimes. For small distances (LL* the fluctuation force is more important.

  16. Nonlinear behavior for nanoscale electrostatic actuators with Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wenhui [College of Science, China Agricultural University, Beijing 100083 (China); Zhao Yapu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: yzhao@lnm.imech.ac.cn

    2005-03-01

    The influence of Casimir force on the nonlinear behavior of nanoscale electrostatic actuators is studied in this paper. A one degree of freedom mass-spring model is adopted and the bifurcation properties of the actuators are obtained. With the change of the geometrical dimensions, the number of equilibrium point varies from zero to two. Stability analysis shows that one equilibrium point is Hopf point and the other is unstable saddle point when there are two equilibrium points. We also obtain the phase portraits, in which the periodic orbits exist around the Hopf point, and a homoclinic orbit passes through the unstable saddle point.

  17. Lateral Casimir-Polder force with corrugated surfaces

    International Nuclear Information System (INIS)

    We derive the lateral Casimir-Polder force on a ground-state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wavelengths) overestimates the lateral force, while the pairwise summation approach underestimates it due to the non-additivity of dispersion forces. We argue that a frequency shift measurement for the dipolar lateral oscillations of cold atoms could provide a striking demonstration of non-trivial geometrical effects on the quantum vacuum

  18. Lateral Casimir-Polder force with corrugated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Diego A R [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maia Neto, Paulo A [Instituto de Fisica, UFRJ, CP 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Lambrecht, Astrid; Reynaud, Serge [Laboratoire Kastler Brossel, CNRS, ENS, Universite Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France)

    2008-04-25

    We derive the lateral Casimir-Polder force on a ground-state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wavelengths) overestimates the lateral force, while the pairwise summation approach underestimates it due to the non-additivity of dispersion forces. We argue that a frequency shift measurement for the dipolar lateral oscillations of cold atoms could provide a striking demonstration of non-trivial geometrical effects on the quantum vacuum.

  19. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  20. CASIMIR FORCE IN CRITICAL TERNARY POLYMER SOLUTIONS

    OpenAIRE

    Ridouane, H.; E.-K.Hachem; Benhamou, M.

    2004-01-01

    Consider a mixture of two incompatible polymers A and B in a common good solvent, confined between two parallel plates separated by a finite distance L. We assume that these plates strongly attract one of the two polymers close to the consolute point (critical adsorption). The plates then experience an effective force resulting from strong fluctuations of the composition. To simplify, we suppose that either plates have the same preference to attract one component (symmetric plates) or they ha...

  1. Macroscopic approach to the Casimir friction force

    OpenAIRE

    Nesterenko, V. V.; Nesterenko, A. V.

    2014-01-01

    The general formula is derived for the vacuum friction force between two parallel perfectly flat planes bounding two material media separated by a vacuum gap and moving relative to each other with a constant velocity $\\mathbf{v}$. The material media are described in the framework of macroscopic electrodynamics whereas the nonzero temperature and dissipation are taken into account by making use of the Kubo formulae from non-equilibrium statistical thermodynamics. The formula obtained provides ...

  2. Optical Modification of Casimir Forces for Improved Function of Micro-and Nano-Scale Devices

    Science.gov (United States)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Recently, there has been a considerable effort to study the Casimir and van der Waals forces, enabled by the improved ability to measure small forces near surfaces. Because of the continuously growing role of micro- and nanomechanical devices, the focus of this activity has shifted towards the ability to control these forces. Possible approaches to manipulating the Casimir force include development of composite materials, engineered nanostructures, mixed-phase materials, or active elements. So far, practical success has been limited. The role of geometrical factors in the Casimir force is significant. It is known, for example, that the Casimir force between two spherical shells enclosed one into the other is repulsive instead of normal attractive. Unfortunately, nanosurfaces with this topology are very difficult to make. A more direct approach to manipulating and neutralizing the Casimir force is using external mechanical or electromagnetic forces. Unfortunately, the technological overhead of such an approach is quite large. Using electromagnetic compensation instead of mechanical will considerably reduce this overhead and at the same time provide the degree of control over the Casimir force that mechanical springs cannot provide. A mechanical analog behind Casimir forces is shown.

  3. Boundary conditions and the critical Casimir force on an Ising model film: exact results in one and two dimensions.

    Science.gov (United States)

    Rudnick, Joseph; Zandi, Roya; Shackell, Aviva; Abraham, Douglas

    2010-10-01

    Finite-size effects in certain critical systems can be understood as universal Casimir forces. Here, we compare the Casimir force for free, fixed, periodic, and antiperiodic boundary conditions in the exactly calculable case of the ferromagnetic Ising model in one and two dimensions. We employ a procedure which allows us to calculate the Casimir force with the aforementioned boundary conditions analytically in a transparent manner. Among other results, we find an attractive Casimir force for the case of periodic boundary conditions and a repulsive Casimir force in the antiperiodic case. PMID:21230249

  4. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    Science.gov (United States)

    Seyedzahedi, A.; Moradian, A.; Setare, M. R.

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water-lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO2, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  5. Comment on ``Lateral Casimir force beyond the proximity-force approximation''

    OpenAIRE

    Chen, F; Mohideen, U.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2007-01-01

    We demonstrate that the approach by Rodrigues et al. (PRL, v.96, 100402, 2006) to the description of the lateral Casimir force between corrugated surfaces is in disagreement with a path-integral theory by Emig et al. (PRA, v.67, 022114, 2003), and the approximations used are not appropriate for comparison to experiment.

  6. Experimental procedures for precision measurements of the Casimir force with an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.-C.; Chang, C.-C.; Castillo-Garza, R; Chen, F; Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)], E-mail: umar.mohideen@ucr.edu

    2008-04-25

    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed.

  7. Experimental procedures for precision measurements of the Casimir force with an atomic force microscope

    International Nuclear Information System (INIS)

    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed

  8. On convergence generation in computing the electro-magnetic Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, F. [Lab. de Physique des Lasers, UMR 7538 du CNRS, Univ. Paris 13, Villetaneuse (France)

    2008-09-15

    We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail. (orig.)

  9. Drastic change of the Casimir force at the metal-insulator transition

    International Nuclear Information System (INIS)

    The dependence of the Casimir force on material properties is important for both future applications and to gain further insight on its fundamental aspects. Here we apply the general Lifshitz theory of the Casimir force to low-conducting compounds, or poor metals. For distances in the micrometer range, the Casimir force for a large variety of such materials is described by universal equations containing a few parameters: the effective plasma frequency ωp, dissipation rate γ of the free carriers, and electric permittivity ε∞ for ω≥ωp (in the infrared range). This theory of the Casimir force for poor metals can also describe inhomogeneous composite materials containing small regions with different conductivity. The Casimir force for systems involving samples made with compounds that have a metal-insulator transition shows a drastic change of the Casimir force within the transition region, where the metallic and dielectric phases coexist. Indeed, the Casimir force can increase by a factor of 2 near this transition.

  10. Measurement of the Casimir force between dissimilar metals.

    Science.gov (United States)

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment. PMID:12906584

  11. Casimir-Lifshitz force out of thermal equilibrium

    International Nuclear Information System (INIS)

    We study the Casimir-Lifshitz interaction out of thermal equilibrium, when the interacting objects are at different temperatures. The analysis is focused on the surface-surface, surface-rarefied body, and surface-atom configurations. A systematic investigation of the contributions to the force coming from the propagating and evanescent components of the electromagnetic radiation is performed. The large distance behaviors of such interactions is discussed, and both analytical and numerical results are compared with the equilibrium ones. A detailed analysis of the crossing between the surface-surface and the surface-rarefied body, and finally the surface-atom force is shown, and a complete derivation and discussion of the recently predicted nonadditivity effects and asymptotic behaviors is presented

  12. Massive scalar Casimir interaction beyond proximity force approximation

    Science.gov (United States)

    Teo, L. P.

    2015-09-01

    Since massive scalar field plays an important role in theoretical physics, we consider the interaction between a sphere and a plate due to the vacuum fluctuation of a massive scalar field. We consider combinations of Dirichlet and Neumann boundary conditions. There is a simple prescription to obtain the functional formulas for the Casimir interaction energies, known as TGTG formula, for the massive interactions from the massless interactions. From the TGTG formulas, we discuss how to compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. Unlike the massless case, the results could not be expressed as simple algebraic expressions, but instead could only be expressed as infinite sums over some integrals. Nonetheless, it is easy to show that one can obtain the massless limits which agree with previously established results. We also show that the leading terms agree with that derive using proximity force approximation. The dependence of the leading order terms and the next-to-leading order terms on the mass of the scalar field is studied both numerically and analytically. In particular, we derive the small mass asymptotic expansions of these terms. Surprisingly, the small mass asymptotic expansions are quite complicated as they contain terms that are of odd powers in mass as well as logarithms of mass terms.

  13. Towards a precision measurement of the Casimir force in a cylinder-plane geometry

    OpenAIRE

    Brown-Hayes, Michael; Dalvit, Diego A. R.; Mazzitelli, Francisco D.; Kim, Woo-Joong; Onofrio, Roberto

    2005-01-01

    We report on a proposal aimed at measuring the Casimir force in a cylinder-plane configuration. The Casimir force is evaluated including corrections due to finite parallelism, conductivity, and temperature. The range of validity of the proximity force approximation is also discussed. An apparatus to test the feasibility of a precision measurement in this configuration has been developed, and we describe both a procedure to control the parallelism and the results of the electrostatic calibrati...

  14. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    Science.gov (United States)

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature. PMID:24329240

  15. Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    XIONG Ai-Min; CHEN Xiao-Song

    2009-01-01

    We study the Casimir force between two pistons under different boundary conditions inside an infinite cylinder with arbitrary cross section.It is found that the attractive or repulsive character of the Casimir force for a scalar field is determined only by the boundary condition along the longitudinal direction and is independent of the cross section,transverse boundary conditions and the mass of the field.Under symmetric Dirichlet-Dirichlet,Neumann-Neumann and periodic longitudinal boundary conditions the Casimir force is always attractive,but is repulsive under non-symmetric Dirichlet-Neumann and anti-periodic longitudinal boundary conditions.The Casimir force of the electromagnetic field in an ideal conductive piston is also investigated.This force is always attractive regardless of the shape of the cross section and the transverse boundary conditions.

  16. Nonequilibrium Casimir-Polder force in non-stationary systems

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Ryan O; Hu, B L [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2010-01-08

    Recently the Casimir-Polder force felt by an atom near a substrate under nonequilibrium stationary conditions has been studied theoretically with macroscopic quantum electrodyanamics (MQED) and verified experimentally with cold atoms. We give a quantum field theory derivation of the Langevin equation describing the atom's motion based on the influence functional method valid for fully nonequilibrium (nonstationary) conditions. The noise associated with the quantum field derived from first principles is generally colored and nonlocal, which is at variance with the 'local source hypothesis' of MQED's generalization to nonequilibrium conditions. Precision measurements on the shape deformation of an atomic gas as a function of its distance from a mirror would provide a direct check of our predictions based on the Langevin equation. (fast track communication)

  17. Nonequilibrium Casimir-Polder force in non-stationary systems

    International Nuclear Information System (INIS)

    Recently the Casimir-Polder force felt by an atom near a substrate under nonequilibrium stationary conditions has been studied theoretically with macroscopic quantum electrodyanamics (MQED) and verified experimentally with cold atoms. We give a quantum field theory derivation of the Langevin equation describing the atom's motion based on the influence functional method valid for fully nonequilibrium (nonstationary) conditions. The noise associated with the quantum field derived from first principles is generally colored and nonlocal, which is at variance with the 'local source hypothesis' of MQED's generalization to nonequilibrium conditions. Precision measurements on the shape deformation of an atomic gas as a function of its distance from a mirror would provide a direct check of our predictions based on the Langevin equation. (fast track communication)

  18. Scalar Casimir-Polder forces for uniaxial corrugations

    International Nuclear Information System (INIS)

    We investigate the Dirichlet-scalar equivalent of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. The complexity of the problem can be reduced to a one-dimensional Green's function equation along the corrugation which can be solved numerically. Our technique is fully nonperturbative in the height profile of the corrugation. We present explicit results for experimentally relevant sinusoidal and sawtooth corrugations. Parameterizing the deviations from the planar limit in terms of an anomalous dimension which measures the power-law deviation from the planar case, we observe up to order-one anomalous dimensions at small and intermediate scales and a universal regime at larger distances. This large-distance universality can be understood from the fact that the relevant fluctuations average over corrugation structures smaller than the atom-wall distance.

  19. Impact of surface imperfections on the Casimir force for lenses of centimeter-size curvature radii

    International Nuclear Information System (INIS)

    The impact of imperfections, which are always present on surfaces of lenses with centimeter-size curvature radii, on the Casimir force in the lens-plate geometry is investigated. It is shown that the commonly used formulation of the proximity force approximation is inapplicable for spherical lenses with surface imperfections, such as bubbles and pits. More general expressions for the Casimir force are derived that take surface imperfections into account. Using these expressions, we show that surface imperfections can both increase and decrease the magnitude of the Casimir force up to a few tens percent when compared with the case of a perfectly spherical lens. We demonstrate that the Casimir force between a perfectly spherical lens and a plate described by the Drude model can be made approximately equal to the force between a sphere with some surface imperfection and a plate described by the plasma model, and vice versa. In the case of a metallic sphere and a semiconductor plate, approximately the same Casimir forces are obtained for four different descriptions of charge carriers in the semiconductor if appropriate surface imperfections on the lens surface are present. The conclusion is made that there is a fundamental problem in the interpretation of measurement data for the Casimir force using spherical lenses of centimeter-size radii.

