WorldWideScience

Sample records for case study water

  1. Peace Corps Water/Sanitation Case Studies and Analyses. Appropriate Technologies for Development. Case Study CS-4.

    Science.gov (United States)

    Talbert, Diana E., Comp.

    This document provides an overview of Peace Corps water and sanitation activities, five case studies (Thailand, Yemen, Paraguay, Sierra Leone, and Togo), programming guidelines, and training information. Each case study includes: (1) background information on the country's geography, population, and economics; (2) information on the country's…

  2. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  3. Water quality index development using fuzzy logic: A case study of ...

    African Journals Online (AJOL)

    Water quality index development using fuzzy logic: A case study of the Karoon River of Iran. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Determination of the status of water quality of a river or any other water source is highly ...

  4. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  5. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  6. Assessment of domestic water quality: case study, Beirut, Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  7. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    Science.gov (United States)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  8. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  9. Rapid detection of bacteria in drinking water and water contamination case studies

    Science.gov (United States)

    Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.

    2011-12-01

    Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.

  10. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    Science.gov (United States)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops

  11. Energy-water analysis of the 10-year WECC transmission planning study cases.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

  12. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  13. Water Resources Management in the Lerma-Chapala Basin, Mexico: A Case Study

    Science.gov (United States)

    Villamagna, Amy M.; Murphy, Brian R.

    2008-01-01

    Water resources have become an increasingly important topic of discussion in natural resources and environmental management courses. To address the need for more critical thinking in the classroom and to provide an active learning experience for undergraduate students, we present a case study based on water competition and management in the…

  14. Urban food-energy-water nexus: a case study of Beijing

    Science.gov (United States)

    Wu, Z.; Shao, L.

    2017-12-01

    The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.

  15. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  16. Understanding virtual water flows: A multiregion input-output case study of Victoria

    Science.gov (United States)

    Lenzen, Manfred

    2009-09-01

    This article explains and interprets virtual water flows from the well-established perspective of input-output analysis. Using a case study of the Australian state of Victoria, it demonstrates that input-output analysis can enumerate virtual water flows without systematic and unknown truncation errors, an issue which has been largely absent from the virtual water literature. Whereas a simplified flow analysis from a producer perspective would portray Victoria as a net virtual water importer, enumerating the water embodiments across the full supply chain using input-output analysis shows Victoria as a significant net virtual water exporter. This study has succeeded in informing government policy in Australia, which is an encouraging sign that input-output analysis will be able to contribute much value to other national and international applications.

  17. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)

  18. The association between campylobacteriosis, agriculture and drinking water: a case-case study in a region of British Columbia, Canada, 2005-2009.

    Science.gov (United States)

    Galanis, E; Mak, S; Otterstatter, M; Taylor, M; Zubel, M; Takaro, T K; Kuo, M; Michel, P

    2014-10-01

    We studied the association between drinking water, agriculture and sporadic human campylobacteriosis in one region of British Columbia (BC), Canada. We compared 2992 cases of campylobacteriosis to 4816 cases of other reportable enteric diseases in 2005-2009 using multivariate regression. Cases were geocoded and assigned drinking water source, rural/urban environment and socioeconomic status (SES) according to the location of their residence using geographical information systems analysis methods. The odds of campylobacteriosis compared to enteric disease controls were higher for individuals serviced by private wells than municipal surface water systems (odds ratio 1·4, 95% confidence interval 1·1-1·8). In rural settings, the odds of campylobacteriosis were higher in November (P = 0·014). The odds of campylobacteriosis were higher in individuals aged ⩾15 years, especially in those with higher SES. In this region of BC, campylobacteriosis risk, compared to other enteric diseases, seems to be mediated by vulnerable drinking water sources and rural factors. Consideration should be given to further support well-water users and to further study the microbiological impact of agriculture on water.

  19. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  20. Water-reuse risk assessment program (WRAP: a refinery case study

    Directory of Open Access Journals (Sweden)

    Maria Dian Kurnia Sari

    2017-06-01

    Full Text Available The key approach to manage and prevent potential hazards arising from specific contaminants in water networks is to consider water as the main product delivered. This new concept, addressed as water-reuse risk assessment program (WRAP, has been further developed from hazard analysis of critical control points (HACCP to illustrate the potential hazards which are the roots of hindering intra-facility water reuse strategies. For industrial sectors applying water reclamation and reuse schemes, it is paramount that the reclaimed water quality stays within the desired quality. The objective of WRAP is to establish a new methodology and knowledge, which will contribute to the sustainable development of industrial water management, and demonstrate its capabilities in identifying and addressing any potential hazards in the selected schemes adoption by the industries. A ‘what-if’ scenario was simulated using a refinery as a case study to show strategies on how to benefit reclaimed or reuse water based on reliable, applied and scientific research within the process integration area. In conclusion, the WRAP model will facilitate operators, consultants and decision makers to reuse water on a fit-for-use basis whilst avoiding contaminant accumulation in the overall system and production of sub-quality products from inadequate processes after several reuses.

  1. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  2. Risk of gastric cancer by water source: evidence from the Golestan case-control study.

    Directory of Open Access Journals (Sweden)

    Laura Eichelberger

    Full Text Available Gastric cancer (GC is the world's fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study.306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs and 95% confidence intervals (CI, adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05-1.04 for chlorinated well water, 4.58 (95% CI: 2.07-10.16 for unchlorinated well water, 4.26 (95% CI: 1.81-10.04 for surface water, 1.11 (95% CI: 0.61-2.03 for water from cisterns, and 1.79 (95% CI: 1.20-2.69 for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56-3.61.Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC.

  3. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  4. SmartStuff: A case study of a smart water bottle.

    Science.gov (United States)

    Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E

    2016-08-01

    The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.

  5. Contribution of virtual water to improving water security in Tunisia: a case study of wheat and olive growing farms in Zaghouan region

    OpenAIRE

    Souissi, Asma; Benalaya, Abdallah; Abdelkefi, Belhassen; Stambouli, Talel Ben Bechir; Ghezal, Lamia; Belaid, Rabeh; Naceur, Youssef; Oueslati, Marwa; Fekih, Saida; Benabdallah, Saker; Frija, Aymen

    2013-01-01

    Virtual water represents all freshwater used in the process of producing a commodity. In the case of agricultural products, many studies have focused on quantifying virtual water flows through international trade products. The concept of virtual water commercialization should be carefully studied as a potential solution for water scarcity, especially in countries facing risks of water shortage in a few years such as in Tunisia. The main idea of this paper is to optimize water u...

  6. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  7. Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study.

    Science.gov (United States)

    Kheradpisheh, Zohreh; Mirzaei, Masoud; Mahvi, Amir Hossein; Mokhtari, Mehdi; Azizi, Reyhane; Fallahzadeh, Hossein; Ehrampoush, Mohammad Hassan

    2018-02-08

    The elevated fluoride from drinking water impacts on T 3 , T 4 and TSH hormones. The aim was study impacts of drinking water fluoride on T 3 , T 4 and TSH hormones inYGA (Yazd Greater Area). In this case- control study 198 cases and 213 controls were selected. Fluoride was determined by the SPADNS Colorimetric Method. T 3 , T 4 and TSH hormones tested in the Yazd central laboratory by RIA (Radio Immuno Assay) method. The average amount of TSH and T 3 hormones based on the levels of fluoride in two concentration levels 0-0.29 and 0.3-0.5 (mg/L) was statistically significant (P = 0.001 for controls and P = 0.001 for cases). In multivariate regression logistic analysis, independent variable associated with Hypothyroidism were: gender (odds ratio: 2.5, CI 95%: 1.6-3.9), family history of thyroid disease (odds ratio: 2.7, CI 95%: 1.6-4.6), exercise (odds ratio: 5.34, CI 95%: 3.2-9), Diabetes (odds ratio: 3.7, CI 95%: 1.7-8), Hypertension (odds ratio: 3.2, CI 95%: 1.3-8.2), water consumption (odds ratio: 4, CI 95%: 1.2-14). It was found that fluoride has impacts on TSH, T 3 hormones even in the standard concentration of less than 0.5 mg/L. Application of standard household water purification devices was recommended for hypothyroidism.

  8. Cr(VI) and Conductivity as Indicators of Surface Water Pollution from Ferrochrome Production in South Africa: Four Case Studies

    Science.gov (United States)

    Loock-Hattingh, M. M.; Beukes, J. P.; van Zyl, P. G.; Tiedt, L. R.

    2015-10-01

    South Africa is one of the largest ferrochromium (FeCr) producers. Most FeCr is exported to developed countries. Therefore the impact of this industry is of national and international importance. Cr(VI) and conductivity of surface water in four case study areas, near five FeCr smelters were monitored for approximately 1 year. Results indicated that FeCr production in three case study areas had a negative influence on the Cr(VI) concentration and/or the conductivity of surface waters. In the remaining case study areas, drinking water, originating from groundwater, was severely polluted with Cr(VI). The main factors causing pollution were surface run-off and/or seepage, while atmospheric deposition did not seem to contribute significantly. The extinction of diatoms during a severe Cr(VI) surface water pollution event (concentrations up to 216 µg/L) in one of the case study areas was also observed, which clearly indicates the ecological impact of such surface water pollution events.

  9. Nitrates in municipal drinking water and non-Hodgkin lymphoma: an ecological cancer case-control study in Taiwan.

    Science.gov (United States)

    Chang, Chih-Ching; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-01-01

    The relationship between nitrate levels in drinking water and increased risk of non-Hodgkin lymphoma (NHL) development has been inconclusive. A matched cancer case-control and a nitrate ecology study was used to investigate the association between mortality attributed to NHL and nitrate exposure from Taiwan's drinking water. All deaths due to NHL in Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from the Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios (OR) for NHL death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.02 (0.87-1.2) and 1.05 (0.89-1.24), respectively. The results of the present study show that there was no statistically significant association between nitrates in drinking water at levels in this investigation and increased risk of death attributed to NHL.

  10. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  11. Effective Drinking Water Pricing, A Case Study of Arak City

    Directory of Open Access Journals (Sweden)

    Seyyedhosein Sajjadifar

    2017-03-01

    Full Text Available Drinking water pricing is a major challenge facing the water and wastewater industry in Iran where decisions of water pricing are essentially based on social, legal, administrative, and financial criteria with only a slight heed, if any, paid to economic considerations. Generally speaking, the price of water in Iran reflects a percentage fraction of the costs of water production and distribution while an economterically efficient model of water pricing is absent. This failure to account for economic considerations in water pricing has turned water into a commodity supplied either at a very low price or free of charge in cases. The current situation of water scarcity which is complicated by a multitude of environmental problems can only be ascribed to the present water pricing policies. It is, therefore, essential for the water sector to employ economic tools, adopt relevant approaches, and execute optimized strategic policies in an attempt to reduce the negative impacts of the imminent water crisis. Based on the above considerations, the present study was designed to investigate and review optimal water pricing policies at Arak Water and Wastewater Authority which functions as a business offering both domestic and non-domestic water services. The cost function considered is a translog one and the seemingly unrelated regressions are used for estimation. Results show that the domestic water price levied from customers covers only 33% of the total production and delivery costs such that Arak Water & Wastewater Authority practices the economy of scale in producing both domestic and non-domestic water. Considering the fact that pricing based on the marginal cost under the conditions of economy of scale leads to financial losses for Arak W&W Authority, it seems appropriate to calculate the second best price as suggested by Frank Ramsey. Thus, the marginal cost was combined with the price elasticity for the domestic water demand in the different

  12. The water energy nexus, an ISO50001 water case study and the need for a water value system

    Directory of Open Access Journals (Sweden)

    Brendan P. Walsh

    2015-06-01

    Full Text Available The world’s current utilisation of water, allied to the forecasted increase in our dependence on it, has led to the realisation that water as a resource needs to be managed. The scarcity and cost of water worldwide, along with water management practices within Europe, are highlighted in this paper. The heavy dependence of energy generation on water and the similar dependence of water treatment and distribution on energy, collectively termed the water–energy nexus, is detailed. A summary of the recently launched ISO14046 Water Footprint Standard along with other benchmarking measures is outlined and a case history of managing water using the Energy Management Standard ISO50001 is discussed in detail. From this, the requirement for a methodology for improvement of water management has been identified, involving a value system for water streams, which, once optimised will improve water management including efficiency and total utilisation.

  13. Case study: Fixture water use and drinking water quality in a new residential green building.

    Science.gov (United States)

    Salehi, Maryam; Abouali, Mohammad; Wang, Mian; Zhou, Zhi; Nejadhashemi, Amir Pouyan; Mitchell, Jade; Caskey, Stephen; Whelton, Andrew J

    2018-03-01

    Residential plumbing is critical for the health and safety of populations worldwide. A case study was conducted to understand fixture water use, drinking water quality and their possible link, in a newly plumbed residential green building. Water use and water quality were monitored at four in-building locations from September 2015 through December 2015. Once the home was fully inhabited average water stagnation periods were shortest at the 2nd floor hot fixture (90 percentile of 0.6-1.2 h). The maximum water stagnation time was 72.0 h. Bacteria and organic carbon levels increased inside the plumbing system compared to the municipal tap water entering the building. A greater amount of bacteria was detected in hot water samples (6-74,002 gene copy number/mL) compared to cold water (2-597 gene copy number/mL). This suggested that hot water plumbing promoted greater microbial growth. The basement fixture brass needle valve may have caused maximum Zn (5.9 mg/L), Fe (4.1 mg/L), and Pb (23 μg/L) levels compared to other fixture water samples (Zn ≤ 2.1 mg/L, Fe ≤ 0.5 mg/L and Pb ≤ 8 μg/L). At the basement fixture, where the least amount of water use events occurred (cold: 60-105, hot: 21-69 event/month) compared to the other fixtures in the building (cold: 145-856, hot: 326-2230 event/month), greater organic carbon, bacteria, and heavy metal levels were detected. Different fixture use patterns resulted in disparate water quality within a single-family home. The greatest drinking water quality changes were detected at the least frequently used fixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of some water saving devices in urban areas: A case study from the Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Hayder A. Abdel Rahman

    2018-01-01

    Full Text Available Water Saving Devices (WSDs sustain demands for potable water, soften impacts on supply systems and inflict a positive effect on wastewater treatment systems. This study evaluated the effect of some WSDs in Oman. A questionnaire survey and some case studies were used. The survey results revealed that the pipe line system network for water supply accounted for about 67.7%, whereas the rest mainly use tankers. Around 37.2% of the participants received consumed 25000 - 45000 liters per household per month. Case studies showed no significant difference in household water usage before and after installation of WSDs due to pre-installed aerators. Toilet bags and dual flush toilets were not effective promoting users to flush. However, WSDs were significantly effective in restaurants, mosques, hotels and government buildings. Water consumption in shopping centres and hospitals slightly decreased. Retrofitting programs that involve replacement of existing plumbing equipment and residential water audit programs are recommended.

  15. Aflaj’s Irrigation Water Demand/Supply Ratio: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Ghafri

    2006-01-01

    Full Text Available Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.

  16. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    Science.gov (United States)

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  17. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  18. Landsat and water: case studies of the uses and benefits of landsat imagery in water resources

    Science.gov (United States)

    Serbina, Larisa O.; Miller, Holly M.

    2014-01-01

    The Landsat program has been collecting and archiving moderate resolution earth imagery since 1972. The number of Landsat users and uses has increased exponentially since the enactment of a free and open data policy in 2008, which made data available free of charge to all users. Benefits from the information Landsat data provides vary from improving environmental quality to protecting public health and safety and informing decision makers such as consumers and producers, government officials and the public at large. Although some studies have been conducted, little is known about the total benefit provided by open access Landsat imagery. This report contains a set of case studies focused on the uses and benefits of Landsat imagery. The purpose of these is to shed more light on the benefits accrued from Landsat imagery and to gain a better understanding of the program’s value. The case studies tell a story of how Landsat imagery is used and what its value is to different private and public entities. Most of the case studies focus on the use of Landsat in water resource management, although some other content areas are included.

  19. Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan.

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Yang, Chun-Yuh

    2007-06-01

    The relationship between nitrate levels in drinking water and bladder cancer development is controversial. A matched cancer case-control with nitrate ecology study was used to investigate the association between bladder cancer mortality occurrence and nitrate exposure from Taiwan drinking water. All bladder cancer deaths of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth,and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for bladder cancer death for those with high nitrate levels in their drinking water were 1.76 (1.28-2.42) and 1.96 (1.41-2.72) as compared to the lowest tertile. The results of the present study show that there was a significant positive relationship between the levels of nitrate in drinking water and risk of death from bladder cancer.

  20. Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report

    Directory of Open Access Journals (Sweden)

    Putus Tuula

    2010-12-01

    Full Text Available Abstract Background Finnish and Swedish waste water systems used by the forest industry were found to be exceptionally heavily contaminated with legionellae in 2005. Case presentation We report two cases of severe pneumonia in employees working at two separate mills in Finland in 2006. Legionella serological and urinary antigen tests were used to diagnose Legionnaires' disease in the symptomatic employees, who had worked at, or close to, waste water treatment plants. Since the findings indicated a Legionella infection, the waste water and home water systems were studied in more detail. The antibody response and Legionella urinary antigen finding of Case A indicated that the infection had been caused by Legionella pneumophila serogroup 1. Case A had been exposed to legionellae while installing a pump into a post-clarification basin at the waste water treatment plant of mill A. Both the water and sludge in the basin contained high concentrations of Legionella pneumophila serogroup 1, in addition to serogroups 3 and 13. Case B was working 200 meters downwind from a waste water treatment plant, which had an active sludge basin and cooling towers. The antibody response indicated that his disease was due to Legionella pneumophila serogroup 2. The cooling tower was the only site at the waste water treatment plant yielding that serogroup, though water in the active sludge basin yielded abundant growth of Legionella pneumophila serogroup 5 and Legionella rubrilucens. Both workers recovered from the disease. Conclusion These are the first reported cases of Legionnaires' disease in Finland associated with industrial waste water systems.

  1. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  2. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  3. Modeling of Residential Water Demand Using Random Effect Model,Case Study: Arak City

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Sajadifar

    2011-10-01

    Full Text Available The present study tries to apply the “Partial Adjustment Model” and “Random Effect Model” techniques to the Stone-Greay’s linear expenditure system, in order to estimate the "Residential Seasonal Demand" for water in Arak city. Per capita water consumption of family residences is regressed on marginal price, per capita income, price of other goods, average temperature and average rainfall. Panel data approaches based on a sample of 152 observations from Arak city referred to 1993-2003. From the estimation of the Elasticity-price of the residential water demand, we want to know how a policy of responsive pricing can lead to more efficient household water consumption inArakcity. Results also indicated that summer price elasticity was twice the winter and price and income elasticity was less than 1 in all cases.

  4. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  5. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    Science.gov (United States)

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Online modelling of water distribution systems: a UK case study

    Directory of Open Access Journals (Sweden)

    J. Machell

    2010-03-01

    Full Text Available Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "on-line" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.

  7. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-19

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  8. Bayesian approaches for Integrated Water Resources Management. A Mediterranean case study.

    Science.gov (United States)

    Gulliver, Zacarías; Herrero, Javier; José Polo, María

    2013-04-01

    This study presents the first steps of a short-term/mid-term analysis of the water resources in the Guadalfeo Basin, Spain. Within the basin the recent construction of the Rules dam has required the development of specific management tools and structures for this water system. The climate variability and the high water demand requirements for agriculture irrigation and tourism in this region may cause different controversies in the water management planning process. During the first stages of the study a rigorous analysis of the Water Framework Directive results was done in order to implement the legal requirements and the solutions for the gaps identified by the water authorities. In addition, the stakeholders and water experts identified the variables and geophysical processes for our specific water system case. These particularities need to be taken into account and are required to be reflected in the final computational tool. For decision making process purposes in a mid-term scale, a bayesian network has been used to quantify uncertainty which also provides a structure representation of probabilities, actions-decisions and utilities. On one hand by applying these techniques it is possible the inclusion of decision rules generating influence diagrams that provides clear and coherent semantics for the value of making an observation. On the other hand the utility nodes encode the stakeholders preferences which are measured on a numerical scale, choosing the action that maximizes the expected utility [MEU]. Also this graphical model allows us to identify gaps and project corrective measures, for example, formulating associated scenarios with different event hypotheses. In this sense conditional probability distributions of the seasonal water demand and waste water has been obtained between the established intervals. This fact will give to the regional water managers useful information for future decision making process. The final display is very visual and allows

  9. Estimation methods of eco-environmental water requirements: Case study

    Institute of Scientific and Technical Information of China (English)

    YANG Zhifeng; CUI Baoshan; LIU Jingling

    2005-01-01

    Supplying water to the ecological environment with certain quantity and quality is significant for the protection of diversity and the realization of sustainable development. The conception and connotation of eco-environmental water requirements, including the definition of the conception, the composition and characteristics of eco-environmental water requirements, are evaluated in this paper. The classification and estimation methods of eco-environmental water requirements are then proposed. On the basis of the study on the Huang-Huai-Hai Area, the present water use, the minimum and suitable water requirement are estimated and the corresponding water shortage is also calculated. According to the interrelated programs, the eco-environmental water requirements in the coming years (2010, 2030, 2050) are estimated. The result indicates that the minimum and suitable eco-environmental water requirements fluctuate with the differences of function setting and the referential standard of water resources, and so as the water shortage. Moreover, the study indicates that the minimum eco-environmental water requirement of the study area ranges from 2.84×1010m3 to 1.02×1011m3, the suitable water requirement ranges from 6.45×1010m3 to 1.78×1011m3, the water shortage ranges from 9.1×109m3 to 2.16×1010m3 under the minimum water requirement, and it is from 3.07×1010m3 to 7.53×1010m3 under the suitable water requirement. According to the different values of the water shortage, the water priority can be allocated. The ranges of the eco-environmental water requirements in the three coming years (2010, 2030, 2050) are 4.49×1010m3-1.73×1011m3, 5.99×10m3?2.09×1011m3, and 7.44×1010m3-2.52×1011m3, respectively.

  10. Water market transfers in South Africa: Two case studies

    Science.gov (United States)

    Nieuwoudt, W. L.; Armitage, R. M.

    2004-09-01

    Statistical analyses (discriminant, logit, and principal components) of water transfers in the Lower Orange River showed that water rights were transferred to farmers with the highest return per unit of water applied, those producing table grapes, and with high-potential arable "outer land" without water rights. Only unused water (sleeper right) was transferred, while water saved (through adoption of conservation practices) was retained possibly for security purposes. A second study in the Nkwaleni Valley in northern KwaZulu-Natal found that no water market had emerged despite the scarcity of water in the area. No willing sellers of water rights existed. Demand for institutional change to establish tradable water rights may take more time in the second area since crop profitability in this area is similar for potential buyers and nonbuyers. Transaction costs appear larger than benefits from market transactions. Farmers generally use all their water rights in the second area and retain surplus water rights as security against drought because of unreliable river flow. This study indicates that these irrigation farmers are highly risk averse (downside risk). Government policies that increase the level of risk and reduce security of licenses are estimated to have a significant effect on future investment in irrigation. In an investment model the following variables explain future investment: expected profits, liquidity, risk aversion (Arrow-Pratt), and security of water use rights. The study is seen in the light of the New South African Water Act of 1998. According to this act, the ownership of water in South Africa has changed from private to public. This reform may not impede the development of water markets in South Africa since in the well-developed water markets of the United States, western states claim ownership of water within their boundaries. All states in the western United States allow private rights in the use of water to be established and sold.

  11. Overcoming technology - obsolescence: a case study in Heavy Water Plant

    International Nuclear Information System (INIS)

    Gupta, O.P.; Sonde, R.R.; Wechalekar, A.K.

    2002-01-01

    Ammonia based Heavy Water Plants in India are set up essentially in conjunction with fertiliser plants for the supply of feed synthesis gas. Earlier ammonia was being produced in fertiliser plants using high-pressure technology which was highly energy intensive. However with fast developments in the field of production of ammonia, fertiliser plants are switching over to low pressure technology. Ammonia based heavy water plants have to operate on pressures corresponding to that of fertiliser plants. Due to low pressures in production of ammonia, heavy water plants would also be required to operate at low pressures than the existing operating pressures. This problem was faced at Heavy Water Plant at Baroda where GSFC supplying synthesis gas switched over to low pressure technology making it imperative on the part of Heavy Water Board to carry out modification to the main plant for continued operation of Heavy Water Plant, Baroda. Anticipating similar problems due to production of ammonia at lower pressures in other fertiliser plants linked to existing Heavy Water Plants, it became necessary for HWB to develop water ammonia front end. The feed in such a case would be water instead of synthesis gas. This would enable HWB to dispense with dependence on fertiliser plants especially if grass-root ammonia based heavy water plants are to be set up. Incorporation of water ammonia front end would enable HWB to de link ammonia based heavy water plants with fertiliser plants. This paper discusses the advantage of de linking heavy water plant respective fertiliser plant by incorporating water ammonia front end and technical issues related to front end technology. A novel concept of ammonia absorption refrigeration (AAR) was considered for the process integration with the front end. The incorporation of AAR with water ammonia front-end configuration utilizes liquid ammonia refrigerant to generate refrigeration without additional energy input which otherwise would have been

  12. Contamination of Community Potable Water from Land Grabbing: A Case Study from Rural Tanzania

    Directory of Open Access Journals (Sweden)

    Serena Arduino

    2012-06-01

    The paper discusses the direct causes of water contamination (the use of fertilisers and pesticides and the presence of cattle and the indirect causes (unclear administrative boundaries, lack of participation and transparency, procedures not followed and limited resources. The negotiation process and its outcomes are described. From this study we conclude that stakeholder communication and transparency are key elements in anticipating and preventing the arising of such situations. Often, these are in short supply when large land deals occur. In this case, ex-post solutions were arrived at. Finally, the paper looks at the broader dimensions of land deals that pollute the water feeding a water supply scheme. Such situations are a clear violation of the human right to safe drinking water – an issue that has not yet been sufficiently documented in the literature and which merits further attention.

  13. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  14. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  15. Sharing Water with Nature: Insights on Environmental Water Allocation from a Case Study of the Murrumbidgee Catchment, Australia

    Directory of Open Access Journals (Sweden)

    Becky Swainson

    2011-02-01

    Full Text Available Human use of freshwater resources has placed enormous stress on aquatic ecosystems in many regions of the world. At one time, this was considered an acceptable price to pay for economic growth and development. Nowadays, however, many societies are seeking a better balance between healthy aquatic ecosystems and viable economies. Unfortunately, historically, water allocation systems have privileged human uses over the environment. Thus, jurisdictions seeking to ensure that adequate water is available for the environment must typically deal with the fact that economies and communities have become dependent on water. Additionally, they must often layer institutions for environmental water allocation (EWA on top of already complex institutional systems. This paper explores EWA in a jurisdiction – New South Wales (NSW, Australia – where water scarcity has become a priority. Using an in-depth case study of EWA in the Murrumbidgee catchment, NSW, we characterise the NSW approach to EWA with the goal of highlighting the myriad challenges encountered in EWA planning and implementation. Sharing water between people and the environment, we conclude, is much more than just a scientific and technical challenge. EWA in water-scarce regions involves reshaping regional economies and societies. Thus, political and socio-economic considerations must be identified and accounted for from the outset of planning and decision-making processes.

  16. Organic complexation of radionuclides in cement pore water: a case study

    International Nuclear Information System (INIS)

    Hummel, W.

    1993-01-01

    The influence of the organic ligands EDTA (ethylenediaminetetraacetate), NTA (nitrilotriacetate), citrate and oxalate on the speciation of Cs, Sr, Ra, Ni, Pd, Tc, Sn, Zr, Th, U, Np, Pu, Am and Cm in cement pore waters is studied by means of chemical equilibria. Emphasis is laid on the development of a complete and consistent thermodynamic data base for the high pH range beyond pH 11. Missing data are estimated using free-energy relationships derived from a large number of experimentally determined stability constants compiled from the literature. In case where a sound estimation of stability constants is not possible due to the scarcity of quantitative information, at least upper limits are assessed for the stability of all possibly important species. Chemical equilibria were computed within the range of pH 11 to 13 and a range of Ca concentrations from 0.001 to 0.1 mol -1 (M). ETDA complexes predominate only in the case of Ni. In all other cases, the competition of Ca-organic or metal-hydroxo complexes successfully prevent any significant influence of EDTA, NTA, citrate or oxalate on the speciation of these radionuclides. (author) 10 figs., 9 refs

  17. Critical overview on water - hydrogen isotopic exchange; a case study

    International Nuclear Information System (INIS)

    Peculea, Marius

    2002-01-01

    Water - hydrogen isotopic exchange process is attractive due to its high separation factor; it is neither corrosive or pollutant and, when used as a technological process of heavy water production, it requires water as raw material. Its efficiency depends strongly on the catalyst performance and geometry of the isotopic water - hydrogen exchange zone in which the isotopic transfer proceeds in two steps: liquid vapor distillation in the presence of an inert gas and a catalytic reaction in vapor - gas gaseous phase. An overview of the water hydrogen isotopic exchange is presented and technological details of the Trail - Canada facility as well as characteristics of the two pilots operated in Romania with Ni, Cr and hydrophobic catalysts are described. The mathematical approach of the successive water-water vapor-hydrogen isotopic exchange process given is based on a mathematical model worked out earlier by Palibroda. Discrepancies between computation and experimental results, lower than 11% for extreme cases and around 6% for the average range are explained as due to the ratio of the exchange potentials. Assumption is made in the theoretical approach that this ratio is positive and constant all long the column while the measurements showed that it varies within 0.7 and 1.1 at the upper end and within - 2.5 and - 4.4 at the lower end, what indicates a strong end effect. In conclusion it is stressed that a competing technological solution is emerging based on a monothermal electrolytic process or a bithermal - bibaric process both for heavy water and tritium separation process

  18. Do water cuts affect productivity? Case study of African ...

    African Journals Online (AJOL)

    This study sought to examine the impact of water disruptions on productivity in African manufacturing firms, using cross-sectional data from the World Bank enterprise surveys. We measured water infrastructure quality or water disruptions using the number of hours per day without water and found this indicator to be a ...

  19. Water conservation by 3 R's - case histories of Heavy Water Plants

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.

    2005-01-01

    The basics of water conservation revolve around three R's of Reduce, Recycle, and Reuse. The Heavy Water Plants are an excellent example of water savings, and these case studies will be of interest to the chemical industry. The issues involved with water conservation and re-use in different Heavy Water Plants are of different nature. In H 2 S-H 2 O process plants the water consumption has been substantially decreased as compared to the design water needs. To quote the figures HWP (Kota) was designed to consume 2280 m 3 /hr water, which included 453 m 3 /hr water as feed for deuterium extraction. Today the plant operates with only 1250 m 3 /hr water while processing 500 m 3 /hr feed; and is headed to decrease the total water consumption to 700 m 3 /hr. Similarly at HWP (Manuguru) the design had provided 5600 m 3 /hr water consumption, which is today operating with only 1750 m 3 /hr and poised to operate with 1600 m 3 /hr. The issues of water conservation in Ammonia Hydrogen exchange plants have an additional dimension since water losses mean direct loss of heavy water production. In adjoining ammonia plants deuterium shifts to steam in the reformer and shift converter, and this excess steam is condensed as rich condensate. It becomes incumbent on the fertilizer plant to maintain a tight discipline for conserving and re-using the rich condensate so that deuterium concentration in the synthesis gas is maintained. Efforts are also underway to utilize rich condensate of GSFC in the newly developed technology of water ammonia exchange at HWP (Baroda) and we are targeting 20% production gains by implementation of this scheme and with no increase in the pollution load. These case histories will be of interest to Chemical Process Industry. (author)

  20. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    Science.gov (United States)

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  1. (Case Study: Underground Water Resources in Damghan Region

    Directory of Open Access Journals (Sweden)

    Gh Dashti

    2010-05-01

    Full Text Available The necessity of recognition and optimal exploitation of underground water sources results from the fact that these resources contribute to 99% of total useable soft water of the world. In our country the agricultural sector is the main user of water among different economic sectors. Therefore, applying scientific and appropriate management measures and approaches for desired utilization of this production factor is critical. Taking into account of real value of water in water management of agricultural sector can lead to development of motivation required for saving its usage and also helps  its optimal allocation in production. Generally, water has two types of real prices. One is supplier (producer point of view and the second includes demander perspective. In this study, real price of water from producer and demander point of views was determined by the use of production function approach for wheat production at underground water sources (wells of Damghan. The required data were collected from 184 farmers of Damghan in agricultural year 2007-08. According to superior production function(Generalized Quadratic, economic value of water in wheat production is 403.2 Iranian rials and this is more than the usual value in the area

  2. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  3. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel, C. Backman

    2017-06-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements.

  4. Fuzzifying historical peak water levels: case study of the river Rhine at Basel

    Science.gov (United States)

    Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter

    2016-04-01

    Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C

  5. HIV/AIDS and access to water: A case study of home-based care in Ngamiland, Botswana

    Science.gov (United States)

    Ngwenya, B. N.; Kgathi, D. L.

    This case study investigates access to potable water in HIV/AIDS related home-based care households in five rural communities in Ngamiland, Botswana. Primary data collected from five villages consisted of two parts. The first survey collected household data on demographic and rural livelihood features and impacts of HIV/AIDS. A total of 129 households were selected using a two-stage stratified random sampling method. In the second survey, a total of 39 family primary and community care givers of continuously ill, bed-ridden or non-bed-ridden HIV/AIDS patients were interviewed. A detailed questionnaire, with closed and open-ended questions, was used to collect household data. In addition to using the questionnaire, data were also collected through participant observation, informal interviews and secondary sources. The study revealed that there are several sources of water for communities in Ngamiland such as off-plot, outdoor (communal) and on-plot outdoor and/or indoor (private) water connections, as well as other sources such as bowsed water, well-points, boreholes and open perennial/ephemeral water from river channels and pans. There was a serious problem of unreliable water supply caused by, among other things, the breakdown of diesel-powered water pumps, high frequency of HIV/AIDS related absenteeism, and the failure of timely delivery of diesel fuel. Some villages experienced chronic supply disruptions while others experienced seasonal or occasional water shortages. Strategies for coping with unreliability of water supply included economizing on water, reserve storage, buying water, and collection from river/dug wells or other alternative sources such as rain harvesting tanks in government institutions. The unreliability of water supply resulted in an increase in the use of water of poor quality and other practices of poor hygiene as well as a high opportunity cost of water collection. In such instances, bathing of patients was cut from twice daily to once or

  6. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    Science.gov (United States)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  7. Validity of the Environmental Kuznets Curve Hypotheses in Water Pollution A Case Study

    Directory of Open Access Journals (Sweden)

    Hediyeh Alishiri

    2017-03-01

    Full Text Available Among the different environmental pollutions, water pollution is of especial importance due to the rather unchanging supply of this vital resource on a global scale and because of the dire consequences of its pollution for human health. The relationship between water production and its pollution can thus established and used as a measure of environmental degradation. This relationship can then be captured and analyzed in terms of environmental Kuznets hypotheses. It may be claimed that the early stages of economic growth is associated with lower per capita income and water pollution but the trend is reversed with increasing per capita income and improved economic growth. The present study was conducted using the panel data technique and the Kuznets environmental hypotheses were examined for the two groups of developed and developing countries under the two scenarios of using either per capita GDP or the share of industry to the added value in GDP as an indicator of economic growth. Results indicate that under both scenarios, Kuznets hypotheses are confirmed when studying the situation in developing countries but refuted in the case of developed countries.

  8. Local Water Management of Small Reservoirs: Lessons from Two Case Studies in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Hilmy Sally

    2011-10-01

    Full Text Available Burkina Faso is actively pursuing the implementation of Integrated Water Resources Management (IWRM in its development plans. Several policy and institutional mechanisms have been put in place, including the adoption of a national IWRM action plan (PAGIRE and the establishment so far of 30 local water management committees (Comités Locaux de l’Eau, or CLE. The stated purpose of the CLE is to take responsibility for managing water at sub-basin level. The two case studies discussed in this paper illustrate gaps between the policy objective of promoting IWRM on the one hand, and the realities associated with its practical on-the-ground implementation on the other. A significant adjustment that occurred in practice is the fact that the two CLE studied have been set up as entities focused on reservoir management, whereas it is envisioned that a CLE would constitute a platform for sub-basin management. This reflects a concern to minimise conflict and optimally manage the country’s primary water resource and illustrates the type of pragmatic actions that have to be taken to make IWRM a reality. It is also observed that the local water management committees have not been able to satisfactorily address questions regarding access to, and allocation of, water, which are crucial for the satisfactory functioning of the reservoirs. Water resources in the reservoirs appear to be controlled by the dominant user. In order to correct this trend, measures to build mutual trust and confidence among water users 'condemned' to work together to manage their common resource are suggested, foremost of which is the need to collect and share reliable data. Awareness of power relationships among water user groups and building on functioning, already existing formal or informal arrangements for water sharing are key determinants for successful implementation of the water reform process underway.

  9. Source Water Protection Planning for Ontario First Nations Communities: Case Studies Identifying Challenges and Outcomes

    Directory of Open Access Journals (Sweden)

    Leslie Collins

    2017-07-01

    Full Text Available After the Walkerton tragedy in 2000, where drinking water contamination left seven people dead and many suffering from chronic illness, the Province of Ontario, Canada implemented policies to develop Source Water Protection (SWP plans. Under the Clean Water Act (2006, thirty-six regional Conservation Authorities were mandated to develop watershed-based SWP plans under 19 Source Protection Regions. Most First Nations in Ontario are outside of these Source Protection Regions and reserve lands are under Federal jurisdiction. This paper explores how First Nations in Ontario are attempting to address SWP to improve drinking water quality in their communities even though these communities are not part of the Ontario SWP framework. The case studies highlight the gap between the regulatory requirements of the Federal and Provincial governments and the challenges for First Nations in Ontario from lack of funding to implement solutions to address the threats identified in SWP planning. This analysis of different approaches taken by Ontario First Nations shows that the Ontario framework for SWP planning is not an option for the majority of First Nations communities, and does not adequately address threats originating on reserve lands. First Nations attempting to address on-reserve threats to drinking water are using a variety of resources and approaches to develop community SWP plans. However, a common theme of all the cases surveyed is a lack of funding to support implementing solutions for the threats identified by the SWP planning process. Federal government initiatives to address the chronic problem of boil water advisories within Indigenous communities do not recognize SWP planning as a cost-effective tool for improving drinking water quality.

  10. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood

    Directory of Open Access Journals (Sweden)

    Rubao Sun

    2016-02-01

    Full Text Available In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  11. Cumulative impoundment evaporation in water resource management within the mid-Atlantic: A case study in Virginia

    Science.gov (United States)

    Scott, D.; Burgholzer, R.; Kleiner, J.; Brogan, C. O.; Julson, C.; Withers, E.

    2017-12-01

    Across the eastern United States, successful management of water resources to satisfy the competing demands for human consumption, industry, agriculture, and ecosystems requires both water quality and water quantity considerations. Over the last 2 decades, low streamflows during dry summers have increased scrutiny on water supply withdrawals. Within Virginia, a statewide hydrologic model provides quantitative assessments on impacts from proposed water withdrawals to downstream river flow. Currently, evaporative losses are only accounted for from the large reservoirs. In this study, we sought to provide a baseline estimate for the cumulative evaporation from impoundments across all of the major river basins in Virginia. Virginia provides an ideal case study for the competing water demands in the mid-Atlantic region given the unique tracking of water withdrawals throughout the river corridor. In the over 73,000 Virginia impoundments, the cumulative annual impoundment evaporation was 706 MGD, or 49% of the permitted water withdrawal. The largest reservoirs (>100 acres) represented over 400 MGD, and 136 MGD for the smaller impoundments (water loss (evaporation + demand), with some areas where impoundment evaporation was greater than human water demand. Seasonally, our results suggest that cumulative impoundment evaporation in some watersheds greatly impacts streamflow during low flow periods. Our results demonstrate that future water supply planning will require not only understanding evaporation within large reservoirs, but also the thousands of small impoundments across the landscape.

