WorldWideScience

Sample records for case studies decommissioning

  1. Practitioner versus analyst methods: a nuclear decommissioning case study.

    Science.gov (United States)

    Walker, Guy; Cooper, Mhairi; Thompson, Pauline; Jenkins, Dan

    2014-11-01

    A requirement arose during decommissioning work at a UK Magnox Nuclear Power Station to identify the hazards involved in removing High Dose Rate Items from a Cartridge Cooling Pond. Removing objects from the cooling pond under normal situations is a routine event with well understood risks but the situation described in this paper is not a routine event. The power station has shifted from an operational phase in its life-cycle to a decommissioning phase, and as such the risks, and procedures to deal with them, have become more novel and uncertain. This raises an important question. Are the hazard identification methods that have proven useful in one phase of the system lifecycle just as useful in another, and if not, what methods should be used? An opportunity arose at this site to put the issue to a direct test. Two methods were used, one practitioner focussed and in widespread use during the plant's operational phase (the Structured What-If method), the other was an analyst method (Cognitive Work Analysis). The former is proven on this site but might not be best suited to the novelty and uncertainty brought about by a shift in context from operations to decommissioning. The latter is not proven on this site but it is designed for novelty and uncertainty. The paper presents the outcomes of applying both methods to a real-world hazard identification task. PMID:24947001

  2. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  3. Decommissioning and decontamination studies

    International Nuclear Information System (INIS)

    The decommissioning of retired Hanford facilities requires careful consideration of environmentally-related factors. Applicable ecology programs have been designed to: develop the technology associated with burial ground stabilization, thereby minimizing biotic access and transport of radioactive wastes and, characterize present 300 Area burial grounds to ascertain the potential biotic transport of waste materials away from managed facilities. Results are reported from studies on the role of plants, small mammals, and ants as potential transport vectors of radionuclides from radioactive waste burial grounds

  4. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  5. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  6. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  7. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  8. Direction for the Estimation of Required Resources for Nuclear Power Plant Decommissioning based on BIM via Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. As demands on efficient management and use of complicated construction information increased these days, demands on the introduction of Building Information Modeling (herein after referred to as BIM) technology has increased. In the area of quotation, considerable effects are expected as to the accuracy and reliability predicting construction costs through the characteristics that can automatically estimate quantities by using attribute information of BIM model. BIM-based estimation and quotation of required resources is more accurate than the existing 2D-based quotations and have many advantages such as reviews over constructability and interference. It can be desirable to estimate decommissioning required resources in nuclear power plants using BIM as well as using tools that are compatible with usual international/industrial standards. As we looked into the cases where required resources were estimated, using BIM in Korea and abroad, they dealt with estimation of required resources, estimation of construction cost and process management at large. In each area, methodologies, classification systems, BIM, and realization tests have been used variably. Nonetheless, several problems have been reported, and among them, it is noticeable that although BIM standard classification system exists, no case was found that has used standard classification system. This means that no interlink among OBS (Object Breakdown Structure), WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) was possible. Thus, for nuclear power plant decommissioning, decommissioning method and process, etc. shall be defined clearly in the stage of decommissioning strategy establishment, so that classification systems must be set up

  9. Direction for the Estimation of Required Resources for Nuclear Power Plant Decommissioning based on BIM via Case Study

    International Nuclear Information System (INIS)

    Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. As demands on efficient management and use of complicated construction information increased these days, demands on the introduction of Building Information Modeling (herein after referred to as BIM) technology has increased. In the area of quotation, considerable effects are expected as to the accuracy and reliability predicting construction costs through the characteristics that can automatically estimate quantities by using attribute information of BIM model. BIM-based estimation and quotation of required resources is more accurate than the existing 2D-based quotations and have many advantages such as reviews over constructability and interference. It can be desirable to estimate decommissioning required resources in nuclear power plants using BIM as well as using tools that are compatible with usual international/industrial standards. As we looked into the cases where required resources were estimated, using BIM in Korea and abroad, they dealt with estimation of required resources, estimation of construction cost and process management at large. In each area, methodologies, classification systems, BIM, and realization tests have been used variably. Nonetheless, several problems have been reported, and among them, it is noticeable that although BIM standard classification system exists, no case was found that has used standard classification system. This means that no interlink among OBS (Object Breakdown Structure), WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) was possible. Thus, for nuclear power plant decommissioning, decommissioning method and process, etc. shall be defined clearly in the stage of decommissioning strategy establishment, so that classification systems must be set up

  10. Detritiation studies for JET decommissioning

    International Nuclear Information System (INIS)

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T2) in 1991, the Trace Tritium Experiment (5g T2) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T2) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, ''oxygen-free'' copper, aluminium bronze), carbon fibre composite tiles, ''carbon'' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  11. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2000-01-01

    Fundamentals on the plan, the national policy, the safety securities for the life extension of the nuclear power plant was established from the domestic/abroad documents and case studies in relation with the life extension and decommissioning of the nuclear power plant. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the domestic/abroad standard of the decommissioning (decontamination. dismantling) technology and regulation. Moreover, the study on the cost estimation method has been carried out for the decommissioning of the nuclear power plant. (author)

  12. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    Science.gov (United States)

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. PMID:22321251

  13. Envisioning Communications with Future Stakeholders - A Case Study Using the In-Situ Decommissioning of P-Reactor

    International Nuclear Information System (INIS)

    This paper will explore opportunities to expand the CAB's public outreach by the incorporation of technologies typically used in social networks and distance learning. Envisioning opportunities to engage next generation CAB members in public involvement will be delineated by retracing the decision process used with the in-situ decommissioning of P-Reactor at the Savannah River Site (SRS). This paper will discuss existing opportunities to enable another group of stakeholders to take part in the environmental policy decision making process regarding the inclusion of some very long lived radioactive constituents. The aim of the paper will be to locate places in the current process where alternate or parallel informational dissemination pathways could exist. These alternatives will incorporate the next generation's expectation for instantaneous information and universal ownership of hand-held communication devices. The goal of this paper is to use the present framework of CAB communications and add the components of virtual networking and distance learning in hopes of bridging the generational technology gap and extending the dialog to future stakeholders. (authors)

  14. Study for reducing radioactive solid waste at ITER decommissioning period

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shinichi; Araki, Masanori; Ohmori, Junji; Ohno, Isamu; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-11-01

    It is one of the foremost goals for ITER to demonstrate the attractiveness with regard to safety and environmental potential. This implies that the radioactive materials and waste at decommissioning phase should carefully be treated with prescribed regulations. As possible activities during the Coordinated Technical Activity (CTA), the authors have performed a feasibility study for searching the possibility of effective reduction in the activated level as reasonably achievable as possible by taking account of minimum material changes while keeping original design concept and structure. Major induced activation in ITER comes from activated nickel and cobalt so that it is effective for the major structural components to minimize their material contents. Employing less Ni and Co steel in place of high-Ni austenitic stainless steel for blanket shield block, vacuum vessel shield material and TF coil casing has been considered as one of the effective plans to reduce the activated materials at the decommissioning phase. In this study, two less-Ni austenitic stainless steels are evaluated; one is high-Mn austenitic stainless steel JK2 which is developing for jacket material of ITER CS coil and the other is SS204L/ASTM-XM-11 which is also high-Mn steel specified in the popular standards such as American Society of Testing and Material (ASTM). Based on the material changes, activation analyses have been performed to investigate the possibility of reducing radioactive wastes. As a most impressive result, at 40 years after the termination some of main components such as a TF coil casing will reach to the clearance level which is specified by IAEA, and most components will be categorized into extremely low level waste except for limited components. These results will give the appropriate short decommissioning period that is assumed to start at 100 years after the termination in the original design. (author)

  15. A study on the decommissioning of research reactor

    International Nuclear Information System (INIS)

    As the result of study on decommissioning, discussion has made and data have been collected about experiences, plannings, and techniques for decommissioning through visit to GA and JAERI. GA supplied our Research Reactor No. 1 and No. 2, and JAERI made a memorial museum after dicommissioning of JRR-1 and is dismentling JPDR now. Also many kinds of documents are collected and arranged such as documents related to TRIGA reactor dicommissioning, 30 kinds of documents including decommissioning plan, technical criteria and related regulatory, and 1,200 kinds of facility description data. (Author)

  16. Topical Session on the Decommissioning and Dismantling Safety Case

    International Nuclear Information System (INIS)

    Set up by the Radioactive Waste Management Committee (RWMC), the WPDD brings together senior representatives of national organisations who have a broad overview of Decommissioning and Dismantling (D and D) issues through their work as regulators, implementers, R and D experts or policy makers. These include representatives from regulatory authorities, industrial decommissioners from the NEA Cooperative Programme on Exchange of Scientific and Technical Information on Nuclear Installation Decommissioning Projects (CPD), and cross-representation from the NEA Committee on Nuclear Regulatory Activities, the Committee on Radiation Protection and Public Health, and the RWMC. The EC is a member of the WPDD and the IAEA also participates. This ensures co-ordination amongst activities in these international programmes. Participation from civil society organisations is considered on a case by case basis, and has already taken place through the active involvement of the Group of Municipalities with Nuclear Installations at the first meeting of the WPDD At its second meeting, in Paris, 5-7 December 2001, the WPDD held two topical sessions on the D and D Safety Case and on the Management of Materials from D and D, respectively. This report documents the topical session on the safety case. The topical session was meant to provide an exchange of information and experience on the following issues: What topics should be included in a safety case? Of what should it consist? Is there sufficient and complete guidance nationally and internationally? How do practices differ internationally? Main boundary condition to this session was that it would deal with plants where spent fuel has been removed. Also the topical sessions was kept at a level that makes the most of the varied constituency of the WPDD. Namely, interface issues are important, and issue-identification and discussion was the immediate goal. There was less interest in examining areas where variability amongst national

  17. Safety case methodology for decommissioning of research reactors. Assessment of the long term impact of a flooding scenario

    International Nuclear Information System (INIS)

    The paper contains the assessment methodology of a Safety Case fuel decommissioning of research reactors, taking into account the international approach principles. The paper also includes the assessment of a flooding scenario for a decommissioned research reactor (stage 1 of decommissioning). The scenario presents the flooding of reactor basement, radionuclide migration through environment and long term radiological impact for public. (authors)

  18. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  19. Decommissioning nuclear power plants: a case for external funding

    International Nuclear Information System (INIS)

    In deciding how to finance the decommissioning of nuclear power plants, there are five basic criteria for choosing between internal and external funding methods: (1) the desire for financial assurance, (2) the cost of the assurance, (3) the degree of equity in the recovery program, (4) the program's ability to respond to changes, and (5) the program's adaptability to different utilities. To fulfill its obligations to protect long-term public interests, the Missouri Public Service Commission decided it had to assure, to the maximum extent possible, that sufficient decommissioning funds were available when needed. For this reason, it chose the external funding method. In an external fund, the money currently collected from ratepayers to cover decommissioning costs is placed in an independent trust fund comprised of low-risk investments. The funds and the interest they accrue are available to the utility only at the time of decommissioning (and only for that purpose), thus assuring a certain amount of money will be on-hand to cover decommissioning costs as they arise. Such a fund may prove critical to the financial well-being of the utility, particularly if one considers that the utility would need additional generating facilities to replace the capacity lost through the retirement of its nuclear plant. 3 references

  20. Workshop on decommissioning

    International Nuclear Information System (INIS)

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  1. Study on decommissioning (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    This project consists of researches for 1. review plan for decommissioning plan, 2. specific method to confirm completion of decommissioning and 3. dismantling waste management method. Dismantling experiences and knowledge of domestic and international trends of decommissioning were examined and the confirmation items for authorization of decommissioning plan were extracted. The estimation of site contamination during dismantling period was performed by use of radioactive material release data of the Tokai NPP. Domestic and some foreign countries knowledge of experience of decommissioning completion confirmation was examined. This knowledge was reflected in NISA's Committee Report 'Basic concept to confirm completion of decommissioning (Interim report) - Main issues and direction of future investigation-'. Three concrete cores were sampled in biological shield of the Tokai NPP to establish method of waste package verification based on radiation level evaluation in decommissioning and dismantling waste management method. (author)

  2. Comparison between in situ and ex situ gamma measurements on land areas within a decommissioning nuclear site: a case study at Dounreay.

    Science.gov (United States)

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-09-01

    Measurements made in situ with gamma detectors and ex situ measurements of soil samples in a laboratory can have complementary roles in the assessment of radioactively contaminated land on decommissioning nuclear sites. Both in situ and ex situ methods were used to characterize (137)Cs contamination within an area at the Dounreay site in Scotland. The systematic difference (bias) between estimates of the mean activity concentration was found to be non-significant when in situ measurements were interpreted using a linear depth model, based on ex situ measurements made at two different depths. An established method of evaluating the random components of measurement uncertainty was used. The random component of analytical uncertainty in the in situ measurements, made in field conditions, was found to exceed that for the ex situ measurements, made in the controlled conditions of a laboratory. However, contamination by the target radionuclide was found to be heterogeneous over small spatial scales. This resulted in significantly higher levels of random sampling uncertainty in individual ex situ measurements. As in situ measurements are substantially less costly, a greater number of measurements can be made, which potentially reduces the uncertainty on the mean. Providing the depth profile of contaminants can be modelled with confidence, this can enable estimates of mean activity concentration over an averaging area to be made with lower overall uncertainties than are possible using ex situ methods. PMID:24938421

  3. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  4. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Present concepts on stages of, designing for and costs of decommissioning, together with criteria for site release, are described. Recent operations and studies and assessments in progress are summarized. Wastes from decommissioning are characterized

  5. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    International Nuclear Information System (INIS)

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown

  6. A study on the applicability for primary system decontamination through analysis on NPP decommission technology and international experience

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Jung, Min Young; Lee, Sang Heon [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    Decontamination is one of the most important technologies for the decommissioning of NPP. The purpose of decontamination is to reduce the Risk of exposure of the decommissioning workers, and to recycle parts of the plant components. Currently, there is a lack of data on the efficiency of the decontamination technologies for decommissioning. In most cases, the local radiation level can be lowered below a regulatory limitation by decontamination. Therefore, more efficient decontamination technology must be continuously developed. This work describes the practical experiences in the United States and the European countries for NPP decommissioning using these decontamination technologies. When the decommissioning of domestic nuclear power plant is planned and implemented, this work will be helpful as a reference of previous cases.

  7. Training for decommissioning

    International Nuclear Information System (INIS)

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  8. Comparative analysis of the Oskarshamn 3 and Barsebaeck site decommissioning studies

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Bertil (Bewon, Loeddekoepinge (Sweden)); Joensson, Lars-Olof (Barsebaeck Kraft AB, Loeddekoepinge (Sweden))

    2009-01-15

    Several projects concerning the decommissioning of different types of nuclear facilities have shown that technical methods and equipment are available today for safe dismantling of nuclear facilities of any type or size. However, comparison of individual cost estimates for specific facilities exhibit relatively large variations, and several studies have tried to identify the reasons for these variations. Analysis has shown that decommissioning cost estimates vary depending on a number of factors, including: the boundary conditions and strategy chosen; the cost items taken into account; the origin of the cost estimate; the methodology applied; the political-administrative framework; and the way contingencies are included. In this study, a comparison has been made between two decommissioning studies in the same country, with more or less same decommissioning schedule and with similar overall ideas on cost estimates. However, the two studies had from the start a different focus and different objectives. One study is intended as a reference study for all BWRs in Sweden, while the other focuses on a full site decommissioning. Furthermore, one of the studies is based on direct dismantling and the other on deferred dismantling. A great deal of work therefore had to be devoted in the present study to giving the studies comparable structures and boundary conditions using the OECD/NEA cost estimate structure. The boundary conditions in each of the studies have been thoroughly evaluated qualitatively and quantitatively, and the differences have been explained. In the end, values have been set in the quantitative analysis to verify that the studies could be compared, within the accuracy of what is defined in the industry as a 'budgetary estimate'. Differences still exist relating to what has been included in the studies and to the decommissioning plans and the resulting inventory from site characterization. Such differences must be accepted as long as it is clear

  9. Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites

    Science.gov (United States)

    Ryan, W.; Ryan, E.

    A satellites general characteristics can be substantially influenced by changes in the space environment. Rapidly spinning decommissioned satellites provide an excellent opportunity to study the rotation-dependent physical processes that affect a resident space objects (RSO) spin kinematics over time. Specifically, inactive satellites at or near geosynchronous Earth-orbit (GEO) provide easy targets for which high quality data can be collected and analyzed such that small differences can be detected under single-year or less time frames. Previous workers have shown that the rotational periods of defunct GEOs have been changing over time [1]. Further, the Yarkovsky-OKeefe-Radzievskii-Paddak (YORP) effect, a phenomenon which has been well-studied in the context of the changing the spin states of asteroids, has recently been suggested to be the cause of secular alterations in the rotational period of inactive satellites [2]. Researchers at the Magdalena Ridge Observatory 2.4-meter telescope (operated by the New Mexico Institute of Mining and Technology) have been investigating the spins states of retired GEOs and other high altitude space debris since 2007 [3]. In this current work, the 2.4-meter telescope was used to track and observe the objects typically over a one- to two-hour period, repeated several times over the course of weeks. When feasible, this is then repeated on a yearly basis. Data is taken with a 1 second cadence, nominally in groups of three 600 second image sets. With the current equipment, the cadence of the image sequences is very precise while the start time is accurate only to the nearest second. Therefore, periods are determined individually using each image sequence. Repeatability of the period determination for each of these sequences is typically on the order of 0.01 second or better for objects where a single period is identified. Spin rate periods determined from the GEO light curves collected thus far have been found to range from ~3 sec to

  10. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  11. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  12. The SSI project on decommissioning of nuclear plants - a preliminary study

    International Nuclear Information System (INIS)

    SSI will amend and complete regulations and stipulations for nuclear plants in order to take into account issues which arise in connection with decommissioning. The objective of a pilot study, performed during 1998, was to identify the questions at issue, what the authority should control and how SSI should proceed with the work. The recommendations and the result of the pilot study are presented in this report

  13. The development of the strategy and plan for the decommissioning and abandonment of 36'' offshore oil export pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Richard J. [PIMS of London Ltd, London, (United Kingdom); Galvez Reyes, Marco Antonio [PEMEX Refinacion, Veracruz, (Mexico)

    2010-07-01

    The decommissioning and abandonment of platforms and pipelines are big challenges for the pipeline industry. This paper presents a review of the decommissioning and abandonment processes based on a study case, the Rabon Grande pipeline system. First, the applicable international codes, standards and regulations associated with the decommissioning of pipelines are discussed. Next, this paper presents a review of the decommissioning and abandonment options and considerations available for the study case. The Rabon Grande pipeline system, which was shut down and isolated in 1990 pending decommissioning, is used as an example of applying decommissioning and abandonment best practice and establishing a realistic scope of work. A decommissioning plan is developed in light of these previous studies, followed by an environmental impact assessment. It is found that contrary to what was done in the case of the Rabon Grande pipeline, when a pipeline is to be shutdown, the best practice methodology is to temporally or fully decommission the system as soon as possible.

  14. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    Science.gov (United States)

    Saleh, Lydia Ilaiza; Ryong, Kim Tae

    2015-04-01

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of this paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.

  15. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae [KEPCO International Nuclear Graduate School (KINGS) 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 689-882 (Korea, Republic of)

    2015-04-29

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of this paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.

  16. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  17. Establishment the code for prediction of waste volume on NPP decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    -2 and developed DEMOS(DEcommissioning MOdeling System) and DEPES(DEcommissioning Process Establish System) using these data. These systems may be able to help to establish decommissioning strategy of nuclear power plant. We tried to apply research reactor data to OPR-1000 which is commercial nuclear power plant. But code for research reactor was not consistent when applying to nuclear power plant. The decommissioning activity of nuclear power plant is basically performed by the unit facility or room. In order to apply research reactor data, each WBS code is needed to apply to the object of each facility. This means that one FAC code may have several WBS codes. However, current codes in DECOMMIS are hard to map WBS code to FAC code one by one, and are specialized to research reactor. So it is difficult to apply to nuclear power plant directly. In order to solve this problem, the common code that can be adapted to commercial nuclear power plant as well as to research reactor is required. It may be inferred from the mapping data in the case of mismatching, or it can be applied with some modifications in the case of similar facility. In this paper, the establishment method of the code which uses the research reactor data in decommissioning project of nuclear power plant was studied. Method for prediction of the decommissioning waste volume was discussed on the basis of the domestic nuclear power plant, OPR-1000. Decommissioning experience is very important to apply to the estimation of decommissioning waste volume. So method for the estimation of decommissioning waste volume using common code that link OPR-1000 and KRR-2 was suggested. This research result will be helpful to reliable estimation of decommissioning waste volume and further estimation of the decommissioning cost and establishment of decommissioning strategies.

  18. Study on the Development of Methodology for Cost Calculations and Financial Planning of Decommissioning Operations

    International Nuclear Information System (INIS)

    The following study deals with the development of methodology for cost calculations and financial planning of decommissioning operations. It has been carried out by EDF / FRAMATOME / VUJE / SCK-CEN in the frame of the contract B7-032/2000/291058/MAR/C2 awarded by the European Commission. This study consists of 4 parts. The first task objective is to develop a reliable and transparent methodology for cost assessment and financial planning sufficient precise but without long and in depth investigations and studies. This methodology mainly contains: Calculation methods and algorithms for the elaboration of costs items making up the whole decommissioning cost. Estimated or standard values for the parameters and for the cost factors to be used in the above-mentioned algorithms Financial mechanism to be applied as to establish a financial planning. The second part task is the provision of standard values for the different parameters and costs factors described in the above-mentioned algorithms. This provision of data is based on the own various experience acquired by the members of the working team and on existing international references (databases, publications and reports). As decommissioning operations are spreading over several dozens of years, the scope of this task the description of the financial mechanisms to be applied to the different cost items as to establish a complete financial cost. It takes into account the financial schedule issued in task 1. The scope of this task consists in bringing together in a guideline all the information collected before: algorithms, data and financial mechanisms. (A.L.B.)

  19. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  20. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  1. Decommissioning: a problem or a challenge?

    OpenAIRE

    Mele Irena

    2004-01-01

    With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste manageme...

  2. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  3. The development of a tailings decommissioning concept: A case history, Rabbit Lake, Canada

    International Nuclear Information System (INIS)

    The Rabbit Lake orebody was discovered in 1968. From 1975 to 1985, approximately 6.5 million tonnes of tailings were deposited in a valley confined by bedrock ridges and two earth-filled dams. Planning for the decommissioning of the Rabbit Lake tailings management facility started in 1983 when the relocation of the tailings into the mined out Rabbit Lake open pit and alternatively, the in-situ decommissioning were examined. The latter was preferred since it offered a sufficiently low individual dose rate and an insignificant environmental impact. To pursue the in-situ decommissioning, three options were considered: (1) A concave surface with natural cover, surface water management and dam stabilization, (2) a convex surface with natural cover, surface water management and dam stabilization and (3) a minimum reclamation option incorporating surface water management only. By 1988, an electromagnetic conductivity survey, a pathway analysis, a stream flow reconnaissance and continued environmental monitoring in the vicinity of the tailings area were completed. On the basis of the results, the cover design was optimized taking into account areas of higher consolidation defined by the presence of distal slimes and frozen layers. In addition, pre-loading of the slime area was considered to alleviate post-construction settlements. (Abstract only)

  4. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  5. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  6. Decommissioning handbook

    International Nuclear Information System (INIS)

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  7. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Shibahara, Yuji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); University of Fukui, Fukui-shi, Fukui, 910-8507 (Japan); Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake [Japan Atomic Energy Agency, Kagamino-cho, Tomata-gun, Okayama, 708-0698 (Japan)

    2012-07-01

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered

  8. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  9. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  10. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  11. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  12. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    International Nuclear Information System (INIS)

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  13. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe and waterproof conditions for a longer period of

  14. Summary of comments received at workshop on use of a Site Specific Advisory Board (SSAB) to facilitate public participation in decommissioning cases

    Energy Technology Data Exchange (ETDEWEB)

    Caplin, J.; Padge, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Rockville, MD (United States)

    1995-06-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As part of this rulemaking, On August 20, 1994 the NRC published a proposed rule for public comment. Paragraph 20.1406(b) of the proposed rule would require that the licensee convene a Site Specific Advisory Board (SSAB) if the licensee proposed release of the site for restricted use after decommissioning. To encourage comment the NRC held a workshop on the subject of $SABs on December 6, 7, and 8, 1994. This report summarizes the 567 comments categorized from the transcript of the workshop. The commenters at the workshop generally supported public participation in decommissioning cases. Many participants favored promulgating requirements in the NRC`s rules. Some industry participants favored relying on voluntary exchanges between the public and the licensees. Many participants indicated that a SSAB or something functionally equivalent is needed in controversial decommissioning cases, but that some lesser undertaking can achieve meaningful public participation in other cases. No analysis or response to the comments is included in this report.

  15. Summary of comments received at workshop on use of a Site Specific Advisory Board (SSAB) to facilitate public participation in decommissioning cases

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As part of this rulemaking, On August 20, 1994 the NRC published a proposed rule for public comment. Paragraph 20.1406(b) of the proposed rule would require that the licensee convene a Site Specific Advisory Board (SSAB) if the licensee proposed release of the site for restricted use after decommissioning. To encourage comment the NRC held a workshop on the subject of $SABs on December 6, 7, and 8, 1994. This report summarizes the 567 comments categorized from the transcript of the workshop. The commenters at the workshop generally supported public participation in decommissioning cases. Many participants favored promulgating requirements in the NRC's rules. Some industry participants favored relying on voluntary exchanges between the public and the licensees. Many participants indicated that a SSAB or something functionally equivalent is needed in controversial decommissioning cases, but that some lesser undertaking can achieve meaningful public participation in other cases. No analysis or response to the comments is included in this report

  16. Experiences in teaching decommissioning - 16179

    International Nuclear Information System (INIS)

    The paper describes the experience gained by the author in teaching decommissioning in the Highlands of Scotland. Initially when asked to teach the subject of decommissioning to students sitting for a BSc degree in 'Electrical or Mechanical Engineering with Decommissioning Studies', the author was taken aback, not having previously taught degree students and there was no precedent since there was no previous material or examples to build on. It was just as difficult for the students since whilst some had progressed from completing HND studies, the majority were employed at the Dounreay site and were mature students with families who were availing themselves of the opportunity for career advancement (CPD). Some of the students were from the UKAEA and its contractors whilst others were from Rolls-Royce working at Vulcan, the Royal Navy's establishment for testing nuclear reactors for submarines. A number of the students had not been in a formal learning environment for many years. The College which had originally been funded by the UKAEA and the nuclear industry in the 1950's was anxious to break into the new field of Decommissioning and were keen to promote these courses in order to support the work progressing on site. Many families in Thurso, and in Caithness, have a long tradition of working in the nuclear industry and it was thought at the time that expertise in nuclear decommissioning could be developed and indeed exported elsewhere. In addition the courses being promoted by the College would attract students from other parts so that a centre of excellence could be established. In parallel with formal teaching, online courses were also developed to extend the reach of the College. The material was developed as a mixture of power point presentations and formal notes and was obtained from existing literature, web searches and interactive discussions with people in the industry as well as case studies obtained from actual situations. Assignments were set and

  17. 1982 international decommissioning symposium

    International Nuclear Information System (INIS)

    Sixty-four papers were presented at the following sessions: policy, regulations, and standards; management of decommissioning wastes; decommissioning experience; decommissioning tooling and techniques; radiological concerns; and planning and engineering

  18. Ringhals Site Study 2013 - An assessment of the decommissioning cost for the Ringhals site

    International Nuclear Information System (INIS)

    This report presents the decommissioning cost for the Ringhals site as of 2013. The objective has been to make a best estimate of the costs within the uncertainties of a budgetary estimate. To achieve this, the decommissioning costs have been assessed with support from TLG Services Inc., utilizing their knowledge and experience from U.S. decommissioning projects incorporated in their cost estimation platform DECCER. The 2013 estimate has included the development of a Ringhals-specific cost estimation method that allows for successive improvement in the future. In-house experiences have been included and the method is based on the present decommissioning strategy according to Ringhals decommissioning plan. Two basic approaches have been used in the cost assessment; a bottom up approach to develop unit cost factors (UCF) for recurrent work; and a specific analogy approach for cost estimating special items. The basic, activity-dependent, costs have been complemented by period-dependent costs, derived, among other things, from SKB's newly developed reference planning and organizational model for a Swedish decommissioning project. Furthermore, collateral costs based on the experiences of Barsebaeck have been included. As a final point, all costs have been adjusted for industrial standard contingencies, as suggested by TLG, to achieve a best estimate. In order to make the cost intelligible a comprehensive description of the assumptions, boundary conditions and general basis of the estimate is included in this report. All costs have been reported both according to the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations published by OECD/NEA and according to the SKB developed EEF structure. Furthermore, common costs have been isolated to a theoretical unit 0 to make the cost for respective unit even more comparable on a national and international scale. The calculations show that the total cost for the decommissioning of the Ringhals site is

  19. Ringhals Site Study 2013 - An assessment of the decommissioning cost for the Ringhals site

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Tommy [Ringhals AB, Ringhals (Sweden); Norberg, Thomas [Solvina AB, Goeteborg (Sweden); Knutsson, Andreas; Fors, Patrik; Sandebert, Camilla [Vattenfall AB, Stockholm (Sweden)

    2013-03-15

    This report presents the decommissioning cost for the Ringhals site as of 2013. The objective has been to make a best estimate of the costs within the uncertainties of a budgetary estimate. To achieve this, the decommissioning costs have been assessed with support from TLG Services Inc., utilizing their knowledge and experience from U.S. decommissioning projects incorporated in their cost estimation platform DECCER. The 2013 estimate has included the development of a Ringhals-specific cost estimation method that allows for successive improvement in the future. In-house experiences have been included and the method is based on the present decommissioning strategy according to Ringhals decommissioning plan. Two basic approaches have been used in the cost assessment; a bottom up approach to develop unit cost factors (UCF) for recurrent work; and a specific analogy approach for cost estimating special items. The basic, activity-dependent, costs have been complemented by period-dependent costs, derived, among other things, from SKB's newly developed reference planning and organizational model for a Swedish decommissioning project. Furthermore, collateral costs based on the experiences of Barsebaeck have been included. As a final point, all costs have been adjusted for industrial standard contingencies, as suggested by TLG, to achieve a best estimate. In order to make the cost intelligible a comprehensive description of the assumptions, boundary conditions and general basis of the estimate is included in this report. All costs have been reported both according to the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations published by OECD/NEA and according to the SKB developed EEF structure. Furthermore, common costs have been isolated to a theoretical unit 0 to make the cost for respective unit even more comparable on a national and international scale. The calculations show that the total cost for the decommissioning of the Ringhals

  20. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  1. A study on people's awareness about the restarting and decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    In this study, we conducted two questionnaire surveys targeting a total of 918 respondents living in the cities of Kyoto, Osaka and Kobe, in order to elucidate people's awareness of three things: 1) restart of nuclear power plants; 2) extension of the operation period of aging plants; and 3) decommissioning. The results are as follows: 1) People who think that electrical power companies voluntarily take higher safety measures trust the power companies and do not oppose the restart of the nuclear power plants, as compared to people who think that power companies only meet the requirements set by the nuclear regulatory agency. 2) When people were given information about aging measures and conforming to new regulatory standards, their anxiety toward the operation of aging plants was reduced. 3) People thought that decommissioning work was important for society. However, a small number of people thought it was a job worthwhile doing. (author)

  2. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  3. Case Studies

    International Nuclear Information System (INIS)

    Proven options available to Sri Lanka for large scale electricity generation in the future are coal-fired thermal, oil-fired thermal and Nuclear. Four case studies for groups participated are indicated. Case study for group 1 is comparison of the three options by taking into consideration the capital and recurrent expenditure involved. Environmental effects of the three options are also given. Case study for group 2 is economic comparison of three renewable energy based power generation system. Case study for group 3 is based on energy conservation, efficiency, improvement and demand management. Assuming that a continuous saving of 20 MW of demand from 1996 onwards is effective two projects are suggested to achieve this result. Case study for group 4 is a feasibility study for hydro power development of the Kukule Ganga (river) in Sri Lanka. Participants are required to evaluate one of the three optional development concepts which are technically feasible

  4. On tentative decommissioning cost analysis with specific authentic cost calculations with the application of the Omega code on a case linked to the Intermediate storage facility for spent fuel in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Vasko, Marek; Daniska, Vladimir; Ondra, Frantisek; Bezak, Peter; Kristofova, Kristina; Tatransky, Peter; Zachar, Matej [DECOM Slovakia, spol. s.r.o., J. Bottu 2, SK-917 01 Trnava (Slovakia); Lindskog, Staffan [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2007-03-15

    The presented report is focused on tentative calculations of basic decommissioning parameters such as costs, manpower and exposure of personnel for activities of older nuclear facility decommissioning in Sweden represented by Intermediate storage facility for spent fuel in Studsvik, by means of calculation code OMEGA. This report continuously follows up two previous projects, which described methodology of cost estimates of decommissioning with an emphasis to derive cost functions for alpha contaminated material and implementation of the advanced decommissioning costing methodology for Intermediate Storage facility for Spent Fuel in Studsvik. The main purpose of the presented study is to demonstrate the trial application of the advanced costing methodology using OMEGA code for Intermediate Storage Facility for Spent Fuel in Studsvik. Basic work packages presented in report are as follows: 1. Analysis and validation input data on Intermediate Storage Facility for Spent Fuel and assemble a database suitable for standardised decommissioning cost calculations including radiological parameters, 2. Proposal of range of decommissioning calculations and define an extent of decommissioning activities, 3. Defining waste management scenarios for particular material waste streams from Intermediate Storage Facility for Spent Fuel, 4. Developing standardised cost calculation structure applied for Intermediate Storage Facility for Spent Fuel decommissioning calculation and 5. Performing tentative decommissioning calculations for Intermediate Storage Facility for Spent Fuel by OMEGA code. Calculated parameters of decommissioning are presented in structure according to Proposed Standardized List of Items for Costing Purposes. All parameters are documented and summed up in both table and graphic forms in text and Annexes. The presented report documents availability and applicability of methodology for evaluation of costs and other parameters of decommissioning in a form implemented

  5. Needs for European decommissioning academy (EDA)

    International Nuclear Information System (INIS)

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year. Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning, as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the over-bridging this gap. The main goal is - from about 74% of nuclearized experts (graduated at different technical Universities and increased their nuclear knowledge and skills mostly via on-job training and often in the area of NPP operation) to create nuclear experts for decommissioning via our post-gradual coursed organized in two semester study at our Academy, which will include the lessons, practical exercises in our laboratories, on-site training at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 3 days technical tour to JAVYS (Slovakia), UJV Rez (Czech Rep.) and PURAM (Hungary), respectively. Beside the exams in selected topics (courses), the final thesis written under supervision of recognized experts will be the precondition for graduation and certification of the participants. For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe. The growing decommissioning market creates a potential for new activities, with highly skilled jobs in an innovative field, involving high-level technologies. A clear global positioning of the EU will stimulate the export of know-how to

  6. A model study of cost estimates of decontamination and decommissioning with an emphasis to derive cost functions for alpha contaminated material using OMEGA code

    Energy Technology Data Exchange (ETDEWEB)

    Kristofova, Kristina; Daniska, Vladimir; Ondra, Frantisek; Rehak, Ivan; Vasko, Marek [DECOM SLOVAKIA spol. s.r.o., Trnava (Slovakia)

    2004-12-01

    The presented study is focused on model decommissioning cost calculations for primary circuit of A-1 nuclear power plant in Jaslovske Bohunice. In addition, the survey of advanced decommissioning costing is included together with impact analyses of contamination on particular decommissioning parameters. OMEGA code decommissioning cost calculations for primary circuit of A-1 NPP presented in the study are performed and evaluated under the following conditions: different contamination level of inner and outer surfaces; different waste management scenarios; application and non-application of pre-dismantling decontamination; different start of decommissioning: 2004, 2010, 2020, 2030, 2040; radionuclide composition of primary circuit contamination in A-1 NPP with occurrence of alpha radionuclides and fission products as a consequence of operational accident with damaged fuel cladding; radionuclide composition of primary circuit contamination in V-2 NPP in Jaslovske Bohunice as a representative NPP with an operation without accidents and therefore neither non-alpha contaminants nor fission products are included. The results of all the above mentioned conditions impacts on calculated costs, manpower, exposure and distribution of materials arisen from decommissioning are evaluated in detail within the calculation sensitivity analysis.