  20. Casimir Force for Absorbing Media in an Open Quantum System Framework: Scalar Model

    CERN Document Server

    Lombardo, Fernando C; Lopez, Adrian E Rubio

    2011-01-01

    In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of quantum open systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous of Lifshitz formula in 1+1 dimensions. We also discuss the relation between the electromagnetic properties of the mirrors and the spectral density of the environment

  1. Casimir force for absorbing media in an open quantum system framework: Scalar model

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Fernando C.; Rubio Lopez, Adrian E. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Mazzitelli, Francisco D. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Centro Atomico Bariloche Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina)

    2011-11-15

    In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment.

  2. Kinetic Roughening and Material Optical Properties Influence on Van der Waals/Casimir Forces

    International Nuclear Information System (INIS)

    Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, knowledge of precise optical properties of metals is shown to be very important for accurate force predictions rather than referring to idealized defect free material models. Finally, we compare the van der Waals/Casimir forces to capillary adhesive forces in order to illustrate their significance in stiction problems. (author)

  3. Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    International Nuclear Information System (INIS)

    We consider quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated with the force experienced by the atom considered as a polarizable body in an electromagnetic field and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement

  4. A note on the Lorentz force, magnetic charges and the Casimir effect

    International Nuclear Information System (INIS)

    We show that in order to account for the repulsive Casimir effect in the parallel-plate geometry in terms of the quantum version of the Lorentz force, it is possible to introduce virtual surface densities of magnetic charge and currents. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries then yields the Casimir pressure correctly. (note)

  5. Demonstration of the difference in the Casimir force for samples with different charge-carrier densities.

    Science.gov (United States)

    Chen, F; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2006-10-27

    A measurement of the Casimir force between a gold coated sphere and two Si plates of different carrier densities is performed using a high vacuum based atomic force microscope. The results are compared with the Lifshitz theory and good agreement is found. Our experiment demonstrates that by changing the carrier density of the semiconductor plate by several orders of magnitude it is possible to modify the Casimir interaction. This result may find applications in nanotechnology. PMID:17155446

  6. A note on the Lorentz force, magnetic charges and the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Farina, C; Santos, F C; Tort, A C [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria - Ilha do Fundao - Caixa Postal 68528, 21941-972 Rio de Janeiro RJ (Brazil)

    2003-05-01

    We show that in order to account for the repulsive Casimir effect in the parallel-plate geometry in terms of the quantum version of the Lorentz force, it is possible to introduce virtual surface densities of magnetic charge and currents. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries then yields the Casimir pressure correctly. (note)

  7. A note on the Lorentz force, magnetic charges and the Casimir effect

    OpenAIRE

    C. Farina; Santos, F. C.; Tort, A C

    2003-01-01

    We show that in order to account for the repulsive Casimir effect in the parallel plate geometry in terms of the quantum version of the Lorentz force, virtual surface densities of magnetic charges and currents must be introduced. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries yields then correctly the Casimir pressure.

  8. Casimir force in brane worlds: Coinciding results from Green's and zeta function approaches

    International Nuclear Information System (INIS)

    Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Green's function, and zeta function yield the same result, but for brane world models this was only assumed. In this work we show that both approaches yield the same Casimir force in the case of universal extra dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter the Casimir force in the Green's function approach get removed due to their orthogonality relations with a measure involving the right hypervolume of the plates, and this leaves just the contribution coming from the zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hypervolume of the plates introduced by the authors when using the Green's function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four-dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.

  9. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

    Science.gov (United States)

    Parisen Toldin, Francesco; Tröndle, Matthias; Dietrich, S.

    2015-06-01

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  10. Lateral Casimir force beyond the proximity force approximation: A nontrivial interplay between geometry and quantum vacuum

    International Nuclear Information System (INIS)

    The lateral Casimir force between two corrugated metallic plates makes possible a study of the nontrivial interplay of geometry and Casimir effect appearing beyond the regime of validity of the proximity-force approximation. Quantitative evaluations can be obtained by using scattering theory in a perturbative expansion valid when the corrugation amplitudes are smaller than the three other length scales: the mean separation distance L of the plates, the corrugation period λC, and the plasma wavelength λP. Within this perturbative expansion, evaluations are obtained for arbitrary relative values of L, λC, and λP while limiting cases, some of them already known, are recovered when these values obey some specific orderings. The consequence of these results for comparison with existing experiments is discussed at the end of the paper

  11. Quantitative non-contact dynamic Casimir force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, G.; Chevrier, J. [Institut Neel, CNRS-UJF, 38 - Grenoble (France); Jourdan, G.; Chevrier, J. [Universite Joseph Fourier, 38 - Grenoble (France); Jourdan, G.; Lambrecht, A. [Laboratoire Kastler Brossel, CNRS-ENS-UPMC, 75 - Paris (France); Comin, F.; Chevrier, J. [ESRF, 38 - Grenoble (France); Jourdan, G. [Present address: CEA LETI-Minatec, 38 - Grenoble (France)

    2009-02-15

    We show that the Casimir force (CF) gradient can be measured with no contact involved. Results of the CF measurement with systematic uncertainty of 3% are presented for the distance range of 100 - 600 nm. The statistical uncertainty is shown to be due to the thermal fluctuations of the force probe. The corresponding signal-to-noise ratio equals unity at the distance of 600 nm. Direct contact between surfaces used in most previous studies to determine absolute distance separation is here precluded. Use of direct contact to identify the origin of distances is a severe limitation for studies of the CF on structured surfaces as it deteriorates irreversibly the studied surface and the probe. This force machine uses a dynamical method with an inserted gold sphere probe glued to a lever. The lever is mechanically excited at resonant frequency in front of a chosen sample. The absolute distance determination is achieved to be possible, without any direct probe/sample contact, using an electrostatic method associated to a real time correction of the mechanical drift. The positioning shift uncertainty is as low as 2 nm. Use of this instrument to probe a very thin film of gold (10 nm) reveals important spatial variations in the measurement. (authors)

  12. Screened Casimir force at finite temperatures: A possible role in nuclear interactions

    International Nuclear Information System (INIS)

    We derive a simple asymptotic expression for the screened Casimir free energy that is valid in both the high-temperature limit and in the large-separation limit. Any finite (i.e., nonzero) plasma density fundamentally alters the long-range interaction. The similarity of the derived expression with the Yukawa potential of nuclear interactions encourages us to investigate the Casimir free energy between two nuclear particles in a sea of electrons and positrons. We use simple estimates to explore the possible role of screened Casimir interactions for nuclear interactions. The magnitude of the force and of the coupling constant indicates an intriguing possible interpretation in which the nuclear force is a screened Casimir force and the mesons can be viewed as plasmons in the electron-positron sea

  13. The Casimir force between a microfabricated elliptic cylinder and a plate

    CERN Document Server

    Decca, R S; Klimchitskaya, G L; Krause, D E; Lopez, D; Mostepanenko, V M

    2011-01-01

    We investigate the Casimir force between a microfabricated elliptic cylinder (cylindrical lens) and a plate made of real materials. After a brief discussion of the fabrication procedure, which typically results in elliptic rather than circular cylinders, the Lifshitz-type formulas for the Casimir force and for its gradient are derived. In the specific case of equal semiaxes, the resulting formulas coincide with those derived previously for circular cylinders. The nanofabrication procedure may also result in asymmetric cylindrical lenses obtained from parts of two different cylinders, or rotated through some angle about the axis of the cylinder. In these cases the Lifshitz-type formulas for the Casimir force between a lens and a plate and for its gradient are also derived, and the influence of lens asymmetry is determined. Additionally, we obtain an expression for the shift of the natural frequency of a micromachined oscillator with an attached elliptic cylindrical lens interacting with a plate via the Casimir...

  14. Development of a high-sensitivity torsion balance to investigate the thermal Casimir force

    CERN Document Server

    Graveson, T; Kim, W J

    2012-01-01

    We report development of a high-sensitivity torsion balance to measure the thermal Casimir force. Special emphasis is placed on experimental investigations of a possible surface electric force originating from surface patch potentials that have been recently noticed by several experimental groups. By gaining a proper understanding of the actual contribution of the surface electric force in real materials, we aim to undertake precision force measurements to resolve the Casimir force at finite temperature in real metals, as well as in other semiconducting materials, such as graphene.

  15. Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation

    International Nuclear Information System (INIS)

    The interaction between drifting carriers and traveling electromagnetic waves is considered within the context of the classical Boltzmann transport equation to compute the Casimir-Lifshitz force between media with small density of charge carriers, including dielectrics and intrinsic semiconductors. We expand upon our previous work (Phys. Rev. Lett. 2008, in press; arXiv:0805.1676) and derive in some detail the frequency-dependent reflection amplitudes in this theory and compute the corresponding Casimir free energy for a parallel plate configuration. We critically discuss the the issue of verification of the Nernst theorem of thermodynamics in Casimir physics, and explicitly show that our theory satisfies that theorem. Finally, we show how the theory of drifting carriers connects to previous computations of Casimir forces using spatial dispersion for the material boundaries.

  16. Casimir force on a piston at finite temperature in Randall-Sundrum models

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2011-01-01

    The Casimir effect for a three-parallel-plate system at finite temperature within the framework of five-dimensional Randall-Sundrum models is studied.In the case of the Randall-Sundrum model involving two branes we find that the Casimir force depends on the plate distance and temperature after one outer plate has been moved to a distant place.Further we discover that the sign of the reduced force is negative if the plate and piston are located close together,but the nature of reduced force becomes repulsive when the plate distance is not very small and finally the repulsive force vanishes with extremely large plate separation.A higher temperature causes a greater repulsive Casimir force.Within the framework of a one-brane scenario the reduced Casimir force between the piston and one plate remains attractive no matter how high the temperature is.It is interesting that a stronger thermal effect leads to a greater attractive Casimir force instead of changing the nature of the force.

  17. Casimir force on a piston at finite temperature in Randall-Sundrum models

    International Nuclear Information System (INIS)

    The Casimir effect for a three-parallel-plate system at finite temperature within the framework of five-dimensional Randall-Sundrum models is studied. In the case of the Randall-Sundrum model involving two branes we find that the Casimir force depends on the plate distance and temperature after one outer plate has been moved to a distant place. Further we discover that the sign of the reduced force is negative if the plate and piston are located close together, but the nature of reduced force becomes repulsive when the plate distance is not very small and finally the repulsive force vanishes with extremely large plate separation. A higher temperature causes a greater repulsive Casimir force. Within the framework of a one-brane scenario the reduced Casimir force between the piston and one plate remains attractive no matter how high the temperature is. It is interesting that a stronger thermal effect leads to a greater attractive Casimir force instead of changing the nature of the force. (author)

  18. Anisotropy enhancement of the Casimir-Polder force between a nanoparticle and graphene

    Science.gov (United States)

    Biehs, S.-A.; Agarwal, G. S.

    2014-10-01

    We derive the analytical expressions for the thermal Casimir-Polder energy and force between a spheroidal nanoparticle above a semi-infinite material and a graphene covered interface. We analyze in detail the Casimir-Polder force between a gold nanoparticle and a single sheet of pristine graphene focusing on the impact of anisotropy. We show that the effect of anisotropy, i.e., the shape and orientation of the spheroidal nanoparticle, has a much larger influence on the force than the tunability of graphene. The effect of tuning and anisotropy both add up such that we observe a force between the particle and the sheet of graphene which is between 20% and 50% of that between the same particle and an ideal metal plate. Hence the observed force is much larger than the results found for the Casimir force between a metal half-space and a layer of graphene.

  19. The critical Casimir force in the superfluid phase: effect of fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Bhattacharjee, J K [SN Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata-700 098 (India); Samanta, Himadri S [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Bhattacharyya, Saugata [Department of Physics, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata-700 006 (India); Hu, Bambi, E-mail: sbiswas.phys.cu@gmail.co [Centre for Nonlinear Studies, and BHKS Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-06-15

    We have considered the critical Casimir force on a {sup 4}He film below and above the bulk {lambda} point. We have explored the role of fluctuations around the mean field theory in a perturbative manner, and have substantially improved the mean field result of Zandi et al (2007 Phys. Rev. E 76 030601(R)). The Casimir scaling function obtained by us approaches a universal constant (-{zeta}(3)/8{pi}) for T{approx}<2.13 K.

  20. Nonlocal Properties of Dynamical Three-Body Casimir-Polder Forces

    International Nuclear Information System (INIS)

    We consider the three-body Casimir-Polder interaction between three atoms during their dynamical self-dressing. We show that the time-dependent three-body Casimir-Polder interaction energy displays nonlocal features related to quantum properties of the electromagnetic field and to the nonlocality of spatial field correlations. We discuss the measurability of this intriguing phenomenon and its relation with the usual concept of stationary three-body forces

  1. The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    CERN Document Server

    Bao, Y; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-01-01

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material.

  2. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects.

    Science.gov (United States)

    Bao, Y; Guérout, R; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-12-17

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material. PMID:21231564

  3. Gedanken experiments with Casimir forces, vacuum energy, and gravity

    CERN Document Server

    Maclay, G Jordan

    2011-01-01

    Gedanken experiments are used to explore properties of quantum vacuum energy that are currently challenging to explore experimentally. A constant lateral Casimir force is predicted to exist between two overlapping finite parallel plates at 0 K, otherwise it would be possible to extract an arbitrary amount of energy from the quantum vacuum. A rigid unpowered object cannot be accelerated by the quantum vacuum because of the translational symmetry of space. By considering systems in which vacuum energy and other forms of energy are exchanged, we demonstrate that a change {\\Delta}E in vacuum energy, whether positive or negative with respect to the free field, corresponds to an equivalent inertial mass and equivalent gravitational mass {\\Delta}M={\\Delta}E/c^2. We consider the possibility of a gravitational shield, and show that, if it exists, the energy to operate it would have to cancel the net energy extracted from the gravitational field, otherwise we could extract an arbitrary amount of energy from the field.