  12. THE IMPORTANCE OF TECHNICAL INFRASTRUCTURE IN TERRITORY. CASE STUDY: DRINKING WATER SUPPLY IN DÂNGĂU MARE, CLUJ COUNTY

    Directory of Open Access Journals (Sweden)

    M. ALEXE

    2011-03-01

    Full Text Available The importance of technical infrastructure in territory. Case study: drinking water supply in Dângău Mare, Cluj County. Water represents an important element in life. Accessibility, water quantity and quality show the standard of living of one community. This article presents a case study, the one of water supply in Dângău Mare from Cluj County. The purpose of this analysis is to reveal the benefits of applying some measures regarding water supply in the rural area, as well as the dysfunction abilities which derive from a bad management (eg. lack of sewage system. Dângău Mare lies near the Gilău Mountains and possesses important and rich resources of surface and underground waters varying under qualitative ratio. The hydrological resources of Dângău Mare are made up of river/rivulet networks (Mireş, Blidaru, Agârbiciu, phreatic waters and natural springs. The identification and delimitation of the Dângău Mare territory represents the first stage of this study, followed by the consultation of bibliographic and cartographic sources, field surveys, to obtain the qualitative and quantitative pieces of information. The second stage consists in the analyzation and classification of information, the integrated study of phenomena and elaboration of cartographic models using GIS. At the end of this study we have made the SWOT analysis to emphasize the characteristics of favourability, the anomalies and the opportunities to improve and develop the territory of Dângău Mare from Cluj County.

  13. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  15. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Science.gov (United States)

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  16. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  17. Study of Ground water Groundwater Potentiality and Sea Water Intrusion Along along the Coastal Plain, Wadi Thuwal, KSA- A Case Study Based on DC Resistivity

    Directory of Open Access Journals (Sweden)

    Mansour A. Al-Garni

    2010-12-01

    Full Text Available The present study mainly aims to outline zones that have groundwater potentiality with good quality and those which are affected by sea water intrusion. The electrical resistivity data were acquired over an area of about 170 km2 of a coastal plain, Wadi Thuwal, which is bounded by the Red Sea in the west and the volcanic hills in the east.  In such an area, resistivity measurements, using n-layering model, reveal generally reveal a wide range of resistivity values which do not reflect the reality. Hence, the statistical analysis has to be involved to overcome this problem and to make the final interpretation reliable.  In our case, the n-layer models were modified to another statistical geoelectric models (SLM, consisting of  a number of layers equivalent to the stratigraphic layering beneath each VES site. The modified models were used to outline the depth to the bed rock, groundwater accumulation zones and  water table as well as to define the effect of sea water intrusion through the study area. Check alignment above

  18. Energy-Water Microgrid Case Study at the University of Arizona's BioSphere 2

    Science.gov (United States)

    Daw, J.; Macknick, J.; Kandt, A.; Giraldez, J.

    2016-12-01

    Microgrids can provide reliable and cost-effective energy services in a variety of conditions and locations. To date, there has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage the synergies associated with designing and operating renewable energy and water systems in a coordinated framework. Water and wastewater treatment equipment can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Co-management and optimization of energy and water resources could lead to improved reliability and economic operating conditions. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributed generation, Defense operations, and many parts of the world lacking critical infrastructure.The National Renewable Energy Laboratory (NREL) and the University of Arizona have been jointly researching energy-water microgrid opportunities through an effort at the university's BioSphere 2 (B2) Earth systems science research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the existence and criticality of water and energy infrastructure, and its ability to operate connected-to or disconnected-from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs in the food-energy-water nexus. The research effort at B2 identified the technical potential and associated benefits of an energy-water microgrid through the evaluation of energy ancillary services and peak load reductions and quantified the potential for B2 water-related loads to be utilized and modified to provide

  19. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study.

    Science.gov (United States)

    Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man

    2013-01-01

    The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.

  20. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.

    Science.gov (United States)

    Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery

    2018-03-30

    Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  2. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    Science.gov (United States)

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  3. Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ethiopia: A matched case-control study.

    Science.gov (United States)

    Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku

    2017-01-01

    The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3-17.8), POU water contamination in household stored water by E. coli (adjusted mOR = 3.3; 95% CI: 1.1-10.1), water

  4. Fluoride in drinking water and risk of hip fracture in the UK: a case-control study.

    Science.gov (United States)

    Hillier, S; Cooper, C; Kellingray, S; Russell, G; Hughes, H; Coggon, D

    2000-01-22

    Although the benefits of water fluoridation for dental health are widely accepted, concerns remain about possible adverse effects, particularly effects on bone. Several investigators have suggested increased rates of hip fracture in places with high concentrations of fluoride in drinking water, but this finding has not been consistent, possibly because of unrecognised confounding effects. We did a case-control study of men and women aged 50 years and older from the English county of Cleveland, and compared patients with hip fracture with community controls. Current addresses were ascertained for all participants; for those who agreed to an interview and who passed a mental test, more detailed information was obtained about lifetime residential history and exposure to other known and suspected risk factors for hip fracture. Exposures to fluoride in water were estimated from the residential histories and from information provided by water suppliers. Analysis was by logistic regression. 914 cases and 1196 controls were identified, of whom 514 and 527, respectively, were interviewed. Among those interviewed, hip fracture was strongly associated with low body-mass index (p for trend water ranged from 0.15 to 1.79 ppm. Current residence in Hartlepool was a good indicator for high lifetime exposure to fluoride. After adjustment for potential confounders, the odds ratio associated with an average lifetime exposure to fluoride > or =0.9 ppm was 1.0 [95% CI 0.7-1.5]. There is a low risk of hip fracture for people ingesting fluoride in drinking water at concentrations of about 1 ppm. This low risk should not be a reason for withholding fluoridation of water supplies.

  5. Water quality monitoring: a case study of water pollution in minna ...

    African Journals Online (AJOL)

    This work investigates the level of purity in Minna water and its environs. Water samples were collected from four water sources; Federal University of Technology (FUT), Minna water tank (Treated water), Maikunkele (Borehole), Chanchaga (Water treatment plant) and Tagwai dam (Raw). The following analyses of pH, Total ...

  6. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    Science.gov (United States)

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (purban waters restoration in the middle-downstream area of Yangtze River Base.

  7. Activation of a water molecule coordinated to manganese: four study cases

    International Nuclear Information System (INIS)

    Lassalle-Kaiser, B.

    2008-10-01

    The daunting energy consumption of western societies calls for the development of renewable energies. Among them, hydrogen stands as a major candidate. The cleanest way of producing hydrogen is water electro- or photolysis. This reaction is carried out in natural photosynthesis by a manganese-oxo cluster, the functioning of which remains unknown. Insight into this mechanism would greatly help the search for low-cost water splitting catalysts. Our contribution to this field is the understanding of the fundamental processes that govern the activation of water by manganese complexes. This manuscript describes our attempts to generate electrochemically mononuclear manganese(IV) complexes bearing a fully deprotonated water molecule (oxo ligand). We have studied four different cases, which reflect different possible coordination spheres capable of stabilizing such species. In the first chapter, we will give a brief overview of the present energetic challenges faced by western societies. In the second chapter, we will present general considerations about manganese chemistry and a description of the structure and functioning of the water oxidizing enzyme. We will also describe the basic requirements for the splitting of water and present the goals of our work. In the third chapter, we will present the synthesis of a new family of tetradentate ligands, together with the synthesis and full characterization of the corresponding nickel(II) complexes. The first results obtained with the manganese analogue will also be shown. Chapter four presents the formation and the full characterization of a mononuclear manganese(IV)-oxo complex, by electrochemical oxidation of a manganese(II)-aqua complex. We will present different pathways to generate this species and show which intermediates are involved in this 2 e - , 2 H + reaction. Chapter five describes the formation of a mononuclear manganese(IV) complex, by electrochemical oxidation of a manganese(III)-hydroxo complex. The

  8. Simulation supported scenario analysis for water resources planning: a case study in northern italy

    Science.gov (United States)

    Facchi, A.; Gandolfi, C.; Ortuani, B.; Maggi, D.

    2003-04-01

    The work presents the results of a comprehensive modelling study of surface and groundwater systems, including the interaction between irrigation and groundwater resources, for the Muzza-Bassa Lodigiana irrigation district, placed in the southern part of the densely-settled Lombardia plain (northern Italy). The area, of approximately 700 km2, has been selected as: a) it is representative of agricultural and irrigation practices in a wide portion of the plain of Lombardia; b) it has well defined hydrogeological borders, represented by the Adda, Po, and Lambro rivers (respectively East, South and West) and by the Muzza canal (North). The objective of the study is to assess the impact of land use and irrigation water availability on the distribution of crop water consumption in space and time, as well as on the groundwater resources in this wide portion of the Lombardia plain. To achieve this goal, a number of realistic management scenarios, currently under discussion with the regional water authority, have been taken into account. A standard 'base case' has been defined to allow comparative analysis of the results of different scenarios. To carry out the research, an integrated, distributed, catchment-scale simulation package, already developed and applied to the study area, has been used. The simulation system is based on the integration of two hydrological models - a conceptual vadose zone model and the groundwater model MODFLOW. An interface performs the explicit coupling in space and time between the two models. A GIS manages all the information relevant to the study area, as well as all the input, the spatially distributed parameters and the output of the system. The simulation package has been verified for the years 1999-2000 using land use derived from remote-sensed images, reported water availability for irrigation, observed water stage in rivers as well as groundwater level in the alluvial aquifer system.

  9. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    Science.gov (United States)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  10. Isotopic variation in spring water and rain water of Sikkim: a case study

    International Nuclear Information System (INIS)

    Diksha; Sinha, U.K.; Ansari, Md. Arzoo; Mendhekar, G.N.; Dash, Ashutosh; Dhakal, Deepak

    2015-01-01

    Environmental stable isotopic signatures of surface water, rainwater and groundwater provide valuable information about interconnection between them. Stable isotopes of H (δ 2 H) and O (δ 18 O) have been widely employed by many researchers to understand rainwater, surface water and groundwater inter-connections. The Global Meteoric Water Line (GMWL, δD= 8 x δ 18 O+10) the locus of precipitation water over whole of the globe, established by Craig, used to tell about the environment of water. For the objective spring water (namely Dhalay Khola, Lower Changey and Bhulkey) were collected from the study area (Sikkim) during May 2013, March 2013 and August 2014. Rainwater sample were also collected with increasing altitude. These samples were analyzed for environmental isotopes (δ 2 H, δ 18 O) by a isotope ratio mass spectrometer (IsoPrime-100) using pyrolysis mode of elemental analyzer for deuterium and gas equilibration method for 18 O. The precision (2 sigma) of (δ 2 H and δ 18 O are ±0.15 and ± 0.1‰ respectively

  11. Dating gasoline releases using ground-water chemical analyses: Case studies

    International Nuclear Information System (INIS)

    Worthington, M.A.; Perez, E.J.

    1993-01-01

    This paper presents case studies where geochemical data were analyzed in spatial and temporal relation to documented gasoline releases at typical service station sites. In particular, the authors present ground-water analytical data for sites where (1) the date of the gasoline release is known with a good degree of confidence, (2) the release is confined to a relatively short period of time so as to be considered essentially instantaneous, (3) antecedent geochemical condition are known or can be reasonably expected to have been either unaffected by previous hydrocarbon impacts or minor in comparison to known release events, and (4) where geologic materials can be classified as to structure and composition. The authors' intent is to provide empirical data regarding the hydrogeological fate of certain gasoline components, namely the compounds benzene, toluene, ethylbenzene and xylene isomers (BTEX) and methyl-tertiary-butyl ether (MTBE). Particular emphasis is placed on analysis of gasoline weathering as a means of comparing releases in given hydrogeologic environments. Trends seen in a variety of comparative hydrocarbon compound ratios may provide a basis for evaluating relative release dates

  12. Assessment of management approaches in a public water utility: A case study of the Namibia water corporation (NAMWATER)

    Science.gov (United States)

    Ndokosho, Johnson; Hoko, Zvikomborero; Makurira, Hodson

    More than 90% of urban water supply and sanitation services in developing countries are provided by public organizations. However, public provision of services has been inherently inefficient. As a result a number of initiatives have emerged in recent years with a common goal to improve service delivery. In Namibia, the water sector reform resulted in the creation of a public utility called the Namibia Water Corporation (NAMWATER) which is responsible for bulk water supply countrywide. Since its inception in 1998, NAMWATER has been experiencing poor financial performance. This paper presents the findings of a case study that compared the management approaches of NAMWATER to the New Public Management (NPM) paradigm. The focus of the NPM approach is for the public water sector to mirror private sector methods of management so that public utilities can accrue the benefits of effectiveness, efficiency and flexibility often associated with private sector. The study tools used were a combination of literature review, interviews and questionnaires. It was found out that NAMWATER has a high degree of autonomy in its operations, albeit government approved tariffs and sourcing of external financing. The utility reports to government annually to account for results. The utility embraces a notion of good corporate culture and adheres to sound management practices. NAMWATER demonstrated a strong market-orientation indicated by the outsourcing of non-core functions but benchmarking was poorly done. NAMWATER’s customer-orientation is poor as evidenced by the lack of customer care facilities. NAMWATER’s senior management delegated operational authority to lower management to facilitate flexibility and eliminate bottlenecks. The lower management is in turn held accountable for performance by the senior management. There are no robust methods of ensuring sufficient accountability indicated by absence of performance contracts or service level agreements. It was concluded that

  13. Performance Evaluation and Analysis of Rural Drinking Water Safety Project——A Case Study in Jiangsu, China

    Science.gov (United States)

    Du, Xiaorong

    2017-04-01

    Water is the basic condition for human survival and development. As China is the most populous country, rural drinking water safety problems are most conspicuous. Therefore, the Chinese government keeps increasing investment and has built a large number of rural drinking water safety projects. Scientific evaluation of project performance is of great significance to promote the sustainable operation of the project and the sustainable development of rural economy. Previous studies mainly focus on the economic benefits of the project, while ignoring the fact that the rural drinking water safety project is quasi-public goods, which has economic, social and ecological benefits. This paper establishes a comprehensive evaluation model for rural drinking water safety performance, which adapts the rules of "5E" (economy, efficiency, effectiveness, equity and environment) as the value orientation, and selects a rural drinking water safety project as object in case study at K District, which is in the north of Jiangsu Province, China. The results shows: 1) the comprehensive performance of K project is in good condition; 2) The performance of every part shows that the scores of criteria "efficiency", "environment" and "effect" are higher than the mean performance, while the "economy" is slightly lower than the mean and the "equity" is the lowest. 3) The performance of indicator layer shows that: the planned completion rate of project, the reduction rate of project cost and the penetration rate of water-use population are significantly lower than other indicators. Based on the achievements of previous studies and the characteristics of rural drinking water safety project, this study integrates the evaluation dimensions of equity and environment, which can contribute to a more comprehensive and systematic assessment of project performance and provide empirical data for performance evaluation and management of rural drinking water safety project. Key Words: Rural drinking water

  14. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  15. Is drinking water from 'improved sources' really safe? A case study in the Logone valley (Chad-Cameroon).

    Science.gov (United States)

    Sorlini, S; Palazzini, D; Mbawala, A; Ngassoum, M B; Collivignarelli, M C

    2013-12-01

    Within a cooperation project coordinated by the Association for Rural Cooperation in Africa and Latin America (ACRA) Foundation, water supplies were sampled across the villages of the Logone valley (Chad-Cameroon) mostly from boreholes, open wells, rivers and lakes as well as from some piped water. Microbiological analyses and sanitary inspections were carried out at each source. The microbiological quality was determined by analysis of indicators of faecal contamination, Escherichia coli, Enterococci and Salmonellae, using the membrane filtration method. Sanitary inspections were done using WHO query forms. The assessment confirmed that there are several parameters of health concern in the studied area; bacteria of faecal origins are the most significant. Furthermore, this study demonstrated that Joint Monitoring Programme (JMP) classification and E. coli measurement are not sufficient to state water safety. In fact, in the studied area, JMP defined 'improved sources' may provide unsafe water depending on their structure and sources without E. coli may have Enterococci and Salmonellae. Sanitary inspections also revealed high health risks for some boreholes. In other cases, sources with low sanitary risk and no E. coli were contaminated by Enterococci and Salmonellae. Better management and protection of the sources, hygiene improvement and domestic water treatment before consumption are possible solutions to reduce health risks in the Logone valley.

  16. Water harvesting for improved water productivity in dry environments of the Mediterranean region case study

    DEFF Research Database (Denmark)

    Yazar, A.; Kuzucu, M.; Çelik, I.

    2014-01-01

    cover and compaction), which were studied in a pistachio plantation by monitoring soil water balance in the root zone. The overall efficiency of the water harvesting system was determined as the ratio of the amount of water stored and used by the crop to the amount of rainfall received in the catchment...

  17. Evaluation of drinking water quality indices (case study: Bushehr province, Iran

    Directory of Open Access Journals (Sweden)

    Nematollah Jafarzadeh

    2017-05-01

    Full Text Available Background: Internal corrosion and the formation of scale in water distribution pipes are the most important problems for an urban water distribution system. Physical, chemical, or biological factors can lead to these two processes. Internal corrosion and scale formation can impact health, economy, and aesthetics. This study assessed the physicochemical quality parameters and evaluated the potential for corrosion and scale formation in drinking water at the distribution systems of 5 selected cities in Bushehr province (Kangan, Dashtestan, Dashti, Bushehr, and Ganaveh from 2009-2012. Methods: This study was carried out based on laboratory data collected from monthly samplings of tap water in the Water and Wastewater Company of Bushehr province during the years 2009-2012. Internal corrosion and scale formation rates were calculated using the Ryznar, Langelier, Aggressive, and Puckorius indices. Results: The results of the Ryznar, Puckorius, Aggressive and Langelier indices indicated that the drinking water in the 5 selected cities of Bushehr province was corrosive. Moreover, the majority of parameters used to determine water quality exceeded Iran’s national standards. Conclusion: It is concluded that there is problem of water corrosion and scaling in drinking water of distribution systems in selected cities.

  18. Risks to Drinking Water from Oil and Gas Wellbore Construction and Integrity: Case Studies and Lessons Learned

    Science.gov (United States)

    This presentation examines various published reports from two drinking water contamination cases, and discuss the potential roles of wellbore construction and integrity and hydraulic fracturing in the resultant drinking water contamination.

  19. A Method of Evaluating Water Resource Assets and Liabilities: A Case Study of Jinan City, Shandong Province

    Directory of Open Access Journals (Sweden)

    Yuheng Yang

    2017-08-01

    Full Text Available The traditional concepts of water resource development and utilization have caused serious hydrological and environmental issues in some regions. In addition, policy issues in China have led to a severe water crisis. The quantitative accounting of water resources is a theoretical approach to solving these problems. In this paper, 13 indicators were selected from four classes, including resources, the environment, society, and efficiency, and a case study of Jinan, Shandong Province, was performed using a set pair analysis model to calculate the water resource assets from 2011–2015. In previous methods of water resource accounting, the water quality was not considered; therefore, the loss coefficient of water resource assets was proposed to improve the reliability of accounting. According to the relationships among the unit price of water, water quantity, and water quality, physical and quantitative accounting methods were used to create water balance sheets from 2011–2015. The calculation results showed that the physical change in water resource assets in Jinan City was −30 million m 3 , and water resource assets initially increased and then decreased. In 2011, 2012, 2013, 2014, and 2015, water resource assets totalled 36.5 million USD, 45.9 million USD, 66.7 million USD, 35.5 million USD, and 37.5 million USD, respectively (at 6.4588, 6.3125, 6.1932, 6.2166, 6.2284 USRMB, respectively. This initial accounting provides quantitative and physical support for the improved management of water resources.

  20. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    Science.gov (United States)

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.

  1. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    Science.gov (United States)

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  2. Simplifying dynamic river water quality modelling: A case study of inorganic nitrogen dynamics in the Crocodile River (South Africa).

    CSIR Research Space (South Africa)

    Deksissa, T

    2004-06-01

    Full Text Available Quality Model No. 1, which is one of the most comprehensive basic river water quality models available in literature. The applicability of the simplified model in data limited situations was investigated using a case study of inorganic nitrogen (nitrate...

  3. The added value of water footprint assessment for national water policy: a case study for Morocco.

    Directory of Open Access Journals (Sweden)

    Joep F Schyns

    Full Text Available A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5 × 5 arc minute global study for the period 1996-2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii Morocco's water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha crops such as cereals, olives and almonds; (iii most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3; (iv blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco's national water strategy.

  4. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco

    Science.gov (United States)

    Schyns, Joep F.; Hoekstra, Arjen Y.

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5×5 arc minute) global study for the period 1996–2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco’s water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco’s national water strategy. PMID:24919194

  5. Personal Water Footprint in Taiwan: A Case Study of Yunlin County

    Directory of Open Access Journals (Sweden)

    Yung-Jaan Lee

    2016-10-01

    Full Text Available Extreme weather events have affected the environment and water resources in Taiwan for the last two decades. Heavy rainfall, typhoons, and rising sea levels have caused severe flooding along the Southwest Coast in Taiwan. Yunlin County, an important agricultural region, will be significantly affected by climate changes, especially in coastal areas with severe land subsidence. Therefore, using the concept of the water footprint and questionnaire surveys, this study examines personal water footprints in townships in Yunlin County to explore the effectiveness and sustainability of water management. The purpose of the water footprint concept is to quantify environmental burdens imposed by individuals’ demand for water. An individual water footprint involves direct and indirect water usage that is associated with personal habits. Analytical results show that the most individual water consumption is highest along coastal areas, such as Kouhu and Taixi, and mountainous areas, such as Gukeng, Douliu, and Linnei. Furthermore, one-way ANOVA of individuals’ daily water footprint reveals that individual water footprints vary significantly among Douliu, Gukeng, and Mailiao. The mean daily water footprint per capita in Douliu and Gukeng significantly exceeds that in Mailiao. This study considers the location quotients of industries in these three townships, which indicate that the location quotients of the accommodation and food and beverage industries in Douliu and Gukeng significantly exceed those of Mailiao. The individual virtual water use that is associated with the aforementioned industries is large. Clearly, individual water use habits in townships are related to the industry type. Douliu and Gukeng are major centers of the tertiary industry, which has a higher location quotient than in Mailiao. Mailiao is a major center of manufacturing as a secondary industry. Therefore, flourishing regions with tertiary industries have high virtual water

  6. Case Study Analysis of the Impacts of Water Acquisition for Hydraulic Fracturing on Local Water Availability

    Science.gov (United States)

    Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...

  7. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, Tomasz, E-mail: puzi@qsar.eu.org [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Mostrag, Aleksandra; Falandysz, Jerzy [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kholod, Yana; Leszczynski, Jerzy [NSF CREST Nanotoxicity Center, Department of Chemistry, Jackson State University, 1325 Lynch St, Jackson, MS 39217-0510 (United States)

    2009-10-30

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 {mu}g dm{sup -3} (2.85 x 10{sup -11}-1.02 x 10{sup -5} mol dm{sup -3}), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our

  8. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    International Nuclear Information System (INIS)

    Puzyn, Tomasz; Mostrag, Aleksandra; Falandysz, Jerzy; Kholod, Yana; Leszczynski, Jerzy

    2009-01-01

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 μg dm -3 (2.85 x 10 -11 -1.02 x 10 -5 mol dm -3 ), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our results.

  9. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  11. Making the Business Case for Regional and National Water Data Collection

    Science.gov (United States)

    Pinero, E.

    2017-12-01

    Water-related risks are becoming more and more of a concern with organizations that either depend on water use or are responsible for water services provision. Yet this concern does not always translate into a business case to support large scale water data collection. One reason is that water demand varies across sectors and physical setting. There is typically no single parameter or reason where a given entity would be interested in national or even regional scale data. Even for public sector entities, water issues are local and their jurisdiction does not span regional scale coverage. Therefore, to make the case for adequate data collection not only are technology and web platforms necessary, but one also needs a compelling business case. One way to make the case will involve raising awareness of the critical cross-cutting role of water such that sectors see the need for water data to support sustainability of other systems, such as energy, food, and resilience. Another factor will be understanding the full life cycle role of water, especially in the supply chain, and that there are many variables that drive water demand. Such an understanding will make clearer the need for more regional scale understanding. This will begin to address the apparent catch 22 that there is a need for data to understand the scope of the challenge, but until the scope of the challenge is understood, there is nno impelling business case to collect data. Examples, such as the Alliance for Water Stewardship standard and CEO Water Mandate Water Action Hub will be discussed to illustrate recent innovations in making a case for efficient collection of watershed scale and regional data.

  12. A simple chemical free arsenic removal method for community water supply - A case study from West Bengal, India

    International Nuclear Information System (INIS)

    Sen Gupta, B.; Chatterjee, S.; Rott, U.; Kauffman, H.; Bandopadhyay, A.; DeGroot, W.; Nag, N.K.; Carbonell-Barrachina, A.A.; Mukherjee, S.

    2009-01-01

    This report describes a simple chemical free method that was successfully used by a team of European and Indian scientists ( (www.qub.ac.uk/tipot)) to remove arsenic (As) from groundwater in a village in West Bengal, India. Six such plants are now in operation and are being used to supply water to the local population ( (www.insituarsenic.org)). The study was conducted in Kasimpore, a village in North 24 Parganas District, approximately 25 km from Kolkata. In all cases, total As in treated water was less than the WHO guideline value of 10 μg L -1 . The plant produces no sludge and the operation cost is 1.0 US$ per day for producing 2000 L of potable water. - This work presents the chemical free arsenic removal method from groundwater and its successful implementation in West Bengal for community water supply.

  13. climate change and lake water resourcesin sub-saharan africa: case ...

    African Journals Online (AJOL)

    user

    STUDY OF LAKE CHAD AND LAKE VICTORIA ... contribution to agriculture and socio-economic development of the region were ... many developing countries, current levels in water use .... 2050 and will become increasingly urban by implication. ... 4.1 Justification of Selected Case Studies ..... Orstom, Paris France. 1996.

  14. Managing Expectations: Results from Case Studies of US Water Utilities on Preparing for, Coping with, and Adapting to Extreme Events

    Science.gov (United States)

    Beller-Simms, N.; Metchis, K.

    2014-12-01

    Water utilities, reeling from increased impacts of successive extreme events such as floods, droughts, and derechos, are taking a more proactive role in preparing for future incursions. A recent study by Federal and water foundation investigators, reveals how six US water utilities and their regions prepared for, responded to, and coped with recent extreme weather and climate events and the lessons they are using to plan future adaptation and resilience activities. Two case studies will be highlighted. (1) Sonoma County, CA, has had alternating floods and severe droughts. In 2009, this area, home to competing water users, namely, agricultural crops, wineries, tourism, and fisheries faced a three-year drought, accompanied at the end by intense frosts. Competing uses of water threatened the grape harvest, endangered the fish industry and resulted in a series of regulations, and court cases. Five years later, new efforts by partners in the entire watershed have identified mutual opportunities for increased basin sustainability in the face of a changing climate. (2) Washington DC had a derecho in late June 2012, which curtailed water, communications, and power delivery during a record heat spell that impacted hundreds of thousands of residents and lasted over the height of the tourist-intensive July 4th holiday. Lessons from this event were applied three months later in anticipation of an approaching Superstorm Sandy. This study will help other communities in improving their resiliency in the face of future climate extremes. For example, this study revealed that (1) communities are planning with multiple types and occurrences of extreme events which are becoming more severe and frequent and are impacting communities that are expanding into more vulnerable areas and (2) decisions by one sector can not be made in a vacuum and require the scientific, sectoral and citizen communities to work towards sustainable solutions.

  15. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  16. An analytic-geospatial approach for sustainable water resource management: a case study in the province of Perugia

    Directory of Open Access Journals (Sweden)

    Stefano Casadei

    2013-09-01

    Full Text Available Water is a strategic, but also highly vulnerable, natural resource. This because the increasing demand from multiple uses, in many cases competing amongst them, seems to influence the concepts of sustainability of the exploitation. From the operational point of view, the studied system is an integrated decision support system. It is not only a platform to exchange information and assessments, but also a tool for conflict resolution, in the management of water resources, to obtain the consensus among all participants in the decisional processes. So the canonical “top-down” approach has been replaced with a “bottom-up” approach where all stakeholders become decision makers themselves. The application of the aforementioned approach was studied for the Tiber River basin and has been applied to the Province of Perugia area. The study focused to the building of a spatial database of hydrological data and multipurpose water withdrawals, together with the setting of the evaluation model for the surface water resources. This model bases its algorithms on regionalization procedures of flow parameters. For the definition of the river condition, hydrological indices calculated from the hydrological database have been used, while for the existing withdrawals, an analysis procedure has been developed, that from the point of interest directly selected on the map, finds out the upstream basin and, by means of overlay procedures, identifies the upstream water uses and the total flow that could be extracted. The potential of the system and the technologies used are contained in a WEB platform that allows the analysis of the database of water uses/withdrawals on the cartography, and the comparison with the hydrogeological characteristics of the sub-basin examined. The purpose of this study is to provide software tools that can be used as a support in water resource evaluation and management policies at the basin scale.

  17. Colorectal Cancer and Long-Term Exposure to Trihalomethanes in Drinking Water: A Multicenter Case-Control Study in Spain and Italy

    OpenAIRE

    Villanueva, Cristina M.; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Pérez Gómez, Beatriz; Pollán, Marina; Gómez Acebo, Inés; Altzibar, Jone M.; Jiménez Zabala, Ana; Ardanaz, Eva; Peiró, Rosana

    2016-01-01

    Background: Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. Objectives: We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. Methods: A multicenter case?control study was conducted in Spain and Italy in 2008?2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) cont...

  18. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  19. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  20. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  1. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  2. Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy

    Directory of Open Access Journals (Sweden)

    Sabrina Sorlini

    2017-08-01

    Full Text Available The Water Safety Plan (WSP approach is an iterative method focused on analyzing the risks of water contamination in a drinking water supply system, from catchment to consumer, in order to protect human health. This approach is aimed at identifying and drastically reducing water contamination in the entire drinking water system, through the identification and mitigation or, if possible, elimination of all factors that may cause a chemical, physical, microbiological and radiological risk for water. This study developed a proposal of WSP for the drinking water supply system (DWSS of Mortara, Italy, in order to understand which are the preliminary evaluation aspects to be considered in the elaboration of a WSP. The DWSS of Mortara (a town of 15,500 inhabitants, located in northern Italy consists of three drinking water treatment plants (DWTPs, considering the following main contaminants: arsenic, iron, manganese and ammonia. Potential hazardous events and associated hazards were identified in each part of the water supply system. The risk assessment was carried out following the semi quantitative approach. The WSP proposal for Mortara was very useful not only as a risk mitigation approach, but also as a cost-effective tool for water suppliers. Furthermore, this approach will reduce public health risk, ensure a better compliance of water quality parameters with regulatory requirements, increase confidence of consumers and municipal authorities, and improve resource management due to intervention planning. Further, some new control measures are proposed by the WSP team within this work.

  3. Getting water right: A case study in water yield modelling based on precipitation data.

    Science.gov (United States)

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. Copyright

  4. Is drinking water a risk factor for endemic cryptosporidiosis? A case-control study in the immunocompetent general population of the San Francisco Bay Area

    Directory of Open Access Journals (Sweden)

    Nadle Joelle

    2003-03-01

    Full Text Available Abstract Background Cryptosporidiosis, caused by Cryptosporidium, is an enteric illness that has received much attention as an infection of immunocompromised persons as well as in community outbreaks (frequently waterborne. There are, however, no studies of the risk factors for sporadic community-acquired cryptosporidiosis in the immunocompetent US population. We undertook a case-control study in the San Francisco Bay Area as part of a national study sponsored by the Centers for Disease Control and Prevention to ascertain the major routes of transmission for endemic cryptosporidiosis, with an emphasis on evaluating risk from drinking water. Methods Cases were recruited from a population-based, active surveillance system and age-matched controls were recruited using sequential random-digit dialing. Cases (n = 26 and controls (n = 62 were interviewed by telephone using a standardized questionnaire that included information about the following exposures: drinking water, recreational water, food items, travel, animal contact, and person-to-person fecal contact, and (for adults sexual practices. Results In multivariate conditional logistic regression analyses no significant association with drinking water was detected. The major risk factor for cryptosporidiosis in the San Francisco Bay Area was travel to another country (matched odds ratio [95% confidence interval]: 24.1 [2.6, 220]. Conclusion The results of this study do not support the hypothesis that drinking water is an independent risk factor for cryptosporidiosis among the immunocompetent population. These findings should be used to design larger studies of endemic cryptosporidiosis to elucidate the precise mechanisms of transmission, whether waterborne or other.

  5. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  6. Perceptions of water scarcity: The case of Genadendal and outstations

    Science.gov (United States)

    Noemdoe, S.; Jonker, L.; Swatuk, L. A.

    The water resources management regime has shifted from one focusing almost exclusively on augmenting supply to one where ensuring access, equity and sustainability are an integral part of process. It is widely recognized that South Africa will face water scarcity in the near future. But ‘scarcity’, as we show in our case study, is a relative concept. This paper interrogates perceptions of scarcity in the small South African rural community of Greater Genadendal. Using a wide variety of data, we explore the intersection between poverty alleviation and adequate water supply. The results show that notwithstanding sufficient water being available, the community experiences what Mehta [Mehta, L., 2001. The manufacture of popular perceptions of scarcity: dams and water-related narratives in Gujarat, India. World Development 29 (12), 2025-2041] calls ‘manufactured scarcity’. This is due to inadequate infrastructure, institutional incapacity and a history of political inequality. In the case of Greater Genadendal, these forms of scarcity are present simultaneously leading to a very complex situation. Overcoming these types of scarcity, however, require more than just new infrastructure. They require socio-economic and socio-political types of intervention that target the bases for manufactured scarcity: abiding poverty and socio-inequality. However, there appears to be a lack of social capital, in particular the trust that would enable government and local people to work together for improved livelihoods and sustainable water supplies. Joint resource rehabilitation activities may be one way of building social capital and moving toward IWRM in the study area.

  7. Global Analysis of Changes in Water Supply Yields and Costs under Climate Change. A Case Study in China

    Energy Technology Data Exchange (ETDEWEB)

    Kirshen, P. [Department of Civil and Environmental Engineering and WaterSHED Center, Tufts University, Medford, Massachussetts, 02155 (United States); McCluskey, M. [CDM, Inc., Denver, Colorado (United States); Vogel, R. [Department of Civil and Environmental Engineering and WaterSHED Center, Tufts University, Medford, Massachussetts, 02155 (United States); Strzepek, K. [Department of Civil, Environmental and Architectural Engineering, and Environment and Behavior Program, Institute for Behavioral Science, University of Colorado, Boulder, Colorado, 80309 (United States)

    2005-02-01

    Using China as a case study, a methodology is presented to estimate the changes in yields and costs of present and future water production systems under climate change scenarios. Yield is important to consider because it measures the actual supply available from a river basin. Costs are incurred in enhancing the natural yield of river basins by the construction and operation of reservoirs and ground water pumping systems. The interaction of ground and surface waters within a river basin and instream flow maintenance are also modeled. The water demands considered are domestic, irrigation, and instream flow needs. We found that under climate change the maximum yields of some basins in China may increase or decrease, depending upon location, and that in some basins it may cost significantly more or it may not be possible to meet the demands. While our results for China could be improved with more hydrologic and economic data, we believe that the cost curves developed have suitable accuracy for initial analysis of water supply costs in Integrated Assessment Models.

  8. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  9. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  10. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  11. Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada

    Directory of Open Access Journals (Sweden)

    Kiley Daley

    2014-03-01

    Full Text Available Background: Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives: Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods: Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results: Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions: The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in

  12. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    Science.gov (United States)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  13. Social Acceptance for Reclaimed Water Use: A Case Study in Bengaluru

    Directory of Open Access Journals (Sweden)

    Chaya Ravishankar

    2018-01-01

    Full Text Available The main source of water to the peri-urban areas of Bengaluru is groundwater. Access to groundwater is through tankers, private borewells, Bruhat Bengaluru MahanagaraPalike (Urban Local Body borewells, and public stand posts. All modes other than tankers provide water to the community free of charge. Reclaimed water from sewage treatment plants (STPs is in use by industries and some gated communities and multistoried apartments for toilet flushing and landscaping. For individual households in peri-urban areas of Bengaluru, it could be an additional water source replacing expensive water supply through tankers; reducing demand for groundwater (a finite resource; improving the sanitation system by providing drainage systems and preventing groundwater contamination from black and grey water. Consequently, this research paper investigates the willingness of residents in peri-urban areas of Bengaluru to use reclaimed water for non-potable end uses. To investigate residents’ willingness and key motivations for the use of reclaimed water, a survey of residents in the peri-urban ward of Bellandur was conducted. In this region, the sewerage board had prepared a media advertisement to create awareness of—and to sell—reclaimed water to other users, including local residents. This advertisement was shown to respondents, asking if they were willing to accept and buy the reclaimed water at 15 Indian Rupees (INR per kiloliter. Sixty-seven percent of residents who were household owners were willing to buy reclaimed water, 20% were concerned about hygiene, and 33% of respondents lacked trust in the public agency with respect to water quality standards. The study concludes that public awareness from key stakeholders is essential for the reuse of reclaimed water. It also recommends stringent regulation by levying fees for groundwater extraction in addition to making reclaimed water readily available and supplied free of charge to the consumers. In addition

  14. Studies on water turbine runner which fish can pass through: In case of single stage axial runner

    International Nuclear Information System (INIS)

    Shimizu, Yukimari; Maeda, Takao; Nagoshi, Osamu; Ieda, Kazuma; Shinma, Hisako; Hagimoto, Michiko

    1994-01-01

    The relationship between water turbine runner design and operation and the safe passage of fish through the turbine is studied. The kinds of fish used in the tests are a dace, a sweet fish and a small salmon. A single stage axial runner is used. The velocity and pressure distributions were measured inside the turbine casing and along the casing wall. Many pictures showing fish passing through the rotating runner were taken and analyzed. The swimming speed of the fish was examined from video recordings. Fish pass through the runner more rapidly when they can determine and choose the easier path. Injury and mortality of fish are affected by the runner speed and the location of impact of the runner on the fish body

  15. [A case-control study on the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer in Dayao County].

    Science.gov (United States)

    Mi, Jing; Peng, Wenjia; Jia, Xianjie; Wei, Binggan; Yang, Linsheng; Hu, Liming; Lu, Rong'an

    2015-01-01

    To explore the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer's death in Dayao County. A 1:2 matched case-control study involving 54 death cases of gastrointestinal cancer from a population-based cohort of twenty-seven years and 108 controls matched by age, gender, death time, etc was conducted to analyze the effect of local water condition on the risk of gastrointestinal cancer in Dayao County. Results from logistic regression analysis suggested the longer of asbestos furnace use over time, the higher the mortality risk of gastrointestinal cancer (6 - 10 years: OR = 2.920, 95% CI 1.501 - 5.604. 11 - 15 years: OR = 3.966, 95% CI 2.156 -7.950. Over 15 years: OR = 4.122, 95% CI 1.211 - 7. 584). Drinking unboiled water leaded to an increased risk of gastrointestinal cancer (OR = 1.43, 95% CI 1.07 - 1.88). Type of drinking water was associated with gastrointestinal cancer. When compared with drinking tap water, OR for drinking well water was 1.770 (95% CI 1.001 - 2.444), 2.442 for drinking river water (95% CI 0.956 - 3.950), 2.554 for drinking house and field ditch water (95% CI 1.961 - 6.584), and 3.121 for drinking pond water (95% CI 1.872 - 6.566). Related factors of drinking water in crocidolite-contaminated area in Dayao County were significantly associated with the mortality of gastrointestinal cancer.

  16. Influential third party on water right conflict: A Game Theory approach to achieve the desired equilibrium (case study: Ilam dam, Iran).