  7. On Cost Estimate for Decommissioning of one Isotope Central

    International Nuclear Information System (INIS)

    The main scope of this study has been to calculate the future cost for decommission and dismantling the Isotope central at the Studsvik site using the OMEGA CODE. Detailed empirical information is used in the study for 'bench-marking' purposes, in such cases when there is a need to supplement and correct field data from the industry. In the present study, data has been retrieved and organized such that the estimated costs for decommissioning of the Isotope Central become transparent and reliable. This approach gives a preliminary qualitative indication about the accuracy of the cost estimate delivered by the industry

  8. Engineering studies for the Surplus Production Reactor Decommissioning Project at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Powers, E.W. [Westinghouse Hanford Co., Richland, WA (United States); Usher, J.M. [Ebasco Services, Inc., Augusta, GA (United States); Yannitell, D.M. [Ebasco Services, Inc., Oak Ridge, TN (United States)

    1993-10-01

    In 1942, the Hanford Site (near Richland, WA) was commissioned as a facility for the production of plutonium. On location there are nine water cooled, graphite-moderated plutonium production reactors, which are now retired from service. Because the reactors contain irradiated reactor components, and because the buildings that house the reactors are contaminated with low levels of reactivity, the DOE has determined that there is a need for action and that some form of decommissioning or continued surveillance and maintenance is necessary. This report discusses assessments of the alternatives which have determined that while continued surveillance and maintenance adequately isolates remaining radioactive materials from the environment and properly protects human health and safety; decontamination and decommissioning (D&D) will ultimately be necessary. The project is technically complex and will likely be designated as a Department of Energy (DOE) Major System Acquisition or Major Project.

  9. A study on site release criterion assessment of nuclear power facilites for TRIGA research reactor decommissioning

    International Nuclear Information System (INIS)

    The process of establishing the site release criterion in MARSSIM is a guide which makes a decision if the contamination level of the building in the site meets guide level, so it is able to classify the contamination site with the expected contamination level in facility site as the process to raise the working efficiency with applying to the site facility building of TRIGA research reactor on the progress of the internal decommissioning plan. It is unreasonable to establish the criterion for site recycling so far due to the lack of survey because the decommissioning plan of TRIGA research reactor is still on the progress. But it is able to design process to establish the site recycling criterion according to survey result with using the method to decide survey quantity and location in MARSSIM process guide

  10. Investigation Study on Gamma Ray Imaging Technology for Nuclear Power Plant Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Jeong, Woo Tae [Machinery and Materials Laboratory, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-10-15

    The gamma ray imaging system provides an estimated dose-rate of the source at 30 cm above. The gamma detector is a terbium activated glass scintillator. The system is capable of producing a color two dimensional image of a radiation field superimposed on a black and white visual image. The system used in US power plants consists of a portable sensor head that contains both gamma ray and visual imaging systems and a portable control computer. The gamma ray imaging system has been successfully used as an ALARA tool for identifying source terms and determining the adequacy of existing shielding. Because the control system can be positioned away from the camera, the radiation exposure to personnel can be reduced without extensive shielding requirements. The gamma ray imaging system has been used to date in the decommissioning of Maine Yankee, Big Rock point,Trojan, San Onofre1, and Millstone 1. The equipment has also been used at normal refueling outages at a number of commercial nuclear power plants and at several Department of Energy Decommissioning sites. This paper is intended to review the applicability of gamma ray imaging system as decommissioning tool. In order to review the actual applicability, we are going to introduce applications for US power plants.

  11. Estimating Radon Flux and Environmental Radiation Dose from Decommissioning Uranium Mill Tailings and Mining Debris

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively evaluates radon fluxes and doses to man of gaseous airborne pathway from mill tailings and mining debris before and after decommissioning, including annual individual effective dose to critical groups and annual collective effective dose to the population within 80 km region of the facilities.

  12. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  13. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  14. Studies on decommissioning of TRIGA reactors and site restoration technologies in the Republic of Korea

    International Nuclear Information System (INIS)

    Research and development on research reactor decommissioning and environmental restoration has been carried out at KAERI since 1997 to prepare for the decommissioning of KAERI's two TRIGA-type research reactors, which had been shut down since 1995. A 3-D graphic model of the TRIGA research reactor was built using IGRIP. The dismantling process was simulated in the graphic environment to verify the feasibility of individual operations before the execution of the remote dismantling process. An under-water wall-climbing robot, moving by propeller injection, and identifying its coordinates by using a laser sensor, was developed and tested in the TRIGA reactor pool by measuring a radioactive contamination map of the reactor surface. Using MODFLOW and TRIGA site geological data, a computer simulation of the underground migration of residual radionuclides, after the TRIGA reactor decommissioning, was carried out. It was found that the underground migration rate was very slow such that, when radionuclide decay and dilution are considered, the residual radionuclides will not have a significant environmental impact. The soil decontamination R and D, using soil washing, solvent flushing and electro-decontamination technologies, was carried out to determine the best method for decontaminating the soil waste accumulated in KAERI. The decontamination results indicated that, using the soil washing method, more than 80% of the soil wastes could be decontaminated well enough to discharge them to the environment. It was also determined that the control of solution pH and temperature in the soil washing process is important for the reduction of decontamination waste. Further decontamination, using an electro-kinetic decontamination method, was considered necessary for the residual soil waste, which consisted mainly of fine soil particles. (author)

  15. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Special study No. 1. Twenty-five-year retrievability, decommissioning cost estimate

    International Nuclear Information System (INIS)

    This estimate covers decommissioning costs of facilities for the receipt, handling, and storage in bedded salt of canistered spent fuel assemblies from both BWR and PWR commercial power plants. The estimate includes all decommissioning costs for a repository, based on 25-year retrievability, constructed in accordance with the design shown in Conceptual Design Report (CDR), as modified by Special Study No. 1 (KE Report No. 78-60-RE) and decommissioned in accordance with the program outlined in the Conceptual Design Description Report, KE Report No. 78-58-R. Costs for Operating Contractor personnel on the site at this time are included in this report and not in the Operating Cost Estimate (KE Report 78-63-RE). The operating cost estimates end with the completion of storage room backfilling. The three major elements of decommissioning are: demolition of surface facilities, backfilling of main entries and airways, and shaft liner removal and shaft plugging. EDIT, ECON, and DELOX computer programs and a chart of accounts were furnished by UCC-ND under direction of the Government and the line item-capital-cost estimate was prepared according to the prescribed format. The decommissioning cost estimate referenced herein is in the same format as its companion line item-capital-cost estimate KE Report 78-62-RE

  16. Decommissioning of Radiotherapy Facilities

    International Nuclear Information System (INIS)

    Radiotherapy units containing high activity sealed radioactive sources of 60Co or 137Cs are mainly use for medical, research or calibration applications. After several half-lives of decay, the radionuclide source has to be changed or the unit is decommissioned if no longer required. Before starting a decommissioning project it is very important to look for documents relating to any sources held or installed in equipment. In general this should be no problem because the recommended working life of such sealed radioactive sources is limited to 10 or a maximum of 15 years. These time periods are short in comparison with other facilities like research laboratories or small reactors. These documents (source certificates) will be very helpful to plan the decommissioning because they say everything about the original activity of the source at a reference date, the type of the source and the manufacturer. The next step may be to contact the machine supplier or the source manufacturer, but be aware that neither may still be in existence or may have changed their type of business. In such cases, it is recommended to contact national or international sealed source manufacturers or suppliers for help. Sometimes it is also helpful to contact colleagues in other hospitals or research centres to ask for information about specialists in this topic. In general it is not useful, and even very dangerous, to try to decommission such a unit without expert help It is essential to have specialist tools and shielded containers to recover the source out of the unit. It is strongly recommended to invite the source removal specialist for a site visit to review the situation before starting any decommissioning process. A further problem can occur, if the source must be transported to a national storage centre or even an international storage facility, as the source must be packaged to meet international transport requirements. The end state of such a project should be an empty room where the

  17. Measuring and reporting on decommissioning progress

    International Nuclear Information System (INIS)

    One of the challenges facing AECL, as well as other organizations charged with the responsibility of decommissioning nuclear facilities, is the means by which to measure and report on decommissioning progress to various audiences which, in some cases, may only have a peripheral knowledge or understanding of the complexities associated with the decommissioning process. The reporting and measurement of decommissioning progress is important for a number of reasons, i.e., It provides a vehicle by which to effectively communicate the nature of the decommissioning process; It ensures that stakeholders and shareholders are provided with a transparent and understandable means for assessing value for money; It provides a means by which to integrate the planning, measurement, and operational aspects of decommissioning One underlying reason behind the challenge of reporting decommissioning progress lies in the fact that decommissioning programs are generally executed over periods of time that far exceed those generally associated with typical design and build projects. For example, a decommissioning program could take decades to complete in which case progress on the order of a few percent in any one year might be typical. However, such progress may appear low compared to that seen with more typical projects that can be completed in a matter of years. As a consequence, AECL undertook to develop a system by which to measure decommissioning progress in a straightforward, meaningful, and understandable fashion. The system is not rigorously objective, and there are subjective aspects that are necessitated by the need to keep the system readily understandable. It is also important to note that while the system is simple in concept, there is, nonetheless, significant effort involved in generating and updating the parameters used as input, and in the actual calculations. (author)

  18. Development Of Decommissioning Information Management System for 101 HWRR

    Institute of Scientific and Technical Information of China (English)

    Yi Song

    2016-01-01

    Decommissioning of 101 Heavy Water Research Reactor (HWRR) is radioactive and high-risk project which has to consider the effects of radiation and nuclear waste disposal, so the information system covering 101 HWRR decommissioning project must be established to ensure safety of the project. In this study, by col ecting the decommissioning activity data to establish the decommissioning database, and based on the database to develop information management system.

  19. An analysis on the annual decommissioning deposit in NPP

    International Nuclear Information System (INIS)

    This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods, for instances, the accounting method being used presently by KEPCO and the lifetime levelized method being commonly applied in economic analysis

  20. Decommissioning the Research Nuclear Reactor Vvr-S Magurele - Analyze, Justification and Selection of Decommissioning Strategy

    Science.gov (United States)

    Dragusin, M.; Popa, V.; Boicu, A.; Tuca, C.; Iorga, I.; Mustata, C.

    2004-09-01

    The decommissioning of Research Nuclear Reactor VVR-S Magurele - Bucharest involves the removal of the radioactive and hazardous materials to permit the facility to be released without representing a further risk to human health and the environment [1-3]. A very important aspect of decommissioning is the analyze, justification and selection of the decommissioning strategy. Two strategies: DECON (Immediate Dismantling) and SAFSTOR (Safe Enclosure) are in study (see Table 1)... Note from Publisher: This article contains the abstract and references only.

  1. A study on source term assessment and waste disposal requirement of decontamination and decommissioning for the TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Joo Ho; Lee, Kyung JIn; Lee, Jae Min; Choi, Gyu Seup; Shin, Byoung Sun [Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-15

    The objective and necessity of the project : TRIGA is the first nuclear facility that decide to decommission and decontamination in our nation. As we estimate the expected life of nuclear power generation at 30 or 40 years, the decommissioning business should be conducted around 2010, and the development of regulatory technique supporting it should be developed previously. From a view of decommissioning and decontamination, the research reactor is just small in scale but it include all decommissioning and decontamination conditions. So, the rules by regulatory authority with decommissioning will be a guide for nuclear power plant in the future. The basis of regulatory technique required when decommissioning the research reactor are the radiological safety security and the data for it. The source term is very important condition not only for security of worker but for evaluating how we dispose the waste is appropriate for conducting the middle store and the procedure after it when the final disposal is considered. The content and the scope in this report contain the procedure of conducting the assessment of the source term which is most important in understanding the general concept of the decommissioning procedure of the decommissioning and decontamination of TRIGA research reactor. That is, the sampling and measuring method is presented as how to measure the volume of the radioactivity of the nuclear facilities. And also, the criterion of classifying the waste occurred in other countries and the site release criteria which is the final step of decommissioning and decontamination presented through MARSSIM. Finally, the program to be applicable through comparing the methods of our nation and other countries ones is presented as plan for disposal of the waste in the decommissioning.

  2. Decommissioning plan for TRIGA Mark-2

    International Nuclear Information System (INIS)

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs

  3. Decommissioning plan for TRIGA Mark-2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Lee, B.J.

    1999-04-01

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs.

  4. Comparison of decommissioning options for the example of 2 research reactors of type TRIGA

    International Nuclear Information System (INIS)

    For decommissioning of nuclear facilities usually the two decommissioning strategies 'immediate dismantling' or 'deferred dismantling (safe enclosure)' are applied. In general, immediate dismantling is regarded as the more advantageous and more preferable option. Accordingly, immediate dismantling is the mostly selected option. Nevertheless, only in a case by case analysis it can be shown, which decommissioning option is the better one e. g. with respect to technical aspects or to a use of the facility / remaining facility. For two real decommissioning projects of two similar research reactors of TRIGA type GRS with support of the operator, German Cancer Research Center Heidelberg, performed a study on possible advantages of the two different strategies selected. While the first research reactor, TRIGA HD I, was dismantled immediately, the second research reactor, TRIGA HD II, was dismantled after a 20 years period of safe enclosure. As a result, it could be shown, that the selected different decommissioning strategies reflected the special conditions of each both research reactor in best way, so that a clear preference for one of the two decommissioning strategies can not be deduced. The slides of the presentation have been added at the end of the paper. (authors)

  5. The cost of decommissioning uranium mill tailings

    International Nuclear Information System (INIS)

    This report identifies several key operations that are commonly carried out during decommissioning of tailings areas in the Canadian environment. These operations are unit costed for a generic site to provide a base reference case. The unit costs have also been scaled to the quantities required for the decommissioning of four Canadian sites and these scaled quantities compared with site-specific engineering cost estimates and actual costs incurred in carrying out the decommissioning activities. Variances in costing are discussed. The report also recommends a generic monitoring regime upon which both short- and longer-term environmental monitoring costs are calculated. Although every site must be addressed as a site-specific case, and monitoring programs must be tailored to fit a specific site, it would appear that for the conventional decommissioning and monitoring practices that have been employed to date, costs can be reasonably estimated when site-specific conditions are taken into account

  6. Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Atomic Energy Regulatory Board (AERB) is of the view that every organisation should focus attention on the decommissioning of nuclear facilities after completion of their useful life. AERB is aware that, internationally there is a growing interest in plant life extension due to economic considerations. Regulatory bodies stipulate upgradation of safety features based on international experience and current safety standards. However, decommissioning becomes a necessity at some time after the extended life of the plant. Nuclear industry has demonstrated that, with modern technological developments, decommissioning of nuclear facilities can be carried out without undue risk to the occupational workers, members of the public and protection of the environment. In view of limited experience in the field of decommissioning, this document is being issued as a safety manual instead of a safety guide. This manual elaborates the various technical and safety considerations in the decommissioning of nuclear facilities including ultimate disposal of radioactive materials/ wastes generated during decommissioning. Details that are required to be furnished to the regulatory body while applying for authorisation for decommissioning and till its completion are enumerated. This manual is issued to assist Department of Atomic Energy (DAE) units in formulating a decommissioning programme. Since the subject of decommissioning of nuclear facilities is a continuously evolving process, AERB is of the view, that provisions of this manual will apply for a period of five years from the date of issue and will be subsequently revised, if necessary

  7. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  8. Decommissioning costs of WWER-440 nuclear power plants. Interim report: Data collection and preliminary evaluations

    International Nuclear Information System (INIS)

    comparison of data. As a result, the cost figures were collected in a recommended structure and analysed. During progress of work, experts of participating Member States responded to a questionnaire, and explained the contents of individual cost items and cost groups during subsequent discussions. Comparison of cost estimates in the various decommissioning projects showed to be rather difficult, even with the support of the standardised list of items for costing purposes. In each country, the existing cost figures were many times allocated to different cost codes, and it was difficult to re-allocate costs that were grouped based on the individual costing methodologies. Verification of cost figures was sometimes executed while comparing with previous IAEA as well as OECD/NEA studies. The total costs for the immediate decommissioning option vary from 219 MUSD (Finland) to 1,370 MUSD (Germany). This large difference is mainly due to country and site specific conditions. In the case of Finland the possibility for on-site disposal of all dismantled material reduces the costs dramatically. In the case of the Greifswald project (Germany) major costs for post-operational and site support activities, as well as the construction of a large interim storage on the site are included. For the safe enclosure option the cost figures vary from 210 MUSD (Czech Republic) to 469 MUSD (Hungary). In this case the spread in the cost estimations is smaller, but still significant, the reason for this being the different scopes that are included. At this stage of cost estimating in the participating countries, overall comparisons seem to be premature and it is necessary to look at the detail of each cost item. Comparing the cost categories Labour Costs; Capital, Equipment and Material Costs; and Expenses has demonstrated that labour represents about 50 % of the total decommissioning costs. Comparing these results with former OECD/NEA cost studies shows quite good agreement. It may be concluded

  9. Roadmap for implementation of light water reactor decommissioning

    International Nuclear Information System (INIS)

    While decommissioning of Tokai-mura reactor and JATR reactor has already started in Japan, Tsuruga reactor is announced shutdown in 2010 as the first decommissioning of commercial light water reactor (LWR). In 2030s or may be more earlier due to economic reasons, decommissioning of LWRs will take place in succession. Since rational decommissioning needs operating data of individual plants, ample time should be allowed for planning the reactor decommissioning. Committee of Nuclear Power Engineering Cooperation (NUPEC) had identified relevant issues to implement LWR decommissioning and established roadmaps showing fundamental approaches to solve seventeen items categorized in seven areas as action items. Harmonization of policy, regulations and technology development as a whole and reflection of accumulated lessons learned from overseas decommissioning experiences needed further study. (T. Tanaka)

  10. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  11. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  12. Design features facilitating the decommissioning of advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    The design of the advanced gas-cooled reactors is discussed as is the proposed decommissioning plan for delayed decommissioning. The special features which assist in decommissioning are presented. As a result of the study a catalogue of design features which will facilitate decommissioning is given. In addition to the catalogue of design features, the radioactive inventory 10 years after shutdown and 100 years after shutdown has been calculated. From this a provisional operator dose from activities associated with decommissioning has been assessed

  13. International Decommissioning Strategies

    International Nuclear Information System (INIS)

    The IAEA has been developing guidance and technical information relating to the decommissioning and decommissioning strategies of nuclear facilities for over 20 years. During this time, the international concept of decommissioning strategies, and its importance, has changed. Three basic decommissioning strategies are envisaged as possibilities for nuclear installations: immediate dismantling, deferred dismantling and entombment. All have advantages and disadvantages, but the International Conference on Safe Decommissioning for Nuclear Activities demonstrated that immediate dismantling is the generally preferred option. However, there are a number of factors that might lead operators to choose one of the other strategies, and each situation has to be examined individually to identify the optimal strategy for that situation. The basic approach of these three strategies is discussed in the paper. (author)

  14. Social effects of decommissioning Trawsfynydd Power Station

    International Nuclear Information System (INIS)

    The decision to close Trawsfynydd in 1993 had significant implications for the staff and local community. The site is situated within a National Park and local employment opportunities are limited. The staff and local communities were consulted regarding the issues arising from closure and decommissioning. This consultation influenced the decommissioning strategy for the site, with emphasis placed on the mitigation of the effects of closure. Subsequent studies have shown that the adopted strategies have served to limit the social and economic effects. The experience at Trawsfynydd has proved to be generally applicable at other decommissioning sites. (author)

  15. Power Plant decommissioning

    Directory of Open Access Journals (Sweden)

    Mažeika Jonas

    2014-11-01

    Full Text Available On a first attempt, the determination of 14C and 36Cl activity concentrations in basic operational waste (spent ion-exchange resins and perlite mixture, in decommissioning waste (construction concrete, sand, stainless steel and serpentinite and irradiated graphite from the Ignalina NPP has been performed. The samples for measurement of the specific activity of 14C and 36Cl were obtained from the selected places, where the highest values of the dose rate and the activity concentrations of gamma emitters were found. The performed study of the total 14C and 36Cl activity concentrations was based on estimated chemical forms of 14C (inorganic and organic compounds and 36Cl as Cl- ion. The tested methods used in this study were found to be suitable for estimation of activity concentrations of measured radionuclides.

  16. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  17. Restoration of contaminated sites in the project PIMIC decommissioning. The case of the lentil; Restauracion de terrenos contaminados en el proyecto PIMIC desmantelamiento. El caso de la lenteja

    Energy Technology Data Exchange (ETDEWEB)

    Medina Tellez, G.

    2010-07-01

    During execution PIMIC Decommissioning Project at CIEMAT has detected the existence of contaminated sites in some parts of the area affected by the project. The inclusion within the scope of this project, decontamination, involves dealing with special challenges, as to what are the decommissioning of contaminated systems and equipment in buildings.

  18. Study on recycle of materials and components from waste streams during decommissioning for heavy water research reactor

    International Nuclear Information System (INIS)

    The recycle of valuable materials from potential waste streams is one of important elements of waste minimization, and it can minimize the environment impact. The recycle of the arising was researched with taking the decommissioning of heavy water research reactor (HWRR) in China Institute of Atomic Energy as an example. By analyzing all the possible wastes that could generate during the decommissioning of HWRR, some amount of materials have potential values to recycle and may be used either directly or after appropriate treatment for other purposes. The research results show that in HWRR decommissioning at least tons of irons, 10 tons of aluminum and 5 tons of heavy water can be recycled by carrying out the waste minimization control measures (eg. waste classification and waste stream segregation), adopting appropriate decontamination technologies, and performing the requirements of clearance. (authors)

  19. Decommissioning: from COMECON to CIS and RUSSIA

    International Nuclear Information System (INIS)

    NPP decommissioning experience in the USSR and the Commonwealth Independent States (CIS) members was actively accumulated over ten years since 1982, by Russian experts in particular. Nevertheless, it is not well renowned throughout the scientists and engineers from both Russia and other near' (the CIS) and 'distant' foreign countries. A general review on NPP decommissioning in the CIS has been published just now. An unshown before NPP decommissioning issues are presented in the report. The first program on NPP decommissioning was developed under the aegis of COMECOM with the leadership of Russian experts. The most considerable results are the feasibility studies of Armenia NPP, the Novovoronezh NPP first construction stage (two units) and Bohunice V - 1 unit. (J.P.N.)

  20. Study on the state-of-the-arts technologies and policy trends for the decommissioning of nuclear installations and facilities

    International Nuclear Information System (INIS)

    D and D project of the nuclear facilities is now the one of the biggest projects among the nuclear ones in the world. The nuclear facilities have their unique characteristics so making preparations about technical research in advance is very important in economic side and worker's protection side. Especially, because workers have a high possibility to contact radioactive material directly, an automation technology and shielding technology for worker's protection as well as a system development which can perform D and D work efficiently are necessary for D and D project. The waste reduction technology development, D and D equipment development, container development, and the study related the establishment of the level of the release regulation for radioactive waste are also important. The purpose of this research is to grasp of the national and internal D and D status for the nuclear facilities and to estimate them so we expect to prevent the possibility of a tremendous economical loss as the initiative of the nuclear D and D market is lost due to not understand the situation about the status of the related technologies. And we also expect to practical use the accumulated experience to decommissioning facilities in North

  1. Decommissioning Russian Research Facilities

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety of nuclear research facilities (RR), including research reactors, critical assemblies and sub-critical assemblies. Most of the Russian RR were built and put in operation more than 30 years ago. The problems of ageing equipment and strengthening of safety requirements in time, the lack of further experimental programmes and financial resources, have created a condition when some of the RR were forced to take decisions on their decommissioning. The result of these problems was reflected in reducing the number of RR from 113 in 1998 to 81 in the current year. At present, seven RR are already under decommissioning or pending it. Last year, the Ministry of Atomic Energy took the decision to finally shut down two remaining actual research reactors in the Physics and Power Engineering Institute in Obninsk: AM-1, the first reactor in the world built for peaceful purposes, graphite-type reactor, and the fast liquid metal reactor BR-10, and to start their preparation for decommissioning. It is not enough just to declare the decommissioning of a RR: it is also vital to find financial resources for that purpose. For this reason, due to lack of financing, the MR reactor at the Kurchatov Institute has been pending decommissioning since 1992 and still is. The other example of long-lasting decommissioning is TVR, a heavy water reactor at the Institute of Theoretical Physics in Moscow (ITEF). The reason is also poor financing. Another example discussed in the paper concerns on-site disposal of a RR located above the Arctic Pole Circle, owned by the Norilsk Mining Company. Furthermore, the experience of the plutonium reactor decommissioning at the Joint Institute of Nuclear Research is also discussed. As shown, the Russian Federation has had good experiences in the decommissioning of nuclear research facilities. (author)

  2. Risk Management of Large Component in Decommissioning

    International Nuclear Information System (INIS)

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down

  3. Decommissioning analysis of the scrapers in the NSRL Linac using depth profiling

    Institute of Scientific and Technical Information of China (English)

    何丽娟; 李裕熊; 李为民; 陈裕凯; 任广益

    2015-01-01

    For a high-energy electron facility, estimates of induced radioactivity in materials are of considerable impor-tance to ensure that the exposure of personnel and the environment remains as low as reasonably achievable. In addition, accurate predictions of induced radioactivity are essential to the design, operation, and decommission-ing of a high-energy electron linear accelerator. In the case of the 200-MeV electron linac of the National Syn-chrotron Radiation Laboratory (NSRL), the electrons are accelerated by five acceleration tubes and collimated by copper scrapers. The scrapers, which play a vital role in protecting the acceleration cavity, are bombarded by many electrons over a long-term operation, which causes a significant amount of induced radioactivity. Re-cently, the NSRL Linac is the first high-energy electron linear accelerator in China to be out of commission. Its decommissioning is highly significant for obtaining decommissioning experience. This paper focuses on the measurement of induced radioactivity on the fourth scraper, where the electron energy was 158 MeV. The radionuclides were classified according to their half-lives. Such a classification provides a reliable basis for the formulation of radiation protection and facility decommissioning. To determine the high-radioactivity area and to facilitate the decommissioning process, the slicing method was applied in this study. The specific activity of 60Co in each slice was measured at a cooling time of ten months, and the results were compared with the predictions generated by Monte Carlo program FLUKA. The trend of the measured results is in good agreement with the normalized simulation results. The slicing simulation using Monte Carlo method is useful for the de-termination of high-radiation areas and proper material handling protocols and, therefore, lays a foundation for the accumulation of decommissioning experience.

  4. Case Study: Writing a Journal Case Study

    Science.gov (United States)

    Prud'homme-Genereux, Annie

    2016-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes incorporating a journal article into the classroom by first converting it into a case study.

  5. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  6. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  7. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  8. WPDD workshop on: 'safe, efficient, and cost-effective decommissioning'. Workshop Conclusions/Final Stocktaking

    International Nuclear Information System (INIS)

    On September 6-10, 2004 a workshop on 'Safe, Efficient, and Cost-Effective Decommissioning' was held in Rome (Italy) to enable international experts on decommissioning to compare and evaluate respective approaches and experiences in decommissioning nuclear power and fuel cycle facilities and to formulate proposals for future international cooperation in the decommissioning arena. The main messages emerging from the workshop are: - Decommissioning is a mature industrial process and many projects have been safely completed with support of local communities. Technical and scientific issues are well-understood and practical experience and associated lessons are being documented to guide future activities. Emphasis is being placed on effective planning with active programmes of community involvement. - Individual countries need to further develop integrated decommissioning and waste management strategies to ensure that long-term solutions will be available for all wastes generated from decommissioning. National systems are evolving to meet national needs, against a framework provided by the international organisations, and these seem increasingly to favour early dismantling regardless of the availability of waste disposal routes. - Realistic and streamlined regulatory programmes are being developed with feed back from industry experience and are placing more responsibility and accountability on licensees. - Accurate decommissioning waste cost calculation methods is needed. Waste volumes may vary from project to project even for similar installations. There though appears to be a strong case for accumulating data and benchmarking costs for similar plants and processes. Further work and experience exchange on cost comparisons between different strategies (for example clearance and recycling/reuse of materials versus direct surface disposal) would be valuable. - International clearance criteria have been established, with individual countries free to adopt them

  9. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  10. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  11. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  12. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  13. Site decommissioning management plan

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff's strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites

  14. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  15. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  16. The emergence of sustainable practice within decommissioning - 16059

    International Nuclear Information System (INIS)

    Despite the advance of sustainable practice and energy efficient techniques outside of the nuclear industry, at the start of the 21. Century there was a lack of published guidance aimed at their adoption at specifically nuclear facilities. Even with the establishment of the Nuclear Decommissioning Authority, there is very little guidance published on how to adopt sustainable practices during decommissioning. There have been instances where energy efficiency had affected design and operations decisions. Projects aimed at responsible housekeeping, switching off lights, and changes to the nuclear ventilation design philosophy illustrate a desire for action, but these activities were championed by interested and motivated employees. Sustainable practice had not at that time received a strategic lead that resulted in a management structure to enable a coordinated and concerted effort in sustainable practice. This paper traces the progress during the 20. and early 21. Centuries, whereby sustainable practice is now established within a much firmer foundation of case study, guidance and organisational structure; to embed sustainable practice within the United Kingdom's current decommissioning programme. It looks at the development of relevant literature and, through interviews with key managers and external stakeholders, demonstrates (i) the degree to which two essential guidance documents (the NiCOP and CIRIA SD:SPUR) are permeating the industry, (ii) how the current work of the Characterisation and Clearance Group has evolved to influence the decontamination and dismantling planning procedures and (iii) the transition from identifying 'free-release' materials to actually releasing them for re-use in the community. (authors)

  17. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  18. The NEA Co-operative Programme on Decommissioning. A Decade of Progress

    International Nuclear Information System (INIS)

    decommissioning techniques like dry abrasive blasting, cutting, removal of biological shielding and decontamination of concrete surfaces. Regarding the use of ventilated suits for workers in specific decommissioning activities, the information exchange in the CPD has helped push programmes to either improve the ventilated suits or to reduce the need for these systems. To address more general issues of common interest the CPD Technical Advisory Group established specific Task Groups. The Task Group on Decommissioning Costs developed, in co-operation with IAEA and EC, a standardised list of items for costing purposes, which allows for comparison of project costs. The Task Group on Recycling and Re-use put together case studies and provided information on the practicality and usefulness of the criteria under development for the release of slightly contaminated material from decommissioning, seen from the perspective of organisations engaged in actual decommissioning operations. Decontamination issues have been addressed by another Task Group that surveyed applied decommissioning techniques and characterised selected techniques in connection with decommissioning. Finally, the Task Group on Release Measurements studied collected relevant data from CPD projects and produced a report giving an overview on equipment and methods for and applications of release measurement. Looking back over the twenty years since the OECD-NEA established the CPD, the Programme has functioned as the main international forum for the exchange of technical and other information arising from nuclear decommissioning projects

  19. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  20. Decontamination and decommissioning

    International Nuclear Information System (INIS)

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4

  1. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  2. Lessons Learned for Decommissioning Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Wook; Kim, Young-gook; Kim, Hee-keun [Korea Hydro and Nuclear Power Co. LTD, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this paper is to introduce the U.S. nuclear industrial's some key lessons learned especially for decommissioning planning based on which well informed decommissioning planning can be carried out. For a successful decommissioning, it is crucial to carry out a well-organized decommissioning planning before the decommissioning starts. This paper discussed four key factors which should be decided or considered carefully during the decommissioning planning period with introduction of related decommissioning lessons learned of U.S. nuclear industry. Those factors which have been discussed in this paper include the end state of a site, the overall decommissioning strategy, the management of the spent fuels, and the spent fuel pool island. Among them, the end state of a site should be decided first as it directs the whole decommissioning processes. Then, decisions on the overall decommissioning strategy (DECON vs. SAFSTOR) and the management of the spent fuels (wet vs. dry) should follow. Finally, the spent fuel pool island should be given due consideration because its implementation will result in much cost saving. Hopefully, the results of this paper would provide useful inputs to performing the decommissioning planing for the Kori unit 1.

  3. Study Scheme of Reactor Decommissioning Simulation Technology%反应堆退役仿真技术研究方案

    Institute of Scientific and Technical Information of China (English)

    戴波; 张永领; 周斌; 严静; 吴畏

    2013-01-01

    Based on the functional requirement of nuclear reactor decommissioning simulation system,the overall study scheme of the decommissioning simulation technology is designed,including the overall structure design,software development platform scheme,hardware development scheme and etc.Five key technologies,which are the data processing technology,the technology for visual display of radiation field,the computation of personal exposure doses based on decommissioning program,the technology of virtual cutting and dismantling,and the technology of collision detection,are analyzed and extracted from the overall scheme,and its design scheme are provided in general.%在反应堆退役仿真系统功能需求的基础上,设计退役仿真技术研究的总体方案,包括系统的总体结构设计、软件开发平台方案设计、硬件方案设计等.在总体方案中分析提炼出5项关键技术,并给出概况性的设计方案,包括三维模型数据处理技术、辐射场的可视化显示技术方案、基于退役工艺的人员受照剂量计算方案、虚拟切割和拆除技术方案以及碰撞检测技术方案等.

  4. Decommissioning database of V1 NPP

    International Nuclear Information System (INIS)

    Since 2001, the preparation of V1 NPP practical decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund (BIDSF), under the administration of the European Bank for Reconstruction and Development. AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, have been carrying out BIDSF B6.4 project - Decommissioning database development (June 2008 until July 2010). The main purpose of the B6.4 project is to develop a comprehensive physical and radiological inventory database to support RAW management development of the decommissioning studies and decommissioning project of Bohunice V1 NPP. AMEC Nuclear Slovakia was responsible mainly for DDB design, planning documents and physical and radiological characterization including sampling and analyses of the plant controlled area. After finalization of all activities DDB includes over 75.000 records related to individual equipment and civil structures described by almost 3.000.000 parameters. On the basis of successful completion of the original contract the amendment was signed between JAVYS and Consultant's Consortium related to experimental characterization of NPP activated components. The works within this amendment have been still running. (authors)

  5. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  6. Project management case studies

    CERN Document Server

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  7. Decommissioning and material recycling. Radiation risk management issues

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.