  4. Critical Casimir forces in the presence of random surface fields

    Science.gov (United States)

    Maciołek, A.; Vasilyev, O.; Dotsenko, V.; Dietrich, S.

    2015-03-01

    We study critical Casimir forces (CCFs) fC for films of thickness L which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSFs) on both surfaces. We consider the case in which, in the absence of RSFs, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder, CCFs still exhibit scaling, acquiring a random field scaling variable w that is zero for pure systems. We confirm these analytic predictions by Monte Carlo (MC) simulations. Moreover, our MC data show that fC varies as fC(w →0 ) -fC(w =0 ) ˜w2 . Asymptotically, for large L , w scales as w ˜L-0.26→0 , indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that w ≃1 , we find that the presence of RSFs with vanishing mean value increases significantly the strength of CCFs, as compared to systems without them, and it shifts the extremum of the scaling function of fC toward lower temperatures. But fC remains attractive.

  5. Repulsive and restoring Casimir forces based on magneto-optical effect

    International Nuclear Information System (INIS)

    The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated. The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force. It is found that between the ordinary dielectric slab and magneto-optical material slab, a repulsive force may exist by adjusting the applied magnetic field. The restoring Casimir force can also be obtained if suitable parameter values are taken. For realistic materials, the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems. (authors)

  6. Acceleration of the Universe driven by the Casimir force

    OpenAIRE

    Szydlowski, Marek; Godlowski, Wlodzimierz

    2007-01-01

    We investigate an evolutional scenario of the FRW universe with the Casimir energy scaling like $(-)(1+z)^4$. The Casimir effect is used to explain the vacuum energy differences (its value measured from astrophysics is so small compared to value obtained from quantum field theory calculations). The dynamics of the FRW model is represented in terms of a two-dimensional dynamical system to show all evolutional paths of this model in the phase space for all admissible initial conditions. We find...

  7. The Casimir force on a piston in the spacetime with extra compactified dimensions

    International Nuclear Information System (INIS)

    A Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in high-dimensional spacetimes within the frame of Kaluza-Klein theory is analyzed. We derive and calculate the exact expression for the Casimir force on the piston. We also compute the Casimir force in the limit that one outer plate is moved to the extremely distant place to show that the reduced force is associated with the properties of additional spatial dimensions. The more dimensionality the spacetime has, the stronger the extra-dimension influence is. The Casimir force for the piston in the model including a third plate under the background with extra compactified dimensions always keeps attractive. Further we find that when the limit is taken the Casimir force between one plate and the piston will change to be the same form as the corresponding force for the standard system consisting of two parallel plates in the four-dimensional spacetimes if the ratio of the plate-piston distance and extra dimensions size is large enough

  8. Casimir force between partially reflecting mirrors with Robin-like boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Alessandra Nascimento; Silva, Jeferson Danilo Lima; Alves, Danilo Teixeira [Universidade Federal do Para (UFPA), Belem (Brazil). Programa de Pos-Graduacao em Fisica; Rego, Andreson Luis Carvalho [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Fisica

    2013-07-01

    Full text: The Casimir effect consists, essentially, in the problem of interaction forces between neutral objects in the quantum vacuum of a relativistic field. It is a macroscopic force of quantum aspect resulting from the changes in the zero-point energy of a quantized field due to the presence of neutral bodies. In the context of a scalar field in 1 + 1 dimensions and a non-idealized boundary condition (BC), the Casimir force between two point like mirrors was studied by Jaekel and Reynaud (Jaekel and Reynaud, 1991). Introducing reflectivity and transmissivity coefficients, these authors described the scattering upon partially transmitting mirrors. The obtained expression for the Casimir force is valid for arbitrary frequencies and temperatures. The results for the Dirichlet BC case are recovered in the limit of an ideal mirror. Taking into account the last ideas, we investigate the Casimir force between two partially transmitting mirrors that impose a Robin-like BC (a nonideal BC that that recovers the usual Robin BC as limit case) in the presence of a massless scalar field in 1 + 1 dimensions, considering the vacuum as the initial field state. In the limit of perfect (ideal) mirrors, we recover an expression for the Casimir force in agreement with the result found in literature (Romeo and Saharian, 2002). (author)

  9. Casimir force between partially reflecting mirrors with Robin-like boundary conditions

    International Nuclear Information System (INIS)

    Full text: The Casimir effect consists, essentially, in the problem of interaction forces between neutral objects in the quantum vacuum of a relativistic field. It is a macroscopic force of quantum aspect resulting from the changes in the zero-point energy of a quantized field due to the presence of neutral bodies. In the context of a scalar field in 1 + 1 dimensions and a non-idealized boundary condition (BC), the Casimir force between two point like mirrors was studied by Jaekel and Reynaud (Jaekel and Reynaud, 1991). Introducing reflectivity and transmissivity coefficients, these authors described the scattering upon partially transmitting mirrors. The obtained expression for the Casimir force is valid for arbitrary frequencies and temperatures. The results for the Dirichlet BC case are recovered in the limit of an ideal mirror. Taking into account the last ideas, we investigate the Casimir force between two partially transmitting mirrors that impose a Robin-like BC (a nonideal BC that that recovers the usual Robin BC as limit case) in the presence of a massless scalar field in 1 + 1 dimensions, considering the vacuum as the initial field state. In the limit of perfect (ideal) mirrors, we recover an expression for the Casimir force in agreement with the result found in literature (Romeo and Saharian, 2002). (author)

  10. The Casimir force on a piston in the spacetime with extra compactified dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hongbo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)], E-mail: hbcheng@public4.sta.net.cn

    2008-09-25

    A Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in high-dimensional spacetimes within the frame of Kaluza-Klein theory is analyzed. We derive and calculate the exact expression for the Casimir force on the piston. We also compute the Casimir force in the limit that one outer plate is moved to the extremely distant place to show that the reduced force is associated with the properties of additional spatial dimensions. The more dimensionality the spacetime has, the stronger the extra-dimension influence is. The Casimir force for the piston in the model including a third plate under the background with extra compactified dimensions always keeps attractive. Further we find that when the limit is taken the Casimir force between one plate and the piston will change to be the same form as the corresponding force for the standard system consisting of two parallel plates in the four-dimensional spacetimes if the ratio of the plate-piston distance and extra dimensions size is large enough.

  11. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    Science.gov (United States)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  12. Modifying the Casimir force between indium tin oxide film and Au sphere

    CERN Document Server

    Banishev, A A; Castillo-Garza, R; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U; 10.1103/PhysRevB.85.045436

    2012-01-01

    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the un...

  13. Measurement of the Casimir force with a ferrule-top sensor

    CERN Document Server

    Zuurbier, P; Gruca, G; Heeck, K; Iannuzzi, D

    2011-01-01

    We present a Casimir force setup based on an all-optical ferrule-top sensor. We demonstrate that the instrument can be used to measure the gradient of the Casimir force between a gold coated sphere and a gold coated plate with results that are comparable to those achieved by similar atomic force microscope experiments. Thanks to the monolithic design of the force sensor (which does not require any optical triangulation readout) and to the absence of electronics on the sensing head, the instrument represents a significant step ahead for future studies of the Casimir effect under engineered conditions, where the intervening medium or the environmental conditions might be unsuitable for the use of more standard setups.

  14. Measurement of the Casimir force with a ferrule-top sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zuurbier, P; De Man, S; Gruca, G; Heeck, K; Iannuzzi, D, E-mail: iannuzzi@few.vu.nl [Department of Physics and Astronomy and LaserLaB, VU University Amsterdam, Amsterdam (Netherlands)

    2011-02-15

    We present a Casimir force setup based on an all-optical ferrule-top sensor. We demonstrate that the instrument can be used to measure the gradient of the Casimir force between a gold-coated sphere and a gold-coated plate with results that are comparable to those achieved by similar atomic force microscope experiments. Thanks to the monolithic design of the force sensor (which does not require any optical triangulation readout) and to the absence of electronics on the sensing head, the instrument represents a significant step forward for future studies of the Casimir effect under engineered conditions, where the intervening medium or the environmental conditions might be unsuitable for the use of more standard setups.

  15. Results from electrostatic calibrations for measuring the Casimir force in the cylinder-plane geometry

    CERN Document Server

    Wei, Q; Mazzitelli, F C Lombardo F D; Onofrio, R

    2011-01-01

    We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurement performed in the parallel plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.

  16. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls

    Science.gov (United States)

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-01

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force.

  17. Anomalous temperature dependence of the Casimir force for thin metal films.

    Science.gov (United States)

    Yampol'skii, V A; Savel'ev, Sergey; Mayselis, Z A; Apostolov, S S; Nori, Franco

    2008-08-29

    Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect. PMID:18851637

  18. Critical Casimir force in the presence of random local adsorption preference

    Science.gov (United States)

    Toldin, Francesco Parisen

    2015-03-01

    We study the critical Casimir force for a film geometry in the Ising universality class. We employ a homogeneous adsorption preference on one of the confining surfaces, while the opposing surface exhibits quenched random disorder, leading to a random local adsorption preference. Disorder is characterized by a parameter p , which measures, on average, the portion of the surface that prefers one component, so that p =0 ,1 correspond to homogeneous adsorption preference. By means of Monte Carlo simulations of an improved Hamiltonian and finite-size scaling analysis, we determine the critical Casimir force. We show that by tuning the disorder parameter p , the system exhibits a crossover between an attractive and a repulsive force. At p =1 /2 , disorder allows to effectively realize Dirichlet boundary conditions, which are generically not accessible in classical fluids. Our results are relevant for the experimental realizations of the critical Casimir force in binary liquid mixtures.

  19. Observation of the skin-depth effect on the Casimir force between metallic surfaces.

    Science.gov (United States)

    Lisanti, Mariangela; Iannuzzi, Davide; Capasso, Federico

    2005-08-23

    We have performed measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that measured with a thick bulk-like film. Our results provide direct evidence of the skin-depth effect on the Casimir force between metallic surfaces. PMID:16091459

  20. Distinguishing de Sitter universe from thermal Minkowski spacetime by Casimir-Polder-like force

    Science.gov (United States)

    Tian, Zehua; Jing, Jiliang

    2014-07-01

    We demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.

  1. Influence of materials' optical response on actuation dynamics by Casimir forces

    Science.gov (United States)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  2. Casimir interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation

    CERN Document Server

    Teo, L P

    2011-01-01

    We study the finite temperature Casimir interaction between a cylinder and a plate using the exact formula derived from the Matsubara representation and the functional determinant representation. We consider the scalar field with Dirichlet and Neumann boundary conditions. The asymptotic expansions of the Casimir energy and the Casimir force when the separation $a$ between the cylinder and the plate is small are derived. As in the zero temperature case, it is found that the leading terms of the Casimir energy and the Casimir force agree with those derived from the proximity force approximation when $rT\\gg 1$, where $r$ is the radius of the cylinder. When $aT\\ll 1\\ll rT$ (the medium temperature region), the leading term of the Casimir energy is of order $T^{5/2}$ whereas for the Casimir force, it is of order $T^{7/2}$. In this case, the leading terms are independent of the separation $a$. When $1\\ll aT\\ll rT$ (the high temperature region), the dominating terms of the Casimir energy and the Casimir force come fr...

  3. A Light Sail Inspired Model to Harness Casimir Forces for Propellantless Propulsion

    International Nuclear Information System (INIS)

    The model used to calculate Casimir forces for variously shaped conducting plates in this paper assumes the vacuum energy pervades all space and that photons randomly pop into and out of existence. While they exist, they possess energy and momentum that can be transferred by reflection as in a light sail. Quantum mechanics in the model is entirely bound up in the Casimir equation of force per unit area. This model is compared with two different experiments: that of Chen and Mohideen demonstrating lateral Casimir forces for sinusoidally corrugated spherical and flat plates and Lamoreaux demonstrating normal Casimir forces between a conducting sphere and flat plate. The calculated forces using this model were compared to the forces obtained in these experiments as well as with calculations using the proximity force approximation. In both cases the results (when compared to the actual plates measured and calculated using non-corrected equations) were less than a few parts per thousand different for the range of separation distances used. When the model was used to calculate forces on the opposite plates, different force magnitudes were obtained seemingly indicating prospects for propellentless propulsion but requiring skeptical verification.

  4. Experimental and theoretical investigation of the lateral Casimir force between corrugated surfaces

    International Nuclear Information System (INIS)

    The lateral Casimir force acting between a sinusoidally corrugated gold plate and sphere was calculated and measured. The experimental setup was based on the atomic force microscope specially adapted for the measurement of the lateral Casimir force. The measured force oscillates sinusoidally as a function of the phase difference between the two corrugations. Both systematic and random errors are analyzed and a lateral force amplitude of 3.2x10-13 N was measured at a separation distance of 221 nm with a resulting relative error 24% at a 95% confidence probability. The dependence of the measured lateral force amplitude on separation was investigated and shown to be consistent with the inverse fourth power distance dependence. The complete theory of the lateral Casimir force is presented including finite conductivity and roughness corrections. The obtained theoretical dependence was analyzed as a function of surface separation, corrugation amplitudes, phase difference, and plasma wavelength of a metal. The theory was compared with the experimental data and shown to be in good agreement. The constraints on hypothetical Yukawa-type interactions following from the measurements of the lateral Casimir force are calculated. The possible applications of the lateral vacuum forces to nanotechnology are discussed

  5. The imperfect Bose gas in d dimensions: critical behavior and Casimir forces

    International Nuclear Information System (INIS)

    We consider the d-dimensional imperfect (mean-field) Bose gas confined in a slit-like geometry and subject to periodic boundary conditions. Within an exact analytical treatment we first extract the bulk critical properties of the system at Bose–Einstein condensation and identify the bulk universality class to be the one of the classical d-dimensional spherical model. Subsequently we consider finite slit width D and analyze the excess surface free energy and the related Casimir force acting between the slit boundaries. Above the bulk condensation temperature (T > Tc) the Casimir force decays exponentially as a function of D, with the bulk correlation length determining the relevant length scale. For T = Tc and for T c its decay is algebraic. The magnitude of the Casimir forces at Tc and for T c is governed by the universal Casimir amplitudes. We extract the relevant values for different d and compute the scaling functions describing the crossover between the critical and low-temperature asymptotics of the Casimir force. The scaling function is monotonic at any d∈(2,4) and becomes constant for d > 4 and T ≤ Tc. (paper)

  6. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments

    Science.gov (United States)

    Lamoreaux, Steve; Wong, Douglas

    2015-06-01

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented.