    Science.gov (United States)

    Zanjanian, Hossein; Abdolabadi, Hamid; Niksokhan, Mohammad Hossein; Sarang, Amin

    2018-05-15

    Allocating water to organizational stakeholders poses a vital challenge to water managers. Organizations which benefit from water as the primary factor input attempt to achieve their objectives using cost-effective and quick-return strategies, such as increasing the water rights. In such circumstances, lack of water probably results in the conflict. Recognizing the management approaches, organizational priorities, and the stakeholders' influence power can play a dominant role in analyzing the future of such conflicts. In this paper, we analyzed the conflict of water allocation in Ilam dam among organizational stakeholders. We defined the strategies based on the background of the game and organizational objectives. The influence power of stakeholders and the numerical weights of strategies were quantified based on the expert judgment method. The relative priorities of strategies were then calculated for each state of the conflict. We used the GMCR + model to study the actions of stakeholders. Results suggest that the Jihad Agriculture Organization and the Water and Wastewater Company withdraw more water; hence, there exists no water to meet the environmental water right. In this case, the participation of the third party, such as the Governorship and the Justice can change the future of the conflict, and result in moving to the optimal state. However, results from Inverse GMCR analysis demonstrate that Justice is the most influential third party that can move the conflict towards a desired equilibrium (optimal case). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Optimization of turbine positioning in water distribution networks. A Sicilian case study

    Science.gov (United States)

    Milici, Barbara; Messineo, Simona; Messineo, Antonio

    2017-11-01

    The potential energy of water in Water Distribution Networks (WDNs), is usually dissipated by Pressure Reduction Valves (PRVs), thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs), to produce energy in a small network with the aim to avoid dissipation in favour of renewable energy production. The proposed study is applied to a WDN located in a town close to Palermo (Sicily), where users often install private tanks, to collect water during the period of water scarcity conditions. As expected, the economic benefit of PATs installation in WDNs is affected by the presence of private tanks, whose presence deeply modifies the network from designed condition. The analysis is carried out by means of a mathematical model, which is able to simulate dynamically water distribution networks with private tanks and PATs. As expected, the advantage of PATs' installation in terms of renewable energy recovery is strictly conditioned by their placement in the WDN.

  18. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  19. Water supply management using an extended group fuzzy decision-making method: a case study in north-eastern Iran

    Science.gov (United States)

    Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali

    2015-09-01

    The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.

  20. Effect of arsenic contaminated drinking water on human chromosome: a case study.

    Science.gov (United States)

    Singh, Asha Lata; Singh, Vipin Kumar; Srivastava, Anushree

    2013-10-01

    Arsenic contamination of ground water has become a serious problem all over the world. Large number of people from Uttar Pradesh, Bihar and West Bengal of India are suffering due to consumption of arsenic contaminated drinking water. Study was carried out on 30 individuals residing in Ballia District, UP where the maximum concentration of arsenic was observed around 0.37 ppm in drinking water. Blood samples were collected from them to find out the problem related with arsenic. Cytogenetic study of the blood samples indicates that out of 30, two persons developed Klinefelter syndrome.

  1. Public choice in water resource management: two case studies of the small-scale hydroelectric controversy

    Energy Technology Data Exchange (ETDEWEB)

    Soden, D.L.

    1985-01-01

    Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

  2. An alternative approach for socio-hydrology: case study research

    Science.gov (United States)

    Mostert, Erik

    2018-01-01

    Currently the most popular approach in socio hydrology is to develop coupled human-water models. This article proposes an alternative approach, qualitative case study research, involving a systematic review of (1) the human activities affecting the hydrology in the case, (2) the main human actors, and (3) the main factors influencing the actors and their activities. Moreover, this article presents a case study of the Dommel Basin in Belgium and the Netherlands, and compares this with a coupled model of the Kissimmee Basin in Florida. In both basins a pendulum swing from water resources development and control to protection and restoration can be observed. The Dommel case study moreover points to the importance of institutional and financial arrangements, community values, and broader social, economic, and technical developments. These factors are missing from the Kissimmee model. Generally, case studies can result in a more complete understanding of individual cases than coupled models, and if the cases are selected carefully and compared with previous studies, it is possible to generalize on the basis of them. Case studies also offer more levers for management and facilitate interdisciplinary cooperation. Coupled models, on the other hand, can be used to generate possible explanations of past developments and quantitative scenarios for future developments. The article concludes that, given the limited attention they currently get and their potential benefits, case studies deserve more attention in socio-hydrology.

  3. What is in a Business Case? Business Cases as a Tool‐in‐Use for Promoting Water Stewardship

    DEFF Research Database (Denmark)

    Pedersen, Esben Rahbek Gjerdrum; Lauesen, Linne Marie; Rosati, Francesco

    This paper explores the role of business cases as a tool‐in‐use for decision‐making processes on Water management. The literature is rich on generic discussions of the business case for corporate sustainability, whereas there have been less efforts to examine the concrete use of business cases...... in everyday organisational life. Drawing on the practice‐based management literature, it is concluded that the business case tool has a decisive influence on water management activities among European food companies. However, the analysis also show the business case tool are not set in stone but can...

  4. CASE STUDY ON WATER QUALITY CONTROL IN AN AQUAPONIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Radu Mihai Filep

    2016-07-01

    Full Text Available Aquaponic systems are integrated systems that combine fish farming and different types of plants. It involves a dynamic interaction between fish plants and bacteria. Fish and plants are dependent the equilibrium of dissolved nutrients and water quality. Only by striking a balance between dissolved nutrients and water quality we can achieve a large production of plants and healthy fish. Thus, control of water quality in an aquaponic system is essential in order to obtain performance in raising fish and plants. The experiment was conducted in the laboratory of Fisheries and Aquaculture of the Faculty of Animal Science of the University of Agronomic Sciences and Veterinary Medicine of Bucharest within a period of 30 days. The system used for the experiment was designed and developed in the laboratory mentioned above. The plant used for water treatment in the system was basil (Ocimum basilicum. Fish species grown in the system was culture carp (Cyprinus carpio. Indicators measured to assess water quality in the system were: temperature, pH, dissolved oxygen, total ammonia, nitrites, nitrates and phosphates. The values determined pH 7.4-7.6, dissolved oxygen 8-10 mg / l, NH4 0.05-05 mg/ l, NO2 0.1-3.2 mg / l, NO3 0-80 mg / l, 0.02-0.3 mg, PO4 0.02-0.3 mg/l were not too high. In conclusion it was demonstrated that water quality in the aquaponic system studied is propitious to the growth and welfare of fish the registered values are not to be harmful.

  5. Perceptions of Water Pricing during a Drought: A Case Study from South Australia

    Directory of Open Access Journals (Sweden)

    John Martin

    2013-02-01

    Full Text Available This paper examines the perceptions of urban and regional water consumers in three areas of South Australia on the fairness of the water pricing system, the impact of increases in water pricing on households and pricing as a driver of water conservation. The study was conducted in 2009 during a time of severe drought and mandatory water restrictions. The results did not show a general aversion to all aspects of price increases but rather different sectors of the population were particularly resistant to different, specific aspects of water pricing. A state-wide water pricing policy in South Australia means that all consumers pay the same rate per volume of water consumed regardless of their location; yet in the regional study area, where it costs more for the service provider to supply the water, the respondents had stronger feelings that the price of water should be higher in places where it costs more to supply it. Generally, low income earners were less in favor of a block pricing system than higher income earners. The latter findings indicate a common lack of awareness around various aspects of water pricing. Some implications of the findings for water managers are outlined.

  6. Nanomaterial Case Studies: Nanoscale Titanium Dioxide (External Review Draft)

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental asses...

  7. Assessment of food-water nexus by water footprint: a case study in Saskatchewan, Canada

    Science.gov (United States)

    Zhao, Y.; Si, B.

    2016-12-01

    It is important but challengeable to understand the water-food nexus complexity. The water footprint (WF), a relatively new index, is a comprehensive indicator that can be used to evaluate crop water production. This paper aims to 1) determine how water footprint changes at different crop rotational types; 2) investigate what is difference if WF is calculated by yield-based or protein-based; and 3) explore how virtual water flows are responding to regional meteorological, agricultural, and socio-economic factors. The result provided the water footprint and virtual water flow exemplified for Saskatchewan agri-food production industries. By using the water footprint, we determined the best rotation for pulse crops in terms of efficiency of water productivity and water-saving opportunity. While yield is a comprehensive index to assess the productivity (yield-based WF), it underestimated the contribution of some crops, such as pulse crops with relatively low yield but high protein contents (protein-based WF). Consequently, we concluded that water-saving benefits can be achieved by the development and adoption of water efficient technology and better virtual water flows may be achieved by increased area of low water footprint in Saskatchewan. Our finding improves the current concepts of water and food security, informs production and trade decisions, and thus suggests optimal strategies by reduced water footprints in terms of agricultural management.

  8. Investigating the Wicked Problems of (Un)sustainability Through Three Case Studies Around the Water-Energy-Food Nexus

    Science.gov (United States)

    Metzger, E. P.; Curren, R. R.

    2016-12-01

    Effective engagement with the problems of sustainability begins with an understanding of the nature of the challenges. The entanglement of interacting human and Earth systems produces solution-resistant dilemmas that are often portrayed as wicked problems. As introduced by urban planners Rittel and Webber (1973), wicked problems are "dynamically complex, ill-structured, public problems" arising from complexity in both biophysical and socio-economic systems. The wicked problem construct is still in wide use across diverse contexts, disciplines, and sectors. Discourse about wicked problems as related to sustainability is often connected to discussion of complexity or complex systems. In preparation for life and work in an uncertain, dynamic and hyperconnected world, students need opportunities to investigate real problems that cross social, political and disciplinary divides. They need to grapple with diverse perspectives and values, and collaborate with others to devise potential solutions. Such problems are typically multi-casual and so intertangled with other problems that they cannot be resolved using the expertise and analytical tools of any single discipline, individual, or organization. We have developed a trio of illustrative case studies that focus on energy, water and food, because these resources are foundational, interacting, and causally connected in a variety of ways with climate destabilization. The three interrelated case studies progress in scale from the local and regional, to the national and international and include: 1) the 2010 Gulf of Mexico oil spill with examination of the multiple immediate and root causes of the disaster, its ecological, social, and economic impacts, and the increasing risk and declining energy return on investment associated with the relentless quest for fossil fuels; 2) development of Australia's innovative National Water Management System; and 3) changing patterns of food production and the intertwined challenge of

  9. Analysis of profitability of using a heat recovery system from grey water discharged from the shower (case study of Poland)

    Science.gov (United States)

    Kordana, Sabina; Słys, Daniel

    2017-11-01

    The paper analyses the profitability of the use of Drain Water Heat Recovery units. An original simulation model was used for this purpose, and a detached residential building located in Poland was selected as the test facility. The conducted analysis proved that the type of the hot water heater has decisive influence on the profitability level of such an investment. Application of the abovementioned technology is particularly profitable, when water is heated with the use of an electrical device. When the energy source in the system is a gas water heater, the obtained calculation results are not as favourable, and the period of investment return in many cases exceeds the expected service life of these devices. Moreover, the analysis demonstrated that the potential energy savings, and thus also the financial savings, may be in both cases increased as a result of simultaneous intake of water from various water taps.

  10. Suitability assessment of the urban water management transition in the Indonesian context - A case study of Surabaya

    Science.gov (United States)

    Sholihah, Mar'atus; Anityasari, Maria; Maftuhah, Diesta Iva

    2017-06-01

    The rapidly growing urban population, the increasing impact of climate change, and the constantly decreasing availability of the good quality water become the major triggers that force urban water professionals to continuously focus on sustainable urban water management (SUWM). The city as a focal point of population growth in the world has become a critical object for its resiliency, not only in terms of the environmental deterioration but also of the water supplies security. As a response to the current condition, the framework of urban water management transition has been introduced as a sort of transformation for a city to achieve SUWM. Water Sensitive City (WSC) is the ultimate goal of this framework which integrates water access and supply security, public health protection, flood prevention, environmental protection and livability, and economic sustainability. Recently, the urban water management transition and WSC concept are going to be implemented in some cities in Indonesia, including Surabaya. However, in addition to provide a wide range of benefits, the implementation of WSC also brings challenges. In terms of geographical and social aspect, public policy, and the citizen behavior, the cities in Indonesia are undoubtedly different with those in Australian where the concept was developed. Hence, assessing the suitability of urban water management transition in the Indonesian context can be perceived as the most important phase in this whole plan. A case study of Surabaya would be identified as a baseline to measure whether the proposed sequence of urban water management transition is suitable for Indonesian local context. The research aimed to assess the suitability of the framework to be implemented in Indonesia and to propose the modified framework which is more suitable for local context in Indonesia.

  11. Participatory Research for Adaptive Water Management in a Transition Country - a Case Study from Uzbekistan

    Directory of Open Access Journals (Sweden)

    Darya Hirsch

    2010-09-01

    Full Text Available Participatory research has in recent years become a popular approach for problem-oriented scientific research that aims to tackle complex problems in a real management context. Within the European Union project NeWater, stakeholder processes were initiated in seven case studies to develop approaches for adaptive water management. The Uzbek part of the Amudarya River basin was one of the studied river basins. However, given the current political and cultural context in Uzbekistan, which provides little room for stakeholder participation, it was unclear to what extent participation could be realized there. In this paper, we present an evaluation of the participatory research carried out in the Amudarya case study with respect to (i the choice and application of different participatory methods and their adaptation to the given political, socioeconomic, and cultural environment, (ii their usefulness in improving system understanding and developing strategies and measures to improve water management and monitoring, and (iii their acceptance and suitability for enhancing policy-making processes in the Amudarya River basin context. The main lessons learned from the comparison of the different participatory methods were (1 the stakeholder process provided an opportunity for meetings and discussions among stakeholders from different organizational levels and thus promoted communication between different levels and organizations, and (2 in a context where most stakeholders are not generally involved in policy-making, there is a danger of raising expectations that a research project cannot meet, e.g., of transferring local interests to higher levels. Our experience shows that in order to choose participatory methods and adapt them to the Uzbek cultural and political setting (and most likely this applies to other post-Soviet transition countries as well, four aspects should be taken into account: the time required to prepare and apply the method, good

  12. Policy Entrepreneurs and Change Strategies: Lessons from Sixteen Case Studies of Water Transitions around the Globe

    Directory of Open Access Journals (Sweden)

    Sander Meijerink

    2010-06-01

    Full Text Available This paper focuses on the role of policy entrepreneurs in realizing water policy transitions. The central questions are to what extent have policy entrepreneurs played a role in realizing major change in water policies, who are these policy entrepreneurs, and what strategies have they used to bring about change? The policy science literature suggests that policy entrepreneurs have an "arsenal" of possible strategies for achieving change. Based on a comparative analysis of water policy changes in 15 countries around the globe and the European Union, we investigate which strategies have in practice been used by policy entrepreneurs, to what effect, and which lessons for managing water transitions we can draw from this. The comparative case analysis shows that individuals play complementary roles; hence, entrepreneurship in water management is often collective entrepreneurship. Strategies of coalition building, the manipulation of decision making forums, and the strategic framing of issues and windows are crucial to understanding water policy change, which suggests that the management of water policy transitions is a highly political game. We conclude by listing recommendations for those who would like to direct water policy change.

  13. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    Science.gov (United States)

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  14. Application of cooperative and non-cooperative games in large-scale water quantity and quality management: a case study.

    Science.gov (United States)

    Mahjouri, Najmeh; Ardestani, Mojtaba

    2011-01-01

    In this paper, two cooperative and non-cooperative methodologies are developed for a large-scale water allocation problem in Southern Iran. The water shares of the water users and their net benefits are determined using optimization models having economic objectives with respect to the physical and environmental constraints of the system. The results of the two methodologies are compared based on the total obtained economic benefit, and the role of cooperation in utilizing a shared water resource is demonstrated. In both cases, the water quality in rivers satisfies the standards. Comparing the results of the two mentioned approaches shows the importance of acting cooperatively to achieve maximum revenue in utilizing a surface water resource while the river water quantity and quality issues are addressed.

  15. Exploring the links between water, sanitation and hygiene and disability; Results from a case-control study in Guatemala.

    Science.gov (United States)

    Kuper, Hannah; Mactaggart, Islay; White, Sian; Dionicio, Carlos; Cañas, Rafael; Naber, Jonathan; Polack, Sarah; Biran, Adam

    2018-01-01

    To assess the Water, Sanitation and Hygiene (WASH) access and appropriateness of people with disabilities compared to those without, in Guatemala. A case-control study was conducted, nested within a national survey. The study included 707 people with disabilities, and 465 age- and sex-matched controls without disabilities. Participants reported on WASH access at the household and individual level. A sub-set of 121 cases and 104 controls completed a newly designed, in-depth WASH questionnaire. Households including people with disabilities were more likely to use an improved sanitation facility compared to control households (age-sex-adjusted OR: 1.7, 95% CI 1.3-2.5), but otherwise there were no differences in WASH access at the household level. At the individual level, people with disabilities reported greater difficulties in relation to sanitation (mean score 26.2, SD 26.5) and hygiene access and quality (mean 30.7, SD 24.2) compared to those without disabilities (15.5, 21.7, p<0.001; 22.4, 19.1, p<0.01). There were no differences in different aspects of water collection between people with and without disabilities in this context where over 85% of participants had water piped into their dwelling. Among people with disabilities, older adults were more likely to experience difficulties in hygiene and sanitation than younger people with disabilities. People with disabilities in Guatemala experience greater difficulties in accessing sanitation facilities and practicing hygienic behaviours than their peers without disabilities. More data collection is needed using detailed tools to detect these differences, highlight which interventions are needed, and to allow assessment of their effectiveness.

  16. Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany

    Directory of Open Access Journals (Sweden)

    Anna Göritz

    2018-01-01

    Full Text Available Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a concentration and colored dissolved organic matter (CDOM absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM, Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.

  17. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters

    Science.gov (United States)

    Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.

    1999-04-01

    An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

  18. Drivers of microbiological quality of household drinking water - a case study in rural Ethiopia.

    Science.gov (United States)

    Usman, Muhammed A; Gerber, Nicolas; Pangaribowo, Evita H

    2018-04-01

    This study aims at assessing the determinants of microbiological contamination of household drinking water under multiple-use water systems in rural areas of Ethiopia. For this analysis, a random sample of 454 households was surveyed between February and March 2014, and water samples from community sources and household storage containers were collected and tested for fecal contamination. The number of Escherichia coli (E. coli) colony-forming units per 100 mL water was used as an indicator of fecal contamination. The microbiological tests demonstrated that 58% of household stored water samples and 38% of protected community water sources were contaminated with E. coli. Moreover, most improved water sources often considered to provide safe water showed the presence of E. coli. The result shows that households' stored water collected from unprotected wells/springs had higher levels of E. coli than stored water from alternative sources. Distance to water sources and water collection containers are also strongly associated with stored water quality. To ensure the quality of stored water, the study suggests that there is a need to promote water safety from the point-of-source to point-of-use, with due considerations for the linkages between water and agriculture to advance the Sustainable Development Goal 6 of ensuring access to clean water for everyone.

  19. Physical and chemical quality, biodiversity, and thermodynamic prediction of adhesion of bacterial isolates from a water purification system: a case study

    Directory of Open Access Journals (Sweden)

    Roberta Barbosa Teodoro Alves

    2017-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the quality of water purification system and identify the bacteria this system, predict bacterial adherence according to the hydrophobicity of these microorganisms and of the polypropylene distribution loop for purified water. The assessment of drinking water that supplies the purification system allowed good-quality physical, chemical, and microbiological specifications. The physicochemical specifications of the distributed purified water were approved, but the heterotrophic bacteria count was higher than allowed (>2 log CFU mL-1.The sanitation of the storage tank with chlorine decreased the number of bacteria adhered to the surface (4.34 cycles log. By sequencing of the 16SrDNA genes, six species of bacteria were identified. The contact angle was determined and polypropylene surface and all bacteria were considered to be hydrophilic, and adhesion was thermodynamically unfavorable. This case study showed the importance of monitoring the water quality in the purified water systems and the importance of sanitization with chemical agents. The count of heterotrophic bacteria on the polypropylene surface was consistent with the predicted thermodynamics results because the number of adhered cells reached approximate values of 5 log CFU cm-2.

  20. Fluoride removal from aqueous solution by pumice: case study on ...

    African Journals Online (AJOL)

    The fluoride removal from synthetic water by pumice was studied at batch experiments in this study. The effect of pH, contact time, fluoride concentration and adsorbent dose on the fluoride sequestration was investigated. The optimum conditions were studied on Kuhbonan water as a case study. The results showed that ...

  1. Measuring turbidity, and indicator to evaluate drinkability of waters in Southern countries? Approaches from Burkina Faso, Sudan and Argentina case studies

    Science.gov (United States)

    Lavie, Emilie; Robert, Elodie

    2013-04-01

    The relationship between proportion of suspended solids, dissolved oxygen and bacteriology has long been proven (Brock, 1966; Lechevallier et al., 1985; Bustina and Levallois, 2003; Chang and Liao, 2012), bacteria need coarse elements to hang on and develop. However, water bacteriology analyses are difficult to implement in southern countries. They are expensive and require sterile equipment, transport in cold conditions and a nearby laboratory, which remains difficult in remote areas under these hot latitudes. Yet, simple measurement devices allow to know in a few minutes the water turbidity. Is turbidity an efficient tool to evaluate the drinkability of water when no bacteriological analyses are possible? The results proposed here are taken from three different studies whose purposes were to measure different physical, chemical and bacteriological parameters of water used for human and/or animal consumption. One of the finalities was to propose a method, at lower cost, to evaluate the drinkability of water for consumption. Four case studies were chosen: the basin of the Doubegue River in Burkina Faso is a rural area of a developing country, where drinking water is taken from the alluvial aquifer close to the surface. Furthermore, the laundry is washed and the children play in running streams. Major expansion of the cultivated lands since 1980s has brought important soils losses, thus a chronicle contamination of surface water with suspended solids (Robert, 2012). The Mendoza and Tunuyán Rivers Basins in Argentina, an emerging country, have snow-glaciar regimes with naturally turbid waters. They supply drinking water to two towns, Mendoza and Tunuyán cities, respectively 1 million and 40,000 inhabitants. However, these two streams -whose watersheds are common- do not present the same managements: the Mendoza River has been equipped with large hydraulic infrastructures, moving the turbid waters into clear and erosive ones (Lavie, 2009), while the Tunuyán River

  2. A mixed-methods approach to assessing success in transitioning water management institutions: a case study of the Platte River Basin, Nebraska

    Directory of Open Access Journals (Sweden)

    Christina Hoffman Babbitt

    2015-03-01

    Full Text Available To address increasing conflicts between surface water and groundwater users, the state of Nebraska has adopted a more localized and integrated approach in managing water resources. Integrated approaches offer promise in better managing connected water resources within the state; however, little review of the potential benefits and/or challenges of these actions has been conducted. This case study uses both qualitative and quantitative data collection efforts to take an in-depth look at how this new and innovative management system is working through the eyes of stakeholders living and working in the basin. Data collection reveals that overall the current water management system is working relatively well, even though it is still in its infancy. However, the system could be further improved by ensuring all that stakeholder interests are represented, providing increased opportunities to participate, and continuing to work toward more holistic and proactive water management.

  3. The H2O20 FREEWAT participated approach for the Follonica-Scarlino aquifer case study. A common space to generate shared knowledge on the value of water

    Directory of Open Access Journals (Sweden)

    Pio Positano

    2017-09-01

    Full Text Available The “Follonica-Scarlino Aquifer” case study is run within the H2020 FREEWAT project by Regione Toscana as partner of an international consortium. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU water related Directives. The tool used to reach this target is an open source and public domain GIS integrated modeling environment for the simulation of water quantity and quality in surface water and groundwater. The case study area is located in a coastal plain in the Southern part of Tuscany (Italy and the aquifer system is affected by various issues: in particular, the numerical model created through FREEWAT platform was used to study the problem of aquifer over-exploitation . The deficit in quantity of the water resource is mainly caused by the huge industrial and agricultural abstractions, but drinking water supply during the summer season is also notable. The participatory approach, included in the FREEWAT project, became of crucial importance to gather the huge amount of data about the aquifer system and to create a shared knowledge about water resource. It was carried out through seven focus groups and led the stakeholders to reach an agreement about the scenarios to be explored with FREEWAT software platform. Focus Group 1 to 3 were used to identify the case study objectives. Focus Groups 4 to 6 allowed to assess the water management issues and select the scenarios. The community chose two of the four scenarios that came out from the focus group meetings. Simulations corresponding to these two scenarios have shown, the effectiveness of the proposed technical solutions for achieving the objectives set out in the River Basin Management Plan of the Northern Apennines District. At the end of the focus group cycle, useful suggestions and feedbacks came from stakeholders, to set up a new kind of water management. Some experts working for local industries expressed

  4. Assimilating InSAR Maps of Water Vapor to Improve Heavy Rainfall Forecasts: A Case Study With Two Successive Storms

    Science.gov (United States)

    Mateus, Pedro; Miranda, Pedro M. A.; Nico, Giovanni; Catalão, João.; Pinto, Paulo; Tomé, Ricardo

    2018-04-01

    Very high resolution precipitable water vapor maps obtained by the Sentinel-1 A synthetic aperture radar (SAR), using the SAR interferometry (InSAR) technique, are here shown to have a positive impact on the performance of severe weather forecasts. A case study of deep convection which affected the city of Adra, Spain, on 6-7 September 2015, is successfully forecasted by the Weather Research and Forecasting model initialized with InSAR data assimilated by the three-dimensional variational technique, with improved space and time distributions of precipitation, as observed by the local weather radar and rain gauge. This case study is exceptional because it consisted of two severe events 12 hr apart, with a timing that allows for the assimilation of both the ascending and descending satellite images, each for the initialization of each event. The same methodology applied to the network of Global Navigation Satellite System observations in Iberia, at the same times, failed to reproduce observed precipitation, although it also improved, in a more modest way, the forecast skill. The impact of precipitable water vapor data is shown to result from a direct increment of convective available potential energy, associated with important adjustments in the low-level wind field, favoring its release in deep convection. It is suggested that InSAR images, complemented by dense Global Navigation Satellite System data, may provide a new source of water vapor data for weather forecasting, since their sampling frequency could reach the subdaily scale by merging different SAR platforms, or when future geosynchronous radar missions become operational.

  5. Case Study: Testing with Case Studies

    Science.gov (United States)

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  6. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

    Science.gov (United States)

    Rosa, Ghislaine; Huaylinos, Maria L.; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Background Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. Methods and Findings We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases. PMID:25522371

  7. Case Study of Urban Water Distribution Networks Districting Management Based on Water Leakage Control

    OpenAIRE

    Wu, S.; Li, Xiaohong; Tang, S.; Zhou, Y.; Diao, K.

    2009-01-01

    Globally, water demand is rising and resources are diminishing. Most of the world's water systems have been highly successful in delivering high-quality water to large populations. However, most of these systems also incur a notable amount of loss in their operations. Water loss from the water supply system has long been a feature of operations management, even in the countries with a well-developed infrastructure and good operating practices. There is no doubt that the sustainable management...

  8. Water Footprint Assessment in the Agro-industry: A Case Study of Soy Sauce Production

    OpenAIRE

    Aulia Firda Alfiana; Purwanto

    2018-01-01

    In terms of global water scarcity, the water footprint is an indicator of the use of water resources that given knowledge about the environmental impact of consuming a product. The sustainable use of water resources nowadays bring challenges related to the production and consumption phase of water intensive related goods such as in the agro-industry. The objective of the study was to assessment the total water footprint from soy sauce production in Grobogan Regency. The total water footprint ...

  9. The challenge of integration in the implementation of Zimbabwe’s new water policy: case study of the catchment level institutions surrounding the Pungwe-Mutare water supply project

    Science.gov (United States)

    Tapela, Barbara Nompumelelo

    Integrated water resources management (IWRM) is viewed by policy makers and practitioners as facilitating the achievement of a balance between water resource use and resource protection, and the resolution of water-related conflicts. The IWRM approach has found particular use in the new water policies of Southern African countries such as Zimbabwe, where water scarcity, after the land question, is perceived to be a major threat to political, economic, social, military and environmental security. Ultimately, IWRM is seen as providing a framework towards ensuring broader security at the local, national, regional and global levels. However, the pilot phase implementation of the new water policy in the various regional countries has revealed that although the legal and institutional frameworks have been put in place, the implementation of the IWRM approach has tended to be problematic (J. Latham, 2001; GTZ, 2000; Leestemaker, 2000; Savenige and van der Zaag, 2000; Sithole, 2000). This paper adopts a case study approach and empirically examines the institutional challenges of implementing the IWRM approach in the post-pilot phase of Zimbabwe's new water policy. The focus is mainly on the institutional arrangements surrounding the Pungwe-Mutare Water Supply Project located within the Save Catchment Area in Eastern Zimbabwe. The major findings of the study are that, while there persist some problems associated with the traditional management approach, there have also emerged new challenges to IWRM. These mainly relate to the transaction costs of the water sector reforms, institutional resilience, stakeholder participation, and the achievement of the desired outcomes. There have also been problems emanating from unexpected political developments at the local and national levels, particularly with regard to the government's ;fast track; land resettlement programme. The paper concludes that there is a need for a more rigorous effort towards integrating the management of

  10. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    Science.gov (United States)

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process.

  11. Economic Value Approach to Industrial Water Demand Management, A Case Study of Chemical Plants

    Directory of Open Access Journals (Sweden)

    morteza tahami pour zarandi

    2017-03-01

    Full Text Available Limitations in water supply to meet the increasing demand have encouraged both planners and researchers to focus attention on water demand management, in which such economic tools as the water pricing system play a major role. A fundamental component of the pricing system is the estimation of the economic value of water, which reflects a firm’s maximum affordable water price or the ultimate elasticity of industrial water. The present study was conducted to estimate the economic value of water for basic chemical plants, excluding fertilizers and nitrogen compounds (code 2411, representing the four-digit ISIC industrial codes which account for about 14% of the total industrial water consumption. The econometric method of production function within the framework of panel data and the residual method were used. Data were collected from the Census of medium-sized businesses carried out by the Statistical Center of Iran over the period 1997–2013.  Results showed that one cubic meter of water allocated to the plants surveyed creates a value of 3,7071 Rials, which shows a large gap with the current purchase price of 5685 Rials. Moreover, it was found that the present water prices account for only about 1.3 percent of the total production cost of basic chemicals, excluding fertilizers and nitrogen compounds. It may, thus, be concluded that it is reasonable to increase the present water tariffs and discriminate among the various manufacturing codes by differences in tariffs in order to achieve water demand management goals. Finally, the information emerging from the study may be exploited to improve the revenues earned by water authorities or to carry out feasibility studies of industrial water development projects.

  12. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  13. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea.

    Science.gov (United States)

    Houri, Daisuke; Koo, Chung Mo

    2015-09-01

    The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the "Prerequisites for Tasty Water" and the "Standards for Tasty Water" devised for city water. The PET Bottled water varieties analyzed in this study-Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND-showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health water studied here fulfills the "Water Index of Taste," "Water Index of Health," "Standard for Tasty Water" and "Prerequisites for Tasty Water" that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people.

  14. The Study of Tourists' Behavior in Water Usage in Hotel Business: Case Study of Phuket Province, Thailand

    OpenAIRE

    A. Pensiri; K. Nantaporn; P. Parichut

    2016-01-01

    Tourism is very important to the economy of many countries due to the large contribution in the areas of employment and income generation. However, the rapid growth of tourism can also be considered as one of the major uses of water user, and therefore also have a significant and detrimental impact on the environment. Guest behavior in water usage can be used to manage water in hotels for sustainable water resources management. This research presents a study of hotel guest water usage behavio...

  15. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    Science.gov (United States)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  16. The Potential of Using Rain Water in Thailand; Case study Bangsaiy Municipality, Ayutthaya

    Directory of Open Access Journals (Sweden)

    Nathaporn Areerachakul

    2013-09-01

    Full Text Available Rainwater has been widely use in developing countries including Thailand. In the study area, Ayutthaya, rainwater is not much in use due to the quality, abundance and low tariff of municipal water supply. However a survey of residents has shown that there is interest in using rainwater for drinking. The community purchases bottled water and treats water by boiling or by on-site purification devices. A high level of demand for rainwater use was found in this study and this is attributed to past practices and a local culture of using rainwater. It was found that more than 90% of respondents were interested in using rainwater if it was of good quality. Piped water tariffs are currently very low in the range of 4 to 5 THB per m3. Approximately 70% of households from a questionnaire survey were satisfied with the current tariff. However, it should be noted that the true cost of water should be 9-11 THB per m3. From the same survey, 63% of respondents who currently purchase bottled water are interested in using rainwater as drinking water subject to its acceptable quality. The estimation cost of pilot design is 50,000 to 80,000 THB or 1,200 to 2,500 US dollars.

  17. Multi-criteria analysis towards the new end use of recycled water for household laundry: a case study in Sydney.

    Science.gov (United States)

    Chen, Z; Ngo, H H; Guo, W S; Listowski, A; O'Halloran, K; Thompson, M; Muthukaruppan, M

    2012-11-01

    This paper aims to put forward several management alternatives regarding the application of recycled water for household laundry in Sydney. Based on different recycled water treatment techniques such as microfiltration (MF), granular activated carbon (GAC) or reverse osmosis (RO), and types of washing machines (WMs), five alternatives were proposed as follows: (1) do nothing scenario; (2) MF+existing WMs; (3) MF+new WMs; (4) MF-GAC+existing WMs; and (5) MF-RO+existing WMs. Accordingly, a comprehensive quantitative assessment on the trade-off among a variety of issues (e.g., engineering feasibility, initial cost, energy consumption, supply flexibility and water savings) was performed over the alternatives. This was achieved by a computer-based multi-criteria analysis (MCA) using the rank order weight generation together with preference ranking organization method for enrichment evaluation (PROMETHEE) outranking techniques. Particularly, the generated 10,000 combinations of weights via Monte Carlo simulation were able to significantly reduce the man-made errors of single fixed set of weights because of its objectivity and high efficiency. To illustrate the methodology, a case study on Rouse Hill Development Area (RHDA), Sydney, Australia was carried out afterwards. The study was concluded by highlighting the feasibility of using highly treated recycled water for existing and new washing machines. This could provide a powerful guidance for sustainable water reuse management in the long term. However, more detailed field trials and investigations are still needed to effectively understand, predict and manage the impact of selected recycled water for new end use alternatives. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  19. Voluntary Management of Residential Water Demand in Low and Middle-Low Income Households: Case Study of Soacha (colombia)

    Science.gov (United States)

    Acosta, R.; Rodriguez, J. P.

    2016-12-01

    Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.

  20. A Quantitative Method for Long-Term Water Erosion Impacts on Productivity with a Lack of Field Experiments: A Case Study in Huaihe Watershed, China

    Directory of Open Access Journals (Sweden)

    Degen Lin

    2016-07-01

    Full Text Available Water erosion causes reduced farmland productivity, and with a longer period of cultivation, agricultural productivity becomes increasingly vulnerable. The vulnerability of farmland productivity needs assessment due to long-term water erosion. The key to quantitative assessment is to propose a quantitative method with water loss scenarios to calculate productivity losses due to long-term water erosion. This study uses the agricultural policy environmental extender (APEX model and the global hydrological watershed unit and selects the Huaihe River watershed as a case study to describe the methodology. An erosion-variable control method considering soil and water conservation measure scenarios was used to study the relationship between long-term erosion and productivity losses and to fit with 3D surface (to come up with three elements, which are time, the cumulative amount of water erosion and productivity losses to measure long-term water erosion. Results showed that: (1 the 3D surfaces fit significantly well; fitting by the 3D surface can more accurately reflect the impact of long-term water erosion on productivity than fitting by the 2D curve (to come up with two elements, which are water erosion and productivity losses; (2 the cumulative loss surface can reflect differences in productivity loss caused by long-term water erosion.

  1. Energy recovery in SUDS towards smart water grids: A case study

    International Nuclear Information System (INIS)

    Ramos, Helena M.; Teyssier, Charlotte; Samora, Irene; Schleiss, Anton J.

    2013-01-01

    The development of a methodology for urban flood adaptation and energy recovery solutions is resting on the concept of Sustainable Urban Drainage Systems (SUDS) as a measure to reduce risks of urban flooding while fully utilizing the available resources. Flood drainage systems are infrastructures essential in urban areas, which include retention ponds that can be used as water storage volumes to damp floods and simultaneously to produce energy, constituting innovative solutions to be integrated in future smart water grid′s designs. The consideration of urban flooding as a problem caused by excess water that can be harvested and re-used is expected to provide a comprehensive representation of a water-energy nexus for future urban areas. The study comprises an optimization of energy recovery in SUDS of a small district area of Lisbon down-town through the use of a low-head hydropower converter. The status-quo solution based on a basin catchment for the average expected runoff is analysed, with influence of the tidal backwater effect of the Atlantic Ocean which causes difficulties to the drainage of excess flow. The methodology used to reach the flow damping and the optimized solution for energy production is presented. -- Highlights: •An innovative solution for Sustainable Urban Drainage Systems (SUDS). •Use of retention ponds to reduce risks of urban flooding while producing energy. •Use of recently developed hydropower converters for low heads. •Solution to be integrated in future smart water networks for increasing efficiency. •Water and energy nexus for sustainable operation towards future smart cities

  2. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  3. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    Science.gov (United States)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  4. Cryptosporidium and Giardia in Surface Water: A Case Study from Michigan, USA to Inform Management of Rural Water Systems

    Directory of Open Access Journals (Sweden)

    Erin A. Dreelin

    2014-10-01

    Full Text Available Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1 explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2 examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3 synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001 with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies.

  5. Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)

    International Nuclear Information System (INIS)

    Venkatesh, G.; Brattebo, Helge

    2011-01-01

    Energy consumption in the operation and maintenance phase of the urban water and wastewater network is directly related to both the quantity and the desired quality of the supplied water/treated wastewater - in other words, to the level of service provided to consumers. The level of service is dependent on not just the quantity and quality of the water but also the state of the infrastructure. Maintaining the infrastructure so as to be able to provide the required high level of service also demands energy. Apart from being a significant operational cost component, energy use also contributes to life-cycle environmental impacts. This paper studies the direct energy consumption in the operation and maintenance phase of the water and wastewater system in Oslo; and presents a break-up among the different components of the network, of quantities, costs and environmental impacts. Owing to the diversity in the periods of time for which comprehensive data for the whole system are available, the study period is restricted to years 2000-2006. The per-capita annual consumption of energy in the operational phase of the system varied between 220 and 260 kWh; and per-capita annual expenses on energy in inflation-adjusted year-2006-Euros ranged between 6.5 and 11 Euros. The energy consumed on the upstream, per unit volume water supplied was around 0.4 kWh on average, while the corresponding value for the downstream was 0.8 kWh per cubic metre wastewater treated. The upstream Greenhouse gas (GHG) emissions ranged between 70 and 80 g per cubic metre of water supplied, about 22% greater on average than the corresponding specific GHG emissions on the downstream. -- Research highlights: → Annual per-capita energy consumption in the Operation and Maintenance (O and M) phase of the system varied between 220 and 260 kWh. → Annual per-capita annual expenses on energy in inflation-adjusted year-2006-Euros ranged between 6.5 and 11 Euros. → Upstream O and M energy consumption per

  6. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  7. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    OpenAIRE

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-01-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed t...

  8. Understanding farmers' intention and behavior regarding water conservation in the Middle-East and North Africa: a case study in Iran.