    1996-09-01

    Once nuclear fuel cycle facilities have permanently stopped operations they have to be decommissioned. The decommissioning of a nuclear facility involves the surveillance and dismantling of the facility systems and buildings, the management of the materials resulting from the dismantling activities and the release of the site for further use. The management of radiation risks associated with these activities plays an important role in the decommissioning process. Existing legislation covers many aspects of the decommissioning process. However, in most countries with nuclear power programmes legislation with respect to decommissioning is incomplete. In particular this is true in the Netherlands, where government policy with respect to decommissioning is still in development. Therefore a study was performed to obtain an overview of the radiation risk management issues associated with decommissioning and the status of the relevant legislation. This report describes the results of that study. It is concluded that future work at the Netherlands Energy Research Foundation on decommissioning and radiation risk management issues should concentrate on surveillance and dismantling activities and on criteria for site release. (orig.).

  8. Decommissioning and material recycling. Radiation risk management issues

    International Nuclear Information System (INIS)

    Once nuclear fuel cycle facilities have permanently stopped operations they have to be decommissioned. The decommissioning of a nuclear facility involves the surveillance and dismantling of the facility systems and buildings, the management of the materials resulting from the dismantling activities and the release of the site for further use. The management of radiation risks associated with these activities plays an important role in the decommissioning process. Existing legislation covers many aspects of the decommissioning process. However, in most countries with nuclear power programmes legislation with respect to decommissioning is incomplete. In particular this is true in the Netherlands, where government policy with respect to decommissioning is still in development. Therefore a study was performed to obtain an overview of the radiation risk management issues associated with decommissioning and the status of the relevant legislation. This report describes the results of that study. It is concluded that future work at the Netherlands Energy Research Foundation on decommissioning and radiation risk management issues should concentrate on surveillance and dismantling activities and on criteria for site release. (orig.)

  9. Cost Estimation for Research Reactor Decommissioning

    International Nuclear Information System (INIS)

    Economic Co-operation and Development/Nuclear Energy Agency, and the European Commission as the general platform for decommissioning cost estimation purposes. Use of the ISDC based model facilitates the preliminary costing stages in the absence of decommissioning plans. For proper establishment of the costing case, the intended decommissioning strategy is used. The model should be flexible as to the extent and details of the inventory data. The impact of individual inventory items (working constraints) should be respected. Implementing the ISDC as the basis for the cost calculation structure ensures compatibility with the IAEA classification scheme for radioactive waste. The developed tool is intended for experts who are familiar with the facility, such as the former or actual operators of research reactors. A basic knowledge of decommissioning issues is recommended. (author)

  10. Decommissioning cost evaluation for Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    A systematic study was performed to develop decommissioning cost evaluation technology and to establish optimum decommissioning plan for Korean nuclear power plants. Eight decommissioning options for Kori unit I including DECON, SAFSTOR and ENTOMB were considered for detailed cost analysis. Immediate and delayed dismantling scenarios were compared each other in regards to economic, technical and social aspects. Fourteen decommissioning unit activities were considered in estimating unit cost factors including labor cost, consumables cost and equipment cost. The decommissioning cost for Kori unit 1 was lowest for DECON option and highest for ENTOMB-3 option in which the site recovery was made after entombment of 300 years. The main cost of the SAFSTOR option resulted from the dismantling and extended safe storage. For a long decommissioning period, the discount rate is crucial in estimating the decommissioning cost. The difference among decommissioning options was negligible in cost if a discount rate of 2% was assumed. The long-term safe storage option also became advantageous relative to the immediate dismantling option as the discount rate increased. (author)

  11. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  12. Decommissioning in western Europe; Kaernkraftsavveckling i Vaesteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor arbetslivskonsulter AB, Stockholm (Sweden)

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe

  13. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    International Nuclear Information System (INIS)

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of 3H-labeled compounds; a laboratory for the manufacture of 14C-labeled compounds; a laboratory for the manufacture of 123I-labeled compounds; a laboratory for the manufacture of 137Cs sealed sources; a laboratory for the manufacture of 241Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that

  14. The decommissioning and redevelopment of NECSA site

    International Nuclear Information System (INIS)

    Full text: The South African nuclear programme started in 1948 and was focussed on research and development in the nuclear field. In the early 70s a uranium conversion plant and a uranium enrichment plant were constructed on the NECSA site. The enriched uranium was used for military purposes, as fuel for the research reactor SAFARI-1 at Necsa. A semi-commercial uranium enrichment plant and a fuel manufacturing plant were commissioned in the 80's to supply fuel for the nuclear power plant at Koeberg near Cape Town. Currently the research reactor is utilized for the generation of radioactive isotopes for industrial and medical applications. Various other research projects were initiated and buildings constructed on the Necsa site to accommodate the different projects. The uranium conversion and enrichment projects were terminated in the early 90's, and many buildings on the Necsa site became redundant. An initial decommissioning strategy was to return the Necsa site to green fields. This endpoint of decommissioning has changed dramatically with the nuclear renaissance to include redevelopment and reuse options. In the case of a multi-facility nuclear site, such as the Necsa site, it is vital to develop a total site redevelopment plan rather than to decommission and allocate individual facilities for isolated reuse demands. A holistic approach should be assured by considering current and projected future redevelopment demands in the development of a redevelopment and reuse plan. It is important not to allow the redevelopment and reuse of a single facility on a multi-facility site based on short- term financial gain. With the recent increase in demand for nuclear facilities the redevelopment and reuse of nuclear facilities for non-nuclear applications should generally not be considered due to the inherent advantages associated with an existing licensed site. The initial decommissioning plan did not consider the Necsa site as a whole. Decommissioning costs, and the

  15. Tokai-1 decommissioning project

    International Nuclear Information System (INIS)

    Tokai-1 (GCR, Gas Cooled Reactor) nuclear power plant of JAPC (the Japan Atomic Power Company) started commercial operation in 1966 as the first commercial nuclear power plant in Japan. The unit had helped introduction and establishment of the construction and operation technologies regarding nuclear power plant at early stage in Japan by its construction and operating experiences. However, The Japan Atomic Power Company (JAPC), the operator and owner of Tokai-1, decided to cease its operation permanently because of a fulfillment of its mission and economical reason. The unit was finally shut down in March 1998 after about 32 year operation. It took about three years for removal of all spent fuels from the site, and then decommissioning started in 2001. JAPC, always on the forefront of the nation's nuclear power generation, is now grappling Japan's first decommissioning of a commercial nuclear power plant, striving to establish effective, advanced decommissioning. The decommissioning for Tokai-1 was scheduled as 20 years project. At the beginning, the reactor was started to be in a static condition ('safe storage period'). While the reactor had been safely stored, the phased decommissioning works started from non-radioactive or low radioactive equipment toward high radioactive equipment. First five years of the project, JAPC concentrated to drain and clean spent fuel cartridge cooling pond and to remove conventional equipments such as turbine, feed water pump and fuel charge machine as planed and budgeted. From 2006, the project came into a new phase. JAPC has been trying to remove four Steam Raising Units (SRUs). The SRUs are huge component (750ton, φ6.3m, H24.7m) of the Gas Cooling Reactor (GCR) and inside of the SRUs are radioactively contaminated. Major concerns are workers safety and minimizing contamination areas during SRU removal. Therefore, JAPC is developing and introducing Jack-down method and remote control multi-functional dismantling system. This

  16. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  17. When a plant shuts down: The psychology of decommissioning

    International Nuclear Information System (INIS)

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant after a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine

  18. An Applied Study of Implementation of the Advanced Decommissioning Costing Methodology for Intermediate Storage Facility for Spent Fuel in Studsvik, Sweden with special emphasis to the application of the Omega code

    Energy Technology Data Exchange (ETDEWEB)

    Kristofova, Kristina; Vasko, Marek; Daniska, Vladimir; Ondra, Frantisek; Bezak, Peter [DECOM Slovakia, spol. s.r.o., J. Bottu 2, SK-917 01 Trnava (Slovakia); Lindskog, Staffan [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2007-01-15

    The presented study is focused on an analysis of decommissioning costs for the Intermediate Storage Facility for Spent Fuel (FA) facility in Studsvik prepared by SVAFO and a proposal of the advanced decommissioning costing methodology application. Therefore, this applied study concentrates particularly in the following areas: 1. Analysis of FA facility cost estimates prepared by SVAFO including description of FA facility in Studsvik, summarised input data, applied cost estimates methodology and summarised results from SVAFO study. 2. Discussion of results of the SVAFO analysis, proposals for enhanced cost estimating methodology and upgraded structure of inputs/outputs for decommissioning study for FA facility. 3. Review of costing methodologies with the special emphasis on the advanced costing methodology and cost calculation code OMEGA. 4. Discussion on implementation of the advanced costing methodology for FA facility in Studsvik together with: - identification of areas of implementation; - analyses of local decommissioning infrastructure; - adaptation of the data for the calculation database; - inventory database; and - implementation of the style of work with the computer code OMEGA.

  19. Decommissioning of the ICI TRIGA Mark I reactor

    Energy Technology Data Exchange (ETDEWEB)

    Parry, D.R.; England, M.R.; Ward, A. [BNFL, Sellafield (United Kingdom); Green, D. [ICI Chemical Polymers Ltd, Billingham (United Kingdom)

    2000-07-01

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  20. Environmental assessment after decommissioning at the North Sea- Froey oil production site: a field study with biomarkers in fish and invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Pinturier, Laurence; Beyer, Jonny; Moltu, Ulf; Plisson, Saune Stephan; Berland, Harald; Sundt, Rolf; Bjoernstad, Anne; Sanni, Steinar

    2006-03-15

    sediment environmental survey carried in 2003 indicating that sediment fauna disturbance were limited to the immediate vicinity of the field centre (less than 250 m). It was the first time that biological effects parameters were used to assess the environmental condition of an oil field after decommissioning. This survey demonstrates the feasibility of such study and its potential for assessing the condition of benthic community living in the water and at the surface sediment. (Author)

  1. Consideration of ISDC for Decommissioning Cost Estimation

    International Nuclear Information System (INIS)

    In 2009, they decided to update the Yellow Book, and began to update it by analyzing user experiences. They found that several countries have adopted the proposed standardized cost structure for the production of cost estimates directly or for mapping national estimates onto a common structure. They also made conclusions that more detailed advice should be given on the use of the standardized structure and on the definition of cost items to avoid ambiguity. The revised cost structure, to be known as the International Structure for Decommissioning Costing (ISDC), was published in 2012. The standardized cost structure developed in the report may be used for estimating the costs of decommissioning of any type of nuclear facility. We analyzed this standardized cost structure (ISDC) and applied it to DECOMMIS which was developed by KAERI. The appropriate estimation system for domestic application was examined by comparing the estimation results. KAERI made WBS code in DECOMMIS and data obtained during decommissioning work of KRR2 and UCP. Recently the IAEA updated the decommissioning cost items and its structure by ISDC. The cost estimation items of the DECOMMIS were applied to ISDC structure. For applying, the ISDC code compared with WBS code of DECOMMIS as on text of the activity name from daily report basis. The mapping result of the ISDC items to WBS code of the DECOMMIS is much different. AS results of this study that it need the corresponding cost category which classified in accordance with the national standard price estimates

  2. Decommissioning planning for the Joint European Torus Fusion Reactor

    International Nuclear Information System (INIS)

    The Joint European Torus (JET) machine is an experimental nuclear fusion device built in the United Kingdom by a European consortium. Tritium was first introduced into the Torus as a fuel in 1991 and it is estimated that at the end of operations and following a period of tritium recovery there will be 2 grams of tritium in the vacuum circuit. All in-vessel items are also contaminated with beryllium and the structure of the machine is neutron activated. Decommissioning of the facility will commence immediately JET operations cease and the UKAEA's plan is to remove all the facilities and to landscape the site within 10 years. The decommissioning plan has been through a number of revisions since 1995 that have refined the detail, timescales and costs. The latest 2005 revision of the decommissioning plan highlighted the need to clarify the size reduction and packaging requirements for the ILW and LLW. Following a competitive tender exercise, a contract was placed by UKAEA with NUKEM Limited to undertake a review of the waste estimates and to produce a concept design for the planned size reduction and packaging facilities. The study demonstrated the benefit of refining decommissioning planning by increasing the detail as the decommissioning date approaches. It also showed how a review of decommissioning plans by independent personnel can explore alternative strategies and result in improved methodologies and estimates of cost and time. This paper aims to describe this part of the decommissioning planning process and draw technical and procedural conclusions. (authors)

  3. Procedures and Practices - Challenges for Decommissioning Management and Teamwork

    International Nuclear Information System (INIS)

    The mental and practical approach to a decommissioning project is often not the same at all levels of an organization. Studies indicate that the early establishment of a decommissioning mindset throughout an organization is an important and frequently overlooked process. It is not enough to establish procedures, if practices and mental approaches are overlooked; and for decommissioning projects that are more often than not dominated by one of a kind problem solving, procedure design is challenging, and new requirements are put on communication. Our research considers stakeholder involvement in these processes in the wider sense of the term; however the main stakeholders in focus are regulators and the work force that will perform or lead the tasks related to decommissioning. Issues here treated include: Decommissioning mindset and the manifestation of mindset issues in decommissioning projects, including challenges and prospective solutions; trust building and trust breaking factors in communication and collaboration relevant to transition and decommissioning; new technologies for collaboration and communication and how these may impair or empower participants - experiences from several domains. This paper is based on work done in collaboration with the OECD NEA Halden Reactor Project. (author)

  4. DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.; Abbott, H.

    2003-02-27

    Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

  5. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  6. Nuclear reactor decommissioning: an analysis of the regulatory environments

    International Nuclear Information System (INIS)

    The purpose of this study is to highlight some of the current and likely regulations that will significantly affect the costs, technical alternatives and financing schemes for reactor decommissioning encountered by electric utilities and their customers. The paper includes a general review of the decommissioning literature, as well as information on specific regulations at the federal, state, and utility levels. Available estimated costs for the decommissioning of individual reactors are also presented. Finally, classification of the specific policies into common trends and practices among the various regulatory bodies is used to examine more general regulatory environments and their potential financial implications

  7. DECOST: computer routine for decommissioning cost and funding analysis

    International Nuclear Information System (INIS)

    One of the major controversies surrounding the decommissioning of nuclear facilities is the lack of financial information on just what the eventual costs will be. The Nuclear Regulatory Commission has studies underway to analyze the costs of decommissioning of nuclear fuel cycle facilities and some other similar studies have also been done by other groups. These studies all deal only with the final cost outlays needed to finance decommissioning in an unchangeable set of circumstances. Funding methods and planning to reduce the costs and financial risks are usually not attempted. The DECOST program package is intended to fill this void and allow wide-ranging study of the various options available when planning for the decommissioning of nuclear facilities

  8. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Through the project of Development of decontamination, decommissioning and environmental restoration technology, the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  9. Funding Decommissioning - UK Experience

    International Nuclear Information System (INIS)

    'Funding' started with CEGB and SSEB (state-owned electric utilities) in 1976 using the internal un-segregated fund route (i.e unfunded). This continued until privatisation of electricity industry (excluding nuclear) in 1990. Assets bought with the internal un-segregated fund were mostly transferred into non-nuclear private utilities. New state-owned Nuclear Electric (England and Wales) was given a 'Fossil Fuel Levy', a consumer charge of 10% on retail bills, amounting to c. BP 1 bn. annually. This allowed Nuclear Electric to trade legally (A reserve of BP 2.5 bn. was available from Government if company ran out of money). By 1996 the newer nuclear stations (AGRS plus PWR) were privatised as British Energy. British Energy started an external segregated fund, the Nuclear Decommissioning Fund, with a starting endowment of c. BP 225 m. - and BE made annual contributions of British Pound 16 m. into the Fund. Assumptions were that BE had 70 to accumulate cash and could get a 3.5% average annual real return. Older stations (Magnox) were left in private sector and went to BNFL in 1997. Magnox inherited the surplus cash in BE - mostly unspent Fossil Fuel Levy receipts - of c. BP 2.6 bn. Government gave an 'Undertaking' to pay BP 3.8 bn. (escalating at 4.5% real annually) for Magnox liabilities, should Magnox Electric run out of cash. BNFL inherited the BP 2.6 bn. and by 2000 had a 'Nuclear Liabilities Investment Portfolio' of c. BP 4 bn. This was a quasi-segregated internal fund for liabilities in general. [Note: overall UK nuclear liabilities in civilian sector were running at c. BP 48 bn. by now]. BE started profitable and paid BP 100 m. annually in dividends to private investors for several years. BE ran into severe financial problems after 2001 and Government organised restructuring aid, now approved by European Commission. Terms include: - BE now to contribute BP 20 m. a year into an expanded Nuclear Liabilities Fund; - A bond issue of BP 275 m. to go to Fund; - 65

  10. Study of basic safety-related aspects of decommissioning nuclear installations. Pt. 1. Legal aspects and set of technical rules

    International Nuclear Information System (INIS)

    The set of nuclear rules is checked for its applicability to the decommissioning, safe containment and dismantling of nuclear installations. In the foreground of the individual parts of the set of rules is the question about the relevance of licensing procedures according to No. 7 para. 3 of the Atomic Energy Law. The set of rules checked, basically consists of: 1. the Atomic Energy Law (AtG), the ordinances adopted on its basis (AtVfV, StrSchV, AtDeckV, AtKostV, EndlagerVIV, AtSMV) and on neighbouring laws (StrVG, BImschG, UVPG, AbfG); 2. the announcements of the BMU, BMI and BMFT: 3. the recommendations of the RSK, SSK, the rules of the KTA, the DIN standards, and 4. several international guidelines and recommendations (European Union EU, IAEA, NEA of the OECD). A generic assessment is performed, in the course of which, starting from the content or treated facts, reference to defined licensing facts and the wording, it is determined whether a specific regulation or rule is relevant or irrelevant in the licensing procedure according to No. 7 para. 3 Atomic Energy Law. In addition, a plant-related evaluation based on implemented licensing procedures is done. The expertises and licensing notifications referred to for this purpose, which represent a wide cross-section of German nuclear installations, were evaluated to find out which of the regulations and rules were explicitely applied. (orig./HP)

  11. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  12. Planning for decommissioning of Hifar

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10MW HIFAR research reactor since 1958. In addition to its role in research, the reactor provides radioisotopes for medical and industrial use and is a major supplier of NTD silicon for the semi-conductor industry. It is anticipated that HIFAR will finally shut down operations in December 2006. Although ANSTO has successfully decommissioned MOATA and undertaken other smaller decommissioning projects the proposed HIFAR decommissioning project will be the largest ever undertaken by ANSTO. ANSTO faces a number of challenges in HIFAR's final year of operation. These include: the establishment of a modern decommissioning strategy in the absence of a long-term nuclear waste repository management facility or waste acceptance criteria for the material generated by the decommissioning; the impact of the impeding closure of the facility on staff morale and retention of key staff; and to meet the our customer's needs up to the final closure. These challenges are compounded by competition for skilled resources required to commission the new research reactor (OPAL) and the need to continue to supply radioisotopes. Important 'lessons in progress' that will be discussed in this paper include staffing the decommissioning team, maintenance of a strong safety culture during final stages of operation, working towards regulatory approval for decommissioning and strategies for knowledge retention. (author)

  13. Progress in Decommissioning of Ignalina NPP Unit 1

    International Nuclear Information System (INIS)

    very important issue is the technical support to VATESI and the Lithuanian TSO's (Technical Support Organisations) in their activities within the licensing process related to the Decommissioning of INPP. This includes regulatory assistance in the preparation of decommissioning and radioactive waste management regulatory documents, and technical assistance in the review of the safety case presented by the operator. The Institute for Radioprotection and Nuclear Safety (IRSN, France) and the French Nuclear Safety Authority (DSIN) as well as Swedish International Project (SIP) are providing their support to VATESI in these areas. (authors)

  14. Case studies: Decommissioning and rehabilitation of old production centers of the former USSR (1945-1990)

    International Nuclear Information System (INIS)

    In 1990, the extent and the conditions under which uranium had been produced since 1945 became visible. Up to the end of 1992, centrally planned economies (the former USSR and its neighbouring countries) produced over 671 000 t U for military purposes and for nuclear electricity generation (East Germany 213 380 t U, Czech Republic 105 351 t U, Russia 93 980 t U, Kazakhstan 72 000 t U, Uzbekistan 82 763 t U, Ukraine over 50 000 t U, etc.). Within the former USSR, approximately 50 combinates existed, some of which continued production until 1995; others stopped production immediately after the former USSR ceased to exist. Generally, each combinate included several mines, which supplied one processing centre. Mining and processing operations were often placed near the deposit, even when the areas were densely populated. In the early phases, physical concentrates were transported over 1000 kilometres to hydrometallurgical plants, the second type of production centre, in Central Russia. There the ores were chemically leached and a chemical concentrate (yellowcake) was produced. After 1960, when the vein deposits became exhausted, more and more low grade ores such as black shale, phosphates or radioactive coal were mined and processed. Due to the huge amounts of ore involved, concentration and transport became very complicated and new mills with high capacities were built near the mines. Also, more sophisticated techniques in hydrometallurgical processing, especially alkaline leaching, were developed. Today, tailing ponds with contents of 10 to 70 million t have been inherited from this production phase. The production facilities were co-located in so-called industrial combinates, because housing for workers, medical complexes, power generation, water supply and administrative facilities as well as all industrial installations were centralized in one place. After 1990, most of the Russian technical staff left the combinates and the new governments in Eastern Europe and Central Asia became their owners. The governments decided to close the centres and carry out remediation at public expense. Germany suspended production in 1992, Bulgaria in 1994, Hungary in 1997 and the Czech Republic in 2003. The Ukraine and Central Asian republics reduced production sharply. Today, remediating the legacies left by former Soviet uranium production is one of the largest ecological and economic challenges facing Eastern European and Central Asian countries and it is very important this remediation take place in order for the public to accept nuclear energy

  15. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  16. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.

  17. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered

  18. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  19. Decommissioning Cost Assessment

    International Nuclear Information System (INIS)

    The future costs for dismantling, decommissioning and handling of associated radioactive waste of nuclear installations represents substantial liabilities. It is the generations that benefits from the use of nuclear installations that shall carry the financial burden. Nuclear waste programmes have occasionally encountered set-backs related to the trust from society. This has resulted in delayed, redirected or halted activities, which has the common denominator of costs increases. In modern democratic countries, information sharing, knowledge transfer and open communication about costs for the management of radioactive waste are prerequisites for the task to develop modern methods for public participation and thus to develop well-founded and justified confidence for further development of nuclear energy. Nuclear and radiation safety Authorities have a clear role to provide unbiased information on any health, safety, financial and environmental related issues. This task requires a good understanding of the values and opinion of the public, and especially those of the younger generation

  20. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  1. Construction times and the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    The construction and the decommissioning periods of nuclear power plants (NPP), are studied, due to their importance in the generation costs. With reference to the construction periods of these plants, a review is made of the situation and technical improvements made in different countries, with the purpose of shortening them. In regard to the decommissioning of NPP, the present and future situations are reviewed in connection with different stages of decommissioning and their related problems, as the residual radioactivity of different components, and the size of the final wastes to be disposed of. The possibilities of plant life extensions are also revised in connection with these problems. Finally, the expected decommissioning costs are analyzed. (Author)

  2. Decommissioning of the Wuergassen nuclear power plant, a commercial challenge

    International Nuclear Information System (INIS)

    In response to the inspection results which detected cracks in the core shroud, economic aspects have induced PreussenElektra to opt for decommissioning and dismantling of the Wuergassen reactor. As this shutdown of the nuclear power plant is not a planned shutdown, costs arising in addition to the original decommissioning framework studies have to be assessed, especially the expenditure for the adjusted plant manpower requirements, and the additional operating and phase-out costs. Experience has shown that the decommissioning of a nuclear power plants does not pose problems in terms of safety or technology, but still is a commercial challenge. Expense forecasts have to be adjusted in response to the unplanned shutdown. PreussenElektra therefore has set up a modified project and operating structure. The analysis and evaluation of the first decommissioning phase will show whether the cost assessment approaches are in agreement with reality. (orig.)

  3. DECOM experience with decommissioning costing

    International Nuclear Information System (INIS)

    The OMEGA code has been used in numerous Slovak and international decommissioning planning and costing projects and in IAEA R and D projects and is continuously updated and upgraded. The next goal for the DECOM costing activities is to develop an universal and user-friendly ISDC costing tool accessible via internet - eOMEGA taking over the advantages of the long-term experience of DECOM and being in line with up-to date trends in decommissioning costing. DECOM members participate in international expert groups for further improvement of costing methodologies, such as the uncertainties, cost practices and cost peer reviews in decommissioning costing. DECOM members participate also in IAEA projects, expert missions and training courses related to decommissioning costing and planning. (authors)

  4. Decommissioning of the Loviisa NPP

    International Nuclear Information System (INIS)

    Imatran Voima Oy has revised the decommissioning plan for the Loviisa Nuclear Power Plant (Loviisa 1 and Loviisa 2) by the end of the year 1998. The thermal power of the power plant has been increased to 2x1500 MWth, and the life time has been designed to be extended to 45 years in the decommissioning plan. The decommissioning of the power plant is designed to begin in 2022 and it will be finished in 2048. The plan is based on immediate dismantlement (i.e. DECON) after the shut down of the power plant. Experienced plant personnel will still be available to lead the decommissioning work. Only the radioactive plant systems, components and structures will be dismantled and disposed of. Decommissioning wastes will be disposed into the underground disposal tunnels situating at the site in the depth of about 110 m. These tunnels are already partly ready for power plant wastes. The big and heavy reactor components, e.g. pressure vessels and steam generators, will be disposed of as such, without cutting them into smaller parts. This saves time and radiation doses. The total volume of decommissioning wastes is 14 800 m3, when packed in boxes. The manpower needed for decommissioning is about 2 800 manyears. The collective radiation dose for personnel is estimated to be about 9.2 manSv. The cost estimate of the decommissioning is about 1 117 million FIM. The spent fuel will be stored at the plant for 20 years after the shut down of the power plant. After that it will be transported from the site to the encapsulation plant for final disposal. (orig.)

  5. The Decommissioning of the Trino Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise

  6. Preliminary decommissioning plan of the reactor IPEN-MB01

    International Nuclear Information System (INIS)

    Around the world, many nuclear plants were built and need to be turned off at a certain time because they are close to their recommended time of use is approximately 50 years. So the IAEA (International Atomic Energy Agency), seeks to guide and recommend a set of guidelines for the conduct of activities of nuclear facilities, with special attention to countries that do not have a framework regulatory Legal that sustain the activities of decommissioning. Brazil, so far, does not have a specific standard to guide the steps of the guidelines regarding decommissioning research reactors. However, in March 2011 a study committee was formed with the main task facing the issues of decommissioning of nuclear installations in Brazil, culminating in Resolution 133 of November 8, 2012, a standard project that treat about the Decommissioning of nucleoelectric plants. O Instituto de Pesquisas Energeticas e Nucleares (IPEN) has two research reactors one being the reactor IPEN/MB-01. The purpose of this master dissertation is to develop a preliminary plan for decommissioning this research reactor, considering the technical documentation of the facility (RAS-Safety Analysis Report), the existing standards of CNEN (National Nuclear Energy Commission), as well as IAEA recommendations. In terms of procedures for decommissioning research reactors, this work was based on what is most modern in experiences, strategies and lessons learned performed and documented in IAEA publications covering techniques and technologies for decommissioning. Considering these technical knowledge and due to the peculiarities of the facility, was selected to immediate dismantling strategy, which corresponds to the start of decommissioning activities once the installation is switched off, dividing it into work sectors. As a resource for monitoring and project management of reactor decommissioning and maintenance of records, we developed a database using Microsoft Access 2007, which contain all the items and

  7. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  8. A study on the impact of nuclear power plant construction relative to decommissioning Fossil Fuel Power Plant in order to reduce carbon dioxide emissions using a modified Nordhaus Vensim DICE model

    Science.gov (United States)

    Colpetzer, Jason Lee

    The current levels of CO2 emissions and high levels accumulating in the atmosphere have climate scientists concerned. The Dynamic Integrated Climate Economy Model or "DICE" for short is a highly developed model that has been used to simulate climate change and evaluate factors addressing global warming. The model was developed by Yale's Nordhaus along with collaborators and the compilation of numerous scientific publications. The purpose of this study is to recreate DICE using Vensim and modify it to evaluate the use of nuclear power plants (NPPs) as a means to counter global temperature increases in the atmosphere and oceans and the associated cost of damages. The amount of greenhouse gas emissions from a NPP are about 6% per Megawatt as that from a Fossil Fuel Power Plant (FFPP). Based on this, a model was developed to simulate construction of NPPs with subsequent decommissioning of FFPPs with an equivalent power output. The results produced through multiple simulation runs utilizing variable NPP construction rates show that some minor benefit is achievable if all of the more than 10,000 FFPPs currently in operation in the U.S. are replaced with NPPs. The results show that a reduction in CO 2 emissions of 2.48% will occur if all of the FFPPs are decommissioned. At a minimum rate of 50 NPPs constructed per year, the largest reduction in CO2 in the atmosphere, 1.94% or 44.5 billion tons of carbon, is possible. This results in a reduction in global warming of 0.068°C or 1.31%. The results also show that this reduction in global warming will be equivalent to a reduction of 8.2% or $148 B in anticipated annual spending as a result of climate change damages. Further results indicate that using NPPs to address climate change will provide a small benefit; ultimately, it will not be enough to reduce CO2 emissions or atmospheric CO 2 to control global warming. The amount of CO2 in the atmosphere is predicted to be 1055 parts per million (ppm) even in the best case

  9. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  10. Systematization of nuclear fuel facility decommissioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, the nature of all decommissioning works is clarified and, as an information base for planning the promotion of efficiency of a work, the Decommissioning Engineering System is being developed. The Decommissioning Engineering System consists of a function for performing work support for a decommissioning, a function for gathering information results of the decommissioning technology and a general evaluation function for the decommissioning plan on the basis of facilities information collected by three-dimensional CAD. (author)

  11. Current international issues in decommissioning

    International Nuclear Information System (INIS)

    In 1999, the Italian Environmental Protection authorities (ANPA at that time) hosted in Rome a Nuclear Energy Agency (NEA) meeting on the Regulatory Aspects of Decommissioning. This 'stock-taking' conference heard views from regulatory authorities, the decommissioning industry, waste management organisations and other relevant industrial sectors (e.g. the scrap metal industry) regarding the issues and aspects of decommissioning that should be further addressed, particularly at an international level. From this conference, six issues of relevance were identified which, since that time, have been addressed within the framework of the NEA. These issues are: - Decommissioning policies and strategies; - Waste management and materials reuse considerations; - Authorised release of sites and facilities; - Securing long-term funding and responsibility; - Framework for safety regulation of decommissioning; - Research and development in decommissioning. The NEA has focused on the international aspects of these issues, and on the roles of national governments in addressing the national and international aspects of these issues. This paper will present an overview of the NEA's findings in these areas. Realizing that these issues are important to the work of other international organisations, the NEA has tried to assess and use as appropriate the work of others in discussing these issues. As such, a brief review of relevant work at other international organisations will be presented. Based on its work, and in order to further advance these issues, the NEA is planning a second workshop on the Regulatory Aspects of Decommissioning, which will again be hosted by the Italian authorities in Rome, and will be held during the second half of 2004. (author)

  12. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  13. Objectivist case study research

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner; Fachner, Jörg

    2016-01-01

    be achieved through the use of objectivist case study research. The strength of the case study design is that it allows for uncovering or suggesting causal relationships in real-life settings through an intensive and rich collection of data. According to Hilliard (1993), the opposite applies for extensive......In order to comprehend the impact of music therapy or music therapy processes, a researcher might look for an approach where the topic under investigation can be understood within a broader context. This calls for a rich inclusion of data and consequently a limited number of participants and may...... designs, in which a small amount of data is gathered on a large number of subjects. With the richness of data, the intensive design is ―the primary pragmatic reason for engaging in single-case or small N research‖ (p. 374) and for working from an idiographic rather than a nomothetic perspective....

  14. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  15. Study on Archive Management for Nuclear Facility Decommissioning Projects%核设施退役项目档案管理研究

    Institute of Scientific and Technical Information of China (English)

    黄凌; 廖冰; 周浩; 龚靖; 罗宁

    2011-01-01

    介绍了核设施退役工程档案管理的主要特点、工作现状;对核设施退役工程档案的管理对策进行了研究和探讨.建立统一的核设施退役工程档案管理原则和体系,通过数字化的工程档案管理系统,构建从设计到退役全过程的工程档案,是促进项目文件完整、准确、系统归档,实现核设施退役工程档案管理的规范化和高效率,确保核设施退役工程项目的可追溯性的有效途径.%This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects,and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example,the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system fornuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete,accurate and systematic archiving of project documents,to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects.

  16. Case Studies in Biology.

    Science.gov (United States)

    Zeakes, Samuel J.

    1989-01-01

    A case study writing exercise used in a course on parasitology was found to be a powerful learning experience for students because it involved discipline-based technical writing and terminology, brought the students in as evaluators, applied current learning, caused interaction among all students, and simulated real professional activities. (MSE)

  17. : Case studies: France

    OpenAIRE

    Bonerandi, Emmanuelle; Santamaria, Frédéric

    2005-01-01

    Case studies on territorial governance : urban region of Lyon (France) and the "Pays" policy (France) in the framework of the ESPON 2.3.2 project Études de cas sur la gouvernance territoriale : région urbaine de Lyon et politique des pays

  18. Decommissioning of small medical, industrial and research facilities

    International Nuclear Information System (INIS)

    of complexity, safety risk and radiological inventory. The key objective of this report is to provide information, experience and assistance on what is appropriate and sufficient for policy makers, regulators and operators of small facilities. It is intended to promote timely and cost effective decommissioning and waste management at the end of the life of a facility so as to render such a facility harmless. No statements in the report are intended to be prescriptive. There is significant documentation on the decommissioning of large nuclear facilities but the more modest requirements of small facilities have received little attention. If users of small facilities only have available to them published information for large, complex facilities, then there may be a tendency to overreact and engage in elaborate or unnecessary studies and activities. They also may shy away from important issues and do too little, either because they are not trained or advised properly or they do not have a decommissioning plan or adequate human and financial resources. They also are often unaware of the requirements, both legal and technical, of decommissioning and waste management. Some decades ago, when the first large power and demonstration reactors started to be shut down, there were many unknowns and uncertainties on how to proceed. There is now a significant experience database on common problems, which has been shared by the international nuclear power industry. This is not necessarily the case for small facilities, however, and this report is intended to encourage the interchange of information and experience. It is intended in this report to cover all aspects of decommissioning small facilities in which radioactive material and radiation sources are produced, received, used and/or stored. Power reactors, prototype and demonstration reactors, larger research reactors, fuel processing and reprocessing plants and their associated large nuclear chemical facilities, and all forms of

  19. Rotordynamic Stability Case Studies

    OpenAIRE

    Choudhury Pranabesh

    2004-01-01

    In this article case studies are presented involving rotordynamic instability of modern high-speed turbomachinery relating the field data to analytical methods. The studies include oil seal related field problems, instability caused by aerodynamic cross-coupling in high-pressure, high-speed compressors, and hydrodynamic bearing instability resulting in subsynchronous vibration of a high-speed turbocharger. It has been shown that the analytical tools not only help in problem diagnostics, bu...