  7. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments

    International Nuclear Information System (INIS)

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented. (paper)

  8. Critical adsorption and critical Casimir forces in the canonical ensemble

    Science.gov (United States)

    Gross, Markus; Vasilyev, Oleg; Gambassi, Andrea; Dietrich, S.

    2016-08-01

    Critical properties of a liquid film between two planar walls are investigated in the canonical ensemble, within which the total number of fluid particles, rather than their chemical potential, is kept constant. The effect of this constraint is analyzed within mean-field theory (MFT) based on a Ginzburg-Landau free-energy functional as well as via Monte Carlo simulations of the three-dimensional Ising model with fixed total magnetization. Within MFT and for finite adsorption strengths at the walls, the thermodynamic properties of the film in the canonical ensemble can be mapped exactly onto a grand canonical ensemble in which the corresponding chemical potential plays the role of the Lagrange multiplier associated with the constraint. However, due to a nonintegrable divergence of the mean-field order parameter profile near a wall, the limit of infinitely strong adsorption turns out to be not well-defined within MFT, because it would necessarily violate the constraint. The critical Casimir force (CCF) acting on the two planar walls of the film is generally found to behave differently in the canonical and grand canonical ensembles. For instance, the canonical CCF in the presence of equal preferential adsorption at the two walls is found to have the opposite sign and a slower decay behavior as a function of the film thickness compared to its grand canonical counterpart. We derive the stress tensor in the canonical ensemble and find that it has the same expression as in the grand canonical case, but with the chemical potential playing the role of the Lagrange multiplier associated with the constraint. The different behavior of the CCF in the two ensembles is rationalized within MFT by showing that, for a prescribed value of the thermodynamic control parameter of the film, i.e., density or chemical potential, the film pressures are identical in the two ensembles, while the corresponding bulk pressures are not.

  9. Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach

    International Nuclear Information System (INIS)

    In this paper, static behavior of nano/micromirrors under Casimir force is studied. At the first, the equilibrium equation governing the statical behavior of nano/micromirrors is obtained. Then energy method is employed to investigate statical stability of nano/micromirrors equilibrium points and a useful equation is suggested for successful and stable design of nano/micromirrors under Casimir force. Then, equilibrium angle of nano/micromirrors is calculated both numerically and analytically using the homotopy perturbation method (HPM). It is observed that with increasing the instability number defined in the paper, the rotation angle of the mirror is increased and suddenly, pull-in occurs. Since analytical results well follow the numerical ones, the presented analytical method in this paper can be used as a fast, precise and stable design tool in nano/micromirrors under Casimir force

  10. The Casimir force between an ideal metal plate and a dissipative dielectric slab

    Science.gov (United States)

    Falinejad, H.; Bayat, F.

    2014-09-01

    In this research, a general formula for the Casimir force between ideal metal plate and a dissipative dielectric slab has been obtained. The dielectric function of the slab is assumed to be an arbitrary complex function of frequency satisfying Kramers-Kronig relations. A classical expression for the radiation pressure of the vacuum fields on the slab is presented by using the Maxwell stress tensor. With the transition to the quantum domain and using the fluctuation dissipation theorem and Kubo's formula, the resulting expression is written in terms of the imaginary part of the vector potential Green functions components of the system. Finally, by computing the Green function, the Casimir force on the slab is obtained. This formalism enables us to calculate the Casimir force without resorting to the explicit form of the field operators. The general expression is confirmed by limiting and comparing with one of the previous works.

  11. Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Moeenfard, Hamid; Darvishian, Ali; Ahmaidan, Mohammad Taghi [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-02-15

    In this paper, static behavior of nano/micromirrors under Casimir force is studied. At the first, the equilibrium equation governing the statical behavior of nano/micromirrors is obtained. Then energy method is employed to investigate statical stability of nano/micromirrors equilibrium points and a useful equation is suggested for successful and stable design of nano/micromirrors under Casimir force. Then, equilibrium angle of nano/micromirrors is calculated both numerically and analytically using the homotopy perturbation method (HPM). It is observed that with increasing the instability number defined in the paper, the rotation angle of the mirror is increased and suddenly, pull-in occurs. Since analytical results well follow the numerical ones, the presented analytical method in this paper can be used as a fast, precise and stable design tool in nano/micromirrors under Casimir force.

  12. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    CERN Document Server

    Bezerra, V B; Mostepanenko, V M; Romero, C

    2014-01-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional force arising in the experimental configurations due to two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11eV and 8eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eotvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10^{-10}eV to 20eV.

  13. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    Science.gov (United States)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2014-09-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional forces arising in the experimental configurations due to the two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11 and 8 eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eötvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10-10 to 20 eV.

  14. Standing wave vs Green's function approach to the Casimir force problem

    CERN Document Server

    Schuller, Frédéric; Neumann-Spallart, Michael

    2012-01-01

    After a short recall of our previous standing wave approach to the Casimir force problem, we consider Lifshitz's temperature Green's function method and its virtues from a physical point of view. Using his formula, specialized for perfectly reflecting mirrors, we present a quantitative discussion of the temperature effect on the attractive force.

  15. Reduction of the Casimir force from indium tin oxide film by UV treatment.

    Science.gov (United States)

    Chang, C-C; Banishev, A A; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2011-08-26

    A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope in high vacuum. The experimental results are compared with theory and a hypothetical explanation for the observed phenomenon is proposed. PMID:21929216

  16. Reduction of the Casimir force from indium tin oxide film by UV treatment

    CERN Document Server

    Chang, C C; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2011-01-01

    A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide (ITO) sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope (AFM) in high vacuum. The experimental results are compared with theory, and a hypothetical explanation for the observed phenomenon is proposed.

  17. Tunable Casimir-Polder Forces and Spontaneous Emission Rates

    Science.gov (United States)

    Rosa, Felipe; Kort-Kamp, Wilton; Pinheiro, Felipe; Cysne, Tarik; Oliver, Diego; Farina, Carlos

    2015-03-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for a high degree of control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80 % reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. In addition, we also show that atomic spontaneous emission rates can be greatly modified by the action of the magnetic field, with an order of magnitude enhancement or suppression depending on the dipole's moment orientation.

  18. Probing the strong boundary shape dependence of the Casimir force.

    Science.gov (United States)

    Emig, T; Hanke, A; Golestanian, R; Kardar, M

    2001-12-24

    We study the geometry dependence of the Casimir energy for deformed metal plates by a path integral quantization of the electromagnetic field. For the first time, we give a complete analytical result for the deformation induced change in Casimir energy delta E in an experimentally testable, nontrivial geometry, consisting of a flat and a corrugated plate. Our results show an interesting crossover for delta E as a function of the ratio of the mean plate distance H, to the corrugation length lambda: For lambdaH. PMID:11800828

  19. Colloidal aggregation in microgravity by critical Casimir forces

    Science.gov (United States)

    Veen, Sandra; Schall, Peter; Antoniuk, Oleg; Potenza, Marco; Alaimo, Matteo; Mazzoni, Stefano; Wegdam, Gerard

    2012-02-01

    We study aggregation and crystal growth of spherical Teflon colloids in binary liquid mixtures in microgravity by the critical Casimir effect. The critical Casimir effect induces interactions between colloids due to the confinement of bulk fluctuations (density or concentration) near the critical point of liquids. The strength and range of the interaction depends on the length scale of these fluctuations which increase as one approaches the critical point. The interaction potential can thus be tuned with temperature. We follow the growth of structures in real time with Near Field Scattering. Measurements are performed in microgravity in order to study pure diffusion limited aggregation, without disturbance by sedimentation or flow.

  20. Critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results.

    Science.gov (United States)

    Dantchev, Daniel; Krech, Michael

    2004-04-01

    We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature T(c). We verify our arguments via exact results for the force in the two-dimensional Ising model, d -dimensional Gaussian, and mean spherical model with 2 = k(b) T(c) (d-1)Delta/ (L/a)(d), where L is the distance between the plates and Delta is the (universal) Casimir amplitude. PMID:15169081

  1. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.

    Science.gov (United States)

    Ashourvan, Arash; Miri, Mirfaez; Golestanian, Ramin

    2007-04-01

    The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of friction and external load are taken into account, and it is shown that the pinion can do work against loads of up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic behavior in a large part of the parameter space. PMID:17500845

  2. Casimir-Lifshitz force out of thermal equilibrium between arbitrary bodies

    CERN Document Server

    Messina, Riccardo

    2010-01-01

    We derive the Casimir-Lifshitz force acting between two arbitrary bodies, each one held at a given temperature, surrounded by environmental radiation at a third temperature. The system, in stationary configuration out of thermal equilibrium, is characterized by a force depending on the three temperatures, and explicitly expressed in terms of the scattering operators of each body. Our predictions, valid for bodies of any geometry and dielectric properties, can be relevant for experimental and technological purposes in the domain of Casimir interactions and of heat transfer.

  3. Noncontact racK and pinion powered by the lateral Casimir force.

    Science.gov (United States)

    Ashourvan, Arash; Miri, MirFaez; Golestanian, Ramin

    2007-04-01

    The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest. PMID:17501261

  4. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    CERN Document Server

    Almasi, Attaallah; Iannuzzi, Davide; Sedmik, René I P

    2015-01-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the high requirements of the proposed experiment. In this article we present the first and most important part of this setup -- the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir for...

  5. Using the Casimir Force to Measure the Gravitational Constant

    Science.gov (United States)

    Pinto, F.

    1998-01-01

    I show that the dynamics of two coupled torsion pendulums is drastically affected by their mutual Casimir surface interaction if the masses involved are relatively close to each other. The effect is directly related to the ratio of the masses used to the Planck mass.

  6. A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force

    Science.gov (United States)

    Liang, Binbin; Zhang, Long; Wang, Binglei; Zhou, Shenjie

    2015-07-01

    A size-dependent model for the electrostatically actuated Nano-Electro-Mechanical Systems (NEMS) incorporating nonlinearities and Casimir force is presented by using a variational method. The governing equation and boundary conditions are derived with the help of strain gradient elasticity theory and Hamilton principle. Generalized differential quadrature (GDQ) method is employed to solve the problem numerically. The pull-in instability with Casimir force included is then studied. The results reveal that Casimir force, which is a spontaneous force between the two electrodes, can reduce the external applied voltage. With Casimir force incorporated, the pull-in instability occurs without voltage applied when the beam size is in nanoscale. The minimum gap and detachment length can be calculated from the present model for different beam size, which is important for NEMS design. Finally, discussions of size effect induced by the strain gradient terms reveal that the present model is more accurate since size effect play an important role when beam in nanoscale.

  7. Dynamical Casimir-Polder force in a one-dimensional cavity with quasimodes

    International Nuclear Information System (INIS)

    In this article, we consider the dynamic Casimir-Polder force between an atom and a conducting wall in a one-dimensional cavity. Using quasimode theory to describe the dissipation of the electromagnetic fields in the cavity, our investigation shows that the force oscillations are damped in a short time, and tend to a final, steady, negative value. We discuss in detail the effects on the force of the quasimode decay rate, the cavity size, and the atom-wall distance.

  8. Non-monotonic thermal Casimir force from geometry-temperature interplay

    OpenAIRE

    Weber, Alexej; Gies, Holger

    2010-01-01

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a non-monotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by...

  9. New Constraints on the Yukawa-Type Hypothetical Interaction From The Recent Casimir Force Measurement

    CERN Document Server

    Bordag, M; Mostepanenko, V M

    1997-01-01

    We calculate the constraints on the constants of hypothetical long-range interactions which follow from the recent measurement of the Casimir force. A comparison with previous constraints is given. The new constraints are up to a factor of 3000 stronger in some parameter regions .