    Science.gov (United States)

    Yazdanpanah, Masoud; Hayati, Dariush; Hochrainer-Stigler, Stefan; Zamani, Gholam Hosein

    2014-03-15

    There is a high risk of serious water shortages in Middle-East and North African countries. To decrease this threat water conservation strategies are gaining overall importance and one main focus is now on farmer's behavior. Among other dimensions it is assumed that normative issues play an important role in predicting environmental oriented intentions and actual actions. To empirically test the possible interactions the Theory of Planned Behavior was used, revised and expanded for the specific case on water management issues and applied to Iranian farmers. The results could not validate the TPB framework which emphasizes the importance of perceived behavioral control for intention and actual behavior and findings are much more in line with the Theory of Reasoned Action. Normative inclinations as well as perception of risk are found to be important for intention as well as actual water conservation behavior. Additionally, the importance and linkages of the dimensions are found to be different between sub-groups of farmers, especially between traditional water management farmers and those who already using advanced water management strategies. This raises the question if one-fits-all behavioral models are adequate for practical studies where sub-groups may very much differ in their actions. Still, our study suggests that in the context of water conservation, normative inclination is a key dimension and it may be useful to consider the role of positive, self-rewarding feelings for farmers when setting up policy measures in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  10. Water Footprint Assessment in the Agro-industry: A Case Study of Soy Sauce Production

    Science.gov (United States)

    Firda, Alfiana Aulia; Purwanto

    2018-02-01

    In terms of global water scarcity, the water footprint is an indicator of the use of water resources that given knowledge about the environmental impact of consuming a product. The sustainable use of water resources nowadays bring challenges related to the production and consumption phase of water intensive related goods such as in the agro-industry. The objective of the study was to assessment the total water footprint from soy sauce production in Grobogan Regency. The total water footprint is equal to the sum of the supply chain water footprint and the operational water footprint. The assessment is based on the production chain diagram of soy sauce production which presenting the relevant process stages from the source to the final product. The result of this research is the total water footprint of soy sauce production is 1.986,35 L/kg with fraction of green water 78,43%, blue water 21,4% and gray water 0,17%.

  11. Water Footprint Assessment in the Agro-industry: A Case Study of Soy Sauce Production

    Directory of Open Access Journals (Sweden)

    Aulia Firda Alfiana

    2018-01-01

    Full Text Available In terms of global water scarcity, the water footprint is an indicator of the use of water resources that given knowledge about the environmental impact of consuming a product. The sustainable use of water resources nowadays bring challenges related to the production and consumption phase of water intensive related goods such as in the agro-industry. The objective of the study was to assessment the total water footprint from soy sauce production in Grobogan Regency. The total water footprint is equal to the sum of the supply chain water footprint and the operational water footprint. The assessment is based on the production chain diagram of soy sauce production which presenting the relevant process stages from the source to the final product. The result of this research is the total water footprint of soy sauce production is 1.986,35 L/kg with fraction of green water 78,43%, blue water 21,4% and gray water 0,17%.

  12. Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)

    Science.gov (United States)

    Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.

    2018-05-01

    Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.

  13. Modelling the impact of rural land use scenarios on water management: a FREEWAT approach to the Bakumivka catchment case study, Ukraine

    Directory of Open Access Journals (Sweden)

    Mykhailo Grodzynskyi

    2017-09-01

    Full Text Available The Bakumivka River’s catchment, Ukraine serves as a case study to the application of FREEWAT to the ground and surface water management. The main objective of the study is to find out the optimal spatial distribution of the water supplied to the farms by modifying the land cover pattern of the catchment. An integrated numerical model was developed to provide quantitative estimates of the water budget components. The model includes four model layers, representing the main hydrostratigraphic units, different types of boundary conditions assigned along the area’s boundaries, major components of the water balance introduced through source and sink layers. It was implemented through the FREEWAT software. Three water management scenarios were developed in order to compare different spatial patterns of land cover and distribution of water within the Bakumivka River’s basin. The scenarios represent continuum from market oriented pattern to environmentally sounding pattern of land cover. The objective of the modeling exercise is to obtain mass balances and maps representing three scenarios of water management. Each map shows distribution of the areas where the water balance is optimal, insufficient (dry or excessive (wet for vegetation (land cover of particular type.The simulation shows that changing spatial land cover pattern is an effective measure to reduce water supply to the farms, however it does not prevent water logging in the areas adjacent to the flood plains and drying on summer stress periods in lands of sandyloam soils. Irrigation should be excluded in the areas with sandy and sandyloam soils. The flood plain with peat bogs despite the high water head in spring and late summer stress periods should be irrigated to prevent peat fires. The intrusion of eco-corridors to the land cover pattern in the catchment is positive from ecological perspective, but could prevent drainage causing water logging in the arable lands.

  14. Proximity of Residence to Bodies of Water and Risk for West Nile Virus Infection: A Case-Control Study in Houston, Texas

    Directory of Open Access Journals (Sweden)

    Melissa S. Nolan

    2012-01-01

    Full Text Available West Nile virus (WNV, a mosquito-borne virus, has clinically affected hundreds of residents in the Houston metropolitan area since its introduction in 2002. This study aimed to determine if living within close proximity to a water source increases one’s odds of infection with WNV. We identified 356 eligible WNV-positive cases and 356 controls using a population proportionate to size model with US Census Bureau data. We found that living near slow moving water sources was statistically associated with increased odds for human infection, while living near moderate moving water systems was associated with decreased odds for human infection. Living near bayous lined with vegetation as opposed to concrete also showed increased risk of infection. The habitats of slow moving and vegetation lined water sources appear to favor the mosquito-human transmission cycle. These methods can be used by resource-limited health entities to identify high-risk areas for arboviral disease surveillance and efficient mosquito management initiatives.

  15. Strategic decision making under climate change: a case study on Lake Maggiore water system

    Directory of Open Access Journals (Sweden)

    M. Micotti

    2014-09-01

    Full Text Available Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  16. Strategic decision making under climate change: a case study on Lake Maggiore water system

    Science.gov (United States)

    Micotti, M.; Soncini Sessa, R.; Weber, E.

    2014-09-01

    Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  17. Master case energy in the water chain; Mastercase energie in de waterketen

    Energy Technology Data Exchange (ETDEWEB)

    Sukkar, R.; Kluck, J.; Blom, J.; Averesch, J.

    2010-07-15

    This document discusses the options for reducing the amount of operational energy and for recovery of (thermal and chemical) energy from the water chain. Particularly the extraction of heat from waste water (recovery of thermal energy) is a promising option. The case of the water chain of Leeuwarden, the Netherlands, has been examined [Dutch] De resultaten van een studie naar de mogelijkheden voor het reduceren van de hoeveelheid operationele energie, en voor het terugwinnen van (thermische en chemische) energie uit de waterketen, worden besproken. Vooral het winnen van warmte uit afvalwater (terugwinnen thermische energie) biedt grote kansen. Als casus is de waterketen van Leeuwarden onderzocht.

  18. Establishment of water quality classification scheme: a case study of ...

    African Journals Online (AJOL)

    A water quality classification scheme based on 11 routinely measured physicochemical variables has been developed for the Calabar River Estuary. The variables considered include water temperature, pH. Eh, DO, DO saturation, BOD5, COD, TSS, turbidity, NH4-N and electrical conductivity. Classification of water source ...

  19. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: a case control study.

    Science.gov (United States)

    Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Lupsa, Ioana Rodica; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2014-10-13

    Previous work suggests an increased risk for spontaneous pregnancy loss linked to high levels of inorganic arsenic (iAs) in drinking water sources (>10 μg/L). However, there has been little focus to date on the impact of low-moderate levels of iAs in drinking water (control study in Timis County, Romania. We recruited women with incident spontaneous pregnancy loss of 5-20 weeks completed gestation as cases (n = 150), and women with ongoing pregnancies matched by gestational age (±1 week) as controls (n = 150). Participants completed a physician-administered questionnaire and we collected water samples from residential drinking sources. We reconstructed residential drinking water exposure histories using questionnaire data weighted by iAs determined using hydride generation-atomic absorption spectrometry (HG-AAS). Logistic regression models were used to generate odds ratios (OR) and 95% confidence intervals (CI) for associations between iAs exposure and loss, conditioned on gestational age and adjusted for maternal age, cigarette smoking, education and prenatal vitamin use. We explored potential interactions in a second set of models. Drinking water arsenic concentrations ranged from 0.0 to 175.1 μg/L, with median 0.4 μg/L and 90th%tile 9.4 μg/L. There were no statistically significant associations between loss and average or peak drinking water iAs concentrations (OR 0.98, 95% CI 0.96-1.01), or for daily iAs intake (OR 1.00, 95% CI 0.98-1.02). We detected modest evidence for an interaction between average iAs concentration and cigarette smoking during pregnancy (P = 0.057) and for daily iAs exposure and prenatal vitamin use (P = 0.085). These results suggest no increased risk for spontaneous pregnancy loss in association with low to moderate level drinking water iAs exposure. Though imprecise, our data also raise the possibility for increased risk among cigarette smokers. Given the low exposures overall, these data should reassure pregnant

  20. Promoting inclusive water governance and forecasting the structure of water consumption based on compositional data: A case study of Beijing.

    Science.gov (United States)

    Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan

    2018-09-01

    Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Integrated production planning and water management in the food industry: A cheese production case study

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo; Hottenrott, Andreas

    2017-01-01

    Efficient water management is increasingly relevant in the food industry. Exploiting water reuse opportunities in planning production activities is a key part of this. We study integrated water management and production planning in cheese production. For this, we develop a water-integrated lot

  2. Improved oxygen-activation method for determining water flow behind casing

    International Nuclear Information System (INIS)

    McKeon, D.C.; Scott, H.D.; Olesen, J.R.; Patton, G.L.; Mitchell, R.J.

    1991-01-01

    This paper reports on impulse activation which is a new oxygen-activation technique developed to detect vertical water flow and to provide a quantitative measure of water flow velocity and flow rate. Flow-loop measurements made over a wide range of water velocities are in good agreement with theoretical predictions. Measurements of up- and downward channel flow were made at the U.S. Environmental Protection Agency (EPA) leak test well in Ada, OK, to demonstrate the technique in a controlled environment and to confirm that EPA requirements have been met. A major advantage of this method over previous procedures is that a measurement is a known zero-flow zone is not required. The impulse-activation technique has improved sensitivity to both low and high flow rates. In the EPA leak test well, the technique successfully discriminated between 0- and 1.4 ft/min flow conditions. The lowest quantified velocity was 1.8 ft/min or 10 BWPD, significantly below the EPA requirement of 3 ft/min. The upper limit of detection has not been determined by exceeds 137 ft/min. The water flow log (WFL SM ) measurement uses the impulse-activation technique and a Dual-Bust SM , thermal-decay-time (TDT SM ) tool to detect water flow behind casing. An important application of this measurement is testing for fluid migration in the wellbore as part of the mechanical integrity testing process for Class I and II disposal wells. The new oxygen-activation measurement was used in numerous production wells to identify the presence of water flow behind casing. Additional applications include the identification of open fractures in horizontal wells and the quantification of water flow in the tubing/casing annulus in injection and production wells

  3. Dataset for case studies of hydropower unit commitment

    Directory of Open Access Journals (Sweden)

    Jinwen Wang

    2018-06-01

    Full Text Available This paper presents the data all needed for nine case studies of hydropower unit commitment, which determines the optimal operating zones and generating discharges of units after the quarter-hourly releases and water heads are derived by the operation of cascaded hydropower reservoirs. The power output function and feasible operating zones of units are provided, and optimization solvers are used to acquire the results in detail for the case studies, including the quarter-hourly generating discharges, power generations, as well as operating zones of individual units. Performance indices, including the spillage, energy production, and the low-efficiency generating rate, are summarized for all case studies and can be readily used for comparison between algorithms in future.

  4. Environmental quality of transitional waters: the lagoon of Venice case study.

    Science.gov (United States)

    Micheletti, C; Gottardo, S; Critto, A; Chiarato, S; Marcomini, A

    2011-01-01

    The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally

  5. Cholera returns to southern Vietnam in an outbreak associated with consuming unsafe water through iced tea: A matched case-control study.

    Science.gov (United States)

    Nguyen, Thuong V; Pham, Quang D; Do, Quoc K; Diep, Tai T; Phan, Hung C; Ho, Thang V; Do, Hong T; Phan, Lan T; Tran, Huu N

    2017-04-01

    After more than a decade of steadily declining notifications, the number of reported cholera cases has recently increased in Vietnam. We conducted a matched case-control study to investigate transmission of cholera during an outbreak in Ben Tre, southern Vietnam, and to explore the associated risk factors. Sixty of 71 diarrheal patients confirmed to be infected with cholera by culture and diagnosed between May 9 and August 3, 2010 in Ben Tre were consecutively recruited as case-patients. Case-patients were matched 1:4 to controls by commune, sex, and 5-year age group. Risk factors for cholera were examined by multivariable conditional logistic regression. In addition, environmental samples from villages containing case-patients were taken to identify contamination of food and water sources. The regression indicated that drinking iced tea (adjusted odds ratio (aOR) = 8.40, 95% confidence interval (CI): 1.84-39.25), not always boiling drinking water (aOR = 2.62, 95% CI: 1.03-6.67), having the main source of water for use being close to a toilet (aOR = 4.36, 95% CI: 1.37-13.88), living with people who had acute diarrhea (aOR = 13.72, 95% CI: 2.77-67.97), and little or no education (aOR = 4.89, 95% CI: 1.18-20.19) were significantly associated with increased risk of cholera. In contrast, drinking stored rainwater (aOR = 0.17, 95% CI: 0.04-0.63), eating cooked seafood (aOR = 0.27, 95% CI: 0.10-0.73), and eating steamed vegetables (aOR = 0.22, 95% CI: 0.07-0.70) were protective against cholera. Vibrio cholerae O1 Ogawa carrying ctxA was found in two of twenty-five river water samples and one of six wastewater samples. The magnitude of the cholera outbreak in Ben Tre was lower than in other similar settings. This investigation identified several risk factors and underscored the importance of continued responses targeting cholera prevention in southern Vietnam. The association between drinking iced tea and cholera and the spread of V. cholerae O1, altered El Tor strains

  6. Cholera returns to southern Vietnam in an outbreak associated with consuming unsafe water through iced tea: A matched case-control study.

    Directory of Open Access Journals (Sweden)

    Thuong V Nguyen

    2017-04-01

    Full Text Available After more than a decade of steadily declining notifications, the number of reported cholera cases has recently increased in Vietnam. We conducted a matched case-control study to investigate transmission of cholera during an outbreak in Ben Tre, southern Vietnam, and to explore the associated risk factors.Sixty of 71 diarrheal patients confirmed to be infected with cholera by culture and diagnosed between May 9 and August 3, 2010 in Ben Tre were consecutively recruited as case-patients. Case-patients were matched 1:4 to controls by commune, sex, and 5-year age group. Risk factors for cholera were examined by multivariable conditional logistic regression. In addition, environmental samples from villages containing case-patients were taken to identify contamination of food and water sources. The regression indicated that drinking iced tea (adjusted odds ratio (aOR = 8.40, 95% confidence interval (CI: 1.84-39.25, not always boiling drinking water (aOR = 2.62, 95% CI: 1.03-6.67, having the main source of water for use being close to a toilet (aOR = 4.36, 95% CI: 1.37-13.88, living with people who had acute diarrhea (aOR = 13.72, 95% CI: 2.77-67.97, and little or no education (aOR = 4.89, 95% CI: 1.18-20.19 were significantly associated with increased risk of cholera. In contrast, drinking stored rainwater (aOR = 0.17, 95% CI: 0.04-0.63, eating cooked seafood (aOR = 0.27, 95% CI: 0.10-0.73, and eating steamed vegetables (aOR = 0.22, 95% CI: 0.07-0.70 were protective against cholera. Vibrio cholerae O1 Ogawa carrying ctxA was found in two of twenty-five river water samples and one of six wastewater samples.The magnitude of the cholera outbreak in Ben Tre was lower than in other similar settings. This investigation identified several risk factors and underscored the importance of continued responses targeting cholera prevention in southern Vietnam. The association between drinking iced tea and cholera and the spread of V. cholerae O1, altered El Tor

  7. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  8. Simulation of Farmers’ Response to Irrigation Water Pricing and Rationing Policies (Case Study: Zabol City

    Directory of Open Access Journals (Sweden)

    abouzar parhizkari

    2014-10-01

    Full Text Available Considering that agricultural sector is the largest consumer of water, presenting integrated management for water resources and formulating effective policies to increase water productivity in this sector is essential. Therefore, using economic modeling , this study simulated the farmers’ responses to irrigation water pricing and rationing policies in Zabol city. To achieve the study purpose, the State Wide Agricultural Production Model and Positive Mathematical Programming were applied. The required data for the years 2010-2011 was collected by completing questionnaires and collecting data sets from the relevant agencies of Zabol city in personal attendance. The results showed that imposing irrigation water pricing and rationing policies in Zabol city leads to a reduction in the total cultivated area by 9/54 and 5/14 percent and a reduction in the water consumption by 6/23 and 7/01 percent, compared to the base year. Ultimately, irrigation water rationing policy, considering frugality of 18/9 million m3 of water, as the appropriate solution for the sustainability of water resources of Zabol city was proposed.

  9. Electrolytic corrosion of water pipeline system in the remote distance from stray currents—Case study

    Directory of Open Access Journals (Sweden)

    Krzysztof Zakowski​

    2016-06-01

    Full Text Available Case study of corrosion failure of urban water supply system caused by the harmful effects of stray currents was presented. The failure occurred at a site distant from the sources of these currents namely the tramway and railway traction systems. Diagnosis revealed the stray currents flow to pipeline over a remote distance of 800/1000 m from the point of failure. At the point of failure stray currents flowed from the pipeline to the ground through external insulation defects, causing the process of electrolytic corrosion of the metal. Long distance between the affected section of the pipeline and the sources of stray currents excludes the typical protection against stray currents in the form of electrical polarized drainage. Corrosion protection at this point can be achieved by using the earthing electrodes made of magnesium, which will also provide cathodic current protection as galvanic anode.

  10. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    Science.gov (United States)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  11. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. PREDICTION OF WATER QUALITY INDEX USING BACK PROPAGATION NETWORK ALGORITHM. CASE STUDY: GOMBAK RIVER

    Directory of Open Access Journals (Sweden)

    FARIS GORASHI

    2012-08-01

    Full Text Available The aim of this study is to enable prediction of water quality parameters with conjunction to land use attributes and to find a low-end alternative for water quality monitoring techniques, which are typically expensive and tedious. It also aims to ensure sustainable development, which is essentially has effects on water quality. The research approach followed in this study is via using artificial neural networks, and geographical information system to provide a reliable prediction model. Back propagation network algorithm was used for the purpose of this study. The proposed approach minimized most of anomalies associated with prediction methods and provided water quality prediction with precision. The study used 5 hidden nodes in this network. The network was optimized to complete 23145 cycles before it reaches the best error of 0.65. Stations 18 had shown the greatest fluctuation among the three stations as it reflects an area of on-going rapid development of Gombak river watershed. The results had shown a very close prediction with best error of 0.67 in a sensitivity test that was carried afterwards.

  13. Data Reports for Retrospective Case Study in Killdeer, North Dakota

    Science.gov (United States)

    Data from sampling events conducted in Killdeer, North Dakota as part of EPA's Study of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, retrospective case study

  14. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Studies on corrosion of mild steel by water using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Nigam, A.N.; Tripathi, R.P.; Jangid, M.L.

    1987-01-01

    The corrosion of mild steel as a result of interaction with various types of local natural water samples and distilled water is studied with the help of Moessbauer spectroscopy. The data are supplemented with the studies on IR and magnetic properties as and when required. Distilled water and potable water behave in almost similar fashion wherein ferrihydrite and FeOOH are observed to be the precursors of magnetite, the end corrosion product. In case of brakish water, the additional species, viz., FeCl 2 , βFeOOH and an intermediate possibly FeOCl are accounted, and possible mechanisms are suggested. (author)

  16. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  17. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    Science.gov (United States)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  18. Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia

    Directory of Open Access Journals (Sweden)

    Doležal Petr

    2018-03-01

    Full Text Available Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31 have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

  19. Ecosystem Services Insights into Water Resources Management in China: A Case of Xi'an City.

    Science.gov (United States)

    Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan

    2016-11-24

    Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi'an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index's weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem's service capability is closely related to water resources, providing a method for managing water resources. Using Xi'an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers.

  20. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  1. Data Reports for Retrospective Case Study in Wise County, Texas

    Science.gov (United States)

    Data reports from sampling events collected in wise county, texas as part of EPA's Study of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, retrospective case study.

  2. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    Science.gov (United States)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  3. Virtual water trade patterns in relation to environmental and socioeconomic factors : A case study for Tunisia

    NARCIS (Netherlands)

    Chouchane, Hatem; Krol, Martinus S.; Hoekstra, Arjen Y.

    2018-01-01

    Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demand and supply of water-intensive commodities. This study aims to analyse the dynamics in virtual water trade of

  4. Tularaemia outbreaks in Sakarya, Turkey: case-control and environmental studies.

    Science.gov (United States)

    Meric, M; Sayan, M; Dundar, D; Willke, A

    2010-08-01

    Tularaemia is an important zoonotic disease that leads to outbreaks. This study aimed to compare the epidemiological characteristics of two tularaemia outbreaks that occurred in the Sakarya region of Turkey, analyse the risk factors for the development of outbreaks and identify Francisella (F.) tularensis in the water samples. Two tularaemia outbreaks occurred in the Kocadongel village in 2005 and 2006. A field investigation and a case-control study with 47 cases and 47 healthy households were performed during the second outbreak. Clinical samples from the patients and filtrated water samples were analysed for F. tularensis via real-time polymerase chain reaction. From the two outbreaks, a total of 58 patients were diagnosed with oropharyngeal tularaemia based on their clinical and serological results. Both outbreaks occurred between the months of January and April, and the number of patients peaked in February. Logistic regression analysis revealed that the consumption of natural spring water was the only significant risk factor for tularaemia infection (odds ratio 3.5, confidence interval 1.23-10.07). F. tularensis was detected in eight clinical samples and in the filtrated natural spring water. This study is the first report of tularaemia from this region. The results show that both tularaemia outbreaks were related to the consumption of untreated natural spring water. To prevent waterborne tularaemia, community water supplies should be treated and checked periodically.

  5. OPTIMIZATION OF PRODUCED WATER TREATMENT PROCESS - A CASE STUDY FOR DISPOSAL IN THE NIGER DELTA

    Directory of Open Access Journals (Sweden)

    BONIFACE A. ORIJI

    2017-12-01

    Full Text Available Produced water is the interstitial reservoir water that flows to the surface with the crude oil into the production separators. This study addressed the effects of some chemicals on produced water and the challenges of finding the optimal concentrations of these chemicals for treating produced water. In this study, produced water treatment was carried out in an oil production platform located in the Niger Delta so as to determine the effect of a particular scale inhibitor, biocide, demulsifier and water clarifier, also to obtain the optimum concentrations of these chemicals in the treatment of produced water. The physico-chemical properties and microbial content of the produced water were determined. The results showed that the conductivity, hardness, pH and alkalinity reduced with increasing concentration of the scale inhibitor. The total heterotrophic bacteria count (THBC, heterotrophic fungi count (THFC and the Sulphate reducing bacteria count (SRBC were found to reduce with increasing concentration of biocide and exposure time. The increase in biocide concentration from 64 PPM to 100 PPM resulted in the reduction of THBC by 99.78%, THFC by 81.32% and SRBC 99.85%. The water clarifier gave the optimum concentration for oil and grease in the produced water at 7.3 PPM.

  6. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  7. Drinking water quality in Pakistan: a case study of Islamabad and Rawalpindi cities

    International Nuclear Information System (INIS)

    Kahlown, M. A.; Majeed, A.; Ashraf, M.; Tahir, M.A.

    2005-01-01

    Generally, major cities of Pakistan are facing problems of shortage of municipal water supplies as the water requirements are increasing due to rapid urbanization. The water being supplied to many cosmopolitan cities and towns is generally of poor quality. Microbial contamination of drinking water is responsible for directly or indirectly spreading major infections and parasitic diseases such as Cholera, Typhoid, Dysentery, Hepatitis, Giardiasis, Cryptosporidiosis and Guinea worm. The Pakistan Council of Research in Water Resources (PCRWR) has launched a major programme of water quality monitoring in the country to document the existing water quality status. The PCRWR has recently completed water quality assessment studies in twin cities of Islamabad and Rawalpindi. For monitoring purposes, grids of 2x2 and 3x3 km were established for Islamabad and Rawalpindi respectively. In total, thirty-nine water-sampling points were established. Apart from the groundwater samples, eight samples from surface water sources in Islamabad and one from Rawalpindi were collected. Water samples were collected in 200 ml sterilized containers during July 2001. In both cities, most of water samples except for Simly Reservoir in Islamabad, and Chitti Tanki in Rawalpindi were found fit with respect to color, odor and taste. The average EC values were 0.56 and 0.81 dS m/sup -1/ for Islamabad and Rawalpindi, respectively. The pH of collected samples varied from 7 to 8.3. Arsenic, chloride, chromium, fluoride, nitrate, sodium, and water hardness were within the safe limit. The Lead concentration however, was found within safe limits in only 21% samples. The quality of drinking water in both cities in respect of bacterial contamination was very poor. Only 25% samples in Islamabad and 13% samples in Rawalpindi were found fit for drinking purpose. Water samples collected from the points nearest to the source were free from bacterial contamination. It is concluded that the problem of bacterial

  8. Environmental and economic aspects of water kiosks: Case study of a medium-sized Italian town

    International Nuclear Information System (INIS)

    Torretta, Vincenzo

    2013-01-01

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO 2 emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer’s point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people’s habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water

  9. Environmental and economic aspects of water kiosks: case study of a medium-sized Italian town.

    Science.gov (United States)

    Torretta, Vincenzo

    2013-05-01

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO2 emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer's point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people's habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water. Copyright

  10. Environmental and economic aspects of water kiosks: Case study of a medium-sized Italian town

    Energy Technology Data Exchange (ETDEWEB)

    Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Department of Science and High Technology, Insubria University of Varese, Via G.B. Vico, 46, I-21100 Varese (Italy)

    2013-05-15

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO{sub 2} emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer’s point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people’s habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water.

  11. Drinking water quality in urban areas of pakistan a case study of gujranwala city

    International Nuclear Information System (INIS)

    Haydar, S.; Rashid, H.

    2016-01-01

    A study was conducted to evaluate the drinking water quality of Gujranwala city. Samples were collected from 16 locations including: 4 tube wells, 4 overhead reservoirs (OHR) and 8 house connections. Twelve physicochemical and two bacteriological parameters were tested, before and after monsoon and compared with National Standards for Drinking Water Quality (NSDWQ). The results demonstrated that most of the physicochemical parameters, except lead, nickle and chromium were within NSDWQ before and after monsoon. Bacteriological and heavy metal contamination was found before and after the monsoon. Possible reasons of contamination are: no disinfection, old and leaking water pipes, poor drainage during monsoon and possible cross connections between water and sewerage lines. It is recommended to practice disinfection, laying of water and sewerage pipes on opposite sides of streets and periodic water quality monitoring. (author)

  12. Hydro power potentials of water distribution networks in public universities: A case study

    Directory of Open Access Journals (Sweden)

    Olufemi Adebola KOYA

    2017-06-01

    Full Text Available Public Universities in Southwestern Nigeria are densely populated student-resident campuses, so that provision of regular potable water and electricity are important, but power supply is not optimally available for all the necessary activities. This study assesses the hydropower potential of the water distribution networks in the Universities, with the view to augmenting the inadequate power supplies. The institutions with water distribution configuration capable of accommodating in-pipe turbine are identified; the hydropower parameters, such as the flow characteristics and the pipe geometry are determined to estimate the water power. Global positioning device is used in estimating the elevations of the distribution reservoirs and the nodal points. The hydropower potential of each location is computed incorporating Lucid® Lift-based spherical turbine in the pipeline. From the analysis, the lean and the peak water power are between 1.92 – 3.30 kW and 3.95 – 7.24 kW, respectively, for reservoir-fed distribution networks; while, a minimum of 0.72 kW is got for pipelines associated with borehole-fed overhead tanks. Possible applications of electricity generation from the water distribution networks of the public universities are recommended.

  13. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    Science.gov (United States)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  14. Modelling as a means to promote water diplomacy in Southern Africa: the Stampriet Transboundary Aquifer System case study

    Science.gov (United States)

    De Filippis, Giovanna; Carvalho Resende, Tales; Filali-Meknassi, Youssef; Puri, Shaminder; Kenabatho, Piet; Amakali, Maria; Majola, Kwazikwakhe; Rossetto, Rudy

    2017-04-01

    visualization of large spatial datasets; this is demonstrated by running fourteen case studies using the FREEWAT platform. Among these, the STAS is a particularly representative case study aiming at facilitating the link between science based analysis and stakeholder participation aiming at the adoption of sound transboundary management policies. Due to the scarcity of surface water, water-demanding activities in the study area rely only on groundwater. The first version of the model is developed adapting an existing model of the Namibian part of the aquifer: so far, the groundwater body is discretized using rectangular cells about 40 km2 wide and a stack of three aquifers divided respectively by three aquitards with variable thicknesses and heterogeneous hydraulic properties. The model setup is then revised integrating outcomes from the GGRETA project and extended until the groundwater body limits. Also, boundary conditions and hydrologic stresses (i.e., rainfall infiltration and abstraction for irrigation purposes) were re-defined according to maps and datasets available from the GGRETA project. The involvement of the UNESCO-IHP within the FREEWAT Consortium supports the coordination and integration of previous research outcomes (e.g., from the GGRETA project) and the model development to achieve a full characterization of the STAS current and forecast dynamics and possibly highlighting any existing knowledge gaps. This will be

  15. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    Science.gov (United States)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  16. Identification of Trihalomethanes (THMs Levels in Water Supply: A Case Study in Perlis, Malaysia

    Directory of Open Access Journals (Sweden)

    Ab Jalil Mohd Faizal

    2018-01-01

    Full Text Available In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs. THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS. The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  17. Identification of Trihalomethanes (THMs) Levels in Water Supply: A Case Study in Perlis, Malaysia

    Science.gov (United States)

    Jalil, Mohd Faizal Ab; Hamidin, Nasrul; Anas Nagoor Gunny, Ahmad; Nihla Kamarudzaman, Ain

    2018-03-01

    In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  18. Water use conflicts in northern Tanzania. A case study of Rundugai ...

    African Journals Online (AJOL)

    A case study of Rundugai river catchment, Pangani basin Hzai District. ... content and structural-functional analysis techniques were used for qualitative data analysis. Five types of key stakeholders/actors involved in regulating and negotiating ...

  19. Ecosystem Services Insights into Water Resources Management in China: A Case of Xi’an City

    Science.gov (United States)

    Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan

    2016-01-01

    Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi’an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index’s weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem’s service capability is closely related to water resources, providing a method for managing water resources. Using Xi’an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers. PMID:27886137

  20. Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River

    Directory of Open Access Journals (Sweden)

    Kong Fanbin

    2015-07-01

    Full Text Available The appropriate economic compensation from downstream to upstream watershed is important to solve China’s social and economic imbalances between regions and can potentially enhance water resources protection and ecological security. The study analyzes the implementation of ecological compensation policy and related legal basis under ecological compensation mechanism theory and practice patterns, based on current natural environment and socio-economic development of national origin in Dongjiang water conservation areas. Under the principle of “Users pay”, the Dongjiang River is the subject of ecological compensation and recipient. By using the “cost-benefit analysis” and “cost method of industrial development opportunity”, we estimate that the total ecological compensation amounted to 513.35 million yuan. When estimated by the indicators such as water quantity, water quality and water use efficiency, we establish the “environmental and ecological protection cost sharing model” and measure the total cost of protecting downstream watershed areas, the Guangdong Province, is about 108.61 million yuan. The implementation of the Dongjiang source region that follows the principles of ecological compensation and approaches are also designed

  1. An integrated environmental decision support system for water pollution control based on TMDL--A case study in the Beiyun River watershed.

    Science.gov (United States)

    Zhang, Shanghong; Li, Yueqiang; Zhang, Tianxiang; Peng, Yang

    2015-06-01

    This paper details the development and application of an integrated environmental decision support system (EDSS) for water pollution control based on total maximum daily load (TMDL). The system includes an infrastructure, simulation, and application platforms. Using the water pollution control of Beiyun River in China as a case study, the key development processes and technologies of the EDSS are discussed including relations and links between various environmental simulation models, and model integration, visualization and real-time simulation methods. A loose coupling method is used to connect the environmental models, and an XML file is used to complete data exchange between different models. Project configuration and scheme configuration are used for simulation data organization. The integration approach is easy to implement and enables different development languages and reuse of existing models. The EDSS has been applied to water environment management of Beiyun River, and can be applied to other geographic regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  3. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    Science.gov (United States)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    The fundamental theme of this research was to investigate tradeoffs in model resolution for modeling water resources in the context of national economic development and capital investment decisions.. Based on a case study of China, the research team has developed water resource models at relatively fine scales, then investigated how they can be aggregated to regional or national scales and for use in national level planning decisions or global scale integrated assessment models of food and/or environmental change issues. The team has developed regional water supply and water demand functions.. Simplifying and aggregating the supply and demand functions will allow reduced form functions of the water sector for inclusion in large scale national economic models. Water Supply Cost functions were developed looking at both surface and groundwater supplies. Surface Water: Long time series of flows at the mouths of the 36 major river sub-basins in China are used in conjunction with different basin reservoir storage quantities to obtain storage-yield curves. These are then combined with reservoir and transmission cost data to obtain yield-cost or surface water demand curves. The methodology to obtain the long time series of flows for each basin is to fit a simple abcd water balance model to each basin. The costs of reservoir storage have been estimated by using a methodology developed in the USA that relates marginal storage costs to existing storage, slope and geological conditions. USA costs functions have then been adjusted to Chinese costs. The costs of some actual dams in China were used to "ground-truth" the methodology. Groundwater: The purpose of the groundwater work is to estimate the recharge in each basin, and the depths and quality of water of aquifers. A byproduct of the application of the abcd water balance model is the recharge. Depths and quality of aquifers are being taken from many separate reports on groundwater in different parts of China; we have been

  4. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    Science.gov (United States)

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  5. Salinity in drinking water and the risk of (preeclampsia and gestational hypertension in coastal Bangladesh: a case-control study.

    Directory of Open Access Journals (Sweden)

    Aneire Ehmar Khan

    Full Text Available BACKGROUND: Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (preeclampsia and gestational hypertension in a coastal community. METHODS: A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (preeclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. FINDINGS: Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2. Women consuming tube-well (groundwater were at a higher disease risk than rainwater users (p900.01 mg/L, compared to <300 mg/L in drinking water (ORs 3.30 [95% CI 2.00-5.51], 4.40 [2.70-7.25] and 5.48 [3.30-9.11] (p-trend<0.001. Significant associations were seen for both (preeclampsia and gestational hypertension separately. INTERPRETATION: Salinity in drinking water is associated with increased risk of (preeclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content.

  6. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  7. Water Use Efficiency Improvement against a Backdrop of Expanding City Agglomeration in Developing Countries—A Case Study on Industrial and Agricultural Water Use in the Bohai Bay Region of China

    Directory of Open Access Journals (Sweden)

    Minghao Bai

    2017-02-01

    Full Text Available Most city agglomerations of developing countries face water shortages and pollution due to population growth and industrial aggregation. To meet such water security challenges, policy makers need to evaluate water use efficiency at the regional or basin level because the prosperity of city agglomerations is indispensable to the sustainable development of the region or basin. To solve the issue, this paper adopts a non-directional distance function within the framework of environmental production technology to measure water use efficiency. Based on the distance between actual water use efficiency and the ideal efficiency, it calculates the potential reduction space of water input and pollutants by slack adjustment. Added to the Malmquist index, it forms a non-radial Malmquist water use performance index, which can be divided into technological change and technical efficiency change, to measure dynamic water use efficiency. Further, water use efficiency change is analyzed from the perspectives of technological improvement and institutional construction. Bohai Bay city agglomeration, a typical water-deficient city agglomeration in China, is taken as a case study, and data on water resource, environment, and economy from 2011 to 2014 have been used. In conclusion, there is much space for water use efficiency improvement on the whole. However, even having considered potential reduction space of water input and pollutant discharge under current environmental production technology, it is still not enough to support the city agglomeration’s sustainable development. To relieve current potential water safety hazards, not only technical improvement but also institution innovation for highly efficient water use should be kept accelerating in Bohai Bay region. In terms of urban water management in developing countries, the research conclusion is of theoretical and practical significance.

  8. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  9. Water resources for urban water and food security: the case of megacity Hong Kong

    Science.gov (United States)

    Vanham, Davy; Gawlik, Bernd; Bidoglio, Giovanni

    2017-04-01

    The extent to which urban dwellers consume resources is key on the path to reaching global SDGs. One of these resources is water, which is consumed in a direct and indirect way by city inhabitants, to achieve water and food security within city borders. In this study, we quantify the water resources required to provide these two essential securities for megacity Hong Kong. During the last years, this city has made large investments to make its urban water supply system more water efficient and sustainable. As such, its municipal water abstraction - often defined as direct water use - has decreased from 355 litres per capita per day (l/cap/d) in 2005 to 326 l/cap/d in 2013. Due to its political history, Hong Kong is unique in the world in data availability on urban food consumption. It is therefore the ideal case study to show typical urban food consumption behaviour and its related indirect water use. The current average diet in Hong Kong is very different to the average Chinese diet. It is characterised by a high intake of water intensive products like animal products and sugar, leading to a food related indirect water use or water footprint (WFcons) of 4727 l/cap/d. According to recommendations from the Chinese Nutrition Society for a healthy diet, the intake of some product groups should be increased (vegetables and fruit) and of other product groups reduced (sugar, crop oils, meat and animal fats). This would result in a reduction of the WFcons of 40% to 2852 l/cap/d. Especially the reduced intake of meat (including offals) from currently 126 kg per capita per year (kg/cap/yr) to the recommended value 27 kg/cap/yr would result in a substantial WFcons reduction. Meat consumption in Hong Kong is extremely high. A pesco-vegetarian diet would result in a reduction of 49% (to 2398 l/cap/d) and a vegetarian diet in a 53% (to 2224 l/cap/d) reduction. Hong Kong citizens can thus save a lot of water by looking at their indirect water use, through a change in their diet

  10. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    Science.gov (United States)

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water.

  11. Failures of austenitic stainless steel components during storage: Case studies

    International Nuclear Information System (INIS)

    Shah, B.K.; Rastogi, P.K.; Sinha, A.K.; Kulkarni, P.G.

    1993-01-01

    Three studies of failures of austenitic stainless steel components during storage are described. In all cases, stress corrosion cracking was the failure mode by the action of residual stress alone. However, the source of residual stress was different for each case. Case 1 was the failure of a sample tube header for a pressurized heavy water reactor (PHWR). In Case 2, a heat exchanger shell failed during a hydrotest in a fertilizer plant. Cases concerned the cracking of type 304L plates used for spent fuel pool lining of a nuclear power station

  12. Water extraction out of mortar during brick laying: A NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Spiekman, M.E.; Pel, L.; Kopinga, K.; Larbi, J.A.

    1998-01-01

    The water extraction out of mortar during brick laying was studied using nuclear magnetic resonance. The experiments show that using a fired-clay brick, the water is extracted out of the mortar within 3 minutes, whereas in the case of a sand-lime brick this takes about 10 minutes. Prewetting a

  13. Water extraction out of mortar during brick laying : a NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Spiekman, M.E.; Kopinga, K.; Larbi, J.A.

    1998-01-01

    The water extraction out of mortar during brick laying was studied using nuclear magnetic resonance. The experiments show that using a fired-clay brick, the water is extracted out of the mortar within 3 minutes, whereas in the case of a sand-lime brick this takes about 10 minutes. Prewetting a

  14. NORM assessment in water treatment systems/ Poços de Caldas –BR case

    International Nuclear Information System (INIS)

    Ferreira, A.M.; Villegas, R.A.S.; Fukuma, H.T.