  20. Business operations and decommissioning strategy for imperial college London research reactor 'Consort' - A financial risk management approach

    International Nuclear Information System (INIS)

    Imperial College London (IC) operates commercially a 100 kW research reactor, and as site licensee is responsible for funding both operations and eventual decommissioning. With long lead times ahead urgent decisions on the future business options have had to be made in 2004/5 including choices on whether to move to early decommissioning, recognising the high costs entailed, or to pursue continuing operations involving life extension measures such as refuelling. To develop a coherent overall approach strategy a financial risk driven programme was initiated to help define a robust transparent business and termination case for the reactor. This study was carried out in collaboration with a UK firm of financial risk experts, PURE Risk Management Ltd (PURE), working within a dedicated IC London reactor project team. This work evaluated immediate closure options due to financial constraints or life limiting failures, and options for continuing operation extending to 2028. Decommissioning and clean up were reviewed. Bespoke financial models created single value cost outputs and ranges of probabilistic net present values (NPV) for decommissioning costs and financial provisions to meet those costs at various levels of risk acceptance and regulatory compliance. (author)

  1. 77 FR 41107 - Decommissioning Planning During Operations

    Science.gov (United States)

    2012-07-12

    ... Decommissioning Planning Rule (DPR) (June 17, 2011, 76 FR 33512). The DPR applies to the operational phase of a..., ``Decommissioning Planning During Operations'' (December 13, 2011, 76 FR 77431). The NRC received more than 100...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 20, 30, 40, 50, 70, and 72 Decommissioning Planning...

  2. Corporate Governance. Case Studies

    OpenAIRE

    Manuel, Eduardo

    2007-01-01

    This paper pretends to do a theoretical approach of Corporate Governance, having as support some case studies about companies like Coca-Cola, Nokia, Microsoft, and Amazon.com. The methodology adopted for this work is based in information from these companies available in their websites and annual reports. I concluded that both companies show the corporate governance components according to their core business and their environmental business.

  3. Case study - Czechoslovakia

    International Nuclear Information System (INIS)

    In the lecture Case Study - Czechoslovakia with the sub-title 'Unified System of Personnel Preparation for Nuclear Programme in Czechoslovakia' the actual status and the current experience of NPP personnel training and preparation in Czechoslovakia are introduced. The above mentioned training system is presented and demonstrated by the story of a proxy person who is going to become shift engineer in a nuclear power plant in Czechoslovakia. (orig./HP)

  4. Case Studies - Cervical Cancer

    Centers for Disease Control (CDC) Podcasts

    2010-10-15

    Dr. Alan Waxman, a professor of obstetrics and gynecology at the University of New Mexico and chair of the American College of Obstetricians and Gynecologists (ACOG) committee for the underserved, talks about several case studies for cervical cancer screening and management.  Created: 10/15/2010 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP), Division of Cancer Prevention and Control (DCPC).   Date Released: 6/9/2010.

  5. The Practice of Cost Estimation for Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. Several approaches are currently being used for decommissioning cost estimations, with an international culture developing in the field. The present cost estimation practice guide was prepared in order to offer international actors specific guidance in preparing quality cost and schedule estimates to support detailed budgeting for the preparation of decommissioning plans, for the securing of funds and for decommissioning implementation. This guide is based on current practices and standards in a number of NEA member countries and aims to help consolidate the practice and process of decommissioning cost estimation so as to make it more widely understood. It offers a useful reference for the practitioner and for training programmes. The remainder of report is divided into the following chapters: - Chapter 2 covers the purpose and nature of decommissioning cost estimates, approaches to cost estimation and the major elements of a cost estimate. - Chapter 3 examines the development of the integrated schedule of the activity-dependent work scope and the determination of the project critical path. - Chapter 4 describes the attributes of a quality assurance programme applicable to cost estimation and the use and cautions of benchmarking the estimate from other estimates or actual costs. - Chapter 5 describes the pyramidal structure of the report, and the scope and content that should be included in the cost study report to ensure consistency and transparency in the estimate underpinnings. - Chapter 6 provides some observations, conclusions and recommendations on the use of this guide

  6. Progressive Application Decommissioning Models for U.S. Power and Research Reactors

    International Nuclear Information System (INIS)

    This paper presents progressive engineering techniques and experiences in decommissioning projects performed by Bums and Roe Enterprises within the last fifteen years. Specifically, engineering decommissioning technical methods and lessons learned are discussed related to the Trojan Large Component Removal Project, San Onofre Nuclear Generating Station (SONGS) Decommissioning Project and the Brookhaven Graphite Research Reactor (BGRR) Decommissioning Project Study. The 25 years since the 1979 TMI accident and the events following 9/11 have driven the nuclear industry away from excessive, closed/elitist conservative methods towards more pragmatic results-oriented and open processes. This includes the essential recognition that codes, standards and regulatory procedures must be efficient, effective and fit for purpose. Financial and open-interactive stakeholder pressures also force adherence to aggressive risk reduction posture in the area of a safety, security and operations. The engineering methods and techniques applied to each project presented unique technical solutions. The decommissioning design for each project had to adopt existing design rules applicable to construction of new nuclear power plants and systems. It was found that the existing ASME, NRC, and DOE codes and regulations for deconstruction were, at best, limited or extremely conservative in their applicability to decommissioning. This paper also suggests some practical modification to design code rules in application for decommissioning and deconstruction. The representative decommissioning projects, Trojan, SONGS and Brookhaven, are discussed separately and the uniqueness of each project, in terms of engineering processes and individual deconstruction steps, is discussed. Trojan Decommissioning. The project included removal of entire NSSS system. The engineering complexity was mainly related to the 1200 MW Reactor. The approach, process of removal, engineering method related to protect the worker

  7. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  8. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  9. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  10. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  11. Methods of power reactor decommissioning cost recovery

    International Nuclear Information System (INIS)

    This paper analyzes rate-regulatory tax, accounting and cost recovery factors, and these analyses lead to the following overall conclusions in connection with decommissioning cost recovery. 1) The internal use of accumulated decommissioning funds is strongly recommended because it results in the lowest net ratepayer cost of decommissioning, and 2) The most equitable decommissioning cost recovery method is based on current costs and on the prompt and continuous maintenance of the purchasing power of accumulated funds. Finally, it is noted that the cost recovery approach recommended for decommissioning would have similar advantage if applied to spent fuel cost recovery as well

  12. NOx trade. Case studies

    International Nuclear Information System (INIS)

    Some of the questions with respect to the trade of nitrogen oxides that businesses in the Netherlands have to deal with are dealt with: should a business buy or sell rights for NOx emission; which measures must be taken to reduce NOx emission; how much must be invested; and how to deal with uncertainties with regard to prices. Simulations were carried out with the MOSES model to find the answers to those questions. Results of some case studies are presented, focusing on the chemical sector in the Netherlands. Finally, the financial (dis)advantages of NOx trade and the related uncertainties for a single enterprise are discussed

  13. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  14. Reactor decommissioning experience and perspectives

    International Nuclear Information System (INIS)

    This paper first describes the existing market context and available techniques, then reviews the contribution of past and present operations and research before discussing the future orientations necessary to develop the means (cutting tools, decontamination processes, telemanipulation and waste conditioning) required to improve the cost effectiveness of decommissioning nuclear power plants. (author)

  15. 76 FR 35511 - Decommissioning Planning

    Science.gov (United States)

    2011-06-17

    ... the January 27, 1988 (53 FR 24018), rule on planning for decommissioning require licensees to provide... regulations in 1997 as Subpart E of 10 CFR part 20 (62 FR 39058; July 21, 1997). This set of requirements is... contamination and the amount of funds set aside and expended on cleanup. (62 FR 39082; July 21, 1997)....

  16. General Approach and Element for Estimating Decommissioning Cost

    International Nuclear Information System (INIS)

    This paper will briefly introduce the general approach and element for developing the decommissioning cost. The ultimate objective of the estimate is to assure adequate funding for decommissioning. The decommissioning cost estimating is highly dependent on the strategies and cost methodologies. The method most widely adopted internationally in estimating is the bottom-up technique, based on a building block approach known as the WBS. Therefore, cost estimator should consider various approaches and elements of cost estimation to achieve the ascension of accuracy. Cost estimation for the decommissioning of nuclear facilities has tended to vary considerably in format and content reflecting a variety of approaches both within and between countries. These differences do not facilitate the process of reviewing estimates and make comparisons between different estimates more complicated. The joint study of OECD/NEA, IAEA and EU was undertaken to propose a standard itemization of decommissioning costs either directly for the production of cost estimates or for mapping estimates onto a standard, common structure for purposes of comparison

  17. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    International Nuclear Information System (INIS)

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved

  18. Radionuclide characterization of reactor decommissioning waste and spent fuel assembly hardware

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) has recently enacted rules setting forth technical, safety, and financial criteria for decommissioning of licensed nuclear facilities, including commercial nuclear power stations. These rules have addressed six major issues, including decommissioning alternatives, timing, planning, financial assurance, residual radioactivity, and environmental review. Also, the rules governing disposal of low-level radioactive wastes in commercial shallow land burial facilities will be applicable to most of the wastes generated during reactor decommissioning. This study has been implemented to provide the NRC and licensees with a more comprehensive and defensible data base and regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during a two-phase sampling, measurement, and appraisal program utilizing: (1) the decommissioning of Shippingport Atomic Power Station, and (2) neutron activated materials from commercial reactors. Radioactive materials obtained from Shippingport Station and from a number of commercial stations for comprehensive radionuclide and stable element analyses are being utilized to assess the following important aspects of reactor decommissioning and radioactive waste characterization: (1) radiological safety and technology assessment from an actual reactor decommissioning (Shippingport); (2) radiological characterization of intensely radioactive materials (greater than Class-C) associated with the reactor pressure vessel and spent fuel assembly hardware from commercial nuclear power plants; (3) evaluation of the accuracy of computer codes for predicting radionuclide inventories in retired reactors and neutron activated components; and (4) assessment of waste disposal options associated with reactor decommissioning

  19. Allocation of Decommissioning and Waste Liabilities

    International Nuclear Information System (INIS)

    The work demonstrates that there are a number of methods available for cost allocation, the pros and cons of which are examined. The study investigates potential proportional and incremental methods in some depth. A recommendation in principle to use the latter methodology is given. It is concluded that a 'fair assumption' is that the potential allocation of costs for 'the RMA Leaching Hall' probably is small, in relation to the total costs, and estimated to be not more than about 175 kSEK, plus any costs associated with decommissioning/ disposal of a number of small pieces of equipment added by the current operator

  20. Vertebral Angiosarcoma. Case Study.

    Science.gov (United States)

    Guzik, Grzegorz

    2015-01-01

    Bone angiosarcomas, especially vertebral angiosarcomas, are very rare. There are no studies based on large clinical samples in the literature, and only a few single case reports can be found. The symptoms of the disease are not specific. It is usually detected incidentally or at a late stage when pathological vertebral fractures or neurological complications occur. Diagnostic imaging and history help to recognize the tumour behind the symptoms, but do not allow accurate clinical diagnosis. The basis for a diagnosis is the histopathological examination supported by immunohistochemistry (IHC) assays. The case of a 26-year-old woman with an angiosarcoma involving the eighth thoracic vertebra we report reflects diagnostic problems adversely affecting the efficacy and accuracy of treatment offered to patients. The patient underwent three surgeries of the spine, including two biopsies. A needle biopsy did not provide sufficient information for the diagnosis. An open excisional biopsy, which at the same time temporarily reduced neurological deficits in the patient, was the only chance to obtain an accurate diagnosis. The third surgery was posterior decompression of the spinal cord due to the rapidly escalating paraparesis. It was not until 8 weeks later that the final diagnosis was established. At that time, the patient could not be qualified for any supplementary treatment. The patient died in hospital 6 months after the onset of disease. PMID:26468177

  1. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  2. Study on the identification of the national research and development needs for nuclear decontamination and decommissioning in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa Sup; Song, Ki Dong; Oh, Won Zin; Oh, Keun Bae; Jung, Ki jung; Yang, Mang Ho; Kim, Cheol Jung; Lee, Han Myung; Kwack, Kim Ku; Moon, Kee Hwan; Choi, Wan Kyu; Kim, Hyun Jun; Jung, Jong Hun; Kim, Seung Su; Lee, Yong Bum; Cheong, Hwan Sam; Cheong, Un Soo; Lim, Chae Young; Park, Seong Kuk [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The major contents in this study are as follows: This study investigated and analyzed the current status of foreign and domestic D and D technology. For the domestic technology, the contents of and output from the projects for D and D technology development conducted so far in Korea were investigated and analyzed. For the foreign technology, the status of current D and D technology and D and D projects in the U.S., European countries, Japan, and others were investigated. Especially, some investigation and discussion on technical cooperation were made by visiting the Republic of Ukraine and France. This study discuss the appropriateness of establishing a national strategy for D and D technology development with viewpoints of technical capability, timing, and social and economic acceptability. Based on the discussion, this study set up three alternative strategies and then, suggested 'stepwise D and D technology development strategy' as the most desirable alternative in Korea. The final goal for the strategy and the intermediate goals for each stage were established. Then, attempts were made to suggest appropriate projects to be conducted in order to achieve those goals and their prioritie. 2 figs., 9 tabs. (Author)

  3. Status of the NRC Decommissioning Program

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

  4. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  5. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  6. A costing model for offshore decommissioning in California.

    Science.gov (United States)

    Bressler, Andrew; Bernstein, Brock B

    2015-10-01

    California's 27 offshore oil and gas platforms will reach the end of their useful lifetimes sometime in the near future and will require decommissioning. Although existing leases require complete removal of all platforms and associated infrastructure, the underlying laws and regulations have changed in recent years to allow a number of alternative uses after decommissioning. In particular, AB 2503, signed into law in September 2010, provides for a rigs-to-reefs program that allows the state to accept ownership of decommissioned platforms in federal waters. Decisions about whether to remove platforms completely or leave them in place as artificial reefs will depend in part on the relative cost of the 2 options. In this study, we describe the design and use of a mathematical decision model that provides detailed cost estimates of complete and partial removal (to 85 feet below the water line) for California's offshore platforms. The model, PLATFORM, is loaded with Bureau of Safety and Environmental Enforcement (BSEE) and Bureau of Ocean Energy Management (BOEM) costs for complete removal, along with costs for partial removal calculated for this study and estimates of the uncertainty associated with decommissioning cost estimates. PLATFORM allows users to define a wide range of decommissioning and costing scenarios (e.g., number of platforms, choice of heavy lift vessel, shell mound removal, reef enhancement). As a benchmark cost, complete removal of all 27 offshore platforms, grouped into the 7 decommissioning projects defined by the most recent federal cost estimates produced in 2010, would cost an estimated $1.09 billion, whereas partial removal of these platforms, grouped into the same set of projects, would cost $478 million, with avoided costs of $616 million (with minor rounding). PMID:25914378

  7. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  8. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    International Nuclear Information System (INIS)

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies

  9. Reasons for inconsistencies between estimated and actual decommissioning costs

    International Nuclear Information System (INIS)

    Reliable cost estimating is one of the most important elements of decommissioning planning. Alternative technologies may be evaluated and compared based on their efficiency and effectiveness, and measured against a baseline cost as to the feasibility and benefits derived from the technology. When the plan is complete, those cost considerations ensure that it is economically sound and practical for funding.Estimates of decommissioning costs have been performed and published by many organizations for many different applications. The results often vary because of differences in the work scope. Labour force costs, monetary considerations, oversight costs, the specific contaminated materials involved, the waste stream and peripheral costs associated with that type of waste, or applicable environmental compliance requirements. Many of the differences in cost estimates are unavoidable since a reasonable degree of reliability and accuracy can only be achieved by developing decommissioning cost estimates on a case-by- case site-specific basis. The paper describes the estimating methodology and process applied to develop decommissioning cost estimates. A major effort has been made to standardize methodologies, and to understand the assumptions and bases that drive the costs. However, estimates are only as accurate as the information available from which to derive the costs. This information includes the assumptions of scope of the work, labour cost inputs, inflationary effects, and financial analyses that project these costs to year of expenditure. Attempts at comparison of estimates for two facilities of similar design and size must clearly identify the assumptions used in developing the estimate, and comparison of actual costs versus estimated costs must reflect these same assumptions. For the nuclear industry to grow, decommissioning estimating tools must improve to keep pace with changing technology, regulations and stakeholder issues. (author)

  10. Decommissioning of nuclear reactor fuel channels using laser technology

    Science.gov (United States)

    Panchenko, Vladislav Y.; Zabelin, Alexandre M.; Slepokon, Yu. I.; Ryahin, V. M.; Kuznetsov, P. P.; Panasyuk, V. F.; Korotchenko, A. V.; Kislov, V. S.; Loktev, S. V.

    2000-07-01

    Decommissioning of nuclear reactors using laser remote dismounting and welding was experimentally proved at a nuclear reactor of Kursk Nuclear Power Plant. The main reason of laser beam application in this case is the marked decrease of radioactive exposure of the service personnel. The use of a high-power laser beam provided for laser cutting and welding processes realization at a distance up to 35 m between the laser and the workstation placed behind a radiation shield. By application of laser cutting gas and dust contamination is ten-fold decreased. Some results of decommissioning application of a stationary laser workstation based upon a 5 kW fast-transverse-flow discharge CW CO2 laser TL-5M installed at a nuclear reactor site are presented. A special high-beam- quality model of the laser was developed to satisfy the needs of decommissioning. Laser cutting process was applied to decommissioning of fuel channels (FC) of RBMK-1000 reactor, after their extractor from the reactor active zone during the procedure of channels replacement.

  11. Examples and Case Studies

    NARCIS (Netherlands)

    Asbach, C.; Aguerre, O.; Bressot, C.; Brouwer, D.H.; Gommel, U.; Gorbunov, B.; Bihan, O. le; Jensen, K.A.; Kaminski, H.; Keller, M.; Koponen, I.K.; Kuhlbusch, T.A.J.; Lecloux, A.; Morgeneyer, M.; Muir, R.; Shandilya, N.; Stahlmecke, B.; Todea, A.M.

    2014-01-01

    Release of nanomaterials may occur during any stage of the life-cycle and can eventually lead to exposure to humans, the environment or products. Due to the large number of combinations of release processes and nanomaterials, release scenarios can currently only be tested on a case-by-case basis. Th

  12. Termination: A Case Study.

    Science.gov (United States)

    Friedberg, Ahron L

    2015-12-01

    In this article I posit and examine certain criteria and qualities for ending an analysis. The case study describes the end phase of a four-year psychoanalysis in which the patient's decision to move to another area forced the end of his analysis. We continued to explore and work through his core neurotic conflicts that included issues of competitive rivalry, dominance and submission, control, and anxiety about birth and death. A shift in the transference from me as a negative father to me as a supportive but competitive older brother was also examined in the context of ending treatment as well as other aspects of the transference. In addition, we analyzed the meaning of his ending treatment based on an extra-analytic circumstance. In discussing this phase of treatment, the definition and history of the term "termination" and its connotations are reviewed. Various criteria for completing an analysis are examined, and technical observations about this phase of treatment are investigated. It was found that while a significant shift in the transference occurred in this phase of the patient's analysis, conflicts related to the transference were not "resolved" in the classical sense. Terminating treatment was considered as a practical matter in which the patient's autonomy and sense of choice were respected and analyzed. PMID:26583444

  13. Decommissioning: a United Kingdom perspective

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, A.; Reed, D.L.; Bleeze, A. [Health and Safety Executive, London (United Kingdom)

    1995-12-31

    The paper considers the United Kingdom legislative framework relevant to decommissioning of facilities on nuclear licensed sites. It describes the various legislative bodies involved in regulating this activity and the inspectorate concerned. The licensing regime is described in some detail highlighting the UK arrangements whereby a license is granted for the site upon which nuclear facilities are planned or exist. The license remains in place throughout the life of the plant on the site: from initial planning through to the end of decommissioning. A site (of part of) is not de-licensed until it can be stated that there has ceased to be any danger from ionising radiations from anything on the site (or appropriate part of the site). The final part of the paper considers the changes arising from the commercialization of the nuclear power industry in UK and the restatement of the Nuclear Installation Inspectorate`s policy on decommissioning which has arisen as a result of a review made in response to these changes. (author).

  14. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  15. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  16. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  17. European Decommissioning Academy (EDA). Ready to start

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, Bratislava (Slovakia). Inst. of Nuclear and Physical Engineering

    2015-02-15

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  18. European Decommissioning Academy (EDA). Ready to start

    International Nuclear Information System (INIS)

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  19. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  20. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  1. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  2. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  3. Teaching Pharmacology by Case Study.

    Science.gov (United States)

    Jordan, Sue

    1997-01-01

    Using pharmacology case studies with nursing students encourages theory-practice links and infuses real-life content. Cases provide rich qualitative data for evaluating curriculum. However, they are not a substitute for evidence-based practice. (SK)

  4. Intercultural Communicative Case Study

    Institute of Scientific and Technical Information of China (English)

    吴冬梅

    2009-01-01

    The essay is mainly about the author's comprehension of cultural differences and intercultural communication after reading the book Communication Between Cultures.In addition,the author also analyses three cases with the theories and approaches mentioned in Communication Between Cultures.

  5. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  6. Case Study - "Marketing Christmas"

    Institute of Scientific and Technical Information of China (English)

    何青青

    2011-01-01

    @@ The following is based on a real case but the name of the company has been changed and the source will only be revealed after the submission deadline.It is June in Eastern China and temperatures are over 30 degrees Celsius.In Huang Yi-Ju's wholesale showroom, based in Yiwu, model Father Christmases line the shelves, fill the floors and scale the walls.

  7. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  8. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  9. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Science.gov (United States)

    2011-01-21

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BF08 Nuclear Decommissioning Funds; Correction AGENCY... 23, 2010 (75 FR 80697) relating to deductions for contributions to trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on January 21, 2011, and is...

  10. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  11. 75 FR 80697 - Nuclear Decommissioning Funds

    Science.gov (United States)

    2010-12-23

    ... two types of costs are (1) costs to decommission structures, systems, and components from a nuclear... provides that costs for the final decommissioning of structures, systems, and components from a nuclear... nuclear power reactor that is used predominantly in the trade or business of the furnishing or sale...

  12. Experience Review on Dismantling Procedure for American Decommissioned NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyosub; Son, Daesun; Lee, Jaeyong; Kim, Kyungmin; Kim, Yong-soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    According to IAEA, the number of shutdown NPPs is totally 150 globally. In Korea, there are 23 operating NPPs and 5 NPPs under construction. But Korea has no shutdown NPP and has no experience on decommissioning commercial reactor so far except for decommissioning research reactor, TRIGA MARK-3. Based on the NPP lifetime as a 45 years, it is expected that 440 NPPs in the world and 16 NPPs in Korea will come to an end of their lifetime until 2060. In this study, decontamination and decommissioning (D and D) procedure of shutdown NPPs in US concentrated on dismantling of reactor vessel and its internals is investigated. Detailed activation analysis on primary system should be followed for safe D and D activities. However many US decommissioning projects encountered that collection and removal of irradiated small and scattered debris from segmentation were challenging issues. That's why cutting enclosure was implemented to restrict the spread of debris to other area of refueling cavity. Furthermore lifting of total weight (apx. 1,000,000 kg) on primary system including RPV, RVI and interior low-density concrete was extremely heavy.

  13. Case Study: Case Studies and the Flipped Classroom

    Science.gov (United States)

    Herreid, Clyde Freeman; Schiller, Nancy A.

    2013-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses the positive and negative aspects of the "flipped classroom." In the flipped classroom model, what is normally done in class and what is normally done as…

  14. Building theories from case study research: the progressive case study

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2006-01-01

    Meredith (1998) argues for more case and field research studies in the field of operations management. Based on a literature review, we discuss several existing approaches to case studies and their characteristics. These approaches include; the Grounded Theory approach which proposes no prior litera

  15. Theory Testing Using Case Studies

    DEFF Research Database (Denmark)

    Møller, Ann-Kristina Løkke; Dissing Sørensen, Pernille

    2014-01-01

    testing using case studies, including the associated research goal, analysis, and generalisability. We argue that research designs for theory testing using case studies differ from theorybuilding case study research designs because different research projects serve different purposes and follow different......The appropriateness of case studies as a tool for theory testing is still a controversial issue, and discussions about the weaknesses of such research designs have previously taken precedence over those about its strengths. The purpose of the paper is to examine and revive the approach of theory...... research paths....

  16. Decommission of nuclear ship `MUTSU`

    Energy Technology Data Exchange (ETDEWEB)

    Tateyama, Takeshi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-11-01

    The nuclear-powered ship `MUTSU` was decommissioned by removing the reactor room in June 1995, which was hoisted and transported by a floating crane to a shore storage room at Sekinehama, Aomori Prefecture. This work was carried out in three stages: extraction of the spent fuel assemblies and neutron sources, dismantling of the machinery in the reactor auxiliary room, and separation and transportation of the reactor together with the secondary shielding structure and surrounding hull. IHI mainly conducted the third stage work. The separation work of the reactor room structure using a semisubmersible barge is outlined. Stress analysis and design of the reactor room for lifting work is also described. (author)

  17. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    The objectives of this coordinated research programme (CRP) were to promote the exchange of information on the practical experience by Member States in decontamination and decommissioning. The scope of the programme included several areas of decontamination and decommissioning rather than focusing on a single aspect of it, in line with recommendation of the experts who participated in Phase 1 of the CRP. Experts felt that this format would generate better awareness of decontamination and decommissioning and would be more effective vehicle for the exchange of information by stimulating broader discussion on all aspects of decontamination and decommissioning. Special emphasis was given to the development of principles and methodologies to facilitate decommissioning and to the new methods and techniques for optimization of decontamination and disassembly of equipment. Refs, figs, tabs

  18. A Prediction on the Unit Cost Estimation for Decommissioning Activities Using the Experienced Data from DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Park, Hee Seong; Choi, Yoon Dong; Song, Chan Ho; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KAERI (Korea Atomic Energy Research Institute) has developed the DECOMMIS (Decommissioning Information Management System) and have been applied for the decommissioning project of the KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant), as the meaning of the first decommissioning project in Korea. All information and data which are from the decommissioning activities are input, saved, output and managed in the DECOMMIS. This system was consists of the web server and the database server. The users could be access through a web page, depending on the input, processing and output, and be modified the permissions to do such activities can after the decommissioning activities have created the initial system-wide data is stored. When it could be used the experienced data from DECOMMIS, the cost estimation on the new facilities for the decommissioning planning will be established with the basic frame of the WBS structures and its codes. In this paper, the prediction on the cost estimation through using the experienced data which were store in DECOMMIS was studied. For the new decommissioning project on the nuclear facilities in the future, through this paper, the cost estimation for the decommissioning using the experienced data which were WBS codes, unit-work productivity factors and annual governmental unit labor cost is proposed. These data were from the KRR and UCP decommissioning project. The differences on the WBS code sectors and facility characterization between new objected components and experienced dismantled components was reduces as scaling factors. The study on the establishment the scaling factors and cost prediction for the cost estimation is developing with the algorithms from the productivity data, now.

  19. Theory testing using case studies

    DEFF Research Database (Denmark)

    Dissing Sørensen, Pernille; Løkke Nielsen, Ann-Kristina

    Case studies may have different research goals. One such goal is the testing of small-scale and middle-range theories. Theory testing refers to the critical examination, observation, and evaluation of the 'why' and 'how' of a specified phenomenon in a particular setting. In this paper, we focus...... on the strengths of theory-testing case studies. We specify research paths associated with theory testing in case studies and present a coherent argument for the logic of theoretical development and refinement using case studies. We emphasize different uses of rival explanations and their implications for research...... design. Finally, we discuss the epistemological logic, i.e., the value to larger research programmes, of such studies and, following Lakatos, conclude that the value of theory-testing case studies lies beyond naïve falsification and in their contribution to developing research programmes in a progressive...

  20. The decommissioning NPP A-1

    International Nuclear Information System (INIS)

    Project of decommissioning NPP A-1 is split into 4 main groups of tasks. Tasks in group 1 are focused on the solution of selected problems that have immediate impact on the environment. It is mainly the solution of problems in the building of cleaning station of wastage water and in the building with underground storage tanks for wastage water and solid radwaste, including the prevention of wash-out and penetration of contaminated soil from these buildings into surface and underground waters. A part of addressing these tasks is a controlled of generated radwaste-predominatly sludge with various physical and chemical properties. Tasks in group 2- following the removal of spent fuel-are focused on the management of all radwaste in the long-term storage facility, in the short-term storage facility, equipment of transport and technology part, equipment in hot cells. Tasks in group 3 are focused on development of technology procedures for treatment and conditioning of sludge, contaminated soils and concrete crush, saturated ionexes and ash from incineration facility of the Bohunice radwaste treatment and conditioning complex. Tasks in group 4 are focused on the methodology. And technical support for particular activities applicable during decommissioning NPP

  1. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF6) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  2. Three Community College Case Studies

    Science.gov (United States)

    Wojtysiak, Joseph; Sutton, William J., II; Wright, Tommy; Brantley, Linda

    2011-01-01

    This article presents three case studies that focus on specific projects that are underway or have been completed. In the first case study, Joseph Wojtysiak and William J. Sutton, II discuss the Green Center of Central Pennsylvania, which is designed to serve as the state's preeminent source for education, training and public information about…

  3. Radiation protection aspects of dismantling and decommissioning of Uranium Mining of Andujar (Spain)

    International Nuclear Information System (INIS)

    This study analyzes the radiation protection aspects during the decommissioning and dismantling of uranium mining in Andujar (Spain). The application during dismantling's mining, the transfer factor of natural radioactive isotopes and the application during the sterile movements are presented

  4. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  5. Technical studying on design and manufacturing of the container for low level radioactive solid waste from the KRR 1 and 2 decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Chung, Un Soo; Yang, Sung Hong; Lee, Dong Gyu; Jung Ki Jung

    2000-12-01

    The design requirement and manufacturing criteria have been proposed on the container for the package, storage and transportation of low level radioactive solid waste from decommissioning of KRR 1 and 2. The structure analysis was carried out based on the design criteria, and the safety of the container was assessed. The container with its capacity of 4m{sup 3} was selected for the radioactive solid waste storage. The proposed container was satisfied the criteria of ISO 1496/1 and the packaging standard of Atomic Energy Act. Manufacturing and testing standards of IAEA were also applied to the container. Stress distribution and deformation were analyzed under given condition using ANSYS code, and the maximum stress was verified to be within the yield stress without any structural deformation. From the results of lifting tests which were lifting from the four top corner fittings and fork-lift pockets, it was verified that this container was safe.

  6. Technical studying on design and manufacturing of the container for low level radioactive solid waste from the KRR 1 and 2 decommissioning

    International Nuclear Information System (INIS)

    The design requirement and manufacturing criteria have been proposed on the container for the package, storage and transportation of low level radioactive solid waste from decommissioning of KRR 1 and 2. The structure analysis was carried out based on the design criteria, and the safety of the container was assessed. The container with its capacity of 4m3 was selected for the radioactive solid waste storage. The proposed container was satisfied the criteria of ISO 1496/1 and the packaging standard of Atomic Energy Act. Manufacturing and testing standards of IAEA were also applied to the container. Stress distribution and deformation were analyzed under given condition using ANSYS code, and the maximum stress was verified to be within the yield stress without any structural deformation. From the results of lifting tests which were lifting from the four top corner fittings and fork-lift pockets, it was verified that this container was safe

  7. Government Assigns New Supervisory Task. Safe Decommissioning

    International Nuclear Information System (INIS)

    When the Government decided to shutdown one of the two Barsebaeck reactors in February of 1998, it presented SKI with a task that came much earlier than expected; the supervision of the decommissioning of a reactor. As a result of proposals presented in Parliament, SKI began the formulation of a long-term strategy in 1997 for the inspection of a nuclear plant during the decommissioning process. As a preliminary task, SKI started a research programme dealing with the potential risks associated with the transition from normal operations through shutdown to final deconstruction of the power plant. Emphasis was laid on safety culture issues and on questions of organization, as opposed to an earlier stress on the purely technical aspects of decommissioning. After a long period of uncertainty, following much discussion, in July 1998 a Government decision was finally reached to shutdown the first reactor at Barsebaeck. This was carried out in November 1999. It is still uncertain as to when the other reactor will be decommissioned; a decision is expected at the earliest in 2004. This uncertainty, resulting from the prolonged decision making process, could be detrimental to the safety culture on the site; motivation could diminish, and key personnel could be lost. Decommissioning is a new phase in the life cycle of a plant, giving rise to new inspection issues of supervision. During the period of uncertainty, while awaiting SKI has identified ten key areas, dealing with the safety culture of the organization, in connection with the decommissioning of Barsebaeck 1. 1. Obtaining and retaining staff competence during decommissioning; 2. Sustaining organizational memory; 3. Identifying key organizational functions and management skills that are critical during the transition from operations to decommissioning. 4. Sustaining organizational viability and accountability for decommissioning; 5. Sustaining motivation and trust in management of dismantlement; 6. Overseeing

  8. The decommissioning plan of the Nuclear Ship MUTSU

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, M.; Matsuo, R.; Fujikawa, S.; Nomura, T. [Japan Atomic Energy Research Inst., Mutsu, Aomori (Japan). Mutsu Establishment

    1995-07-01

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author).

  9. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs... collect nuclear decommissioning costs from ratepayers residing in State A. With respect to the sale...