  10. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qun [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Onofrio, Roberto, E-mail: onofrior@gmail.co [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, Via Marzolo 8, Padova 35131 (Italy)] [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2010-05-03

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  11. Combined impact of nonzero temperature and finite conductivity on the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, Galina; Mostepanenko, Vladimir [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Full text follows: The increased accuracy of Casimir force measurements invites a more exact calculation of different theoretical corrections. Here we focus our attention on the combined impact of nonzero temperature and finite conductivity of the boundary material on the Casimir force. The general expression for the Casimir force between dielectric plates at arbitrary temperature was first obtained by Lifshitz in 1956. The Lifshitz result is generally used in theoretical predictions. Computations of the recent paper [1] also are based on this result for both the van der Waals and Casimir force at nonzero temperature. The dependence of dielectric permittivity along the imaginary axis in the plane of complex frequency was represented by the Drude and plasma models. However, the ambiguity containing in the zero frequency term of the Lifshitz formula has led the authors of [1] to incorrect computational results, including the occurrence of large temperature corrections at small separations and wrong asymptotics at high temperatures. In this talk we discuss the results of paper [2] where the ambiguities in the previous calculations are explained and eliminated. Also, the representation of the Lifshitz formula is given which is well defined and convenient for computations. (author)

  12. Rigorous proof of the attractive nature for the Casimir force of a p-odd hypercube

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinzhou; Zhai Xianghua [Department of Physics, Shanghai Normal University, Shanghai (China)

    2001-12-14

    The Casimir effect giving rise to an attractive force between the configuration boundaries that confine the massless scalar field is rigorously proved for an odd dimensional hypercube with the Dirichlet boundary conditions and different spacetime dimensions D by the Epstein zeta function regularization. (author)

  13. Combined impact of nonzero temperature and finite conductivity on the Casimir force

    International Nuclear Information System (INIS)

    Full text follows: The increased accuracy of Casimir force measurements invites a more exact calculation of different theoretical corrections. Here we focus our attention on the combined impact of nonzero temperature and finite conductivity of the boundary material on the Casimir force. The general expression for the Casimir force between dielectric plates at arbitrary temperature was first obtained by Lifshitz in 1956. The Lifshitz result is generally used in theoretical predictions. Computations of the recent paper [1] also are based on this result for both the van der Waals and Casimir force at nonzero temperature. The dependence of dielectric permittivity along the imaginary axis in the plane of complex frequency was represented by the Drude and plasma models. However, the ambiguity containing in the zero frequency term of the Lifshitz formula has led the authors of [1] to incorrect computational results, including the occurrence of large temperature corrections at small separations and wrong asymptotics at high temperatures. In this talk we discuss the results of paper [2] where the ambiguities in the previous calculations are explained and eliminated. Also, the representation of the Lifshitz formula is given which is well defined and convenient for computations. (author)

  14. Casimir force on a micrometer sphere in a dip: proposal of an experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I; Dahl, E K; Myhr, G O [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2005-02-04

    The attractive Casimir force acting on a micrometer-sphere suspended in a spherical dip, close to the wall, is discussed. This set-up is in principle directly accessible to experiment. The sphere and the substrate are assumed to be made of the same perfectly conducting material. (letter to the editor)

  15. Casimir scaling hypothesis on the nonperturbative force in QCD vs. dual superconducting scenario of confinement

    Energy Technology Data Exchange (ETDEWEB)

    Koma, Y.; Koma, M.; Toki, H

    2003-06-30

    We discuss the Casimir scaling hypothesis on the nonperturbative force in terms of the dual superconducting picture of the QCD vacuum by calculating the string tensions of flux tubes associated with static charges in various SU(3) representations in the dual Ginzburg-Landau (DGL) theory.

  16. Kramers-Kronig relations for plasma-like permittivities and the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L [North-West Technical University, Millionnaya St. 5, St. Petersburg (Russian Federation); Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Mostepanenko, V M [Noncommercial Partnership ' Scientific Instruments' , Tverskaya St. 11, Moscow (Russian Federation)

    2007-04-27

    The Kramers-Kronig relations are derived for the permittivity of the usual plasma model which neglects dissipation and of a generalized model which takes into account the interband transitions. The generalized plasma model is shown to be consistent with all precision experiments on the measurement of the Casimir force. (fast track communication)

  17. Kramers-Kronig relations for plasma-like permittivities and the Casimir force

    International Nuclear Information System (INIS)

    The Kramers-Kronig relations are derived for the permittivity of the usual plasma model which neglects dissipation and of a generalized model which takes into account the interband transitions. The generalized plasma model is shown to be consistent with all precision experiments on the measurement of the Casimir force. (fast track communication)

  18. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    OpenAIRE

    Wei, Qun; Onofrio, Roberto

    2011-01-01

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  19. Stable suspension and dispersion-induced transitions from repulsive Casimir forces between fluid separated eccentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Diego A1 [Los Alamos National Laboratory; Rodriguez, Alejandro W [MASS INST OF TECH; Munday, J N [HARVARD UNIV; Joannopoulos, J D [MASS INST OF TECH

    2008-01-01

    Using accurate numerical methods for finite-size nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, employing a new method to accurately compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 transition as a function of the separation lengthscale, and this transition is explained as a consequence of material dispersion.

  20. Time-dependent Casimir-Polder forces and partially dressed states

    International Nuclear Information System (INIS)

    A time-dependent Casimir-Polder force is shown to arise during the time evolution of a partially dressed two-level atom. The partially dressed atom is obtained by a rapid change of an atomic parameter such as its transition frequency, due to the action of some external agent. The electromagnetic field fluctuations around the atom, averaged over the solid angle for simplicity, are calculated as a function of time, and it is shown that the interaction energy with a second atom yields a dynamical Casimir-Polder potential between the two atoms

  1. Thermal Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L; Mostepanenko, V M [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany); Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2008-10-31

    The low-temperature behavior of the Casimir-Polder free energy and entropy for an atom near a dielectric plate are found on the basis of the Lifshitz theory. The obtained results are shown to be thermodynamically consistent if the dc conductivity of the plate material is disregarded. With inclusion of dc conductivity, both the standard Lifshitz theory (for all dielectrics) and its generalization taking into account screening effects (for a wide range of dielectrics) violate the Nernst heat theorem. The inclusion of the screening effects is also shown to be inconsistent with experimental data of Casimir force measurements. The physical reasons for this inconsistency are elucidated. (fast track communication)

  2. Thermal Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment

    International Nuclear Information System (INIS)

    The low-temperature behavior of the Casimir-Polder free energy and entropy for an atom near a dielectric plate are found on the basis of the Lifshitz theory. The obtained results are shown to be thermodynamically consistent if the dc conductivity of the plate material is disregarded. With inclusion of dc conductivity, both the standard Lifshitz theory (for all dielectrics) and its generalization taking into account screening effects (for a wide range of dielectrics) violate the Nernst heat theorem. The inclusion of the screening effects is also shown to be inconsistent with experimental data of Casimir force measurements. The physical reasons for this inconsistency are elucidated. (fast track communication)

  3. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    Science.gov (United States)

    Sedighi, Mehdi; Palasantzas, George

    2015-04-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled using the Drude and Plasma models. Indeed, for metallic systems, which have strong Casimir attraction, the details of the modeling of the low optical frequency regime can be dramatic, leading to predictions of either stable motion or stiction instability. However, this difference is strongly minimized for weakly conductive systems as are the doped insulators making actuation modeling more certain to predict.

  4. Resonant Casimir--Polder forces in planar meta-materials

    OpenAIRE

    Sambale, Agnes; Buhmann, Stefan Yoshi; Dung, Ho Trung; Welsch, Dirk-Gunnar

    2008-01-01

    We study the resonant Casimir--Polder potential of an excited atom near a half space containing magneto-electric meta-material of various kinds on the basis of macroscopic quantum electrodynamics. Analytical results are obtained in the nonretarded and retarded distance regimes and numerical examples are given. We compare our findings with the potential of an excited atom near a left-handed superlens.

  5. Resonant Casimir-Polder forces in planar meta-materials

    Energy Technology Data Exchange (ETDEWEB)

    Sambale, Agnes; Welsch, Dirk-Gunnar [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Buhmann, Stefan Yoshi [Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ho Trung Dung [Institute of Physics, Academy of Sciences and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City (Viet Nam)], E-mail: agnes.sambale@uni-jena.de

    2009-07-15

    We study the resonant Casimir-Polder potential of an excited atom near a half-space containing magneto-electric meta-material of various kinds on the basis of macroscopic quantum electrodynamics. Analytical results are obtained in the nonretarded and retarded distance regimes and numerical examples are given. We compare our findings with the potential of an excited atom near a left-handed superlens.

  6. Casimir Friction Force and Energy Dissipation for Moving Harmonic Oscillators

    OpenAIRE

    Høye, Johan S.; Brevik, Iver

    2010-01-01

    The Casimir friction problem for a pair of dielectric particles in relative motion is analyzed, utilizing a microscopic model in which we start from statistical mechanics for harmonically oscillating particles at finite temperature moving nonrelativistically with constant velocity. The use of statistical mechanics in this context has in our opinion some definite advantages, in comparison with the more conventional quantum electrodynamic description of media that involves the use of a refracti...

  7. Resonant Casimir-Polder forces in planar meta-materials

    International Nuclear Information System (INIS)

    We study the resonant Casimir-Polder potential of an excited atom near a half-space containing magneto-electric meta-material of various kinds on the basis of macroscopic quantum electrodynamics. Analytical results are obtained in the nonretarded and retarded distance regimes and numerical examples are given. We compare our findings with the potential of an excited atom near a left-handed superlens.

  8. Repulsive Casimir forces and the role of surface modes

    International Nuclear Information System (INIS)

    The Casimir repulsion between a metal and a dielectric suspended in a liquid has been thoroughly studied in recent experiments. In the present paper we consider surface modes in three layered systems modeled by dielectric functions guaranteeing repulsion. It is shown that surface modes play a decisive role in this phenomenon at short separations. For a toy plasma model we find the contribution of the surface modes at all distances.

  9. Casimir force between planes as a boundary finite size effect

    International Nuclear Information System (INIS)

    The ground state energy of a boundary quantum field theory is derived in planar geometry in D+1-dimensional spacetime. It provides a universal expression for the Casimir energy which exhibits its dependence on the boundary conditions via the reflection amplitudes of the low energy particle excitations. We demonstrate the easy and straightforward applicability of the general expression by analyzing the free scalar field with Robin boundary condition and by rederiving the most important results available in the literature for this geometry

  10. Temperature-independent Casimir-Polder forces in arbitrary geometries

    OpenAIRE

    Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan

    2011-01-01

    We show that the Casimir-Polder potential of a particle in an energy eigenstate at nonretarded distance from a well-conducting body of arbitrary shape is independent of the environment temperature. This is true even when the thermal photon numbers at the relevant atomic transition energies are large. A compact expression is obtained for the temperature-independent potential, which can greatly simplify calculations in nontrivial geometries for experimentally relevant systems such as Rydberg at...

  11. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    Science.gov (United States)

    Scheel, Stefan; Buhmann, Stefan Yoshi; Clausen, Christoph; Schneeweiss, Philipp

    2015-10-01

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir-Polder force parallel to the fiber axis arises. For a simple model case, we show that such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir-Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  12. Influence of Combination of Casimir Force and Residual Stress on the Behaviour of Micro- and Nano-Electromechanical Systems

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 周根树; 赵文轸; 顾海澄

    2002-01-01

    Casimir force and residual stresses actually appear in over-layers or films simultaneously. The study of the behaviour of micro- and nano-electromechanical systems in the presence of Casimir force and residual stress is of significance to the design of the relevant devices. We derive analytical expressions of the deflection of a bridge-shaped device under the mutual actions of Casimir force and residual stress in films. It is shown that the tensile residual stress enhances wavy behaviour of the deflection, while the compressive residual stress increases the deflection value and reduces the wavy behaviour.

  13. Precision studies of Casimir force and short-range gravity employing prototypes of interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rajalakshmi, G; Unnikrishnan, C S, E-mail: g.raji@tifr.res.i [Gravitation Group, Tata Institute of Fundamental Research, Mumbai-400 005 (India)

    2010-11-07

    We discuss experimental schemes to measure the Casimir force and short-range forces from hypothetical modified gravity with unprecedented sensitivity using highly sensitive prototype gravitational wave detectors as displacement sensors. The finite temperature effects of the Casimir force would be detectable with a sensitivity better than 1% for separation exceeding 30 {mu}m. Constraints on short-range modifications to gravity can be improved in the distance range of 10-100 {mu}m.

  14. Casimir-Lifshitz Force Out of Thermal Equilibrium and Asymptotic Nonadditivity

    International Nuclear Information System (INIS)

    We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al., Phys. Rev. Lett. 95, 113202 (2005). The asymptotic behavior of the force at large distances is explicitly discussed. In particular when one of the two bodies is a rarefied gas the force is not additive, being proportional to the square root of the density. Nontrivial crossover regions at large distances are also identified

  15. Rederivation of the Casimir force under the completeness relation of continuum operator

    CERN Document Server

    Xianlong, Gao

    2016-01-01

    Casimir effects manifests that, the two closely paralleled plates, generally produce a macroscopic attractive force due to the quantum vacuum fluctuations of the electromagnetic fields. The derivation of the force requires an {\\it artificial} regulator by removing the divergent summation. By including naturally a spectrum density factor, based on the observation that an incomplete eigenvectors of observable, such as the eigenstates for the photons in the free field, can form a complete set of eigenvectors by introducing a unique spectrum transformation, an alternative way is presented to rederive the force, without using a regulator. As a result, the Casimir forces are obtained with the first term $-\\pi^2 \\hbar c/(240 a^4)$ attractive, and the second one, $-\\pi^4 \\hbar c^3 \\sigma^2/(1008 a^6)$, also attractive but smaller, with $a$ the plate separation, and $\\sigma$ a to-be-determined small constant number in the spectrum density factor.

  16. Temperature-independent Casimir-Polder forces in arbitrary geometries

    CERN Document Server

    Ellingsen, Simen Å; Scheel, Stefan

    2011-01-01

    We show that the Casimir-Polder potential of a particle in an energy eigenstate at nonretarded distance from a well-conducting body of arbitrary shape is independent of the environment temperature. This is true even when the thermal photon numbers at the relevant atomic transition energies are large. A compact expression is obtained for the temperature-independent potential, which can greatly simplify calculations in nontrivial geometries for experimentally relevant systems such as Rydberg atoms and polar molecules. We give criteria for the validity of our temperature-independent result. They are illustrated by numerical studies of a particle near a gold sphere or inside a gold cylindrical cavity.