    2015-01-01

    NORM is the acronym used to refer to naturally occurring radioactive materials. Besides being objects of study and monitoring such materials can be used as raw material or as by-products or waste of industrial activities. Oil and gas, mining and water treatment are examples of facilities that can handle NORM. In such cases, their concentration at significant levels from the perspective of environmental and occupational radiation protection may occur. This study aims to evaluate the presence of the natural radioactive 238 U and 232 Th series in the treatment of city water elements Poços de Caldas - MG (water, materials and waste). The study can serve as an indication of the necessity of a more detailed review in the locally and in the country on this radiological issue. (authors)

  15. Comparison of POCIS passive samplers vs. composite water sampling: A case study.

    Science.gov (United States)

    Criquet, Justine; Dumoulin, David; Howsam, Michael; Mondamert, Leslie; Goossens, Jean-François; Prygiel, Jean; Billon, Gabriel

    2017-12-31

    The relevance of Polar Organic Chemical Integrative Samplers (POCIS) was evaluated for the assessment of concentrations of 46 pesticides and 19 pharmaceuticals in a small, peri-urban river with multi-origin inputs. Throughout the period of POCIS deployment, 24h-average water samples were collected automatically, and showed the rapid temporal evolution of concentrations of several micropollutants, as well as permitting the calculation of average concentrations in the water phase for comparison with those estimated from POCIS passive samplers. In the daily water samples, cyproconazol, epoxyconazol and imidacloprid showed high temporal variations with concentrations ranging from under the limit of detection up to several hundreds of ngL -1 . Erythromycin, cyprofloxacin and iopromide also increased rapidly up to tens of ngL -1 within a few days. Conversely, atrazine, caffeine, diclofenac, and to a lesser extent carbamazepine and sucralose, were systematically present in the water samples and showed limited variation in concentrations. For most of the substances studied here, the passive samplers gave reliable average concentrations between the minimal and maximal daily concentrations during the time of deployment. For pesticides, a relatively good correlation was clearly established (R 2 =0.89) between the concentrations obtained by POCIS and those gained from average water samples. A slight underestimation of the concentration by POCIS can be attributed to inappropriate sampling rates extracted from the literature and for our system, and new values are proposed. Considering the all data set, 75% of the results indicate a relatively good agreement between the POCIS and the average water samples concentration (values of the ratio ranging between 0,33 and 3). Note further that this agreement between these concentrations remains valid considering different sampling rates extracted from the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sustainability of national consumption from a water resources perspective: The case study for France

    NARCIS (Netherlands)

    Ercin, Ertug; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2013-01-01

    It has become increasingly evident that local water depletion and pollution are often closely tied to the structure of the global economy. It has been estimated that 20% of the water consumption and pollution in the world relates to the production of export goods. This study analyzes how French

  17. Case Study of a Small Scale Reverse Osmosis System for Treatment of Mixed Brackish Water and STP Effluent

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2017-04-01

    Full Text Available A case study on utilizing reverse osmosis (RO technology to fulfill fresh water needs at a mall and a hotel has been done on Bali Island, Indonesia. A mix of brackish water and sewage treatment plant (STP effluent was used as feed water in the RO system. The system used 36 membrane elements (CSM RE 8040 BLN arranged into two stages: 8 pressure vessels (PVs in the first stage and 4 PVs in the second stage, each loaded with 3 membranes. The objectives of this research were to assess the cleaning effectivity in the plant, to evaluate the cleaning of 1 membrane element using a CIP system, and to assess the use of the membrane for filtration in the pre-treatment system. SEM and FTIR analysis indicated that the foulants on the membrane surface were dominated by organic foulants and inorganic deposits. To clean the discarded membrane the proposed method used NaOH solution (pH 12 and pH 13 and citric acid (pH 2 and pH 3. All membranes displayed a dramatic decline in rejection of about 80%. Based on the rejection tests of SO42-, Cl-, turbidity reduction approached 100%. It can be concluded that an RO membrane that has undergone selectivity decline can be re-used as a filtration membrane in the pre-treatment system.

  18. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    Science.gov (United States)

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.

  19. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City

    Directory of Open Access Journals (Sweden)

    Jiefeng Kang

    2017-01-01

    Full Text Available Decomposition of the urban water footprint can provide insight for water management. In this paper, a new decomposition method based on the log-mean Divisia index model (LMDI was developed to analyze the driving forces of water footprint changes, attributable to food consumption. Compared to previous studies, this new approach can distinguish between various factors relating to urban and rural residents. The water footprint of food consumption in Xiamen City, from 2001 to 2012, was calculated. Following this, the driving forces of water footprint change were broken down into considerations of the population, the structure of food consumption, the level of food consumption, water intensity, and the population rate. Research shows that between 2001 and 2012, the water footprint of food consumption in Xiamen increased by 675.53 Mm3, with a growth rate of 88.69%. Population effects were the leading contributors to this change, accounting for 87.97% of the total growth. The food consumption structure also had a considerable effect on this increase. Here, the urban area represented 94.96% of the water footprint increase, driven by the effect of the food consumption structure. Water intensity and the urban/rural population rate had a weak positive cumulative effect. The effects of the urban/rural population rate on the water footprint change in urban and rural areas, however, were individually significant. The level of food consumption was the only negative factor. In terms of food categories, meat and grain had the greatest effects during the study period. Controlling the urban population, promoting a healthy and less water-intensive diet, reducing food waste, and improving agriculture efficiency, are all elements of an effective approach for mitigating the growth of the water footprint.

  20. Investigating the potability of water from dug wells: A case study of ...

    African Journals Online (AJOL)

    Akurugu Bismark

    the necessary attention at all times. Although water is essential .... Figure 1. Map of Ghana and Bolgatanga municipality showing the location of the study area. Sample ..... high above ground (at least 1 m) and sited at least 30 m away from any ...

  1. Fissures in rock under water pressure, implications on stability : 3 unusual cases

    Energy Technology Data Exchange (ETDEWEB)

    Helwig, P.C. [Helwig Hydrotechnique Ltd., St. John' s, NL (Canada)

    2006-07-01

    The presence of water in rock joints has important implications on the stability of rock foundations. Appropriate analyses are needed to assess the stability of dam foundations, abutments and rock walls. This paper presented 3 case studies in which the freezing of seepage flows in rock joints and transient pressure in rock walls were investigated: (1) an assessment of the effects of freezing water in rock joints at the Paradise River arch dam in Newfoundland; (2) stability of rock walls in the unlined power tunnel of the Cat Arm hydroelectric development in Newfoundland due to transient pressures; and (3) assessing the influence of fluctuating water pressures in a stilling basin excavated in rock. After an investigation of the Paradise River canyon walls, a drainage system comprised of peripheral drain holes was drilled into the foundation and walls at regular intervals to intercept seepage flows and to relieve uplift water pressures. However, no special treatment was found for the potential freezing of water in the joints of the dam walls and foundation. The Cat Arm tunnel was used to study the depth at which significant transient pressures can be used to assess rock stability. Rock properties, typical fracture apertures and spacing were assumed and joint deformability was taken into account. An axisymmetric solution was obtained by considering the continuity and flow through an annular element of the rock wall. A finite difference method was used to solve the resulting nonlinear differential equation. In the final case study, blast-damaged rock was undermining the toe of a spillway. A cut-off wall was constructed as a series of drilled, cast-in-place concrete caisson piles. Criteria for the design included extending the cut-off wall to a depth beyond the effects of fluctuating surface pressures. Depth was assessed by considering the transient behaviour of water penetrating a sub-vertical joint subject exposed to fluctuating pressures. Results of the calculations

  2. CASE STUDY CRITIQUE; UPPER CLINCH CASE STUDY

    Science.gov (United States)

    Case study critique: Upper Clinch case study (from Research on Methods for Integrating Ecological Economics and Ecological Risk Assessment: A Trade-off Weighted Index Approach to Integrating Economics and Ecological Risk Assessment). This critique answers the questions: 1) does ...

  3. Adaptive management and environmental decision making. A case study application to water use planning

    International Nuclear Information System (INIS)

    Gregory, Robin; Failing, Lee; Higgins, Paul

    2006-01-01

    Adaptive management (AM) techniques are one of the principal tools proposed by environmental decision makers to provide flexible and responsive management approaches over time. However, the record of successful applications is surprisingly small. We believe that this in part reflects the lack of an intuitively plausible framework for evaluating AM initiatives. This paper outlines such a framework, based on the insights of decision analysis, for evaluating the use of AM as a technique to improve environmental management decisions. British Columbia's Water Use Plan (WUP) process, which has developed operating plans for more than 20 major hydroelectric facilities, is introduced as a case-study example. The discussion emphasizes that decisions to adopt adaptive management strategies involve judgments concerning tradeoffs across a variety of economic, environmental, and social objectives. As a result, adaptive management initiatives need to be carefully evaluated based on their merits relative to other alternatives. Within an AM framework, alternative experimental designs should be evaluated because the design of a preferred experiment involves choices among different levels of investment, the quality of available and desired future information, and different ecological, economic, and social risks. (author)

  4. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  5. Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.

    Science.gov (United States)

    Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan

    2018-05-01

    The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.

  6. Implications of end-user behaviour in response to deficiencies in water supply for electricity consumption - A case study of Delhi

    Science.gov (United States)

    Ghosh, Ruchira; Kansal, Arun; Aghi, Sakshi

    2016-05-01

    Over the past two decades, urban lifestyles have changed phenomenally. One aspect of this change is the increasing use of household appliances, which, in turn, influences water and electricity consumption in urban households. It is therefore necessary to revisit water supply norms in view of these behavioural changes. Increasing use of water-related appliances by the surveyed households in Delhi, India has lowered their water consumption but increased their electricity consumption (10-16 kW h a month). Also, longer working hours away from homes have shifted water demand from homes to commercial establishments and institutions. The per-capita water requirement to meet the basic needs for health and hygiene is approximately 76-78 L a day, of which bathing claims the largest share (32%). Nearly 70% of electricity consumption of a household is spent in coping with deficiencies in water supply. Strategies adopted by end users to save water were negatively correlated with those to save electricity. Household incomes have no influence on water consumption except in the case of those living in slums, who are forced to curtail their use of water even at the cost of health and hygiene; for the rest, coping with poor water supply amounts to spending nearly 50% more on electricity, defeating the purpose of subsidised water supply.

  7. LCA of waste prevention activities: a case study for drinking water in Italy.

    Science.gov (United States)

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  8. The Imposition of Participation? The Case of Participatory Water Management in Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Camelia Dewan

    2014-06-01

    Full Text Available Community-based Natural Resources Management (CBNRM has been promoted as part of the development discourse on sustainable natural resources management since the mid-1980s. It has influenced recent water policy in Bangladesh through the Guidelines for Participatory Water Management (GPWM where community-based organisations are to participate in the management of water resources. This paper reviews the extent of success of such participatory water management. It does so by first discussing the changing discourses of participation in Bangladesh’s water policy from social mobilisation to decentralised CBNRM. Second, Bangladesh is used as a case study to draw attention to how the creation of separate water management organisations has been unable to promote inclusive participation. It argues that the current form of decentralisation through a CBNRM framework has not resulted in its stated aims of equitable, efficient, and sustainable management of natural resources; rather it has duplicated existing local government institutions. Finally, it questions the current investments into community-based organisations and recommends that the role of local government in water management be formally recognised.

  9. Deep aquifers: last resort water resources in case of major pollution crisis

    International Nuclear Information System (INIS)

    Mesny, M.; Comte, J.P.

    1996-01-01

    Within the framework of a reflection dealing with the possibility to insure sufficient drinking water supply in case of major crisis, the Ministry of the Environment undertook an inventory of the aquiferous systems on the whole French (continental) territory. In case of a generalized surface water and groundwater contamination, these aquifers could provide substitution water, qualified as 'a last resorted water' because of its temporary - fast definitive - protection statute. A scale of value relative to the protection level was created, which enables the researchers to identify three levels of protection and to draw up a 1/1,500,000 scale map of France, on which the limits of 98 phreatic water-tables, identified as protected, have been reported. The great majority of the aquifers corresponds to confined waters. A statistical analysis on the existence of protected resources reveals that 16 departments out of 96 have got protected resources on the whole territory, and that 22 others haven't got any that are registered at national scale. Otherwise, 61 towns out of 103 which count more that 50,000 inhabitants have got protected resources, which correspond to 61 % of the urban population. In a second time, the cases of the urban centres of Paris and Lyon will be looked into more in detail, stating precisely the protected resources which could be mobilized and the existing collecting equipments which could possibility be integrated in a device used as a last resort. (authors). 3 figs

  10. Public-private partnership case studies: Profiles of success in providing environmental services (September 1990)

    International Nuclear Information System (INIS)

    1990-09-01

    The report examines 23 case studies of public-private partnerships throughout the United States. They are organized by three environmental service areas: solid waste, wastewater treatment, and drinking water. The introduction explains the types and benefits of public-private partnerships and Chapter II lists the attributes of successful partnerships. The remainder of the report emphasizes case study examples in solid waste, wastewater treatment, and drinking water. Individual chapters are devoted to each of the three environmental service areas. Each case study is presented in a similar format which provides the reader with basic information on how the partnership was formed and implemented, as well as characteristics of the community

  11. Public-private partnership case studies: Profiles of success in providing environmental services (September 1990)

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The report examines 23 case studies of public-private partnerships throughout the United States. They are organized by three environmental service areas: solid waste, wastewater treatment, and drinking water. The introduction explains the types and benefits of public-private partnerships and Chapter II lists the attributes of successful partnerships. The remainder of the report emphasizes case study examples in solid waste, wastewater treatment, and drinking water. Individual chapters are devoted to each of the three environmental service areas. Each case study is presented in a similar format which provides the reader with basic information on how the partnership was formed and implemented, as well as characteristics of the community.

  12. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  13. Making the case for OWTS management: lessons from case studies and research

    Science.gov (United States)

    Rahm, B.; Woods, F.; Hwang, S.; Walter, M. T.; Grantham, D. G.; Riha, S. J.

    2016-12-01

    On-site wastewater treatment systems (OWTS) are used in 20-25% of homes in the United States and can be an efficient and cost-effective alternative to conventional centralized systems. However, OWTS also represent a source of non-point nutrient, pathogen, and micro-contaminant pollution to surface and groundwater if they are poorly designed, sited and/or maintained. Despite their ubiquity and potential to negatively impact water resources, the contribution of OWTS to local and regional water contamination issues is poorly understood. There are no federal regulations or uniform standards for the operation, maintenance, and management of these systems. The effectiveness of educational programs and best management practices developed by the US Environmental Protection Agency, along with local and regional governments, remains uncertain. Here we describe attempts to increase our knowledge of the state of OWTS in relation to water resources and their management. Specifically, we summarize 1) efforts to modernize a NY State-wide inventory of residential OWTS using GIS-based tools; 2) research aimed at better understanding the impact of OWTS on surface and ground water in 5 upstate NY counties across a gradient of land uses; 3) lessons learned from 13 case studies of municipal OWTS management programs across the US; and 4) observations on the roles of data, education and policy in creating and evaluating successful municipal OWTS management programs. Initial results show that total numbers of OWTS in NY State continue to grow, particularly in areas associated with ex-urban migration. Research into the relationship between OWTS and nutrient and pathogen contamination in ground and surface waters, respectively, suggests location-specific variation. This has implications for management approaches: preventing failure of any individual OWTS may be just as effective as programs attempting to bring all OWTS up to a high level of performance. Case studies of management programs

  14. Simulating partially illegal markets of private tanker water providers on the country level: A multi-agent, hydroeconomic case-study of Jordan

    Science.gov (United States)

    Klassert, C. J. A.; Yoon, J.; Gawel, E.; Klauer, B.; Sigel, K.; Talozi, S.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Tilmant, A.; Harou, J. J.; Mustafa, D.; Medellin-Azuara, J.; Rajsekhar, D.; Avisse, N.; Zhang, H.

    2016-12-01

    In arid countries around the world, markets of private small-scale water providers, mostly delivering water via tanker trucks, have emerged to balance the shortcomings of public water supply systems. While these markets can provide substantial contributions to meeting customers' water demands, they often partially rely on illegal water abstractions, thus imposing an unregulated and unmonitored strain on ground and surface water resources. Despite their important impacts on water users' welfare and resource sustainability, these markets are still poorly understood. We use a multi-agent, hydroeconomic simulation model, developed as part of the Jordan Water Project, to investigate the role of these markets in a country-wide case-study of Jordan. Jordan's water sector is characterized by a severe and growing scarcity of water resources, high intermittency in the public water network, and a strongly increasing demand due to an unprecedented refugee crisis. The tanker water market serves an important role in providing water from rural wells to households and commercial enterprises, especially during supply interruptions. In order to overcome the lack of direct data about this partially illegal market, we simulate demand and supply for tanker water. The demand for tanker water is conceptualized as a residual demand, remaining after a water user has depleted all available cheap and qualitatively reliable piped water. It is derived from residential and commercial demand functions on the basis of survey data. Tanker water supply is determined by farm simulation models calculating the groundwater pumping cost and the agricultural opportunity cost of tanker water. A market algorithm is then used to match rural supplies with users' demands, accounting for survey data on tanker operators' transport costs and profit expectations. The model is used to gain insights into the size of the tanker markets in all 89 subdistricts of Jordan and their responsiveness to various policy

  15. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study.

    Science.gov (United States)

    Khan, Aneire Ehmar; Scheelbeek, Pauline Franka Denise; Shilpi, Asma Begum; Chan, Queenie; Mojumder, Sontosh Kumar; Rahman, Atiq; Haines, Andy; Vineis, Paolo

    2014-01-01

    Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in a coastal community. A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (pre)eclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2). Women consuming tube-well (groundwater) were at a higher disease risk than rainwater users (p900.01 mg/L, compared to water (ORs 3.30 [95% CI 2.00-5.51], 4.40 [2.70-7.25] and 5.48 [3.30-9.11] (p-trendwater is associated with increased risk of (pre)eclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content.

  16. Application of environmental isotopes in water resources studies in Latin America

    International Nuclear Information System (INIS)

    Aravena, Ramon

    2001-01-01

    The development of urban centers and economical activities, such as agriculture and mining, in Latin America are intimately linked to the availability of water resources. The increasing demand for water and the risks associated to contamination have generated numerous studies related to the evaluation of water resources in this region. In the specific case of groundwater studies, environmental isotopes have played a significant role in these studies ( 18 O, 2 H, 14 C, 13 C). Groundwater provides about 50-60 % of the water resources used in Latin America. Large urban centers such as Lima (Peru), Managua (Nicaragua) and San Jose (Costa Rica) depend mainly on groundwater as a water supply for the population. The agriculture sector is also a major user of groundwater. The Isotope Hydrology Section of the International Atomic Energy Agency based in Vienna has mainly promoted the application of isotope techniques in Latin America. Most of these applications have focussed on the evaluation of the origin and residence time of the groundwater. The groundwater origin is intimately linked to recharge areas whose evaluation is key for the water balance of the aquifer. The evaluation of the groundwater residence time provides information that is relevant for the management of the groundwater system. This presentation will discuss the basic principles of the application of environmental isotopes in hydrology and it will review the current application of isotope techniques in Latin America. Case studies from different Latin American countries will be used to illustrate the main type of application of isotope techniques in groundwater studies in this region (au)

  17. A NEW MULTI-SPECTRAL THRESHOLD NORMALIZED DIFFERENCE WATER INDEX (MST-NDWI WATER EXTRACTION METHOD – A CASE STUDY IN YANHE WATERSHED

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  18. Use of Radiotracers to Study Surface Water Processes

    International Nuclear Information System (INIS)

    2015-03-01

    This publication represents a sound knowledge base for the conduct of radiotracer studies in the environment, with papers on radiotracer methodology, radiation protection and regulation, data analysis and modelling. Environmental case histories from five Member States - Australia, Brazil, France, the Republic of Korea and Sweden - provide information on conducting studies involving he use of radioactive tracers. These case histories are not meant as guidelines for preparing a field study but can rather serve as examples of the type, caution and extent of work involved in environmental studies using radiotracers. This publication can provide guidance for conducting potential future training events in the use of radioactive traces in the environment and can serve as a key reference to all concerned directly with surface water processes

  19. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  20. Metal leaching in drinking water domestic distribution system: an Italian case study.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Collivignarelli, Carlo

    2014-01-01

    The objective of this study was to evaluate metal contamination of tap water in seven public buildings in Brescia (Italy). Two monitoring periods were performed using three different sampling methods (overnight stagnation, 30-min stagnation, and random daytime). The results show that the water parameters exceeding the international standards (Directive 98/83/EC) at the tap were lead (max = 363 μg/L), nickel (max = 184 μg/L), zinc (max = 4900 μg/L), and iron (max = 393 μg/L). Compared to the total number of tap water samples analyzed (122), the values higher than limits of Directive 98/83/EC were 17% for lead, 11% for nickel, 14% for zinc, and 7% for iron. Three buildings exceeded iron standard while five buildings exceeded the standard for nickel, lead, and zinc. Moreover, there is no evident correlation between the leaching of contaminants in the domestic distribution system and the age of the pipes while a significant influence is shown by the sampling methods.

  1. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  2. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco

    NARCIS (Netherlands)

    Schyns, Joseph Franciscus; Hoekstra, Arjen Ysbert

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a

  3. Contribution to the study of radioactivity of drinking water in Madagascar. Case study of the locality of Alasora

    International Nuclear Information System (INIS)

    RAVOSON, Heritiana N.

    2007-01-01

    Among the radioactive parameters which pollute water, the radon is a radioactive gas of natural origin. It comes from the desintegration of radium-226, which itself is coming from uranium-238 present in the earth crust. It infiltrates in underground water and generates solid daughters. The ingestion of radon and its daughters results in a medical risk to the exposed people. The interest of this study is to detect the presence of the short half-life radionuclides, radon and radium in drinking water of the Alasora rural district Antananarivo, Madagascar. For measurement, portable Triathler LSC, model 425-034 was used. Results obtained from 11 sites confirm the presence of the short half life radionuclides such as the Po-218, Po-214, Bi-214 and the Pb-214 in the samples. So, the gross alpha at first measurement varies from 13700± 100 Bq -1 to 85500±300 Bq.l -1 . Results also confirm the presence of radon in excess or not supported, by the fact that radium in the samples is lower than the detection limit. To confirm the presence of radium and the origin of the radionuclides in the water, more studies are needed. Compared to the legal limit, the studied zone does not show high radioactivity level. However, it is necessary to reduce any risk of exposure. For this purpose, it is not advised to drink the water immediately after collection. [fr

  4. ENVIRONMENTAL MANAGEMENT OF MINE WATER, CONSIDERING EUROPEAN WATER LEGISLATION. CASE STUDY OF MEGALOPOLIS MINES

    OpenAIRE

    Dimitrakopoulos, D.; Vassiliou, E.; Tsangaratos, P.; Ilia, I.

    2017-01-01

    Mining activities causes many environmental problems to the surrounding areas, as other industrial activities do also. However mine water pollution, is considered a tough task to handle, as it requires specific regulations, quite distinct from those applicable to most other industrial processes. Even though there are several federal laws and regulations in Greece and in the European Union that influences the mining industry and mine water management, still certain factors complicates their im...

  5. Economic Evaluation and Overall Assessment of Water Harvesting Ponds based on Scorecard System: A Case Study

    Science.gov (United States)

    Dabral, P. P.; Kumar, Santosh; Kiku, Karmchand

    2017-12-01

    In the present study, an attempt has been made to carry out an economic analysis of three (03) water harvesting ponds situated in the district of Lakhimpur (Assam), India. Economic analysis was carried out using three important economic criteria, namely Benefit Cost Ratio (BCR), Net Present Worth (NPW) and the Internal Rate of Returns (IRR). Ponds of the study area were compared with adopting score card system. All the water harvesting ponds were found economically viable as the BCR was more than unity at 12% discount rate. Net present worth was the highest for the water harvesting pond of Radhapukheri Fish Seed Farm, Department of Fisheries, Govt. of Assam, Narayanpur and the least for water harvesting pond of St. Xavier's School, Harmoti. The IRR was found to be the highest (60%) for water harvesting ponds of St. Xavier's School, Harmoti followed by water harvesting pond of a farmer of Narayanpur (48%) and water harvesting pond of Radhapukheri Fish Seed Farm (19.2%).Water harvesting pond of Radhapukheri Fish Seed Farm, Narayanpur scored the highest score (84 marks) followed by water harvesting pond of a farmer of Narayanpur (80 marks) and St. Xavier's school, Harmoti (61 marks).

  6. Addressing trend-related changes within cumulative effects studies in water resources planning

    International Nuclear Information System (INIS)

    Canter, L.W.; Chawla, M.K.; Swor, C.T.

    2014-01-01

    Summarized herein are 28 case studies wherein trend-related causative physical, social, or institutional changes were connected to consequential changes in runoff, water quality, and riparian and aquatic ecological features. The reviewed cases were systematically evaluated relative to their identified environmental effects; usage of analytical frameworks, and appropriate models, methods, and technologies; and the attention given to mitigation and/or management of the resultant causative and consequential changes. These changes also represent important considerations in project design and operation, and in cumulative effects studies associated therewith. The cases were grouped into five categories: institutional changes associated with legislation and policies (seven cases); physical changes from land use changes in urbanizing watersheds (eight cases); physical changes from land use changes and development projects in watersheds (four cases); physical, institutional, and social changes from land use and related policy changes in river basins (three cases); and multiple changes within a comprehensive study of land use and policy changes in the Willamette River Basin in Oregon (six cases). A tabulation of 110 models, methods and technologies used in the studies is also presented. General observations from this review were that the features were unique for each case; the consequential changes were logically based on the causative changes; the analytical frameworks provided relevant structures for the studies, and the identified methods and technologies were pertinent for addressing both the causative and consequential changes. One key lesson was that the cases provide useful, “real-world” illustrations of the importance of addressing trend-related changes in cumulative effects studies within water resources planning. Accordingly, they could be used as an “initial tool kit” for addressing trend-related changes

  7. Addressing trend-related changes within cumulative effects studies in water resources planning

    Energy Technology Data Exchange (ETDEWEB)

    Canter, L.W., E-mail: envimptr@aol.com [University of Oklahoma, Norman, Oklahoma and President, Canter Associates, Inc., Horseshoe Bay, TX (United States); Chawla, M.K. [ERDC-CERL, U.S. Army Corps of Engineers, Champaign, IL (United States); Swor, C.T. [Canter Associates, Inc., Frankewing, TN (United States)

    2014-01-15

    Summarized herein are 28 case studies wherein trend-related causative physical, social, or institutional changes were connected to consequential changes in runoff, water quality, and riparian and aquatic ecological features. The reviewed cases were systematically evaluated relative to their identified environmental effects; usage of analytical frameworks, and appropriate models, methods, and technologies; and the attention given to mitigation and/or management of the resultant causative and consequential changes. These changes also represent important considerations in project design and operation, and in cumulative effects studies associated therewith. The cases were grouped into five categories: institutional changes associated with legislation and policies (seven cases); physical changes from land use changes in urbanizing watersheds (eight cases); physical changes from land use changes and development projects in watersheds (four cases); physical, institutional, and social changes from land use and related policy changes in river basins (three cases); and multiple changes within a comprehensive study of land use and policy changes in the Willamette River Basin in Oregon (six cases). A tabulation of 110 models, methods and technologies used in the studies is also presented. General observations from this review were that the features were unique for each case; the consequential changes were logically based on the causative changes; the analytical frameworks provided relevant structures for the studies, and the identified methods and technologies were pertinent for addressing both the causative and consequential changes. One key lesson was that the cases provide useful, “real-world” illustrations of the importance of addressing trend-related changes in cumulative effects studies within water resources planning. Accordingly, they could be used as an “initial tool kit” for addressing trend-related changes.

  8. Designing and assessing weather-based financial hedging contracts to mitigate water conflicts at the river basin scale. A case study in the Italian Alps

    Science.gov (United States)

    Bellagamba, Laura; Denaro, Simona; Kern, Jordan; Giuliani, Matteo; Castelletti, Andrea; Characklis, Gregory

    2016-04-01

    Growing water demands and more frequent and severe droughts are increasingly challenging water management in many regions worldwide, exacerbating water disputes and reducing the space for negotiated agreements at the catchment scale. In the lack of a centralized controller, the design and deployment of coordination and/or regulatory mechanisms is a way to improve system-wide efficiency while preserving the distributed nature of the decision making setting, and facilitating cooperation among institutionally independent decision-makers. Recent years have witnessed an increased interest in index-based insurance contracts as mechanisms for sharing hydro-meteorological risk in complex and heterogeneous decision making context (e.g. multiple stakeholders and institutionally independent decision makers). In this study, we explore the potential for index-based insurance contracts to mitigate the conflict in a water system characterized by (political) power asymmetry between hydropower companies upstream and farmers downstream. The Lake Como basin in the Italian Alps is considered as a case study. We generated alternative regulatory mechanisms in the form of minimum release constraints to the hydropower facilities, and designed an insurance contract for hedging against hydropower relative revenue losses. The fundamental step in designing this type of insurance contracts is the identification of a suitable index, which triggers the payouts as well as the payout function, defined by strike level and slope (e.g., euros/index unit). A portfolio of index-based contracts was designed for the case study and evaluated in terms of revenue floor, basis risk and revenue fluctuation around the mean, both with and without insurance. Over the long term, the insurance proved to be capable to keep the minimum revenue above a specified level while providing a greater certainty on the revenue trend. This result shows the possibility to augment farmer's supply with little loss for hydropower

  9. Evaluation of water balance in a population of older adults. A case control study.

    Science.gov (United States)

    Malisova, Olga; Poulia, Kalliopi-Anna; Kolyzoi, Kleoniki; Lysandropoulos, Athanasios; Sfendouraki, Kalliopi; Kapsokefalou, Maria

    2018-04-01

    Older adults are at risk for dehydration and its' potentially life-threatening consequences. Unrecognized dehydration can complicate chronic medical problems and increase morbidity. The objective of the study was to estimate water balance, intake and loss in elderly people living in Greece using the Water Balance Questionnaire (WBQ). WBQ was administered in winter to 108 independents (65-81yrs) (Group A), 94 independents (82-92yrs) (Group B) and 51 hospitalized (65-92yrs) (Group C). A database from previous study of 335 adults (18-65yrs) (Control Group) used for comparison. Mean estimates of water balance, intake and loss were, respectively, for Group A -749 ± 1386 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group B -38 ± 933 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group C 64 ± 1399 mL/day, 2586 ± 1071 mL/day and 2522 ± 1048 mL/day and for Control Group -253 ± 1495 mL/day, 2912 ± 1025 mL/day and 3492 ± 2099 mL/day. Significant differences were detected in water balance, intake and loss (p < 0.01). Water balance and water intake in Group A was the lowest. For Groups A, B, C and Control, contribution of solid foods to water intake was 36%, 29%, 32%, 25%, of drinking water was 32%, 48%, 45%, 47%, of beverages was 32%, 23%, 23% and 28% respectively. Significant differences observed in the contribution of drinking water and beverages (p < 0.01). Group A had lower water balance and water intake. Groups B and C had lower water intake from beverages. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  10. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  11. Study of Mechanisms for Development and Strengthening of Water User Cooperatives (Case Study of Aras River Basin): Application of AHP Method

    OpenAIRE

    Rohallah maghabl

    2014-01-01

    Water user cooperatives were formed due to consideration to people's empowerment and participation in water investment and management. The purpose of this study was to investigate the mechanisms of development and strengthening of water user cooperatives in the Aras River Basin. The study population consisted of the management board members of the water user cooperatives in the Aras Basin in the year 2012. Respondents were selected by purposeful stratified sampling method. Having the data col...

  12. The assessment of water use and reuse through reported data: A US case study

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Maria J.; Jafvert, Chad T.; Nies, Loring F., E-mail: nies@purdue.edu

    2016-01-01

    Increasing demands for freshwater make it necessary to find innovative ways to extend the life of our water resources, and to manage them in a sustainable way. Indirect water reuse plays a role in meeting freshwater demands but there is limited documentation of it. There is a need to analyze its current status for water resources planning and conservation, and for understanding how it potentially impacts human health. However, the fact that data are archived in discrete uncoordinated databases by different state and federal entities, limits the capacity to complete holistic analysis of critical resources at large watershed scales. Humans alter the water cycle for food production, manufacturing, energy production, provision of potable water and recreation. Ecosystems services are affected at watershed scales but there are also global scale impacts from greenhouse gas emissions enabled by access to cooling, processing and irrigation water. To better document these issues and to demonstrate the utility of such an analysis, we studied the Wabash River Watershed located in the U.S. Midwest. Data for water extraction, use, discharge, and river flow were collected, curated and reorganized in order to characterize the water use and reuse within the basin. Indirect water reuse was estimated by comparing treated wastewater discharges with stream flows at selected points within the watershed. Results show that during the low flow months of July–October, wastewater discharges into the Wabash River basin contributed 82 to 121% of the stream flow, demonstrating that the level of water use and unplanned reuse is significant. These results suggest that intentional water reuse for consumptive purposes such as landscape or agricultural irrigation could have substantial ecological impacts by diminishing stream flow during vulnerable low flow periods. - Highlights: • Indirect water reuse is ubiquitous with limited quantitative documentation of it. • Water data are uncoordinated

  13. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    Science.gov (United States)

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey.

    Science.gov (United States)

    Baba, Alper; Gunduz, Orhan

    2010-04-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.

  15. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    Science.gov (United States)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower

  16. Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

    Directory of Open Access Journals (Sweden)

    Zhigong Peng

    2016-08-01

    Full Text Available Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR and the increase of irrigation water use efficiency (WUE, irrigation water use decreased significantly, leading to reduced agriculture water consumption, and sustained ground water levels. Compared with the increase of WUE, the decrease of IWSR contributes more to reducing irrigation water consumption and protecting groundwater. Sensitivity tests show that among various water cycle components, irrigation water use is most sensitive to changes, followed by agriculture water consumption, and then groundwater level. Reducing IWSR is an effective strategy to reduce irrigation water consumption and promote sustainable water resources management, which could be the support of basic data and theory for regional water resources planning.

  17. Discrete event simulation for exploring strategies: an urban water management case.

    Science.gov (United States)

    Huang, Dong-Bin; Scholz, Roland W; Gujer, Willi; Chitwood, Derek E; Loukopoulos, Peter; Schertenleib, Roland; Siegrist, Hansruedi

    2007-02-01

    This paper presents a model structure aimed at offering an overview of the various elements of a strategy and exploring their multidimensional effects through time in an efficient way. It treats a strategy as a set of discrete events planned to achieve a certain strategic goal and develops a new form of causal networks as an interfacing component between decision makers and environment models, e.g., life cycle inventory and material flow models. The causal network receives a strategic plan as input in a discrete manner and then outputs the updated parameter sets to the subsequent environmental models. Accordingly, the potential dynamic evolution of environmental systems caused by various strategies can be stepwise simulated. It enables a way to incorporate discontinuous change in models for environmental strategy analysis, and enhances the interpretability and extendibility of a complex model by its cellular constructs. It is exemplified using an urban water management case in Kunming, a major city in Southwest China. By utilizing the presented method, the case study modeled the cross-scale interdependencies of the urban drainage system and regional water balance systems, and evaluated the effectiveness of various strategies for improving the situation of Dianchi Lake.

  18. Quantitative analysis of multiple biokinetic models using a dynamic water phantom: A feasibility study

    Science.gov (United States)

    Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang

    2016-01-01

    ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096

  19. Water footprint assessment in North Eastern region of Romania: A case study for Iasi County, Romania

    NARCIS (Netherlands)

    Ene, S.A.; Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Teodosiu, C.

    2012-01-01

    Many factors affect the water consumption pattern such as growing world population, climate changes, industrial and agricultural practices, etc. The present study provides for the first time a year-to-year analysis of water use for agricultural production, domestic water supply and industrial

  20. Non food-related risk factors of campylobacteriosis in Canada: a matched case-control study

    Directory of Open Access Journals (Sweden)

    André Ravel

    2016-09-01

    Full Text Available Abstract Background Campylobacteriosis is a prominent bacterial gastrointestinal infection worldwide with several transmission pathways. Its non-foodborne routes have been less documented and quantified. The study aimed to quantitatively explore the role of potential risk factors not directly associated with food for sporadic cases of C. jejuni infection in Canada. Methods This retrospective matched case-control study was built on an enhanced campylobacteriosis surveillance system and on a survey of healthy people and their behaviour with regards to potential risk factors for gastrointestinal infections that occurred in the same area in Canada. Eighty-five cases were individually matched by age and season to 170 controls. Results Through conditional logistic regression, risk factors were found only among water-related factors (drinking untreated water, using tap filter, drinking water from well and swimming in natural water, whereas drinking bottled water was protective. Among the 32 non-water related factors explored, 12 were surprisingly ‘protective’ factors without relevant explanation for that effect (for example gardening, attending a barbecue, eating food from a fast-food restaurant, suggesting that human infection by Campylobacter may be more frequently acquired at home than outside the home. Conclusions This study confirms and quantifies the importance of the waterborne transmission of campylobacteriosis. People are encouraged to drink only treated water and to avoid the ingestion of natural water as much as possible while swimming or playing in water. Globally, general hygiene and proper food handling and cooking practices at home should continue to be encouraged.

  1. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  2. A population-based case-control study of drinking-water nitrate and congenital anomalies using Geographic Information Systems (GIS) to develop individual-level exposure estimates.

    Science.gov (United States)

    Holtby, Caitlin E; Guernsey, Judith R; Allen, Alexander C; Vanleeuwen, John A; Allen, Victoria M; Gordon, Robert J

    2014-02-05

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5-5.56 mg/L (2.44; 1.05-5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92-5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration.

  3. Factors influencing farmers’ willingness to participate in water allocation trading. A case study in southern Spain

    Directory of Open Access Journals (Sweden)

    Giacomo Giannoccaro

    2016-03-01

    Full Text Available This study aims to uncover the factors that influence farmers’ attitudes towards water allocation trading. In the study, we simulate two water availability scenarios, an average year and a drought year, in a contingent valuation experiment with 241 farmers. A survey was held in the spring of 2012 in the Guadalquivir and Almanzora River Basins. First, we estimated a multinomial logit model to determine the factors that influence farmers to decide to participate in our hypothetical market. We then analysed the structural and socio-economic factors determining the monetary value of traded water using Heckman’s two-step model. Our results indicate that those farmers who are more innovative and have had agricultural training show a higher willingness to participate in water trading. Additionally, low water-supply guarantee and appropriate information about seasonal water availability increase the probability of participation. Higher willingness to pay (WTP for water is found in horticulture and among farmers who grow citrus and other permanent crops; lower water selling value (WTA is found in farms with extensive annual crops and traditional olive groves. However, monetary values (WTP/WTA are strongly dependent on the current cost of irrigation water services. While findings of this research seem to support the idea of diffusion innovation theory, the existence of ethical concerns that might influence farmers’ acceptance of irrigation water markets needs further analysis.

  4. Factors influencing farmers’ willingness to participate in water allocation trading. A case study in southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Giannoccaro, G.; Castillo, M.; Berbel, J.

    2016-11-01

    This study aims to uncover the factors that influence farmers’ attitudes towards water allocation trading. In the study, we simulate two water availability scenarios, an average year and a drought year, in a contingent valuation experiment with 241 farmers. A survey was held in the spring of 2012 in the Guadalquivir and Almanzora River Basins. First, we estimated a multinomial logit model to determine the factors that influence farmers to decide to participate in our hypothetical market. We then analysed the structural and socio-economic factors determining the monetary value of traded water using Heckman’s two-step model. Our results indicate that those farmers who are more innovative and have had agricultural training show a higher willingness to participate in water trading. Additionally, low water-supply guarantee and appropriate information about seasonal water availability increase the probability of participation. Higher willingness to pay (WTP) for water is found in horticulture and among farmers who grow citrus and other permanent crops; lower water selling value (WTA) is found in farms with extensive annual crops and traditional olive groves. However, monetary values (WTP/WTA) are strongly dependent on the current cost of irrigation water services. While findings of this research seem to support the idea of diffusion innovation theory, the existence of ethical concerns that might influence farmers’ acceptance of irrigation water markets needs further analysis. (Author)

  5. Application of remote sensing techniques for conserving scarce water resources: a case study from Pakistan

    International Nuclear Information System (INIS)

    Shakoor, A; Alam, N; Asghar, M.N.