  10. Large packages for reactor decommissioning waste

    International Nuclear Information System (INIS)

    This study was carried out jointly by the Atomic Energy Establishment at Winfrith (now called the Winfrith Technology Centre), Windscale Laboratory and Ove Arup and Partners. The work involved the investigation of the design of large transport containers for intermediate level reactor decommissioning waste, ie waste which requires shielding, and is aimed at European requirements (ie for both LWR and gas cooled reactors). It proposes a design methodology for such containers covering the whole lifetime of a waste disposal package. The design methodology presented takes account of various relevant constraints. Both large self shielded and returnable shielded concepts were developed. The work was generic, rather than specific; the results obtained, and the lessons learned, remain to be applied in practice

  11. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    International Nuclear Information System (INIS)

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  13. Case study - Argentina

    International Nuclear Information System (INIS)

    Antecedents and experience of nuclear activities in Argentina; the Atomic Energy Commission (CNEA). First development and research activities. Research reactors and radioisotopes plants. Health physics and safety regulations. - Feasibility studies for the first nuclear power plant. Awarding the first plant CNA I (Atucha I). Relevant data related to the different project stages. Plant performance. - Feasibility study for the second nuclear power plant. Awarding the second plant CNE (Central Nuclear Embalse). Relevant data related to established targets. Differences compared with the first station targets. Local participation. Plant performance. (orig./GL)

  14. Liabilities identification and long-term management decommissioning of nuclear installations in Slovak Republic

    International Nuclear Information System (INIS)

    operator to complete the radwaste and spent fuel management. All these facts resulted to general acceleration of decommissioning activities and decommissioning planing. As a consequence of historical approach, various technical objections and also for collocation of decommissioned facilities with operating ones, the preferred decommissioning option is deferred dismantling. The reduction of range and duration of safe enclosure from confinement to core structures and from 70 to 30 years was the result of changing radwaste management strategy. Currently preliminary decommissioning studies for WWERs are being updated including the optimisation of the safe enclosure /differed dismantling duration, in accordance with the full set of parameters

  15. Social aspects of nuclear power plant decommissioning at the Greifswald site in Germany

    International Nuclear Information System (INIS)

    The normal situation in Germany is that private electricity companies, such as E.ON, RWE, Bayernwerke and EnBW, are responsible for the costs and implementation of decommissioning of the NPPs that they own. The private companies have their own decommissioning approach and financing tools. This situation applies, for example, to the Wuergassen plant In addition, there are some Government owned organizations that are responsible for nuclear decommissioning sites. The largest one is Energiewerke Nord (EWN), which covers the large Greifswald site, the AVR research reactor and, since February 2006, the reprocessing plant (WAK) at the Karlsruhe site. EWN is owned by the Federal Republic of Germany (Ministry of Finance). The Federal Ministry of Finance provides EWN with the funds necessary to deliver the decommissioning programme and the tasks in that programme. The shareholder structure of EWN can be seen (drawn prior to the takeover of WAK). The German Federal Ministry of the Environment is in charge of all licensing aspects, to ensure realization of the decommissioning in a safe and secure way. The responsible authorities are the Ministries of Environment in the 16 German states. In the case of EWN, this is Mecklenburg/Western- Pommerania. In the context of EWN's special licensing approach, as described in the next section, there is a close and practical cooperation between EWN as decommissioning operator and the above mentioned authorities. In this context, EWN sought to establish a decommissioning strategy that recognized the socioeconomic effects of plant shutdown and make decommissioning friendly as described in the next section

  16. Decommissioning of units 1 - 4 at Kozloduy nuclear power plant in Bulgaria

    International Nuclear Information System (INIS)

    Nuclear safety and security are absolute priorities for the European Union countries and this applies not only to nuclear power plants in operation but also to decommissioning. In terms of my technical background and my working experience in the field of licensing and environmental impact assessment during the decommissioning of Units 1 to 4 at Kozloduy Nuclear Power Plant (KNPP) in Bulgaria, I decided to present the strategy for decommissioning of Units 1 to 4 at KNPP which was selected and followed to achieve safe and effective decommissioning process. The selected strategy in each case must meet the legislative framework, to ensure safe management of spent fuel and radioactive waste, to provide adequate funding and to lead to positive socio-economic impact. The activities during the decommissioning generate large volume of waste. In order to minimize their costs and environmental impact it should be given a serious consideration to the choice, the development and the implementation of the most adequate process for treatment and the most appropriate measurement techniques. The licensing process of the decommissioning activities is extremely important and need to cope with all safety concerns and ensure optimal waste management. (authors)

  17. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  18. Proceedings of the topical session on stakeholder involvement in decommissioning projects

    International Nuclear Information System (INIS)

    Set up by the Radioactive Waste Management Committee (RWMC), the WPDD brings together senior representatives of national organisations who have a broad overview of Decommissioning and Dismantling (D and D) issues through their work as regulators, implementers, R and D experts or policy makers. These include representatives from regulatory authorities, industrial decommissioners from the NEA Co-operative Programme on Exchange of Scientific and Technical Information on Nuclear Installation Decommissioning Projects (CPD), and cross-representation from the other NEA Committees. The EC is a member of the WPDD and the IAEA is participating as an observer. This broad participation provides good possibilities for the co-ordination efforts amongst activities in the international programmes. At its sixth meeting, in Paris, 14-16 November 2005, the WPDD held a topical session on the 'Stakeholder Involvement in Decommissioning Projects'. The topical session was jointly planned and run with members of the NEA Forum on Stakeholder Confidence (FSC). This report documents the topical session. The main text summarises the lessons learnt and includes the rapporteurs reports. Appendix 1 and 2 provide the agenda of the topical session and all contributed papers respectively. The Topical session also provided a stimuli to review all the contributions in the area of stakeholder involvement that the WPDD has received since its inception. A list of references is provided in Appendix 3. The topical session was meant to provide an exchange of information and experience on the following issues: - Views from Stakeholders Regarding Stakeholder Involvement and Their Own Role. - Case Studies on Stakeholders Confidence. At the end of each session time was allotted for a plenary discussion. The Rapporteur reviewed the main points and the lessons learnt at the end of the whole Topical Session. (authors)

  19. Final report on case studies

    DEFF Research Database (Denmark)

    Ljungberg, Daniel; McKelvey, Maureen; Lassen, Astrid Heidemann

    2012-01-01

    Case study as a research design means investigating a single or multiple instance(s) or setting(s) (i.e. a case) and its entire context to explain a phenomenon and its processes. This is achieved through detailed understanding, usually comprised of multiple sources of information. In this way, ca...

  20. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  1. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  2. Development of a Decommissioning Certificate Program

    International Nuclear Information System (INIS)

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  3. TA-2 Water Boiler Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, M.E. (ed.); Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  4. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    International Nuclear Information System (INIS)

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  5. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    The concept of the European Decommissioning Academy, to be launched in Slovakia in June 2015, is described. The main goal is to educate a new generation of experts in the decommissioning of nuclear facilities, with focus on VVER type reactors. This year the Academy activities will include lessons, practical exercises in laboratories, and 2 days on-site training at the Jaslovske Bohunice V-1 nuclear power plant. A 4-days' visit to major European decommissioning facilities in Switzerland and Italy is also planned. (orig.)

  6. Management and Treatment for Decommissioned Combustible and Metallic Waste of Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Yun, Gyoungsu; Lee, Kiwon [Daedeok-daero, Daejeon (Korea, Republic of)

    2013-05-15

    Contaminated metallic waste represents a considerable storage volume as well as significant cost since it must be maintained and monitored indefinitely in secure storage. The high cost of either disposal or storage requires that the volume of material be minimized. In Korea, research reactors (TRIGA MARK II, III) have been decommissioned since 1997. A large amount of radioactively contaminated metal waste is currently produced, and will continue to be generated during decommissioning and available decontamination. The decommissioning project of the TRIGA MARK II and a uranium conversion plant (UCP) at KAERI has been completely finished. The decommission project of TRIGA MARK III has been under way. By the decommissioning of the TRIGA MARK II, radioactive metal waste of more than 200 tons was generated among the total 2,200 tons of waste, such as concrete waste, soil, combustible and non combustible waste. In the case of UCP radioactive metal waste, approximately 200 tons was generated during the decommissioning project. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. The combustible waste generated from UCP has been incineration by incinerator from last year. Decommissioned combustible waste generated from KRR will be incineration. In case of KRR metal waste, we just releasable metal waste will be melt for self-disposal and volume reduction by induction furnace. Combustible wastes were treated by incinerator and ash dispose permanently site. In case of metal wastes is treated by induction furnace and slag dispose permanently site and ingot will reuse.

  7. Environmental and Economic Assessment of Reclaimed Polyurethane Panels: The Case of Diverting Decommissioned Cold Storage Panels From Landfills and Recycling Into Three Forms of Insulative Building Materials

    OpenAIRE

    Costanza, James

    2015-01-01

    This study investigates the long-term thermal performance of polyurethane insulated cold storage panels and the environmental and economic impact of recycling such panels when taken out of service in lieu of discarding them in landfills. It is estimated, as of 2015, over 180 million square feet of insulated cold storage panels are manufactured annually in the U.S. The panels are most frequently constructed of closed-cell, low density polyurethane insulation utilizing HCF 245fa and HCF 1...

  8. Arsenic Sorption Characteristics in Decommissioned Tailings Dam Environment at the Obuasi Mine, Ghana

    OpenAIRE

    Gordon Foli; Simon K. Y. Gawu; Johnson Manu; Nude, Prosper M.

    2013-01-01

    Arsenic (As) sorption characteristics in decommissioned tailings dam environment at the Obuasi mine, Ghana was studied. The aim was to outline effective remediation strategy for As, hence the objectives were to establish: (1) Arsenic degradation capacity of the decommissioned tailings dam environment and empirical model(s) to describe the degradation pattern; (2) relevant equilibrium concentration range and time frame for As degradation by natural attenuation. Eighteen water sampling events f...

  9. Case Study: del Amo Bioventing

    Science.gov (United States)

    The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.

  10. Nasopharyngeal Case-Control Study

    Science.gov (United States)

    A case-control study conducted in Taiwan between 1991-1994 among approximately 1,000 individuals to examine the role of viral, environmental, and genetic factors associated with the development of nasopharyngeal carcinoma

  11. Decommissioning cost estimates based on the international structure for decommissioning costing

    International Nuclear Information System (INIS)

    Decommissioning cost estimates is essential part of decommissioning planning in all stages of nuclear installation lifetime. It has been recognized that there is a variety of formats, content and practice in decommissioning costing, due to the specific national requirement or to different assumptions. These differences make the process of decommissioning costing less transparent and more complicated to review. To solve these issues the document: 'A Proposed Standardised List of Items for Costing Purposes in the Decommissioning of Nuclear Installation' (known as 'Yellow Book') was jointly published by IAEA, OECD/NEA and EC in 1999. After a decade, the document was revised and issued by same organizations under the title: 'International Structure for Decommissioning Costing (ISDC) of Nuclear Installation. ISDC as the list of typical decommissioning activities (could be used also a check-list) provides s general cost structure suitable for use for all types of nuclear installations i.e. power plants, research reactors, fuel cycle facilities or laboratories. The purpose of the ISDC, is to facilitate the communication and to promote uniformity and to provide a common platform in presenting the decommissioning costs. Clear definition of ISDC items supports the common understanding of cost items, i.e. what is behind the cost. ISDC decommissioning activities are organised in a hierarchical structure, with the 1st and 2nd levels being aggregations of basic activities identified at the 3rd level. At (author)

  12. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  13. Decommissioning of research nuclear reactor WWER-S Magurele-Bucharest

    International Nuclear Information System (INIS)

    A decommissioning project is performed on a nuclear facility, the WWR-S research reactor at Magurele-Bucharest to remove the radioactive and hazardous materials in order to avoid any risks to human health and the environment. The project involves four phases, namely: assessment, development, activities implementation and closeout. There are two major parts to the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop the project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternative will be analyzed and the best alternative chosen, final goal is identified, risk assessments are evaluated, regulations supporting assessment will be identified, land use will be considered as well as the financial sources, disposal availability, public involvement, and the technology developments. After the decommissioning alternative is chosen, detailed engineering issues will be approached under appropriate regulatory guidance. The plan will include characterisation information, review of decommissioning alternatives, justification for the selected alternative, provision for regulatory compliance, evaluations of personnel exposure, radioactive waste volume, and cost. Other activities are: scheduling, preparation for decommissioning operations, coordination, documentation, characterization, report, feasibility studies, decommissioning plan, daily project report, radiological survey, airborne sampling records, termination survey of the site. The key operations are: worker protection, health and safety program, review of planing work, work area assessment, work area controls, personal protection and monitoring, environmental protection: air quality, surface water, ground water, shipments, effluent sampling and monitoring, environmental monitoring, site release

  14. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  15. Sellafield Decommissioning Programme - Update and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  16. Health physics considerations in decontamination and decommissioning

    International Nuclear Information System (INIS)

    These proceedings contain papers on legal considerations, environmental aspects, decommissioning equipment and methods, instrumentation, applied health physics, waste classification and disposal, and project experience. Separate abstracts have been prepared for individual papers

  17. Decommissioning of the BR3 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Klein, M

    1998-07-01

    The objectives, programme and main achievements of SCK-CEN's decommissioning programme in 1997 are summarised. Particular emphasis is on the BR3 decommissioning project. In 1997, auxiliary equipment and loops were dismantled; concrete antimissile slabs were decontaminated; the radiology of the primary loop was modelled; the quality assurance procedure for dismantling loops and equipment were implemented; a method for the dismantling of the reactor pressure vessel was selected; and contaminated thermal insulation of the primary loop containing asbestos was removed.

  18. Decommissioning Project Manager's Implementing Instructions (PMII)

    International Nuclear Information System (INIS)

    Decommissioning Project personnel are responsible for complying with these PMII. If at any time in the performance of their duties a conflict between these instructions and other written or verbal direction is recognized or perceived, the supervisor or worker shall place his/her work place in a safe condition, stop work, and seek resolution of the conflict from the Decommissioning Project Manager or his designee

  19. PUREX transition project case study

    Energy Technology Data Exchange (ETDEWEB)

    Jasen, W.G.

    1996-04-15

    In December 1992, the US Department of Energy (DOE) directed that the Plutonium-Uranium Extraction (PUREX) Plant be shut down and deactivated because it was no longer needed to support the nation`s production of weapons-grade plutonium. The PUREX/UO{sub 2} Deactivation Project will establish a safe and environmentally secure configuration for the facility and preserve that configuration for 10 years. The 10-year span is used to predict future maintenance requirements and represents the estimated time needed to define, authorize, and initiate the follow-on decontamination and decommissioning activities. Accomplishing the deactivation project involves many activities. Removing major hazards, such as excess chemicals, spent fuel, and residual plutonium are major goals of the project. The scope of the PUREX Transition Project is described within.

  20. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  1. Proceedings of the International Symposium on Preparation for Decommissioning - PREDEC 2016

    International Nuclear Information System (INIS)

    The objective of the PREDEC 2016 symposium is to share current practice, experiences and innovations relating to the preparations for decommissioning of nuclear facilities. The symposium will be a forum to: Learn about current practices, Highlight strategic issues related to radiological characterisation and decommissioning, Exchange experiences, Discuss innovative and new techniques and needs for improvements, Develop and maintain networks in the area of radiological characterisation. Seven sessions in total were scheduled with the following topics: 1. Preparation for decommissioning - strategic issues: Preparation for decommissioning requires several strategic decisions with significant impact on the activities. This session covers a wide span of strategic issues such as: Immediate vs. deferred dismantling, Timing and strategic approach for the decommissioning preparations, Prioritised strategic decisions in case of a non-scheduled final shutdown. 2. Early characterisation challenges: There are significant advantages with an early characterisation of a facility to be decommissioned but an early characterisation is faced with constraints, limitations and challenges. The session is open for all approaches and strategies for early characterisation issues, including facility characterisation using theoretical models. 3. Workforce transition, flexibility and knowledge management: The transition from normal operation to facility dismantling involves several important evaluations, decisions and actions. This session covers project organisation issues like: Dismantling by former operators or by specialised teams, Concepts for how the transition could be structured to secure that the required knowledge is kept within the organisation, Ways to achieve the required workforce flexibility for a cost efficient decommissioning project. 4. Key aspects for efficient and cost effective waste management: This session covers activities in the preparation phase that supports an

  2. Sternocleidomastoid syndrome: a case study

    OpenAIRE

    Missaghi, Babak

    2004-01-01

    This article presents a case study of a patient diagnosed with dysfunction of the sternocleidomastoid (SCM) muscle, a condition which can result in head and face pain, nausea, dizziness, coryza, and lacrimation. In this particular case, the SCM muscle had developed tightness and weakness with presence of multiple trigger points within both heads. A combination of passive and active treatments were utilized to successfully treat this condition.

  3. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    Science.gov (United States)

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  4. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    Directory of Open Access Journals (Sweden)

    Chao-Shi Chen

    2016-05-01

    Full Text Available Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek.

  5. Kenya Groundwater Governance Case Study

    OpenAIRE

    Mumma, Albert; Lane, Michael; Kairu, Edward; Tuinhof, Albert; Hirji, Rafik

    2011-01-01

    This report presents a case study on groundwater governance in Kenya. The objectives of the study were to: (a) describe groundwater resource and socioeconomic settings for four selected aquifers; (b) describe governance arrangements for groundwater management in Kenya; and (c) identify the relevance of these arrangements for planning and implementing climate change mitigation measures. The ...

  6. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  7. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  9. Decommissioning of nuclear facilities: Germany’s experience

    International Nuclear Information System (INIS)

    Germany has gained considerable experience in the decommissioning of nuclear facilities since the 1970s. Currently 16 nuclear power plants, both power and prototype reactors, are at different stages of decommissioning. Three decommissioning projects have been completed. Future tasks in Germany are the completion of the current decommissioning projects and the decommissioning of the nuclear facilities that are still operating once they have reached the end of their operating life. The number of parallel decommissioning projects of large scale facilities required by the phase-out of nuclear power could pose challenges in terms of the availability and maintenance of competences at all levels (operators, regulatory body, technical support organizations, and suppliers)

  10. eCompetence Case Studies

    DEFF Research Database (Denmark)

    Jensen, Helle Bækkelund

    2006-01-01

    In this paper we present some details of the processes undertaken in the European eCompetence Initiative. We present two illustrative and representative case studies. The research aims to identify and understand patterns of individual and organisational eCompetence approaches.......In this paper we present some details of the processes undertaken in the European eCompetence Initiative. We present two illustrative and representative case studies. The research aims to identify and understand patterns of individual and organisational eCompetence approaches....

  11. Case Study on Logistics Performance

    Directory of Open Access Journals (Sweden)

    Shahryar Sorooshian

    2013-05-01

    Full Text Available The paper presents research carried out at a medium‐size manufacturing organization in east Asia. The study tries to highlight the importance of supply chain management; specifically, our aim for this study is to understand logistics and performance measurement in the logistics and supply chain, and we include a theoretical discussion of online data collected and a case study of the logistic performance of a real organization. The study also examines the performance of the selected company, identifies the problems and provides recommendations for improvements. This study can be a guide for business advisers and those interested in analysing company performance, especially from a logistics viewpoint. We also suggest the methodology of this case study for those who want to have a better understanding of a business environment before starting their own business, or for benchmarking practice during strategic planning.

  12. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  13. Securing decommissioning funds. Why organization matters?

    International Nuclear Information System (INIS)

    Full text: Securing decommissioning funds requires that the financial resources set aside for the purpose of decommissioning be managed prudently. Decommissioning of nuclear power plant is prescribed by National Atomic Laws or by other nuclear legislation. It is a mandatory operation. The operators of nuclear power plants set money aside for that purpose. This is known as 'Decommissioning reserve fund'. Decommissioning implies costs very distant in time. Thus, it is obvious, from an economic point of view, that the funds set aside should be managed. As decommissioning is mandatory, the funds accumulated should be secured. In others words, they should be available when needed. Availability of funds is influenced by endogenous and exogenous factors. Endogenous factors are a matter of design of the reserve funds. They include the management of the funds, its monitoring and control... Availability of funds is influenced by these factors, depending on the rules to which the behaviour of the manager of the funds is subjected. In contrast, exogenous factors deal with the energy context. These factors are mainly the electricity sector organisation and/or the overall economic situation. They are decisive factors of the economic performance of the reserve fund for a given design. Therefore, the requirement of availability of funds, when needed, is a matter of compatibility between the design of the decommissioning funds and the electricity context. Put differently, reserve fund's design need to be consistent with the electricity context's features in respect of the availability of funds. Current reserve funds were designed in a context of monopoly regime. In this context, availability of decommissioning funds was not questionable. At least, as far as the design of the reserve funds is concerned. This is because nuclear generator didn't confront any competition pressure. Electricity prices were set trough rate base mechanism, and all the business risks were borne by the

  14. Decommissioning of an irradiation unit

    Energy Technology Data Exchange (ETDEWEB)

    Richards, A.G. [Radiation Protection and Safety Services, Univ. of Leeds, Leeds (United Kingdom)

    2000-05-01

    Distributed throughout hospital, research establishments in the United Kingdom and many other countries are Irradiation Units and Teletherapy machines used for either research purposes or treatment of patients for radiotherapy. These Irradiation Units and Teletherapy machines are loaded with radioactive sources of either Cobalt 60 or Caesium 137. The activity of these sources can range from 1 Terabecquerel up to 100 Terabecquerels or more. Where it is possible to load the radioactive sources without removal from the shielded container into a transport package which is suitable for transport decommissioning of a Teletherapy machine is not a major exercise. When the radioactive sources need to be unloaded from the Irradiation Unit or Teletherapy machine the potential exists for very high levels of radiation. The operation outlined in the paper involved the transfer from an Irradiation Unit to a transport package of two 3.25 Terabecquerel sources of Cobalt 60. The operation of the removal and transfer comes within the scope of the United Kingdom Ionising Radiation Regulations 1985 which were made following the Recommendations of the International Commission on Radiological Protection. This paper illustrates a safe method for this operation and how doses received can be kept within ALARA. (author)

  15. Decontamination and decommissioning costing efforts

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Office of Environmental Management (EM) is responsible for decontamination and decommissioning (D and D) of a wide variety of facilities ranging from reactors to fuel cycle processing buildings throughout the country. The D and D effort represents a large financial investment and a considerable challenge for the DOE and contractor program and project managers. Specifically, the collection and sharing of useful cost data and development of cost estimates are difficult in an environment in which the availability of these data is limited and the technologies and project methods are evolving. Sound cost data are essential for developing project cost estimates; baselines; and project management, benchmarking, and continuous improvement purposes. This paper will focus on some initiatives that in coordination with other federal agencies and international organizations, the DOE Environmental Management Applied Cost Engineering (ACE) Team is taking to standardize cost definitions; to collect, analyze, and report D and D cost data; and to develop fast, accurate, and easy-to-use cost-estimating models for D and D work

  16. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  17. Nuclear reactor decommissioning: an analysis of the regulatory environments

    International Nuclear Information System (INIS)

    In the next several decades, the electric utility industry will be faced withthe retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this study was to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers. To identify significant trends and practices among regulatory bodies and utilities, a reviw of these factors was undertaken at various levels in the regulatory hierarchy. The technical policies were examined in reference to their treatment of allowed technical modes, restoration of the plant site including any specific recognition of the residual radioactivity levels, and planning requirements. The financial policies were examined for specification of acceptable financing arrangements, mechanisms which adjust for changes in the important parameters used to establish the fund, tax and rate-base treatments of the payments to and earnings on the fund, and whether or not escalation and/or discounting were considered in the estimates of decommissioning costs. The attitudes of regulators toward financial risk, the tax treatment of the decommissioning fund, and the time distribution of the technical mode were found to have the greatest effect on the discounted revenue requirements. Under plausible assumptions, the cost of a highly restricted environment is about seven times that of the minimum revenue requirement environment for the plants that must be decommissioned in the next three decades

  18. New generation of diamond toolings for facilitating decommissioning operations - 59396

    International Nuclear Information System (INIS)

    Diamond tools are well proven cutting, drilling and grinding technologies in many applications but need to be specifically optimized and adapted for the complex and varied structures of nuclear power plant in view of decontamination and decommissioning. The proper development and use of diamond tools in these extreme and complex conditions can only be achieved thanks to the combined talent of experienced nuclear plant contractors, engineers, technicians, operators of diamond tools, and the use of specialized equipment. This present paper is an overview of the possible applications of diamond tools in the different operations of Nuclear Decommissioning and Decontamination. Key diamond tool applications for decommissioning and decontamination of nuclear power plant: 1. Wet/dry concrete wall sawing (with remote control system); 2. Wet/dry wire cutting of concrete; 3. Wet/dry wire sawing of metal; 4. Wet/dry core drilling; 5. Grinding and leveling for surface preparation including all Edges; 6. Scraping for removing bituminous or neoprene glues and all kinds of coatings; 7. Shaving for horizontal and vertical surfaces and ceilings Each situation requires a detailed feasibility study and engineering report to select the optimal work method and answer concerns about safety, time to completion and waste volume. Examples of nuclear industry requirements: 'Camel Tools' (minimal water supply to limit water / mud collection and decontamination). 100% dust collection Fast and easy change of tools Remote control systems High performances even in the strongest reinforced concretes Restricted presence of operators in contaminated areas Unquestionable reliability of the tools and equipment. (authors)

  19. Experience on Primary System Decommissioning in Jose Cabrera NPP

    Energy Technology Data Exchange (ETDEWEB)

    Paloma Molleda; Leandro Sanchez; David Rodriguez [ENSA, Cantabria (Spain)

    2015-10-15

    Primary System Decommissioning belongs to DCP(Decommissioning and Closure Plan) works and its scope includes: Steam Generator, Pressurizer, Refrigerant Circuit Pump and Primary Circuit Piping. All these dismantling activities were carried out on site, including preliminary steps before their removal (SAS installations, pre decontaminations, cutting and segmentations, segregations, etc.) and delivery to media/low activity nuclear waste disposal site. There are many cutting techniques available in market (most of them proved with positive results) as well as there are many different approaches about how to manage radioactive wastes in decommissioning projects (containers or great components disposal, containers burial, re fusion, etc.). Both issues are linked and, before starting a new project, it might be positive and quite useful to compare and study previous dismantling experiences, especially the lesson learned chapter. Primary System cut with diamond saw has been a challenge target, not only due to the methodology innovation (since until nowadays, the common use of this technology was performed in cutting concrete walls) because it has a huge range of positive aspects that, in our opinion, are attractive (apart from its mentioned versatility, in terms of cutting on site and every type of material)

  20. Case Studies in Sports Nutrition.

    Science.gov (United States)

    Clark, Nancy

    1988-01-01

    This article presents case studies of two athletes who wanted to affect a change in their body weight in order to enhance athletic performance. Each athlete's problem and the nutrition approach used to solve it are discussed. Caloric values of fast foods are listed. (JL)

  1. The reflexive case study method

    DEFF Research Database (Denmark)

    Rittenhofer, Iris

    2015-01-01

    This paper extends the international business research on small to medium-sized enterprises (SME) at the nexus of globalization. Based on a conceptual synthesis across disciplines and theoretical perspectives, it offers management research a reflexive method for case study research of postnational...

  2. 核电厂退役探讨——对我国核电厂退役的几点建议%Investigation and Study of Nuclear Power Plant Decommission--Some suggestions of nuclear power plant decommission in China

    Institute of Scientific and Technical Information of China (English)

    李民权; 关玉蓉

    2011-01-01

    文章简介核电厂退役三阶段和某些国家实施核电厂退役三阶段的实例,主要提出了对我国核电厂退役尚待完善的几点建议:即核电厂退役法律法规;核电厂退役资金;核电厂退役的去污;核电厂退役拆卸技术;放射性废物处理处置。%This article first introduced some stages of nuclear power plant decommission, and the example of some national of nuclear power plant decommissioning. Then it focus on further improvements of nuclear power plants decommission that should be considered, which includes five aspects : Laws and Regulation ; Financial funds ; Decontamination method; Disassembly/Demolition ( Teardown ) ; Radioactive waste treatment and disposal.

  3. Closing responsibilities: decommissioning and the law

    International Nuclear Information System (INIS)

    Laws change over time, with the times. Interpretations of old laws shift and the need for new laws emerges. There are endless reasons for these necessary changes, but the basic impetus is the changing nature of societal circumstance. Fifty years ago there were no laws directly governing nuclear power in any way. Today we know that nuclear power touches people from their wallets to their descendants. Currently, many laws related to nuclear power are in place, laws which protect all sectors of society from electricity generating bodies to a newborn child, and the Chernobyl accident has broadened the legal ramifications of nuclear power even more. This expanding body of nuclear law reflects our expanding understanding of nuclear power from its technical beginnings to its societal consequences and implications. The law is now beginning to reflect the growing significance of decommissioning. What are the relationships between decommissioning and the existing laws, government agencies, and policies? Ironically, although the UK will lead the world in addressing decommissioning responsibilities, there are no explicit laws in place to govern the process. In the absence of specific legislation governing decommissioning, the primary responsibilities fall to the operators of the power plants, a circumstance not lost on those involved in privatization. In this chapter, the wide and varied legal ramifications of decommissioning are examined. (author)

  4. Decommissioning of Small Facilities in the Czech Republic

    International Nuclear Information System (INIS)

    removed and RAW processed. A standard mechanical saw was used for segmentation of pipes before decontamination. Piping parts such as joints and flanges and corroded parts were sent for conditioning. High-pressure water jetting was used for preliminary decontamination of pipes. Then an ultrasonic bath with decontamination solutions was used. Decontamination was successful in most cases; some pipes were mechanically decontaminated by a special single-purpose instrument (an abrasive rotating device). External contamination of pipes was measured by a standard contamination instrument and contamination inside the pipes was measured by a special tube detector. Approximately 90% of pipes were released as clean for recycling. The decommissioning started in 2004 and was finished in 2005. The old concrete corridor was used for installation of a new system equipped with a leakage monitoring system. The old RAW facility comprised the evaporation unit, storage tanks and a set of mixed-bed filters. The facility was in operation since 1962 and was shutdown in 1992. The amount of equipment to be decommissioned amounted to about 50 metric t of steel. The equipment was contaminated with fission and corrosion products, mainly with 137Cs, 60Co and 90Sr. The remediation procedure consisted of dismantling the equipment after decontamination and processing of RAW. Decommissioning of the facility started in 2004 and was finished in 2009. An old evaporator was used for the treatment of liquid waste. After it started to leak, it was taken out of use and was scheduled for dismantling. The system consisted of the evaporator, three staged separators and a condenser.

  5. Regulatory aspects of radioactive waste management and decommissioning in the UK

    International Nuclear Information System (INIS)

    This paper covers the regulation of radioactive waste management and decommissioning on nuclear licensed sites in the United Kingdom (UK) by HM Nuclear Installations Inspectorate (NII), which is part of the Health and Safety Executive (HSE). The role of HSE is described together with the legislation which it is responsible for enforcing, and the nature of the regulatory regime. HSE has recently issued guidance to its nuclear Inspectors on the regulation of radioactive waste management and decommissioning activities on nuclear licensed sites. This guidance outlines HSE's expectations for the arrangements that licensees should have in place for the safe and effective management of their radioactive waste and for the decommissioning of their nuclear facilities. A number of specific aspects from the guidance are selected for discussion in this paper. For radioactive waste management the topics chosen include strategic planning, the content of safety cases, passive safety for long-term storage, the preservation of records and the management of contaminated land. For decommissioning the topics chosen include the current position with respect to de-licensing, strategic planning, the factors that influence the timing of decommissioning and the maintenance of appropriate organisations. Finally, the regulators perspective is given on some of the most important challenges that the nuclear industry currently faces in this area. (authors)

  6. Current trends in decommissioning and environmental remediation of nuclear facilities

    International Nuclear Information System (INIS)

    The decommissioning and environmental remediation of civil nuclear facilities represents a considerable challenge for the countries involved in this activity around the world. It includes aspects and problems associated with management, technology, safety and the environment. Over the past few decades, operators worldwide have acquired important experience in the decommissioning and environmental remediation of nuclear sites. A large number of nuclear facilities have ceased operations, and it is envisaged that this number will increase considerably over the coming years. Seventeen power reactors have already been decommissioned, out of more than 150 power reactors shut down or undergoing decommissioning, while more than 180 research reactors have been shut down or are being decommissioned with more than 300 already fully decommissioned. A total of 170 other nuclear cycle facilities have been shut down or are being decommissioned and a further 125 have been completely decommissioned. Spain is one of the countries with experience and activity under way in this field

  7. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid

  8. International regulatory issues and approaches in the transition phase from operation to decommissioning

    International Nuclear Information System (INIS)

    Full text: The paper summarizes the work performed by an international group of senior nuclear safety regulators which was convened by the Committee on Nuclear Regulatory Activities (CNRA) of the OECD/Nuclear Energy Agency. The fundamental objective of this work was to identify the safety, environmental, organizational, human factors and public policy issues arising from decommissioning that will produce new challenges for the regulator. The study begins by recognizing that decommissioning is not simply an extension of operation and thus it is important for both the management of the facility and the regulator to understand the fundamental nature of the change taking place. Major regulatory policy issues discussed during this study include assurance of adequate funds, waste storage and disposal sites, material release criteria and site release criteria. Some of the important regulatory challenges relate to organizational and human factors, to safety and security requirements and to waste disposal and license termination. The importance of regular communication with both the corporate and site management and with public is recognized in the study as one of the key factors. When a nuclear facility ceases operation and enters into the decommissioning phase, both the operator and the regulator face a new set of challenges very different from those of an operating facility. The operator should have in place a strategic plan for decommissioning, prepared well in advance and reviewed by the regulatory body, to guide the facility managers and personnel through the changed circumstances. An essential part of the strategic plan should be the operator's plan for securing adequate funds to complete the decommissioning activities. In fact, the regulator should ensure that the operator sets aside funds, perhaps in a trust fund, while the facility is still operating and generating revenues. Both the operator and the regulator should expect a heightened public interest and concern

  9. Decommissioning of research nuclear reactor WWR-S Bucharest. Analysis, justification and selection of decommissioning strategy

    International Nuclear Information System (INIS)

    The decommissioning of Research Nuclear Reactor WWR-S Bucharest involves the removal of the radioactive and hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. The National Institute of Physics and Nuclear Engineering has overall responsibilities in decommissioning including actions of contractors, submit a decommissioning plan to the regulatory body for approval and no decommissioning activities shall begin without the appropriate approval of the regulatory body. A very important aspect of decommissioning is analysis, justification and selection of decommissioning strategy. There are three strategies: Immediate Dismantling, Safe Enclosure, and Entombment. These strategies have been analyzed taking into account: - Future use of site and facilities; - Infrastructure of the specific site and facilities; - Waste storage and disposal options; - Financial aspects; - Geographical Location; - National, Local and International Legislation; - Facility characterization; Identification of decommissioning objectives; - Description of alternatives: scope, features, specific end points, release criteria, risks and safety issues, effectiveness, feasibility, nature and amount of waste of generated and disposal plans, material recycling/reusing opportunities, cost, schedule, comparative analysis; - Rationale for selecting the preferred alternative. (authors)

  10. Selection of decommissioning strategies: Issues and factors. Report by an expert group

    International Nuclear Information System (INIS)

    A comprehensive assessment of possible strategies is the key step in a decommissioning process. It should be initiated at an early stage in a facility's lifecycle and include a number of factors. The IAEA has provided extensive guidance on decommissioning strategy selection, but there are a number of cases - particularly in countries with limited resources, but not limited to them - where the selection is forced and constrained by prevailing factors and conditions. In its role of an international expert committee assisting the IAEA, the Technical Group on Decommissioning (TEGDE) debates and draws conclusions on topics omitted from general guidance. TEGDE members met in Vienna in 2003, 2004 and 2005 to develop the basis for this publication. The views expressed here reflect those of TEGDE and not necessarily those of the IAEA

  11. Decommissioning in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority's policy on decommissioning is described. Several fission reactors have already been taken out of service and the state of decommissioning is given. Estimates of the volume of decommissioning wastes are made. The wastes will be either intermediate-level or low-level wastes. Research and development programmes have been undertaken to allow decommissioning to be safe and cost-effective. Some of the contaminated facilities have been decontaminated and re-used. (U.K.)

  12.  Heavy Lift Methods in Decommissioning of Installations

    OpenAIRE

    Breidablikk, Line Småge

    2010-01-01

     In this report decommissioning of offshore petroleum platforms have been investigated. It treats decommissioning in general, the process of a typical project. A variety of suitable lifting vessels have been presented, and some concepts of removal have been evaluated.Decommissioning is important to go through with because of the environment and the use of the area after the petroleum activities ceases. Other ocean users benefit from the decommissioning because the area can be utilized when it...