  17. Casimir forces in multilayer magnetodielectrics with both gain and loss

    DEFF Research Database (Denmark)

    Amooghorban, Ehsan; Wubs, Martijn; Mortensen, N. Asger;

    2011-01-01

    A path-integral approach to the quantization of the electromagnetic field in a linearly amplifying magnetodielectric medium is presented. Two continua of inverted harmonic oscillators are used to describe the polarizability and magnetizability of the amplifying medium. The causal susceptibilities...... of the amplifying medium, with negative imaginary parts in finite frequency intervals, are identified and their relationships to microscopic coupling functions are determined. By carefully relating the two-point functions of the field theory to the optical Green functions, we calculate the Casimir...

  18. Pseudo-casimir structural force drives spinodal dewetting in nematic liquid crystals

    Science.gov (United States)

    Ziherl; Podgornik; Zumer

    2000-02-01

    We analyze theoretically the fluctuation-induced force in thin nematic films subject to competing surface interactions, and we find that the force is attractive at small distances and repulsive otherwise. The results provide a consistent interpretation of a recent study of spinodal dewetting of 5CB on a silicon wafer [F. Vandenbrouck et al., Phys. Rev. Lett. 82, 2693 (1999)], implying that this experiment can be regarded as the first observation of the pseudo-Casimir effect in liquid crystals. PMID:11017485

  19. An Experimental Exploration of the Quantum Vacuum through the Casimir Force

    Energy Technology Data Exchange (ETDEWEB)

    Mohideen, Umar (University of California, Riverside)

    2003-03-12

    Quantum theory predicts that the vacuum (empty space) is filled with virtual particles also referred to as zero point energy. H.B.G.Casimir, calculated an extraordinary property, that two uncharged metallic plates placed parallel in vacuum, would experience an attractive force due to the alteration of the zero point electromagnetic energy. Some of the fascinating aspects of the force, its implications and its measurements will be discussed.

  20. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    Science.gov (United States)

    Almasi, Attaallah; Brax, Philippe; Iannuzzi, Davide; Sedmik, René I. P.

    2015-05-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the stringent requirements of the proposed experiment. In this article we present the first and most important part of this setup—the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter, we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir forces at large surface separations with unprecedented accuracy, thereby potentially giving unambiguous answers to long-standing open questions.

  1. Surface-impedance approach solves problems with the thermal Casimir force between real metals

    International Nuclear Information System (INIS)

    The surface-impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradictions with thermodynamics that are specific to the usual Lifshitz formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of the ad hoc prescriptions intensively discussed in the recent literature. As an example, the computations of the Casimir free energy between two gold plates (or the Casimir force acting between a plate and a sphere) are performed at different separations and temperatures specific for the regions of the anomalous skin effect and infrared optics. The results are in good agreement with those obtained by the use of the tabulated optical data for the complex refraction index and plasma model. It is argued that the surface impedance approach lays a reliable theoretical framework for the future measurements of the thermal Casimir force

  2. Levitation of a metallic sphere near gas-liquid and liquid-liquid interfaces by the repulsive Casimir force

    Science.gov (United States)

    Inui, Norio

    2014-06-01

    By counteracting gravity, the repulsive Casimir force enables stable levitation of a perfectly conducting particle near a liquid-air interface if the particle exists inside the liquid. In the present study, we examine the levitation of a gold particle near a bromobenzene-air interface and calculate the levitation height using the scattering-matrix formulation. In addition, we consider the Casimir force acting on a gold sphere near the interface between bromobenzene and water. At asymptotically large separations, the Casimir force is attractive because of the large static dielectric permittivity of water. However, the Casimir force changes from attractive to repulsive as the separation decreases. We also found that the gold particle can be levitated in bromobenzene above water.

  3. Comment on ``Precision measurement of the Casimir-Lifshitz force in a fluid''

    CERN Document Server

    Geyer, B; Mohideen, U; Mostepanenko, V M

    2007-01-01

    Recently J.N. Munday and F. Capasso [Phys. Rev. A {\\bf 75}, 060102(R) (2007); arXiv:0705.3793] claimed that they have performed a precision measurement of the Casimir force between a sphere and a plate coated with Au, both immersed in ethanol. The measurement results were claimed to be consistent with the Lifshitz theory. We demonstrate that in this paper the Casimir force between the smooth surfaces of the test bodies was computed inaccurately with an error of up to 25%. We show also that the attractive electrostatic force only due to the surface potential differences was underestimated by a factor of 590 and the charge double layer interaction was not taken into account. All this leads to the conclusion that the results of this experiment are in fact uncertain.

  4. Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.

    Science.gov (United States)

    Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin

    2010-01-01

    Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems. PMID:20365429

  5. Critical Casimir force in 4He films: confirmation of finite-size scaling.

    Science.gov (United States)

    Ganshin, A; Scheidemantel, S; Garcia, R; Chan, M H W

    2006-08-18

    We present new capacitance measurements of critical Casimir force-induced thinning of 4He films near the superfluid transition, focused on the region below Tlambda where the effect is the greatest. 4He films of 238, 285, and 340 A thickness are adsorbed on atomically smooth, N-doped silicon substrates. The Casimir force scaling function theta, deduced from the thinning of these three films, collapses onto a single universal curve, attaining a minimum theta=-1.30+/-0.03 at x=td1/nu=-9.7+/-0.8 A1/nu. The collapse confirms the finite-size scaling origin of the dip in the film thickness. Separately, we also confirm the presence down to 2.13 K of the Goldstone or surface fluctuation force, which makes the superfluid film approximately 2 A thinner than the normal film. PMID:17026241

  6. Measurement of the temperature dependence of the Casimir-Polder force.

    Science.gov (United States)

    Obrecht, J M; Wild, R J; Antezza, M; Pitaevskii, L P; Stringari, S; Cornell, E A

    2007-02-01

    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory. PMID:17358936

  7. Distinguishing de Sitter universe from thermal Minkowski spacetime by Casimir-Polder-like force

    CERN Document Server

    Tian, Zehua

    2014-01-01

    Using the open quantum system approach, we demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.

  8. Customized silicon cantilevers for Casimir force experiments using focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Garza, R; Chang, C-C; Mohideen, U [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Yan Dong, E-mail: umar.mohideen@ucr.ed [Center of NanoSciences and NanoEngineering, Bourns Hall 900 University Ave Riverside, CA 92521 (United States)

    2009-04-01

    Higher sensitivity cantilevers will lead to exploration of new phenomena in the Casimir effect. We have used focused ion beam milling to reduce the width of a commercial single crystal, rectangular-shaped silicon cantilevers with a massive Cr/Au-coated-hollow sphere attached at their free end. Theoretically these milled and modified cantilevers should have better Casimir force sensitivity than their non-milled counterparts. In this preliminary report however only 1 out of 4 modified cantilevers were found to have a higher force sensitivity. Future studies will be needed to determine the general applicability of focused ion beam milling for force sensitivity improvements in comparison to the complete nanofabrication of cantilevers.

  9. Temperature dependence of the Casimir-like force in free-standing smectic films.

    Science.gov (United States)

    de Oliveira, I N; Lyra, M L; Mirantsev, L V

    2006-04-01

    The thermal Casimir-like force in free-standing liquid crystal films close to the smectic-A-nematic transition temperature is computed using a quadratic functional approach. In the framework of a microscopic mean-field model of free-standing smectic-A films, the temperature dependence of the order parameter profiles is computed and later used to estimate the elastic coupling variability in the vicinity of first- and second-order bulk smectic-A-nematic phase transitions. The strong nonuniformity of the coupling constant profiles promotes a significant increase of the fluctuation-induced force over three orders of magnitude, especially in thin films. This result reinforces the possible predominance of the thermal Casimir force as compared to the standard van der Waals interaction in thin smectic-A liquid crystal films. PMID:16711823

  10. Casimir force on real materials-the slab and cavity geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Simen A; Brevik, Iver [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2007-03-30

    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for the slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.

  11. Measurement of the Temperature Dependence of the Casimir-Polder Force

    International Nuclear Information System (INIS)

    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory

  12. Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases

    International Nuclear Information System (INIS)

    We show that Rabi oscillations of a degenerate fermionic or bosonic gas trapped in a double-well potential can be exploited for the interferometric measurement of external forces at micrometer length scales. The Rabi interferometer is less sensitive but easier to implement than the Mach-Zehnder, since it does not require dynamical beam-splitting or recombination processes. As an application we propose a measurement of the Casimir-Polder force acting between the atoms and a dielectric surface. We find that even if the interferometer is fed with a coherent state of relatively small number of atoms, and in the presence of realistic experimental noise, the force might be measured with a sensitivity sufficient to discriminate between thermal and zero-temperature regimes of the Casimir-Polder potential. Higher sensitivities can be reached with bosonic spin squeezed states.

  13. Casimir force on a solid ball when ε(ω)μ(ω) = 1

    International Nuclear Information System (INIS)

    The Casimir surface force on a solid ball is calculated, assuming the material to be dispersive and to be satisfying the condition ε(ω)μ(ω) = 1, ε(ω) being the spectral permittivity and μ(ω) the spectral permeability. This particular condition simplifies the Casimir theory of dielectric media considerably. As a dispersion relation we choose the analogue of Sellmeir's form (with one absorption frequency), known from ordinary dispersion theory. We follow a combined numerical and analytic approach: the low values of the angular momentum variable are treated numerically, whereas the higher values are treated analytically by means of the Debye expansion. The dispersive effect is found to yield a strong, attractive contribution to the surface force. If the cutoff frequency ω0 is large, the dispersion-induced surface force becomes proportional to ω0.tions

  14. Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials

    International Nuclear Information System (INIS)

    Here, we show that the Casimir-Lifshitz force (either attractive or repulsive) between two planar material slabs embedded in a dense array of silver nanowires is an ultralong-range force that decays with the separation of the bodies, a, as 1/a2, whereas in an isotropic background it decays as 1/a4. It is demonstrated that the nanowires effectively channel the quantum fluctuations of the electromagnetic field through the region between the bodies, boosting in this manner the intensity of the Casimir force at long distances. Moreover, in a configuration involving a stationary planar slab and a spherical object able to slide within the nanowire background (e.g., an air bubble) the dependence of the force on the separation is shown to be 1/a as compared to 1/a3 in an isotropic background. Our theoretical calculations suggest that a significant repulsive Casimir force can be measured for distances up to 10 μm in such a scenario.

  15. Monte-Carlo calculation of the lateral Casimir forces between rectangular gratings within the formalism of lattice quantum field theory

    CERN Document Server

    Pavlovsky, Oleg

    2011-01-01

    We propose a new Monte-Carlo method for calculation of the Casimir forces. Our method is based on the formalism of noncompact lattice quantum electrodynamics. This approach has been tested in the simplest case of two ideal conducting planes. After this the method has been applied to the calculation of the lateral Casimir forces between two ideal conducting rectangular gratings. We compare our calculations with the results of PFA and "Optimal" PFA methods.

  16. Theory confronts experiment in the Casimir force measurements: Quantification of errors and precision

    International Nuclear Information System (INIS)

    We compare theory and experiment in the Casimir force measurement between gold surfaces performed with the atomic force microscope. Both random and systematic experimental errors are found leading to a total absolute error equal to 8.5 pN at 95% confidence. In terms of the relative errors, experimental precision of 1.75% is obtained at the shortest separation of 62 nm at 95% confidence level (at 60% confidence the experimental precision of 1% is confirmed at the shortest separation). An independent determination of the accuracies of the theoretical calculations of the Casimir force and its application to the experimental configuration is carefully made. Special attention is paid to the sample-dependent variations of the optical tabulated data due to the presence of grains, contribution of surface plasmons, and errors introduced by the use of the proximity force theorem. Nonmultiplicative and diffraction-type contributions to the surface roughness corrections are examined. The electric forces due to patch potentials resulting from the polycrystalline nature of the gold films are estimated. The finite size and thermal effects are found to be negligible. The theoretical accuracy of about 1.69% and 1.1% are found at a separation 62 nm and 200 nm, respectively. Within the limits of experimental and theoretical errors very good agreement between experiment and theory is confirmed characterized by the root-mean-square deviation of about 3.5 pN within all measurement range. The conclusion is made that the Casimir force is stable relative to variations of the sample-dependent optical and electric properties, which opens new opportunities to use the Casimir effect for diagnostic purposes

  17. Casimir interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation

    International Nuclear Information System (INIS)

    We study the finite temperature Casimir interaction between a cylinder and a plate using the exact formula derived from the Matsubara representation and the functional determinant representation. We consider the scalar field with Dirichlet and Neumann boundary conditions. The asymptotic expansions of the Casimir free energy and the Casimir force when the separation a between the cylinder and the plate is small are derived. As in the zero temperature case, it is found that the leading terms of the Casimir free energy and the Casimir force agree with those derived from the proximity force approximation when rT>>1, where r is the radius of the cylinder. Specifically, when aT5/2 whereas, for the Casimir force, it is of order T7/2. In this case, the leading terms are independent of the separation a. When 13/2, whereas, for the force, it is inversely proportional to a5/2. The first order corrections to the proximity force approximations in different temperature regions are computed using the perturbation approach. In the zero temperature case, the results agree with those derived in [M. Bordag, Phys. Rev. D 73, 125018 (2006)].

  18. Thermal correction to the Casimir force, radiative heat transfer, and an experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, V.B.; Romero, C. [Federal University of Paraiba, Department of Physics, C.P. 5008, Joao Pessoa (Brazil); Bimonte, G. [Universita di Napoli Federico II, Complesso Universitario MSA, Dipartimento di Scienze Fisiche, Napoli (Italy); INFN, Sezione di Napoli, Napoli (Italy); Klimchitskaya, G.L.; Mostepanenko, V.M. [Leipzig University, Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig (Germany)

    2007-11-15

    The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by the Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value, which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions, due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find the adequate description of a metal in the theory of electromagnetic fluctuations. (orig.)

  19. Temperature-independent Casimir-Polder forces in arbitrary geometries

    International Nuclear Information System (INIS)

    We prove that the nonretarded Casimir-Polder potential of a particle in an energy eigenstate (hence in thermal nonequilibrium) is independent of the environment temperature for a well-conducting body of arbitrary shape. This is true even when the thermal photon numbers at the relevant atomic transition energies are large. A compact expression is obtained for the temperature-independent potential, which can greatly simplify calculations in nontrivial geometries for experimentally relevant systems such as Rydberg atoms and polar molecules. We give criteria for the validity of our temperature-independent result and derive general expressions for its leading corrections. They are illustrated by numerical studies of a particle near a gold sphere or inside a gold cylindrical cavity.

  20. Casimir force between two parallel semiconductor slabs: Magnetic field effects in the Voigt geometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, R.; Palomino-Ovando, M. [Facultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Martinez, G.; Hernandez, P.H.; Cocoletzi, Gregorio H. [Instituto de Fisica, Universidad Autonoma de Puebla, Puebla (Mexico)

    2009-06-15

    We investigate the Casimir force F between two parallel semiconductor slabs taking into account magnetoplasmon effects. For our calculations we consider an external magnetic field applied in the Voigt geometry. Studies are carried out using the formula of F, which is written in terms of the reflectivities of the incident electromagnetic (EM) waves onto the surfaces of the semiconductor slabs, in the vacuum gap between slabs. Results show that the Casimir force depends strongly on the slab thickness as well as on the magnetic-field strength (or equivalently on the cyclotron frequency). At a constant cyclotron frequency and for small slab thickness F/F{sub 0} (F{sub 0} is the ideal force) displays a dip at small separation distances L between slabs. F/F{sub 0} increases with L up to saturation as the slab thickness increases. The curve with the strongest value of F/F{sub 0} corresponds to the semi-infinite medium geometry. For a constant slab thickness and small cyclotron frequency, F/F{sub 0} as a function of L shows a monotonic increase as L increases, and eventually reaches saturation. At high cyclotron frequency F/F{sub 0} displays a dip. The curve of F/F{sub 0} with no applied external field corresponds to the one with the strongest Casimir force. Therefore, magnetoplasmon effects, with an applied magnetic field in the Voigt geometry may inhibit the Casimir force. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Nonanalytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit-coupled material

    Science.gov (United States)

    Allocca, Andrew A.; Wilson, Justin H.; Galitski, Victor

    2014-08-01

    The Casimir effect is a fascinating phenomenon where quantum fluctuations of the electromagnetic field give rise to measurable forces between macroscopic systems. Here we propose that the Casimir effect can be used as a tool to detect changes in electronic structures. In particular, we focus here on the Lifshitz transition—a topological change in the Fermi surface—in a planar spin-orbit-coupled semiconductor in a magnetic field and calculate the Casimir force between the semiconductor and another probe system across the magnetic-field-tuned transition. We show that the Casimir force experiences a sharp kink at the topological transition and provide numerical estimates indicating that the effect is well within experimental reach. The simplest experimental realization of the proposed effect would involve a metal-coated sphere suspended from a microcantilever above a thin layer of InSb (or another semiconductor with a large g factor).

  2. Unified boundary conditions and Casimir forces for fields with arbitrary spin

    Science.gov (United States)

    Bennett, Robert; Stokes, Adam

    The electromagnetic Casimir effect is well-known and has been extensively studied for the last half-century. This attractive force between parallel plates arises from the imposition of boundary conditions upon the fluctuating spin-1 photon field, so a natural further question is wether fields of different spin can cause similar forces when confined in the same way. However, so far it has not been clear what the appropriate boundary conditions for physically-confined spinor fields may be. Here we present work that generalises the physically well-motivated electromagnetic boundary conditions to fields of arbitrary spin, thus arriving at physically reasonable boundary conditions and Casimir forces for a selection of interesting fields. For example, the so-called `bag model' boundary conditions from nuclear physics emerge from our generalised boundary condition as a special case, as do the linearised gravity boundary conditions suggested in a remarkable recent proposal concerning possible measurement of gravitonic Casimir forces. Supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

  3. Fluctuation-Induced Interactions in external magnetic fields: Casimir force and Radiative Heat Transfer

    Science.gov (United States)

    Esquivel-Sirvent, Raul

    Thermally induced electromagnetic fields give rise to the Casimir force and the near field heat transfer between two bodies separated by a gap. These phenomena are described by Rytova's theory of fluctuating electromagnetic fields and both the Casimir force and the near field heat transfer depend on the local dielectric function of the bodies. In this work we present a theoretical calculation on the modulation of fluctuation-induced interactions in the presence of an external magnetic field. The system consists of two parallel plates separated by a gap d. Each plate is isotropic and has a local dielectric function. Applying an external magnetic field parallel to the plates, in the so called Voigt configuration, the plates become anisotropic. In particular, we consider plates of InSb. For the Casimir force the two plates are kept at the same temperature and the external field reduces the magnitude of the force. Similarly if the two plates are kept at different temperature the near field radiative heat transfer is modulated by the magnitude of the external magnetic field. The results are extended to semiconducting quantum wells. In both cases, the excitation of magnetoplasmons provides an explanation for the observed effect.

  4. Effect of temperature variations on equilibrium distances in levitating parallel dielectric plates interacting through Casimir forces

    Science.gov (United States)

    Esteso, Victoria; Carretero-Palacios, Sol; Míguez, Hernán

    2016-04-01

    We study at thermal equilibrium the effect of temperature deviations around room temperature on the equilibrium distance (deq) at which thin films made of Teflon, silica, or polystyrene immersed in glycerol levitate over a silicon substrate due to the balance of Casimir, gravity, and buoyancy forces. We find that the equilibrium nature (stable or unstable) of deq is preserved under temperature changes, and provide simple rules to predict whether the new equilibrium position will occur closer to or further from the substrate at the new temperature. These rules depend on the static permittivities of all materials comprised in the system ( ɛ0 ( m ) ) and the equilibrium nature of deq. Our designed dielectric configuration is excellent for experimental observation of thermal effects on the Casimir force indirectly detected through the tunable equilibrium distances (with slab thickness and material properties) in levitation mode.

  5. Characterization of FGM micro-switches under electrostatic and Casimir forces

    International Nuclear Information System (INIS)

    This paper aims to investigate the nonlinear pull-in characteristics of the micro-switches made of either homogeneous material or non-homogeneous functionally graded material (FGM) with two material phases under the combined electrostatic and intermolecular Casimir force. Principle of virtual work is used to derive the governing differential equation which is then solved using differential quadrature method (DQM). Pull-in voltage and pull-in deflection are obtained for micro-switches with three different boundary conditions (i.e. fixed-fixed, simple-fixed, and simply supported). The present solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of material composition, gap ratio, slenderness ratio, Casimir force, axial residual stress on the pull-in instability.

  6. Temperature dependence of the Casimir force between real metals problems and approach to their resolution

    CERN Document Server

    Klimchitskaya, G L

    2001-01-01

    We investigate the Casimir force acting between real metals at nonzero temperature. It is shown that the zero-frequency term of Lifshitz formula has interpretation problem in the case of real metal described by Drude model. It happens because the scattering theory underlying Lifshitz formula is not well formulated when the dielectric permittivity turns into infinity. To give the zeroth term of Lifshitz formula the definite meaning different prescriptions were used recently by different authors with diversed results. These results are shown to be improper and in disagreement with experiment and the general physical requirements. We propose the new prescription which is a generalization of Schwinger, DeRaad and Milton recipe formulated earlier for ideal metals. On this base the detailed numerical and analytical computations of the temperature Casimir force are performed in configuration of two plane plates and a spherical lens (sphere) above a plate. The corrections due to nonzero temperature and finite conduct...

  7. Another method to compute the thermodynamic Casimir force in lattice models.

    Science.gov (United States)

    Hasenbusch, Martin

    2009-12-01

    We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand and co-workers in the study of 't Hooft loops and the interface tension in SU(N) lattice gauge models in four dimensions. We test the method at the example of thin films in the XY universality class. In particular we simulate the improved two-component phi4 model on the simple cubic lattice. This allows us to compare with our previous study, where we have computed the Casimir force by numerically integrating energy densities over the inverse temperature. PMID:20365131

  8. Casimir Force for a Maxwell-Chern-Simons System via Model Transformation

    Science.gov (United States)

    de Medeiros Neto, J. F.; Ozela, Rodrigo F.; Correa, R. O.; Ramos, Rudnei O.

    2014-12-01

    We show that the Hamiltonian for a Maxwell-Chern-Simons (MCS) model can be expressed in a diagonalized equivalent form involving only a massive scalar field variable in a three-dimensional space-time. We use this mapping between the two models, the MCS and a single massive scalar field, to understand the agreement of the Casimir force between parallel lines derived in both models. Since the Casimir force is heavily dependent on the boundary conditions (BC), we show that only certain types of BC can be considered for the two models, within the method of calculation outlined here. We also discuss the behavior of the BC with respect to the gauge symmetry present in the initial model.

  9. Lifshitz formula for the Casimir force and the Gelfand-Yaglom theorem

    Energy Technology Data Exchange (ETDEWEB)

    Ccapa Ttira, C [Instituto de Fisica - UFRJ, CP 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Fosco, C D [Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche (Argentina); Mazzitelli, F D [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina)

    2011-11-18

    We provide a quantum field theory derivation of the Lifshitz formula for the Casimir force due to a fluctuating real scalar field in d + 1 dimensions. The field is coupled to two imperfect, thick, plane mirrors, which are modeled by background potentials localized on their positions. The derivation proceeds from the calculation of the vacuum energy in the Euclidean version of the system, reducing the problem to the evaluation of a functional determinant. The latter is written, via Gelfand-Yaglom's formula, in terms of functions depending on the structure of the potential describing each mirror; those functions encode the properties which are relevant to the Casimir force and are the reflection coefficients evaluated at imaginary frequencies. (paper)

  10. Non-universal critical Casimir force in confined {sup 4}He near the superfluid transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.S.; Dohm, V

    2003-05-01

    We present the results of a one-loop calculation of the effect of a van der Waals type interaction potential {approx} vertical bar x vertical bar{sup -d-{sigma}} on the critical Casimir force and specific heat of confined {sup 4}He near the superfluid transition. We consider a {sup 4}He film of thickness L. In the region L < or approx. {xi} (correlation length) we find that the van der Waals interaction causes a leading non-universal non-scaling contribution of O({xi}{sup 2}L{sup -d-{sigma}}) to the critical temperature dependence of the Casimir force above T{sub {lambda}} that dominates the universal scaling contribution {approx}e{sup -L/{xi}} predicted by earlier theories. For the specific heat we find subleading non-scaling contributions of O(L{sup -1}) and O(L{sup -d-{sigma}})

  11. Lifshitz formula for the Casimir force and the Gelfand-Yaglom theorem

    CERN Document Server

    Ttira, C Ccapa; Mazzitelli, F D

    2011-01-01

    We provide a Quantum Field Theory derivation of Lifshitz formula for the Casimir force due to a fluctuating real scalar field in $d+1$ dimensions. The field is coupled to two imperfect, thick, plane mirrors, which are modeled by background potentials localized on their positions. The derivation proceeds from the calculation of the vacuum energy in the Euclidean version of the system, reducing the problem to the evaluation of a functional determinant. The latter is written, via Gelfand-Yaglom's formula, in terms of functions depending on the structure of the potential describing each mirror; those functions encode the properties which are relevant to the Casimir force and are the reflection coefficients evaluated at imaginary frequencies.

  12. Casimir force in a critical film formed from an electrolytic solution.

    Science.gov (United States)

    Mukhopadhyay, A; Law, B M

    2001-04-01

    We have studied the thickness of vapor adsorbed films of the critical binary liquid mixture acetic acid plus nonane adsorbed onto a silicon wafer substrate as a function of temperature near the critical temperature. This critical film possesses opposite boundary conditions (+-) at its two surfaces and, due to the dissociation of acetic acid, both the electrostatic force and the dispersion force affect the adsorbed film thickness. On approaching the critical temperature T(c), an increase in the film thickness L is observed, implying that the sign of the universal Casimir amplitude Delta(+-) is positive, consistent with theoretical predictions. However, we find quantitative discrepancies in the value of Delta(+-) and the form of the critical Casimir pressure scaling function vartheta(+-) compared with previous experimental results. We attribute these discrepancies to the complex nature of the critical system studied in this experiment. PMID:11308860

  13. Casimir Force of Fermions Coupled to Monopoles in Six Dimensional Spacetime

    CERN Document Server

    Oikonomou, V K

    2013-01-01

    We calculate the Casimir force for a fermionic quantum field in a piston geometry with three parallel plates. The fermion satisfies bag boundary conditions on the plates and the spacetime is assumed to have compact extra dimensions. The calculation is performed in the cases where the extra space has toroidal and spherical topology. We are mainly interested in the case in which the fermion is coupled non-trivially to an extra dimensional defect, with a torus extra dimensional topological background. We found that in certain limits, the Casimir force corresponding to the defect-fermion system and to the sphere, has opposite sign, in reference to those corresponding to the toroidal extra dimensional spaces.

  14. Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    International Nuclear Information System (INIS)

    The temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease, the mean free path for electrons becomes larger than the field penetration depth. In this condition, description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero-frequency limit, the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the n=0 term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force

  15. Casimir Forces via Worldline Numerics: Method Improvements and Potential Engineering Applications

    CERN Document Server

    Aehlig, Klaus; Fischbacher, Thomas; Gerhard, Jochen

    2011-01-01

    The string theory inspired Worldline Numerics approach to Casimir force calculations has some favourable characteristics that might make it well suited for geometric optimization problems as they arise e.g. in NEMS device engineering. We explain this aspect in detail, developing some refinements of the method along the way. Also, we comment on the problem of generalizing Worldline Numerics from scalars to photons in the presence of conductors.

  16. An algebraic approach to multiple defects on the line and application to the Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Mintchev, M [INFN and Dipartimento di Fisica, Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Ragoucy, E [LAPTH, 9, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex (France)

    2007-08-03

    An algebraic framework for quantization in the presence of an arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away from them. As an application we compute the Casimir force both at zero and finite temperatures. We also derive the charge density in the Gibbs state of a complex scalar field with defects. The example of two delta-defects is treated in detail.

  17. Johnson-Nyquist noise and the Casimir force between real metals at nonzero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bimonte, Giuseppe [Dipartimento di Scienze Fisiche Universita di Napoli Federico II, Complesso Universitario MSA, Via Cintia I-80126, Napoli (Italy) and INFN, Sezione di Napoli, Napoli (Italy)], E-mail: Bimonte@na.infn.it

    2008-04-25

    It has been well known for a long time that all lossy conductors at finite temperature display an electronic noise, the Johnson-Nyquist noise, arising from the thermal agitation of electric charges inside the conductor. The existence of this noise implies that two nearby discharged conductors at finite temperature should repel each other, as a result of the electrodynamic interaction between the Johnson-Nyquist currents in either conductor and the eddy currents they induce in the other. It is suggested that this force is at the origin of the recently discovered large repulsive correction to the thermal Casimir force between two lossy metallic plates. Further support for this physical picture is obtained by studying a simple system of two linear noisy antennas. Using elementary concepts from circuit theory, we show that the repulsive force engendered by the Johnson-Nyquist noise results in the same kind of thermodynamic inconsistencies found in the Casimir problem. We show that all inconsistencies are however resolved if account is taken of capacitive effects associated with the end points of the antennas. Our findings therefore suggest that capacitive effects resulting from the finite size of the plates may be essential for a resolution of the analogous problems met in the thermal Casimir effect.

  18. New constraints for non-Newtonian gravity in nanometer range from the improved precision measurement of the Casimir force

    CERN Document Server

    Bordag, M; Klimchitskaya, G L; Mostepanenko, V M

    2000-01-01

    We obtain constraints on non-Newtonian gravity following from the improvedprecision measurement of the Casimir force by means of atomic force microscope.The hypothetical force is calculated in experimental configuration (a sphereabove a disk both covered by two metallic layers). The strengthenings ofconstraints up to 4 times comparing the previous experiment and up to 560 timescomparing the Casimir force measurements between dielectrics are obtained inthe interaction range 5.9 nm$\\leq\\lambda\\leq 115 $nm. Recent speculations aboutthe presence of some unexplained attractive force in the considered experimentare shown to be unjustified.

  19. Stable Levitation and Alignment of Compact Objects by Casimir Spring Forces

    International Nuclear Information System (INIS)

    We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls are computed. We find that the stability of the force equilibrium--unlike the direction of the torque--can be predicted based on the sign of the force between two slabs of the same material.

  20. Variable-temperature device for precision Casimir-force-gradient measurement.

    Science.gov (United States)

    Castillo-Garza, R; Mohideen, U

    2013-02-01

    We present the design and use of an instrument that is based on a microcantilever to perform precision force gradient measurements. We demonstrate its performance through measurements of the Casimir pressure at various temperatures. The instrument can operate in high vacuum environments and temperatures between 5 K and 300 K. It uses an all-fiber optical interferometer to detect the resonant-frequency shift of a customized microcantilever due to the presence of a force gradient. To measure this shift we use both, a technique of frequency-modulation atomic force microscopy and the direct recording of the thermomechanical resonant frequency. PMID:23464254

  1. Thermal noise limitations to force measurements with torsion pendulums: applications to the measurement of the Casimir force and its thermal correction.

    Science.gov (United States)

    Lamoreaux, S K; Buttler, W T

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction. PMID:15903495

  2. Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    International Nuclear Information System (INIS)

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction

  3. The proximity force approximation for the Casimir energy as a derivative expansion

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2011-01-01

    The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in particular examples, by confronting its predictions with the next to leading order (NTLO) correction extracted from numerical or analytical solutions obtained without using the PFA. In this article we show that the PFA and its NTLO correction may be derived within a single framework, as the first two terms in a derivative expansion. To that effect, we consider the Casimir energy for a vacuum scalar field with Dirichlet conditions on a smooth curved surface described by a function $\\psi$ in front of a plane. By regarding the Casimir energy as a functional of $\\psi$, we show that the PFA is the leading term in a derivative expansion of this functional. We also obtain the general form of corresponding NTLO correction, whi...

  4. Thermal and Nonthermal Signatures of the Unruh Effect in Casimir-Polder Forces

    Science.gov (United States)

    Marino, Jamir; Noto, Antonio; Passante, Roberto

    2014-07-01

    We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a transition from the short distance thermal-like behavior predicted by the Unruh effect to a long distance nonthermal behavior, associated with the breakdown of a local inertial description of the system. This phenomenology extends the Unruh thermal response detected by a single accelerated observer to an accelerated spatially extended system of two particles, and we identify the characteristic length scale for this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived separating at fourth order in perturbation theory the contributions of vacuum fluctuations and radiation reaction field to the Casimir-Polder interaction between two atoms moving in two generic stationary trajectories separated by a constant distance and linearly coupled to a scalar field. The field can be assumed in its vacuum state or at finite temperature, resulting in a general method for the computation of Casimir-Polder forces in stationary regimes.

  5. Problems in the theory of the thermal Casimir force between dielectrics and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L; Geyer, B [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany)

    2008-04-25

    The application of the Lifshitz theory to describe the thermal Casimir force between dielectrics and semiconductors is considered. It is shown that for all true dielectrics (i.e., for all materials having zero conductivity at zero temperature) the inclusion of a nonzero conductivity arising at nonzero temperature into the model of dielectric response leads to the violation of the Nernst heat theorem. This result refers equally to simple insulators, intrinsic semiconductors, Mott-Hubbard dielectrics and doped semiconductors with doping concentration below a critical value. We demonstrate that in the insulator-metal transition the Casimir free energy changes abruptly irrespective of whether the conductivity changes continuously or discontinuously. The application of the Lifshitz formula to polar dielectrics results in a large thermal correction that is linear in temperature. A rule is formulated on how to apply the Lifshitz theory to real materials in agreement with thermodynamics and experiment.

  6. Casimir effect for curved geometries: proximity-force-approximation validity limits.

    Science.gov (United States)

    Gies, Holger; Klingmüller, Klaus

    2006-06-01

    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. PMID:16803290

  7. Temperature-Independent Casimir-Polder Forces Despite Large Thermal Photon Numbers

    International Nuclear Information System (INIS)

    We demonstrate that Casimir-Polder potentials can be entirely independent of temperature even when allowing for the relevant thermal photon numbers to become large. This statement holds for potentials that are due to low-energy transitions of a molecule placed near a plane metal surface whose plasma frequency is much larger than any atomic resonance frequencies. For a molecule in an energy eigenstate, the temperature independence is a consequence of strong cancellations between nonresonant potential components and those due to evanescent waves. For a molecule with a single dominant transition in a thermal state, upward and downward transitions combine to form a temperature-independent potential. The results are contrasted with the case of an atom whose potential exhibits a regime of linear temperature dependence. Contact with the Casimir force between a weakly dielectric and a metallic plate is made.

  8. Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L [North-West Technical University, Millionnaya St 5, St Petersburg (Russian Federation); Chen, F [Department of Physics, University of California, Riverside, CA 92521 (United States); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Krause, D E [Department of Physics, Wabash College, Crawfordsville, IN 47933 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States); Mohideen, U [Department of Physics, University of California, Riverside, CA 92521 (United States); Mostepanenko, V M [Noncommercial Partnership ' Scientific Instruments' , Moscow (Russian Federation)

    2006-05-26

    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in the literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.

  9. On the Origin of the $\\log d$ Variation of the Electrostatic Force Minimizing Voltage in Casimir Experiments

    CERN Document Server

    Lamoreaux, S K

    2011-01-01

    A number of experimental measurements of the Casimir force have observed a logarithmic distance variation of the voltage that minimizes electrostatic force between the plates in a sphere-plane geometry. We show that this variation can be simply understood from a geometric averaging of surface potential patches together with the Proximity Force Approximation.

  10. Casimir force in the O(n -> infinity) model with free boundary conditions

    OpenAIRE

    Dantchev, Daniel; Bergknoff, Jonathan; Rudnick, Joseph

    2012-01-01

    We present results for the temperature behavior of the Casimir force for a system with a film geometry with thickness $L$ subject to free boundary conditions and described by the $n\\to\\infty$ limit of the $O(n)$ model. These results extend over all temperatures, including the critical regime near the bulk critical temperature $T_c$, where the critical fluctuations determine the behavior of the force, and temperatures well below it, where its behavior is dictated by the Goldstone's modes contr...

  11. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall

    International Nuclear Information System (INIS)

    We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.

  12. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall

    CERN Document Server

    Messina, Riccardo; Passante, Roberto

    2010-01-01

    We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behaviour of the time-dependent force on an initially partially-dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.

  13. Temperature-alterable thermal Casimir-Polder forces on polarizable molecules

    CERN Document Server

    Zhu, Zhiying; Wang, Bin

    2012-01-01

    We demonstrate that the thermal Casimir-Polder forces on molecules near a conducting surface whose transition wavelengths are comparable to the molecule-surface separation are dependent on the ambient temperature and molecular polarization and they can even be changed from attractive to repulsive via varying the temperature across a threshold value for anisotropically polarizable molecules. Remarkably, this attractive-to-repulsive transition may be realized at room temperature. Let us note that the predicted repulsion is essentially a nonequilibrium effect since the force we calculated on a ground-state (or an excited-stated) molecule actually contains the contribution of the absorption (or emission) of thermal photons.

  14. Bulk and boundary effects on the decay of the thermodynamic Casimir force

    Science.gov (United States)

    Delfino, Gesualdo; Squarcini, Alessio

    2015-01-01

    We consider the decay of the thermodynamic Casimir force in phases with a finite correlation length. For the case of the strip, we use properties of low-energy two-dimensional field theory to show that the decay depends on the symmetry properties of the boundary conditions, in distinctive ways that we determine exactly. Features characteristic of the bulk universality class may induce modifications that we also discuss. Symmetry-breaking and symmetry-preserving boundary conditions exchange their role with respect to the decay of the force when exchanging spontaneously broken with disordered phases. Several of our arguments extend to higher dimensions.

  15. Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity.

    Science.gov (United States)

    Antezza, Mauro; Pitaevskii, Lev P; Stringari, Sandro; Svetovoy, Vitaly B

    2006-12-01

    We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al., Phys. Rev. Lett. 95, 113202 (2005)10.1103/PhysRevLett.95.113202. The asymptotic behavior of the force at large distances is explicitly discussed. In particular when one of the two bodies is a rarefied gas the force is not additive, being proportional to the square root of the density. Nontrivial crossover regions at large distances are also identified. PMID:17155801

  16. Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers

    Science.gov (United States)

    Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza

    2015-09-01

    The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.

  17. Non-Equilibrium Casimir Force between Vibrating Plates

    OpenAIRE

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force...

  18. Experimental and theoretical investigation of the angular dependence of the Casimir force between sinusoidally corrugated surfaces

    Science.gov (United States)

    Banishev, A. A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U.

    2014-06-01

    In the current work we present the complete results for the measurement of normal Casimir force between a shallow and smooth sinusoidally corrugated gold coated sphere and a plate at various angles between the corrugations using an atomic force microscope. All measured data were compared with the theoretical approach using the proximity force approximation and theory based on derivative expansion. In both cases real material properties of the surfaces and nonzero temperature were taken into account. Special attention is paid to the description of electrostatic interactions between corrugated surfaces at different angles between corrugations and samples preparation and characterization. The measured forces are found to be in good agreement with the theory including correlation effects of geometry and material properties and deviate significantly from the predictions of the proximity force approximation approach. This provides the quantitative confirmation for the observation of diffraction-type effects that are disregarded within the PFA approach. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems.

  19. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays.

    Science.gov (United States)

    Chan, H B; Bao, Y; Zou, J; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S

    2008-07-18

    We report measurements of the Casimir force between a gold sphere and a silicon surface with an array of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distances between 150 and 500 nm, the measured force shows significant deviations from the pairwise additive formulism, demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces, possibly due to the interplay between finite conductivity and geometry effects. PMID:18764238

  20. Measurement of the Casimir force between Germanium plates using a torsion balance

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Diego [Los Alamos National Laboratory; Kim, W J [YALE UNIV; Sushkov, A O [YALE UNIV; Lamoreaux, S K [YALE UNIV

    2008-01-01

    We report the measurement of the Casimir force between Ge plates in a sphere-plane configuration using a torsion balance. We observe that the effective contact potential between the plates varies with their separation distance, resulting in a systematic force. In addition, an unexpected 1/d force is also found in our data that persists even when the electrostatic force between the plates is experimentally minimized by applying a compensating potential. After applying corrections due to these systematic forces, likely of electrostatic origin, our result can be described by the bare permittivity of Ge without conduction, the Drude and the diffusion models for electrical and optical properties of Ge, but not by the plasma model.