    2005-01-01

    Pakistan, which was once a water surplus, is now a water deficit country according to Malin Falkenmark criteria. The conventional wisdom of managing canal water supplies, which usually results in over- or under-irrigation, is not sufficient to meet the challenge of water demand in future. This paper introduces the use of modem tools like Remote Sensing (RS), Geographic Information Systems (GIS) and CROPWAT to improve the management of the existing irrigation systems. This study was conducted for the Pehure High Level Canal (PHLC) and the Upper Swat Canal (USC) system in the North Western Frontier Province (NWFP) of Pakistan. Crop identification at distributary level was made from multi-temporal Remote Sensing satellite images, using various image processing techniques, such as supervised, unsupervised classification and spectral mixture analysis. Cropped areas were calculated for each individual crop from these classified images, and then crop water requirement at distributary level was estimated using CROPWAT. Assuming all other parameters of the CROPWAT model optimistic, the calculated crop area was of major concern. The supervised classification with support of unsupervised classification and ground truth information has proven to be the best option and cost-effective technique for calculating the actual cropped area. The results of this study can be used while devising guidelines for water managers to release the canal supplies based, on crop water requirement. This practice will help in avoiding wastage of canal water at farm level, which can be optimally used for increasing irrigated areas and crop productivity in the area. (author)

  6. Effective management of water systems in a chemical industry: a case study at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Prahalad, B.; Pandey, B.L.

    1997-01-01

    This paper describes about the important methods of water management in general followed by a description of the water system and measures taken/to be implemented at Heavy Water Plant, Manuguru in particular in order to effectively tackle the effluent water by reuse of the treated effluents

  7. Towards lower carbon footprint patterns of consumption: The case of drinking water in Italy

    International Nuclear Information System (INIS)

    Botto, S.; Niccolucci, V.; Rugani, B.; Nicolardi, V.; Bastianoni, S.; Gaggi, C.

    2011-01-01

    The effects that individual consumption behaviours have on climate change are explored, focusing on products that satisfy the same need but with different carbon footprints. Two types of drinking water, produced, distributed and consumed in Italy, were compared as a case study: tap water and PET-bottled natural mineral water. The first is the one supplied to the municipality of Siena, while the second is a set of 6 different Italian bottled water brands. The results showed that drinking 1.5 L of tap water instead of PET-bottled water saves 0.34 kg CO 2 eq. Thus, a PET-bottled water consumer (2 L per day) who changes to tap water may prevent 163.50 kg CO 2 eq of greenhouse gas emissions per year. In monetary terms, this translates into a tradable annual verified emission reduction (VER) between US$ 0.20 and 7.67 per drinker. Analysing a mature bottled water market, such as the Italian one, may provide insights into the growing global bottled-water market and its effects on climate change. The environmental and economic benefits of changing drinking water habits are also discussed.

  8. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir

    International Nuclear Information System (INIS)

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-01-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5–1030.6 t·yr"−"1; Total Phosphorus (TP): 23.3–31.0 t·yr"−"1; and Total Nitrogen (TN): 480–1918.0 t·yr"−"1. The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS

  9. Low to high performance recycled cementitious materials: case studies

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2015-01-01

    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  10. Comparative study of water resource management policies between China and Denmark

    DEFF Research Database (Denmark)

    Su, Liya; Christensen, Per; Liu, Jingling

    2013-01-01

    This paper compares water resource policies and management practices in China and Denmark. It takes two vulnerable water ecosystems as case studies: Baiyangdian wetland in China and Mariager fjord in Denmark. Based on the theories of the commons, this article explores the similarities...... due to the complicated administrative structure in China and clearer goals and better resources in Denmark. Denmark has also accomplished a large degree of environmental policy integration (EPI), which is not the case in China. But China has recently put environmental concerns high on the agenda...... and differences between the two ecosystems in terms of ecosystem characteristics, historical and cultural backgrounds of these societies, the technologies affecting the ecosystems and also how the ecosystems have been seen at different times as well as the existence of property rights through time. Both water...

  11. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano.

    Science.gov (United States)

    French, Megan; Alem, Natalie; Edwards, Stephen J; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  12. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    Science.gov (United States)

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  13. A case-control study of Yersinia enterocolitica infections in Auckland.

    Science.gov (United States)

    Satterthwaite, P; Pritchard, K; Floyd, D; Law, B

    1999-10-01

    To identify major risk factors for Yersinia enterocolitica (YE) and identify measures to reduce YE infections. A prospective case control study, group age matched, using 186 cases of YE identified by community pathology laboratories and 379 randomly selected controls. Conducted between April 1995 and June 1996 in Auckland, New Zealand. Face-to-face interviews used a standardised questionnaire examining exposures to factors potentially associated with YE infections including untreated water, unreticulated sewerage, consumption of selected foods, selected food handling practices and socio-demographic factors. Multivariate logistic regression was used to calculate adjusted odds ratios for the potential risk factors. Population attributable risk (PAR) was calculated for significant exposures. Having more than two people living in the home was more common among cases than controls (OR = 2.2). Town supply water (OR = 0.2), reticulated sewerage (OR = 0.34) and looking after a young child (OR = 0.51) were significantly less common. Of the meats, only pork (OR = 1.34) had a higher consumption rate, while bacon (OR = 0.75) and smallgoods (OR = 0.73) were consumed less frequently by cases than controls. Eating food from a sandwich bar was more frequent among cases (OR = 1.18). Fruit and vegetable consumption was marginally less (OR = 0.98). The population attributable risk of these factors was 0.89, implying that 89% of YE would be eliminated if adverse exposures were removed. The risk of YE illness is increased by contact with untreated water, unreticulated sewerage and consumption of pork. Investigation of non-town water supply, informal sewerage systems and methods of preparation and consumption of pork are recommended to determine how YE enters the human food chain.

  14. AVOIDING MAZIBUKO: WATER SECURITY AND CONSTITUTIONAL RIGHTS IN SOUTHERN AFRICAN CASE LAW

    Directory of Open Access Journals (Sweden)

    Ed Couzens

    2015-11-01

    Full Text Available The 2009 judgment by the Constitutional Court of South Africa in Mazibuko v City of Johannesburg is seen by many as a watershed in the interpretation of the fundamental constitutional right of access to water. The Constitutional Court ruled that the right of access to sufficient water does not require that the state provide every person upon demand and without more with sufficient water. Nor does the obligation confer on any person a right to claim "sufficient water" from the state immediately. Reactions to the judgment have been consistently negative, with criticisms largely focusing on the Court's apparent lack of appreciation for the situation of the very poor. It is not easy, however, to overturn a decision of the Constitutional Court and South Africa will need to work within the constraints of the precedent for many years to come. It is suggested in this article that two subsequent, recent judgments (one of the Supreme Court of Appeal in South Africa, City of Cape Town v Strümpher, 2012, and one of the High Court in Zimbabwe, Mushoriwa v City of Harare, 2014 show how it might be possible for courts to avoid the Mazibuko precedent and yet give special attention to water-related rights. Both cases concerned spoliation applications in common law, but both were decided as though access to water supply and water-related rights allow a court to give weight to factors other than the traditional grounds for a spoliation order. It can be argued that in both cases the unlawfulness necessary for a spoliation order arose from a combination of dispossession and breach of rights in respect of a very particular and special kind of property. In the arid and potentially water-stressed Southern African region, and in the context of extreme and apparently increasing poverty, there will undoubtedly be more court cases to come involving access to water. Conclusions are drawn as to how the two judgments considered might offer a way to ameliorate the harsh

  15. Heterogeneous dermatitis complaints after change in drinking water treatment: a case report

    Directory of Open Access Journals (Sweden)

    Bhatia Rajiv

    2006-06-01

    Full Text Available Abstract Background The disinfectant monochloramine minimizes the formation of potentially hazardous and regulated byproducts, and many drinking water utilities are shifting to its use. Case presentation After a drinking water utility serving 2.4 million people switched to monochloramine for residual disinfection, a small number of residents complained of dermatitis reactions. We interviewed 17 people about their symptoms. Skin appearance, symptoms, and exposures were heterogeneous. Five respondents had history of hives or rash that preceded the switch to monochloramine. Conclusion The complaints described were heterogeneous, and many of the respondents had underlying or preexisting conditions that would offer plausible alternative explanations for their symptoms. We did not recommend further study of these complaints.

  16. Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP: Findings from a Case Study in Cangxian County of Hebei Province

    Directory of Open Access Journals (Sweden)

    Xue Wang

    2018-01-01

    Full Text Available The North China Plain (NCP is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence drawn from a case study in Cangxian County, Hebei Province. First-hand data were collected for this study from 350 households in 35 villages, using semistructured one-on-one questionnaires. Five types of irrigation water sources were defined and identified at the level of individual land plots: “ground and surface water”, “just groundwater”, “just rivers”, “just reservoirs”, and “no irrigation”. These levels correspond to a decreasing trend in the overall frequency of irrigation and thus provide a clear proxy indicator for IWA. The results from a series of multilevel multinomial models show that the higher the IWA, the less likely it is for a land plot to abandon winter wheat. Specifically, using “no irrigation” cases as a control group, the results show that land plots with more sources of irrigation water also tend to be characterized by greater IWA, including “ground and surface water” and “just groundwater”, and also have lower probabilities of abandoning winter wheat. In contrast, land plots with less IWA (less irrigation water sources, including “just reservoirs” and “just rivers”, are more likely to abandon winter wheat. The results also show that, in addition to IWA, soil quality and plot size at the plot level, as well as demographic characteristics, farm equipment, and land fragmentation at the household level and irrigation prices at the village level, all play additional significant roles in the cropping

  17. French studies and research program in pressurized water reactor safety

    International Nuclear Information System (INIS)

    Duco, J.

    1986-06-01

    The aim of researches developed now in France on water reactor safety is to obtain means and knowledge allowing to control accidental situations, including severe situations beyond design basis accidents. The main studies and researches concerning water reactors and described in this report are the following ones: core cooling accident and prevention of severe accidents, fuel behavior in accidental situation, behavior of the containment building, fission product transfer and releases in case of accident, problems related to equipment aging, and, methodology of risk analysis and ''human factor'' studies. Most of these studies follow an analytic approach of phenomena [fr

  18. A narrative method for analyzing transitions in urban water management: The case of the Miami-Dade Water and Sewer Department

    Science.gov (United States)

    Treuer, Galen; Koebele, Elizabeth; Deslatte, Aaron; Ernst, Kathleen; Garcia, Margaret; Manago, Kim

    2017-01-01

    Although the water management sector is often characterized as resistant to risk and change, urban areas across the United States are increasingly interested in creating opportunities to transition toward more sustainable water management practices. These transitions are complex and difficult to predict - the product of water managers acting in response to numerous biophysical, regulatory, political, and financial factors within institutional constraints. Gaining a better understanding of how these transitions occur is crucial for continuing to improve water management. This paper presents a replicable methodology for analyzing how urban water utilities transition toward sustainability. The method combines standardized quantitative measures of variables that influence transitions with contextual qualitative information about a utility's unique decision making context to produce structured, data-driven narratives. Data-narratives document the broader context, the utility's pretransition history, key events during an accelerated period of change, and the consequences of transition. Eventually, these narratives should be compared across cases to develop empirically-testable hypotheses about the drivers of and barriers to utility-level urban water management transition. The methodology is illustrated through the case of the Miami-Dade Water and Sewer Department (WASD) in Miami-Dade County, Florida, and its transition toward more sustainable water management in the 2000s, during which per capita water use declined, conservation measures were enacted, water rates increased, and climate adaptive planning became the new norm.

  19. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  20. Assessing low quality water use policy framework: Case study from Ghana

    DEFF Research Database (Denmark)

    Amponsah, Owusu; Vigre, Håkan; Wilde Schou, Torben

    2015-01-01

    requires an integration of the policy into the broader water resources management context supported with legislation and regulations which spell out clearly institutional responsibilities, and rewards and punishments for compliance or otherwise. (C) 2015 Elsevier B.V. All rights reserved.......We bought to understand the factors that have undermined the effective implementation of the low quality water reuse provision in Ghana's Irrigation Policy. Two Strategic Environmental Assessment tools (i.e. compatibility matrix and sustainability test) were used for the policy analyses......, which have been identified as key stakeholders for the policy implementation, not only lack the commitment to implement the policy but also perceive low quality water reuse as a practice that can endanger public health. We conclude that effective implementation of the low quality water reuse policy...

  1. Do contamination of and exposure to chicken meat and water drive the temporal dynamics of Campylobacter cases?

    Science.gov (United States)

    David, J M; Pollari, F; Pintar, K D M; Nesbitt, A; Butler, A J; Ravel, A

    2017-11-01

    Campylobacteriosis, the most frequent bacterial enteric disease, shows a clear yet unexplained seasonality. The study purpose was to explore the influence of seasonal fluctuation in the contamination of and in the behaviour exposures to two important sources of Campylobacter on the seasonality of campylobacteriosis. Time series analyses were applied to data collected through an integrated surveillance system in Canada in 2005-2010. Data included sporadic, domestically-acquired cases of Campylobacter jejuni infection, contamination of retail chicken meat and of surface water by C. jejuni, and exposure to each source through barbequing and swimming in natural waters. Seasonal patterns were evident for all variables with a peak in summer for human cases and for both exposures, in fall for chicken meat contamination, and in late fall for water contamination. Time series analyses showed that the observed campylobacteriosis summer peak could only be significantly linked to behaviour exposures rather than sources contamination (swimming rather than water contamination and barbequing rather than chicken meat contamination). The results indicate that the observed summer increase in human cases may be more the result of amplification through more frequent risky exposures rather than the result of an increase of the Campylobacter source contamination.

  2. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  3. Diabetic and sympathetic influences on the water permeability barrier function of human skin as measured using transepidermal water loss: A case-control study.

    Science.gov (United States)

    Han, Seung Hoon; Park, Ji Woong

    2017-11-01

    The presence of long-standing hyperglycemic conditions has been suggested to lead to many skin problems associated with an impaired skin barrier function. However, the relationship between impaired skin barrier status and altered peripheral nervous system function has not yet been determined. The purpose of this study was to investigate the water evaporation rate as a measure of the permeability barrier function of diabetic skin and its relationship to diabetic sensorimotor polyneuropathy (DSPN) and peripheral autonomic neuropathy (PAN) using well-controlled confounding variables.This case-control study included 42 participants with chronic diabetes and 43 matched healthy controls. The diabetic group underwent a nerve conduction study and sympathetic skin response (SSR) test to confirm the presence of DSPN and PAN, respectively. Different skin regions were analyzed using the noninvasive Tewameter instrument (Courage + Khazaka Electronic GmbH, Cologne, Germany). The impacts of PAN, DSPN, age, and diabetes duration on the values of transepidermal water loss (TEWL) were each analyzed and compared between the groups.Regardless of the presence of DSPN or PAN, the TEWL values as measured on the distal extremities were significantly lower in the diabetic group than in the control group. In the diabetic group, participants with abnormal SSR test results showed decreased TEWL values in the finger, sole, and first toe, as compared with participants with normal SSR test results. In the control group, age showed a negative correlation with the TEWL values with respect to some measured regions. However, in the diabetic group, there was no significant correlation between either patient age or diabetes duration and TEWL values.The presence of a long-term hyperglycemic state can reduce the permeability barrier function of the skin, a phenomenon that might be related to the presence of an impaired peripheral sympathetic nervous system, rather than peripheral sensorimotor

  4. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  5. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies

    Science.gov (United States)

    Srinivasan, V.; Lambin, E. F.; Gorelick, S. M.; Thompson, B. H.; Rozelle, S.

    2012-10-01

    Freshwater scarcity has been cited as the major crisis of the 21st century, but it is surprisingly hard to describe the nature of the global water crisis. We conducted a meta-analysis of 22 coupled human-water system case studies, using qualitative comparison analysis (QCA) to identify water resource system outcomes and the factors that drive them. The cases exhibited different outcomes for human wellbeing that could be grouped into a six "syndromes": groundwater depletion, ecological destruction, drought-driven conflicts, unmet subsistence needs, resource capture by elite, and water reallocation to nature. For syndromes that were not successful adaptations, three characteristics gave cause for concern: (1) unsustainability—a decline in the water stock or ecosystem function that could result in a long-term steep decline in future human wellbeing; (2) vulnerability—high variability in water resource availability combined with inadequate coping capacity, leading to temporary drops in human wellbeing; (3) chronic scarcity—persistent inadequate access and hence low conditions of human wellbeing. All syndromes could be explained by a limited set of causal factors that fell into four categories: demand changes, supply changes, governance systems, and infrastructure/technology. By considering basins as members of syndrome classes and tracing common causal pathways of water crises, water resource analysts and planners might develop improved water policies aimed at reducing vulnerability, inequity, and unsustainability of freshwater systems.

  6. Building America Case Study: Multifamily Central Heat Pump Water Heaters, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16-month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  7. Building America Case Study: Multifamily Central Heat Pump Water Heaters, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-08

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16-month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  8. CASE STUDIES OF USE OF DESIGN OF EXPERIMENTS IN MATERIAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Salil Kumar Roy

    2003-01-01

    Full Text Available The paper describes principles of factorial and fractional factorial design of experiments. The various ways of analysing data obtained by these procedures are shown via four case studies. Yates method was followed in case 1 where the effect of anode type, carbon content of steel, temperature, and agitation on cathodic protection of steel in seawater, on current density, was studied. In case 2, a glass was formulated within 10 constituante melted, quantity water and tested for flow caracteristics, from the result the factor effect was calculated. In case 3, analysis of results is done in a very simple way. In this case, the effect of carbon content, surface condition, temperature, and agitation on the corrosion of steel in seawater was studied. In case 4, the effect of eleven constituents on acid resistance of a cast iron enamel has been studied through sixteen experimental compositions. This case gives a method to find out which of the sixteen experimental compositions is nearest to a target value.

  9. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    Science.gov (United States)

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  10. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  11. An application of the AHP in water resources management: a case study on urban drainage rehabilitation in Medan City

    Science.gov (United States)

    Tarigan, A. P. M.; Rahmad, D.; Sembiring, R. A.; Iskandar, R.

    2018-02-01

    This paper illustrates an application of Analytical Hierarchy Process (AHP) as a potential decision-making method in water resource management related to drainage rehabilitation. The prioritization problem of urban drainage rehabilitation in Medan City due to limited budget is used as a study case. A hierarchical structure is formed for the prioritization criteria and the alternative drainages to be rehabilitated. Based on the AHP, the prioritization criteria are ranked and a descending-order list of drainage is made in order to select the most favorable drainages to have rehabilitation. A sensitivity analysis is then conducted to check the consistency of the final decisions in case of minor changes in judgements. The results of AHP computed manually are compared with that using the software Expert Choice. It is observed that the top three ranked drainages are consistent, and both results of the AHP methods, calculated manually and performed using Expert Choice, are in agreement. It is hoped that the application of the AHP will help the decision-making process by the city government in the problem of urban drainage rehabilitation.

  12. Groundwater footprint methodology as policy tool for balancing water needs (agriculture & tourism) in water scarce islands - The case of Crete, Greece.

    Science.gov (United States)

    Kourgialas, Nektarios N; Karatzas, George P; Dokou, Zoi; Kokorogiannis, Andreas

    2018-02-15

    In many Mediterranean islands with limited surface water resources, the growth of agricultural and touristic sectors, which are the main water consumers, highly depends on the sustainable water resources management. This work highlights the crucial role of groundwater footprint (GF) as a tool for the sustainable management of water resources, especially in water scarce islands. The groundwater footprint represents the water budget between inflows and outflows in an aquifer system and is used as an index of the effect of groundwater use in natural resources and environmental flows. The case study presented in this paper is the island of Crete, which consists of 11 main aquifer systems. The data used for estimating the groundwater footprint in each system were groundwater recharges, abstractions through 412 wells, environmental flows (discharges) from 76 springs and 19 streams present in the area of study. The proposed methodology takes into consideration not only the water quantity but also the water quality of the aquifer systems and can be used as an integrated decision making tool for the sustainable management of groundwater resources. This methodology can be applied in any groundwater system. The results serve as a tool for assessing the potential of sustainable use and the optimal distribution of water needs under the current and future climatic conditions, considering both quantitative and qualitative factors. Adaptation measures and water policies that will effectively promote sustainable development are also proposed for the management of the aquifer systems that exhibit a large groundwater footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. WATER RESOURCES IN THE CONTEXT OF REGIONAL PLANNING. CASE STUDY: CLUJ-NAPOCA METROPOLITAN AREA

    Directory of Open Access Journals (Sweden)

    PAULA OLIVIA CIMPOIEŞ

    2012-04-01

    Full Text Available The issue of water resources is controversial because it reveals the complex needs of the population on a certain territory, depending on the analysis scale. Public utilities or water surfaces in the surrounding rural areas of a city are rarely paid much attention to in comparison to the urban centre, though they could provide comfort attributes, aesthetic value and leisure activities. Is it a matter of social fairness, political orientation or funding accessibility for a community to benefit from the water resources in the vicinity? The present study propos ed to analyse the metropolitan area of Cluj and explain why the distribution of resources varies according to physical conditions, distance or localities’ economic statute.

  14. An analysis of strategy plan on business performance of a water utility : a Midvaal water company case study / Erven Sello Malatji

    OpenAIRE

    Malatji, Erven Sello

    2014-01-01

    The purpose of the research was to assess the strategic management process of a water utility in South Africa. The research focused on Midvaal Water Company, a section 21 water utility based in South Africa, North West Province town of Klerksdorp. The objectives of the study were; (a) to assess the organisational level of knowledge when it comes to SMP, (b) to determine different perceptions with regards to SMP between management and employees, (c) to determine the organisational profiles (ag...

  15. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  16. PONDS AND CLIMATE, THE GEOGRAPHICAL ASCENDANCY RELATIONSHIP (“LA BRENNE” CASE STUDY, FRANCE

    Directory of Open Access Journals (Sweden)

    Laurent TOUCHART

    2012-03-01

    Full Text Available Ponds and climate, the geographical ascendancy relationship (“La Brenne” case study, France. The climate influences markedly the volume of water ponds and lakes. However, the role and the influence of "small" water areas, and areas of ponds on the local climate remain poorly understood. Scientific studies for the Great Lakes have been made. Moreover, scientific studies on «small» water areas and areas of ponds do not exist until today. A first approach to study the area of ponds of “La Brenne” (Central Region, France was performed. The monthly climate data from some meteorological stations, with the reference station of “Issoudun”, located away from areas of ponds, were the basis of our analysis. The study focuses on the most representative climatic parameters. These are the temperature, precipitation and relative humidity. This first approach is used to distinguish and clarify the most important cases and relevant parameters in order to achieve a typology of criteria. Our results will be used for further study and quantify the real influence of "small" water areas and areas of ponds on the elements of the local climate.

  17. CASE STUDY: China — Bridging the Gap between Scientists and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-05

    Jan 5, 2011 ... CASE STUDY: China — Bridging the Gap between Scientists and ... the right inputs of water, fertilizer, and pesticides to maximize yields. ... Some are rare and unique to the area, such as black wax maize and mountain lily.

  18. Salinity in Drinking Water and the Risk of (Pre)Eclampsia and Gestational Hypertension in Coastal Bangladesh: A Case-Control Study

    Science.gov (United States)

    Khan, Aneire Ehmar; Scheelbeek, Pauline Franka Denise; Shilpi, Asma Begum; Chan, Queenie; Mojumder, Sontosh Kumar; Rahman, Atiq; Haines, Andy; Vineis, Paolo

    2014-01-01

    Background Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in a coastal community. Methods A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (pre)eclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. Findings Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2). Women consuming tube-well (groundwater) were at a higher disease risk than rainwater users (psodium concentrations (300.01–600 mg/L, 600.1–900 mg/L, >900.01 mg/L, compared to <300 mg/L) in drinking water (ORs 3.30 [95% CI 2.00–5.51], 4.40 [2.70–7.25] and 5.48 [3.30–9.11] (p-trend<0.001). Significant associations were seen for both (pre)eclampsia and gestational hypertension separately. Interpretation Salinity in drinking water is associated with increased risk of (pre)eclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content. PMID:25268785

  19. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  20. What is in a business case? Business cases as a tool-in-use for promoting water management practices in the food sector

    DEFF Research Database (Denmark)

    Pedersen, Esben Rahbek Gjerdrum; Rosati, Francesco; Lauesen, Linne Marie

    2017-01-01

    This paper explores the role of business cases as a tool for supporting decision-making processes regarding water management. Based on an analysis of survey and interview data from 300þ organisations within the European food sector, it is concluded that the relative emphasis on business cases...... literature by moving beyond generic discussions of the business case for corporate sustainability to exploring the concrete use of business cases as a decision-making tool for managers....... and payback times influences the average level of water management engagement. However, the findings from the analysis also indicate that use of business cases are not set in stone but can be adapted and changed through ongoing dialogue and negotiations. The paper contributes to the existing academic...

  1. A Population-Based Case-Control Study of Drinking-Water Nitrate and Congenital Anomalies Using Geographic Information Systems (GIS) to Develop Individual-Level Exposure Estimates

    Science.gov (United States)

    Holtby, Caitlin E.; Guernsey, Judith R.; Allen, Alexander C.; VanLeeuwen, John A.; Allen, Victoria M.; Gordon, Robert J.

    2014-01-01

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5–5.56 mg/L (2.44; 1.05–5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92–5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration. PMID:24503976

  2. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    Science.gov (United States)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  3. Case study on bio-remediation. Bio remediation no case study

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, J; Lehmicke, L

    1993-08-01

    This paper introduces two cases of contamination removal using microorganisms in areas contaminated by harmful substances, carried out by ECOVA Inc. in the U.S.A. One case is a removal of soils over an area of 230,000 m[sup 3] contaminated with petroleum-based substances. The removal was intended to reduce contamination at higher than 15,000 ppm down to 1,000 ppm. Discussions on pilot soils and monitoring of activities of living organisms were carried out to determine an optimal condition. It was found that microorganisms having orange color matters have decomposing capability, produce mucopolysaccharides in long-chained hydrocarbon, and make hydrocarbon soluble. The contaminant removal in this area took 19 months. The decomposition work required consideration on temperatures, moistures, aeration frequencies, and nutrient amounts as the affecting factors. The other case is an experiment on removing perchloroethylene (PCE) and trichloroethylene (TCE) from water in the Savanna River. Microorganisms that decompose only TCE were used, with existing methane as a carbon source. An interim result has been obtained that TCE:PCE changed from 0.65:1 to 0.35:1 in twelve months. There has been neither increase nor decrease in the amount of microorganisms.

  4. Environmental and occupational risk factors for progressive supranuclear palsy: Case-control study.

    Science.gov (United States)

    Litvan, Irene; Lees, Peter S J; Cunningham, Christopher R; Rai, Shesh N; Cambon, Alexander C; Standaert, David G; Marras, Connie; Juncos, Jorge; Riley, David; Reich, Stephen; Hall, Deborah; Kluger, Benzi; Bordelon, Yvette; Shprecher, David R

    2016-05-01

    The cause of progressive supranuclear palsy (PSP) is largely unknown. Based on evidence for impaired mitochondrial activity in PSP, we hypothesized that the disease may be related to exposure to environmental toxins, some of which are mitochondrial inhibitors. This multicenter case-control study included 284 incident PSP cases of 350 cases and 284 age-, sex-, and race-matched controls primarily from the same geographical areas. All subjects were administered standardized interviews to obtain data on demographics, residential history, and lifetime occupational history. An industrial hygienist and a toxicologist unaware of case status assessed occupational histories to estimate past exposure to metals, pesticides, organic solvents, and other chemicals. Cases and controls were similar on demographic factors. In unadjusted analyses, PSP was associated with lower education, lower income, more smoking pack-years, more years of drinking well water, more years living on a farm, more years living 1 mile from an agricultural region, more transportation jobs, and more jobs with exposure to metals in general. However, in adjusted models, only more years of drinking well water was significantly associated with PSP. There was an inverse association with having a college degree. We did not find evidence for a specific causative chemical exposure; higher number of years of drinking well water is a risk factor for PSP. This result remained significant after adjusting for income, smoking, education and occupational exposures. This is the first case-control study to demonstrate PSP is associated with environmental factors. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  5. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  6. Impact of shale gas development on water resources: a case study in northern poland.

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  7. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  8. A Study on Rational Pricing System for Water Supply

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    Reasonable pricing of water can induce optimal water use by the public by relaying the considerable costs of water provision and plays an important role of providing a basic scheme for the reasonable management of water. This study provides a reasonable pricing scheme of water that reflects the economic and social values of water as a resource by investigating reasonable bulk-water pricing and retail-water pricing. For bulk pricing, the study discuss the range of costs to be covered, design of efficient pricing structures(differentiated by source quality, loss ratios and time year), and sharing efficient costs between beneficiaries (customer groups and regions). The study also addresses the adjustment of present charging schemes for bulk water such as charges for bulk water from dam, abstraction charges, and river charges etc. Factoring in demand and available resource characteristics, the differentiated pricing mechanism is also investigated. The study proposes a differentiated pricing mechanism based on season, where the pricing structure reflects the cost structure related to fluctuated demand. In addition, implementation methods and effects of introducing seasonal pricing scheme are discussed. Another seasonal pricing mechanism, the seasonally differentiated pricing scheme in bulk pricing reflects a cost structure related to resource availability, is also investigated. Increasing block rate as a reasonable pricing scheme for water conservation, and priority pricing as a tool socially desirable water allocation in the case water shortage are designed. for practical implementation of pricing scheme, several issues are discussed: identification and calculation of costs that should be covered and the structure of costs as a basis of differentiated pricing scheme, issue of forecasting, and practical that could be happen in the implementation of increasing block rate and seasonal pricing schemes, etc. Institutional systems that implement the proposed pricing schemes

  9. Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China.

    Science.gov (United States)

    Gao, Xueping; Liu, Yinzhu; Sun, Bowen

    2018-06-05

    The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.

  10. Measuring the Impact of Industrialization and Financial Development on Water Resources: A Case Study of Pakistan

    Directory of Open Access Journals (Sweden)

    Khalid ZAMAN

    2011-06-01

    Full Text Available The objective of the study examines the impact of industrialization and financial development on water resources, in the specific context of Pakistan. Data set from 1975-2009 are taken for time series analysis. The result reveals that economic growth positively linked with the water resource, as water plays a pivotal role in the economic development of a country. Thus limiting this resource would affect the process of economic growth. Industrial processes have a negative environmental impact which causing water pollution. Financial development has an indirect effect on water consumption, as it shows that private firms finds more funding opportunities in a country, therefore, avoid dirty industry game.

  11. Integrated catchment modelling within a strategic planning and decision making process: Werra case study

    Science.gov (United States)

    Dietrich, Jörg; Funke, Markus

    Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.

  12. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-10-01

    Full Text Available Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of the present study describe the analysis of ground water quality as well as selected heavy metals in oily waste in some of the large-scale field case studies on bioremediation of oily waste (solid waste carried out at various oil installations in India. The results show that there was no contribution of oil and grease and selected heavy metals to the ground water in the nearby area due to adoption of this bioremediation process. The results further reveal that there were no changes in pH and EC of the groundwater due to bioremediation. In almost all cases the selected heavy metals in residual oily waste were within the permissible limits as per Schedule – II of Hazardous Waste Management, Handling and Transboundary Movement Act, Amendment 2008, (HWM Act 2008, by the Ministry of Environment and Forests (MoEF, Government of India (GoI.

  13. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    Science.gov (United States)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  14. Condensation Dripping Water Detection and Its Control Method from Exhaust Pipe of Gasohol Vehicle under Low Environmental Temperature Conditions: A Case Study in Harbin, China

    Directory of Open Access Journals (Sweden)

    Guangdong Tian

    2012-01-01

    Full Text Available Gasohol is one of renewable clean alternative energies, which is widely used around the world. Gasohol had been raised to be used in 9 provinces of China since 2001. However, its closed use was merely promoted in Heilongjiang province since November 1, 2004. Moreover, this issue aroused extensive discussions and controversies. One of them is the condensation dripping water issue from exhaust pipe in cold winter. Does the ethanol cause the road freezing in cold winter? To deal with this issue, taking the Harbin city as a case study, this work designs detection experiments of the condensation dripping water from exhaust pipe. Moreover, the amount of the condensation dripping water from exhaust pipe for gasohol and gasoline vehicles with the same working condition is obtained and measured, and their results are compared and analyzed. Simultaneously, the method of reducing the condensation dripping water is proposed. The results illustrate the effectiveness of the proposed method.

  15. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    Science.gov (United States)

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  16. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    Science.gov (United States)

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  17. Water Stream in Bidet Toilet Commode as a Cause of Anterior Anal Fissure: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Pankaj Garg

    2017-03-01

    Full Text Available Background Water used as a single sharp stream in toilet commode for post defecation cleansing is a common practice in several countries across the globe including India. Repeated hitting of the anus by water stream could potentially cause injury to the anal canal epithelium and lead to development of fissure-in-ano. As the water stream is emanating from the backside of the toilet commode, the possible injury, if any, would be on the anterior anal canal. Objectives The present study aimed at determining whether water stream usage in toilet commodes increased the incidence of anterior fissure-in-ano; this was determined by the incidence of anterior fissure-in-ano the study and control groups. Methods All consecutive fissure-in-ano patients referring to a colorectal clinic from February 2012 to 2015 were included in the study. The patients were classified as a study group (who were using water stream for cleansing purposes in toilet commodes and a control group (patients who were not using water stream. The characteristics and location (position of the fissure-in-ano was noted. Results In this study, 165 patients were prospectively enrolled. Male/female ratio was 96/69, and the mean age was 36.3 ± 11.2 years. The anterior fissure-in-ano in the study group was 55.9% (47/84, while it was 17.3 % (14/81 in the control group (P < 0.0001, odds ratio: 6.08, 95% CI: 2.96 - 12.47]. Conclusions Water used as a single sharp stream to cleanse after defecation in toilet commodes is hazardous and should be avoided.

  18. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations

  19. Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis

    CSIR Research Space (South Africa)

    Le Corre, K

    2012-06-01

    Full Text Available , Tredoux, Gideon, Wintgens, Thomas, Cheng Xuzhou, Yu, Liang and Zhao, Xuan Abstract: Water scarcity combined with the quality deterioration of freshwater due to the rapid augmentation of population and industrial development is a major concern... stream_source_info Genthe_2012_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1118 Content-Encoding ISO-8859-1 stream_name Genthe_2012_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Water...

  20. Water pollution in the Middle Nile Delta, Egypt: An environmental study

    Directory of Open Access Journals (Sweden)

    Samy I. El-Kowrany

    2016-09-01

    Full Text Available Water-borne diseases have been estimated to cause more than two million deaths and four billion cases of diarrhea annually. Water-borne pathogenic organisms include bacteria, protozoa, and viruses. Heavy metal contamination of water is also a potential threat to human health. This study aimed to detect contamination of potable water with protozoal and bacterial pathogens as well as heavy metals in Gharbiya governorate in the middle of the Nile Delta, Egypt. Therefore, this study was conducted on water samples from 3 different localities in Gharbiya governorate throughout the year 2014. Water samples (108 were collected from source, plant and tap water at the four seasons. Parasitological, bacteriological, and toxicological evaluation was carried out for all samples. Parasitological evaluation was done to detect protozoal contamination by conventional diagnostic staining techniques, immunofluorescence assay, and flow cytometry. The study identified the protozoal contaminants in water, and showed that flow cytometry positive results were more than the conventional staining. Also, the study identified bacterial fecal contamination of source water as well as heavy metal pollution in source water. Since the integration of flow cytometry could facilitate detection of Giardia cysts and Cryptosporidium oocysts in water samples, we strongly recommend its use as a routine for the detection of these pathogenic protozoa. Finally, Ongoing evaluation of drinking water is needed as well as formulation and implementation of an integrated plan to limit the contamination by pathogens and heavy metals.

  1. Water and sanitation in Nigeria: a case study of Ondo State ...

    African Journals Online (AJOL)

    Water and sanitation have been recognized as critical to ensure good quality of life. This paper examines the existing water supply and sanitation in Ondo State, Nigeria with a view to determine the extent of deficiency and what will be required to meet the Millennium Development Goals that seeks to halve the Population of ...

  2. geophysical and well corellation analysis of ogo field: a case study ...

    African Journals Online (AJOL)

    HP

    GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN. NIGER DELTA BASIN ... have average porosity of 0.22, water saturation 0.43 and Hydrocarbon saturation of 0.57. ... chemical components. For the ...

  3. [A "historical" case of lead poisoning via drinking water: diagnostic and therapeutic issues].

    Science.gov (United States)

    Testud, F; Girtanner-Brunel, L; Péaud, P Y; Serpollet, G; Duchen, C

    2001-12-01

    It is likely that lead poisoning via drinking water is often overlooked because of its supposed rarity and nonspecific early symptoms, which result in delayed management. One case of severe lead poisoning via drinking water is reported. The diagnosis was long missed and a particularly long chelating treatment was required. The clinical features included lead colic, a Burton's lead line, anemia, polyneuritis and arterial hypertension. Eighteen courses of calcium EDTA were required to obtain 'biological recovery'. The poisoning was linked to a very long water supply lead pipe and potomania secondary to alcohol withdrawal. This case report illustrates how difficult the early recognition of lead poisoning can be, and underlines the need to inquire about a toxic aetiology, particularly via the environment, of otherwise unexplained pathological conditions.

  4. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miner-Nordstrom, L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  5. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    Science.gov (United States)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  6. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Mihacea, Sorina; Sirbovan, Alina; Butnariu, H.; Titescu, Gh.

    2001-01-01

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D 2 =150 ppm). The effect of artificial deuterium depleted water (29 ppm D 2 ) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D 2 ). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action

  7. Mathematical modelling a case studies approach

    CERN Document Server

    Illner, Reinhard; McCollum, Samantha; Roode, Thea van

    2004-01-01

    Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects. Some projects are extensive, as with the explorations of the predator-prey model; oth...

  8. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  9. Water supply and demand management in the Galápagos : A case study of Santa Cruz Island

    NARCIS (Netherlands)

    Reyes Perez, M.F.

    2017-01-01

    Water resources in tourist islands have been severely threatened, especially in the Galápagos Islands, where the increased local population has generated attractive income from the tourist services. In addition, the data regarding water supply and demand are scarce. This study investigates water

  10. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    Science.gov (United States)

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  11. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    International Nuclear Information System (INIS)

    Kumar, A Anand; Prabakaran, K; Nagarajan, R; Jaison, J; Chan, Y S

    2016-01-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed. (paper)

  12. Modeling Relationships between Surface Water Quality and Landscape Metrics Using the Adaptive Neuro-Fuzzy Inference System, A Case Study in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    mohsen Mirzayi

    2016-03-01

    Full Text Available Landscape indices can be used as an approach for predicting water quality changes to monitor non-point source pollution. In the present study, the data collected over the period from 2012 to 2013 from 81 water quality stations along the rivers flowing in Mazandaran Province were analyzed. Upstream boundries were drawn and landscape metrics were extracted for each of the sub-watersheds at class and landscape levels. Principal component analysis was used to single out the relevant water quality parameters and forward linear regression was employed to determine the optimal metrics for the description of each parameter. The first five components were able to describe 96.61% of the variation in water quality in Mazandaran Province. Adaptive Neuro-fuzzy Inference System (ANFIS and multiple linear regression were used to model the relationship between landscape metrics and water quality parameters. The results indicate that multiple regression was able to predict SAR, TDS, pH, NO3‒, and PO43‒ in the test step, with R2 values equal to 0.81, 0.56, 0.73, 0.44. and 0.63, respectively. The corresponding R2 value of ANFIS in the test step were 0.82, 0.79, 0.82, 0.31, and 0.36, respectively. Clearly, ANFIS exhibited a better performance in each case than did the linear regression model. This indicates a nonlinear relationship between the water quality parameters and landscape metrics. Since different land cover/uses have considerable impacts on both the outflow water quality and the available and dissolved pollutants in rivers, the method can be reasonably used for regional planning and environmental impact assessment in development projects in the region.