  13. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  14. Decommissioning of the research nuclear reactor WWR-S Magurele - Bucharest. General presentation of the project

    International Nuclear Information System (INIS)

    A decommissioning project was worked out concerning the nuclear facility research reactor WWR-S Magurele-Bucharest to remove the radioactive and hazardous materials and so to exclude any risk for human health and environment. The project involves the four phases named assessment, development, operations and closeout. There are two major parts to the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternative will be analyzed and: the best alternative chosen, final goal identified, risk assessments are evaluated. Also, taken into account are: regulations supporting assessment, land use considerations, financial concerns, disposal availability, public involvement, technology developments. After a decommissioning alternative was chosen, detailed engineering will begin following appropriate regulatory guidance. The plan will include characterisation information, namely: review of decommissioning alternatives; justification for the selected alternative; provision for regulatory compliance; predictions of personnel exposure, radioactive waste volume, and cost. Other activities are: scheduling, preparation for decommissioning operations; coordination, documentation, characterization report, feasibility studies, Decommissioning Plan, project daily report, radiological survey, airborne sampling records, termination survey of the site. The operations imply: identification and sequencing the operations on contaminated materials, storing on site the wastes, awaiting processing or disposal, and packaging of materials for transport to processing or disposal facilities.The key operations are: worker protection, health and safety program, review of planing work, work area assessment, work area controls

  15. Reactor decommissioning in a deregulated market

    International Nuclear Information System (INIS)

    This paper seeks to summarise BNFL's experience with regard to recent developments in reactor decommissioning and demonstrate how commercial projects in crucial areas of strategy development, project implementation and site restoration are beginning to reduce the risks and uncertainties associated with this important aspect of the nuclear power generation industry. Although the reactor decommissioning market cannot yet be regarded as mature, the key elements of strategy development, waste treatment, dismantling and delicensing have been separately demonstrated as achievable. Together with the implementation of the right organisation, and the developing technology, the risks are being reduced. As more decommissioning projects are delivered, the risks will be reduced further and the confidence of the regulator in the process will improve. This paper sets out to demonstrate this viewpoint. (author)

  16. Decommissioning of DR 2. Final report

    International Nuclear Information System (INIS)

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  17. Site Decommissioning Management Plan. Supplement 1

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) staff has identified 51 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety, they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC stairs strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 51 sites and describes the status of decommissioning activities at the sites. This is supplement number one to NUREG-1444, which was published in October 1993

  18. Decommissioning of the Loviisa power plant

    International Nuclear Information System (INIS)

    In accordance with the provisions laid in the decision of the Ministry for Trade and Industry Imatran Voima Oy has revised the decommissioning plan for the Loviisa power plant, and submitted it to the authorities for review in December 1993. The plan outlines the technical measures needed to dismantle the radioactive parts of the Loviisa power plant, explains how the resulting waste will be packed and disposed of, and estimates how many people will be needed for the decommissioning waste will be. A general timetable and a cost estimate have also been drawn up on the basis of a detailed working plan. In this report the plan has been revised for cost estimate, activity inventory of the decommissioning waste and radiation dose caused by dismantling work. (orig.). (11 refs., 10 figs., 8 tabs.)

  19. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  20. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  1. Nuclear power plant decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The bibliography contains citations concerning phase-out and decommissioning of nuclear power plants worldwide. Included are case histories of the dismantling process, hazardous waste management, site monitoring, and economic aspects of the phase-out. Examples include European, Chinese, Eastern European, and United States facilities. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Nuclear power plant decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The bibliography contains citations concerning phase-out and decommissioning of nuclear power plants worldwide. Included are case histories of the dismantling process, hazardous waste management, site monitoring, and economic aspects of the phase-out. Examples include European, Chinese, Eastern European, and United States facilities. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Radiation Measurements in the Decommissioning of a Rare Earth Plant

    Institute of Scientific and Technical Information of China (English)

    WANG; Shao-lin

    2012-01-01

    <正>Radiation measurement including radiological source term investigation before the decommissioning, supervisory monitoring during the decommissioning and termination survey after the decommissioning of a rare earth plant were implemented successfully by Radiation Monitoring and Assessment Research Section, Department of Radiation Safety, China Institute of Atomic Energy. The measurements were started in July 2009 and finished in the end of April 2010.

  4. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  5. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  6. Maintaining Quality in a Decommissioning Environment

    International Nuclear Information System (INIS)

    The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping

  7. Planning for decommissioning power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Junji (Research Association for Nuclear Facility Decommissioning, Tokaimura, Ibaraki (Japan))

    1993-02-01

    The first decommissioning of a commercial nuclear power plant in Japan is not expected before the early 2000s, but the technology and regulations needed are being developed now. Valuable technical experience is being gained from three current projects. These are the decommissioning of the Japan Reprocessing Test Facility, the Japan Power Demonstration Reactor and the nuclear ship Mutsu. Improving and commercialising the technology are seen as essential for the future to reduce occupational radiation exposure, the amount of waste and costs. International cooperation and information exchange are of increasing importance for developing technology and regulations. (U.K.).

  8. No small fry: Decommissioning research reactors

    International Nuclear Information System (INIS)

    To get a permit to build a research reactor, would-be operators need to submit an initial decommissioning plan for the eventual shutdown of their new facility. This, however, was not a requirement back in the 1950s, 60s and 70s when most research reactors that are now nearing the end of their working lives were built. The result: many unused reactors sit idle in the middle of university campuses, research parks and hospital compounds, because their operators lack the proper plans to decommission them

  9. Decontamination, decommissioning, and vendor advertorial issue, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  10. Nuclear power plants. Safe and efficient decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Huger, Helmut [TUEV SUED Energietechnik GmbH, Filderstadt (Germany). Div. of Radiation Protection, Waste Management and Decommissioning; Woodcock, Richard [TUEV SUED Nuclear Technologies, Warrington, Cheshire (United Kingdom). Environment and Radioactive Waste Management

    2016-02-15

    The process of dismantling a nuclear power plant consists of several phases that involve significant challenges along the way for authorities, operators, and suppliers. It is necessary to ensure safety at all times and to achieve certainty in respect of key project parameters, especially time and cost. Therefore, careful planning as well as detailed knowledge of local standards and regulations, best available techniques and practical implementation strategies are crucial. Independent expertise and knowledge service can be utilised for demanding projects worldwide. This guarantees safety for people and the environment in every phase of decommissioning. The article gives an overview on different decommissioning options and their challenges.

  11. The health risks of decommissioning nuclear facilities.

    Science.gov (United States)

    Dodic-Fikfak, M; Clapp, R; Kriebel, D

    1999-01-01

    The health risks facing workers involved in decommissioning nuclear facilities are a critical concern as the nuclear weapons complex and nuclear power plants begin to be dismantled. In addition to risks from exposure to radioactive materials, there are risks from other common industrial materials like crystalline silica dust and asbestos. We discuss these issues in the context of recent research on the risk of low-level ionizing radiation, the classification of crystalline silica as a carcinogen, and early experience with decommissioning nuclear facilities in the United States. Health and safety advocates will need to be vigilant to prevent worker exposure. PMID:17208791

  12. Optimization in the decommissioning of uranium tailings

    International Nuclear Information System (INIS)

    This report examines in detail the problem of choosing the optimal decommissioning approach for uranium and mill tailings sites. Various decision methods are discussed and evaluated, and their application in similar decision problems are summarized. This report includes, by means of a demonstration, a step by step guide of how a number of selected techniques can be applied to a decommissioning problem. The strengths and weaknesses of various methods are highlighted. A decision system approach is recommended for its flexibility and incorporation of many of the strengths found in other decision methods

  13. Decommissioning technology development for research reactors; establishment on the classification scheme of the decommissioning information and data

    Energy Technology Data Exchange (ETDEWEB)

    Ser, J. S.; Jang, Se Kyu; Kim, Young Do [Chungchong Institute of Regional Information System, Taejeon (Korea)

    2002-04-01

    The establishment of the decommissioning DB is the first thing in KOREA. It has never been decided the standardization in relation to the decommissioning DB all over the world and many countries has been constructed their decommissioning DB which serve their purpose. Owing to get the classification of the decommissioning information and data, it is used a prototyping design that is needed the DB construction as a basic data and applied to a nuclear facilities in the future. 10 refs. (Author)

  14. A case study of Impetigo

    Directory of Open Access Journals (Sweden)

    Mansouri P

    1993-05-01

    Full Text Available This is a report of a case study on 234 patients with impetigo who referred to Razi Dermatology Hospital from April to November, 1989. Treatment was started immediately after obtaining direct smear and performing culture and antibiotic sensitivity test. The most common organism responsible for impetigo was the coagulase-positive staphylococcus (71%. In 13.7% of the cases, the coagulase-negative staphylococcus was grown on culture media, but none of the cultures showed streptococcus as the main organism. Treatment was started with oral penicillin V, oral erythromycin, benzathine penicillin G injection, oral cephalexin, and topical fuccidin. Clinical and bacteriological evaluation after 3-7 days showed that it is preferable to use oral cephalexin instead of other protocols such as oral erythromycin, which has previously been the drug of choice for impetigo. In addition, topical fuccidin with a 75% curative rate was the first drug for treatment, with the same effect as the oral cephalexin

  15. Good practices in decommissioning planning and pre-decommissioning activities for the Magurele VVR-S nuclear research reactor

    OpenAIRE

    Dragusin Mitica; Pavelescu Octavian Alexandru; Iorga Ioan

    2011-01-01

    The VVR-S Nuclear Research Reactor at the “Horia Hulubei” National Institute of Physics and Nuclear Engineering in Magurele, Bucharest, will be decommissioned applying the immediate dismantling strategy. The implementation of the decommissioning project started in 2010 and is planned for completion within 11 years. Good practices in decommissioning planning, organization, funding, and logistics are described in this paper.

  16. Methodology to collect data on decommissioning costs and occupational radiation exposure

    International Nuclear Information System (INIS)

    Decommissioning data collection has been, up to now, almost a national matter. The present joint study performed by NIS Ingenieurgesellschaft mbH, Hanau, and the Commissariat a l'energie atomique, Unite de declassement d'installations nucleaires, and coordinated by the Commission of the European Communities, is intended to identify a methodology allowing the collection of data which are useful to manage a decommissioning project, e.g. data on dismantling costs, occupational radiation exposure and waste arisings. A common structure for decommissioning tasks (called working packages) derived from those already in use at the abovementioned organizations has been established and the corresponding first series of data-collection sheets defined in order to cover data from LWRs, GCRs (UNGGs) and nuclear fuel cycle installations. Work focused on the cost of decommissioning tasks. The study is intended to be a first step towards an EC-wide usable data-base for data generated in the various ongoing and future decommissioning projects

  17. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells

    Science.gov (United States)

    Worrall, Fred; boothroyd, Ian; Almond, Sam; Davies, Richard

    2015-04-01

    The aim of this study was to consider the potential legacy of increased onshore, unconventional gas production by examining the integrity of decommissioned, onshore, oil and gas wells in the UK. In the absence of a history of unconventional hydrocarbon exploitation in the UK, conventional onshore sites were considered and an examination of pollution incidents records had suggested that only a small fraction of onshore wells could show integrity failures. In this study the fugitive emissions of methane from former oil and gas production wells onshore in the UK were considered as a measure of well integrity. The survey considered 49 decommissioned (abandoned) wells from 4 different basins that were between 8 and 78 years old; all but one of these wells would be considered as having been decommissioned properly, i.e. wells cut, sealed and buried by soil cover to the extent that the well sites were being used for agriculture. For each well site the soil gas methane was analysed multiple times and assessed relative to a nearby control site of similar land-use and soil type. The results will be expressed in terms of the proportion and extent of well integrity failure, or success, over time since decommissioning and relative to local control sites. The probability of failure and the emissions factor for decommissioned wells will be presented.

  18. Validation of Decommissioning Engineering System Application against KRR-2

    International Nuclear Information System (INIS)

    KAERI is the only expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant) decommission. This paper contains validation results of the KAERI DES by using KRR-2 decommissioning data. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DES application program. One of decommissioning experience data, KRR-2 was used for KAERI DES validation and it successfully is reflected in KAERI DES

  19. Status of industry standards for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    This paper discusses how several professional societies are preparing industry standards on nuclear facility decommissioning: ASTM (American Society for Testing and Materials), Nuclear Technology Committee, Decommissioning Subcommittee, E10.03; ASME (American Society of Mechanical Engineers), Nuclear Quality Assurance (NQA) Committee's Working Group on Decommissioning and the Reactor Services Committee's Subcommittee on Decommissioning; and Health Physics Society Standards Committee (HPSSC) working under the auspices of the American National Standards Institute (ANSI). According to the author, the standards of these diverse groups mesh to form a cohesive body of guidance for planning a nuclear facility decommissioning

  20. Analysis of the Possibility of Required Resources Estimation for Nuclear Power Plant Decommissioning Applying BIM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Estimation of decommissioning cost, decommissioning strategy, and decommissioning quantity at the time when entering into any decommissioning plans are some elements whose inputs are mandatory for nuclear power plant decommissioning. Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. This study aims at analyzing whether required resources for decommissioning nuclear power plants can be estimated, applying BIM. To achieve this goal, this study analyzed the status quo of BIM such as definition, characteristics, and areas applied, and made use of them when drawing out study results by examining types and features of the tools realizing BIM. In order to review how BIM could be used for decommissioning nuclear power plants, the definition, characteristics and applied areas of BIM were discussed. BIM designs objects of the structures (walls, slabs, pillars, stairs, windows and doors, etc.) by 3D technology and endows attribute (function, structure and usage) information for each object, thereby providing visualized information of structures for participants in construction projects. Major characteristics of BIM attribute information are as follows: - Geometry: The information of objects is represented by measurable geometric information - Extensible object attributes: Objects include pre-defined attributes, and allow extension of other attributes. Any model that includes these attributes forms relationships with other various attributes in order to perform analysis and simulation. - All information including the attributes are integrated to ensure continuity, accuracy and accessibility, and all information used during the life cycle of structures are supported. This means that when information of required resources is added as another attributes other than geometric

  1. TEACHER BELIEFS: A CASE STUDY

    Institute of Scientific and Technical Information of China (English)

    HuYijie

    2004-01-01

    In recent years ELT has stressed the role which teachers' beliefs play in shaping what they do in the classroom. But so far as teaching English in China is concerned, we lack empirical insight into the relationship between teachers' beliefs and their classroom practice. With specific reference to the use of English in intensive reading classes, by presenting and discussing data from a case study of a non-native college English teacher,this exploratory qualitative classroom research sheds light on the nature of teachers' beliefs held consciously or unconsciously.Their subsequent change and impact on the classroom will also be reported and discussed.

  2. Decontamination and decommissioning focus area. Technology summary

    International Nuclear Information System (INIS)

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities

  3. Virtual reality technology and nuclear decommissioning

    International Nuclear Information System (INIS)

    During past years, an important activity at the Halden VR Centre (HVRC), Institute for Energy Technology (IFE) in Halden has been the development of virtual reality (VR) software for use in the decommissioning of nuclear facilities. It is hoped that use of VR technology in the planning process may prove beneficial both with regard to minimizing workers' radiation exposure, as well as in helping to achieve the efficient use of human resources. VR can also be a valuable tool in the dismantling phase. In addition to this, VR provides the decommissioning project team with an effective medium in presentations to the public, as well as for communicating with relevant engineers and licensing authorities. The most extensive IFE VR decommissioning project is at present the VRdose project, conducted in co-operation with the Japan Nuclear Cycle Development Institute (JNC). VRdose will be used in the decommissioning of one of JNC's reactors, the Fugen Nuclear Power Station.The paper describes the present and planned versions of the VRdose system, but also briefly describes other related activities at HVRC. (author)

  4. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  5. Decontamination and decommissioning focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  6. Spent fuel disposal impact on plant decommissioning

    International Nuclear Information System (INIS)

    Regardless of the decommissioning option selected (DECON, SAFSTOR, or ENTOMB), a 10 CFR 50 license cannot be terminated until the spent fuel is either removed from the site or stored in a separately 10 CFR 72 licensed Independent Spent Fuel Storage Installation (ISFSI). Humboldt Bay is an example of a plant which has selected the SAFSTOR option. Its spent fuel is currently in wet storage in the plant's spent fuel pool. When it completes its dormant period and proceeds with dismantlement, it will have to dispose of its fuel or license an ISFSI. Shoreham is an example of a plant which has selected the DECON option. Fuel disposal is currently critical path for license termination. In the event an ISFSI is proposed to resolve the spent fuel removal issue, whether wet or dry, utilities need to properly determine the installation, maintenance, and decommissioning costs for such a facility. In considering alternatives for spent fuel removal, it is important for a utility to properly account for ISFSI decommissioning costs. A brief discussion is presented on one method for estimating ISFSI decommissioning costs

  7. Sodium Reactor Experiment decommissioning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  8. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  9. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  10. The decommissioning of the water boiler reactor

    International Nuclear Information System (INIS)

    Following completion of service, the Water Boiler Reactor (WBR) has been decommissioned by the Institute of Nuclear Energy Research (INER) under the Atomic Energy Council's (AEC) regulation. The WBR is a light water moderated and graphite reflected research reactor with peak thermal power of 100 kW. The unique feature of the WBR is that it is fueled with uranyl sulfate (UO2SO4) which is in liquid form. Since there is another research reactor owned by I7NER of megawatt scale in the planning stages for decommissioning, the WBR project was conducted with great care to accumulate experience. Extensive planning by INER and step-by-step regulative activities by AEC were followed regardless of the structural simplicity of the WBR. Valuable information was gathered in the task and will be useful for preparing future decommissioning needs. The major work in the WBR decommissioning project was finished within six months and the accumulated dose received during the work was 1 9.63mSv. (author)

  11. Development of computer program for estimating decommissioning cost - 59037

    International Nuclear Information System (INIS)

    The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called 'DeCAT-Pro', which is Decommission-ing Cost Assessment Tool - Professional. (Hereinafter called 'DeCAT') This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically. (authors)

  12. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  13. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Arabic Edition)

    International Nuclear Information System (INIS)

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  14. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  15. Decommissioning of TRIGA Mark II type reactor

    International Nuclear Information System (INIS)

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  16. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  17. BIDSF Project B6.4.Decommissioning database of V1 NPP

    International Nuclear Information System (INIS)

    Since 2001, the preparation of V1 NPP practical decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund (BIDSF), under the administration of the European Bank for Reconstruction and Development. AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, have been carrying out BIDSF B6.4 project - Decommissioning database development (June 2008 until July 2010). The main purpose of the B6.4 project is to develop a comprehensive physical and radiological inventory database to support RAW management development of the decommissioning studies and decommissioning project of Bohunice V1 NPP. AMEC Nuclear Slovakia was responsible mainly for DDB design, planning documents and physical and radiological characterization including sampling and analyses of the plant controlled area. After finalization of all activities DDB includes over 75.000 records related to individual equipment and civil structures described by almost 3.000.000 parameters. On the basis of successful completion of the original contract the amendment was signed between JAVYS and Consultant's Consortium related to experimental characterization of NPP activated components. The works within this amendment have been still running. (authors)

  18. Using correspondence analysis in multiple case studies

    NARCIS (Netherlands)

    Kienstra, N.H.H.; van der Heijden, P.G.M.

    2015-01-01

    In qualitative research of multiple case studies, Miles and Huberman proposed to summarize the separate cases in a so-called meta-matrix that consists of cases by variables. Yin discusses cross-case synthesis to study this matrix. We propose correspondence analysis (CA) as a useful tool to study thi

  19. Using Correspondence Analysis in Multiple Case Studies

    NARCIS (Netherlands)

    Kienstra, Natascha; van der Heijden, Peter G.M.

    2015-01-01

    In qualitative research of multiple case studies, Miles and Huberman proposed to summarize the separate cases in a so-called meta-matrix that consists of cases by variables. Yin discusses cross-case synthesis to study this matrix. We propose correspondence analysis (CA) as a useful tool to study thi

  20. A parathyroid scintigraphy case study

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Desiree [UCD School of Diagnostic Imaging, St Anthony' s Campus, Herbert Avenue, Dublin 4 (Ireland)]. E-mail: desiree.oleary@ucd.ie

    2005-05-01

    Background: There has been much debate concerning the most suitable protocol for parathyroid scintigraphy; the merits of various radiopharmaceuticals versus the correct imaging protocol to visualise both ectopic and anatomically placed adenomas against the various equipment choices have been debated. Aim: To demonstrate, through the use of a case study, the necessity of changing imaging protocols for parathyroid scintigraphy where a definitive imaging diagnosis is absent in the face of strong clinical suspicion. Method: Use is made of Tc99mMIBI, full field chest scintigraphy, a clearly defined imaging protocol and SPECT imaging to locate ectopic parathyroid tissue in a female patient with significant symptoms of parathyroid hyperfunction. Results: A single hyperfunctioning adenoma is located in the pre-carinal area of the mediastinum. Using a radioguided surgical technique the hyperfunctioning tissue is excised and confirmed by histopathology. Conclusion: Whilst a dramatic reduction in patient symptoms was not seen immediately in this patient, the symptoms of the illness have been subsiding since January 2003. This case study demonstrates the necessity of changing imaging protocols for parathyroid scintigraphy where a definitive imaging diagnosis is absent in the face of strong clinical suspicion.

  1. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    International Nuclear Information System (INIS)

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data

  3. Case Study: A Picture Worth a Thousand Words? Making a Case for Video Case Studies

    Science.gov (United States)

    Pai, Aditi

    2014-01-01

    A picture, they say, is worth a thousand words. If a mere picture is worth a thousand words, how much more are "moving pictures" or videos worth? The author poses this not merely as a rhetorical question, but because she wishes to make a case for using videos in the traditional case study method. She recommends four main approaches of…

  4. Disposal aspects of low and intermediate level decommissioning waste. Results of a coordinated research project 2002-2006

    International Nuclear Information System (INIS)

    This CD accompanies IAEA-TECDOC-1572, a publication which presents the result of a five-year study performed within the Coordinated Research Project (CRP) on Disposal Aspects of Low and Intermediate Level Decommissioning Waste, aiming at sharing national approaches in managing radioactive waste arising after termination of the operation of these facilities. Based on data about waste types and inventories, the project objectives were to provide examples of national approaches when outlining appropriate strategies for decommissioning waste disposal, to assess the performance of the typical waste streams relevant to these activities, and to indicate specific aspects of the disposal of waste derived from the decommissioning. Fourteen Member States assessed the link between decommissioning processes and waste disposal issues including: Argentina, Canada, China, Germany, Hungary, India, the Republic of Korea, Lithuania, Russian Federation, Slovakia, Sweden, Ukraine and the USA. In addition, the UK has participated as an observer. Their detailed contributions are indexed individually

  5. STS Case Study Development Support

    Science.gov (United States)

    Rosa de Jesus, Dan A.; Johnson, Grace K.

    2013-01-01

    The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.

  6. KAIZEN – A case study

    Directory of Open Access Journals (Sweden)

    Manjunath Shettar

    2015-05-01

    Full Text Available The ultimate objective of manufacturing industries is to increase productivity with high quality. At present, many manufacturing companies are facing problems such as high quality rejection, high inventories, high lead time, high costs of production, and inability to cope with customer orders. By implementing and practicing the lean production system many problems can be solved without employing high-tech and high-touch approaches but by involving people on the shop floor in Kaizen activities. Kaizen is one of the powerful tools of lean manufacturing. Kaizen refers to continuous improvement in performance, cost and quality. Kaizen ensures that manufacturing processes become leaner and fitter, but eliminate waste (problem where value is added. The main objective of this paper is to provide a background on kaizen, present an overview of kaizen concepts that are used to transform a company into a high performing lean enterprise. A case study of implementation of Kaizen‟s has been discussed.

  7. SOGIN Decommissioning strategy and funding (Italy)

    International Nuclear Information System (INIS)

    Statement: In Italy, as it is well known, there are no more operational NPPs. The four existing nuclear plants are definitely shutdown and ready for decommissioning. Considerations on decommissioning funding system have to take into account this particular situation. Strategy for decommissioning: New inputs given to SOGIN by the Italian Government are: conditioning all radioactive waste existing on the NPPs within the year 2010, release all nuclear sites - free of radiological constraints - by 2020. The last task is conditioned by availability of the national waste repository by the year 2009. Strategy for decommissioning: Key issue is prompt dismantling considering No more nuclear activities in Italy and Progressive loss of competencies. Previously Existing funds: Before plant shutdown, ENEL has cumulated provisions for decommissioning, even in absence of a clear regulatory framework. These provisions were not sufficient for decommissioning, considering the early closure of the plants. An additional fund was granted to ENEL by the government, in the form of a 'credit' to be paid by the 'electric system' (CCSE). This fund (provisions + credit) was considered sufficient by ENEL for a decommissioning with Safe Store strategy (fund = discounted foreseen costs). The total fund (provisions + credit) was assigned to Sogin at the incorporation date. The amount, money 1999, was about 800 M euros. Considering the new context: new strategy (Prompt Dismantling with site release by 2020), Sogin constitution (societal costs), new economic conditions. The fund was not considered sufficient for all Sogin tasks. This conclusion was agreed upon also by the independent 'Authority for electric energy and gas'. A new regulatory framework was therefore defined. Regulatory aspects: The Legislative Decree 79/99 has stated that costs for the decommissioning of NPP, fuel cycle back end and related activities should be considered as stranded costs for the general electric system. The same

  8. Radiological Characteristics of decommissioning waste from a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahmed, Rizwan; Heo, Gyun Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2011-11-15

    The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be 1.04 x 10{sup 16} Bq, 2.09 x 10{sup 3} W, 5.31 x 10{sup 14} m{sup 3}-water, 4.69 x 10{sup 5} kg, and 7.38 x 10{sup 1} m{sup 3}, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

  9. Approaches relating to decommissioning of nuclear facilities. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    This report arises from the fifth series of peer discussions on regulatory practices entitled 'Approaches relating to decommissioning of nuclear facilities'. Senior regulators from 22 Member States participated in three peer group discussions during 1996-1997. This report presents the outcome of these meetings and recommendations of good practices identified by senior regulators, which do not necessarily reflect those of the governments of the nominating Member States, the nominating organizations, nor the IAEA. In many Member States nuclear facilities such as power and research reactors, nuclear fuel cycle facilities and various industrial and medical facilities have reached the end of their useful life or will reach it in the near future. These facilities need to be safely decommissioned without causing any undue radiological, chemical or other risks to workers, the public and the environment. Today, there is a growing consensus that decommissioning needs to be given consideration from the design phase of a new facility and that planning for decommissioning is to be carried out during the entire life of the nuclear facility. In most Member States, there is no comprehensive set of requirements, be it on a legal or technical level, available to plan, assess, approve and carry out decommissioning operations. Since most of the facilities to be decommissioned in the near future are demonstration or prototype facilities, case by case specific and prescriptive requirements will have to be developed. However, such case by case requirements need to be based on existing applicable regulations as well as on generally accepted principles. In order to assist Member States in ensuring safe decommissioning operations, the IAEA has convened the fifth series of peer discussions on 'Approaches relating to decommissioning of nuclear facilities'. The results and findings of these discussions are summarized in this report, concentrating on recommendations and established good

  10. Using Case Studies To Teach Science.

    Science.gov (United States)

    Gabel, Connie

    Using case studies in science instruction develops problem solving and enhances listening and cooperative learning skills. Unlike other disciplines such as law and medicine, the case study method is rarely used in science education to enrich the curriculum. This study investigates the use of content-based case studies as a means of developing…

  11. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  12. NMSS handbook for decommissioning fuel cycle and materials licensees

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  13. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Science.gov (United States)

    2010-07-01

    ... Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit a written report to... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After I decommission a pipeline,...

  14. The impact of CTRF decommissioning radioactive waste at Saligny radioactive waste repository. A balance between requirements and ethical aspects of radioactive waste management for future generations

    International Nuclear Information System (INIS)

    Full text: In this paper presented are the technical and non-technical conditions and requirements posed by decommissioning of Detritiation Plant (CTRF) at Cernavoda NPP and waste management resulting from this operation. Radioactive waste resulting from decommissioning will be stored at The Final Repository for Low and Medium Active Waste (DFDSMA) at Saligny. As this repository was dimensioned for radwastes resulting from only four CANDU 6 units, additional amounts of radwastes could conflict with the limited storage capacity. Moreover, in case of decommissioning of Detritiation Plant a balance between ethical aspects towards the future generations and requirements of radwaste management appears to be necessary. (authors)

  15. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that ∼5,500 m3 of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste

  16. Catalog of NASA-Related Case Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The OCKO has developed over 50 case studies to enhance learning at workshops, training, retreats and conferences. Case studies make mission knowledge attractive and...

  17. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    storage of packed wastes. Currently the preliminary feasibility study is completed that concerns to construction in Mangystau region (close to BN-350 reactor plant) of special processing plant and disposal facility. Construction of radioactive waste processing plant and disposal facility should become the timely measure for solution of many problems on radioactive waste management. The number of other objectives are also being solved: Criteria development for radioactive waste classification; Substantiation of criteria limiting values for exemption from radiation account for material produced during decommissioning; Development of principles and methods for control of equipment, materials and wastes for reuse; Development of scenarios for reuse of materials, which would not induce the socially unacceptable exposure dose for population

  18. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  19. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  20. External laundry service. A tool for fleet management and flexible decommissioning

    International Nuclear Information System (INIS)

    While it is common in other countries such as the USA or Sweden to send out contaminated garments to an external laundering facility, this is not the case in Germany, where the preferred tendency in the nuclear industry is to remain independent from an external service provider. After the US based company 'UniTech' built a laundering facility for controlled area garment in Coevorden, Netherlands, in 1996, German operators began testing this service for decommissioning work. At the time, their justification for this choice was based on the following: - In case of a disrupted delivery the consequences would not be as severe for a nuclear power plant in the process of decommissioning. - Additional investments (evaporators) would have been necessary to install in the laundries of the individual nuclear power plants. - The existing on-site laundries and waste treatment equipment were often not suited to deal with nuclides, specific to decommissioning. It quickly became evident that a specialized service provider could conduct the necessary tasks more effectively, more flexibly, and with higher quality than an ancillary on-site facility. In addition, it became evident that central fleet management tasks are facilitated by contracting an external service provider. Business and technical processes, and requirements agreed upon in a framework agreement, supported the introduction of unified standards. The road map for future decommissioning projects in Germany is impacted by many uncertainties. Therefore, planning requires a great deal of flexibility. Here, as with other related operations, it is critical that enough protective garments are in the right place at the right time. If this does not happen, delays, additional costs and changes to process planning result. For these reasons, an external laundering and garment management service is the most reliable solution. Industry experience shows that even very short-term requests for large quantities of protective garments

  1. Regulation evolution in Sweden with emphasis on financial aspects of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, St. [the Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Sjoblomb, R. [Tekedo AB, Nykoping (Sweden)

    2008-07-01

    It is generally agreed that it should be the polluters that pay. A corollary to this principle is that it is those who benefit from e g nuclear electricity generation that should pay all the future costs for decommissioning and waste management. In order for such a corollary to be implemented in practice it is necessary that costs can be estimated, that appropriate funds can be accumulated, and that money can be made available at the time when it is needed. This is the principle underlying the recent (2006) recommendation of the European Union Commission on financial resources for decommissioning. The Commission states that a segregated fund with appropriate controls on use is the preferred option for all nuclear installations, and a clear recommendation to this effect is made for new installations. Furthermore, as regards the estimation of decommissioning costs, the Commission recommends a prudent calculation of costs based on appropriate risk management criteria and external supervision. The commission finds that experience shows that exchange of information between national experts concerning the various approaches to and financial arrangements for decommissioning and waste management is an excellent way of facilitating a common response to safety challenges. However, stringent requirements on assessing and securing assets for liabilities have been in force since many years through the various national implementations of the International Financial Reporting Standards (IFRS) and the International Accounting Standards (IAS). Thus, precise calculations are to be presented each year (except for ongoing court cases), and in case estimation is difficult, various scenarios should be considered and a weighed average presented. In Sweden, the Law of Finance (SFS 2006:647) regulates how the costs for decommissioning and waste management are to be calculated and paid. A fee is levied on the use of nuclear electricity and accumulated in the waste fund. In addition, the

  2. Role of the statistician in the decommissioning of the New Brunswick Laboratory and other nuclear facilities

    International Nuclear Information System (INIS)

    This report examines what the statistician can contribute to decommissioning operations, with particular emphasis on the New Brunswick Laboratory (NBL) currently scheduled for decommissioning beginning in FY81. In the opinion of the author, a professional statistician should be a full member of the planning team directing decommissioning operations at the New Brunswick Laboratory. This opinion is based in part on the familiarity with the valuable contributions made by statisticians toward the cleanup of transuranics in soil on the Enewetak Atoll. More generally, however, the professional statistician can help plan the decommissioning effort to help ensure that representative data are obtained, analyzed and, interpreted in appropriate ways so that RA decisions can be made with the required confidence. The statistician's contributions at the NBL could include providing guidance on the number and location of samples and in-situ measurements, analyzing and interpreting these data, designing a data management and documentation system, interfacing with the certification contractor's statistician, and assisting in writing documentation and final reports. In all cases, the statistician should work closely with the professional health physicist and others on the planning team in a closely coordinated effort of planning and data analysis

  3. Decommissioning a tritium glove-box facility

    International Nuclear Information System (INIS)

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described

  4. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Since 1973, when the IAEA first introduced the subject of decontamination and decommissioning into its programme, twelve Agency reports reflecting the needs of the Member States on these topics have been published. These reports summarize the work done by various Technical Committees, Advisory Groups, and International Symposia. While the basic technology to accomplish decontamination and decommissioning (D and D) is fairly well developed, the Agency feels that a more rapid exchange of information and co-ordination of work are required to foster technology, reduce duplication of effort, and provide useful results for Member States planning D and D activities. Although the Agency's limited financial resources do not make possible direct support of every research work in this field, the IAEA Co-ordinated Research Programme (CRP) creates a forum for outstanding workers from different Member States brought into closer contact with one another to provide for more effective interaction and, perhaps subsequently, closer collaboration. The first IAEA Co-ordinated Research Programme (CRP) on decontamination and decommissioning was initiated in 1984. Nineteen experts from 11 Member States and two international organizations (CEC, OECD/NEA) took part in the three Research Co-ordination Meetings (RCM) during 1984-87. The final RCM took place in Pittsburgh, USA, in conjunction with the 1987 International Decommissioning Symposium (sponsored by the US DOE and organized in co-operation with the IAEA and OECD/NEA). The present document summarizes the salient features and achievements of the co-ordinated research work performed during the 1984-87 programme period. The document consists of two parts: Part 1, Summary of the three research co-ordination meetings and Part 2, Final submissions by participants on the research work performed during 1984-1987. A separate abstract was prepared for each of the 7 reports presented. Refs, figs and tabs

  5. Decommissioning a tritium glove-box facility

    Energy Technology Data Exchange (ETDEWEB)

    Folkers, C.L.; Homann, S.G.; Nicolosi, A.S.; Hanel, S.L.; King, W.C.

    1979-08-08

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described.

  6. Concentrated photovoltaics, a case study

    Directory of Open Access Journals (Sweden)

    Antonini Piergiorgio

    2014-01-01

    Full Text Available Concentrated Photovoltaics (CPV, once a niche technology, has now reached the maturity and reliability for large scale power generation. Especially in regions where temperatures are very high, the use of high efficiency triple junction solar cells with concentrating optics allows stable energy yield. Thus CPV can be seen as complementary and not in concurrence with silicon photovoltaics. The state of the art, the advantages and limitations of this technology will be shown. Among the main advantages of CPV is the possibility of a much higher energy supply, when compared to silicon photovoltaics, both comparing CPV and silicon with same area or the same installed power. The use of recycled and recyclable materials allows a more environmentally friendly production. The possibility to couple CPV with desalination facilities, energy storage will be analysed. As an example a case study of a CPV installation in Northern Italy is discussed. Here the use of mature technologies, derived from automotive and lighting sectors resulted in a simple and efficient module.