  13. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The case study of the Psachna basin, Central Euboea, Greece.

    Science.gov (United States)

    Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios

    2014-05-01

    High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown

  14. Selection of a plant location - A case study: Urea production using ...

    African Journals Online (AJOL)

    Selection of a plant location - A case study: Urea production using Calub Gas. ... The criteria are. amongst others, supply of raw materials and fuel, market proximity, water supply. waste ... To set up · critical factors for Ethiopian scenario

  15. Numerical study of saturation steam/water mixture flow and flashing initial sub-cooled water flow inside throttling devices

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...

  16. Problem - oriented studies on plant - soil - water relations : sowing strategies for maize in rainfed agriculture in Southern Mozambique : water management in bog relicts in the Netherlands

    NARCIS (Netherlands)

    Schouwenaars, J.M.

    1990-01-01

    Plant-soil-water models are applied in two case studies. Attention is given to the desired level of accuracy in (agro-)hydrological. research when applied in problem-oriented studies. In the case studies it is shown that when decision criteria are only roughly known and when only

  17. The cost of water hyacinth control in South Africa: a case study of ...

    African Journals Online (AJOL)

    The biology, ecology and impacts of water hyacinth are well studied, but sound and cost-effective management of it remains an enormous challenge in South Africa. Since the 1970s, control programmes have focused on the use of herbicides, with some success, while biological and integrated control have historically ...

  18. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  19. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. IV. Discussion of real cases

    Science.gov (United States)

    Laio, F.; Porporato, A.; Fernandez-Illescas, C. P.; Rodriguez-Iturbe, I.

    Three water-controlled ecosystems are studied here using the stochastic description of soil moisture dynamics and vegetation water stress proposed in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 707-723) and Part III (A. Porporato, F. Laio, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 725-744) of this series of papers. In the savanna of Nylsvley (South Africa) the very diverse physiological characteristics of the existing plants give rise to different strategies of soil moisture exploitation. Notwithstanding these differences, the vegetation water stress for all the species turns out to be very similar, suggesting that coexistence might be attained also through differentiation of water use. The case of the savanna of Southern Texas points out how rooting depth and interannual rainfall variability can impact soil moisture dynamics and vegetation water stress. Because of the different responses to water stress of trees and grasses, external climatic forcing could be at the origin of the dynamic equilibrium allowing coexistence in this ecosystem. Finally, the analysis of a short grass steppe in Colorado provides an interesting example of the so-called inverse texture effect, whereby preferential conditions for vegetation are dependent on soil texture and rainfall. Sites which are more favorable during wet conditions may become less suitable to the same vegetation type during drier years. Such an effect is important to explain the predominance of existing species, as well as to investigate their reproductive strategies.

  20. Study of Mechanisms for Development and Strengthening of Water User Cooperatives (Case Study of Aras River Basin: Application of AHP Method

    Directory of Open Access Journals (Sweden)

    Rohallah maghabl

    2014-06-01

    Full Text Available Water user cooperatives were formed due to consideration to people's empowerment and participation in water investment and management. The purpose of this study was to investigate the mechanisms of development and strengthening of water user cooperatives in the Aras River Basin. The study population consisted of the management board members of the water user cooperatives in the Aras Basin in the year 2012. Respondents were selected by purposeful stratified sampling method. Having the data collected by interviews and questionnaires, the Analytic Hierarchy Process (through the software Expert Choice 11 was used to prioritize mechanisms for the development and strengthening of water user cooperatives. Based on the final weights, criterias including supportive strategies, education - extension, policy, communications and legal mechanisms, were prioritized, respectively. The results of the sensitivity analysis showed that sub-criterias including reallocation of credit to change the traditional irrigation to drip and sprinkler irrigation, holding extension and educational courses purposed at promoting farmers’knowledge about their responsibilities for the formation and management of water user cooperatives collaborated with the department of Jihad Agricultural Organization (JKO, the department of Cooperatives and Regional Water Organization; credit and investment provision to improve the processing and package industries, modeling appropriate cropping systems based on the area capacity were the most influential sub-criterias in developing and strengthening water user cooperatives.

  1. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    Santon, J.P.

    1964-09-01

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [fr

  2. The surface water storage problem in arid regions: a case study of ...

    African Journals Online (AJOL)

    Most dams lose capacity as a result of three principal phenomena: leakage, sedimentation and evaporation. The study of these phenomena is particularly important as they can also endanger the dam's stability. Here, we examine the case of the Gargar dam in western Algeria. This dam is located in an arid zone where ...

  3. Safe water supply without disinfection in a large city case study: Berlin.

    Science.gov (United States)

    Grohmann, A; Petersohn, D

    2000-01-01

    Berlin's water supplies originate exclusively from groundwater. For sustainable water management, river water is treated by flocculation and filtration and used either for artificial groundwater recharge (rivers Spree and Havel) or for bank filtration (Nordgraben and Lake Tegel). Drinking water chlorination was abandoned in Berlin (West) in 1978, and in Berlin (East) in 1992, following German unification. Chlorine consumption for the purpose of weekly performance checks in the chlorination plants of Berlin's 11 waterworks and occasional chlorination within the pipe system following pipe burst events amounts to 2500 kg per year. Based on the annual water demand of 250 million cubic metres, this is equivalent to 0.01 mg of chlorine per litre. Microbiological monitoring at the 11 waterworks and at 383 sampling points within the pipe system shows CFU at less than 10/1 ml-1 and coliforms and E. coli invariably at 0/100 ml-1. In view of the low AOX content, a multiplication of bacteria within the pipe system can be expected to occur not at all or only to a small extent. Resource protection measures, filter backwashing and pipe system maintenance in observance of the relevant technical rules will continue to ensure that the quality of Berlin's drinking water meets stringent hygiene requirements without chlorination.

  4. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    Science.gov (United States)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  5. Measuring the Impact of Industrialization and Financial Development on Water Resources: A Case Study of Pakistan

    OpenAIRE

    Khalid ZAMAN; Muhammad Mushtaq KHAN; Mehboob AHMAD

    2011-01-01

    The objective of the study examines the impact of industrialization and financial development on water resources, in the specific context of Pakistan. Data set from 1975-2009 are taken for time series analysis. The result reveals that economic growth positively linked with the water resource, as water plays a pivotal role in the economic development of a country. Thus limiting this resource would affect the process of economic growth. Industrial processes have a negative environmental impact ...

  6. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    Science.gov (United States)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  7. A case study on the status of water supply for domestic purposes in ...

    African Journals Online (AJOL)

    Domestic water supply is a daily necessity and key factor in human health and well being. Without water, life cannot be sustained and lack of access to adequate water supplies leads to wide spread of diseases with children bearing the greatest health burden associated with poor water quality and sanitation. The WHO ...

  8. Analysis of case studies - mining, milling and discharges

    International Nuclear Information System (INIS)

    McEwan, A.C.

    2000-01-01

    This analysis paper reviews case studies on mining and milling and on radioactive discharges. An outline is given of each of the case studies presented from the perspectives of the study background, the criteria followed in remediation, the decision making process, outcomes achieved, and an evaluation in relation to radiological criteria that are recommended internationally. Site remediation after mining and milling operations may be driven more by aesthetic and environmental concerns than radiological criteria, particularly in more populated areas. The cases illustrated that it is highly desirable that stakeholders, including the public, are involved in decision making at an early stage with agreement on remediation outcomes. In particular, the exposure pathways and dose assessment models employed should generally be agreed with or approved by the regulatory authority prior to remediation work. In the case of remediated properties at Grand Junction, Colorado, it appears the cleanup criteria employed were below or consistent with those applicable to practices, although the situation was one of intervention, and this raises a question as to the cost effectiveness of the cleanup. For some remediation projects there are long term ownership issues arising out of the need for extended public or state oversight of engineered structures or active water treatment facilities, but for these cases ownership issues did not arise for purely radiological reasons. (author)

  9. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    Science.gov (United States)

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  10. Should the Dead Sea Be Sustainable?: Investigating Environmental Issues Using a Case Study

    Science.gov (United States)

    Saunders, Cheston Andrew

    2016-01-01

    Many students leave the environmental science classroom with misconceptions centered on the availability of natural resources such as water. This article presents a case study where students assume the roles of various stakeholders and articulate their position on whether or not to pipe water from the Red Sea to the Dead Sea. Additionally,…

  11. Bi-objective Optimization of the Water Distribution Networks (Case Study: Sahand City

    Directory of Open Access Journals (Sweden)

    Ali Nikjoofar

    2012-12-01

    Full Text Available To design an urban water network in addition to minimizing the cost, improving the water pressure is very important. Then in this paper a bi-objective optimization model for the new city of Sahand in Northwestern Iran is developed.  Due to its non-linearity and the huge number of variables, the genetic algorithm has been utilized to solve it. Several Pareto solutions have been obtained and then based on the game theory approach (the area monotonic solution, the most efficient point was provided. The solution is simulated by the WaterGems software and the elements of the network are designed. This optimum solution shows a decrease of 13% in total cost in addition to the improved water pressure.

  12. Drought mitigation interventions by improved water management - a case study from Punjab Pakistan

    International Nuclear Information System (INIS)

    Asrar-ul-Haq

    2002-01-01

    The Paper describes the main features of the water scarcity management plan that was implemented during the last two Rabi seasons, to optimize wheat production in the Punjab province. Due to severe drought conditions in the country, the river flows remained well below the normal range, resulting in overall 18% and 43% shortfall in canal water supplies during the Rabi seasons of 1999-2000 and 2000- 2001, respectively. In order to address the adverse impacts of the serious water shortage, Punjab Irrigation Department formulated a comprehensive and action oriented plan, in consultation with the Agriculture Department and the farmers representatives. The main thrust of the plan focused on conserving water during the slack demand periods and its reallocation during sensitive growth stages priority canal water allocation to the saline groundwater areas and providing one to two watering to the non-perennial areas. The implementation of Rabi Plan was closely monitored throughout the crop season by the senior irrigation managers and the needed adjustment were made in timely response to the actual water availability. The information regarding the Plan and its subsequent operation was disseminated through the media and the Extension Wing of Agriculture Department. In order to improve internal water management regime, as well as to ensure farmers participation in planning and efficient operation of the canals, water Allocation Committees at the canal command level and canal division level were established throughout the province. As a consequence of the innovative and bold water management interventions, the province harvested bumper wheat-crops, despite serious water shortages. The paper highlights the need for close and continuous monitoring of the planned operations, as well as the significance of other non water inputs, like realistic support price, timely sowing of wheat, improved availability of fertilizers, better seeds, and efficient extension services. The experience

  13. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.

    Science.gov (United States)

    Carretti, Emiliano; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2007-05-22

    A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are

  14. A Fuzzy Linear Programming Model for Improving Productivity of Electrical Energy in Potable Water Supply Facilities (Case study: Sistan Water Supply Project

    Directory of Open Access Journals (Sweden)

    Vahid Baradaran

    2018-03-01

    Full Text Available One of the most important operational issues in urban drinking water production and distribution systems is to assign a plan for running hours of water supplying electric pumps. The cost of consuming electricity in these pumps allocates most of water and wastewater companies operational costs to itself which is dependent to their running hours. In this paper, meanwhile having a field study in Sistan rural water and wastewater company, the constraints for specifying electric pumps operational time in water supplying resources such as restrictions in fulfilling demand, supply potable water with suitable quality and uselessness of electric pumps have been identified. Due to uncertainty and fuzziness of the constraints, a linear programming model with fuzzy restrictions for determining electric pumps running hours per day is submitted with the aim to minimize electricity consumption and cost. After collecting and using required data for model, it proved that using the proposed model could reduce the costs of electrical energy and increase productivity up to 23 percent per month. The proposed mathematical fuzzy programming is able to specify electric pumps scheduling plan for water supply resources with the aim to reduce the costs of consuming energy.

  15. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  16. Water conservation through trade: the case of Kenya

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2014-01-01

    This study quantifies and maps the water footprint of Kenya from both production and consumption perspectives and estimates the country’s virtual water export and import. Kenya’s virtual water export related to trade in agricultural products was 4.1 km3/y; its virtual water import was 4.0 km3/y. The

  17. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  18. A decision model for selecting sustainable drinking water supply and greywater reuse systems for developing communities with a case study in Cimahi, Indonesia.

    Science.gov (United States)

    Henriques, Justin J; Louis, Garrick E

    2011-01-01

    Capacity Factor Analysis is a decision support system for selection of appropriate technologies for municipal sanitation services in developing communities. Developing communities are those that lack the capability to provide adequate access to one or more essential services, such as water and sanitation, to their residents. This research developed two elements of Capacity Factor Analysis: a capacity factor based classification for technologies using requirements analysis, and a matching policy for choosing technology options. First, requirements analysis is used to develop a ranking for drinking water supply and greywater reuse technologies. Second, using the Capacity Factor Analysis approach, a matching policy is developed to guide decision makers in selecting the appropriate drinking water supply or greywater reuse technology option for their community. Finally, a scenario-based informal hypothesis test is developed to assist in qualitative model validation through case study. Capacity Factor Analysis is then applied in Cimahi Indonesia as a form of validation. The completed Capacity Factor Analysis model will allow developing communities to select drinking water supply and greywater reuse systems that are safe, affordable, able to be built and managed by the community using local resources, and are amenable to expansion as the community's management capacity increases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption: Key learning points from pilot studies on tea and margarine

    NARCIS (Netherlands)

    Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Martinez-Aldaya, Maite; Ercin, Ertug; Milá i Canals, L.; Hoekstra, Arjen Ysbert

    2012-01-01

    Water accounting and environmental impact assessment across the product's life cycle is gaining prominence. This paper presents two case studies of applying the Life Cycle Assessment (LCA) and Water Footprint (WF) approaches to tea and margarine. The WF, excluding grey water, of a carton of 50 g tea

  20. Behavior of microorganisms in drinking water treatment by inductively coupled plasma system: Case study in ground water

    Science.gov (United States)

    Desmiarti, Reni; Hazmi, Ariadi; Martynis, Munas; Sutopo, Ulung Muhammad; Li, Fusheng

    2018-02-01

    Pathogenic bacteria, such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC), were removed from groundwater by inductively coupled plasma system treatment in continuous flow experiments. The objective of this study is to investigate the effect of flowrate and frequency on the behavior of microorganisms in drinking water treatment using inductively coupled plasma system (ICPS). The results showed that after 120 minutes of ICPS treatment, the removal efficiency with respect to TC, FC and OC decreased with increasing flowrate. The removal efficiency of FC was achieved at 100% in all runs. Compared to FC, the removal efficiencies with respect to TC and FC were lower than those with respect to TC and OC in the following order: FC >OC> TC. The disinfection yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 8.08±0.46 to 10.54±0.19 W/cm2. The results in the present work can be used to design a new technology for drinking water treatment to remove all pathogenic bacteria without using hazardous chemicals.

  1. Case Study Research Methodology

    Directory of Open Access Journals (Sweden)

    Mark Widdowson

    2011-01-01

    Full Text Available Commenting on the lack of case studies published in modern psychotherapy publications, the author reviews the strengths of case study methodology and responds to common criticisms, before providing a summary of types of case studies including clinical, experimental and naturalistic. Suggestions are included for developing systematic case studies and brief descriptions are given of a range of research resources relating to outcome and process measures. Examples of a pragmatic case study design and a hermeneutic single-case efficacy design are given and the paper concludes with some ethical considerations and an exhortation to the TA community to engage more widely in case study research.

  2. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    Science.gov (United States)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  3. Studies and research concerning BNFP: transportation of radioactive material by water

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1980-11-01

    Currently there are many limitations imposed on the shipment of radioactive material from nuclear power plants. In this regard, many questions have arisen related to the feasibility of substituting water transportation of these materials as a backup or supplement to the highway and rail modes which are now in use. This study addresses the results of studies performed by Allied-General Nuclear Services concerning the water transportation of spent nuclear fuel and radwaste materials. The report presents both an overview of the possible applications, problems, and means of solution, and specific information related to one particular site. In particular, a detailed case study of a nuclear plant site located on a navigable waterway (Chesapeake Bay) was made. The study concludes that there are some real advantages in using water transport, which are particularly evident if a site is not served by rail or its primary transport route lies near populous areas. Whereas, water transport has been used extensively in Europe and Japan, it has been virtually bypassed in the United States. A recommendation is made to continue examination of water transport, including the development of necessary standards for possible future operations

  4. Water hammer effect in the spiral case and penstock of Francis turbines

    Science.gov (United States)

    Pepa, D.; Ursoniu, C.; Gillich, R. N.; Campian, C. V.

    2017-01-01

    Sudden pressure increases in the penstock or spiral case of a hydraulic turbine are the effect of sudden flow variation that occur during transient processes of type opening / closing or load rejection of the hydro unit. The consequence of the pressure rise in the spiral case and penstock is the water hammer phenomenon, whose effects can be devastating in some cases, up to breaking pipes and calamities produced in the area. This paper aims to analyze the method of calculation of the maximum pressure values that might occur in load rejection situations to a hydraulic turbine, in spiral case and in penstock, conditioned by the limiting of the values of the over speed and measures of limiting the increase in pressure in conjunction with limiting the increase in speed in these specific processes. As an example, we studied and analyzed the situation of a hydroelectric power plant equipped with a 7.8 MW Francis turbine without pressure regulator and the inflow surge. The results of analytical calculation overlaid on the experimental measurements performed during the performance tests of the hydro unit lead to the conclusion that the calculation algorithm proposed has been chosen correctly and the 2-stage closing law of the wicket gate promoted in this case is effective in such situations.

  5. Project management case studies

    CERN Document Server

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  6. Shape matters: The case for Ellipsoids and Ellipsoidal Water

    Energy Technology Data Exchange (ETDEWEB)

    Tillack, Andreas F. [ORNL; Robinson, Bruce H. [University of Washington, Seattle

    2017-11-01

    We describe the shape potentials used for the van der Waals interactions between soft-ellipsoids used to coarse-grain molecular moieties in our Metropolis Monte-Carlo simulation software. The morphologies resulting from different expressions for these van der Waals interaction potentials are discussed for the case of a prolate spheroid system with a strong dipole at the ellipsoid center. We also show that the calculation of ellipsoids is, at worst, only about fivefold more expensive computationally when compared to a simple Lennard- Jones sphere. Finally, as an application of the ellipsoidal shape we parametrize water from the original SPC water model and observe – just through the difference in shape alone – a significant improvement of the O-O radial distribution function when compared to experimental data.

  7. Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada

    Science.gov (United States)

    Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar

    2017-08-01

    Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the

  8. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    Science.gov (United States)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  9. Tertiary treatment and dual disinfection to improve microbial quality of reclaimed water for potable and non-potable reuse: A case study of facilities in North Carolina.

    Science.gov (United States)

    Bailey, Emily S; Casanova, Lisa M; Simmons, Otto D; Sobsey, Mark D

    2018-07-15

    Treated wastewater is increasingly of interest for either nonpotable purposes, such as agriculture and industrial use, or as source water for drinking water supplies; however, this type of advanced treatment for water supply is not always possible for many low resource settings. As an alternative, multiple barriers of physical, chemical and biological treatment with lower cost and simpler operation and maintenance have been proposed as more globally applicable. One such water reclamation system for both non-potable and potable reuse, is that approved by the State of North Carolina "for Type 2" reclaimed water (NCT2RW). NC Type 2 potable reuse systems consist of a sequence of tertiary treatment to produce well oxidized reclaimed water that is then then further treated by two steps of disinfection, typically UV radiation and chlorination. In this case study, the log10 microbial reduction performance of NCT2RW producing water reclamation facilities is evaluated. Based on the results presented here, NCT2RW consistently achieved high (6 for bacteria, 4 for virus and 4 for protozoan parasite surrogates) log10 reductions using the NC proposed treatment methods. Additionally, lower but significant log10 reduction performance was also documented for protozoan parasites and human enteric viruses. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Management and environmental risk study of the physicochemical parameters of ballast water

    International Nuclear Information System (INIS)

    Nosrati-Ghods, Nosaibeh; Ghadiri, Mehdi; Früh, Wolf-Gerrit

    2017-01-01

    Shipping is a vital industry for the global economy. Stability of ships, provided by ballast water, is a crucial factor for cargo loading and unloading processes. Ballast water treatment has practical significance in terms of environmental issues, ecosystem, and human health, because ships discharge this water into the environment before loading their cargos. This study reviews the common methods for ballast water management – exchange, heating, filtration, ultrasonic treatment, ultraviolet irradiation, chemicals, and gas supersaturation – to select the best one. This study compares water temperature, salinity, dissolved oxygen, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (Co, Cr, Ni, Pb) for ballast tanks of selected ships with the recipient port environment in the Persian Gulf as a case study. The exchange of ballast water in the ocean and/or its treatment on board to prevent inadvertent effects on the environment's physicochemical conditions is related to vessel characteristics, legislation, and the environmental condition. Ecological risk study showed that the salt content in ballast water is close to that of seawater, but the values of Cr (2.1 mg/l) and Ni (0.029 mg/l) in ballast water are higher than those in seawater (1 and 0.004 mg/l, respectively). - Highlights: • Description of ballast water management methods. • Experimental investigation of ballast water and seawater. • Differences of physiochemical characteristics of ballast water and seawater. • Selection of the best ballast water management method.

  11. Shigellosis Outbreak in Al Batinah South Governorate, Oman; Case-control study

    Directory of Open Access Journals (Sweden)

    Idris Abaidani

    2015-08-01

    Full Text Available Objectives: An outbreak of acute gastroenteritis due to Shigella flexneri occurred in August 2012 in the catchment area of the Wadi Sahtan Health Center in Rustaq, Al Batinah South Governorate, Oman. The aim of this study was to discover possible causes of this outbreak in the villages of Fassa, Rogh and Amk and to measure the risk of exposure among cases and controls. Methods: A case-control study was conducted in September 2012 in Fassa, Rogh and Amk. All households in the three villages were interviewed. Case and control households were compared to determine possible exposure avenues, including place of residence, source of drinking water, hand hygiene levels and practices related to drinking water, food preparation and environmental sanitation. Results: Residing in Fassa (P <0.0001; odds ratio [OR] = 4.86, 95% confidence interval [CI] = 2.22–10.63 and average hand hygiene practices (P = 0.008; OR = 13.97, 95% CI = 1.58–123.36 were associated with an increased risk of contracting shigellosis. No significant differences were found with regards to the other exposure avenues. Conclusion: This was the first study conducted in Oman regarding an outbreak of shigellosis in a community setting. The only variables that significantly impacted the risk of acute gastroenteritis were residing in Fassa and average hand hygiene practices. The source of the outbreak could not be identified. However, septic tank sanitation and water and food consumption practices were not satisfactory in the studied villages. These need to be addressed to prevent similar outbreaks of acute gastroenteritis in this region in the future.

  12. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  13. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    Science.gov (United States)

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Decoupling Water Consumption and Environmental Impact on Textile Industry by Using Water Footprint Method: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-02-01

    Full Text Available The rapid development of China’s textile industry has led to consumption and pollution of large volumes of water. Therefore, the textile industry has been the focus of water conservation and waste reduction in China’s 13th Five-Year Plan (2016–2020. The premise of sustainable development is to achieve decoupling of economic growth from water consumption and wastewater discharge. In this work, changes in the blue water footprint, grey water footprint, and the total water footprint of the textile industry from 2001 to 2014 were calculated. The relationship between water footprint and economic growth was then examined using the Tapio decoupling model. Furthermore, factors influencing water footprint were determined through logarithmic mean Divisia index (LMDI method. Results show that the water footprint of China’s textile industry has strongly decoupled for five years (2003, 2006, 2008, 2011, and 2013 and weakly decoupled for four years (2005, 2007, 2009, and 2010. A decoupling trend occurred during 2001–2014, but a steady stage of decoupling had not been achieved yet. Based on the decomposition analysis, the total water footprint mainly increased along with the production scale. On the contrary, technical level is the most important factor in inhibiting the water footprint. In addition, the effect of industrial structure adjustment is relatively weak.

  15. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  16. Secondary cycle water chemistry for 500 MWe pressurised heavy water reactor (PHWR) plant: a case study

    International Nuclear Information System (INIS)

    Bhandakkar, A.; Subbarao, A.; Agarwal, N.K.

    1995-01-01

    In turbine and secondary cycle system of 500 MWe PHWR, chemistry of steam and water is controlled in secondary cycle for prevention of corrosion in steam generators (SGs), feedwater system and steam system, scale and deposit formation on heat transfer surfaces and carry-over of solids by steam and deposition on steam turbine blades. Water chemistry of secondary side of SGs and turbine cycle is discussed. (author). 8 refs., 2 tabs., 1 fig

  17. A resilience perspective to water risk management: case-study application of the adaptation tipping point method

    Science.gov (United States)

    Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris

    2010-05-01

    start the identification and analysis of adaptive strategies at the end of PSIR scheme: impact and examine whether, and for how long, current risk management strategies will continue to be effective under different future conditions. The most noteworthy application of this approach is the adaptation tipping point method. Adaptation tipping points (ATP) are defined as the points where the magnitude of change is such that the current risk management strategy can no longer meet its objectives. In the ATP method, policy objectives, determining aspirational functioning, are taken as the starting point. Also, the current measures to achieve these objectives are described. This is followed by a sensitivity analysis to determine the optimal and critical boundary conditions (state). Lastly, the state is related to pressures in terms of future change. It should be noted that in the ATP method the driver for adopting a new risk management strategy is not future change as such, but rather failing to meet the policy objectives. In the current paper, the ATP method is applied to the case study of an existing stormwater system in Dordrecht (the Netherlands). This application shows the potential of the ATP method to reduce the complexity of implementing a resilience-focused approach to water risk management. It is expected that this will help foster greater practical relevance of resilience as a perspective for the planning of water management structures.

  18. Computational study of formamide-water complexes using the SAPT and AIM methods

    International Nuclear Information System (INIS)

    Parreira, Renato L.T.; Valdes, Haydee; Galembeck, Sergio E.

    2006-01-01

    In this work, the complexes formed between formamide and water were studied by means of the SAPT and AIM methods. Complexation leads to significant alterations in the geometries and electronic structure of formamide. Intermolecular interactions in the complexes are intense, especially in the cases where the solvent interacts with the carbonyl and amide groups simultaneously. In the transition states, the interaction between the water molecule and the lone pair on the amide nitrogen is also important. In all the complexes studied herein, the electrostatic interactions between formamide and water are the main attractive force, and their contribution may be five times as large as the corresponding contribution from dispersion, and twice as large as the contribution from induction. However, an increase in the resonance of planar formamide with the successive addition of water molecules may suggest that the hydrogen bonds taking place between formamide and water have some covalent character

  19. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  20. Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection.

    Directory of Open Access Journals (Sweden)

    Simon Lévesque

    Full Text Available Campylobacter infection is a leading cause of bacterial gastroenteritis worldwide, and most clinical cases appear as isolated, sporadic infections for which the source is rarely apparent. From July 2005 to December 2007 we conducted a prospective case-case study of sporadic, domestically-acquired Campylobacter enteritis in rural versus urban areas and a prevalence study of Campylobacter in animal and environmental sources in the Eastern Townships, Quebec. Isolates were typed using Multilocus Sequence Typing (MLST to reinforce the case-case findings and to assign a source probability estimate for each human isolate. The risk of human campylobacteriosis was 1.89-fold higher in rural than urban areas. Unconditional multivariate logistic regression analysis identified two independent risk factors associated with human Campylobacter infections acquired in rural area: occupational exposure to animals (OR = 10.6, 95% CI: 1.2-91, p = 0.032, and household water coming from a private well (OR = 8.3, 95% CI: 3.4-20.4, p<0.0001. A total of 851 C. jejuni isolates (178 human, 257 chicken, 87 bovine, 266 water, 63 wild bird were typed using MLST. Among human isolates, the incidence rates of clonal complexes (CC CC-21, CC-45, and CC-61 were higher in rural than urban areas. MLST-based source attribution analysis indicated that 64.5% of human C. jejuni isolates were attributable to chicken, followed by cattle (25.8%, water (7.4%, and wild birds (2.3%. Chicken was the attributable source for the majority of cases, independent of residential area, sex and age. The increased incidence in rural compared to urban areas was associated with occupational exposure to animals, particularly cattle among those aged 15-34 years, and with consumption of private well water. Both bovine and water exposure appeared to contribute to the seasonal variation in campylobacteriosis. These results provide a basis for developing public education and preventive programs targeting the

  1. Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China

    Science.gov (United States)

    Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.

    2017-11-01

    Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.

  2. An assessment study of septic tank based sewage disposal system on quality of underground water

    International Nuclear Information System (INIS)

    Khawaja, A.A.; Lisa, M.; Boustani, M.; Jaffar, M.; Masud, K.

    1999-01-01

    An assessment of septic tank based sewage disposal system made on the basis of quality of underground water is presented. Machrala village is selected as the case study area where an ever-increasing number of septic tanks are posing great health threat to the inhabitants. Both hand pump and tube well water samples are analyzed for toxic trace metals (Mn, Fe, Cd and Co), physico-chemical parameters (pH, turbidity, conductance, total dissolved salts, Ca, Mg, Cl/sup-/ and SO/sub 4//sup -2/) and micro-organism population in terms of total viable count, coliform count, MPN coliform. The metals were analyzed by the flame atomic absorption method using standard procedure. The study shows that the local underground water of the village is being adversely affected by toxic metals and coliform bacteria. In most cases, the latter parameter exceeds 240 counts/ml. Besides, tube well water were found to have higher Pb concentration (0.200 mg/ml) and the overall assessment renders more than 50% of the water samples as unsatisfactory for human consumption. (author)

  3. Study of the properties of self-sustaining nuclear chain reaction in the fuel-containing masses of the "Ukryttya" object for the case of varying velocity of water inflow

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2018-03-01

    Full Text Available The main peculiarities of ignition and development of self-sustaining nuclear chain reaction (SCR in fuel-containing masses (FCM of Chernobyl "Ukryttya" were studied for the case of varying velocity of water incoming into the system or its outcoming. On the basis of analysis and numerical solution of the corresponding system of differential equations for the main characteristics of the system, it was shown that the variations of water inflow could lead to very sufficient and various changes in SCR development comparing to possible modes at constant velocities of water inflow. In particular, the calculations show that the neutron bursts with great amplitude could take place in the system under definite sufficiently reasonable physical conditions. It was also shown that the increase of velocity of water inflow into the FCM in the mode of constant oscillations can lead to transition into "beyond critical" state which is the subcritical state with big quantity of water.

  4. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    Science.gov (United States)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  5. [Case and studies].

    Science.gov (United States)

    Schubert, András

    2015-11-15

    Case studies and case reports form an important and ever growing part of scientific and scholarly literature. The paper deals with the share and citation rate of these publication types on different fields of research. In general, evidence seems to support the opinion that an excessive number of such publications may negatively influence the impact factor of the journal. In the literature of scientometrics, case studies (at least the presence of the term "case study" in the titles of the papers) have a moderate share, but their citation rate is practically equal to that of other publication types.

  6. Integrated water and renewable energy management: the Acheloos-Peneios region case study

    Science.gov (United States)

    Koukouvinos, Antonios; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Tegos, Aristotelis; Rozos, Evangelos; Papalexiou, Simon-Michael; Dimitriadis, Panayiotis; Markonis, Yiannis; Kossieris, Panayiotis; Tyralis, Christos; Karakatsanis, Georgios; Tzouka, Katerina; Christofides, Antonis; Karavokiros, George; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Within the ongoing research project "Combined Renewable Systems for Sustainable Energy Development" (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios - a key agricultural region for the national economy - usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

  7. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    Science.gov (United States)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  8. Integrating Surface Water Management in Urban and Regional Planning, Case Study of Wuhan in China

    NARCIS (Netherlands)

    Du, N.

    2010-01-01

    The main goal of the study is to examine and develop a spatial planning methodology that would enhance the sustainability of urban development by integrating the surface water system in the urban and regional planning process. Theoretically, this study proposes that proactive-integrated policy and

  9. Study of the distribution of gamma emitters radionuclides between a pollution abatement factory and its surrounding environment; Case of the water treatment plant of the Grand Caen district. Study report

    International Nuclear Information System (INIS)

    2007-01-01

    Except nuclear industry, diverse structures (hospitals, of research or manufacturers) can have appeal to the use of radioisotopes conditioned under unsealed shape. Such practices lead to tolerate releases in environment in the respect of a statutory device. So the collective network can contain radioisotopes the future of which is going to depend partially on the cleaning applied to waste water. This study through the analysis of a concrete case, has for objective to inform about the future of gamma radioelements present in waste water treated by a wastewater treatment plant. The contamination of the network is essentially due to Tc 99 and I 131 , radioelements present whatever the working day and the hour considered. The total estimated in-load for a day is important, of the order of 4000 MBq for Tc 99 and 15 to 300 MBq for I 131 . The assessment of cleaning of the station shows that this one plays a role towards this pollution through these stages of treatment. Within the natural environment receiving treated waters only the presence of I 131 is noticed. (N.C.)

  10. Piper-PCA-Fisher Recognition Model of Water Inrush Source: A Case Study of the Jiaozuo Mining Area

    Directory of Open Access Journals (Sweden)

    Pinghua Huang

    2018-01-01

    Full Text Available Source discrimination of mine water plays an important role in guiding mine water prevention in mine water management. To accurately determine water inrush source from a mine in the Jiaozuo mining area, a Piper trilinear diagram based on hydrochemical experimental data of stratified underground water in the area was utilized to determine typical water samples. Additionally, principal component analysis (PCA was used for dimensionality reduction of conventional hydrochemical variables, after which mutually independent variables were extracted. The Piper-PCA-Fisher water inrush source recognition model was established by combining the Piper trilinear diagram and Fisher discrimination theory. Screened typical samples were used to conduct back-discriminate verification of the model. Results showed that 28 typical water samples in different aquifers were determined through the Piper trilinear diagram as a water sample set for training. Before PCA was carried out, the first five factors covered 98.92% of the information quantity of the original data and could effectively represent the data information of the original samples. During the one-by-one rediscrimination process of 28 groups of training samples using the Piper-PCA-Fisher water inrush source model, 100% correct discrimination rate was achieved. During the prediction and discrimination process of 13 samples, one water sample was misdiscriminated; hence, the correct prediscrimination rate was 92.3%. Compared with the traditional Fisher water source recognition model, the Piper-PCA-Fisher water source recognition model established in this study had higher accuracy in both rediscrimination and prediscrimination processes. Thus it had a strong ability to discriminate water inrush sources.

  11. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  12. An approach to industrial water conservation--a case study involving two large manufacturing companies based in Australia.

    Science.gov (United States)

    Agana, Bernard A; Reeve, Darrell; Orbell, John D

    2013-01-15

    This study presents the application of an integrated water management strategy at two large Australian manufacturing companies that are contrasting in terms of their respective products. The integrated strategy, consisting of water audit, pinch analysis and membrane process application, was deployed in series to systematically identify water conservation opportunities. Initially, a water audit was deployed to completely characterize all water streams found at each production site. This led to the development of a water balance diagram which, together with water test results, served as a basis for subsequent enquiry. After the water audit, commercially available water pinch software was utilized to identify possible water reuse opportunities, some of which were subsequently implemented on site. Finally, utilizing a laboratory-scale test rig, membrane processes such as UF, NF and RO were evaluated for their suitability to treat the various wastewater streams. The membranes tested generally showed good contaminant rejection rates, slow flux decline rates, low energy usage and were well suited for treatment of specific wastewater streams. The synergy between the various components of this strategy has the potential to reduce substantial amounts of Citywater consumption and wastewater discharge across a diverse range of large manufacturing companies. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Building theories from case study research: the progressive case study

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2006-01-01

    Meredith (1998) argues for more case and field research studies in the field of operations management. Based on a literature review, we discuss several existing approaches to case studies and their characteristics. These approaches include; the Grounded Theory approach which proposes no prior

  14. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. The conventional production flow control and pressure control of the facility was replaced by the advanced control software called OPIR. To assess the differences between conventional and advanced

  15. Residential water usage: A case study of the major cities of the western region of Saudi Arabia

    Science.gov (United States)

    Abu Rizaiza, Omar S.

    1991-05-01

    Socioeconomic and climatological data of the major cities of the western region of Saudi Arabia have been used to develop several models to estimate the residential water usage for different kinds of houses. The developed models correlate the residential water usages with temperature, income, family size, price of water, and availability of a garden within the house. The study shows that the residential water uses in houses supplied by a public pipe network are 1.4-2 times greater than the residential water uses in houses supplied by tankers. It also shows that the price elasticities are very similar to those estimated in the United States. Income elasticities, on the other hand, are lower than those typically found in more industrialized countries.

  16. "I don't want to go back to the farm": A case study of Working for Water beneficiaries

    Directory of Open Access Journals (Sweden)

    Jan A. Hough

    2013-09-01

    Full Text Available In addition to clearing invasive alien plants, the Working for Water (WfW Programme, as a South African government public works programme, provides short-term employment and training to empower the poor in finding alternative employment within the labour market. Several studies indicate that its beneficiaries become financially dependent on WfW projects and tend to be reluctant to leave the programme. The sociological reasons for this reluctance, however, remain largely unstudied. We therefore address this gap by reporting on a case study of four WfW projects in the Western Cape Province. Face-to-face interviews with beneficiaries suggest that a number of push and pull factors contribute to their dependency on WfW. Chief among these factors is a fear among previous farmworkers of returning to farm work. It was found that the latter can be linked to a historical power-relations legacy between landowners and farmworkers, mainly created by institutional racism still prevailing on many Western Cape farms. These findings bear important implications for the implementation of a new draft WfW policy aimed at encouraging private landowners to employ WfW beneficiaries on their land as clearers of invasive alien plants.

  17. CCN and IN Effects on Cloud Properties and Precipitation - Case Studies from CalWater 2011

    Science.gov (United States)

    Fan, J.; Leung, L.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosols in the atmosphere can serve as cloud condensation nuclei (CCN) and ice nuclei (IN) to modify cloud microphysical processes, which could potentially change the location, intensity, and type of precipitation. Dust aerosols are often observed over California in the Sierra Nevada Mountains in winter/spring, associated with long-range transport from Asia. Although anthropogenic pollution has been postulated to contribute to reduction of precipitation in the Sierra Nevada Mountains, the effects of dust aerosols on the winter clouds and precipitation has not been examined in detail particularly with model simulations. We incorporate recent progress in ice nucleation parameterizations to link dust with ice crystal formation in a spectral-bin cloud microphysical model coupled with WRF, to exclusively look into how dust can possibly affect cloud properties and precipitation type and intensity. Simulations are carried out for two cases under different environmental conditions with atmospheric river (AR) and Sierra barrier jet (SBJ) from the CalWater 2011 field campaign. It is shown that increasing IN concentrations or adding a dust layer at 4-6 km as IN enhances surface rain and snow due to enhanced production of ice and snow in clouds. However, increasing CCN suppresses surface rain and snow, and significantly redistributes surface precipitation upwind and downwind of the mountains, with important implication to improving our understanding of the impacts of aerosols on orographic precipitation and water supply in the region.

  18. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  19. Monolith Chromatography as Sample Preparation Step in Virome Studies of Water Samples.

    Science.gov (United States)

    Gutiérrez-Aguirre, Ion; Kutnjak, Denis; Rački, Nejc; Rupar, Matevž; Ravnikar, Maja

    2018-01-01

    Viruses exist in aquatic media and many of them use this media as transmission route. Next-generation sequencing (NGS) technologies have opened new doors in virus research, allowing also to reveal a hidden diversity of viral species in aquatic environments. Not surprisingly, many of the newly discovered viruses are found in environmental fresh and marine waters. One of the problems in virome research can be the low amount of viral nucleic acids present in the sample in contrast to the background ones (host, eukaryotic, prokaryotic, environmental). Therefore, virus enrichment prior to NGS is necessary in many cases. In water samples, an added problem resides in the low concentration of viruses typically present in aquatic media. Different concentration strategies have been used to overcome such limitations. CIM monoliths are a new generation of chromatographic supports that due to their particular structural characteristics are very efficient in concentration and purification of viruses. In this chapter, we describe the use of CIM monolithic chromatography for sample preparation step in NGS studies targeting viruses in fresh or marine water. The step-by-step protocol will include a case study where CIM concentration was used to study the virome of a wastewater sample using NGS.

  20. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  1. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  2. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    Science.gov (United States)

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. IMPROVING THE ACCURACY OF EXTRACTING SURFACE WATER QUALITY LEVELS (SWQLs USING REMOTE SENSING AND ARTIFICIAL NEURAL NETWORK: A CASE STUDY IN THE SAINT JOHN RIVER, CANADA

    Directory of Open Access Journals (Sweden)

    E. Sharaf El Din

    2017-09-01

    Full Text Available Delineating accurate surface water quality levels (SWQLs always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2 > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair and 59 (Marginal for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  4. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: a Case Study in the Saint John River, Canada

    Science.gov (United States)

    Sammartano, G.; Spanò, A.

    2017-09-01

    Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  5. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  6. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine

    Directory of Open Access Journals (Sweden)

    Sameer Shadeed

    2010-06-01

    Full Text Available In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 × 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 × 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.

  7. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-02-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water vary significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates based

  8. Radon in drinking water in Co. Wicklow. A pilot study

    International Nuclear Information System (INIS)

    Ryan, T.P.; Sequeira, S.; McKittrick, L.; Colgan, P.A.

    2003-01-01

    Attention has been focused on the issue of radon in drinking water by a European Commission recommendation proposing that surveys should be undertaken in Member States to determine the scale and nature of exposures caused by radon in domestic drinking water supplies. The Commission recommends 1000 Bq/l as the radon activity concentration in private drinking water supplies above which remedial action to reduce the concentration should be taken. The logic behind the proposed action level is that it would broadly correspond to the risk posed to an individual from exposure to radon in the home at the current Reference Level of 200 Bq/m 3 in air. A pilot study to assess the distribution and concentrations of radon in private ground water supplies was recently completed in Co. Wicklow. County Wicklow was selected for the study primarily on the basis that the underlying geology is predominantly granite with elevated uranium content. Furthermore, there is an estimated 1200 to 5000 private ground water supplies in use in the county and high radon activity concentrations in air in a significant number of dwellings have previously been predicted. As part of the pilot study, a number of scientific issues were addressed in order to underpin the results obtained and these are also discussed in the report. Radon activity concentrations were measured in the private ground water supplies of 166 houses in Co. Wicklow. In all cases the ground water was the principal source of drinking water for the house occupants. Four supplies had activity concentrations in excess of the Recommended EC action level of 1000 Bq/l, fifteen had activity concentrations between 500 and 1000 Bq/l, 51 were between 100 and 500 Bq/l and 96 had activity concentrations below 100 Bq/l. The doses estimated for the ingestion of radon bearing water varies significantly with the quantity of drinking water consumed and the degree to which the water has been processed prior to consumption. However dose estimates

  9. The essential role of isotopes in studies of water resources

    International Nuclear Information System (INIS)

    1977-01-01

    In studies of surface water, isotope techniques are used to measure water runoff from rain and snow, flow rates of streams and rivers, leakage from lakes, reservoirs and canals and the dynamics of various bodies of water. Studies of groundwater resources (springs, wells) today are virtually unthinkable without isotope techniques. Basically, these techniques are simple and relatively quick. Among the many questions which may be asked of hydrologists about a given groundwater supply, often the most critical one concerns the safe yield so that the source will not run dry, or for a source to be 'mined', the total yield. Isotope techniques can be used to solve such problems as: identification of the origin of groundwater, determination of its age, flow velocity and direction, interrelations between surface waters and ground waters, possible connections between different aquifers, local porosity, transmissivity and dispersivity of an aquifer. The cost of such investigations is often small in comparison to the cost of classical hydrological techniques, and in addition they are able to provide information which sometimes cannot be obtained by other techniques. The IAEA provides assistance to countries in the application of isotope techniques in water resources studies and other hydrology field projects. The examples given of field studies are intended to give some idea of how these techniques are being applied to specific problems in various regions of the world. Most are discussed briefly, but in some cases a more detailed description has been given in order to demonstrate the application of environmental isotope techniques

  10. Three case studies involving Leptospira interrogans serovar pomona infection in mixed farming units : case report

    Directory of Open Access Journals (Sweden)

    B. Gummow

    1999-07-01

    Full Text Available Three case studies involving Leptospira interrogans serovar pomona outbreaks within mixed farming systems in South Africa are described. On 2 farms, pigs constituted the main enterprise with cattle and sheep of secondary importance. On each of these 2 farms, abortion due to L. pomona in sows was confirmed by culture, and antibody titres to pomona were detected in cattle, sheep, horses and dogs. On the 3rd farm, a piggery was ofsecondary importance to cattle farming. Abortion and death in cows occurred on this farmand serology showed titres to various serovars, including pomona. L. pomona was also isolated from bovine urine, an aborted bovine foetus and kidneys from slaughtered pigs. This particular case study was regarded as clinically atypical in that adult Jersey cattle died of acute leptospirosis in a semiarid region of South Africa. In all 3 case studies, the poor management of pig effluent and of the drinking water and its sources played a pivotal role in the transmission of the disease. Inadequate vaccination of animals against Leptospira and poor record-keeping within the secondary farming enterprises were also contributing factors to the spread of leptospirosis.

  11. Waterparks are high risk for cryptosporidiosis: A case-control study in Victoria, 2015.

    Science.gov (United States)

    de Gooyer, Tanyth E; Gregory, Joy; Easton, Marion; Stephens, Nicola; Fearnley, Emily; Kirk, Martyn

    2017-06-30

    An increase in notifications of cryptosporidiosis was observed in Victoria between March and April 2015. Cases mostly resided in one metropolitan region and hypothesis-generating interviews identified common exposures to aquatic facilities. We conducted a case-control study to determine exposure source(s) and facilitate control measures. Laboratory-confirmed cases of cryptosporidiosis from the region of interest notified between 1 March and 23 April 2015 were included. Controls residing in the same region were recruited from participants in a population health survey and frequency matched (2 per case) by age group. Details of exposure to potential risk factors were collected using a standardised telephone questionnaire for the 14-days prior to illness for cases, and an analogous exposure period for controls. Univariable and multivariable logistic regression were used to determine risk factors associated with illness using STATA SE 13.1. Thirty cases and 66 controls were included in the study. Half the cases were less than 12 years of age and 62% were female. Illness was most strongly associated with recreational water exposure at any waterpark (adjusted odds ratio (aOR)=73.5; 95% confidence interval (CI):6.74-802), and specifically at Victorian waterparks (aOR=45.6; 95% CI:5.20-399). Cases were linked with attendance at either a waterpark in the region or an adjacent region. As a result of this investigation, hyperchlorination was completed at identified facilities and swim hygiene information distributed. This study reinforces the potential for recreational water facilities, particularly waterparks, to act as a transmission source of Cryptosporidium infections. Continued communication to patrons is required to ensure healthy swimming practice in Victorian aquatic facilities.

  12. Transformation of the Australian Public Sector and Environmental Accounting Practices: the Case of Water in 2001

    Directory of Open Access Journals (Sweden)

    David Moore

    2008-03-01

    Full Text Available This paper analyses a case study undertaken in 2001 of a Victorian public sector water utility to examine theimplications of public sector ‘modernisation’ reforms of the 1980s and 1990s for the adoption ofenvironmental accounting (EA procedures within the Victorian water industry. Legislative reforms haveresulted in the allocation of overhead costs for the purpose of segmented reporting and to measure the ‘fullcost’ of departments. This was consistent with the “managerialist”, “marketization” and “strategic” phases ofpublic sector ‘modernisation’ reforms, but did not measure the full economic (environmental cost. Theapplication of full cost recovery for the purpose of efficiency was further evidence of the impact of publicsector modernisation reforms but did not extend to the recovery of externalities. Private environmental costswere traced and integrated into direct cost categories, consistent with the philosophy of managerialism. Costswere measured for the purposes of promoting the contracting out of selected services and functions. Therewas limited adoption of environmental accounting practices, due to the absence of environmental accountingmeasurement guidelines. Staff interviewed recognized the importance of environmental issues, but were yetto appreciate the benefits of adopting EA practices. Subsequent to the case study, the Victorian governmentintroduced legislation that required water authorities to make provisions for environmental contributions, astep towards accounting for environmental externalities. This was the beginning of the “sustainability” phaseof public sector ‘modernisation’ reforms.

  13. Effectiveness of Moringa oleifera defatted cake versus seed in the treatment of unsafe drinking water : case study of surface and well waters in Burkina Faso.

    OpenAIRE

    Kabore, Aminata; Savadogo, Boubacar; Rosillon, Francis; Traore, Alfred S.; Dianou, Dayéri

    2013-01-01

    Safe drinking water access for rural populations in developing countries remains a challenge for a sustainable develop-ment, particularly in rural and periurban areas of Burkina Faso. The study aims to investigate the purifying capacity of Moringa oleifera defatted cake as compared to Moringa oleifera seed in the treatment of surface and well waters used for populations alimentation. A total of 90 water samples were collected in sterile glass bottles from 3 dams’ water reservoirs, a river, an...

  14. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  15. Low-cost domestic water filter: The case for a process-based ...

    African Journals Online (AJOL)

    Low-cost domestic water filter: The case for a process-based approach for the development of a rural technology product. ... Since the project aims at technology transfer to the rural poor for generating rural livelihoods, appropriate financial models and the general sustainability issues for such an activity are briefly discussed ...

  16. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    Science.gov (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  17. A climate risk assessment of clean water supply in an urban area: A case study of South Tangerang city, Indonesia

    Science.gov (United States)

    Nastiti, S. I. W.; Kusnoputranto, H.; Boer, R.; Utomo, S. W.

    2018-03-01

    The demand for clean water in South Tangerang, Indonesia, is very high. At present, this demand is mostly met by groundwater that is much influenced by climate variability, land cover change, and human activities. The local company on water services (PDAM) provides clean water services for only about 9% of the population. The climate risk assessment conducted by South Tangerang Government in 2016 indicates that several areas are potentially exposed to a high risk of climate change. Survey and in-depth interview with communities and sectoral officers suggest that a risk to clean water supply in this city is increasing. This study aims to assess climate potential risks on clean water supply based on the 2016 study. We adopted the method of that study by modifying some of the vulnerability indicators that can represent clean water access and supply. The results of the study demonstrate that many wards in South Tangerang would be exposed to high climate risks of clean water supply. By 2021, about 54% of wards would be exposed from high to the very very high risk of clean water supply. These results signify the tangible need of adaptation actions, to prevent the worsening impacts of climate on clean water supply.

  18. Water hammer and its effect on ageing: an analytical study

    International Nuclear Information System (INIS)

    Kedia, Suruchi

    2006-01-01

    Water hammer can be disastrous from the point of view of ageing of the pipe(s)/Piping system. Design of restraints and protection devices for the various piping systems must consider severe stresses that may generate because of fluid transients. These fluid transients are termed as water hammer when it is restricted to water. But to have limited margins on the stress loads of piping system it is very important to predict the actual dimensions of the stresses. This paper covers various causes and analyses of the situations under which water hammer waves get generated and also way(s) to have control on occurrences of such situations. Few case studies are also covered showing the results and graphs of the stress waves generated because of water hammer. Effort has also been made in the paper in the direction to find out the methodology to compute the ageing of the system because of water hammer waves. Further in this paper an attempt is made to show the systematic methodology towards the diagnosis of water hammer that can be treated as a foundation stone for the creation of water hammer diagnosis system. Active measures to minimize the water hammer intensity by influencing fluid dynamic conditions of the system will also be suggested. Finally the paper will present the ageing aspects because of the stresses that generate due to water hammer. (author)

  19. Land and Water Grabbing in an East African Coastal Wetland: The Case of the Tana Delta

    Directory of Open Access Journals (Sweden)

    Stéphanie Duvail

    2012-06-01

    Full Text Available The delta of the Tana river in Kenya, an important wetland in Eastern Africa, is at a major turning point. Key decisions regarding its future are on the verge of being made, some of which may dramatically alter its characteristics. At present, in a landscape that is a mosaic of floodplains and forests of high biodiversity, small-scale farming, fishing and livestock-keeping are the main activities practised by the local communities, all relying on the occurrence of floods in November and May. Private investors with the backing of governmental bodies or parastatals, including the river basin authority, have planned the conversion of the lower Tana into irrigated sugar cane and Jatropha curcas plantations for biofuel production. In this paper, we discuss the land and water grabbing aspect of this new biofuel production trend, 'grabbing' being defined as cases of land acquisition or water abstraction where established user-rights and public interests are disregarded. We focus on two case studies: a planned large-scale sugar cane plantation in the central floodplain and a large-scale Jatropha curcas plantation on the floodplain terraces. We demonstrate through a water budget analysis that their potential impacts on the water balance and quality, on the environment of the Tana delta and therefore on the flood-dependent livelihoods have not been adequately addressed in the Environmental Impact Assessment documents.

  20. Optimization of conditions the precipitate elimination from the water supply pipelines (case study: Esfezar village in Southern Khorasan province

    Directory of Open Access Journals (Sweden)

    hamid Kardan Moghaddam

    2016-03-01

    Full Text Available This Study explores the influence of CaCO3 sedimentation in the Qanat system of Esfezar area in Southern Khorasan Province. Experiments were conducted to evaluate the decrease in transient water hardness in the drinking water supply network in the areas neighboring the Esferaz Qanat. The significance of the study lies in the fact that the Qanat under study is the only source of drinking water in the region. For the purposes of this study, experiments were carried out using a reservoir in which water pH was increased by adding lime to form sediments. Chemical coagulants were also added to accelerate the sedimentation process. From among the coagulants of FeSO4, Fe2(SO43, and CuSO4 used, optimizations revlead that Fe2 (SO43 yielded the best results at pH=9/5 in drinking water given the quality parameters of EC:440dS and pH = 7.7. Dimension analysis using the Reynolds Number was also conducted to simulate the qanat discharge, which was further calibrated against experimental results. The results obtained from the model showed that using a spiral pipe and Fe2(SO43 as the coagulant led to reduced transient hardness of water. The results also revealed that CaCO3 sedimentation reduced in the local water supply network.

  1. Progressing the state of knowledge on the human influence on hydrological droughts through case studies

    Science.gov (United States)

    Rangecroft, Sally; Van Loon, Anne; Bosman, Marianne; Wanders, Niko; Di Baldassarre, Giuliano; AghaKouchak, Amir

    2017-04-01

    Human activities can have a large influence on changes in the hydrological system and hydrological extremes, more than climate variability and climate change in some cases. However, there are currently only a limited number of studies which aim to quantify the human impact on hydrological droughts. Here we present a synthesis study of existing and new results that aims to summarize and quantify the anthropogenic impact on hydrological drought from case studies and observations. By combining a large number of case studies, we allow conclusions to be drawn about the effects of different human activities. This work suggests ways forward to increase our understanding on how human activities are influencing drought characteristics; invaluable information for water resource management and adaptation. During this project, the impact of different human activities (e.g. water abstraction, reservoir building, urbanisation, etc) on drought frequency, duration and deficit has been calculated in a consistent manner, allowing for an improved understanding to how they have impacted droughts. This consistent methodology is a necessary element for this comparative hydrology exercise, yet we use one which is flexible and applicable to different case study set ups and data availability. The methodology used here depends on available observation data, with three possible approaches: i) paired catchment approach; ii) upstream-downstream comparison; iii) observation modelling framework. The synthesised results of the existing and new case studies cover a number of human activities, hydro-climatic and socio-economic contexts. In particular, we remove the climate dependency in the results by using case studies from multiple climatic regions, including UK, Italy, US, Australia, Mexico and Chile. For groundwater abstraction, it is clear across all the relevant case studies that abstraction activities worsen drought events. This is especially prominent in the deficit volumes, with nearly all

  2. Environmental Factors Correlated with Culturable Enterococci Concentrations in Tropical Recreational Waters: A Case Study in Escambron Beach, San Juan, Puerto Rico

    Directory of Open Access Journals (Sweden)

    Abdiel E. Laureano-Rosario

    2017-12-01

    Full Text Available Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived sea surface temperature (SST, turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection. Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm of accumulated (4 days precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity anomaly >0.005 sr−1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <−18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.

  3. An observational study on the temperature rising effects in water warming canal and water warming pond

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. B.; Hong, S. B. [Rural Development Cooperation, Seoul (Korea, Republic of)

    1990-09-15

    The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18°C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1. The degree of the rise of the water temperature can be decided by θ{sub x} = θ{sub 0} + K (L/(v * h)) * (T - θ{sub 0}) Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2. A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was θ{sub x1} = 16.5 + 15.9 (1-e{sup -0.00018x}), θ{sub x2} = 18.8 + 8.4(1-e{sup -0.000298x}) for the type I. and θ{sub x} = 19.6 + 12.8 (1-e{sup -0.00041x}) for the type II. 3. It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4. In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made; Y = 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5. A monthly variation of the water temperature in the water warming

  4. Investigating the Concentration of Heavy Metals in Bottled Water and Comparing with its Standard: Case Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-09-01

    Results: Brand No. 1, the concentration of zinc ion was larger in Brand 2 while in Brand No. 2 had larger copper, nickel, and aluminum ions. The results indicated that the concentration of the measured metal ions were below the allowable limit of drinking water standard across all of the studied samples. Conclusion: Based on the obtained results from the investigated parameters, it can be concluded that the bottled water of both brands poses no health issue and is drinkable. Considering the changes in the concentration of ions and the increasing trend of consumption of bottled waters, their monitoring and qualitative control of pollutants are very crucial in terms of public health.

  5. Public Perception of Water Consumption and Its Effects on Water Conservation Behavior

    NARCIS (Netherlands)

    Fan, L.X.; Wang, F.; Liu, G.B.; Yang, X.; Qin, W.

    2014-01-01

    The usual perception of consumers regarding water consumption is that their bills do not match their actual water consumption. However, this mismatch has been insufficiently studied; particularly for cases related to specific water-use patterns, water conservation practices, and user

  6. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    Science.gov (United States)

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to

  7. Improving the relevance and impact of decision support research: A co-production framework and water management case study

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Dilling, L.; Basdekas, L.; Kaatz, L.

    2016-12-01

    In light of the unpredictable effects of climate change and population shifts, responsible resource management will require new types of information and strategies going forward. For water utilities, this means that water supply infrastructure systems must be expanded and/or managed for changes in overall supply and increased extremes. Utilities have begun seeking innovative tools and methods to support planning and decision making, but there are limited channels through which they can gain exposure to emerging tools from the research world, and for researchers to uptake important real-world planning and decision context. A transdisciplinary team of engineers, social and climate scientists, and water managers designed this study to develop and apply a co-production framework which explores the potential of an emerging decision support tool to enhance flexibility and adaptability in water utility planning. It also demonstrates how to improve the link between research and practice in the water sector. In this study we apply the co-production framework to the use of Multiobjective Evolutionary Algorithms (MOEAs). MOEAs have shown promise in being able to generate and evaluate new planning alternatives but they have had little testing or application in water utilities. Anchored by two workshops, this study (1) elicited input from water managers from six water suppliers on the Front Range of Colorado, USA, to create a testbed MOEA application, and (2) evaluated the managers' responses to multiobjective optimization results. The testbed consists of a Front Range-relevant hypothetical water supply model, the Borg MOEA, hydrology and demand scenarios, and a set of planning decisions and performance objectives that drive the link between the algorithm and the model. In this presentation we describe researcher-manager interactions at the initial workshop that served to establish relationships and provide in-depth information to researchers about regional water management

  8. Apportionment of sources affecting water quality: Case study of Kandla Creek, Gulf of Katchchh

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Shirodkar, P.V.; Verlekar, X.N.; Jagtap, T.G.; Rao, G.S.

    status of the environment. Several multivariate models are used for source apportionment studies, as they pinpoint the possible factors or sources that influence the water quality (Morales et al., 1999; Wunderlin et al., 2001; Petersen et al., 2001... and statistical approaches. Ecology 74: 2201– 2214. Morales, M. M., Martih, P., Llopis, A., Campos, L., and Sagrado, J. 1999. An environmental study by factor analysis of surface seawater in the Gulf of Valencia (western Mediterranean). Analytica Chimica Acta 394...

  9. XBT fall rate in waters of extreme temperature: A case study in the Antarctic Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Saran, A.K.; Gopalakrishna, V.V.; Vethamony, P.; Araligidad, N.; Bailey, R.

    are significantly different from those reported earlier for tropical and subtropical regions. The comprehensive study of Hanawa et al. (making use of controlled XBT-CTD data, mostly from tropical and subtropical waters) showed that the manufacturer's equation...

  10. Consumptive water use associated with food waste: case study of fresh mango in Australia

    Science.gov (United States)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  11. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    Science.gov (United States)

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed.

  12. Socio-economic factors influencing the spread of drinking water diseases in rural Africa: case study of Bondo sub-county, Kenya.

    Science.gov (United States)

    Rodrigues, Anthony Joachim; Oyoo, Wandiga Shem; Odundo, Francis O; Wambu, Enos W

    2015-06-01

    Socio-economic and medical information on Bondo sub-county community was studied to help establish the relationship between the water quality challenges, community health and water rights conditions. Health challenges have been linked to water quality and household income. A total of 1,510 households/respondents were studied by means of a questionnaire. About 69% of the households have no access to treated water. Although 92% of the respondents appear to be aware that treatment of water prevents waterborne diseases, the lowest income group and children share a high burden of waterborne diseases requiring hospitalization and causing mortality. Open defecation (12.3%) in these study areas contributes to a high incidence of waterborne diseases. The community's constitutional rights to quality water in adequate quantities are greatly infringed. The source of low-quality water is not a significant determinant of waterborne disease. The differences in poverty level in the sub-county are statistically insignificant and contribute less than other factors. Increased investment in water provision across regions, improved sanitation and availability of affordable point-of-use water purification systems will have major positive impacts on the health and economic well-being of the community.

  13. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    Science.gov (United States)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  14. Implementation of Water Safety Plans (WSPs): A Case Study in the Coastal Area in Semarang City, Indonesia

    Science.gov (United States)

    Budiyono; Ginandjar, P.; Saraswati, L. D.; Pangestuti, D. R.; Martini; Jati, S. P.

    2018-02-01

    An area of 508.28 hectares in North Semarang is flooded by tidal inundation, including Bandarharjo village, which could affect water quality in the area. People in Bandarharjo use safe water from deep groundwater, without disinfection process. More than 90% of water samples in the Bandaharjo village had poor bacteriological quality. The aimed of the research was to describe the implementation of Water Safety Plans (WSPs) program in Bandarharjo village. This was a descriptive study with steps for implementations adopted the guidelines and tools of the World Health Organization. The steps consist of introducing WSPs program, team building, training the team, examination of water safety before risk assessment, risk assessment, minor repair I, examination of water safety risk, minor repair II (after monitoring). Data were analyzed using descriptive methods. WSPs program has been introduced and formed WSPs team, and the training of the team has been conducted. The team was able to conduct risks assessment, planned the activities, examined water quality, conduct minor repair and monitoring at the source, distribution, and households connection. The WSPs program could be implemented in the coastal area in Semarang, however regularly supervision and some adjustment are needed.

  15. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  16. Vision and perception of community on the use of recycled water for household laundry: A case study in Australia

    International Nuclear Information System (INIS)

    Mainali, Bandita; Pham, Thi Thu Nga; Ngo, Huu Hao; Guo, Wenshan; Miechel, Clayton; O'Halloran, Kelly; Muthukaruppan, Muthu; Listowski, Adnrzej

    2013-01-01

    This study investigates the community perception of household laundry as a new end use of recycled water in three different locations of Australia through a face to face questionnaire survey (n = 478). The study areas were selected based on three categories of (1) non-user, (2) perspective user and (3) current user of recycled water. The survey results indicate that significantly higher number (70%) of the respondents supported the use of recycled water for washing machines (χ 2 = 527.40, df = 3; p = 0.000). Significant positive correlation between the overall support for the new end use and the willingness of the respondents to use recycled water for washing machine was observed among all users groups (r = 0.43, p = 0.000). However, they had major concerns regarding the effects of recycled water on the aesthetic appearance of cloth, cloth durability, machine durability, odour of the recycled water and cost along with the health issues. The perspective user group had comparatively more reservations and concerns about the effects of recycled water on washing machines than the non-users and the current users (χ 2 = 52.73, df = 6; p = 0.000). Overall, community from all three study areas are willing to welcome this new end use as long as all their major concerns are addressed and safety is assured. - Highlights: • Community perception of laundry as a new end use of recycled water is analysed. • Higher number of the respondents supported the new end use. • The perspective users of recycled water are more reserved towards the new end use. • The current users are very happy with the current recycled water

  17. Vision and perception of community on the use of recycled water for household laundry: A case study in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mainali, Bandita; Pham, Thi Thu Nga [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007 (Australia); Guo, Wenshan [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007 (Australia); Miechel, Clayton [Port Macquarie-Hastings Council, Port Macquarie, NSW 2444 (Australia); O' Halloran, Kelly [Gold Coast Water, Gold Coast, MC 9726 (Australia); Muthukaruppan, Muthu [City West Water, Sunshine, VIC 3020 (Australia); Listowski, Adnrzej [Sydney Olympic Park Authority, Sydney Olympic Park, NSW 2127 (Australia)

    2013-10-01

    This study investigates the community perception of household laundry as a new end use of recycled water in three different locations of Australia through a face to face questionnaire survey (n = 478). The study areas were selected based on three categories of (1) non-user, (2) perspective user and (3) current user of recycled water. The survey results indicate that significantly higher number (70%) of the respondents supported the use of recycled water for washing machines (χ{sup 2} = 527.40, df = 3; p = 0.000). Significant positive correlation between the overall support for the new end use and the willingness of the respondents to use recycled water for washing machine was observed among all users groups (r = 0.43, p = 0.000). However, they had major concerns regarding the effects of recycled water on the aesthetic appearance of cloth, cloth durability, machine durability, odour of the recycled water and cost along with the health issues. The perspective user group had comparatively more reservations and concerns about the effects of recycled water on washing machines than the non-users and the current users (χ{sup 2} = 52.73, df = 6; p = 0.000). Overall, community from all three study areas are willing to welcome this new end use as long as all their major concerns are addressed and safety is assured. - Highlights: • Community perception of laundry as a new end use of recycled water is analysed. • Higher number of the respondents supported the new end use. • The perspective users of recycled water are more reserved towards the new end use. • The current users are very happy with the current recycled water.

  18. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  19. Interpretation of drinking water quality guidelines – The case of arsenic

    African Journals Online (AJOL)

    ... both in the creation of sound drinking water quality guidelines or standards, and in the problem of how to interpret the risk to human health when guideline values are exceeded. In this paper this problem is discussed using the case of arsenic, where the definition of the boundaries of the grey area is particularly uncertain.

  20. Integration of population census and water point mapping data-A case study of Cambodia, Liberia and Tanzania.

    Science.gov (United States)

    Yu, Weiyu; Wardrop, Nicola A; Bain, Robert; Wright, Jim A

    2017-07-01

    Sustainable Development Goal (SDG) 6 has expanded the Millennium Development Goals' focus from improved drinking-water to safely managed water services. This expanded focus to include issues such as water quality requires richer monitoring data and potentially integration of datasets from different sources. Relevant data sets include water point mapping (WPM), the survey of boreholes, wells and other water points, census and household survey data. This study examined inconsistencies between population census and WPM datasets for Cambodia, Liberia and Tanzania, and identified potential barriers to integrating the two datasets to meet monitoring needs. Literatures on numbers of people served per water point were used to convert WPM data to population served by water source type per area and compared with census reports. For Cambodia and Tanzania, discrepancies with census data suggested incomplete WPM coverage. In Liberia, where the data sets were consistent, WPM-derived data on functionality, quantity and quality of drinking water were further combined with census area statistics to generate an enhanced drinking-water access measure for protected wells and springs. The process revealed barriers to integrating census and WPM data, including exclusion of water points not used for drinking by households, matching of census and WPM source types; temporal mismatches between data sources; data quality issues such as missing or implausible data values, and underlying assumptions about population served by different water point technologies. However, integration of these two data sets could be used to identify and rectify gaps in WPM coverage. If WPM databases become more complete and the above barriers are addressed, it could also be used to develop more realistic measures of household drinking-water access for monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes

    2017-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  2. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes, E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: tony@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10{sup -3}. (author)

  3. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  4. Psychogenic Polydipsia: The Result, or Cause of, Deteriorating Psychotic Symptoms? A Case Report of the Consequences of Water Intoxication

    Directory of Open Access Journals (Sweden)

    Melissa Gill

    2015-01-01

    Full Text Available Water intoxication is a rare condition characterised by overconsumption of water. It can occur in athletes engaging in endurance sports, users of MDMA (ecstasy, and patients receiving total parenteral nutrition. This case outlines water intoxication in a patient with psychogenic polydipsia. When the kidney’s capacity to compensate for exaggerated water intake is exceeded, hypotonic hyperhydration results. Consequences can involve headaches, behavioural changes, muscular weakness, twitching, vomiting, confusion, irritability, drowsiness, and seizures. Cerebral oedema can lead to brain damage and eventual death. In this case, psychogenic polydipsia led to significant hyponatraemia, cerebral oedema, and tonic-clonic seizures. Differential diagnoses for hyponatraemia are outlined. The aetiology of psychogenic polydipsia is uncertain, but postulated hypotheses are explored. Psychogenic polydipsia occurs in up 20% of psychiatric patients and this case serves to remind us to be cognizant of water overconsumption.

  5. Business Engagement with Sustainable Water Resource Management through Water Footprint Accounting: The Case of the Barilla Company

    Directory of Open Access Journals (Sweden)

    Marta Antonelli

    2015-05-01

    Full Text Available This study investigates business engagement in sustainable water management, focusing on water footprint accounting as a tool to account for water use in food supply chains. An explorative analysis is conducted on the Barilla Company. The study explores two corporate strategies aimed at achieving more sustainable water use: the adoption of environmental products declarations (EPDs, a reporting system that accounts for the environmental footprints of Barilla’s pasta and other products; and the implementation of the Aureo Wheat Programme. The study deployed both primary and secondary data. The study shows that the largest share of the water footprint of pasta relates to the cultivation phase (over 90%, which is almost fully rainfed. EPDs show that the water footprint of the other phases of the supply chain is negligible. It is argued that the use of water footprinting in EPDs can raise awareness about water use in agricultural supply chains to reach a broad spectrum of stakeholders, including consumers. The study also shows that the implementation of the Aureo Wheat Programme, consisting of a shift in cultivation site and in the type of wheat, enabled a reduction in the blue water footprint of pasta, with water savings amounting to 35 million m3 of blue water since 2011.

  6. Isotopic and geochemical tracers for fingerprinting process-affected waters in the oil sands industry: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.J.; Birks, S.J.; Moncur, M.; Yi, Y.; Tattrie, K.; Jasechko, S.; Richardson, K.; Eby, P. [Alberta Innovates - Technology Futures (Canada)

    2011-04-15

    During 2009 and 2010, Alberta Innovates - Technology Futures carried out a pilot study for Alberta Environment to examine the possibility of labeling process affected water from oil sands operations with isotropic and geochemical tracers. For the study, 3 oil sands operators furnished logistical support and personnel, 39 samples were gathered and several isotope tracers were measured. In addition, geotechnical analyses were performed and the presence of organic compounds in the samples was scanned using Fourier transform ion cyclotron resonance mass spectrometry. Results showed that the selected tracers were able to label water sources in some locations, however they cannot be used as a universal method and a case by case approach needs to be adopted. This study pointed out that Fourier transform ion cyclotron resonance mass spectrometry is the best way to construct a dataset for use in identification of process affected waters.

  7. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    Science.gov (United States)

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  8. Development Impact Assessment (DIA) Case Study. South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nawaz, Kathleen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-19

    This case study reviews South Africa’s experience in considering the impacts of climate change action on development goals, focusing on the South African energy sector and development impact assessments (DIAs) that have and could be used to influence energy policy or inform the selection of energy activities. It includes a review of assessments—conducted by government ministries, technical partners, and academic institutes and non-governmental organizations (NGOs)—that consider employment, health, and water implications of possible energy sector actions, as well as multi-criteria impact assessments.

  9. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2015-12-01

    Full Text Available Beijing is one of the most water-stressed regions in the world. Reducing agricultural water use has long been the basis of local policy for sustainable water use. In this article, the potential to reduce the life cycle (cradle to gate water footprints of wheat and maize that contribute to 94% of the local cereal production was assessed. Following ISO 14046, consumptive and degradative water use for the wheat-maize rotation system was modeled under different irrigation and nitrogen (N application options. Reducing irrigation water volume by 33.3% compared to current practice did not cause a significant yield decline, but the water scarcity footprint and water eutrophication footprint were decreased by 27.5% and 23.9%, respectively. Similarly, reducing the N application rate by 33.3% from current practice did not cause a significant yield decline, but led to a 52.3% reduction in water eutrophication footprint while maintaining a similar water scarcity footprint. These results demonstrate that improving water and fertilizer management has great potential for reducing the crop water footprints at the farm scale. This situation in Beijing is likely to be representative of the challenge facing many of the water-stressed regions in China, where a sustainable means of agricultural production must be found.

  10. Using Geographical Information Systems (GIS) as an instrument of water resource management: a case study from a GIS-based Water Safety Plan in Germany.

    Science.gov (United States)

    Wienand, I; Nolting, U; Kistemann, T

    2009-01-01

    Following international developments and the new WHO Drinking Water Guidelines (WHO 2004) a process-orientated concept for risk, monitoring and incident management has been developed and implemented in this study. The concept will be reviewed with special consideration for resource protection (first barrier of the multi-barrier system) and in turn, for the Water Safety Plan (WSP) which adequately considers-beyond the current framework of legal requirements-possible new hygienic-microbiologically relevant risks (especially emerging pathogens) for the drinking water supply. The development of a WSP within the framework of risk, monitoring and incident management includes the application of Geographical Information Systems (GIS). In the present study, GIS was used for visualization and spatial analysis in decisive steps in the WSP. The detailed process of GIS-supported implementation included the identification of local participants and their tasks and interactions as an essential part of risk management. A detailed ecological investigation of drinking water conditions in the catchment area was conducted in addition to hazard identification, risk assessment and the monitoring of control measures. The main task of our study was to find out in which steps of the WSP the implementation of GIS could be integrated as a useful, and perhaps even an essential tool.

  11. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  12. CASE STUDY: Jordan — Dealing with the water deficit in Jordan ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-20

    Dec 20, 2010 ... So researchers in Jordan found a way to reuse household wastewater ... is using more water than can be replenished by rainfall and other natural sources. ... providing training in system maintenance and irrigation techniques.

  13. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    Science.gov (United States)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  14. Final report on case studies

    DEFF Research Database (Denmark)

    Ljungberg, Daniel; McKelvey, Maureen; Lassen, Astrid Heidemann

    2012-01-01

    Case study as a research design means investigating a single or multiple instance(s) or setting(s) (i.e. a case) and its entire context to explain a phenomenon and its processes. This is achieved through detailed understanding, usually comprised of multiple sources of information. In this way, case...... studies attempt to provide as a complete an understanding of a (complex) phenomenon as possible. Within the AEGIS project, survey and case study research are complementary. They are complementary in the sense that the former can provide more generalizable evidence on a phenomenon in terms of cross......-sectional data, while the latter can provide more in-depth (qualitative) understanding on specific issues. In systematically examining the case studies, however, this report goes beyond a typical single case study. Here we provide a synthesis of 86 case studies. Multiple case studies, following similar focus...

  15. Integrating urban recharge uncertainty into standard groundwater modeling practice: A case study on water main break predictions for the Barton Springs segment of the Edwards Aquifer, Austin, Texas

    Science.gov (United States)

    Sinner, K.; Teasley, R. L.

    2016-12-01

    Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling

  16. Alternative, indirect measures of ballast water treatment efficacy during a shipboard trial: a case study

    NARCIS (Netherlands)

    Wright, D.A.; Welschmeyer, N.A.; Peperzak, L.

    2015-01-01

    A shipboard study was conducted aboard the cruise ship Coral Princess during a scheduled cruise from San Pedro, CA, USA to Vancouver, British Columbia, Canada. The investigation involved three members of the global TestNet group, with experience in certification testing of ballast water treatment

  17. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Science.gov (United States)

    2010-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... basis in deep water in the Gulf of Mexico or offshore of Alaska? You may apply for royalty relief under... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Pre-Act Deep Water Leases and...

  18. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    Science.gov (United States)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  19. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    This report presents the results from the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) collaborative project (CP) on Advanced Water Cooled Reactor Case Studies in Support of Passive Safety Systems (AWCR), undertaken under the INPRO Programme Area C. INPRO was launched in 2000 - on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21) - to ensure that nuclear energy is available in the 21st century in a sustainable manner, and it seeks to bring together all interested Member States to consider actions to achieve innovation. An important objective of nuclear energy system assessments is to identify 'gaps' in the various technologies and corresponding research and development (R and D) needs. This programme area fosters collaboration among INPRO Member States on selected innovative nuclear technologies to bridge technology gaps. Public concern about nuclear reactor safety has increased after the Fukushima Daiichi nuclear power plant accident caused by the loss of power to pump water for removing residual heat in the core. As a consequence, there has been an increasing interest in designing safety systems for new and advanced reactors that are passive in nature. Compared to active systems, passive safety features do not require operator intervention, active controls, or an external energy source. Passive systems rely only on physical phenomena such as natural circulation, thermal convection, gravity and self-pressurization. Passive safety features, therefore, are increasingly recognized as an essential component of the next-generation advanced reactors. A high level of safety and improved competitiveness are common goals for designing advanced nuclear power plants. Many of these systems incorporate several passive design concepts aimed at improving safety and reliability. The advantages of passive safety systems include simplicity, and avoidance of human intervention, external power or signals. For these reasons, most

  20. Evaluation of Reductive Option of Water Hammer Phenomenon for a Water Conveyance System, A Case Study of Shahid Shirdom Residential District-Tehran

    Directory of Open Access Journals (Sweden)

    Kiyomars roshangar

    2015-01-01

    Full Text Available Sudden changes in the boundary conditions of water transmission systems, such as sudden opening and closing of valves or abrupt on and off switching of pumps and turbines cause a transient flow called ‘water hammer’. In this study, comparisons were made between the effective parameters including pipeline material, on the one hand, and the equipment and tools available for reducing the effects of water hammer, on the other. For this purpose, a practical example of a water transmission line from a pumping station located near Shahid Shirdom Residential District to the upstream reservoir in Tehran was used for modeling by the Bentley Hammer XMV: 8 software. The results obtained for the different parameters and options were compared and it was revealed that, regarding the pipe material, GRP pipes reduced pressure by 49.1 Kpa compared to the Asbestos cement pipes and by 50.3 Kpa compared to the iron pipes. Comparison of the results for the protective systems indicated that the surge tank outperformed the other alternatives in controlling pressure such that maximum pressure was reduced by 3.9 bar when using surge tanks compared to the flywheel and by 5 bar compared to the check valve. Finally, it was found that the concurrent use of the surge tank and the flywheel would be the most ideal method for controlling the water hammer effects.