  7. The U.S. Nuclear Regulatory Commission's decommissioning process

    International Nuclear Information System (INIS)

    The term 'Decommission' is defined in the U.S.. Nuclear Regulatory Commission's (USNRC's) regulations at 10 CFR 20.1003 as to remove a facility or site safely from service and reduce residual radioactivity to a level that permits 1) release of the property for unrestricted use and termination of the license; or, 2) release of the property under restricted conditions and the termination of the license. USNRC's decommissioning program encompasses the decommissioning of all NRC licensed facilities, ranging from routine license terminations for sealed source users, to the oversight of complex sites and those on the Site Decommissioning Management Plan (SDMP), as well as power and non-power reactors. This paper describes the USNRC's decommissioning process for materials and reactor facilities and presents an overview of USNRC's decommissioning program activities. (author)

  8. Decommissioning U.K. power stations

    International Nuclear Information System (INIS)

    The strategy for decommissioning U.K. commercial nuclear power stations at the end of their operating lives has hitherto been based on early partial dismantling and clearance to green-field site after about 100 years. This strategy involves a considerable financial liability particularly in the early years following shutdown of the stations. In 1990 Nuclear Electric identified the potential for significantly reducing this liability by reviewing a range of alternative strategies for decommissioning. This review has now been completed by Nuclear Electric and this paper describes the background to it, the review itself and the conclusions. As a result Nuclear Electric are now proposing to adopt a new strategy, referred to as the ''Deferred Safestore strategy'' for all its gas-cooled power stations. This does not involve any significant active dismantling until about 135 years after shutdown, allowing radioactivity levels in the plant to decay to very low levels in-situ. Following defuelling, an initial care and maintenance phase of about 30 years occurs followed by construction of containments (Safestores) around all buildings containing active plant. The purpose of these is to protect the buildings and their contents from deterioration due to weathering for a further 100 years. Complete dismantling is carried out after that time. An alternative option at that time, with further considerable cost savings, could be In-situ decommissioning. (Author)

  9. The regulatory challenges of decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    Each nuclear power plant, fuel cycle facility and nuclear research and test facility that is operating today will eventually reach the end of its useful life and cease operation. During the period of its decommissioning, it is important to properly manage the health and environmental hazards and physical protection measures of the shutdown facility in order to protect the health and safety of the public and workers and to safeguard any nuclear materials. In this regard, the nuclear safety regulatory body is responsible for independently assuring that decommissioning activities are conducted safely, that radioactive materials and spent nuclear fuel are disposed of properly and that the site is in an acceptable end state. The purpose of this report is to describe the broad range of safety, environmental, organisational, human factors and public policy issues that may arise during the decommissioning of nuclear reactors and that the regulatory body should be prepared to deal with in the framework of its national regulatory system. The intended audience is primarily nuclear regulators, although the information and ideas may also be of interest to government authorities, environmental regulators, nuclear operating organisations, technical expert organisations and the general public. (author)

  10. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter. While characterization for planning purposes can be done using manual approaches, such as drawing up blueprints and taking measurements and photos, laser scanning technologies are now allowing decommissioning teams to more quickly and accurately map out the physical characteristics of a facility’s structures, systems and components. This is complemented by highly sensitive measurements taken with high-tech devices, such as remotely operated gamma cameras that can precisely and efficiently measure the radiological characteristics of the facility, including the amount and type of radiation. Similar measurements are needed once the contamination has been removed, to verify that any residual radiation levels are indeed insignificant

  11. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    International Nuclear Information System (INIS)

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints

  12. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  13. Initial decommissioning planning for the Budapest research reactor

    OpenAIRE

    Toth Gabor

    2011-01-01

    The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  14. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  15. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  16. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R.; Noynaert, L.; Harnie, S.; Marien, J.

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  17. A HARD CHOICE (CASE STUDY)

    OpenAIRE

    KRAVCHENKO NATALIYA A.; KUZNETSOVA SVETLANA A.

    2014-01-01

    The case describes the problems of strategic choice: a small company successfully working in the engineering market (automation of technological processes) in the electric power industry has to make a decision on its further development in a changing external environment and increased competition. The case was carried out to be used in training programs of different levels within the courses “Strategic Management”, “Innovation Management”, “Strategic Analysis Methods”, “Change Management” whe...

  18. Conclusions and theses relating to the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Most of the problems encountered in decommissioning are due to deficiencies on the side of the laws. Items of controversy revealed at the meeting are: -content covered by the term decommissioning; - definition of decommissioning stages and their hierarchy in schedule; - subject matter of decommissioning; -interfaces between operation and decommissioning processes; - substantive requirements to be met; - formal requirements to be met. The meaning of the term 'nuclear installation' used in paragraph 7 sub-sec. (3), 1st sentence Atomic Energy Act corresponds to the meaning of the term used in paragraph 7 sub-sec. 1 Atomic Energy Act. However, the licensee is free to proceed with the decommissioning of individual components of an installation that can be disconnected from the safety programme of decommissioning activities. Those measures in the post-shutdown phase under regulatory control under the operating licence or the surveillance programme do not require to be licensed anew. All other measures require a licence for decommissioning ('as far as'). Decommissioning cannot be 'directed' by orders under the surveillance programme. The (unlawful) nuclear power phaseout cannot be imposed on the basis of paragraph 7 sub-sec. 3 Atomic Energy Act. (orig./HSCH)

  19. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  20. Decommissioning of fuel cycle facilities in South Africa

    International Nuclear Information System (INIS)

    Experience gained in South Africa on the decommissioning of uranium conversion, enrichment and fuel fabrication facilities is briefly summarized with emphasis on the lessons learned. The South African Nuclear Energy Corporation (Necsa) has consolidated its nuclear decommissioning and waste management activities at Pelindaba and introduced a comprehensive, all-embracing nuclear liability management approach. The paper describes the experience gained on various aspects of decommissioning and waste management including the social impacts of the decommissioning and waste related activities during the decade from 1995 to 2005. Certain technological difficulties arose during this period and the approaches adopted to resolve these difficulties are also addressed. (author)

  1. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    International Nuclear Information System (INIS)

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] → [Review project and conduct Characterisation review of power station] → [Identify work packages] → [Set up WBS to level 3] → [Assign work packages] → [Update WBS to level 4] →[Develop cost model] → [Develop logic network] → [Develop risk management procedure] ] → [Develop project strategy document]→ [Work package

  2. Stage of decommissioning of the WWR-S research nuclear reactor at Magurele-Bucharest

    International Nuclear Information System (INIS)

    Full text: A decommissioning project is performed on the nuclear facility research reactor WWR-S Magurele-Bucharest to remove the radioactive and hazardous materials to avoid any risk to human health and the environment. The project involves four phases, namely: assessment, development, activity implementation and closeout. There are two major parts of the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternatives will be considered, the best alternative chosen, final goal identified, risk assessments evaluated, and issues of regulations supporting assessment, land use considerations, financial problems, disposal availability, public involvement, and technology developments will be appropriately solved. After a decommissioning alternative is chosen, detailed engineering will begin following appropriate regulatory guidance. The plan requires characterisation information, namely: review of decommissioning alternatives; justification for the selected alternative; provision for regulatory compliance; predictions of personnel exposure, radioactive waste volume, and cost. Other activities are the following: scheduling, preparation for decommissioning operations, coordination, documentation, characterization, report, feasibility studies, Decommissioning Plan, project report day to day, radiological survey, airborne sampling records, termination survey of the site. Key concerns in operations are worker protection, health and safety program, review of planing work, work area assessment, work area controls, personal protection and monitoring, environmental protection: air quality, surface water, ground water, shipments, effluent sampling and monitoring, environmental monitoring, site release

  3. Decommissioning of nuclear facilities in Korea

    International Nuclear Information System (INIS)

    In 1996, it was concluded that the first Korea research reactor (KRR-1) and the second Korea research reactor (KRR-2) would be shut down and decommissioned. The main reason for the decommissioning was that the facilities became old and has become surrounded by the urbanised community. And many difficulties, including the higher cost, were faced according to the enhanced regulations. Another reason was the introduction of a new research reactor 'HANARO' in 1995. A project to decommission the reactors was launched on January of 1997 with a goal of release of the site and buildings for unrestricted use by 2008. All the radioactive wastes generated are to be transported to the national repository, planned by the Korea Hydro and Nuclear Power Company (KHNP), and the final evaluation of the residual radioactivity will be made before the clearance of the site. As a first step of the project, a decommissioning plan, including the assessment of the environmental impact and the quality assurance program, was prepared and submitted to the government in 1998. It was approved, after its safety evaluation, by the Korea Institute of Nuclear Safety (KINS) in November of 2000. After some preparative works such as documentation of procedures, the decontamination and dismantling works for the laboratories and hot cells of KRR-2 were started in September, 2001 and finished in December, 2002. The spent fuels that had been generated from the reactors were transferred to the United States in 1998 and no spent fuel remained at the site. All the liquid waste, both operational and decommissioning, was very low in its radioactivity and was treated in a natural evaporation facility of 200 m3/year capacity, developed by KAERI. Especially the laundry waste was treated in a membrane filtering unit for the removal of surfactants before being introduced to the natural evaporator. The solid wastes were segregated and packed in the container of 4 m3, designed according to the ISO-1496, and also in

  4. Remediation of Site of Decommissioning Research Reactor

    International Nuclear Information System (INIS)

    In the world the most widespread method of soil decontamination consists of removing the contaminated upper layer and sending it for long-term controlled storage. However, implementation of this soil cleanup method for remediation of large contaminated areas would involve high material and financial expenditures, because it produces large amounts of radioactive waste demanding removal to special storage sites. Contaminated soil extraction and cleanup performed right on the spot of remediation activities represents a more advanced and economically acceptable method. Radiological separation of the radioactive soil allows reducing of amount of radwaste. Studies performed during the liquidation of the Chernobyl accident consequences revealed that a considerable fraction of radioactivity is accumulated in minute soil grains. So, the separation of contaminated soil by size fractions makes it possible to extract and concentrate the major share of radioactivity in the fine fraction. Based on these researches water gravity separation technology was proposed by Bochvar Institute. The method extracts the fine fraction from contaminated soil. Studies carried out by Bochvar Institute experts showed that, together with the fine fraction (amounting to 10-20% of the initial soil), this technology can remove up to 85-90% of contaminating radionuclides. The resulting 'dirty' soil fraction could be packaged into containers and removed as radwaste, and decontaminated fractions returned back to their extraction site. Use of radiological and water gravity separations consequently increases the productivity of decontamination facility. Efficiency of this technology applied for contaminated soil cleanup was confirmed in the course of remediation of the contaminated territories near decommissioning research reactor in the Kurchatov Institute. For soil cleaning purposes, a special facility implementing the technology of water gravity separation and radiometric monitoring of soil

  5. Five misunderstandings about case study research

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2004-01-01

    This article examines five common misunderstandings about case-study research: (1) Theoretical knowledge is more valuable than practical knowledge; (2) One cannot generalize from a single case, therefore the single case study cannot contribute to scientific development; (3) The case study is most...... useful for generating hypotheses, while other methods aremore suitable for hypotheses testing and theory building; (4) The case study contains a bias toward verification; and (5) It is often difficult to summarize specific case studies. The article explains and corrects these misunderstandings one by one...... and concludes with the Kuhnian insight that a scientific discipline without a large number of thoroughly executed case studies is a discipline without systematic production of exemplars, and that a discipline without exemplars is an ineffective one. Social science may be strengthened by the execution of more...

  6. Five misunderstandings about Case-study Research

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    This article examines five common misunderstandings about case-study research: (1) Theoretical knowledge is more valuable than practical knowledge; (2) One cannot generalize from a single case, therefore the single case study cannot contribute to scientific development; (3) The case study is most...... useful for generating hypotheses, while other methods aremore suitable for hypotheses testing and theory building; (4) The case study contains a bias toward verification; and (5) It is often difficult to summarize specific case studies. The article explains and corrects these misunderstandings one by one...... and concludes with the Kuhnian insight that a scientific discipline without a large number of thoroughly executed case studies is a discipline without systematic production of exemplars, and that a discipline without  exemplars is an ineffective one. Social science may be strengthened by the execution of more...

  7. Five Misunderstandings About Case-Study Research

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2006-01-01

    This article examines five common misunderstandings about case-study research: (a) theoretical knowledge is more valuable than practical knowledge; (b) one cannot generalize from a single case, therefore, the single-case study cannot contribute to scientific development; (c) the case study is most...... useful for generating hypotheses, whereas other methods are more suitable for hypotheses testing and theory building; (d) the case study contains a bias toward verification; and (e) it is often difficult to summarize specific case studies. This article explains and corrects these misunderstandings one...... by one and concludes with the Kuhnian insight that a scientific discipline without a large number of thoroughly executed case studies is a discipline without systematic production of exemplars, and a discipline without exemplars is an ineffective one. Social science may be strengthened by the execution...

  8. Good practices in decommissioning planning and pre-decommissioning activities for the Magurele VVR-S nuclear research reactor

    Directory of Open Access Journals (Sweden)

    Dragusin Mitica

    2011-01-01

    Full Text Available The VVR-S Nuclear Research Reactor at the “Horia Hulubei” National Institute of Physics and Nuclear Engineering in Magurele, Bucharest, will be decommissioned applying the immediate dismantling strategy. The implementation of the decommissioning project started in 2010 and is planned for completion within 11 years. Good practices in decommissioning planning, organization, funding, and logistics are described in this paper.

  9. Transanal rectopexy - twelve case studies

    Directory of Open Access Journals (Sweden)

    Rubens Henrique Oleques Fernandes

    2012-06-01

    Full Text Available OBJECTIVES: This study analyzed the results of transanal rectopexy and showed the benefits of this surgical technique. METHOD: Twelve patients were submitted to rectopexy between 1997 and 2011. The surgical technique used was transanal rectopexy, where the mesorectum was fixed to the sacrum with nonabsorbable suture. Three patients had been submitted to previous surgery, two by the Delorme technique and one by the Thiersch technique. RESULTS: Postoperative hospital stay ranged from 1 to 4 days. One patient (8.3% had intraoperative hematoma, which was treated with local compression and antibiotics. One patient (8.3% had residual mucosal prolapse, which was resected. Prolapse recurrence was seen in one case (8.3%. Improved incontinence occurred in 75% of patients and one patient reported obstructed evacuation in the first month after surgery. No death occurred. CONCLUSION: Transanal rectopexy is a simple, low cost technique, which has shown good efficacy in rectal prolapse control.OBJETIVO: O presente estudo analisou os resultados da retopexia pela via transanal e expôs os benefícios desta técnica cirúrgica. MÉTODO: Doze pacientes com prolapso foram operados no período de 1997 a 2011. A técnica cirúrgica usada foi a retopexia transanal, onde o mesorreto foi fixado ao sacro com fio inabsorvível. Três pacientes tinham cirurgia prévia, dois pela técnica de Delorme e um pela técnica de Thiersch. RESULTADOS: A permanência hospitalar pós-operatória variou de 1- 4 dias. Uma paciente (8,3% apresentou hematoma transoperatório que foi tratado com compressão local e antibioticoterapia. Um paciente apresentou prolapso mucoso residual (8,3%, que foi ressecado. Houve recidiva da procidência em um caso (8,3%. A melhora da incontinência ocorreu em 75% dos pacientes e uma paciente apresentou bloqueio evacuatório no primeiro mês após a cirurgia. Não houve mortalidade entre os pacientes operados. CONCLUSÃO: A retopexia transanal é uma t

  10. Drive Electric Vermont Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Fred [Energetics Incorporated, Columbia, MD (United States); Roberts, Dave [Vermont Energy Investment Corporation (VEIC), Burlington, VT (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Currently in the United States, the heavy majority of plug-in electric vehicle (PEV) sales have been in highly conducive, selected, metropolitan areas; opposed to more broad distribution across the country. The U.S. Department of Energy’s EV Everywhere Grand Challenge is looking carefully at the barriers and opportunities that exist to enable small and midsize communities to partake in the PEV market and benefit from the economic and environmental advantages of PEVs. In order to gain insight into these challenges and barriers, DOE selected a success story (i.e., Drive Electric Vermont) as the subject of this case study, as the state of Vermont is tied with Detroit, Michigan in having the highest percentage of 2014 (most recent complete data) PEV registrations for cold weather U.S. cities and has seen more than a sixfold increase in charging stations over the last three years. The overall objective of this case study was to use the lessons learned from Drive Electric Vermont to determine what activities are most effective at encouraging acquisitions of PEVs and deployment of charging infrastructure in small to midsize communities, prioritizing and sequencing their implementation, identifying robust means for extrapolation, and applying this understanding to other small to midsize communities across the nation. The Drive Electric Vermont Program was formed in 2012 with a goal of increasing the use of electrified transportation in Vermont through policy development, education and outreach, and infrastructure development. The Drive Electric Vermont Program can be broadly broken into four components: (1) strategic planning/leadership, (2) stakeholder/partnership development, (3) education and outreach, and (4) incentives. The early phases of the program focused heavily on strategic planning, and stakeholder and partnership development, followed by a transition to education and outreach activities, charging infrastructure development, and grant and incentive programs

  11. Drive Electric Vermont Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Fred [Energetics Incorporated, Columbia, MD (United States); Roberts, Dave [Vermont Energy Investment Corporation (VEIC), Burlington, VT (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Currently in the United States, the heavy majority of plug-in electric vehicle (PEV) sales have been in highly conducive, selected, metropolitan areas; opposed to more broad distribution across the country. The U.S. Department of Energy’s EV Everywhere Grand Challenge is looking carefully at the barriers and opportunities that exist to enable small and midsize communities to partake in the PEV market and benefit from the economic and environmental advantages of PEVs. In order to gain insight into these challenges and barriers, DOE selected a success story (i.e., Drive Electric Vermont) as the subject of this case study, as the state of Vermont is tied with Detroit, Michigan in having the highest percentage of 2014 (most recent complete data) PEV registrations for cold weather U.S. cities and has seen more than a sixfold increase in charging stations over the last three years. The overall objective of this case study was to use the lessons learned from Drive Electric Vermont to determine what activities are most effective at encouraging acquisitions of PEVs and deployment of charging infrastructure in small to midsize communities, prioritizing and sequencing their implementation, identifying robust means for extrapolation, and applying this understanding to other small to midsize communities across the nation. The Drive Electric Vermont Program was formed in 2012 with a goal of increasing the use of electrified transportation in Vermont through policy development, education and outreach, and infrastructure development. The Drive Electric Vermont Program can be broadly broken into four components: (1) strategic planning/leadership, (2) stakeholder/partnership development, (3) education and outreach, and (4) incentives. The early phases of the program focused heavily on strategic planning, and stakeholder and partnership development, followed by a transition to education and outreach activities, charging infrastructure development, and grant and incentive programs

  12. Decommissioning survey and site characterisation issues and lessons learned

    International Nuclear Information System (INIS)

    The paper presents an overview of several topical areas pertaining to issues and lessons learned for decommissioning characterization and survey, including: subsurface sampling and survey; dose modeling and derivation of DCGLs for survey units; buried pipes survey and characterization; characterization of solid materials for release; and survey and monitoring for detection of leakages and spills. The specific topical areas are briefly discussed below: The paper discusses key subsurface survey and characterization issues pertaining to: lack of sampling, modeling, decision framework approach; and lack of quality in the decision-making throughout the site investigation and remediation processes. Calculation of a DCGLW is a problematic issue for subsurface due to formulation of an appropriate exposure scenario that would occur in the subsurface. Similarly, the DCGLEMC is also a problematic parameter to derive, as the statistical hypothesis testing for surface assumes that the samples come from the same population which may not be the case for subsurface. The paper focuses on a difficulty arising from the fact that investigators cannot completely scan the subsurface (e.g.; due to lack of comprehensive coverage easily gained at the surface, which now presents a real obstacle in determining activity levels at depth). Other issues pertaining to dealing with volumetric (not area) samples present an added complexity; thus, increasing sampling requirements and scrutiny. The paper addresses key dose modeling issues including: selection of a scenario, treatment of uncertainties in support of decision-making, and assessment of contaminant transport through concrete structures or barriers, and considerations for selection of a period of performance to convert risk/dose criteria into radionuclide concentration release limits. The paper addresses a key issue pertaining to survey and characterization of buried pipes and infrastructure components. In this context, the paper discusses

  13. Czech Republic [Experiences from international projects on the decommissioning of both large and small facilities]. Annex I

    International Nuclear Information System (INIS)

    Unknowns are inevitable in decommissioning, and this was the case at ÚJV in the Czech Republic. The experiences involving unknowns may be generally summarized as follows: ——Collection of information, interviews with staff, and extensive physical and radiological characterization during preparation and execution of decommissioning. ——The approach to the collection of information must be well balanced. If not, the risk can be underestimated (impact on safety) or overestimated (impact on budget and time schedule). ——The unknowns affect the budget and time schedule of decommissioning activities. It is necessary to have adequate contingencies in both the budget and the time schedule. Engagement with stakeholders is an essential element of decommissioning. All unexpected events, problems and risks must be communicated in a way that recognizes the specific needs of the stakeholder. This information must also be delivered on time, to ensure that it is not received from a different, uncontrolled source. To support the stakeholders in understanding the facts about decommissioning, regular presentations and workshops outlining the work are essential

  14. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    based on a proper understanding of the values and value functions of younger citizens. Such information must thus be an integral part of the knowledge base to be used when plans and processes are being developed for dismantling and decommissioning of nuclear power plants and other older nuclear facilities. In the present project, empirical data have been collected and compiled in a survey of the values of younger citizens with regard to decommissioning and dismantling of older nuclear facilities. The survey constitutes a stratified sample from three towns in Poland. They are Lublin, Olsztyn and Gdansk. A total of 780 students in the age group 14-19 years participated in the Survey. The results are compared to those from a similar study in the County of Kalmar in Sweden in the year 2006. The results include some major lesson learned. These may be summarised as follows: - Younger citizens tend to base their values regarding decommissioning on safety, and environmental aspects. Aspects like future economic growth and technological processes are less influential on the values. - Younger citizens tend to express a lack of information and debate as a basis of their value functions. Likewise, they tend to express interest in the topic and are open to become more included in the processes. - Younger citizens have suggestions on how more information can be made accessible to the general public. - Younger citizens need to be better included in the stakeholder process. This can be achieved by allowances from the Swedish Nuclear Waste Fund to support groups of younger citizens to follow the Swedish process of research, development and demonstration of a concept for the management of spent nuclear fuel. Less than fully accessible information campaigns about nuclear power and associated nuclear waste may result in differences in confidence levels between different groups of stakeholders. By finding out more about the values of different stakeholders it will be possible for the

  15. Roadmaster Roading Contractors Case Study

    Directory of Open Access Journals (Sweden)

    Hazel Taylor

    1999-01-01

    Full Text Available Systems analysis students seldom experience the practical difficulties of the initial investigation into a client’s requirements. They get little chance to practice the skills they need to investigate complex and confused problem situations, or to appreciate the wider organizational issues that can impact on a situation. This teaching case is designed to give students the opportunity to practice and apply investigation skills and to challenge them to consider the wider work environment when considering possible solutions to a problem situation. The case is conducted as a role-play, with students acting as systems analysts and teaching staff role-playing the clients. The students develop a report analyzing the client’s situation based on the issues that arise during the interviews. Feed-back sessions focus on discussing how well the students applied various interviewing strategies previously covered in lectures, and on the wider organizational problems that could impact proposed information system solutions.

  16. Study on Case Teaching of Financial Management

    Science.gov (United States)

    Che, Zhenghong; Che, Zhengmei

    2011-01-01

    Case teaching is an efficient teaching method of management. It plays an important role to enhance the students' ability to practice the theory. However, case teaching of financial management has not achieved the expected results. The paper aims to study the importance, characteristics and corresponding methods of case teaching method of financial…

  17. Associative visual agnosia: a case study.

    Science.gov (United States)

    Charnallet, A; Carbonnel, S; David, D; Moreaud, O

    2008-01-01

    We report a case of massive associative visual agnosia. In the light of current theories of identification and semantic knowledge organization, a deficit involving both levels of structural description system and visual semantics must be assumed to explain the case. We suggest, in line with a previous case study, an alternative account in the framework of (non abstractive) episodic models of memory.

  18. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J.P.; Cripps, S.J.; Jensen, A.C.; Picken, G.

    1997-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  19. Academic Planning: Four Institutional Case Studies.

    Science.gov (United States)

    Kieft, Raymond N.

    As part of a project studying intrainstitutional planning, management, and evaluation, four case studies were undertaken in 1976 of academic planning at Villa Maria College, Kansas City Metropolitan Community College District, West Virginia University, and Western Washington University. The case studies were part of an ongoing project, the…

  20. Optimization of Decommission Strategy for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen;

    2016-01-01

    The life time of offshore wind farm is around 20 years. After that, the whole farm should be decommissioned which is also one of the main factors that contribute to the high investment. In order to make a costeffective wind farm, a novel optimization method for decommission is addressed in this p...

  1. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  2. Optimising waste management performance - The key to successful decommissioning

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  3. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    Science.gov (United States)

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  4. 10 CFR 72.130 - Criteria for decommissioning.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for decommissioning. 72.130 Section 72.130 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Criteria § 72.130 Criteria for decommissioning. The ISFSI or MRS must be designed for...

  5. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  6. Modern practice of cost estimates for the NPP units decommissioning

    International Nuclear Information System (INIS)

    The results of analysis of current practices of cost estimates for decommissioning of nuclear power units with different reactor types present is reviewed. Cost estimates intervals are shown for decommissioning of units with PWR,BWR and AP1000 reactors and the main factors influencing the cost amount are analyzed

  7. Decontamination and decommissioning project for the nuclear facilities

    International Nuclear Information System (INIS)

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future

  8. A Matric System Combining NPP facilities information and decommissioning activity information

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Song, Chan Ho; Moon, Jei kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    D-D (Decontamination and Decommissioning) research divisions have experience in dismantling the uranium conversion plant and KRR-2 (Korean Research Reactor 2, TRIGA Mark type III) of 1998-2009. Using data obtained through the dismantled KRR-2, the divisions have studied how to dismantle a commercial nuclear power plant. There are lots of problems to apply directly dismantled data of the research reactor into the dismantling of a commercial reactor. The paper introduces a matrix system to manage a decommissioning project in preparing the dismantling of nuclear power plants as the first phase of solving the problems. The matrix, which is a system that combines the WBS code and the facility code of the nuclear power plant to be dismantled, has the decommissioning information of dismantling of the NPP. The matrix system has an important role in the evaluation of the amount of dismantling waste and decommissioning schedule and cost in conjunction with a database system that has been developed. To apply the information obtained from the dismantling of the KRR-2 into NPP dismantling, a matrix system has been devised. The matrix system is configured with data related to the dismantling of the ISDC information and WBS used during the dismantling of KRR-2 and the facilities information of the NPP. The code in the matrix system has all specifications of the facility and information about the device, as well as the unit operation obtained from the research reactors.

  9. Liverpool Telecare Pilot: case studies

    Directory of Open Access Journals (Sweden)

    Nigel Barnes

    2006-09-01

    Full Text Available Telecare services use information and communications technology (ICT to support the provision of care to people in their own homes. This paper describes a pilot telecare service employed by Liverpool (UK City Council to support a sample of their frail and elderly social services users. The pilot has been running for over two years and has been deployed for 21 individuals in Liverpool. In this paper we present the pilot system and provide real example cases which help to illustrate the benefits of such a system.

  10. Decommissioning of surplus facilities at ORNL

    International Nuclear Information System (INIS)

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of certain DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 75 facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. This paper describes the scope of the ORNL program and outlines the decommissioning activities currently underway, including a brief description of the decontamination techniques being utilized. 4 refs., 3 figs., 2 tabs

  11. Safety analysis of disposal of decommissioning wastes from Olkiluoto

    International Nuclear Information System (INIS)

    The disposal plans for decommissioning wastes from the Olkiluoto nuclear power plant (2x710 MWe BWR) are based on co-location of the necessary repository caverns with the repository to be constructed for low and medium level operational reactor waste. The repository will be excavated at a depth of about 50-90 meters in the bedrock at the power plant site. The planned cavern for activated metal waste consists of a pile of concrete waste containers surrounded by thick concrete walls and a layer of low permeable buffer material. The analysis includes also safety evaluation of an alternative disposal concept for activated metal waste: a deep bedrock repository assumed to be co-located with a planned repository for spent nuclear fuel. The obtained results of the analysis show clear safety margins. In the realistic scenario for intermediate depth (ca. 75 m) disposal the maximum annual dose rate is 3.10-12 Sv/a via the local sea pathways, 8.10-9 Sv/a via the lake pathways and 2.10-5 Sv/a via a well bored in the vicinity of the repository. In the basic scenario the corresponding dose rates are 4.10-10 Sv/a (sea), 5.10-7 Sv/a (lake) and 4.10-5 Sv/a (well). For disposal of low level decommissioning wastes two alternatives have been compared: concrete silos and rock silos, both at a d epth of about 60-90 meters in the bedrock at the power plant site. The consequent doses are rather low in both cases. Final optimization of the engineered barriers necessitates more precisive data about the activity contents of the wastes to be disposed of the these silos

  12. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  13. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  14. Financial aspects of decommissioning. Report by an expert group

    International Nuclear Information System (INIS)

    Estimating decommissioning costs and collecting funds for eventual decommissioning of facilities that have used radioactive material is a prerequisite for safe, timely and cost effective decommissioning. A comprehensive overview of decommissioning costs and funding mechanisms was missing in the IAEA literature although the subject had been marginally dealt with in a few IAEA publications. Costing and funding issues were partially addressed by other international organizations, but there is a need to address the subject from the standpoint of the diverse social, economic and cultural environments that constitute IAEA membership. In its role of an international expert committee assisting the IAEA, the Technical Group on Decommissioning (TEGDE) debates and draws conclusions on topics omitted from general guidance. TEGDE members met in Vienna in 2003, 2004 and 2005 to develop the basis for this publication. The views expressed here reflect those of TEGDE and not necessarily those of the IAEA

  15. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  16. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  18. Review of decommissioning, spent fuel and radwaste management in Slovakia

    International Nuclear Information System (INIS)

    Two nuclear power plants with two WWER reactors are currently under operation in Jaslovske Bohunice and NPP A-1 is under decommissioning on the same site. At the second nuclear site in the Slovak Republic in Mochovce third nuclear power plant with two units is in operation. In accordance with the basic Slovak legislation (Act on Peaceful Utilisation of Nuclear Energy) defining the responsibilities, roles and authorities for all organisations involved in the decommissioning of nuclear installations Nuclear Regulatory Authority requires submission of conceptual decommissioning plans by the licensee. The term 'decommissioning' is used to describe the set of actions to be taken at the end of the useful life of a facility, in order to retire the facility from service while, simultaneously, ensuring proper protection of the workers, the general public and the environment. This set of activities is in principle comprised of planning and organisation of decommissioning inclusive strategy development, post-operational activities, implementation of decommissioning (physical and radiological characterisation, decontamination, dismantling and demolition, waste and spent fuel management), radiological, aspects, completion of decommissioning as well as ensuring of funding for these activities. Responsibility for nuclear installations decommissioning, radwaste and spent fuel, management in Slovakia is with a subsidiary of Slovak Electric called Nuclear Installations Decommissioning Radwaste and Spent Fuel Management (acronym SE VYZ), established on January 1, 1996. This paper provides description of an approach to planning of the NPP A-1 and NPPs with WWER reactors decommissioning, realisation of treatment, conditioning and disposal of radwaste, as well as spent fuel management in Slovakia. It takes into account that detail papers on all these issues will follow later during this meeting. (author)

  19. U.S. experience with organizational issues during decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting, Kirkland, WA (United States); Harty, R. [Battelle Pacific Northwest National Laboratory, Richland, WA (United States)

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant.

  20. Lessons Learned... and Not Learned: A Case Study in Regulatory Evolution

    International Nuclear Information System (INIS)

    'Are you better off than you were four years ago?' 'You've come a long way, baby.' Eschewing politics and advertising, these idioms are applied to the evolution of regulatory processes for Decontamination and Decommissioning (D and D) of nuclear facilities. We use a case study of a (nearly) completed D and D project at a large nuclear fuel manufacturing facility, to chronicle one licensee's experience with US Nuclear Regulatory Commission (NRC) D and D regulations from the 1990's to the present. Historical milestones include the birth of a D and D project, a false start and resultant consequences, a D and D 'moratorium' with subsequent planning and stakeholder integration, a second start which included the challenge of parallel path D and D physical work and regulatory processes, and the 'lessons learned' contributions to timely project progress. Further discussion includes a look at the 'declaration of victory' and examines what it really means to be finished. The rich contextual experience from the case study and the observations of other industry members provides the basis for answers to several key questions: How far has the regulatory process for D and D really evolved, and in what direction? Are licensees generally satisfied or dissatisfied with the methods? What has not improved? Which improvements looked promising, but languished in recent years? How far have we really come and are we better off? What are the opportunities for further improvement? The summary answer to each question, using compendious engineering terms is... 'it depends'. (authors)

  1. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  2. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  3. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  4. Lessons learnt from Ignalina NPP decommissioning project

    International Nuclear Information System (INIS)

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  5. Decommissioning plan for TRIGA Mark-3

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Jung, Ki Jung

    1999-04-01

    TRIGA Mark-3(KRR-2) is the second research reactor in Korea. Construction of KRR-2 was started in 1969 and first criticality was achieved in 1972. After 24 years operation, KRR-2 has stopped its operation at the end of 1995 due to normal operation of HANARO. KRR-2 was then decided to decommission in 1996 by government. Decontamination and decommissioning(D and D) will be conducted in accordance with domestic laws and international regulations. Selected method of D and D will be devoted to protect workers and environment and to minimize radioactive wastes produced. The major D and D work will be conducted safely by using conventional industrial equipment because of relatively low radioactivity and contamination in the facility. When removing activated concrete from reactor pool, it will be installed a temporary containment and ventilation system. In this paper, structure of KRR-2 and method of D and D in each step are presented and discussed. (author). 12 refs., 8 tabs., 12 figs.

  6. The Decommissioning Facility Characterization DB System (DEFACS)

    International Nuclear Information System (INIS)

    The computer system for the characterization on the nuclear facilities is established as the name of the DEFACS (DEcommissioning FAcility Characterization DB System). his system is consist of the four main part with the grouping of the items and it's code creation and management system, data input system, data processing and data out put system. All the data was processed by a simplified and formatted manner to provide useful information to the decommissioning planner. The four nuclear facilities are objected for the system; the KRR-1 and 2 (Research reactor), Uranium conversion plant (Nuclear chemical plant), UF4 pilot plant and the North Korea nuclear facility (5MWe Research Reactor). All the data from a nuclear facility was categorized and inputted into the several data fields in the input system, which were chosen by considering the facility characteristics. All the hardware is workstation for Web and DB server and PC grade computers for the users and the software 'ORACLE, RDBMS 11g' operated on the WINDOW 2008 O/S, was selected

  7. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  8. Summary of case studies for cooperation mechanisms

    DEFF Research Database (Denmark)

    Longa, Francesco Dalla; Klinge Jacobsen, Henrik; Hansen, Lise-Lotte Pade;

    2012-01-01

    This document is a summary report highlighting the main aspect analyzed in the RES4LESS case studies. The document starts with an introductory chapter where the background that led to the selection of the case studies is outlined. In the following three chapters the case studies are presented......, highlighting the most relevant results. A brief chapter concludes the document, giving an outlook on the follow-up activities of the RES4LESS project. This summary is intended not only as an introduction to the RES4LESS cases studies, but also as a guideline to read and interpret the in-depth analysis carried...... out in the final documents that describe the case studies in detail. These documents will be published in September 2012 on the RES4LESS website, www.res4less.eu....

  9. Regional case studies--Africa.

    Science.gov (United States)

    Prentice, Andrew M

    2009-01-01

    Africa is the final continent to be affected by the nutrition transition and, as elsewhere, is characterized by the paradoxical coexistence of malnutrition and obesity. Several features of the obesity epidemic in Africa mirror those in other emerging nations: it penetrates the richer nations and urban areas first with a strong urban- rural gradient; initially it affects the wealthy, but later there is a demographic switch as obesity becomes a condition more associated with poverty, and it shares many of the same drivers related to the increasing affordability of highly refined oils and carbohydrates, and a move away from subsistence farm work and towards sedentary lifestyles. Africa also has some characteristics of the obesity epidemic that stand out from other regions such as: (1) excepting some areas of the Pacific, Africa is probably the only region in which obesity (especially among women) is viewed culturally as a positive and desirable trait, leading to major gender differences in obesity rates in many countries; (2) most of Africa has very low rates of obesity in children, and to date African obesity is mostly an adult syndrome; (3) Africans seem genetically prone to higher rates of diabetes and hypertension in association with obesity than Caucasians, but seem to be relatively protected from dislipidemias; (4) the case-specific deaths and disabilities from diabetes and hypertension in Africa are very high due to the paucity of health services and the strain that the 'double burden' of disease places on health systems.

  10. Leishmaniasis in dogs: Case study

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena

    2009-01-01

    Full Text Available The paper presents a case of leishmaniasis in a 2.5-month-old dog imported from France. The clinical examination established a generally poor state of health, expressed cachexia, atrophy of the temporal musculature, weakness of movement, as well as abnormally long and brittle nails. There was also hyperkeratosis of the nose tip and paws. A histological examination of biopsy sections of the altered skin parts showed inflammatory changes in the area of the dermis, together with infiltration of macrophages and a smaller number of lymphocytes, plasmocytes and neutrophil granulocytes in the area around the sebaceous glands and hair follicles. The determined changes correspond to superficial dermatitis. Edema followed by partial degeneration of connective-tissue fibers is observed in connective tissue. A smaller number of intracellular parasitic forms was established in mononuclear cells. A smaller number of oval amastigotes with round dark red nucleis were observed in sections stained using the Gimza method in the cytoplasm of macrophages located in the dermis, but also extracellularly. It was concluded that the dog was diseased with leishmaniasis on the grounds of the clinical picture and the microscopic findings.

  11. Spatial Multicriteria Decision Analysis of Flood Risks in Aging-Dam Management in China: A Framework and Case Study

    Directory of Open Access Journals (Sweden)

    Jinbao Sheng

    2011-05-01

    Full Text Available Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (

  12. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    based on a proper understanding of the values and value functions of younger citizens. Such information must thus be an integral part of the knowledge base to be used when plans and processes are being developed for dismantling and decommissioning of nuclear power plants and other older nuclear facilities. In the present project, empirical data have been collected and compiled in a survey of the values of younger citizens with regard to decommissioning and dismantling of older nuclear facilities. The survey constitutes a stratified sample from three towns in Poland. They are Lublin, Olsztyn and Gdansk. A total of 780 students in the age group 14-19 years participated in the Survey. The results are compared to those from a similar study in the County of Kalmar in Sweden in the year 2006. The results include some major lesson learned. These may be summarised as follows: - Younger citizens tend to base their values regarding decommissioning on safety, and environmental aspects. Aspects like future economic growth and technological processes are less influential on the values. - Younger citizens tend to express a lack of information and debate as a basis of their value functions. Likewise, they tend to express interest in the topic and are open to become more included in the processes. - Younger citizens have suggestions on how more information can be made accessible to the general public. - Younger citizens need to be better included in the stakeholder process. This can be achieved by allowances from the Swedish Nuclear Waste Fund to support groups of younger citizens to follow the Swedish process of research, development and demonstration of a concept for the management of spent nuclear fuel. Less than fully accessible information campaigns about nuclear power and associated nuclear waste may result in differences in confidence levels between different groups of stakeholders. By finding out more about the values of different stakeholders it will be possible for the

  13. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    based on a proper understanding of the values and value functions of younger citizens. Such information must thus be an integral part of the knowledge base to be used when plans and processes are being developed for dismantling and decommissioning of nuclear power plants and other older nuclear facilities. In the present project, empirical data have been collected and compiled in a survey of the values of younger citizens with regard to decommissioning and dismantling of older nuclear facilities. The survey constitutes a stratified sample from three towns in Poland. They are Lublin, Olsztyn and Gdansk. A total of 780 students in the age group 14-19 years participated in the Survey. The results are compared to those from a similar study in the County of Kalmar in Sweden in the year 2006. The results include some major lesson learned. These may be summarised as follows: - Younger citizens tend to base their values regarding decommissioning on safety, and environmental aspects. Aspects like future economic growth and technological processes are less influential on the values. - Younger citizens tend to express a lack of information and debate as a basis of their value functions. Likewise, they tend to express interest in the topic and are open to become more included in the processes. - Younger citizens have suggestions on how more information can be made accessible to the general public. - Younger citizens need to be better included in the stakeholder process. This can be achieved by allowances from the Swedish Nuclear Waste Fund to support groups of younger citizens to follow the Swedish process of research, development and demonstration of a concept for the management of spent nuclear fuel. Less than fully accessible information campaigns about nuclear power and associated nuclear waste may result in differences in confidence levels between different groups of stakeholders. By finding out more about the values of different stakeholders it will be possible for the

  14. Decommissioning of Windscale pile 1

    International Nuclear Information System (INIS)

    The Windscale Piles were constructed in the late 1940's primarily for the production of plutonium in support of the British atomic weapons programme. In 1957 Pile 1 suffered a fire during the routine release of stored Wigner energy by nuclear heating. Following the fire as much material as possible was recovered, an inventory and status report prepared and the pile sealed and placed under surveillance and maintenance, the only practicable option at the time. Over the last decade in addition to general improvements in routine monitoring equipment there has been extensive investigative work carried out to better understand the damage caused by the fire and assess the options for further action. These studies concluded that the preferred option was for the Pile core to be removed, treated and packaged for intermediate storage prior to final disposal. The paper will describe the core investigations, the assessed conditions, and the options considered. It will also describe the tendering process to allow contractors to propose solutions against a cardinal point specification, the outline of the preferred solution and the progress of the work to date. (author)

  15. Rebranding: a Case Study Approach

    OpenAIRE

    Size, Maria, (Thesis)

    2005-01-01

    The primary objective of this study is to explore how and why companies implement rebranding campaigns. The study stemmed from a realisation by the author that the area of rebranding is very much under-researched academically although anecdotal evidence indicates and increase in the occurrence of the phenomenon in recent years. Therefore the purpose of this research is to add to the insufficient body of literature on rebranding through exploring it from a corporate perspective. The two chapte...

  16. Outage management: A case study

    International Nuclear Information System (INIS)

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study

  17. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. (Brookhaven National Lab., Upton, NY (United States)); Roberts, K.H. (California Univ., Berkeley, CA (United States). Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  18. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. [Brookhaven National Lab., Upton, NY (United States); Roberts, K.H. [California Univ., Berkeley, CA (United States). Walter A. Haas School of Business

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  19. Case Study Methodology and Homelessness Research

    Directory of Open Access Journals (Sweden)

    Jill Pable

    2013-10-01

    Full Text Available This paper describes the potential suitability of case study methodology for inquiry with the homeless population. It references a research study that uses case study research method to build theory. This study's topic is the lived experience of destitute individuals who reside in homeless shelters, and explores the homeless shelter built environment's potential influence on resident satisfaction and recovery. Case study methodology may be appropriate because it explores real-life contextual issues that characterize homelessness and can also accommodate the wide range of homeless person demographics that make this group difficult to study in a generalized fashion. Further, case study method accommodates the need within research in this area to understand individualized treatments as a potential solution for homelessness.

  20. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For...

  1. Case Study on Quality Education

    Science.gov (United States)

    Habib, Zahida

    2011-01-01

    Quality of Education, especially at Primary level, is an important issue to be discussed at the International Forum. This study highlights the quality of primary education through a comparison of the quality of Community Model Schools and Govt. Girls Primary Schools in Pakistan. Community Model Schools were established under Girls Primary…

  2. A Case Study of Engineering Ethics

    Science.gov (United States)

    Shimizu, Kazuo

    In Engineering Ethics Class at Shizuoka University, the Code of Ethics and Cases for Electrical Engineers by IEEJ Ethics committee is used to promote for high education effect to correspond large number of students (140students). In this paper, a case study in the class, and survey results for ethics value of students are presented. In addition, some comments for role playing act on the case of virtual experiences by students are described.

  3. Associative Visual Agnosia: A Case Study

    Directory of Open Access Journals (Sweden)

    A. Charnallet

    2008-01-01

    Full Text Available We report a case of massive associative visual agnosia. In the light of current theories of identification and semantic knowledge organization, a deficit involving both levels of structural description system and visual semantics must be assumed to explain the case. We suggest, in line with a previous case study [1], an alternative account in the framework of (non abstractive episodic models of memory [4].

  4. Marketing-Indonesia case study

    OpenAIRE

    Kurniawan, Iwan; Roshetko, James M.

    2007-01-01

    The purpose of research are (1) to identify the potential VAF species or products for Nanggung Farmers; (2) identify market channels & marketing problems; (3) enhances farmers' understanding of market mechanism; and (4) identify opportunities to improve the quantity & quality of VAF. The study was conducted on Sept-Oct 2006. Data and information are collected through Focus Group Discussion (FGD) in each village that attended both men and women. LTRA-5 (Agroforestry and Sustainable Vegetabl...

  5. Environmental contracting: a case study

    OpenAIRE

    Kubiak, Joseph C.

    1994-01-01

    Approved for public release, distribution unlimited The end of cold war levels of defense expenditures has promoted the reduction in the number of defense-related companies, creating potential monopolistic economic scenarios for defense procurement. This thesis studies one methodology to deal with these scenarios, based on the Baron-Myerson monopolist regulation mechanisms. The Baron-Myerson mechanism provides a tool to regulate monopolists when their costs are unknown or cannot be measure...

  6. Linguistic Overgeneralization: A Case Study

    Directory of Open Access Journals (Sweden)

    Wasan Nazar Al-Baldawi

    2011-08-01

    Full Text Available The current study described a single child’s language acquisition. The importance of this study resided in the circumstances and the environment in which the child lived. He came from a family in which the parents were from different countries and cultures; spoke different Arabic dialects and who lived in a country in which English is spoken. The child was in his critical period of language acquisition. He seemed to have established a unique way of communicating with people surrounding him to cope with all the linguistic varieties around him. The study showed that the child had semantic, syntactic and morphological overgeneralized structures. The data and results showed that overgeneralization and language acquisition were primarily an innate faculty of the human mind and that imitation did played a primary role in language acquisition.It showed, nevertheless, that imitation and behaviorist approaches could not fully account for language acquisition nor did the generative approach. The results went in favor of an Emergentist approach of language acquisition where both innateness and imitations were crucial constituents of children’s acquisition of linguistic forms.

  7. The collection of information, data and materials samples from concrete structures on nuclear facilities under decommissioning for ageing and degradation evaluation

    International Nuclear Information System (INIS)

    The collection of information from nuclear facilities under decommissioning can usefully inform operators of existing plant and designers of new facilities. The evaluation of the performance of concrete structures long after their construction is a relevant safety issue for nuclear installations. Many nuclear facilities are approaching the end of their design life and programmes to extend operating licences have been undertaken to ensure adequate safety levels for extended operational periods and the complete decommissioning phase lasting from a few years up to some decades before dismantling. Ageing management programmes should encompass the full life cycle from conceptual design through to final decommissioning. During decommissioning, dismantling and demolition it is possible to obtain samples from systems, structures and components that have experienced ageing mechanisms in situ and are therefore superior to artificially aged laboratory specimens in informing ageing management programmes and designers of new plant. Such programmes are of value not just to NPPs but also fuel cycle and waste facilities. In order that full benefit may be obtained from the collection of information, data and materials samples from concrete structures on nuclear facilities under decommissioning for ageing and degradation evaluation, these activities must be included in decommissioning plans. In cases where systems, structures and components have been selected for removal, sampling or testing for such purposes, these should be clearly identified and described. This allows specific hazards during these operations to be identified and prevents unintentional loss or destruction of the relevant systems, structures and components during decommissioning. This paper describes the information that may be collected during decommissioning in order to inform plant life management and ageing programmes and new plant designs and the activities required to collect this. Suggestions are also given

  8. Education and Training in Decommissioning Needs, Opportunities and Challenges

    International Nuclear Information System (INIS)

    The decommissioning of nuclear facilities is an industrial activity that is growing worldwide, creating job opportunities at all educational levels. Over the last decades, European companies have been involved in decommissioning projects that are targeted at delivering an environmentally friendly end-product, in line with the 'circular economy', as promoted by EU and national policies. European industry has acquired know-how and today Europe can position itself at the top level in the world decommissioning market. However, in view of the preparation of future decommissioning programmes, efforts are necessary to ensure and share the underpinning knowledge, skills and competences. In this perspective, the University of Birmingham in association with the European Commission's Joint Research Centre have organised a joint seminar to address the following questions in relation to education and training in nuclear decommissioning: - What are the competence needs for the future? - What are the education and training opportunities? - How can we stimulate interest and future talent? In answering these questions a report has been published which provides suggestions for helping the development, coordination and promotion of adequate education and training programmes at EU level in nuclear decommissioning. It highlights, in particular, the necessity to improve the long term planning of the resources and competences, addressing the specifics of decommissioning activities, to give more visibility to the career possibilities in the sector, and to enhance the cooperation between the existing education and training programmes, providing also more clarity in the learning outcomes. (authors)

  9. Factors influencing the decommissioning of large-scale nuclear plants

    International Nuclear Information System (INIS)

    The decision-making process involving the decommissioning of the UK graphite moderated, gas-cooled nuclear power stations is complex. There are timing, engineering, waste disposal, cost and lost generation capacity factors to consider and the overall decision of when and how to proceed with decommissioning may include political and public tolerance dimensions. For the final stage of decommissioning the nuclear industry could either completely dismantle the reactor island leaving a green-field site or, alternatively, the reactor island could be maintained indefinitely with additional super- and substructure containment. At this time the first of these options, or deferred decommissioning, prevails and with this the nuclear industry has expressed considerable confidence that the technology required will become available with passing time, that acceptable radioactive waste disposal methods and facilities will be available and that the eventual costs of decommissioning will not escalate without restraint. If the deferred decommissioning strategy is wrong and it is not possible to completely dismantle the reactor islands a century into the future, then it may be too late to effect sufficient longer term containment to maintain the reactor hulks in a reliable condition. With respect to the final decommissioning of large-scale nuclear plant, it is concluded that the nuclear industry does not know quite how to do it, when it will be attempted and when it will be completed, and they do not know how much it will eventually cost. (author)

  10. Decommissioning Experience: Magnox Reactors in the United Kingdom

    International Nuclear Information System (INIS)

    There are ten Magnox sites in the United Kingdom, nine of which are shut down and are defuelling and decommissioning. The Wylfa facility, in Wales, was due to shut down in 2014 but has been delayed. Magnox ponds are reinforced poured concrete structures with an epoxy paint coating. The decommissioning of Magnox ponds takes place once defuelling has been completed and is subject to an overarching fleet plan called the Magnox optimized decommissioning programme (MODP). The MODP has been determined to enable the most cost effective hazard reduction across the Magnox sites and to enable learning to be gained and transferred through delivering decommissioning as consistent programmes across all sites. For pond decommissioning, this involves the movement of experienced staff between sites to integrate with site teams and deliver the decommissioning of the ponds to a consistent methodology. Magnox has a decommissioning and radioactive waste management strategy that indicates full decontamination and removal and backfill of ponds and reflects lessons being learned from work completed to establish the most practicable means of risk reduction for each site. A summary of current Magnox experience is given below. An up to date overview of pond programme experiences across the Magnox sites is available on the Magnox web site

  11. Radiative damping: a case study

    CERN Document Server

    Spohn, Herbert

    2011-01-01

    We are interested in the motion of a classical charge coupled to the Maxwell self-field and subject to a uniform external magnetic field, B. This is a physically relevant, but difficult dynamical problem, to which contributions range over more than one hundred years. Specifically, we will study the Sommerfeld-Page approximation which assumes an extended charge distribution at small velocities. The memory equation is then linear and many details become available. We discuss how the friction equation arises in the limit of "small" B and contrast this result with the standard Taylor expansion resulting in a second order equation for the velocity of the charge.

  12. Brick handling: a case study.

    Science.gov (United States)

    Webb, R D; Handyside, J

    1982-09-01

    A small change in brick dimensions resulted in an increase in the perceived work-load of men loading and unloading pallets of bricks by hand. A laboratory study indicated that the change in brick dimensions required changes in grip pattern in order to unload bricks at the same rate, moving the same number at a time. These changed grip patterns resulted in increased upper body movement, increased chest-muscle activity and higher heart rates. These differences were reflected in higher subjective ratings of fatigue. PMID:15676442

  13. Ownership and Control Structures: A Case Study

    OpenAIRE

    Apostolov, Mico

    2015-01-01

    This is a study on separation of ownership and control in Southeast Europe, and in particular it is a case study of Macedonia. For structured analysis of this case study we use the World Bank Microdata Library, specifically the Enterprise Surveys which contains firm-level data of a representative sample of economies private sectors. What we are interested in are the ties of ownership and control and whether such linkages contribute to the development of domestic firms and the overall ec...

  14. Regulatory challenges arising from the transition from operation to decommissioning

    International Nuclear Information System (INIS)

    After a nuclear facility is shut down for the final time, the next steps involve reducing the sources of hazard in a systematic and progressive way. At some stage following removal of the bulk of radioactive material, the main process of dismantling down to site clearance may begin. The activities connected with the process of D and D are rather different from the day-today activities on an operating plant in steady-state. Moreover, they vary and change progressively as the D and D process progresses. The NEA Working Party on Dismantling and Decommissioning (WPDD) has long been interested in issues concerned with the regulation of the decommissioning of nuclear facilities. This issue was the subject of a special topical session during the annual WPDD meeting held in October 2006, and also of a subsequent study, the results of which were discussed at the 2007 annual meeting (in November). It is anticipated that the report from this study will be published during 2008. The recent work of the WPDD suggests that a proportionate regulatory response, to accommodate the new work and risk context during D and D, should result eventually in modified emphasis on matters concerned with the handling and use of nuclear materials, such as criticality control, the potential for illegal diversion and emergency preparedness. At the same time, a shift in emphasis towards matters concerned with the various new activities associated with D and D may be expected, particularly in regard to protection of the work force, the public and the environment. Underlying the changes proposed above is the need to have site licence conditions for D and D that reflect more closely the regulatory norms associated with conventional industrial activities rather than those for specifically nuclear activities. In the context of emerging practices, and regardless of the precise regulatory framework, it is evident that the most important issues for licensing of nuclear sites undergoing D and D are those

  15. Music in context : Four case studies

    NARCIS (Netherlands)

    Randwijck, R.J.C. van

    2008-01-01

    In his thesis entitled “Music in Context. Four Case Studies”, R.J.C. van Randwijck investigates the context in which music has been created. It is a search in Four Case Studies, approaching four pieces of music from the context in which they were written in order to understand their meaning. The inv

  16. Case studies of steel structure failures

    Directory of Open Access Journals (Sweden)

    P. Bernasovský

    2010-01-01

    Full Text Available The contribution deals with some case studies of steel structure failures, which happened in Slovakia a few years ago. Features of cracking are illustrated on real cases of breakdowns in the transmission gas pipelines, at the cement works and in the petrochemical indus-try. All failures were caused by an incorrect technical approach. Possible remedial measures are proposed.

  17. Abbreviated Case Studies in Organizational Communication

    Science.gov (United States)

    Wanguri, Deloris McGee

    2005-01-01

    The cases contained within organizational communication texts are generally two to three pages, often followed by questions. These case studies are certainly useful. They generally describe events in the present, provide some type of organizational context, include first-hand data, include a record of what people say and think, develop a…

  18. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  19. Mining Product Data Models: A Case Study

    OpenAIRE

    Cristina-Claudia DOLEAN

    2014-01-01

    This paper presents two case studies used to prove the validity of some data-flow mining algorithms. We proposed the data-flow mining algorithms because most part of mining algorithms focuses on the control-flow perspective. First case study uses event logs generated by an ERP system (Navision) after we set several trackers on the data elements needed in the process analyzed; while the second case study uses the event logs generated by YAWL system. We offered a general solution of data-flow m...

  20. Case study on printed matter

    DEFF Research Database (Denmark)

    Introduction Existing product Life Cycle Assessments (LCA’s) on offset printed matter all point at paper as the overall dominating contributor to the impacts from the life-cycle of this category of products. This dominating role of paper is primarily founded in the energy-related impact categories...... global warming, acidification and nutrification. The studies focus on energy consumption including the emissions and impact categories related to energy. The chemical-related impact categories comprising ecotoxicity and human toxicity are not included at all or only to a limited degree. In this paper we...... include these chemical-related impact categories by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used during the production of offset printed matter. This paper is based...

  1. The use of chemical gel for decontamination during decommissioning of nuclear facilities

    Science.gov (United States)

    Gurau, Daniela; Deju, Radu

    2015-01-01

    A technical research study was developed for testing the decontamination using chemical gels. The study was realized for different type of samples, systems often encountered in the VVR-S nuclear research reactor from Magurele-Romania. The results obtained in the study have demonstrated that the decontamination gels could be an efficient way to reduce or to eliminate the surface contamination of buildings or equipment's, minimizing the potential for spreading contamination during decommissioning activities.

  2. Case study in professionally-oriented training

    Directory of Open Access Journals (Sweden)

    Valitov Shamil M.

    2016-01-01

    Full Text Available Modern educational technologies are based on competence approach and focus on the future professional activity. Case study is one of the most significant technologies in modern higher education. The basic concepts used in the case study method are a “situation” and an “analysis”, as well as their derivative - “analysis of the situation”. The case study method of is one of the best tools for gaining experience, as it investigates practical situations that occur in managerial job. It combines theoretical knowledge with the analysis of the actual practical experience in accordance with a major. Doing case studies students read the description of the situation and offer divergent projects of managerial decisions that could be used by real managers dealing with the problem posed by the case study author. Answers to the questions posed in the case description are not given, as a rule, since the main purpose in the case analysis is to organize a discussion in the classroom or provoke speculations of those who do the self-study.

  3. Energy Audit: A Case Study

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    2013-06-01

    Full Text Available This India is the Fifth largest producer of Electricalenergy in the world. Despite such achievements the gapbetween demand and supply of electrical energy is increasingevery year and power sector is highly capital – intensive. Thusthe deficit in installed capacity was nearly 10000MWper year.So the gap between demand and supply is continuouslyincreasing day by day. An energy audit is a study of a plant orfacility to determine how and where energy is used and toidentify methods for energy savings. The opportunities lie inthe use of existing renewable energy technologies, greaterefforts at energy efficiency and the dissemination of thesetechnologies and options. This thesis provides an overview of ageneral energy conservation measures (ECMs that can becommonly recommended for NIT Hamirpur. It should be notedthat the Energy auidut presented in this paper does not pretendto be exhaustive nor comprehensive. It provides merely toindicate some of the options that energy auditor can considerwhen performing an analysis of this institute. Energyconservation and exploration of new energy avenues are thewell accepted solution to fulfil the demand in future. The totalcost of energy plays a vital role in determining the product costof a commodity. Therefore the identification of potential energysavings and implementation for a given institutional facility isunimportant to ensure its competitive advantage over otherinstitute. This paper work presents such energy saving methodsin a methodological approach, experienced during a detailedenergy audit of NIT Hamirpur.

  4. Antiphospholipid syndrome: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Davies, T. [Royal Adelaide Hospital, Adelaide, SA (Australia). Department of Nuclear Medicine

    1998-03-01

    Full text: A forty-two-year-old male presented to the Royal Adelaide Hospital with symptoms of increasing shortness of breath, swelling in both ankles, petechial rash and blood in his sputum. Initial investigations showed cardiomegaly, right ventricular hypertrophy, patchy lung infiltrates, a platelet count of 1500 and a clotting time of 60 seconds. A V/Q scan indicated a high probability of pulmonary embolism. Further investigations showed that the patient was positive for lupus anticoagulant and cardiolipin antibodies. A diagnosis of primary antiphospholipid syndrome was made. The patient``s high risk of strokes and hemorrhaging prompted investigation by a {sup 99}mTc-HMPAO brain scan. Further V/Q scans were performed to follow up the initial finding of multiple pulmonary embolism and a R-L shunt study was performed to investigate a left subclavian murmur. The patient was admitted for four weeks and began treatment which included cyclaphosphamide, corticosteroids and plasmaphoresis and was discharged when stable. Over the next six months he was re admitted three times for relapse of antiphospholipid syndrome. On his fourth admission he collapsed and died five hours after admission. Cause of death was due to cardiac arrhythmia secondary to severe right ventricular hypertrophy and dilation. The effects of antiphospholipid syndrome was believed to be responsible for this outcome.

  5. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  6. Decommissioning health physics a handbook for MARSSIM users

    CERN Document Server

    Abelquist, Eric W

    2001-01-01

    Decommissioning Health Physics presents many of the technical issues and challenges that arise during the planning and implementation of decommissioning and decontamination (D&D) projects. The focus is on the final status survey performed during the later stages of decommissioning projects. It expands upon and provides greater technical detail than Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) in areas of survey design strategies.Featuring a number of completely worked examples of final status survey strategies, the book prepares the reader for the real-world ap

  7. Decontamination and Decommissioned Small Nuclear AIP Hybrid Systems Submarines

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2013-11-01

    Full Text Available Being equipped with small reactor AIP is the trend of conventional submarine power in 21st century as well as a real power revolution in conventional submarine. Thus, the quantity of small reactor AIP Submarines is on the increase, and its decommissioning and decontamination will also become a significant international issue. However, decommissioning the small reactor AIP submarines is not only a problem that appears beyond the lifetime of the small reactor nuclear devices, but the problem involving the entire process of design, construction, running and closure. In the paper, the problem is explored based on the conception and the feasible decommissioning and decontamination means are supplied to choose from.

  8. KIT competence center for decommissioning. Innovation and promotion of trainees

    International Nuclear Information System (INIS)

    The safe decommissioning of nuclear installations is technically feasible, but is also still a challenge for science, technology and industry. The expertise and know how for decommissioning must be ensured because it will be needed for further decades. Already in 2008 the Karlsruhe Institute of Technology (KIT) had identified this challenge that later emerged through the closure of nuclear power plants in Germany. The KIT opened the professorship Technology and Management of the Decommissioning of Nuclear Installations. In 2014, this section was extended through the dismantling of conventional installations.

  9. R and D and Innovation Needs for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Nuclear decommissioning activities can greatly benefit from research and development (R and D) projects. This report examines applicable emergent technologies, current research efforts and innovation needs to build a base of knowledge regarding the status of decommissioning technology and R and D. This base knowledge can be used to obtain consensus on future R and D that is worth funding. It can also assist in deciding how to collaborate and optimise the limited pool of financial resources available among NEA member countries for nuclear decommissioning R and D. (authors)

  10. Estimated decommissioning cost for the 23 operating nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    The decommissioning of nuclear power reactors requires considerable funds and is carried out over a long period. In order to forecast the total decommissioning funds needed by the licensee as well as provide a basis for industrial strategy and decommissioning activity planning, hence, this paper estimates the annual costs for decommissioning the 23 nuclear power plants in Korea between 2014 and 2083. For this estimation, 4 scenarios for decommissioning the 23 nuclear power reactors were developed and evaluated. (orig.)

  11. Sensor Network Demonstration for In Situ Decommissioning - 13332

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to

  12. Sensor Network Demonstration for In Situ Decommissioning - 13332

    International Nuclear Information System (INIS)

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the

  13. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  14. Towards More Case Study Research in Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Tom Duxbury

    2012-03-01

    Full Text Available Entrepreneurship as an emerging discipline has made good strides, but according to some, has fallen short of bringing its theory and literature up to the standards of others in the management sciences. Rich with the descriptive detail needed for insightful theory building in entrepreneurship, scholars have called for more case study research, particularly those incorporating non-retrospective and longitudinal observations. At the same time however, it has become rare to find such research published in A-level journals dedicated to entrepreneurship. A survey presented here of major entrepreneurship journals over the past six years revealed a publication rate of only 3% using the case study method. This presents a major impediment for developing fresh research in this field based upon the study of real cases. The author explores how the case study method has been applied to entrepreneurship research and provides recommendations for improved publication rates.

  15. Remote control: Decommissioning RTGs [radioisotope theromelectric generators

    International Nuclear Information System (INIS)

    Several hundred radioisotope thermoelectric generators (RTGs) are deployed along the Russian Federation's Arctic coast to power remote lighthouses and navigation beacons. Similar RTGs were also used as power sources in other remote locations in the Russian Federation and elsewhere in the former Soviet Union. All Russian RTG's have out-lived their lifespan and are in need of decommissioning. The RTGs typically contain one or more radionuclide heat sources (RHS) each with an activity of thousands of TBq of strontium-90. This means that they are Category 1 sources as defined in the IAEA international 'Code of Conduct on the Safety and Security of Radioactive Sources'. According to the Federal Atomic Energy Agency of the Russian Federation (Rosatom), there are 651 RTGs at various locations in the Russian Federation which are subject to decommissioning or replacement with alternative sources of energy. The Norwegian Government has played a significant role in international efforts, fully cooperating with Russian authorities to safely decommission RTGs and provide alternative power sources. Norway has actively supported improvement of nuclear safety and security in northwest Russia for more then ten years. Over this period, the Norwegian Government has spent approximately $150 million on a variety of industrial projects, including specific improvements in radioactive waste treatment and storage, physical security, and infrastructure support. The national authority, the Norwegian Radiation Protection Authority (NRPA), takes an active part advising the Government regarding prioritization and quality assurance of all these activities. In addition, the Plan of Action places great emphasis on adequate regulatory supervision. Accordingly, the NRPA programme includes a variety of regulatory support projects. These are designed to assist the Russian authorities in ensuring that work is properly carried out within the framework of Russian law, taking into account international

  16. The role of the Commission for the Environmental Impact Assessment (V.I.A.) in the decommissioning of nuclear installations in Italy

    International Nuclear Information System (INIS)

    In Italy decommissioning of nuclear installation is regulated through two basic main laws: the decree-law n. 230 /1999, regarding licensing and controls procedures in nuclear field, and the Directive of European Community (97/11, 1997.3.3, published 1997.3.14). The duty of National Environmental Assessment Commission is to supply to the Ministry for Environment, the view, based on technical examination of the concerned planes and Study of Environmental Impact. Environmental Impact Assessment Commission individualise and value every, direct or indirect, effect, possible to have during the planed accomplishment of a project, particularly regarding man, fauna and flora, soil, water, air, climate and landscape, interactions between two former factors, material property, and cultural, natural and artistic patrimony. During the assessment implementation, so, in particular, are focused: Individuation of best procedures and technologies for the whole of planned operations; Identification of all possible impacts may be originated, for each actions, beyond the matter of radioprotection, like noise emissions, liquid and gaseous pollutants emissions, traffic, disturbance against natural protected areas etc.; Individuation of strategies and methods to reduce inevitable impacts; Guarantee the opportunity for the public to participate. Decommissioning of an nuclear installation in considered in the same way of a complex industrial installation decommissioning and so the evaluation is operated into three 'classic' frameworks: programmatic, plan- relative, environmental-relative. In the field of nuclear plants decommissioning, the development of the valuation of three mentioned frameworks is absolutely diverse in confront with the cases that the Commission has had in Italy as routine during several years. The programmatic framework, in fact, is very uniform because is disciplined in Italy with decree of the Ministry of Productive Activities. Local differences occur only in local

  17. Decommissioning and deactivation of nuclear facilities

    International Nuclear Information System (INIS)

    The National Atomic Energy Commission (CNEA) is responsible for the decommissioning and deactivation of all relevant nuclear facilities in Argentina. A D and D Subprogram was created in 2000, within Technology Branch of the CNEA, in order to fulfill this responsibility. The D and D Subprogram has organized its activities in four fields: Planning; Technology development; Human resources development and training; International cooperation. The paper describes the work already done in those 4 areas, as well as the nuclear facilities existing in the country. Planning is being developed for the decommissioning of research reactors, beginning with RA-1, as well as for the Atucha I nuclear power station. An integral Management System has been developed, compatibilizing requirements from ISO 9001, ISO 14001, the national norm for Safety and Occupational Health (equivalent to BS 8800), and IAEA 50-SG Q series. Technology development is for the time being concentrated on mechanical decontamination and concrete demolition. A review has been made of technologies already developed both by CNEA and Nucleoelectrica Argentina S.A. (the nuclear power utility) in areas of chemical and electrochemical decontamination, cutting techniques and robotics. Human resources development has been based on training abroad in the areas of decontamination, cutting techniques, quality assurance and planning, as well as on specific courses, seminars and workshops. An IAEA regional training course on D and D has been given on April 2002 at CNEA's Constituyentes Atomic Center, with the assistance of 22 university graduates from 13 countries in the Latin American and Caribbean Region, and 11 from Argentina. CNEA has also given fellowships for PhD and Master thesis on the subject. International cooperation has been intense, and based on: - IAEA Technical Cooperation Project and experts missions; - Cooperation agreement with the US Department of Energy; - Cooperation agreement with Germany

  18. Educational Potential of Case-Study Technology

    OpenAIRE

    Fedorinova, Zoya Vladimirovna; Vorobyeva, Viktoriya Vladimirovna; Malyanova, Marina

    2015-01-01

    This article presents the results of phenomenological and typological analysis of case-study technology educational potential. The definition “educational potential of case-study technology” is given, the main characteristics of which are changed in communication and collaborative activity quality, appearance of educational initiatives, change of participants’ position in learning process, formation of “collective subject” in collaborative activity, increase of learning (subject) results. Dep...

  19. TOP-10 DATA MINING CASE STUDIES

    OpenAIRE

    GABOR MELLI; XINDONG WU; PAUL BEINAT; FRANCESCO BONCHI; LONGBING CAO; RONG DUAN; CHRISTOS FALOUTSOS; RAYID GHANI; BRENDAN KITTS; BART GOETHALS; GEOFF MCLACHLAN; JIAN PEI; ASHOK SRIVASTAVA; OSMAR ZAÏANE

    2012-01-01

    We report on the panel discussion held at the ICDM'10 conference on the top 10 data mining case studies in order to provide a snapshot of where and how data mining techniques have made significant real-world impact. The tasks covered by 10 case studies range from the detection of anomalies such as cancer, fraud, and system failures to the optimization of organizational operations, and include the automated extraction of information from unstructured sources. From the 10 cases we find that sup...

  20. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    International Nuclear Information System (INIS)

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ''green field'' condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities