Sample records for cascadia subduction zone

  1. The Cascadia Subduction Zone: two contrasting models of lithospheric structure (United States)

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.


    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  2. Imaging hydration and dehydration across the Cascadia subduction zone (Invited) (United States)

    Abers, G. A.; Van Keken, P. E.; Hacker, B. R.; Mann, M. E.; Crosbie, K.; Creager, K.


    Arc volcanoes and exhumed forearc metamorphic rocks show clear evidence for upward transport of slab-derived fluids, but geophysical measurements rarely image features that could constrain the mode of this fluid transport. The hottest subduction zones such as Cascadia pose a particular challenge, as the depths where hydrous minerals are stable seaward of trenches is limited, and much of the water is expected to depart the slab before reaching sub-arc depths. Here we improve our understanding of this problem by developing a new thermal model for central Cascadia, leveraging new results several onshore and offshore geophysical investigations, notably the iMUSH project (Imaging Magma Under mount St. Helens), to evaluate constraints on the fluid flux. Offshore onshore heat flow measurements require a cold forearc and preclude detectable shear heating. Several puzzles emerge. The first is that Mount St. Helens overlies a continuous subducting plate which has an upper surface only 65-70 km deep beneath the volcano, imaged by migrated scattered P coda. This location, together with heat flow observations and inferences from the strength of the upper plate Moho, place the volcano over a cold forearc mantle wedge that is substantially hydrated. It is unclear how the wide range of magmas at Mount St. Helens could emerge in this setting since many have mantle origin. A second puzzle is that a large velocity step, about 10% in Vs, is seen along the slab Moho to depths exceeding 90 km where thermal models predict the subducting crust is in eclogite facies; eclogite and peridotite should have nearly indistinguishable Vs. Possibly a gabbroic oceanic crust persists metastably well below the arc, or perhaps the interface represents a deeper hydration front rather than petrologic Moho. A third puzzle is the persistent indication of H2O in arc magmas here despite almost certain dehydration of subducting sediments and upper oceanic crust. This indicates substantial H2O delivered by

  3. Thermal Structure of the Cascadia Subduction Zone on the Washington Margin (AT26-04, EM122) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We propose to conduct a comprehensive study of the thermal environment of the Cascadia Subduction Zone (CSZ) within the NSF GeoPRISM Corridor off the Washington...

  4. A Search for Long-term Slow Slip Along the Cascadia Subduction Zone (United States)

    Nuyen, C.; Schmidt, D. A.


    Japan's Nankai Trough and the Cascadia Subduction Zone are often compared as analogous systems due to their striking similarities, which include relatively high thermal gradients, young incoming plates, and the occurrence of short-term slow slip episodes (SSEs). However, a lack of long-term SSEs in Cascadia sets it apart from Nankai, which experiences both short- and long-term SSEs. This disparity between Cascadia and Nankai begs the question of whether long-term SSEs are in fact absent in Cascadia. We examine GPS data from the PBO and PANGA networks to determine whether or not Cascadia has hosted a long-term SSE in the past 20 years. A preliminary review of the time series does not reveal any large-scale multi-year transients, such as has been documented in Japan and Alaska where over 5 cm of surface displacement is seen over multiple years. In order to more clearly recognize possible small amplitude long-term SSEs in Cascadia, the GPS data are reduced as follows: time series are cleaned by removing (1) continental water loading terms, (2) transient displacements of known short-term SSEs, and (3) common mode signals that span the network. After cleaning, the GPS data are manually inspected for coherent trends between stations. To further identify small amplitude slip events that persist for months-to-years, we invert the cleaned time series in Cascadia for fault slip using a principle component analysis-based inversion method. We also perform a suite of synthetic forward models to better understand how a long-term slow slip event might appear in the time series. Results from this research have direct implications for Cascadia in terms of moment release, stress redistributions, and seismic cycles. In a broader sense, these results also influence the global knowledge of SSEs by giving a better understanding of the full range of slip modes in Cascadia.

  5. Exploring Low-Amplitude, Long-Duration Deformational Transients on the Cascadia Subduction Zone (United States)

    Nuyen, C.; Schmidt, D. A.


    The absence of long-term slow slip events (SSEs) in Cascadia is enigmatic on account of the diverse group of subduction zone systems that do experience long-term SSEs. In particular, southwest Japan, Alaska, New Zealand and Mexico have observed long-term SSEs, with some of the larger events exhibiting centimeter-scale surface displacements over the course of multiple years. The conditions that encourage long-term slow slip are not well established due to the variability in thermal parameter and plate dip amongst subduction zones that host long-term events. The Cascadia Subduction Zone likely has the capacity to host long-term SSEs, and the lack of such events motivates further exploration of the observational data. In order to search for the existence of long-duration transients in surface displacements, we examine Cascadia GPS time series from PANGA and PBO to determine whether or not Cascadia has hosted a long-term slow slip event in the past 20 years. A careful review of the time series does not reveal any large-scale multi-year transients. In order to more clearly recognize possible small amplitude long-term SSEs in Cascadia, the GPS time series are reduced with two separate methods. The first method involves manually removing (1) continental water loading terms, (2) transient displacements of known short-term SSEs, and (3) common mode signals that span the network. The second method utilizes a seasonal-trend decomposition procedure (STL) to extract a long-term trend from the GPS time-series. Manual inspection of both of these products reveals intriguing long-term changes in the longitudinal component of several GPS stations in central Cascadia. To determine whether these shifts could be due to long-term slow slip, we invert the reduced surface displacement time series for fault slip using a principle component analysis-based inversion method. We also utilize forward fault models of various synthetic long-term SSEs to better understand how these events may

  6. Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data (United States)

    Kenefic, L.; Morton, E.; Bilek, S.


    It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to

  7. Seismoturbidite record as preserved at core sites at the Cascadia and Sumatra–Andaman subduction zones

    Directory of Open Access Journals (Sweden)

    J. R. Patton


    Full Text Available Turbidite deposition along slope and trench settings is evaluated for the Cascadia and Sumatra–Andaman subduction zones. Source proximity, basin effects, turbidity current flow path, temporal and spatial earthquake rupture, hydrodynamics, and topography all likely play roles in the deposition of the turbidites as evidenced by the vertical structure of the final deposits. Channel systems tend to promote low-frequency components of the content of the current over longer distances, while more proximal slope basins and base-of-slope apron fan settings result in a turbidite structure that is likely influenced by local physiography and other factors. Cascadia's margin is dominated by glacial cycle constructed pathways which promote turbidity current flows for large distances. Sumatra margin pathways do not inherit these antecedent sedimentary systems, so turbidity currents are more localized.

  8. Turbidite event history--Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone (United States)

    Goldfinger, Chris; Nelson, C. Hans; Morey, Ann E.; Johnson, Joel E.; Patton, Jason R.; Karabanov, Eugene B.; Gutierrez-Pastor, Julia; Eriksson, Andrew T.; Gracia, Eulalia; Dunhill, Gita; Enkin, Randolph J.; Dallimore, Audrey; Vallier, Tracy; Kayen, Robert; Kayen, Robert


    Turbidite systems along the continental margin of Cascadia Basin from Vancouver Island, Canada, to Cape Mendocino, California, United States, have been investigated with swath bathymetry; newly collected and archive piston, gravity, kasten, and box cores; and accelerator mass spectrometry radiocarbon dates. The purpose of this study is to test the applicability of the Holocene turbidite record as a paleoseismic record for the Cascadia subduction zone. The Cascadia Basin is an ideal place to develop a turbidite paleoseismologic method and to record paleoearthquakes because (1) a single subduction-zone fault underlies the Cascadia submarine-canyon systems; (2) multiple tributary canyons and a variety of turbidite systems and sedimentary sources exist to use in tests of synchronous turbidite triggering; (3) the Cascadia trench is completely sediment filled, allowing channel systems to trend seaward across the abyssal plain, rather than merging in the trench; (4) the continental shelf is wide, favoring disconnection of Holocene river systems from their largely Pleistocene canyons; and (5) excellent stratigraphic datums, including the Mazama ash and distinguishable sedimentological and faunal changes near the Pleistocene-Holocene boundary, are present for correlating events and anchoring the temporal framework. Multiple tributaries to Cascadia Channel with 50- to 150-km spacing, and a wide variety of other turbidite systems with different sedimentary sources contain 13 post-Mazama-ash and 19 Holocene turbidites. Likely correlative sequences are found in Cascadia Channel, Juan de Fuca Channel off Washington, and Hydrate Ridge slope basin and Astoria Fan off northern and central Oregon. A probable correlative sequence of turbidites is also found in cores on Rogue Apron off southern Oregon. The Hydrate Ridge and Rogue Apron cores also include 12-22 interspersed thinner turbidite beds respectively. We use 14C dates, relative-dating tests at channel confluences, and

  9. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone (United States)

    Li, Duo; Liu, Yajing


    Slow slip events (SSEs) are identified as the quasi-stable fault deformation in the deep transition zone from locked to continuous sliding in many subduction zones. In the well-instrumented Cascadia margin, a class of Mw6.0 slow slip events arise beneath Port Angeles every ˜14 months, as inferred from two decades of continuous geodetic monitoring. The along-strike bending of the incoming oceanic plate beneath north Washington is a unique geometric feature whose influence on slow slip processes is still unknown. Here we incorporate a realistic fault geometry of northern Cascadia in the framework of rate- and state-dependent friction law, to simulate the spatiotemporal evolution of slow slip events on a nonplanar subduction fault. The modeled SSEs capture the major characteristics revealed by GPS observations. The central 150 km long fault segment beneath Port Angeles acts as a repetitive slip patch, where SSEs appear every ˜1.5 years with a maximum slip of ˜2.5 cm. Two minor slip patches with smaller areas and cumulative slips straddle this central slip patch. The along-strike segmentation of slow slip is inversely related to the local fault dip and strike angles of the slow slip zone, suggesting strong geometrical control on the slow slip process. This correlation holds even after removing the effect of W/h∗, ratio between velocity-weakening SSE fault width and characteristic nucleation size. Besides the GPS-detectable fast-spreading phase, we find that each SSE cycle consists of deep pre-SSE preparation and post-SSE relaxation phases, which may be the driving mechanism for the deep tremor activity between major SSE episodes discovered in Cascadia.

  10. Regional P wave velocity structure of the Northern Cascadia Subduction Zone (United States)

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.


    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.


    Patton, J. R.; Leroy, T. H.


    Earthquake and tsunami hazard for northwestern California and southern Oregon is predominately based on estimates of recurrence for earthquakes on the Cascadia subduction zone and upper plate thrust faults, each with unique deformation and recurrence histories. Coastal northern California is uniquely located to enable us to distinguish these different sources of seismic hazard as the accretionary prism extends on land in this region. This region experiences ground deformation from rupture of upper plate thrust faults like the Little Salmon fault. Most of this region is thought to be above the locked zone of the megathrust, so is subject to vertical deformation during the earthquake cycle. Secondary evidence of earthquake history is found here in the form of marsh soils that coseismically subside and commonly are overlain by estuarine mud and rarely tsunami sand. It is not currently known what the source of the subsidence is for this region; it may be due to upper plate rupture, megathrust rupture, or a combination of the two. Given that many earlier investigations utilized bulk peat for 14C age determinations and that these early studies were largely reconnaissance work, these studies need to be reevaluated. Recurrence Interval estimates are inconsistent when comparing terrestrial (~500 years) and marine (~220 years) data sets. This inconsistency may be due to 1) different sources of archival bias in marine and terrestrial data sets and/or 2) different sources of deformation. Factors controlling successful archiving of paleoseismic data are considered as this relates to geologic setting and how that might change through time. We compile, evaluate, and rank existing paleoseismic data in order to prioritize future paleoseismic investigations. 14C ages are recalibrated and quality assessments are made for each age determination. We then evaluate geologic setting and prioritize important research locations and goals based on these existing data. Terrestrial core

  12. A Real-time, Borehole, Geophysical Observatory Above The Cascadia Subduction Zone (United States)

    Collins, J. A.; McGuire, J. J.; Becker, K.; O'Brien, J. K.; von der Heydt, K.; Heesemann, M.; Davis, E. E.


    In July 2016, a team from WHOI and RSMAS installed a suite of seismic, geodetic and geothermal sensors in IODP borehole U1364A on the Cascadia Accretionary Prism offshore Vancouver Island. The borehole observatory was connected to the Clayoquot Slope node of the Ocean Networks Canada NEPTUNE Observatory in June 2017. The 3 km long extension cable provides power, timing, and internet connectivity. The borehole sits 4 km above the subduction zone thrust interface, and when drilled in 2010 was instrumented with an ACORK (Advanced Circulation Obviation Retrofit Kit) that allows monitoring and sampling of fluids from multiple zones within the 330 m drilled formation. The borehole ground-motion sensors consist of a broadband seismometer and two geodetic-quality (nano-radian resolution) two-axis tilt sensors clamped to the borehole casing wall at a depth of 277 m below the seafloor. The tilt sensors were selected to detect non-seismic, strain-related transients. A 24-thermistor cable extends from the seafloor to just above the seismometer and tilt-sensor package. The seismic and geodetic data have been flowing from the observatory (network code NV, station code CQS64, location codes B1, B2, and B3) since June and are available from the IRIS DMC. Initial inspection of the seismic and geodetic data shows that all sensors are operating well. We will report on station performance and detection thresholds using an anticipated 5 month duration data set.

  13. Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone (United States)

    Priest, George R.; Zhang, Yinglong; Witter, Robert C.; Wang, Kelin; Goldfinger, Chris; Stimely, Laura


    This paper explores the size and arrival of tsunamis in Oregon and Washington from the most likely partial ruptures of the Cascadia subduction zone (CSZ) in order to determine (1) how quickly tsunami height declines away from sources, (2) evacuation time before significant inundation, and (3) extent of felt shaking that would trigger evacuation. According to interpretations of offshore turbidite deposits, the most frequent partial ruptures are of the southern CSZ. Combined recurrence of ruptures extending ~490 km from Cape Mendocino, California, to Waldport, Oregon (segment C) and ~320 km from Cape Mendocino to Cape Blanco, Oregon (segment D), is ~530 years. This recurrence is similar to frequency of full-margin ruptures on the CSZ inferred from paleoseismic data and to frequency of the largest distant tsunami sources threatening Washington and Oregon, ~Mw 9.2 earthquakes from the Gulf of Alaska. Simulated segment C and D ruptures produce relatively low-amplitude tsunamis north of source areas, even for extreme (20 m) peak slip on segment C. More than ~70 km north of segments C and D, the first tsunami arrival at the 10-m water depth has an amplitude of earthquake. MM V–VI shaking could trigger evacuation of educated populaces as far north as Newport, Oregon for segment D events and Grays Harbor, Washington for segment C events. The NOAA and local warning systems will be the only warning at greater distances from sources.

  14. Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone (United States)

    Priest, George R.; Zhang, Yinglong; Witter, Robert C.; Wang, Kelin; Goldfinger, Chris; Stimely, Laura


    This paper explores the size and arrival of tsunamis in Oregon and Washington from the most likely partial ruptures of the Cascadia subduction zone (CSZ) in order to determine (1) how quickly tsunami height declines away from sources, (2) evacuation time before significant inundation, and (3) extent of felt shaking that would trigger evacuation. According to interpretations of offshore turbidite deposits, the most frequent partial ruptures are of the southern CSZ. Combined recurrence of ruptures extending ~490 km from Cape Mendocino, California, to Waldport, Oregon (segment C) and ~320 km from Cape Mendocino to Cape Blanco, Oregon (segment D), is ~530 years. This recurrence is similar to frequency of full-margin ruptures on the CSZ inferred from paleoseismic data and to frequency of the largest distant tsunami sources threatening Washington and Oregon, ~Mw 9.2 earthquakes from the Gulf of Alaska. Simulated segment C and D ruptures produce relatively low-amplitude tsunamis north of source areas, even for extreme (20 m) peak slip on segment C. More than ~70 km north of segments C and D, the first tsunami arrival at the 10-m water depth has an amplitude of sources.

  15. Tsunami exposure estimation with land-cover data: Oregon and the Cascadia subduction zone (United States)

    Wood, N.


    A Cascadia subduction-zone earthquake has the potential to generate tsunami waves which would impact more than 1000 km of coastline on the west coast of the United States and Canada. Although the predictable extent of tsunami inundation is similar for low-lying land throughout the region, human use of tsunami-prone land varies, creating variations in community exposure and potential impacts. To better understand such variations, land-cover information derived from midresolution remotely-sensed imagery (e.g., 30-m-resolution Landsat Thematic Mapper imagery) was coupled with tsunami-hazard information to describe tsunami-prone land along the Oregon coast. Land-cover data suggest that 95% of the tsunami-prone land in Oregon is undeveloped and is primarily wetlands and unconsolidated shores. Based on Spearman rank correlation coefficients (rs), correlative relationships are strong and statistically significant (p populations, homes, businesses, and tax-parcel values. Community exposure to tsunami hazards, described here by the amount and relative percentage of developed land in tsunami-prone areas, varies considerably among the 26 communities of the study area, and these variations relate to city size. Correlative relationships are strong and significant (p < 0.05) for community exposure rankings based on land-cover data and those based on aggregated socioeconomic data. In the absence of socioeconomic data or community-based knowledge, the integration of hazards information and land-cover information derived from midresolution remotely-sensed imagery to estimate community exposure may be a useful first step in understanding variations in community vulnerability to regional hazards.

  16. Transient Aseismic Slip in the Cascadia Subduction Zone: From Monitoring to Useful Real-time Hazards Information (United States)

    Roeloffs, E. A.; Beeler, N. M.


    The Cascadia subduction zone, extending from northern California to Vancouver Island, has a 10,000 year record of earthquakes > M8.5 at intervals of several hundred years, with the last major event (~M9) in 1700. Agencies in CA, OR, WA, and BC are raising public awareness of the hazards posed by a repeat Cascadia earthquake and its ensuing tsunami. Because most of the subduction interface is now seismically quiet, an interface event M6 or larger would generate intense public concern that it could be a potential foreshock of a great earthquake. Cascadia residents are also interested in the episodic tremor and slip (ETS) events that recur months to years apart: strong evidence implies these aseismic events represent accelerated interface slip downdip of the seismogenic zone. Simple mechanics implies ETS events temporarily increase the stressing rate on the locked zone. ETS events in northern Cascadia recur at fairly regular intervals and produced roughly similar patterns of deformation. However, an unusually large ETS event or increased interface seismicity would certainly prompt public officials and local residents to expect scientists to quickly determine the implications for a major Cascadia earthquake. Earthquake scientists generally agree that such “situations of concern” warrant close monitoring, but attempts to quantify potential probability changes are in very early stages. With >30 borehole strainmeters and >100 GPS stations of the NSF-funded Plate Boundary Observatory (PBO) in Cascadia, geodesists must develop a well-organized real-time monitoring scheme for interpreting aseismic deformation, with an accompanying public communication strategy. Two previously-exercised monitoring and communication protocols could be adapted for Cascadia. During the Parkfield, California, Earthquake Experiment, geodetic signals were assigned alert levels based on their rareness in the past record, on confirmation by more than one instrument, and on consistency with

  17. Cascadia Subduction Zone Earthquake Source Spectra from an Array of Arrays (United States)

    Gomberg, J. S.; Vidale, J. E.


    suggests it is more likely that variation in attenuation modulates the spectra. Because the variations in apparent source spectra correlate well with source location, but poorly with receiver location, we infer that near-source attenuation differences likely are much more significant. We conclude that the conventional wisdom may require some revision - that near-source propagation effects may be responsible for some fraction of what has hitherto been attributed to source processes. Moreover, our results further suggest that subduction zone earthquakes do not separate neatly into 'slow' and 'fast' classes, but likely span a continuum.

  18. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions (United States)

    Atkinson, G.M.; Boore, D.M.


    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  19. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies (United States)

    Li, Duo; Liu, Yajing


    Along-strike segmentation of slow-slip events (SSEs) and nonvolcanic tremors in Cascadia may reflect heterogeneities of the subducting slab or overlying continental lithosphere. However, the nature behind this segmentation is not fully understood. We develop a 3-D model for episodic SSEs in northern and central Cascadia, incorporating both seismological and gravitational observations to constrain the heterogeneities in the megathrust fault properties. The 6 year automatically detected tremors are used to constrain the rate-state friction parameters. The effective normal stress at SSE depths is constrained by along-margin free-air and Bouguer gravity anomalies. The along-strike variation in the long-term plate convergence rate is also taken into consideration. Simulation results show five segments of ˜Mw6.0 SSEs spontaneously appear along the strike, correlated to the distribution of tremor epicenters. Modeled SSE recurrence intervals are equally comparable to GPS observations using both types of gravity anomaly constraints. However, the model constrained by free-air anomaly does a better job in reproducing the cumulative slip as well as more consistent surface displacements with GPS observations. The modeled along-strike segmentation represents the averaged slip release over many SSE cycles, rather than permanent barriers. Individual slow-slip events can still propagate across the boundaries, which may cause interactions between adjacent SSEs, as observed in time-dependent GPS inversions. In addition, the moment-duration scaling is sensitive to the selection of velocity criteria for determining when SSEs occur. Hence, the detection ability of the current GPS network should be considered in the interpretation of slow earthquake source parameter scaling relations.

  20. Interaction of Structure and Physical Properties in Accretionary Wedges: Examples from the Cascadia and Nankai Trough Subduction Zones (United States)

    Webb, Susanna I.

    Subduction zones are capable of producing large, megathrust earthquakes that are sometimes tsunamigenic. Structure and physical properties in the accretionary wedge play a role in how far rupture can propagate and how the wedge deforms coseismically. In this dissertation, I use seismic reflection data and velocity models from the Cascadia subduction zone and logging data from the Nankai Trough, Japan, to interpret structure, link structure to the broader wedge deformation history, and investigate the material properties at depth. I present a full structural interpretation of newly acquired seismic reflection data in the central Cascadia margin, which is characterized by dominantly landward vergent faulting in the outer wedge, a very low wedge taper angle, and a broad, lightly deformed lower slope terrace. Two decollements are active: an upper decollement within the sedimentary section, and a basal decollement at the sediment-basement interface. These interpretations help delineate the spatial extent of decollements and suggest that supra-wedge sedimentation may influence the development of the wedge, including the formation of the lower slope terrace and out of sequence fault activity. I use velocity models from central Cascadia to estimate excess pore fluid pressure and overpressure ratio at depth, which do not exceed 5 MPa and 0.15, respectively. No excess pore pressure is documented in the underthrust sediment section, but modest overpressure is likely present in the incoming sediment section and the footwalls of thrust sheets. The analysis of pore pressure shows that (1) if the base of the wedge is weak, it is due to mechanical properties of the sediments or a relatively thin underthrust layer and (2) the Cascadia wedge is relatively well-drained, and thus potentially strong, which can lead to a low wedge taper angle. In the Nankai Trough, Japan, I reprocessed sonic log data to obtain P-wave and S-wave velocity values and estimate elastic moduli. The logs

  1. Earthquake spectra and near-source attenuation in the Cascadia subduction zone (United States)

    Gomberg, J.; Creager, K.; Sweet, J.; Vidale, J.; Ghosh, A.; Hotovec, A.


    Models of seismic source displacement spectra are flat from zero to some corner frequency, fc, regardless of source type. At higher frequencies spectral models decay as f-1 for slow events and as f-2 for fast earthquakes. We show that at least in Cascadia, wave propagation effects likely control spectral decay rates above ˜2 Hz. We use seismograms from multiple small-aperture arrays to estimate the spectral decay rates of near-source spectra of 37 small `events' and find strong correlation between source location and decay rate. The decay rates (1) vary overall by an amount in excess of that inferred to distinguish slow sources from fast earthquakes, (2) are indistinguishable for sources separated by a few tens of km or less, and (3) separate into two populations that correlate with propagation through and outside a low-velocity zone imaged tomographically. We find that some events repeat, as is characteristic of low-frequency earthquakes (LFEs), but have spectra similar to those of non-repeating earthquakes. We also find no correlation between spectral decay rates and rates of ambient tremor activity. These results suggest that earthquakes near the plate boundary, at least in Cascadia, do not distinctly separate into `slow' and `fast' classes, and correctly accounting for propagation effects is necessary to characterize sources.

  2. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc (United States)

    Currie, C. A.; Wang, K.; Hyndman, Roy D.; He, Jiangheng


    At subduction zones, geophysical and geochemical observations indicate that the arc and backarc regions are hot, in spite of the cooling effects of a subducting plate. At the well-studied Cascadia subduction zone, high mantle temperatures persist for over 500 km into the backarc, with little lateral variation. These high temperatures are even more surprising due to the juxtaposition of the hot Cascadia backarc against the thick, cold North America craton lithosphere. Given that local heat sources appear to be negligible, mantle flow is required to transport heat into the wedge and backarc. We have examined the thermal effects of mantle flow induced by traction along the top of the subducting plate. Through systematic tests of the backarc model boundary, we have shown that the model thermal structure of the wedge is primarily determined by the assumed temperatures along this boundary. To get high temperatures in the wedge, it is necessary for flow to mine heat from depth, either by using a temperature-dependent rheology, or by introducing a deep cold boundary through a thick adjacent lithosphere, consistent with the presence of a craton. Regardless of the thermal conditions along the backarc boundary, flow within an isoviscous wedge is too slow to transport a significant amount of heat into the wedge corner. With a more realistic stress- and temperature-dependent wedge rheology, flow is focused into the wedge corner, resulting in rapid flow upward toward the corner and enhanced temperatures below the arc, compatible with temperatures required for arc magma generation. However, this strong flow focusing produces a nearly stagnant region further landward in the shallow backarc mantle, where model temperatures and heat flow are much lower than observed. Observations of high backarc temperatures, particularly in areas that have not undergone recent extension, provide an important constraint on wedge dynamics. None of the models of simple traction-driven flow were able

  3. Modeling the effects of source and path heterogeneity on ground motions of great earthquakes on the Cascadia Subduction Zone Using 3D simulations (United States)

    Delorey, Andrew; Frankel, Arthur; Liu, Pengcheng; Stephenson, William J.


    We ran finite‐difference earthquake simulations for great subduction zone earthquakes in Cascadia to model the effects of source and path heterogeneity for the purpose of improving strong‐motion predictions. We developed a rupture model for large subduction zone earthquakes based on a k−2 slip spectrum and scale‐dependent rise times by representing the slip distribution as the sum of normal modes of a vibrating membrane.Finite source and path effects were important in determining the distribution of strong motions through the locations of the hypocenter, subevents, and crustal structures like sedimentary basins. Some regions in Cascadia appear to be at greater risk than others during an event due to the geometry of the Cascadia fault zone relative to the coast and populated regions. The southern Oregon coast appears to have increased risk because it is closer to the locked zone of the Cascadia fault than other coastal areas and is also in the path of directivity amplification from any rupture propagating north to south in that part of the subduction zone, and the basins in the Puget Sound area are efficiently amplified by both north and south propagating ruptures off the coast of western Washington. We find that the median spectral accelerations at 5 s period from the simulations are similar to that of the Zhao et al. (2006) ground‐motion prediction equation, although our simulations predict higher amplitudes near the region of greatest slip and in the sedimentary basins, such as the Seattle basin.

  4. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists


    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  5. Correlated Paleoseismic Interpretation of Turbidites from 3 Distinct Sedimentary Environments in the Cascadia Subduction Zone Off Vancouver Island Canada (United States)

    Enkin, R. J.; Hamilton, T. S.; Rogers, G. C.


    Sedimentary sequences containing turbidites can provide important paleoseismic records. We present sedimentary records from 3 distinct sedimentary systems which provide a reliable well-dated paleseismic record. All 3 sites are subject to strong ground shaking in the event of a megathrust earthquake along the Cascadia Subduction Zone near Vancouver Island, Canada. Effingham Inlet is an anoxic fjord on the west coast of Vancouver Island with an age model based on radiocarbon dates from terrestrial plant material (no marine correction), the Mazama Ash, and sedimentation rates constrained by annual laminations [Dallimore et al. 2008, Enkin et al., 2013]. Barkley Canyon [Goldfinger et al., 2012], 150 km SW, has been sampled at the abyssal plain fan in front of a submarine canyon. Slipstream Slump [ms submitted], 40 km north of Barkley Canyon, is a well-preserved 3 km wide sedimentary failure from the frontal ridge of the Cascadia accretionary wedge. At Slipstream, given the 2300 m water depth and the thin weak crust at the outer edge of the accretionary wedge, megathrust earthquake shaking is the most likely trigger for the turbidity currents, with sediments sourced exclusively from the exposed slide scar. Correlations based on sedimentology and physical property logging are made between turbidites observed at Barkley Canyon and Slipstream Slump, and a mutually consistent age model is defined using only planktonic foraminiferal dates and Bayesian analysis with a Poisson-process sedimentation model. A young marine reservoir age of ΔR=0 yr brings the top to the present and produces age correlations consistent with the thickest (>10 cm) Effingham Inlet turbidites. Correlations of physical property logs tie the Effingham Inlet record to the offshore, despite the extreme differences in the sedimentology. Having good marine geophysical data and well positioned core transects allows the facies analysis needed to interpret the turbidite record. This study provides a much

  6. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA (United States)

    Graehl, Nicholas A; Kelsey, Harvey M.; Witter, Robert C.; Hemphill-Haley, Eileen; Engelhart, Simon E.


    The Sallys Bend swamp and marsh area on the central Oregon coast onshore of the Cascadia subduction zone contains a sequence of buried coastal wetland soils that extends back ∼4500 yr B.P. The upper 10 of the 12 soils are represented in multiple cores. Each soil is abruptly overlain by a sandy deposit and then, in most cases, by greater than 10 cm of mud. For eight of the 10 buried soils, times of soil burial are constrained through radiocarbon ages on fine, delicate detritus from the top of the buried soil; for two of the buried soils, diatom and foraminifera data constrain paleoenvironment at the time of soil burial.We infer that each buried soil represents a Cascadia subduction zone earthquake because the soils are laterally extensive and abruptly overlain by sandy deposits and mud. Preservation of coseismically buried soils occurred from 4500 yr ago until ∼500–600 yr ago, after which preservation was compromised by cessation of gradual relative sea-level rise, which in turn precluded drowning of marsh soils during instances of coseismic subsidence. Based on grain-size and microfossil data, sandy deposits overlying buried soils accumulated immediately after a subduction zone earthquake, during tsunami incursion into Sallys Bend. The possibility that the sandy deposits were sourced directly from landslides triggered upstream in the Yaquina River basin by seismic shaking was discounted based on sedimentologic, microfossil, and depositional site characteristics of the sandy deposits, which were inconsistent with a fluvial origin. Biostratigraphic analyses of sediment above two buried soils—in the case of two earthquakes, one occurring shortly after 1541–1708 cal. yr B.P. and the other occurring shortly after 3227–3444 cal. yr B.P.—provide estimates that coseismic subsidence was a minimum of 0.4 m. The average recurrence interval of subduction zone earthquakes is 420–580 yr, based on an ∼3750–4050-yr-long record and seven to nine interearthquake

  7. A morphologic proxy for debris flow erosion with application to the earthquake deformation cycle, Cascadia Subduction Zone, USA (United States)

    Penserini, Brian D.; Roering, Joshua J.; Streig, Ashley


    In unglaciated steeplands, valley reaches dominated by debris flow scour and incision set landscape form as they often account for > 80% of valley network length and relief. While hillslope and fluvial process models have frequently been combined with digital topography to develop morphologic proxies for erosion rate and drainage divide migration, debris-flow-dominated networks, despite their ubiquity, have not been exploited for this purpose. Here, we applied an empirical function that describes how slope-area data systematically deviate from so-called fluvial power-law behavior at small drainage areas. Using airborne LiDAR data for 83 small ( 1 km2) catchments in the western Oregon Coast Range, we quantified variation in model parameters and observed that the curvature of the power-law scaling deviation varies with catchment-averaged erosion rate estimated from cosmogenic nuclides in stream sediments. Given consistent climate and lithology across our study area and assuming steady erosion, we used this calibrated denudation-morphology relationship to map spatial patterns of long-term uplift for our study catchments. By combining our predicted pattern of long-term uplift rate with paleoseismic and geodetic (tide gauge, GPS, and leveling) data, we estimated the spatial distribution of coseismic subsidence experienced during megathrust earthquakes along the Cascadia Subduction Zone. Our estimates of coseismic subsidence near the coast (0.4 to 0.7 m for earthquake recurrence intervals of 300 to 500 years) agree with field measurements from numerous stratigraphic studies. Our results also demonstrate that coseismic subsidence decreases inland to negligible values > 25 km from the coast, reflecting the diminishing influence of the earthquake deformation cycle on vertical changes of the interior coastal ranges. More generally, our results demonstrate that debris flow valley networks serve as highly localized, yet broadly distributed indicators of erosion (and rock

  8. Ground Shaking and Earthquake Engineering Aspects of the M 8.8 Chile Earthquake of 2010 - Applications to Cascadia and Other Subduction Zones (Invited) (United States)

    Cassidy, J. F.; Boroschek, R.; Ventura, C.; Huffman, S.


    The M 8.8 Maule, Chile earthquake of February 27, 2010 was the fifth largest earthquake ever recorded by seismographs and provides a rare opportunity to compare strong shaking observations with earthquake rupture and damage patterns. This subduction earthquake was caused by up to 13 m of eastward slip of the Nazca plate beneath the South American plate. The rupture zone extended nearly 600 km along the Chile coast and covered the most populated region of the country - extending from south of Concepcion to just south of Valpraiso (near the latitude of Santiago). As this is the type of earthquake that is expected along the Cascadia subduction zone of western Canada and the U.S., and given that modern building codes and construction styles in Chile and Cascadia are very similar, the Canadian Association of Earthquake Engineers sent a team of 10 engineers and a seismologist to the earthquake zone to learn from this earthquake. In this presentation we focus on sites where strong ground shaking was recorded (the data available to date range from about 0.1g to 0.66g). The recorded waveforms showed strong shaking for up to 2-3 minutes, with two distinct bursts of energy that may correspond to two large asperities that ruptured. At many locations, particularly along the coast, the recorded shaking levels exceeded code values, especially at longer periods (~ 1 second and longer). There was significant damage to older hospitals and schools. Twenty-five hospitals were severely damaged (17 collapsed, 8 repairable) and in the Maule region, 45% of the hospital beds were lost. More than 2500 schools were damaged and more than 780,000 students were affected. Of about 12,000 bridges in Chile, only 40 were damaged, 20 severely (many of these were newer overpasses). Modern high-rise buildings, in general, did very well. Of the 10,000 3-storey or higher buildings constructed since 1985, only 4 collapsed, and 50-150 were badly damaged. This clearly demonstrates the importance of modern

  9. Spatial Comparisons of Tremor and Slow Slip as a Constraint on Fault Strength in the Northern Cascadia Subduction Zone (United States)

    Hall, K.; Schmidt, D. A.; Houston, H.


    We measure displacement vectors from about 50 or more PANGA 3-component GPS stations to analyze six large ETS events from 2007 - 2016 in northern Cascadia, and invert for slip on a realistic plate interface. Our previous results indicated that significant slip of up to 2 cm occurs 10 to 15 km up-dip of the western edge of tremor beneath the Olympic Peninsula. This far up-dip aseismic slip persists in several of the ETS events. We also find that this offset appears to vary along-strike with a greater offset beneath the Olympic Peninsula and up into the Strait of Juan de Fuca in comparison to lower Puget Sound. To explain this, we explore how properties (temperature and permeability) of the overlying structure may influence fault strength. In our conceptual model, the observation that slip inferred from GPS can extend updip of tremor suggests that updip of the observed edge of tremor, seismogenic patches that could produce tremor and low frequency earthquakes (LFEs) are too strong to fail from the relatively minor amount of far up-dip slow slip. This is consistent with the observation that, within the ETS zone, down-dip LFEs occur frequently, whereas up-dip LFEs occur only during the largest ETS events and are unaffected by tidal stresses until the later stages of an ETS event. This suggests that the up-dip seismogenic patches have a larger discrepancy between their strength and stress states, and therefore require larger stress perturbations (such as those from a propagating ETS slip pulse) to trigger seismic failure. We consider whether lateral variations in overlying structure may explain the along-strike variations in far up-dip aseismic slip. There is an abrupt change in lithology from the meta-sediments of the Olympic accretionary complex to the mafic basalts of the Crescent terrane. The juxtaposition of these different lithologies could potentially explain the along-strike variations in far up-dip aseismic slip. We propose to explore whether relative changes

  10. Probable Maximum Earthquake Magnitudes for the Cascadia Subduction (United States)

    Rong, Y.; Jackson, D. D.; Magistrale, H.; Goldfinger, C.


    The concept of maximum earthquake magnitude (mx) is widely used in seismic hazard and risk analysis. However, absolute mx lacks a precise definition and cannot be determined from a finite earthquake history. The surprising magnitudes of the 2004 Sumatra and the 2011 Tohoku earthquakes showed that most methods for estimating mx underestimate the true maximum if it exists. Thus, we introduced the alternate concept of mp(T), probable maximum magnitude within a time interval T. The mp(T) can be solved using theoretical magnitude-frequency distributions such as Tapered Gutenberg-Richter (TGR) distribution. The two TGR parameters, β-value (which equals 2/3 b-value in the GR distribution) and corner magnitude (mc), can be obtained by applying maximum likelihood method to earthquake catalogs with additional constraint from tectonic moment rate. Here, we integrate the paleoseismic data in the Cascadia subduction zone to estimate mp. The Cascadia subduction zone has been seismically quiescent since at least 1900. Fortunately, turbidite studies have unearthed a 10,000 year record of great earthquakes along the subduction zone. We thoroughly investigate the earthquake magnitude-frequency distribution of the region by combining instrumental and paleoseismic data, and using the tectonic moment rate information. To use the paleoseismic data, we first estimate event magnitudes, which we achieve by using the time interval between events, rupture extent of the events, and turbidite thickness. We estimate three sets of TGR parameters: for the first two sets, we consider a geographically large Cascadia region that includes the subduction zone, and the Explorer, Juan de Fuca, and Gorda plates; for the third set, we consider a narrow geographic region straddling the subduction zone. In the first set, the β-value is derived using the GCMT catalog. In the second and third sets, the β-value is derived using both the GCMT and paleoseismic data. Next, we calculate the corresponding mc

  11. An Absolute Self-Calibrating Pressure Recorder for Campaign-Style Detection of Vertical Seafloor Deformation in the Cascadia Subduction Zone (United States)

    Cook, M. J.; Roland, E. C.; Sasagawa, G. S.; Schmidt, D. A.; Wilcock, W. S. D.; Zumberge, M. A.


    Seawater pressure can be used to detect vertical seafloor deformation because small changes in seafloor height produce measurable pressure changes. Vertical deformation rates in subduction zones due to secular strain are expected to be less than 1 cm/year, signals that are difficult to measure with pressure gauges because of gauge drift. The Self-Calibrating Pressure Recorder (SCPR) was designed to circumvent the problem of gauge drift by employing a deadweight calibrator, which periodically provides a reference pressure that is used to correct for drift in a continuously recorded pressure record. Alternatively, the SCPR can be used to make campaign-style determinations of true seafloor pressure to support long-term deformation measurements and provide an exact reference for nearby pressure gauges. This Absolute Self-Calibrating Pressure Recorder (ASCPR) requires a metrological assessment of measurement parameters to ensure that its absolute accuracy is sufficient to resolve secular deformation. While on a concrete seafloor benchmark, alternating calibration and seawater observations are made every 10-20 minutes for several hours. The difference between the known reference pressure and the seafloor pressure is observed, which allows the calculation of the true, absolute seafloor pressure. In 2014 and 2015, seven concrete benchmarks were placed on the seafloor in the Cascadia subduction zone off central Oregon along a profile that extends from 20 km to 105 km offshore. We surveyed two benchmarks in 2014, 2015, and 2016, a third one in 2015 and 2016, and four more in 2016. Current measurement repeatability varies from 2 to 5 cm, but several corrections still need to be incorporated. The expected resolution is 1 cm.

  12. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Directory of Open Access Journals (Sweden)

    J. E. Johnson


    Full Text Available New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822. The third event and fourth event

  13. P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations—Update for Open-File Report 2007–1348 (United States)

    Stephenson, William J.; Reitman, Nadine G.; Angster, Stephen J.


    In support of earthquake hazards studies and ground motion simulations in the Pacific Northwest, threedimensional (3D) P- and S-wave velocity (VP and VS , respectively) models incorporating the Cascadia subduction zone were previously developed for the region encompassed from about 40.2°N. to 50°N. latitude, and from about 122°W. to 129°W. longitude (fig. 1). This report describes updates to the Cascadia velocity property volumes of model version 1.3 ([V1.3]; Stephenson, 2007), herein called model version 1.6 (V1.6). As in model V1.3, the updated V1.6 model volume includes depths from 0 kilometers (km) (mean sea level) to 60 km, and it is intended to be a reference for researchers who have used, or are planning to use, this model in their earth science investigations. To this end, it is intended that the VP and VS property volumes of model V1.6 will be considered a template for a community velocity model of the Cascadia region as additional results become available. With the recent and ongoing development of the National Crustal Model (NCM; Boyd and Shah, 2016), we envision any future versions of this model will be directly integrated with that effort

  14. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.


    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  15. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.


    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  16. GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation (United States)

    Miller, M. Meghan; Johnson, Daniel J.; Rubin, Charles M.; Dragert, Herb; Wang, Kelin; Qamar, Anthony; Goldfinger, Chris


    High-precision GPS geodesy in the Pacific Northwest provides the first synoptic view of the along-strike variation in Cascadia margin kinematics. These results constrain interfering deformation fields in a region where typical earthquake recurrence intervals are one or more orders of magnitude longer than the decades-long history of seismic monitoring and where geologic studies are sparse. Interseismic strain accumulation contributes greatly to GPS station velocities along the coast. After correction for a simple elastic dislocation model, important residual motions remain, especially south of the international border. The magnitude of northward forearc motion increases southward from western Washington (3-7 mm/yr) to northern and central Oregon (˜9 mm/yr), consistent with oblique convergence and geologic constraints on permanent deformation. The margin-parallel strain gradient, concentrated in western Washington across the populated Puget Lowlands, compares in magnitude to shortening across the Los Angeles Basin. Thus crustal faulting also contributes to seismic hazard. Farther south in southern Oregon, north-westward velocities reflect the influence of Pacific-North America motion and impingement of the Sierra Nevada block on the Pacific Northwest. In contrast to previous notions, some deformation related to the Eastern California shear zone crosses northernmost California in the vicinity of the Klamath Mountains and feeds out to the Gorda plate margin.

  17. On the Viability of Using Autonomous Three-Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to the Old Faithful Hydrothermal System and the Cascadia Subduction Zone (United States)

    Ward, K. M.; Lin, F. C.


    Recent advances in seismic data-acquisition technology paired with an increasing interest from the academic passive source seismological community have opened up new scientific targets and imaging possibilities, often referred to as Large-N experiments (large number of instruments). The success of these and other deployments has motivated individual researchers, as well as the larger seismological community, to invest in the next generation of nodal geophones. Although the new instruments have battery life and bandwidth limitations compared to broadband instruments, the relatively low deployment and procurement cost of these new nodal geophones provides an additional novel tool for researchers. Here, we explore the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions by comparison of co-located broadband stations and highlight some potential advantages with a dense nodal array deployed around the Upper Geyser basin in Yellowstone National Park. Two key findings from this example include (1) very dense nodal arrays can be used to image small-scale features in the shallow crust that typical broadband station spacing would alias, and (2) nodal arrays with a larger footprint could be used to image deeper features with greater or equal detail as typical broadband deployments but at a reduced deployment cost. The success of the previous example has motivated a larger 2-D line across the Cascadia subduction zone. In the summer of 2017, we deployed 174 nodal geophones with an average site spacing of 750 m. Synthetic tests with dense station spacing ( 1 km) reveal subtler features of the system that is consistent with our preliminary receiver function results from our Cascadia deployment. With the increasing availability of nodal geophones to individual researchers and the successful demonstration that nodal geophones are a viable instrument for receiver function studies, numerous scientific targets can be investigated

  18. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity (United States)

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane


    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  19. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.


    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  20. Boron cycling in subduction zones


    Palmer, Martin R.


    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  1. Cascadia

    DEFF Research Database (Denmark)

    Cold-Ravnkilde, Signe Marie; Singh, Jay; Lee, Robert


    This paper aims to demonstrate how globalization and discourses on regional/national identities cannot only create cross-border/regional social spaces but also the criteria to select a transnational elite to occupy the cross-border space reified by interplay of myths and logic. Using the case...... of Cascadia, we observe a construction of regional social space, taking place along the Pacific Northwest border of U.S. and Canada, through the process of globalization. In this socially constructed region of Cascadia, two often-antagonistic groups are mutually benefiting from each other by creating a unique...

  2. Do microplates in subduction zones leave a geological record? (United States)

    Stock, Joann M.; Lee, Jeffrey


    Active microplate boundaries in ocean-continent subduction zones may induce deformation of the overlying plate and spatial or geochemical variations in the volcanic arc. We discuss two modern cases. The first is the South Gorda-Juan de Fuca plate boundary in the Cascadia subduction zone, where there is little or no effect on the overriding plate and the oceanic plate takes up much of the deformation. The second case is the Cocos-Rivera plate boundary in the Middle America trench, where the overlying Colima graben contains substantial deformation in a zone extending from the trench to the volcanic arc and the sub-duction-related volcanism is spatially and geochemically complex. We apply these observations to boundaries of the Arguello, Monterey, Guadalupe, and Magdalena microplates, which existed in the subduction zone west of Baja California at various times from 20 to 12.5 Ma. The past positions of these boundaries relative to Baja California are constrained by global plate reconstructions, closure of the Gulf of California, and an estimate of extension in the Mexican Basin and Range province. Existing regional mapping and our additional reconnaissance mapping show that Paleocene to Eocene fluvial and marine sedimentary rocks south of Ensenada along the western Baja California peninsula and eastward to the mid-Miocene volcanic arc are undeformed. Limited available data reveal no major spatial or geochemical variations in the mid-Miocene volcanic arc that might correlate with the past positions of the microplate boundaries. Thus these microplate boundaries had little to no effect on the overriding continental plate. The nature of Guadalupe and Magdalena interactions with North America may have been closer to the South Gorda-Juan de Fuca example, with possible internal deformation of the microplates. The Monterey and Arguello microplates may have behaved like the modern Explorer plate, with largely strike-slip motion relative to North America during their last

  3. The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System (United States)


    same range over which the low velocity signature of the subducting crust disappears. While serpentinized peridotite in the upper mantle is only...While serpentinization is normally the most important hydration mechanism associated with peridotites , the stability zone for serpentine is...with dry peridotite at the temperatures expected in the wedge. This is consistent with the seismic image, as this resistor corresponds to the

  4. Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone (United States)

    Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.


    Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  5. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.


    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  6. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    . Few pattern recognition methods were tested on all 6 gravity gradient tensor components represented as global scale maps with resolution of 100km (corresponds to the resolution of the GOCE satellite data). By adjusting pattern recognition methods’ features and optimizing various input patterns...... and used as starting point for analysis based on image processing. On obtained maps, locations of known subduction zones were represented with characteristic elongated patterns and cross-sections. Cross sections of well-known subduction zones were used as input patterns for pattern recognition method......, the best method was applied. That is a combination of methods based on SURF (Speeded Up Robust Features) and MSER (Maximally Stable Extremal Regions) algorithms provided in MATLAB’s Computer Vision System Toolbox. Based on 6 gravity gradient components, the global gradient anomaly maps were produced...

  7. H2O and CO2 devolatilization in subduction zones: implications for the global water and carbon cycles (Invited) (United States)

    van Keken, P. E.; Hacker, B. R.; Syracuse, E. M.; Abers, G. A.


    Subduction of sediments and altered oceanic crust functions as a major carbon sink. Upon subduction the carbon may be released by progressive metamorphic reactions, which can be strongly enhanced by free fluids. Quantification of the CO2 release from subducting slabs is important to determine the provenance of CO2 that is released by the volcanic arc and to constrain the flux of carbon to the deeper mantle. In recent work we used a global set of high resolution thermal models of subduction zones to predict the flux of H2O from the subducting slab (van Keken, Hacker, Syracuse, Abers, Subduction factory 4: Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., under review) which provides a new estimate of the dehydration efficiency of the global subducting system. It was found that mineralogically bound water can pass efficiently through old and fast subduction zones (such as in the western Pacific) but that warm subduction zones (such as Cascadia) see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust dehydrates significantly. The degree and depth of dehydration is highly diverse and strongly depends on (p,T) and bulk rock composition. On average about one third of subducted H2O reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The present-day global flux of H2O to the deep mantle translates to an addition of about one ocean mass over the age of the Earth. We extend the slab devolatilization work to carbon by providing an update to Gorman et al. (Geochem. Geophys. Geosyst, 2006), who quantified the effects of free fluids on CO2 release. The thermal conditions were based on three end-member subduction zones with linear interpolation to provide a global CO2 flux. We use the new high resolution and global set of models to provide higher resolution predictions for the provenance and pathways of CO2 release to

  8. Dehydration-driven topotaxy in subduction zones (United States)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.


    Mineral replacement reactions play a fundamental role in the chemistry and the strength of the lithosphere. When externally or internally derived fluids are present, interface-coupled dissolution-precipitation is the driving mechanism for such reactions [1]. One of the microstructural features of this process is a 3D arrangement of crystallographic axes across internal interfaces (topotaxy) between reactant and product phases. Dehydration reactions are a special case of mineral replacement reaction that generates a transient fluid-filled porosity. Among others, the dehydration serpentinite is of special relevance in subduction zones because of the amount of fluids involved (potentially up to 13 wt.%). Two topotatic relationships between olivine and antigorite (the serpentine mineral stable at high temperature and pressure) have been reported in partially hydrated mantle wedge xenoliths [2]. Therefore, if precursor antigorite serpentine has a strong crystallographic preferred orientation (CPO) its dehydration might result in prograde peridotite with a strong inherited CPO. However for predicting the importance of topotactic reactions for seismic anisotropy of subduction zones we also need to consider the crystallization orthopyroxene + chlorite in the prograde reaction and, more importantly, the fact that this dehydration reaction produces a transient porosity of ca. 20 % vol. that results in local fluctuations of strain during compaction and fluid migration. We address this issue by a microstructural comparison between the CPO developed in olivine, orthopyroxene and chlorite during high-pressure antigorite dehydration in piston cylinder experiments (at 750ºC and 20 kbar and 1000ºC and 30 kbar, 168 h) and that recorded in natural samples (Cerro del Almirez, Betic Cordillera, Spain). Experimentally developed CPOs are strong. Prograde minerals show a significant inheritance of the former antigorite foliation. Topotactic relations are dominated by (001)atg//(100)ol

  9. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.


    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  10. Seismic evidence for deep fluid circulation in the overriding plate of subduction zones (United States)

    Tauzin, B.; Reynard, B.; Bodin, T.; Perrillat, J. P.; Debayle, E.


    In subduction zones, non-volcanic tremors are associated with fluid circulations (Obara, 2002). Their sources are often located on the interplate boundary (Rogers and Dragert, 2003; Shelly et al, 2006; La Rocca, 2009), consistent with fluids released by the dehydration of subducted plates (Hacker et al., 2003). Reports of tremors in the overriding continental crust of several subduction zones in the world (Kao et al., 2005; Payero et al., 2008; Ide, 2012) suggest fluid circulation at shallower depths but potential fluid paths are poorly documented. Here we obtained seismic observations from receiver functions that evidence the close association between the shallow tremor zone, electrical conductivity, and tectonic features of the Cascadia overriding plate. A seismic discontinuity near 15 km depth in the crust of the overriding North American plate is attributed to the Conrad discontinuity. This interface is segmented, and its interruption is spatially correlated with conductive regions and shallow swarms of seismicity and non-volcanic tremors. These observations suggest that shallow fluid circulation, tremors and seismicity are controlled by fault zones limiting blocks of accreted terranes in the overriding plate (Brudzinski and Allen, 2007). These zones constitute fluid "escape" routes that may contribute unloading fluid pressure on the megathrust. Obara, K. (2002). Science, 296, 1679-1681. Rogers, G., & Dragert, H. (2003). Science, 300, 1942-1943. Shelly, D. R., et al. (2006). Nature, 442, 188-191. La Rocca, M., et al. (2009). Science, 323, 620-623. Kao, H., et al. (2005). Nature, 436, 841-844. Payero, J. S., et al. (2008). Geophysical Research Letters, 35. Ide, S. (2012). Journal of Geophysical Research: Solid Earth, 117. Brudzinski, M. R., & Allen, R. M. (2007). Geology, 35, 907-910.

  11. Stress orientations in subduction zones and the strength of subduction megathrust faults. (United States)

    Hardebeck, Jeanne L


    Subduction zone megathrust faults produce most of the world's largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making an angle of 45° to 60° with respect to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface. Copyright © 2015, American Association for the Advancement of Science.

  12. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric; van Hinsbergen, Douwe J.J.; Morris, Antony; Plümper, Oliver; Spakman, Wim

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  13. Ocean Bottom Seismograph Performance during the Cascadia Initiative (United States)

    Aderhold, K.; Evers, B.


    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provides instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigates geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marks the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments feature trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Stations include differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments will be freely available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date and demonstrates an effective structure for community experiments through collaborative efforts from the Cascadia Initiative Expedition Team (CIET), OBSIP (institutional instrument contributors [LDEO, SIO, WHOI] and Management Office [IRIS]), and the IRIS DMC. The successes and lessons from Cascadia are a vital resource for the development of a Subduction Zone Observatory (SZO). To guide future efforts, we investigate the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and

  14. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand (United States)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.


    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in

  15. Relating seismic observables to fluid migration in subduction zones (United States)

    Abers, G. A.; Fischer, K. M.; Hirth, G.; Holtzman, B. K.; Plank, T.; Wiens, D. A.


    Seismic images provide quantitative information about the physical state of the mantle. In subduction zones, a number of recent high-density broadband seismic field experiments provide images and analyses of the down-dip changes to the slab surface, the subarc melting region of the mantle, and the cold forearc nose. However, the implications of the measured quantities (P and S velocities Vp and Vs, attenuation Qp and Qs, and measures of seismic anisotropy) for the quantities of geodynamic interest (such as temperature, melt, water content, and composition) are not unique. We are embarking on an effort to systematically improve our understanding of the interrelationships between seismic and geodynamic parameters, leveraging seismic data collected from dense arrays in several subduction zones. These data compare well with arc chemistry, revealing complementary patterns between chemistry and seismology along strike in Central America and down dip in the Marianas. The slab surface can be imaged through a variety of reflections and mode conversions, including receiver functions. These show a variety of characteristics at different depths. Many subduction zones exhibit a transition from high amplitude conversions at the shallow thrust zone, indicating a weak and probably over-pressured subduction channel, to a deeper region that can be characterized by subducting uneclogitized crust. Elsewhere and deeper, the effects of steep thermal gradients become more significant in seismic images. Lower than expected velocities within the slab suggest the presence of partly (10-20%) serpentinized subducting mantle, at least offshore Nicaragua, but that remains to be shown in most subduction zones. In the wedge, low seismic velocities and high shear attenuation (1/Qs) indicate elevated temperatures, consistent with those recorded in the compositions of arc basalts. In some subduction zones seismic velocities (e.g., Vp/Vs) may indicate the presence of melt or high water content

  16. An elastic plate model for interseismic deformation in subduction zones (United States)

    Kanda, Ravi V. S.; Simons, Mark


    Geodetic observations of interseismic surface deformation in the vicinity of subduction zones are frequently interpreted using simple kinematic elastic dislocation models (EDM). In this theoretical study, we develop a kinematic EDM that simulates plate subduction over the interseismic period (the elastic subducting plate model (ESPM)) having only 2 more degrees of freedom than the well-established back slip model (BSM): an elastic plate thickness and the fraction of flexural stresses due to bending at the trench that are released continuously. Unlike the BSM, in which steady state deformation in both plates is assumed to be negligible, the ESPM includes deformation in the subducting and overriding plates (owing to plate thickness), while still preserving the correct sense of convergence velocity between the subducting and overriding plates, as well as zero net steady state vertical offset between the two plates when integrated over many seismic cycles. The ESPM links elastic plate flexure processes to interseismic deformation and helps clarify under what conditions the BSM is appropriate for fitting interseismic geodetic data at convergent margins. We show that the ESPM is identical to the BSM in the limiting case of zero plate thickness, thereby providing an alternative motivation for the BSM. The ESPM also provides a consistent convention for applying the BSM to any megathrust interface geometry. Even in the case of nonnegligible plate thickness, the deformation field predicted by the ESPM reduces to that of the BSM if stresses related to plate flexure at the trench are released either continuously and completely at shallow depths during the interseismic period or deep in the subduction zone (below ˜100 km). However, if at least a portion of these stresses are not continuously released in the shallow portion of the subduction zone (via seismic or aseismic events), then the predicted surface velocities of these two models can differ significantly at horizontal

  17. Deep electrical resistivity structure of Costa Rican Subduction Zone (United States)

    Worzewski, T.; Jegen, M.; Brasse, H.; Taylor, W.


    The water content and its distribution play an important role in the subduction process. Water is released from the subducting slab in a series of metamorphic reactions and the hydration of the mantle wedge may trigger the onset of melting, weakening and changes in the dynamics and thermal structure of subduction zones. However, the amount of water carried into the subduction zone and its distribution are not well constrained by existing data and are subject of vigorous current research in SFB574 (Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters). We will show numerical modeling studies which are used to determine the resolution and sensitivity of the MT response to fluids in the crust and subducting slab under the special condition of a coastal setting. In 2007-2008 we conducted a long-period magnetotelluric investigations in northwestern Costa Rica on- and offshore, where the Cocos Plate subducts beneath the Carribean plate. Eleven marine magnetotelluric Stations newly developed and constructed by IFM-GEOMAR and University of Kiel were deployed on the 200 km long marine extension of the profile for several months. We will present the data and its processing, as well as our attempts to eliminate motion induced noise observed on some stations on the cliffy shelf due to tidal waves hitting the shelf and trench parallel- and perpendicular currents. The marine profile was extended landwards by the Free University of Berlin over length of 160 kilometers with further 18 stations. We present preliminary modeling results of land data, which revealed interesting features, inter alia a possible image of fluid release from the downgoing slab in the forearc, as well as ongoing modeling of the combined on- and offshore data sets.

  18. Deep mantle seismic heterogeneities in Western Pacific subduction zones (United States)

    Bentham, H. L. M.; Rost, S.


    In recent years array seismology has been used extensively to image the small scale (~10 km) structure of the Earth. In the mantle, small scale structure likely represents chemical heterogeneity and is essential in our understanding of mantle convection and especially mantle mixing. As subduction is the main source of introducing crustal material into the Earth's mantle, it is of particular interest to track the transport of subducted crust through the mantle to resolve details of composition and deformation of the crust during the subduction process. Improved knowledge of subduction can help provide constraints on the mechanical mixing process of crustal material into the ambient mantle, as well as constraining mantle composition and convection. This study uses seismic array techniques to map seismic heterogeneities associated with Western Pacific subduction zones, where a variety of slab geometries have been previously observed. We use seismic energy arriving prior to PP, a P-wave underside reflection off the Earth's surface halfway between source and receiver, to probe the mantle for small-scale heterogeneities. PP precursors were analysed at Eielson Array (ILAR), Alaska using the recently developed Toolkit for Out-of-Plane Coherent Arrival Tracking (TOPCAT) algorithm. The approach combines the calculated optimal beampower and an independent semblance (coherency) measure, to improve the signal-to-noise ratio of coherent arrivals. 94 earthquakes with sufficient coherent precursory energy were selected and directivity information of the arrivals (i.e. slowness and backazimuth) was extracted from the data. The scattering locations for 311 out-of-plane precursors were determined by ray-tracing and minimising the slowness, backazimuth and differential travel time misfit. Initial analyses show that deep scattering (>1000 km) occurs beneath the Izu-Bonin subduction zone, suggesting that subducted crust does continue into the lower mantle in this location. Other


    Directory of Open Access Journals (Sweden)

    Irina S. Vladimirova


    Full Text Available Large intraplate subduction earthquakes are generally accompanied by prolonged and intense postseismic anomalies. In the present work, viscoelastic relaxation in the upper mantle and the asthenosphere is considered as a main mechanism responsible for the occurrence of such postseismic effects. The study of transient processes is performed on the basis of data on postseismic processes accompanying the first Simushir earthquake on 15 November 2006 and Maule earthquake on 27 February 2010.The methodology of modelling a viscoelastic relaxation process after a large intraplate subduction earthquake is presented. A priori parameters of the selected model describing observed postseismic effects are adjusted by minimizing deviations between modeled surface displacements and actual surface displacements recorded by geodetic methods through solving corresponding inverse problems.The presented methodology yielded estimations of Maxwell’s viscosity of the asthenosphere of the central Kuril Arc and also of the central Chile. Besides, postseismic slip distribution patterns were obtained for the focus of the Simushir earthquake of 15 November 2006 (Mw=8.3 (Figure 3, and distribution patterns of seismic and postseismic slip were determined for the focus of the Maule earthquake of 27 February 2010 (Mw=8.8 (Figure 6. These estimations and patterns can provide for prediction of the intensity of viscoelastic stress attenuation in the asthenosphere; anomalous values should be taken into account as adjustment factors when analyzing inter-seismic deformation in order to ensure correct estimation of the accumulated elastic seismogenic potential.

  20. Highly oxidising fluids generated during serpentinite breakdown in subduction zones. (United States)

    Debret, B; Sverjensky, D A


    Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.

  1. Seismic structure of the Rivera subduction zone - the MARS experiment (United States)

    Grand, S. P.; Yang, T.; Sudharja, S.; Wilson, D.; Guzman Speziale, M.; Gomez Gonzalez, J.; Leon-Soto, G.; Ni, J.; Dominguez Reyes, T.


    The subduction zone of western Mexico is a unique region on Earth where microplate capture and overriding plate disruption are occurring today. The small Rivera plate is subducting beneath western most Mexico primarily beneath Jalisco state while to the east it is the Cocos plate that is subducting. Above the Rivera plate the Jalisco block of Mexico is bounded by the north trending Colima Rift and the northwest trending Tepic-Chapala Rift and may form a microplate in its own right. Magmatism is present throughout the region and is unusual for a subduction zone in that geochemical analyses indicate an ocean island basalt component to some of the lavas. Also, Colima volcano is offset trenchward from other volcanoes in the Mexican Volcanic Belt. Little is known of the subducting Rivera plate geometry due to the paucity of seismicity within the plate yet the geometry of the Rivera and Cocos plates at depth are likely critical for understanding the tectonic evolution of western Mexico. The MARS (MApping the Rivera Subduction zone) project consists of the deployment of 50 broadband seismometers covering the Jalisco block from the coast to the Tepic-Chapala rift in the north and about 150 km to the west of the Colima rift. The instruments were deployed in January, 2006 and will be removed in June, 2007. The goal of the project is to seismically image the subducting Rivera and Cocos plates at depth as well as the mantle wedge above the plates. A number of different analyses of MARS data are underway including teleseismic tomography, receiver function analysis, and shear wave splitting analysis. The preliminary tomography results clearly show both subducting plates with a sharp change in dip to the east of the Colima rift probably indicating a tear between the two plates along a trend more eastward than the trend of the rift. The images also show extremely slow shallow mantle velocities beneath the Tepic-Chapala rift but not beneath the Colima rift. Receiver functions

  2. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone (United States)

    Swiecki, Z.; Schwartz, S. Y.


    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another

  3. What controls intermediate depth seismicity in subduction zones? (United States)

    Florez, M. A.; Prieto, G. A.


    Intermediate depth earthquakes seem to cluster in two distinct planes of seismicity along the subducting slab, known as Double Seismic Zones (DSZ). Precise double difference relocations in Tohoku, Japan and northern Chile confirm this pattern with striking accuracy. Furthermore, past studies have used statistical tests on the EHB global seismicity catalog to suggest that DSZs might be a dominant global feature. However, typical uncertainties associated with hypocentral depth prevent us from drawing meaningful conclusions about the detailed structure of intermediate depth seismicity and its relationship to the physical and chemical environment of most subduction zones. We have recently proposed a relative earthquake relocation algorithm based on the precise picking of the P and pP phase arrivals using array processing techniques [Florez and Prieto, 2017]. We use it to relocate seismicity in 24 carefully constructed slab segments that sample every subduction zone in the world. In all of the segments we are able to precisely delineate the structure of the double seismic zone. Our results indicate that whenever the lower plane of seismicity is active enough the width of the DSZ decreases in the down dip direction; the two planes merge at depths between 140 km and 300 km. We develop a method to unambiguously pick the depth of this merging point, the end of the DSZ, which appears to be correlated with the slab thermal parameter. We also confirm that the width of the DSZ increases with plate age. Finally, we estimate b-values for the upper and lower planes of seismicity and explore their relationships to the physical parameters that control slab subduction.

  4. The nature of magnetic anomalies in subduction zones (United States)

    Gorodnitskii, A. M.; Brusilovskii, Yu. V.; Ivanenko, A. N.; Popov, K. V.; Shishkina, N. A.


    The analysis of the magnetic survey data suggests the presence of a frontal zone of intense magnetic anomalies in a number of the Pacific island-arc systems. These zones with amplitudes of 100-300 nT are observed within the Kuril-Kamchatka and Aleutian island arc systems, in Southern and Central America, and Alaska. As demonstrated by the solution of the inverse problem and petromagnetic investigation of the rocks, these zones are presumably related to the serpentinite bodies which form as a result of the hydration of the upper mantle peridotites by the oceanic water penetrating through a system of cracks and fractures into the subducting slab at its bend. The rock magnetic studies show that magnetite is the main carrier of magnetization in these serpentinite bodies. Hydration of the subducting slab also causes hydration of the mantle rocks of the overriding plate with the formation of the magnetized serpentinite wedge. The decompaction of ultrabasic rocks under hydration is marked by a decrease in the gravity field and velocities of elastic waves. As the subducting plate loses water, it becomes embrittled and becomes the localization region for the epicenters of the strongest earthquakes. Magnetic survey can be used for revealing the potential sources of catastrophic earthquakes.

  5. Deep-Sea Turbidites as Guides to Holocene Earthquake History at the Cascadia Subduction Zone—Alternative Views for a Seismic-Hazard Workshop (United States)

    Atwater, Brian F.; Griggs, Gary B.


    This report reviews the geological basis for some recent estimates of earthquake hazards in the Cascadia region between southern British Columbia and northern California. The largest earthquakes to which the region is prone are in the range of magnitude 8-9. The source of these great earthquakes is the fault down which the oceanic Juan de Fuca Plate is being subducted or thrust beneath the North American Plate. Geologic evidence for their occurrence includes sedimentary deposits that have been observed in cores from deep-sea channels and fans. Earthquakes can initiate subaqueous slumps or slides that generate turbidity currents and which produce the sedimentary deposits known as turbidites. The hazard estimates reviewed in this report are derived mainly from deep-sea turbidites that have been interpreted as proxy records of great Cascadia earthquakes. The estimates were first published in 2008. Most of the evidence for them is contained in a monograph now in press. We have reviewed a small part of this evidence, chiefly from Cascadia Channel and its tributaries, all of which head offshore the Pacific coast of Washington State. According to the recent estimates, the Cascadia plate boundary ruptured along its full length in 19 or 20 earthquakes of magnitude 9 in the past 10,000 years; its northern third broke during these giant earthquakes only, and southern segments produced at least 20 additional, lesser earthquakes of Holocene age. The turbidite case for full-length ruptures depends on stratigraphic evidence for simultaneous shaking at the heads of multiple submarine canyons. The simultaneity has been inferred primarily from turbidite counts above a stratigraphic datum, sandy beds likened to strong-motion records, and radiocarbon ages adjusted for turbidity-current erosion. In alternatives proposed here, this turbidite evidence for simultaneous shaking is less sensitive to earthquake size and frequency than previously thought. Turbidites far below a channel

  6. Seismic Imaging of the Middle America Subduction Zone Beneath Mexico (United States)

    Miller, M. S.; Kim, Y.; Pearce, F. D.; Clayton, R. W.


    Gulf of Mexico. The deeper seismic structure underneath the TMVB shows a prominent negative discontinuity (fast-to-slow) at ~70-80 km within the upper mantle. This feature, which spans horizontally beneath the entire arc (~150 km), may delineate the top of a layer of ponded partial melt, which is consistent with previous geodynamic modeling of melt migration, and also evidenced from P-wave velocity tomographic images of this and other subduction zones although images of this layer was not sharply resolved.

  7. Subducting an old subduction zone sideways provides insights into what controls plate coupling (United States)

    Reyners, Martin; Eberhart-Phillips, Donna; Bannister, Stephen


    The Hikurangi Plateau has had two episodes of subduction beneath New Zealand - firstly at ca. 100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. As a result of this ninety-degree change in convergence direction, an old subduction zone is now being subducted sideways, and the tectonic history of the subducted plate varies dramatically along the strike of the Hikurangi Margin. Here we identify the location of the underplated Hikurangi Plateau along the shallow part of the Hikurangi Margin, using results from both relocated seismicity and seismic tomography. Next we decipher the tectonic history of the plateau along strike, particularly in terms of the hydration state of the plateau, and the nature of any sedimentary rock units capping the plateau. We then use this information to understand plate coupling at two scales: on the large scale, the southward transition from typical subduction in the North Island to continental collision in the South Island; and at a smaller scale, the strong lateral change from a high deficit in slip rate at the plate interface in the southern North Island to a low deficit in slip rate in the northeastern North Island. We find that the southward transition from subduction to continental collision is controlled by the plateau being more dehydrated to the south, as a result of being more deeply subducted at the Gondwana margin. The southward transition from localized slip at the plate interface to distributed upper plate deformation with no active plate interface occurs in Cook Strait and is relatively sharp. The high deficit in slip rate at the plate interface in the southern North Island is likely due to a relatively smooth plate interface from sedimentary rocks capping the Hikurangi Plateau, an impermeable terrane in the overlying plate, and the hydrated plateau acting in concert to produce an interseismically sealed plate interface. Further northeast

  8. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch


    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  9. An investigation of deformation and fluid flow at subduction zones using newly developed instrumentation and finite element modeling (United States)

    Labonte, Alison Louise

    Detecting seafloor deformation events in the offshore convergent margin environment is of particular importance considering the significant seismic hazard at subduction zones. Efforts to gain insight into the earthquake cycle have been made at the Cascadia and Costa Rica subduction margins through recent expansions of onshore GPS and seismic networks. While these studies have given scientists the ability to quantify and locate slip events in the seismogenic zone, there is little technology available for adequately measuring offshore aseismic slip. This dissertation introduces an improved flow meter for detecting seismic and aseismic deformation in submarine environments. The value of such hydrologic measurements for quantifying the geodetics at offshore margins is verified through a finite element modeling (FEM) study in which the character of deformation in the shallow subduction zone is determined from previously recorded hydrologic events at the Costa Rica Pacific margin. Accurately sensing aseismic events is one key to determining the stress state in subduction zones as these slow-slip events act to load or unload the seismogenic zone during the interseismic period. One method for detecting seismic and aseismic strain events is to monitor the hydrogeologic response to strain events using fluid flow meters. Previous instrumentation, the Chemical Aqueous Transport (CAT) meter which measures flow rates through the sediment-water interface, can detect transient events at very low flowrates, down to 0.0001 m/yr. The CAT meter performs well in low flow rate environments and can capture gradual changes in flow rate, as might be expected during ultra slow slip events. However, it cannot accurately quantify high flow rates through fractures and conduits, nor does it have the temporal resolution and accuracy required for detecting transient flow events associated with rapid deformation. The Optical Tracer Injection System (OTIS) developed for this purpose is an

  10. Tectonics of the IndoBurma Oblique Subduction Zone (United States)

    Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.


    The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.

  11. Hunting for shallow slow-slip events at Cascadia (United States)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.


    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  12. The Chilean Subduction Zone at 38.2° S: Implications for the Seismogenic Coupling Zone and the Subduction Channel (United States)

    Micksch, U.; Krawczyk, C. M.; Tipteq Research Group,.


    The crustal structure of the subduction zone in south central Chile was revealed with high-resolution reflection seismic imaging within project TIPTEQ (from The Incoming Plate to mega-Thrust EarthQuake processes). The near-vertical incidence reflection seismic profile spans across 140 km from the coast of the Pacific Ocean to the Central Valley. The downdip end of the seismigenic coupling zone and the hypocenter of the great Chilean earthquake of 1960 (Mw = 9.5) lie in the center of the seismic section. Here, we show the structural inventory of the Chilean fore-arc at 38.2°S. The downgoing oceanic plate can be traced from 27-55 km depth. The oceanic crust has a varying reflectivity. A smooth increase in reflectivity below 30 km depth may be caused by the release of fluids because of the porosity collapse in the oceanic basalt. A zone of high Vp/Vs ratio supports this observation. A clear structurally imaged continental Moho could not be found, but it may be inferred together with constraints from gravimetrical modelling. Strong reflectivity above the plate interface may be associated with a subduction channel with a varying thickness of 2-5 km. Local seismicity possibly defines its upper boundary. The segmented crust of the overriding plate has two great seismically transparent zones, devided by the crustal Lanalhue Fault Zone. The eastern transparent zone may be caused by the Coastal Batholith which is covered by sediments in the Central Valley. A nearsurface first-break tomography of the TIPTEQ data set revealed the subsurface continuation of the batholith and a sediment thickness of ca. 1 km in the western part of the Central Valley. The seismic depth section is discussed in an integrated interpretation with magnetotelluric, gravimetrical and seismological findings along the TIPTEQ transect at 38.2°S.

  13. Seismic imaging of the subduction zone in Southern Central Chile (United States)

    Buske, Stefan; Gross, Kolja; Shapiro, Serge; Wigger, Peter


    We present the results of a three-component reflection seismic survey across the seismogenic coupling zone in the area of the 1960 Valdivia earthquake in Southern Central Chile (38.2 deg S). This data set has been acquired within the framework of project TIPTEQ (from The Incoming Plate to megaThrust Earthquake Processes) which aimed at deriving the structural and petrophysical properties of the hypocentral area as well as the surrounding crust and mantle. Our main focus was on the application of advanced seismic imaging techniques in order to obtain a high-resolution structural image. We have applied Kirchhoff-Prestack-Depth-Migration (KPSDM) and Fresnel-Volume-Migration (FVM) to enhance the structural image as well as Reflection-Image-Spectroscopy (RIS) to characterize the subsurface in terms of its scattering properties. The KPSDM and FVM sections show varying reflectivity along the subducting Nazca plate. Below the coast the plate interface can be observed at 25 km depth as the sharp lower boundary of a 2-5 km thick, highly reflective region which we interpret as a subduction channel. The plate interface itself can be traced down to depths of 50-60 km where we observe strong reflectivity along the plate interface as well as in the continental mantle wedge above it. The sections show a segmented forearc crust and major features in the accretionary wedge like the Lanalhue fault zone can be identified. At the eastern end of the profile a bright west-dipping reflector appears almost perpendicular to the plate interface. The same processing sequence has been applied to the horizontal wavefield components of the seismic reflection data set. The S-wave image (SS) shows basically the same features as the P-wave image (PP) with only slightly more diffuse reflectivity. The subduction channel appears in both images at almost the same depth with a similar thickness along the plate interface. The application of RIS distinguishes between the frequency-selective seismic

  14. Isotopic Characteristics of Thermal Fluids from Mexican Subduction Zone (United States)

    Taran, Y.; Inguaggiato, S.


    Chemical (major and trace elements) and isotopic (H,O,N,C,He) composition of waters and gases from thermal springs and geothermal wells of Mexican subduction zone have been measured. Three main geochemical profiles have been realized: (1) along the frontal Trans-Mexican Volcanic Belt (TMVB) zone through high- temperature Acoculco, Los Humeros, Los Azufres and La Primavera hydrothermal systems, Colima and Ceboruco volcanoes; (2) along the for-arc region of Pacific coast (12 groups of hot springs); (3) across the zone, from Pacific coast to TMVB, through the Jalisco Block. Fluids from El Chichon volcano in Chiapanecan arc system and Tacana volcano from the Central America Volcanic Arc have also been sampled. The frontal zone of TMVB is characterized by high 3He/4He ratios, from 7.2Ra in Ceboruco fumaroles to 7.6Ra in gases from Acoculco and Los Humeros calderas (Ra is atmospheric value of 1.4x10-6). These values are significantly higher than those published earlier in 80-s (up to 6.8Ra). Gases from coastal springs are low in 3He, usually La Tuna springs at the southern board of the Colima graben. An important feature of the TMVB thermal fluids is the absence of excess nitrogen in gases and, as a consequence, close to zero d15N values. In contrast, some coastal for-arc gases and gases from the Jalisco Block have high N2/Ar ratios and d15N up to +5 permil. Isotopic composition of carbon of CO2 along TMVB is close to typical "magmatic" values from -3 permil to -5 permil, but d13C of methane varies significantly indicating multiple sources of CH4 in geothermal fluids and a partial temperature control. High 3He/4He ratios and pure atmospheric nitrogen may indicate a low contribution of subducted sediments into the TMVB magmas and magmatic fluids. In contrast, El Chichon and Tacana fluids show some excess nitrogen (N2/Ar up to 500) and variable d15N, but quite different 3He/4He (up to 8.1Ra at El Chichon and <6.5Ra at Tacana). The data obtained are discussed in terms of

  15. Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones. (United States)

    Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.


    One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise

  16. Earthquake Complex Network applied along the Chilean Subduction Zone. (United States)

    Martin, F.; Pasten, D.; Comte, D.


    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  17. Dehydration-induced instabilities at intermediate depths in subduction zones (United States)

    Brantut, Nicolas; Stefanou, Ioannis; Sulem, Jean


    We formulate a model for coupled deformation and dehydration of antigorite, based on a porosity-dependent yield criterion and including shear-enhanced compaction. A pore pressure and compaction instability can develop when the net volume change associated with the reaction is negative, i.e., at intermediate depth in subduction zones. The instability criterion is derived in terms of the dependence of the yield criterion on porosity: if that dependence is strong, instabilities are more likely to occur. We also find that the instability is associated with strain localization, over characteristic length scales determined by the hydraulic diffusivity, the elasto-plastic parameters of the rock, and the reaction rate. Typical lower bounds for the localization length are of the order of 10 to 100 for antigorite dehydration and deformation at 3 GPa. The fluid pressure and deformation instability is expected to induce stress buildup in the surrounding rocks forming the subducted slab, which provides a mechanism for the nucleation and propagation of intermediate-depth earthquakes.

  18. Stability of Aqueous Carbon Species in Subduction Zone Fluids (United States)

    Guild, M. R.; Shock, E.


    Subduction zone fluids transfer elements from the surface to Earth's interior. Because these fluids cannot be observed at high pressures and temperatures their chemistry is enigmatic. Owing to recent advances in theoretical thermodynamic calculations the stability of aqueous species in these fluids at depth can now be modeled. This study focuses on the behavior of aqueous carbon species from 10-60 kbar and 200-1000ºC using the Deep Earth Water (DEW) model (Sverjensky et al., 2014) with implications for the deep carbon cycle. Our new estimates for C1, C2, and C3 aqueous organic compounds make it possible to test which small organic compounds are participants in the deep carbon cycle. The dominant carbon species in these fluids is commonly thought to be CO2, with minor amounts of methane. However, our calculations suggest other forms of aqueous organic carbon, such as the C1 compounds formic acid and carbon monoxide, the C2 compounds ethane, acetic acid, and ethanol, as well as the C3 compounds propane and propanoic acid are stable at 30 kbar and temperatures > 400ºC, and can account for a significant percentage of dissolved carbon in subduction fluids. These results suggest that characterizing the behavior of alkanes, alcohols, and acids at these high pressure-temperature conditions will clarify the involvement of aqueous organic carbon in the deep carbon cycle.

  19. Interplay between deformation, fluid release and migration across a nascent subduction interface: evidence from Oman-UAE and implications for warm subduction zones (United States)

    Agard, Philippe; Prigent, Cécile; Soret, Mathieu; Guillot, Stéphane; Dubacq, Benoît


    Frozen-in subduction plate interfaces preserving the first 1-2 My of the subduction history are found beneath ophiolites. These contacts are a key target to study the inception of mantle wedge metasomatism and the mechanical coupling between the upper plate and the top part of the sinking slab shortly after subduction initiation. Combining structural field and EBSD data, detailed petrology, thermodynamic modelling and geochemistry on both sides, i.e. the base of the mantle wedge (Oman-UAE basal peridotites) and the underlying accreted crustal fragments from the subducting slab (metamorphic soles), this study documents the continuous evolution of the plate contact from 1 GPa 900-750°C to 0.6 GPa 750-600°C, with emphasis on strain localization and feedbacks between deformation and fluid migration. In the mantle wedge, the (de)formation of proto-ultramylonitic peridotites is coeval with mantle metasomatism by focused hydrous fluid migration. Peridotite metasomatism results in the precipitation of new minerals (clinopyroxene, amphibole and spinel ± olivine and orthopyroxene) and their enrichment in FMEs (particularly B, Li and Cs, with concentrations up to 40 times that of the PM). Boron concentrations and isotopes (δ11B of metasomatized peridotites up to +25‰) suggest that these fluids with a "subduction signature" are probably sourced from the dehydrating amphibolitic metamorphic sole. Concomitantly, deformation in the lower plate results in the stepwise formation, detachment and accretion to the mylonitic s.l. mantle of successive slices of HT metabasalts from the downgoing slab, equilibrated at amphibolite/granulite conditions (900-750°C). Two major stages may be outlined: - between 900 and 750°C, the garnet-clinopyroxene-amphibole bearing sinking crust (with melting < 6 vol%) gets juxtaposed and mechanically coupled to the mantle, leading to the transfer of subduction fluids and metasomatism (possibly into the arc zone ultimately). Deformation is

  20. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction (United States)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu


    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  1. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. (United States)

    Kelemen, Peter B; Manning, Craig E


    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  2. Hafnium at subduction zones: isotopic budget of input and output fluxes

    International Nuclear Information System (INIS)

    Marini, J.Ch.


    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  3. Slab2 - Updated Subduction Zone Geometries and Modeling Tools (United States)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.


    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  4. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone (United States)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia


    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  5. Episodic tremor and slip in Northern Sumatra subduction zone (United States)

    Sianipar, Dimas; Subakti, Hendri


    The first reported observation of non-volcanic tremor in Sunda Arc in Sumbawa, Indonesia open a possibility of discovery of episodic tremor and slip (ETS) from out of Pacific Rim. Non-volcanic tremor gives some important information about dynamic of plate boundaries. The characteristics of these tremors are visually as non-impulsive, high frequency, long-duration and low-amplitude signals. Tectonic tremor occurred in a transition part of brittle-ductile of a fault and frequently associated with the shearing mechanism of slow slip. Tectonic tremor is a seismic case that also very interested, because it shows strong sensitivity to stress changes. Deep non-volcanic tremor is usually associated with episodic slow-slip events. Tectonic tremor is found in close association with geodetically observed slow-slip events (SSE) in subduction zones. One research found that there is possibility of SSE occurrence on Banyak Islands, North Sumatra revealed from coral observation. The SSE occurred on the Banyak Islands portion of the megathrust at 30-55 km depth, within the downdip transition zone. We do a systematic search of episodic tremor and its possible relationship with slow-slip phenomena in Northern Sumatra subduction zone. The spectrogram analysis is done to analyze the potential tremor signals. We use three component broadband seismic stations with 20, 25, and 50 sampling per second (BH* and SH* channels). We apply a butterworth 5 Hz highpass filter to separate the signal as local tremor and teleseismic/regional earthquakes. Before computing spectrogram to avoid high-frequency artifacts to remote triggering, we apply a 0.5 Hz filter. We also convert the binary seismic data into sound waves to make sure that these events meet the tectonic tremor criterion. We successfully examine 3 seismic stations with good recording i.e. GSI, SNSI and KCSI. We find there are many evidences of high frequency episodic tremor like signals. This include an analysis of potential triggered

  6. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems (United States)

    Yoshida, Masaki


    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  7. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes (United States)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.


    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  8. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment (United States)

    Schaefer, Andreas; Wenzel, Friedemann


    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept

  9. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone (United States)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.


    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  10. Frictional behaviour of megathrust fault gouges under in-situ subduction zone conditions

    NARCIS (Netherlands)

    den Hartog, S.A.M.


    Subduction zone megathrusts generate the largest earthquakes and tsunamis known. Understanding and modelling “seismogenesis” on such faults requires an understanding of the frictional processes that control nucleation and propagation of seismic slip. However, experimental data on the frictional

  11. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries (United States)

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.


    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  12. Implications for metal and volatile cycles from the pH of subduction zone fluids (United States)

    Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.


    The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.

  13. Seismo-thermo-mechanical modeling of subduction zone seismicity

    International Nuclear Information System (INIS)

    Dinther van, Y.


    The catastrophic occurrence of the 2004 M9.2 Sumatra and 2011 M9.0 Tohoku earthquakes illustrated the disastrous impact of megathrust earthquakes on society. They also emphasized our limited understanding of where and when these 'big ones' may strike. The necessary improvement of long-term seismic hazard assessment requires a better physical understanding of the seismic cycle at these seismically active subduction zones. Models have the potential to overcome the restricted, direct observations in space and time. Currently, however, no model exists to explore the relation between long-term subduction dynamics and relating deformation and short-term seismogenesis. The development, validation and initial application of such a physically consistent seismo-thermo-mechanical numerical model is the main objective of this thesis. First, I present a novel analog modeling tool that simulates cycling of megathrust earthquakes in a visco-elastic gelatin wedge. A comparison with natural observations shows interseismic and coseismic physics are captured in a robust, albeit simplified, way. This tool is used to validate that a continuum-mechanics based, visco-elasto-plastic numerical approach, typically used for large-scale geodynamic problems, can be extended to study the short-term seismogenesis of megathrust earthquakes. To generate frictional instabilities and match laboratory source parameters, a local invariant implementation of a strongly slip rate-dependent friction formulation is required. The resulting continuum approach captures several interesting dynamic features, including inter-, co- and postseismic deformation that agrees qualitatively with GPS measurements and dynamic rupture features, including cracks, self-healing pulses and fault re-rupturing. To facilitate a comparison to natural settings, I consider a more realistic setup of the Southern Chilean margin in terms of geometry and physical processes. Results agree with seismological, geodetic and

  14. Simple Elastic Dislocation Models for Interpreting Interseismic Deformation in Subduction Zones (United States)

    Kanda, R. V.; Simons, M.


    Models of interseismic surface deformation in the vicinity of subduction zones frequently rely on the back slip model (BSM). This model employs artificial extensional slip along the locked zone in order to explain the observed sense of interseismic displacements. Here, we introduce the elastic subducting plate model (ESPM) which is more representative of plate subduction. This model has only one additional degree of freedom over the standard BSM the thickness of the subducting elastic plate. In our present formulation, the base of the elastic plate is forced to move continuously at the long term convergence rate, as is the top surface of the subducting plate below the locking depth. The ESPM reduces exactly to the BSM in the limiting case of zero plate thickness - thereby providing a more intuitive rationale for the success of the BSM since details associated with finite plate thickness are hard to resolve with data distant from the trench. If the effective thickness of a subducting plate is large compared to the depth of its locked zone, or when the curvature of the subduction interface is sufficiently high, it may be more appropriate to adopt the ESPM. Practically, our ability to distinguish between the BSM and the ESPM depends on simultaneously modeling vertical and horizontal displacement fields, and on having data from close to the trench. We use geodetic measurements from Japan and Sumatra to compare the observed surface deformation with that predicted by both ESPM & BSM, and invert for the allowable ranges of effective plate thickness.

  15. What role did the Hikurangi subduction zone play in the M7.8 Kaikoura earthquake? (United States)

    Wallace, L. M.; Hamling, I. J.; Kaneko, Y.; Fry, B.; Clark, K.; Bannister, S. C.; Ellis, S. M.; Francois-Holden, C.; Hreinsdottir, S.; Mueller, C.


    The 2016 M7.8 Kaikoura earthquake ruptured at least a dozen faults in the northern South Island of New Zealand, within the transition from the Hikurangi subduction zone (in the North Island) to the transpressive Alpine Fault (in the central South Island). The role that the southern end of the Hikurangi subduction zone played (or did not play) in the Kaikoura earthquake remains one of the most controversial aspects of this spectacularly complex earthquake. Investigations using near-field seismological and geodetic data suggest a dominantly crustal faulting source for the event, while studies relying on teleseismic data propose that a large portion of the moment release is due to rupture of the Hikurangi subduction interface beneath the northern South Island. InSAR and GPS data also show that a large amount of afterslip (up to 0.5 m) occurred on the subduction interface beneath the crustal faults that ruptured in the M7.8 earthquake, during the months following the earthquake. Modeling of GPS velocities for the 20 year period prior to the earthquake indicate that interseismic coupling was occurring on the Hikurangi subduction interface beneath the northern South Island, in a similar location to the suggested coseismic and postseismic slip on the subduction interface. We will integrate geodetic, seismological, tsunami, and geological observations in an attempt to balance the seemingly conflicting views from local and teleseismic data regarding the role that the southern Hikurangi subduction zone played in the earthquake. We will also discuss the broader implications of the observed coseismic and postseismic deformation for understanding the kinematics of the southern termination of the Hikurangi subduction zone, and its role in the transition from subduction to strike-slip in the central New Zealand region.

  16. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay


    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  17. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone (United States)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria


    In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the

  18. Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle (United States)

    Bentham, H. L. M.; Rost, S.


    Small-scale heterogeneities in the mantle can give important insight into the dynamics and composition of the Earth's interior. Here, we analyse seismic energy found as precursors to PP, which is scattered off small-scale heterogeneities related to subduction zones in the upper and mid-mantle. We use data from shallow earthquakes (less than 100 km depth) in the epicentral distance range of 90°-110° and use array methods to study a 100 s window prior to the PP arrival. Our analysis focuses on energy arriving off the great circle path between source and receiver. We select coherent arrivals automatically, based on a semblance weighted beampower spectrum, maximizing the selection of weak amplitude arrivals. Assuming single P-to-P scattering and using the directivity information from array processing, we locate the scattering origin by ray tracing through a 1-D velocity model. Using data from the small-aperture Eielson Array (ILAR) in Alaska, we are able to image structure related to heterogeneities in western Pacific subduction zones. We find evidence for ˜300 small-scale heterogeneities in the region around the present-day Japan, Izu-Bonin, Mariana and West Philippine subduction zones. Most of the detected heterogeneities are located in the crust and upper mantle, but 6 per cent of scatterers are located deeper than 600 km. Scatterers in the transition zone correlate well with edges of fast features in tomographic images and subducted slab contours derived from slab seismicity. We locate deeper scatterers beneath the Izu-Bonin/Mariana subduction zones, which outline a steeply dipping pseudo-planar feature to 1480 km depth, and beneath the ancient (84-144 Ma) Indonesian subduction trench down to 1880 km depth. We image the remnants of subducted crustal material, likely the underside reflection of the subducted Moho. The presence of deep scatterers related to past and present subduction provides evidence that the subducted crust does descend into the lower mantle at

  19. Slab1.0: A three-dimensional model of global subduction zone geometries (United States)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.


    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  20. Streaking tremor in Cascadia (United States)

    Vidale, J. E.; Ghosh, A.; Sweet, J. R.; Creager, K. C.; Wech, A.; Houston, H.


    Details of tremor deep in subduction zones is damnably difficult to glimpse because of the lack of crisp initial arrivals, low waveform coherence, uncertain focal mechanisms, and the probability of simultaneous activity across extended regions. Yet such details hold out the best hope to illuminate the unknown mechanisms underlying episodic tremor and slip. Attacking this problem with brute force, we pointed a small, very dense seismic array down at the migration path of a good-sized episodic tremor and slip (ETS) event. In detail, it was an 84-element, 1300-m-aperture temporary seismic array in northern Washington, and the migration path of the May 2008 ETS event was 30-40 km directly underneath. Our beamforming technique tracked the time, incident angle, and azimuth of tremor radiation in unprecedented detail. We located the tremor by assuming it occurs on the subduction interface, estimated relative tremor moment released by each detected tremor window, and mapped it on the interface [Ghosh et al., GRL, 2009]. Fortunately for our ability to image it, the tremor generally appears to emanate from small regions, and we were surprised by how steadily the regions migrated with time. For the first time in Cascadia, we found convergence-parallel transient streaks of tremor migrating at velocities of several tens of km/hr, with movement in both up- and down-dip directions. Similar patterns have been seen in Japan [Shelly, G3, 2007]. This is in contrast to the long-term along-strike marching of tremor at 10 km/day. These streaks tend to propagate steadily and often repeat the same track on the interface multiple times. They light up persistent moment patches on the interface by a combination of increased amplitude and longer residence time within the patches. The up- and down-dip migration dominates the 2 days of tremor most clearly imaged by our array. The tendency of the streaks to fill in bands is the subject of the presentation of Ghosh et al. here. The physical

  1. Lithospheric folding by flexural slip in subduction zones as source for reverse fault intraslab earthquakes. (United States)

    Romeo, I; Álvarez-Gómez, J A


    Subduction requires the permanent generation of a bend fold in the subducting slab which mechanics is not well understood. Lithospheric bending of subducting slabs was traditionally considered to be accommodated by orthogonal flexure, generating extensional outer rise earthquakes responsible of the external arc elongation during folding. Here we explore the possibility of lithospheric flexure being accommodated through simple shear deformation parallel to the slab (folding by flexural slip) and evaluate this process as source of earthquakes. The seismicity predicted by flexural slip dominated slab bending explains a significant amount of intermediate earthquakes observed in subduction zones with different degrees of coupling. This mechanism predicts the generation of intraslab thrust earthquakes with fault planes subparallel to the slab top. Being the orientations of the fault planes the same for the interface thrust earthquakes and the flexural-slip intraslab earthquakes, the amount of seismic moment liberated by the interface could be significantly lower than considered before. This proposed seismic source should be taken into account in models and hazard studies of subduction zones. Determining the seismic generating processes in subduction zones and their characteristics is a fundamental issue for the correct assessment of the associated seismic and tsunami risk.

  2. Tsunami Warning Criteria for Cascadia events based on Tsunami models (United States)

    Huang, P. Y.; Nyland, D. L.; Knight, W.; Gately, K.; Hale, D.; Urban, G.; Waddell, J.; Carrick, J.; Popham, C.; Bahng, B.; Kim, Y.; Burgy, M.; Langley, S.; Preller, C. C.; Whitmore, P.


    Initial tsunami warning, advisory, and watch zones for potential Cascadia earthquakes have been revised based on maximum expected threat for tsunamis generated by earthquakes in this region. Presently, alert zones are initially based on travel time for earthquakes greater than magnitude 7.8 with all areas less than three hours away from the source being put into a tsunami warning. The impact of this change is to reduce the length of coastline which is immediately put it into a warning status. Tsunami Warning Centers often delineate initial tsunami alert zones based on pre-set criteria dependent on earthquake magnitude, location, depth, and tsunami travel time. In many cases, this approach can lead to over-warning. Over the last several years, the West Coast/Alaska Tsunami Warning Center (WCATWC) has attempted to refine the amount of coastline immediately placed in a warning status based on maximum expected threat instead of travel time. Tsunami forecast models used to predict impacts during events (for example, Alaska Tsunami Forecast Model (ATFM), Short-term Inundation Forecasting for Tsunamis (SIFT), and Rapid Inundation Forecasting of Tsunamis (RIFT)) can also be used a-priori to delineate zones at-risk for specified source zones. forecast models have proven reasonably accurate during recent events. For the Cascadia Subduction zone, several rupture scenarios ranging from magnitude 7.9 to 9.2, were computed. Forecasted wave heights at various points are then used to set the initial Warning/Watch/Advisory regions. This procedure is more efficient than a blanket warning - or a refined warning based on travel times - as appropriate threat levels are assigned based on expected impact. For example, after a magnitude 8.7 earthquake in the southern Cascadia Subduction zone, southern and most of central California can be left out of the warning zone and placed in an advisory, as none of this region contains expected impacts in the warning threshold (tsunami amplitude

  3. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones (United States)

    Yin, A.; Meng, L.


    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  4. Links between sediment consolidation and Cascadia megathrust slip behaviour (United States)

    Han, Shuoshuo; Bangs, Nathan L.; Carbotte, Suzanne M.; Saffer, Demian M.; Gibson, James C.


    At sediment-rich subduction zones, megathrust slip behaviour and forearc deformation are tightly linked to the physical properties and in situ stresses within underthrust and accreted sediments. Yet the role of sediment consolidation at the onset of subduction in controlling the downdip evolution and along-strike variation in megathrust fault properties and accretionary wedge structure is poorly known. Here we use controlled-source seismic data combined with ocean drilling data to constrain the sediment consolidation and in situ stress state near the deformation front of the Cascadia subduction zone. Offshore Washington where the megathrust is inferred to be strongly locked, we find over-consolidated sediments near the deformation front that are incorporated into a strong outer wedge, with little sediment subducted. These conditions are favourable for strain accumulation on the megathrust and potential earthquake rupture close to the trench. In contrast, offshore Central Oregon, a thick under-consolidated sediment sequence is subducting, and is probably associated with elevated pore fluid pressures on the megathrust in a region where reduced locking is inferred. Our results suggest that the consolidation state of the sediments near the deformation front is a key factor contributing to megathrust slip behaviour and its along-strike variation, and it may also have a significant role in the deformation style of the accretionary wedge.

  5. Evidence for Deep Tectonic Tremor in the Alaska-Aleutian Subduction Zone (United States)

    Brown, J. R.; Prejean, S. G.; Beroza, G. C.; Gomberg, J. S.; Haeussler, P. J.


    We search for, characterize, and locate tremor not associated with volcanoes along the Alaska-Aleutian subduction zone using continuous seismic data recorded by the Alaska Volcano Observatory and Alaska Earthquake Information Center from 2005 to the present. Visual inspection of waveform spectra and time series reveal dozens of 10 to 20-minute bursts of tremor throughout the Alaska-Aleutian subduction zone (Peterson, 2009). Using autocorrelation methods, we show that these tremor signals are composed of hundreds of repeating low-frequency earthquakes (LFEs) as has been found in other circum-Pacific subduction zones. We infer deep sources based on phase arrival move-out times of less than 4 seconds across multiple monitoring networks (max. inter-station distances of 50 km), which are designed to monitor individual volcanoes. We find tremor activity is localized in 7 segments: Cook Inlet, Shelikof Strait, Alaska Peninsula, King Cove, Unalaska-Dutch Harbor, Andreanof Islands, and the Rat Islands. Locations along the Cook Inlet, Shelikof Straight and Alaska Peninsula are well constrained due to adequate station coverage. LFE hypocenters in these regions are located on the plate interface and form a sharp edge near the down-dip limit of the 1964 M 9.2 rupture area. Although the geometry, age, thermal structure, frictional and other relevant properties of the Alaska-Aleutian subduction are poorly known, it is likely these characteristics differ along its entire length, and also differ from other subduction zones where tremor has been found. LFE hypocenters in the remaining areas are also located down-dip of the most recent M 8+ megathrust earthquakes, between 60-75 km depth and almost directly under the volcanic arc. Although these locations are less well constrained, our preliminary results suggest LFE/tremor activity marks the down-dip rupture limit for megathrust earthquakes in this subduction zone. Also, we cannot rule out the possibility that our observations could

  6. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.


    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  7. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example (United States)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An


    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved

  8. Imaging trench-line disruptions: Swath mapping of subduction zone

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mukhopadhyay, R.

    these earthquakes caused tsunamis. The fifth tsunami in this region was caused by the eruption of Krakatoa vo l cano . The trench is sharply delineated on the east by piled - up under - thrusted sediment scraped from the top surface of the subducting Ind ian... plate (red - brown shaded area, Figure 1). The resulting en - echelon piling of sed i ments forms the Andaman Ridge, at the top sub - aerial part of which the A n- daman group of Islands is located. The dee p est part along this sediment - filled...

  9. Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone

    NARCIS (Netherlands)

    Sawai, Michiyo; Niemeijer, André R.; Hirose, Takehiro; Spiers, Christopher J.


    Slow earthquakes occur in the shallow (<20 km deep) part of the Tohoku subduction zone. To understand how frictional properties of the plate boundary fault affect the generation of these slow earthquakes, we conducted friction experiments using borehole samples retrieved from the plate boundary

  10. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone (United States)

    Penney, Camilla; Tavakoli, Farokh; Saadat, Abdolreza; Nankali, Hamid Reza; Sedighi, Morteza; Khorrami, Fateme; Sobouti, Farhad; Rafi, Zahid; Copley, Alex; Jackson, James; Priestley, Keith


    We study the Makran subduction zone, along the southern coasts of Iran and Pakistan, to gain insights into the kinematics and dynamics of accretionary prism deformation. By combining techniques from seismology, geodesy and geomorphology, we are able to put constraints on the shape of the subduction interface and the style of strain across the prism. We also address the long-standing tectonic problem of how the right-lateral shear taken up by strike-slip faulting in the Sistan Suture Zone in eastern Iran is accommodated at the zone's southern end. We find that the subduction interface in the western Makran may be locked, accumulating elastic strain, and move in megathrust earthquakes. Such earthquakes, and associated tsunamis, present a significant hazard to populations around the Arabian Sea. The time-dependent strain within the accretionary prism, resulting from the megathrust earthquake cycle, may play an important role in the deformation of the Makran region. By considering the kinematics of the 2013 Balochistan and Minab earthquakes, we infer that the local gravitational and far-field compressive forces in the Makran accretionary prism are in balance. This force balance allows us to calculate the mean shear stress and effective coefficient of friction on the Makran megathrust, which we find to be 5-35 MPa and 0.01-0.03, respectively. These values are similar to those found in other subduction zones, showing that the abnormally high sediment thickness in the offshore Makran does not significantly reduce the shear stress on the megathrust.

  11. Subduction zone trench migration : Slab driven or overriding-plate-driven?

    NARCIS (Netherlands)

    Schellart, W. P.

    Subduction zones on Earth, and their associated trenches and hinges, migrate with respect to the overriding plate, as indicated by overriding plate deformation (e.g. backarc extension or backarc shortening), and migrate with respect to hotspot and no-net-rotation reference frames (global or

  12. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models (United States)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.


    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W

  13. The reflection seismic survey of project TIPTEQ - the inventory of the Chilean subduction zone at 38.2° S


    K. Groß; U. Micksch; Seismics Team and TIPTEQ Research Group; M. Araneda; K. Bataille; Jens Bribach; S. Buske; C. M. Krawczyk; Stefan Lüth; James Mechie; Albrecht Schulze; S. A. Shapiro; Manfred Stiller; P. Wigger; Thomas Ziegenhagen


    We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2◦S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip alo...

  14. A non extensive statistical physics analysis of the Hellenic subduction zone seismicity (United States)

    Vallianatos, F.; Papadakis, G.; Michas, G.; Sammonds, P.


    The Hellenic subduction zone is the most seismically active region in Europe [Becker & Meier, 2010]. The spatial and temporal distribution of seismicity as well as the analysis of the magnitude distribution of earthquakes concerning the Hellenic subduction zone, has been studied using the concept of Non-Extensive Statistical Physics (NESP) [Tsallis, 1988 ; Tsallis, 2009]. Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems (Vallianatos, 2011). Using this concept, Abe & Suzuki (2003;2005) investigated the spatial and temporal properties of the seismicity in California and Japan and recently Darooneh & Dadashinia (2008) in Iran. Furthermore, Telesca (2011) calculated the thermodynamic parameter q of the magnitude distribution of earthquakes of the southern California earthquake catalogue. Using the external seismic zones of 36 seismic sources of shallow earthquakes in the Aegean and the surrounding area [Papazachos, 1990], we formed a dataset concerning the seismicity of shallow earthquakes (focal depth ≤ 60km) of the subduction zone, which is based on the instrumental data of the Geodynamic Institute of the National Observatory of Athens (, period 1990-2011). The catalogue consists of 12800 seismic events which correspond to 15 polygons of the aforementioned external seismic zones. These polygons define the subduction zone, as they are associated with the compressional stress field which characterizes a subducting regime. For each event, moment magnitude was calculated from ML according to the suggestions of Papazachos et al. (1997). The cumulative distribution functions of the inter-event times and the inter-event distances as well as the magnitude distribution for each seismic zone have been estimated, presenting a variation in the q-triplet along the Hellenic subduction zone. The models used, fit rather well to the observed

  15. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes (United States)

    Schütt, Jorina M.; Whipp, David M., Jr.


    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  16. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West (United States)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.


    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  17. Source Parameters of Large Magnitude Subduction Zone Earthquakes Along Oaxaca, Mexico (United States)

    Fannon, M. L.; Bilek, S. L.


    Subduction zones are host to temporally and spatially varying seismogenic activity including, megathrust earthquakes, slow slip events (SSE), nonvolcanic tremor (NVT), and ultra-slow velocity layers (USL). We explore these variations by determining source parameters for large earthquakes (M > 5.5) along the Oaxaca segment of the Mexico subduction zone, an area encompasses the wide range of activity noted above. We use waveform data for 36 earthquakes that occurred between January 1, 1990 to June 1, 2014, obtained from the IRIS DMC, generate synthetic Green's functions for the available stations, and deconvolve these from the ­­­observed records to determine a source time function for each event. From these source time functions, we measured rupture durations and scaled these by the cube root to calculate the normalized duration for each event. Within our dataset, four events located updip from the SSE, USL, and NVT areas have longer rupture durations than the other events in this analysis. Two of these four events, along with one other event, are located within the SSE and NVT areas. The results in this study show that large earthquakes just updip from SSE and NVT have slower rupture characteristics than other events along the subduction zone not adjacent to SSE, USL, and NVT zones. Based on our results, we suggest a transitional zone for the seismic behavior rather than a distinct change at a particular depth. This study will help aid in understanding seismogenic behavior that occurs along subduction zones and the rupture characteristics of earthquakes near areas of slow slip processes.

  18. Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone (United States)

    Bangs, Nathan L.; McIntosh, Kirk D.; Silver, Eli A.; Kluesner, Jared W.; Ranero, César R.


    In 2011 we acquired an 11 × 55 km, 3-D seismic reflection volume across the Costa Rica margin, NW of the Osa Peninsula, to accurately image the subduction thrust in 3-D, to examine fault zone properties, and to infer the hydrogeology that controls fluid accumulation along the thrust. Following processing to remove water column multiples, noise, and acquisition artifacts, we constructed a 3-D seismic velocity model for Kirchhoff prestack depth migration imaging. Images of the plate boundary thrust show high-reflection amplitudes underneath the middle to lower slope that we attribute to fluid-rich, poorly drained portions of the subduction thrust. At 5 km subseafloor, beneath the upper slope, the plate interface abruptly becomes weakly reflective, which we interpret as a transition to a well-drained subduction thrust. Mineral dehydration during diagenesis may also diminish at 5 km subseafloor to reduce fluid production and contribute to the downdip change from high to low amplitude. There is also a layered fabric and systems of both thrust and normal faults within the overriding plate that form a "plumbing system." Faults commonly have fault plane reflections and are presumably fluid charged. The faults and layered fabric form three compartmentalized hydrogeologic zones: (1) a shallow NE dipping zone beneath the slope, (2) a steeply SW dipping zone beneath the shelf slope break, and (3) a NE dipping zone beneath the shelf. The more direct pathway in the middle zone drains the subduction thrust more efficiently and contributes to reduced fluid pressure, elevates effective stress, and creates greater potential for unstable coseismic slip.

  19. The Effective Rheology of Natural Subduction Shear Zones: Insights from Numerical Simple Shear Experiments (United States)

    Ioannidi, Paraskevi Io; Le Pourhiet, Laetitia; Moreno, Marcos; Agard, Philippe; Oncken, Onno; Angiboust, Samuel


    Determination of the subduction interface rheological parameters is an interesting aspect of geodynamics since it can help better understand the physical nature of plate locking and its relation to surface deformation patterns observed at different time scales (GPS displacements during the seismic cycle). Since direct rheological measurements are not possible, unfortunately, we herein try to determine the effective rheological parameters of a subduction interface using finite element modelling. We use the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions trying to find the one that can best mimic simple shear experiments performed on rock samples. After examining different parameters including the shearing velocity, the temperature and the viscosity, we added complexity to the geometry by including a second phase. This complexity arose from field observations, where composite shear zone outcrops often characterize the subduction interface. Stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. In order to test our methodology, we first use clast-in-matrix geometries from thin sections taken through lab experiments. In a second stage, we upscale the method to outcrop scale clast-in-matrix geometries. By sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction of a natural interface. In a next step, these effective frictions will be used as input into seismic cycle deformation models in an attempt to assess the

  20. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone (United States)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir


    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  1. Subduction/obduction processes prior to collision: records from the Tavsanli zone (western Turkey) (United States)

    Plunder, A.; Agard, P.; Chopin, C.; Okay, A. I.


    The tectono-metamorphic evolution of the ~80Ma high-pressure low-temperature (HP-LT) Tavsanli zone (Western Anatolia, Izmir-Ankara suture zone) is herein reappraised to highlight processes occurring along a fossil subduction interface, from initial intra-oceanic subduction to continental subduction and soft collision. Structural and petrological data allow in particular (i) to constrain the nature, internal structure and PT conditions of the oceanic accreted oceanic unit sandwiched between the continental Orhaneli unit and the non-metamorphic obducted ophiolite on top; (ii) to revaluate the peak-pressure conditions for the subducted northern margin of the Anatolide-Tauride Block (the Orhaneli unit). In the ocean slices, two distinct, extensive oceanic complexes (OC1 and OC2) are recognised on top of one another, incipient HP-LT imprint (OC1) to blueschist facies conditions (OC2). Based on the first occurrence of Fe-Mg carpholite and on pseudosection calculations, PT estimates of 250-350°C and 11-13 kbar are inferred for OC2. The internal structure of the accretionary complex points to the underplating of kilometre-scale units at different depths along the plate interface and to contrasting dynamics with respect to both the underlying continental unit and the ophiolite. PT conditions for the continental Orhaneli unit are reappraised at 22 kbar and 500°C using both Raman spectroscopy on carbonaceous matter and pseudosection modelling and are similar to PT conditions known for the leading edge of the continental Arabian margin in Oman. Inter-plate mechanical coupling within the Tavsanli zone is finally compared to the Oman case to shed light on regional scale tectonics, accretionary dynamics and (rapid) thermal reequilibration of the subduction interface.

  2. Stress Orientations in a Locked Subduction Zone at the Southern Hikurangi Margin, New Zealand (United States)

    Evanzia, Dominic; Wilson, Thomas; Savage, Martha K.; Lamb, Simon; Hirschberg, Hamish


    We analyze the orientation of the stress field in the southern Hikurangi subduction zone, New Zealand, using focal mechanism inversions, S wave splitting fast directions, and gravitational stresses. Here the oceanic Pacific plate is being obliquely subducted beneath the continental Australian plate in the New Zealand plate boundary zone. The study makes use of 399 earthquakes for focal mechanism inversion and 425 earthquakes for shear wave splitting analysis, located with a network of seismic stations spanning southern North Island. We distinguish between stresses in the Pacific plate (from focal mechanism inversion) and Australian plate (from S wave fast directions) and gravitational stresses, in three regions: Western, Central Basin, and Eastern. In the Western region, the principal axis of horizontal compression (SHmax) is oriented NE-SW, parallel to the margin, in the upper Australian and lower Pacific plate. In the Central Basin, SHmax in the Australian plate is oriented NW-SE, perpendicular to the margin; in the lower subducting Pacific plate SHmax is oriented NE-SW. In the Eastern region, SHmax is oriented NE-SW in the upper plate, while in the lower plate there is a change in orientation to NNW-SSE. We interpret the stress orientations of the lower plate in the Western and Central Basin regions as a consequence of bending of the subducting plate. Sources of upper Australian plate stresses are likely to be bending stresses, gravitational stresses, and tectonic loading, with differing relative magnitudes across the study area.

  3. Detailed seismotectonic analysis of Sumatra subduction zone revealed by high precision earthquake location (United States)

    Sagala, Ricardo Alfencius; Harjadi, P. J. Prih; Heryandoko, Nova; Sianipar, Dimas


    Sumatra was one of the most high seismicity regions in Indonesia. The subduction of Indo-Australian plate beneath Eurasian plate in western Sumatra contributes for many significant earthquakes that occur in this area. These earthquake events can be used to analyze the seismotectonic of Sumatra subduction zone and its system. In this study we use teleseismic double-difference method to obtain more high precision earthquake distribution in Sumatra subduction zone. We use a 3D nested regional-global velocity model. We use a combination of data from both of ISC (International Seismological Center) and BMKG (Agency for Meteorology Climatology and Geophysics, Indonesia). We successfully relocate about 6886 earthquakes that occur on period of 1981-2015. We consider that this new location is more precise than the regular bulletin. The relocation results show greatly reduced of RMS residual of travel time. Using this data, we can construct a new seismotectonic map of Sumatra. A well-built geometry of subduction slab, faults and volcano arc can be obtained from the new bulletin. It is also showed that at a depth of 140-170 km, there is many events occur as moderate-to-deep earthquakes, and we consider about the relation of the slab's events with volcanic arc and inland fault system. A reliable slab model is also built from regression equation using new relocated data. We also analyze the spatial-temporal of seismotectonic using b-value mapping that inspected in detail horizontally and vertically cross-section.

  4. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas


    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  5. What we have learned about subduction zones from marine seismological exploration (United States)

    Kodaira, S.


    Recent advances in seismic networks, laboratory experiments and numerical simulations of fault rupture have allowed us to develop a new conceptual model for subduction seismogenic zones. This model posits that slip behavior is generally depth dependent, changing from aseismic slip, to seismogenic slip and then to slow or aseismic slip, with increasing depth of the subducting plate. Marine exploration using active-source seismological and other geophysical methods have provided key data to confirm or revise aspects of the model. A striking recent finding is evidence showing that coseismic slip during the 2011 Tohoku-oki earthquake extended to the trench axis. Bathymetric data recorded on a profile along 38°N before and after the earthquake show coseismic seafloor displacement of 50 m reached the trench axis. The displacement can be traced to 38.5°N along the trench axis, but does not extend as far as 39.2°N. Seismic reflection data acquired along the same profile before and after the earthquake also show a trench-breaching coseismic fault that propagated along the base of the overriding plate and smoothed subducting horst-and-graben structures there. Another fundamentally important observation is structural evidence of hydration of oceanic plates entering subduction zones. The primary controls of plate coupling and slip behavior in subduction zones are understood to be the presence of hydrous minerals and the effect of fluid pressure, but how fluids enter a subduction zone has not been clarified. A series of regional-scale seismic profiles, including three 600-km-long profiles extending from the Pacific basin across the outer rise and southern Kuril and Japan trenches, show that Vp is markedly lower and Vp/Vs markedly higher from about 150 km seaward of the trench to the trench axis. These structural variations are stronger along the profiles into the Japan trench, where throws of bending-related extensional faults of an oceanic plate are greater and seismicity

  6. 15 Years Of Ecuadorian-French Research Along The Ecuadorian Subduction Zone (United States)

    Charvis, P.


    The Ecuadorian segment of the Nazca/South America subduction zone is an outstanding laboratory to study the seismic cycle. Central Ecuador where the Carnegie ridge enters the subduction marks a transition between a highly coupled segment that hosted one of the largest seismic sequence during the 20thcentury and a ~1200-km long weakly coupled segment encompassing southern Ecuador and northern Peru. A shallow dipping subduction interface and a short trench-coast line distance ranging from 45 to 80 km, together with La Plata Island located only 33 km from the trench axis, allow to document subduction processes in the near field with an exceptional resolution. Since 2000, a close cooperation between the Institute of Geophysics (Quito), INOCAR (Oceanographic Institute of the Ecuadorian Navy) with French groups allowed us to conduct up to 6 marine geophysics cruises to survey the convergent margin and jointly develop dense GPS and seismological networks. This fruitful collaboration now takes place in the framework of an International Joint Laboratory "Earthquakes and Volcanoes in the Northern Andes" (LMI SVAN), which eases coordinating research projects and exchanges of Ecuadorian and French scientists and students. This long-term investigation has already provided a unique view on the structure of the margin, which exhibits a highly variable subduction channel along strike. It allowed us to evidence the contrast between creeping and coupled segments of subduction at various scale, and the existence of large continental slivers whose motion accommodates the obliquity of the Nazca/South America convergence. Finally, we could evidence the first Slow Slip Events (SSE) that oppositely to most SSE documented so far, are accompanied with intense micro-seismicity. The recent support of the French National Research Agency and the Ecuadorian Agency for Sciences and Technology (Senescyt) will enable us to integrate the already obtained results, in an attempt to develop an

  7. Comparison of earthquake source parameters and interseismic plate coupling variations in global subduction zones (Invited) (United States)

    Bilek, S. L.; Moyer, P. A.; Stankova-Pursley, J.


    Geodetically determined interseismic coupling variations have been found in subduction zones worldwide. These coupling variations have been linked to heterogeneities in interplate fault frictional conditions. These connections to fault friction imply that observed coupling variations are also important in influencing details in earthquake rupture behavior. Because of the wealth of newly available geodetic models along many subduction zones, it is now possible to examine detailed variations in coupling and compare to seismicity characteristics. Here we use a large catalog of earthquake source time functions and slip models for moderate to large magnitude earthquakes to explore these connections, comparing earthquake source parameters with available models of geodetic coupling along segments of the Japan, Kurile, Kamchatka, Peru, Chile, and Alaska subduction zones. In addition, we use published geodetic results along the Costa Rica margin to compare with source parameters of small magnitude earthquakes recorded with an onshore-offshore network of seismometers. For the moderate to large magnitude earthquakes, preliminary results suggest a complex relationship between earthquake parameters and estimates of strongly and weakly coupled segments of the plate interface. For example, along the Kamchatka subduction zone, these earthquakes occur primarily along the transition between strong and weak coupling, with significant heterogeneity in the pattern of moment scaled duration with respect to the coupling estimates. The longest scaled duration event in this catalog occurred in a region of strong coupling. Earthquakes along the transition between strong and weakly coupled exhibited the most complexity in the source time functions. Use of small magnitude (0.5 earthquake spectra, with higher corner frequencies and higher mean apparent stress for earthquakes that occur in along the Osa Peninsula relative to the Nicoya Peninsula, mimicking the along-strike variations in

  8. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.


    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  9. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  10. Fault plane orientations of deep earthquakes in the Izu-Bonin-Marianas subduction zone system (United States)

    Myhill, R.; Warren, L. M.


    We present the results of directivity analysis on 45 deep earthquakes within the Izu-Bonin-Marianas subduction zone between 1993 and 2011. The age of the subducting Pacific plate increases from north to south along the trench, from 120 Ma offshore Tokyo to over 150 Ma east of the Mariana Islands. The dip of the deep slab generally increases from north to south, and is steep to overturned beneath the southern Bonin Islands and Marianas. Between 34 and 26 degrees north, a peak in seismicity at 350-450 km depth marks a decrease in dip as the slab approaches the base of the upper mantle. We observe directivity for around 60 percent of the analysed earthquakes, and use the propagation characteristics to find the best fitting rupture vector. In 60-70 percent of cases with well constrained rupture directivity, the best fitting rupture vector allows discrimination of the fault plane and the auxiliary plane of the focal mechanism. The identified fault planes between 100 km and 500 km are predominantly near-horizontal or south-southwest dipping. Rotated into the plane of the slab, the fault plane poles form a single cluster, since the more steeply dipping fault planes are found within more steeply dipping sections of slab. The dominance of near-horizontal fault planes at intermediate depth agrees with results from previous studies of the Tonga and Middle-America subduction zones. However, the presence of a single preferred fault plane orientation for large deep-focus earthquakes has not been previously reported, and contrasts with the situation for deep-focus earthquakes in the Tonga-Kermadec subduction system. Ruptures tend to propagate away from the top surface of the slab. We discuss potential causes of preferred fault plane orientations within subducting slabs in the light of existing available data, and the implications for mechanisms of faulting at great depths within the Earth.

  11. Rheological Properties of Natural Subduction Zone Interface: Insights from "Digital" Griggs Experiments (United States)

    Ioannidi, P. I.; Le Pourhiet, L.; Moreno, M.; Agard, P.; Oncken, O.; Angiboust, S.


    The physical nature of plate locking and its relation to surface deformation patterns at different time scales (e.g. GPS displacements during the seismic cycle) can be better understood by determining the rheological parameters of the subduction interface. However, since direct rheological measurements are not possible, finite element modelling helps to determine the effective rheological parameters of the subduction interface. We used the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions that mimic simple shear and opted for the one that best describes the Grigg's type simple shear experiments. After examining different parameters, such as shearing velocity, temperature and viscosity, we added complexity to the geometry by including a second phase. This arises from field observations, where shear zone outcrops are often composites of multiple phases: stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. We applied our method to outcrop scale block-in-matrix geometries and by sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction and viscosity of a natural interface. In a next step, these effective parameters will be used as input into seismic cycle deformation models in an attempt to assess the possible signature of field geometries on the slip behaviour of the plate interface.

  12. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Fumiko Tajima


    Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not

  13. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun


    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  14. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise. (United States)

    Chaves, Esteban J; Schwartz, Susan Y


    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  15. The 1945 Balochistan earthquake and probabilistic tsunami hazard assessment for the Makran subduction zone (United States)

    Höchner, Andreas; Babeyko, Andrey; Zamora, Natalia


    Iran and Pakistan are countries quite frequently affected by destructive earthquakes. For instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30'000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, but a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Additionally, some recent publications raise the question of the possiblity of rare but huge magnitude 9 events at the Makran subduction zone. We first model the historic Balochistan event and its effect in terms of coastal wave heights, and then generate various synthetic earthquake and tsunami catalogs including the possibility of large events in order to asses the tsunami hazard at the affected coastal regions. Finally, we show how an effective tsunami early warning could be achieved by the use of an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast.

  16. Combining GPS and repeating earthquakes for a high resolution analysis of subduction zone coupling (United States)

    Weston, J.; Shirzaei, M.


    Increasingly complex spatiotemporal patterns of subduction zone coupling are being revealed by geodetic and seismic observations. Understanding the mechanisms which control it is useful for improving seismic hazard assessments. GPS and characteristically repeating earthquakes (CREs) are complementary datasets for monitoring aseismic slip. Here, both of them are combined to estimate the rate and distribution of creep on the northeast Japan subduction zone between 21 March 1996 and 24 September 2003. We find that the majority of the upper part at 0-30 km depth remains locked. There are three regions creeping at 7-8 cm/yr distributed along-strike at 40-70 km depth. We observe that these creeping regions occur in areas of low effective pressure and reduced porosity, which are inferred from Vp and Vs velocities. Moreover, an area of high clay content and high effective pressure coincides with the rupture area of the Tohoku-oki earthquake. We discuss these results in the context of potential mechanisms governing creep in northeast Japan. Our results highlight the benefits of combining GPS and CREs for advancing our understanding of the seismic cycle in subduction zones.

  17. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.


    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  18. Two decades of spatiotemporal variations in subduction zone coupling offshore Japan (United States)

    Loveless, John P.; Meade, Brendan J.


    Spatial patterns of interplate coupling on global subduction zones can be used to guide seismic hazard assessment, but estimates of coupling are often constrained using a limited temporal range of geodetic data. Here we analyze ∼19 years of geodetic observations from the GEONET network to assess time-dependent variations in the spatial distribution of coupling on the subduction zones offshore Japan. We divide the position time series into five, ∼3.75-year epochs each decomposed into best-fit velocity, annual periodic signals, coseismic offsets, and postseismic effects following seven major earthquakes. Nominally interseismic velocities are interpreted in terms of a combination of tectonic block motions and earthquake cycle activity. The duration of the inferred postseismic activity covaries with the linear velocity. To address this trade-off, we assume that the nominally interseismic velocity at each station varies minimally from epoch to epoch. This approach is distinct from prior time-series analysis across the earthquake cycle in that position data are not detrended using preseismic velocity, which inherently assumes that interseismic processes are spatially stable through time, but rather the best-fit velocity at each station may vary between epochs. These velocities reveal significant consistency since 1996 in the spatial distribution of coupling on the Nankai subduction zone, with variation limited primarily to the Tokai and Bungo Channel regions, where long-term slow slip events have occurred, and persistently coupled regions coincident with areas that slipped during historic great earthquakes. On the Sagami subduction zone south of Tokyo, we also estimate relatively stable coupling through time. On the Japan-Kuril Trench, we image significant coupling variations owing to effects of the 1994 MW = 7.7 Sanriku-oki, 2003 MW = 8.2 Tokachi-oki, and 2011 MW = 9.0 Tohoku-oki earthquakes. In particular, strong coupling becomes more spatially extensive following

  19. Strain Variation in Accretionary Prisms Across Space and Time: Insights from the Makran Subduction Zone (United States)

    Penney, C.; Tavakoli, F.; Saadat, A.; Nankali, H. R.; Sedighi, M.; Khorrami, F.; Sobouti, F.; Rafi, Z.; Copley, A.; Jackson, J. A.; Priestley, K. F.


    The Makran is one of the world's least-studied subduction zones. In particular, little is known about the accumulation and accommodation of strain in the onshore part of the subduction zone, which parallels the coasts of southern Iran and Pakistan. The deformation of the Makran accretionary prism results from both its subduction zone setting and N-S right-lateral shear between central Iran and Afghanistan. North of the Makran, this shear is accommodated by a series of right-lateral faults which offset the rocks of the Sistan Suture Zone, an abandoned accretionary prism. However, these right-lateral faults are not observed south of 27°N, and no major N-S faults cut the E-W trending structures of the Makran. How this right-lateral motion is accommodated at the southern end of the Sistan Suture Zone is a long-standing tectonic question. By combining results from geomorphology, GPS, seismology and modelling we conclude that right-lateral motion is transferred across the depression north of the accretionary prism to the region of right-lateral shear at the western end of the accretionary prism. This requires the Jaz Murian depression to be bounded by normal faults, consistent with the basin geomorphology. However, GPS data show compression across the margins of the basin, and no shallow normal-faulting earthquakes have been observed in the region. We therefore suggest that the behaviour of these faults may be time-dependent and controlled by the megathrust seismic cycle, as has been suggested elsewhere (e.g. Chile). Recent strike-slip earthquakes, including the 2013 Balochistan earthquake, have clustered at the prism's lateral edges, showing the importance of spatial, as well as temporal, variations in strain. These earthquakes have reactivated thrust faults in the Makran accretionary prism, showing that the style of strain within accretionary prisms can vary on multiple timescales and allowing us to calculate the coefficient of friction on the underlying megathrust.

  20. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor (United States)

    Delph, J. R.; Levander, A.; Niu, F.


    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc

  1. Annual modulation of non-volcanic tremor in northern Cascadia (United States)

    Pollitz, Fred; Wech, Aaron G.; Kao, Honn; Burgmann, Roland


    Two catalogs of episodic tremor events in northern Cascadia, one from 2006 to 2012 and the other from 1997 to 2011, reveal two systematic patterns of tremor occurrence in southern Vancouver Island: (1) most individual events tend to occur in the third quarter of the year; (2) the number of events in prolonged episodes (i.e., episodic tremor and slip events), which generally propagate to Vancouver Island from elsewhere along the Cascadia subduction zone, is inversely correlated with the amount of precipitation that occurred in the preceding 2 months. We rationalize these patterns as the product of hydrologic loading of the crust of southern Vancouver Island and the surrounding continental region, superimposed with annual variations from oceanic tidal loading. Loading of the Vancouver Island crust in the winter (when the land surface receives ample precipitation) and unloading in the summer tends to inhibit and enhance downdip shear stress, respectively. Quantitatively, for an annually variable surface load, the predicted stress perturbation depends on mantle viscoelastic rheology. A mechanical model of downdip shear stress on the transition zone beneath Vancouver Island—driven predominantly by the annual hydrologic cycle—is consistent with the 1997–2012 tremor observations, with peak-to-peak downdip shear stress of about 0.4 kPa. This seasonal dependence of tremor occurrence appears to be restricted to southern Vancouver Island because of its unique situation as an elongated narrow-width land mass surrounded by ocean, which permits seasonal perturbations in shear stress at depth.

  2. Seamount subduction at seismogenic depths: structural and metamorphic evidence from the Zagros suture zone (United States)

    Bonnet, G.; Agard, P.; Angiboust, S.; Fournier, M.; Omrani, J.


    Large-scale seafloor topographic features, such as seamounts, are for the most part subducted with the downgoing oceanic plate. They are expected to critically impact the seismogenic and mechanic behavior of subduction zones, but their exact role is strongly debated (i.e., as to whether they represent barriers to propagation or asperities promoting nucleation). Rare natural examples of metamorphosed seamounts, which got sliced off the slab along the plate interface and escaped recycling into the mantle, are therefore precious witnesses to document processes operating at depths of 0-30 km. We herein report the existence of a large-scale oceanic topographic structure sandwiched in the Zagros suture zone (Siah Kuh - SK - unit), most probably a former seamount, along with other blueschist units (Angiboust et al., EPSL 2016). The main criteria for identifying this seamount are its: (1) shape: the SK unit is a 1.5-2 km thick, rounded-shaped body with a 15-20 km diameter, (2) lithologies: it is made mainly of a regular succession of massive basaltic flows, commonly as pillow basalts, minor ophiolite-type gabbros and serpentinite, together with subordinate more differenciated volcanic and plutonic rocks. (3) sedimentary cover: basalts are overlain by shallowly deposited reef limestone and deepening-up sediments with the occurrence of cherts and pelagic limestones (which points to possible subsidence). Basalts have been analyzed for trace elements and have usually a N-MORB to OIB signature, which might be explained by its potential origin as a mid-oceanic ridge seamount. HP-LT minerals (lawsonite, aragonite, blue amphiboles) found across the whole structure, particularly in zones of localized compressive deformation, indicate that this seamount was shallowly subducted at 20 km. This deformation, interpreted to be syn-subduction, is assisted by a décollement rooting in serpentinite and/or oceanic metasediments and is associated with rare cataclase in magmatic rocks. We

  3. Characterization of frictional melting processes in subduction zone faults by trace element and isotope analyses (United States)

    Ishikawa, T.; Ujiie, K.


    Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages

  4. New view on the rupture mode along the Colombia-Ecuador subduction zone (United States)

    Yoshimoto, M.; Kumagai, H.; Sagiya, T.; Mora-Paez, H.; Pulido Hernandez, N. E.


    Five large earthquakes (1906, 1942, 1958, 1979, and 2016) are known along the Colombia-Ecuador subduction zone. The largest earthquake among these events is the 1906 event, which has been interpreted as a megathrust earthquake (Mw 8.8) that ruptured the source regions of smaller earthquakes in 1942, 1958, and 1979 (Kanamori and McNally, BSSA, 1982). Yoshimoto et al. (GRL, 2017) recently proposed a new rupture model along this subduction zone. This model suggests two rupture domains along the dip direction of the slab: one is the trenchward domain in Ecuador produced the 1906 earthquake with Mw 8.4 and the other consists of individual segments corresponding to Mw 7 class earthquake sources (1942, 1958, and 2016) in the coastal domain. To investigate the rupture mode in the Colombia region, we estimated the rupture process of the 1979 Tumaco earthquake and the interseismic plate coupling along the Colombia-Ecuador subduction zone. Our analysis of the 1979 event indicated Mw 8.3 and the total rupture duration of about 140 s. The rupture propagated northeast from the rupture initiation point with a rupture velocity of 2.0 km/s. The large slip area was estimated in the northeastern part of the source region with the maximum slip of about 5 m. The main rupture area of the 1979 earthquake was located north of the 1906 source region, and the main rupture zones of the 1979 and 1906 events did not overlap each other. Our estimates of the interseismic plate coupling indicate high coupling (0.5 0.8) in the Ecuador region and low coupling ( 0.4) in the Colombia region. The recurrence interval of 74 years between the 2016 and 1942 events that ruptured the same asperity is explained by the high coupling in the Ecuador region. The low coupling in the 1979 source region suggests that the recurrence interval of this earthquake is long ( 270 year). Our results imply a different rupture model for this region than the model proposed by Kanamori and McNally (1982). This study further

  5. Segmentation of the seismogenic coupling zone in Chile at 38° S: Preservation of subduction channel deposits and damage zones (United States)

    Micksch, U.; Krawczyk, C. M.; TIPTEQ Research Group


    The crustal structure of the subduction zone in south central Chile was revealed with high-resolution reflection seismic imaging within project TIPTEQ (from The Incoming Plate to mega-Thrust EarthQuake processes). The near-vertical incidence reflection seismic profile spans across 140 km from the coast of the Pacific Ocean to the Central Valley. The downdip end of the seismogenic coupling zone and the hypocenter of the great Chilean earthquake of 1960 (Mw =9.5) lie in the center of the seismic section. Here, we show the structural inventory of the Chilean fore-arc at 38.2° S. The downgoing oceanic plate can be traced from 27-55 km depth. The oceanic crust has a varying reflectivity. A smooth increase in reflectivity below 30 km depth may be caused by the release of fluids because of the porosity collapse in the oceanic basalt. A zone of high Vp/Vs ratio supports this observation. A clear structurally imaged continental Moho could not be found, but it may be inferred together with constraints from gravimetrical modelling. Strong reflectivity above the plate interface may be associated with a subduction channel with a varying thickness of 2-5 km. Local seismicity possibly defines its upper boundary. The segmented crust of the overriding plate has two great seismically transparent zones, devided by the crustal Lanalhue Fault Zone. The eastern transparent zone may be caused by the Coastal Batholith which is covered by sediments in the Central Valley. A nearsurface first-break tomography of the TIPTEQ data set revealed the subsurface continuation of the batholith and a sediment thickness of ca. 1 km in the western part of the Central Valley. The combination of the seismic depth section with magnetotelluric, gravimetrical and seismological findings results in an integrated interpretation along the TIPTEQ transect at 38.2° S.

  6. Using low-frequency earthquakes to study unsteady fluid transport at depth in subduction zones (United States)

    Shapiro, N.; Frank, W.; Droznin, D.; Droznina, S.; Senyukov, S.; Gusev, A. A.; Gordeev, E.


    Earthquakes whose signals are depleted in high frequencies (low frequency earthquakes, LFE) are systematically observed beneath volcanoes and in the deep roots of tectonic faults. Volcanic LFE are considered to be related to pressure perturbations that are caused by nonstationary fluid transport in volcanic and hydrothermal systems. The sources of tectonic LFE are associated with fluid-enabled shear transients at brittle-ductile transition zones of active faults. In both volcanic and tectonic environments, the fluid pore pressure is one the main parameters controlling the LFE generation. We present here two cases when the LFE observations were used to infer time dependent fluid pore pressure transport at depth. First, we observe the LFE in the Guerrero region of the Mexican subduction zone and argue that the transient changes in their occurrence rate are caused by a pore pressure fluctuation related to the migration of the metamorphic fluids updip along the subduction interface. As a second case, we present observations of LFE that occurred in 2011-2012 within the Klyuchevskoy volcano group in Kamchatka, Russia. We show two distinct groups of LFE sources: events that occurred just below the active volcanoes, and deep LFE at depths of 30 km in the vicinity of a deep magmatic reservoir. We report systematic increases of the LFE rates prior to volcanic eruptions with the initial activation of the deep LFE sources that reflects pressurization of the deep reservoir and consequent transfer of the activity towards the surface through. We interpret this migration of the LFE activity as being caused by the diffusive pressure pulse propagation associated with the unsteady fluid transport trough a system of vertically connected thin channels. The reported observations suggest that the variations in the LFE occurrence rates can be used to follow the evolution of the fluid pressure and provide evidence for the unsteady fluid transport at depth in subduction zones.

  7. Inner forearc response to subduction of the Panama Fracture Zone, southern Central America (United States)

    Morell, Kristin D.; Fisher, Donald M.; Gardner, Thomas W.


    Subduction of the right-lateral Panama Fracture Zone, along the convergent margin of Central America creates abrupt lateral variations in convergence rate, obliquity, and subducting crustal thickness at its intersection with the Middle America Trench. This intersection, known as the Panama (CO-NZ-CA) Triple Junction, is migrating to the southeast at a rate of 55 mm/yr, and currently coincides with the lateral termination of the Fila Costeña Thrust Belt in the inner forearc of the overriding plate. Mapping in the inner forearc in the area that straddles the subducting Panama Fracture Zone reveals that Cocos-Caribbean convergence west of the triple junction leads to the development of an inner forearc thrust belt inboard of the colliding Cocos Ridge, while little deformation is evident inboard of Nazca-Caribbean convergence, east of the triple junction. This results in the lateral termination of the Fila Costeña Thrust Belt in the region of the forearc that projects over the Panama Fracture Zone, where four out of five mapped thrust faults tip out and are buried by lahars. Three new balanced cross-sections indicate a steep gradient in shortening from the center of the thrust belt to its southeastern termination. The short-term history of the inner forearc recorded in the landscape and topography of the Fila Costeña is consistent with the southeastward migration of the thrust belt and the Panama Triple Junction throughout the past ˜ 3 Ma, with evidence for the growth of a new topographic divide and reorganization of stream channel networks.

  8. Subduction zone slip variability during the last millennium, south-central Chile (United States)

    Dura, Tina; Horton, Benjamin P.; Cisternas, Marco; Ely, Lisa L.; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria


    The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470-1570 AD, 1425-1455, and 270-410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).

  9. Fifteen Years of Slow Slip and Tremor Observations at the Northern Costa Rica Subduction Zone (United States)

    Schwartz, S. Y.; Dixon, T. H.; Protti, M.; González, V. M.


    Coordinated long-term geophysical observations at the northern Costa Rica seismogenic zone, facilitated by NSF's MARGINS program, have greatly expanded our understanding of its megathrust behavior. Here we review fifteen years of seismic, geodetic, ocean bottom fluid flow and pressure sensor data collected on or near the Nicoya Peninsula, above the shallow thrust interface that document a variety of slow slip behaviors. These include relatively deep (~30-40 km), large slow slip events that occur about every 2 years, smaller events that locate at more intermediate depth (10-15 km) and occur more frequently (~1 per year), and very shallow events at the toe of the margin wedge that produce no discernible GPS signal on land but are detected on seafloor pressure sensors. Most of these slow slip events at the toe are accompanied by seismic tremor. Short-term, GPS only observations might have detected a few of these slow slip events; however, the longer more diverse instrument deployment was necessary to reveal their greater complexity. This demonstrates the need for a sustained, multi-instrument deployment and off-shore instrumentation at several different subduction zones, like that proposed for the Subduction Zone Observatory (SZO), to significantly advance our understanding of slow slip at convergent boundaries. Similar instrumentation to what exists in Nicoya is presently being established in the Osa-Burica region of southern Costa Rica to capture earthquake cycle deformation there. These two installations can provide a good nucleus for a larger circum-Pacific SZO effort.

  10. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones (United States)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael


    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to

  11. Teleseismic P-wave tomography of the Sunda-Banda Arc subduction zone (United States)

    Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.


    The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-wave velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-wave travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition zone. The resolution added by the targeted USC deployment is clear when comparing models that

  12. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.


    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  13. Cenozoic tectono-stratigraphic evolution east of the Lesser Antilles subduction zone: geodynamic implications (United States)

    Pichot, T.; Patriat, M.; Westbrook, G. K.; Nalpas, T.; Roest, W. R.; Gutscher, M.


    The Barracuda Ridge and the Tiburon Rise, two major oceanic basement ridges, lie at the western end of the diffuse North America-South America plate-boundary zone, where they enter the subduction zone beneath the Lesser Antilles island arc. Numerous Fracture Zones affect the oceanic crust in this area such as Fifteen Twenty FZ, Marathon FZ and Mercurius FZ. Uncertainties in kinematic models and GPS measurements are too high to accurately predict plate motions in the Barracuda Ridge and Tiburon Rise area. From an analysis of geophysical and geological data, including multibeam and seismic reflection profiles acquired in 2007, a detailed tectono-stratigraphic study was performed. We propose an evolutionary model for the geological history, including the timing of the uplift of the Barracuda and Tiburon ridges. Terrigenous turbidites originating from South America were delivered over the entire area, extending as far north as the Barracuda Ridge, since the early Paleogene. The Neogene turbiditic sequence is relatively thin north of the Tiburon Rise, where the Quaternary distal turbidites form a depocenter in the middle of the Tiburon basin. This basin is restricted by the uplift of the Barracuda Ridge and Tiburon Rise to the north and south, respectively, and by the flexural bulge of the subducting lithosphere to the west. Distal turbidites were also deposited in the deep trough north of Barracuda Ridge. The seafloor topography inherited from the crustal accretion at the mid-oceanic ridge, was buried by turbidites at the end of the Paleogene. The sediments were affected by short wavelength (about 3 km) syn-depositional folds and, mostly normal, faults. Later, during the Middle-Late Miocene and then during the Pleistocene, respectively, the Tiburon Rise and Barracuda Ridge were further uplifted and acquired their present elevation. Two lens-like bodies of mass transport deposits, up to 800-m thick, dated as late Early-Pleistocene, occupy an area greater than 20000 km2

  14. Earthquake swarm activity in the Oaxaca segment of Middle American Subduction Zone (United States)

    Brudzinski, M. R.; Cabral, E.; Arciniega-Ceballos, A.


    An outstanding question in geophysics is the degree to which the newly discovered family of slow fault slip behaviors is related to more traditional earthquakes, especially since theoretical predictions indicate slip in the deeper transitional zone promotes failure in the shallower seismogenic zone. The Oaxacan segment of the Middle American Subduction zone is a natural region to pursue detailed studies of the spectrum of fault slip due to the unusually shallow subduction angle and short trench-to-coast distances that bring broad portions of the seismogenic and transitional zones of the plate interface inland. A deployment of broadband seismometers in this region has improved the network coverage to ~70 km station spacing since 2006, providing new opportunities to investigate smaller seismic phenomena. While characterization of tectonic tremor has been a prominent focus of this deployment, the improved network has also revealed productive earthquake swarms, whose sustained periods of similar magnitude earthquakes are also thought to be driven by slow slip. We identify a particularly productive earthquake swarm in July 2006 (~600 similar earthquakes detected), which occurred during a week-long episode of tectonic tremor and geodetically detected slow slip. Using a multi-station "template matching" waveform cross correlation technique, we have been able to detect and locate swarm earthquakes several orders of magnitude smaller than that of traditional processing, particularly during periods of increased background activity, because the detector is finely tuned to events with similar hypocentral location and focal mechanism. When we scan for repeats of the event families detected in the July 2006 sequence throughout the 6+ years since, we find these families were also activated during several other slow slip episodes, which indicates a link between slow slip in the transition zone and earthquakes at the downdip end of the seismogenic portion of the megathrust.

  15. P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan (United States)

    Wang, Jian; Zhao, Dapeng


    The active subduction of the young Philippine Sea (PHS) plate and the old Pacific plate has resulted in significant seismic heterogeneity and anisotropy in Southwest (SW) Japan. In this work we determined a detailed 3-D P wave anisotropic tomography of the crust and upper mantle beneath SW Japan using ˜540,000 P wave arrival times from 5,249 local earthquakes recorded by 1095 stations. The PHS slab is imaged clearly as a high-velocity (high-V) anomaly which exhibits considerable lateral variations. Significant low-velocity (low-V) anomalies are revealed above and below the PHS slab. The low-V anomalies above the PHS slab may reflect the upwelling flow in the mantle wedge and the PHS slab dehydration, and they form the source zone of the arc volcanoes in SW Japan. The low-V zones under the PHS slab may reflect the upwelling flow in the big mantle wedge above the Pacific slab. The anisotropy in the crust and upper mantle is complex. In Kyushu, the P wave fast velocity direction (FVD) is generally trench-normal in the mantle wedge under the back-arc, which is consistent with the corner flow driven by the PHS slab subduction. The FVD is trench-parallel in the subducting PHS slab under Kyushu. We think that the intraslab seismicity is a potential indicator to the slab anisotropy. That is, the PHS slab with seismicity has kept its original fossil anisotropy formed at the mid-ocean ridge, while the aseismic PHS slab has reproduced the anisotropy according to its current deformation.

  16. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast. (United States)

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu


    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  17. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones (United States)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana


    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  18. High-precision accelerator-mass-spectrometer radiocarbon dating of submerged tidal-marsh soils - An approach to estimating the frequency and coastal extent of subduction zone earthquakes in Oregon and Washington

    International Nuclear Information System (INIS)

    Nelson, A.R.


    Has subduction of the Juan de Fuca plate beneath the North America plate in the Pacific Northwest produced great (magnitude, M > 8) earthquakes during the late Holocene? Records of the past 200 years yield no evidence of great plate-boundary earthquakes in the Cascadia subduction zone. But along the coasts of Oregon and Washington peaty, tidal-wetland soils are interbedded with mud in estuarine stratigraphic sequences, and the submergence (relative rise of sea level) of some of these soils seems too widespread (> 100 km), too large (> 1 m), and too sudden ( 14 C analyses of rigorously selected and pretreated plant macrofossils at the abrupt upper contacts of tidal-marsh soils. An initial test of this method in South Slough shows that standard deviations on AMS ages can be reduced to ±25-40 years. However, consideration of the total analytical errors in AMS analysis and age differences due to changes in the rate of 14 C production in the atmosphere over time indicate that 95% confidence limits on calendar-corrected ages for submergence events range from 59 to 400 years

  19. Seismic attenuation structure associated with episodic tremors and slip zones, southwestern Japan, in the Nankai subduction zone (United States)

    Kita, S.; Matsubara, M.


    We imaged the seismic attenuation structure (frequency- independent Qp) beneath southwestern Japan using t* estimated by the S coda wave spectral ratio method to the waveform data from the Kiban nationwide seismic network. The seismic attenuation (Qp-1) structure was clearly imaged for the region beneath Shikoku, the Kii peninsula, and eastern Kyushu at depths down to 50 km. At depths of 5 to 35 km, the seismic attenuation structure changes at the Median Tectonic Line and other geological boundaries beneath Shikoku and the southwestern Kii peninsula. High-Qp zones within the lower crust of the overlying plate were found just above the slip regions at the centers and deeper parts of the long-term slow-slip events (SSEs) beneath the Bungo and Kii channels and central Shikoku. Beneath central Shikoku, within the overlying plate, a high-Qp zone bounded by low-Qp zones was located from the top of the overlying plate to the plate interface of the subducting plate. The high-Qp zone and low-Qp zones correspond to high-Vp and low-Vp zones of previous study by Matsubara et al. [2009], respectively. The boundaries of the high-Qp zone and the low-Qp zones were located at the segment boundaries of tremors. The heterogeneity of the seismic attenuation and velocity structures also appeared to correspond to the characteristics of geography (uplifting map by Ohmori [1990]) beneath Shikoku. The results indicated that the locations of the long- and short-term SSEs could be limited by the inhomogeneous distribution of the materials and/or condition of the overlying plate, which is considered to be formed due to geological and geographical process. The heterogeneity of materials and/or condition within the forearc crust possibly made an effect on inhomogeneous rheological strength distribution on the interface.

  20. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays (United States)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.


    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  1. Seismicity, topography, and free-air gravity of the Aleutian-Alaska subduction zone (United States)

    Wells, R. E.; Blakely, R. J.; Scholl, D. W.; Ryan, H. F.


    The Aleutian-Alaska subduction zone, extending 3400 km from the Queen Charlotte Fault to Kamchatka, has been the source of six great megathrust earthquakes in the 20th Century. Four earthquakes have ruptured the 2000-km-long Aleutian segment, where the Cenozoic Aleutian arc overlies the subducting Pacific plate. These include the 1946 M 8.6 earthquake off Unimak Is., the 1957 M 8.6 and 1986 M 8.0 earthquakes off the Andreanoff Is., and the 1965 M 8.7 Rat Is. earthquake. The source regions of these earthquakes inferred from waveform inversions underlie the well-defined Aleutian deep-sea terrace. The deep-sea terrace is about 4 km deep and is underlain by Eocene arc framework rocks, which extend nearly to the trench. It is bounded on its seaward and landward margins by strong topographic and fee-air gravity gradients. The main asperities (areas of largest slip) for the great earthquakes and nearly all of the Aleutian thrust CMT solutions lie beneath the Aleutian terrace, between the maximum gradients. Similar deep-sea terraces are characteristic of non-accretionary convergent margins globally (75% of subduction zones), and, where sampled by drilling (e.g., Japan, Peru, Tonga, Central America), are undergoing sustained subsidence. Sustained subsidence requires removal of arc crust beneath the terrace by basal subduction erosion (BSE). BSE is in part linked to the seismic cycle, as it occurs in the same location as the megathrust earthquakes. Along the eastern 1400 km of the Alaskan subduction zone, the Pacific plate subducts beneath the North American continent. The boundary between the Aleutian segment and the continent is well defined in free-air gravity, and the distinctive deep-sea terrace observed along the Aleutian segment is absent. Instead, the Alaskan margin consists of exhumed, underplated accretionary complexes forming outer arc gravity highs. Superimposed on them are broad topographic highs and lows forming forearc basins (Shumagin, Stevenson) and islands

  2. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones (United States)

    Liu, M. Q.; Li, Z. H.


    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  3. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. (United States)

    Moreno, Marcos; Rosenau, Matthias; Oncken, Onno


    The magnitude-8.8 Maule (Chile) earthquake of 27 February 2010 ruptured a segment of the Andean subduction zone megathrust that has been suspected to be of high seismic potential. It is the largest earthquake to rupture a mature seismic gap in a subduction zone that has been monitored with a dense space-geodetic network before the event. This provides an image of the pre-seismically locked state of the plate interface of unprecedentedly high resolution, allowing for an assessment of the spatial correlation of interseismic locking with coseismic slip. Pre-seismic locking might be used to anticipate future ruptures in many seismic gaps, given the fundamental assumption that locking and slip are similar. This hypothesis, however, could not be tested without the occurrence of the first gap-filling earthquake. Here we show evidence that the 2010 Maule earthquake slip distribution correlates closely with the patchwork of interseismic locking distribution as derived by inversion of global positioning system (GPS) observations during the previous decade. The earthquake nucleated in a region of high locking gradient and released most of the stresses accumulated in the area since the last major event in 1835. Two regions of high seismic slip (asperities) appeared to be nearly fully locked before the earthquake. Between these asperities, the rupture bridged a zone that was creeping interseismically with consistently low coseismic slip. The rupture stopped in areas that were highly locked before the earthquake but where pre-stress had been significantly reduced by overlapping twentieth-century earthquakes. Our work suggests that coseismic slip heterogeneity at the scale of single asperities should indicate the seismic potential of future great earthquakes, which thus might be anticipated by geodetic observations.

  4. Carbonation by fluid-rock interactions at High-Pressure conditions: implications for Carbon cycling in subduction zones (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine


    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon regulating its fluxes between shallow and deep reservoirs. In subduction zones, most works have focused on subtractive processes responsible for carbon release from subducting slabs. As an example, several recent works have stressed on the importance of carbonate dissolution as a mean to mobilize large amounts of carbon in subduction zones. By contrast, little is known on additive processes such as rock carbonation at high-pressure (HP) conditions. At shallow depths (e.g. ocean floor and shallow subduction zones, i.e. geo-biosphere and the atmosphere. We report the occurrence of eclogite-facies marbles associated with metasomatic systems in HP metamorphic unit in Alpine Corsica (France). We performed a field-based study on metasomatic marbles. We will present the petrology and geochemistry that characterize carbonate metasomatism together with fluid inclusions study and pseudosection modeling. Altogether, we bring strong evidences for the precipitation of these carbonate-rich assemblages from carbonic fluids during HP metamorphism. We propose that rock carbonation can occur at HP conditions by either vein-injection or chemical replacement mechanisms. Rock carbonation indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but may have a preferential and complex pathway within the slab and along slab/mantle interface. Rock carbonation by fluid-rock interactions has a potentially great impact on the residence time of carbon and oxygen and on carbonates isotopic signature in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  5. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism (United States)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie


    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of Geology, 9, 35-59. Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., & Engi, M. (2014). Multiple metamorphic stages within an eclogite

  6. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited) (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.


    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  7. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)


    An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de

  8. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone. (United States)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.


    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  9. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction (United States)

    Arredondo, K.; Billen, M. I.


    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  10. Episodic Tremor and Slip: Insights From a Lab-scale Subduction Zone (United States)

    Weydert, J.; Voisin, C.; Larose, E.; Renard, F.


    We have devised a laboratory experiment to investigate the frictional and acoustic patterns of a salt slider with cumulated slip. We record a continuous change of the frictional behavior of the slider from stick-slip to the stable sliding regime, similar to the transition from earthquake to slow slip event along subduction zone. The Acoustic Emission associated with the movements of the slider evolves with cumulative displacement and interface ageing. It follows a trend from strong impulsive events, similar to earthquake seismic signals, to a collection of smaller amplitude and longer duration signals, similar to NVT. Our results favor the hypothesis of a common origin to SSE and NVT, which would be found in the slip with friction of a deformable interface.

  11. Long-term perspectives on giant earthquakes and tsunamis at subduction zones (United States)

    Satake, K.; Atwater, B.F.; ,


    Histories of earthquakes and tsunamis, inferred from geological evidence, aid in anticipating future catastrophes. This natural warning system now influences building codes and tsunami planning in the United States, Canada, and Japan, particularly where geology demonstrates the past occurrence of earthquakes and tsunamis larger than those known from written and instrumental records. Under favorable circumstances, paleoseismology can thus provide long-term advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks. Such variation in rupture mode, known from written history at a few subduction zones, is also characteristic of earthquake histories inferred from geology on the Pacific Rim. Copyright ?? 2007 by Annual Reviews. All rights reserved.

  12. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    Energy Technology Data Exchange (ETDEWEB)

    Wiyono, Samsul H., E-mail: [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Bandung 40132 (Indonesia); Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Nugraha, Andri Dian, E-mail: [Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung 40132, Indonesia, Phone: +62-22 2534137 (Indonesia)


    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  13. Slow slip phenomena in Cascadia from 2007 and beyond: a review (United States)

    Gomberg, Joan; ,


    Recent technological advances combined with more detailed analyses of seismologic and geodetic observations have fundamentally changed our understanding of the ways in which tectonic stresses arising from plate motions are accommodated by slip on faults. The traditional view that relative plate motions are accommodated by a simple cycle of stress accumulation and release on “locked” plate-boundary faults has been revolutionized by the serendipitous discovery and recognition of the significance of slow-slip phenomena, mostly in the deeper reaches of subduction zones. The Cascadia subduction zone, located in the Pacific Northwest of the conterminous United States and adjacent Canada, is an archetype of exploration and learning about slow-slip phenomena. These phenomena are manifest as geodetically observed aseismic transient deformations accompanied by a previously unrecognized class of seismic signals. Although secondary failure processes may be involved in generating the seismic signals, the primary origins of both aseismic and seismic phenomena appear to be episodic fault slip, probably facilitated by fluids, on a plate interface that is critically stressed or weakened. In Cascadia, this transient slip evolves more slowly and over more prolonged durations relative to the slip in earthquakes, and it occurs between the 30- and 40-km-depth contours of the plate interface where information was previously elusive. Although there is some underlying organization that relaxes nearly all the accrued plate-motion stresses along the entirety of Cascadia, we now infer that slow slip evolves in complex patterns indicative of propagating stress fronts. Our new understanding provides key constraints not only on the region where the slow slip originates, but also on the probable characteristics of future megathrust earthquakes in Cascadia. Herein, we review the most significant scientific issues and progress related to understanding slow-slip phenomena in Cascadia and

  14. Paleoseismic Records of Multiple Great Earthquakes from the Subduction Zones of Sumatra, Chile, and Alaska (United States)

    Dura, T.; Horton, B.; Briggs, R. W.; Cisternas, M.; Ely, L. L.; Kelsey, H. M.; Nelson, A. R.; Rubin, C. M.


    Instrumental and historical records have proved too short to estimate the potential magnitudes and recurrence intervals of rare events such as the 2004 Indian Ocean and 2011 Tohoku-Oki great earthquakes and tsunamis. Paleoseismology improves our understanding of subduction zone hazards by extending earthquake histories thousands of years into the past. Through paleoseismic investigations at subduction zones, we scrutinize coastal sediments in low-energy depositional environments to reconstruct relative sea-level (RSL) changes related to upper-plate deformation from past earthquakes and tsunami inundation. Microfossils—long recognized as valuable RSL indicators—in coastal sediment provide an independent test of earthquake related RSL change and tsunami deposition inferred from coastal stratigraphy. Here, we illustrate the value and potential of paleoseismic methods at megathrust sites in Sumatra, Chile, and the eastern Aleutian Islands to identify both coseismic subsidence and uplift. In western Sumatra, coastal sediments beneath a lowland near the city of Padang contain stratigraphic evidence for two mid Holocene earthquakes, each resulting in > 1 m of coseismic subsidence. A site along the most populated portion of the central Chilean coast near Valparaíso records stratigraphic and diatom evidence of six instances of early to mid-Holocene coseismic uplift (contains stratigraphic and diatom evidence for three instances of uplift and two of subsidence during great earthquakes. Such biostratigraphic evidence of past great earthquakes and tsunamis shows that the absence of great megathrust events near our sites in the last 200-300 years is not representative of the potential for great events on the megathrusts. In addition, we discuss how our earthquake and tsunami records fit within the context of past regional RSL histories and emphasize the importance of RSL on the preservation and interpretation of evidence of past events.

  15. Time-dependent geoid anomalies at subduction zones due to the seismic cycle (United States)

    Cambiotti, G.; Sabadini, R.; Yuen, D. A.


    We model the geoid anomalies excited during a megathrust earthquake cycle at subduction zones, including the interseismic phase and the contribution from the infinite series of previous earthquakes, within the frame of self-gravitating, spherically symmetric, compressible, viscoelastic Earth models. The fault cuts the whole 50 km lithosphere, dips 20°, and the slip amplitude, together with the length of the fault, are chosen in order to simulate an Mw = 9.0 earthquake, while the viscosity of the 170 km thick asthenosphere ranges from 1017 to 1020 Pa s. On the basis of a new analysis from the Correspondence Principle, we show that the geoid anomaly is characterized by a periodic anomaly due to the elastic and viscous contribution from past earthquakes and to the back-slip of the interseismic phase, and by a smaller static contribution from the steady-state response to the previous infinite earthquake cycles. For asthenospheric viscosities from 1017-1018 to 1019-1020 Pa s, the characteristic relaxation times of the Earth model change from shorter to longer timescales compared to the 400 yr earthquake recurrence time, which dampen the geoid anomaly for the higher asthenospheric viscosities, since the slower relaxation cannot contribute its whole strength within the interseismic cycle. The geoid anomaly pattern is characterized by a global, time-dependent positive upwarping of the geoid topography, involving the whole hanging wall and partially the footwall compared to the sharper elastic contribution, attaining, for a moment magnitude Mw = 9.0, amplitudes as high as 6.6 cm for the lowermost asthenospheric viscosities during the viscoelastic response compared to the elastic maximum of 3.8 cm. The geoid anomaly vanishes due to the back-slip of the interseismic phase, leading to its disappearance at the end of the cycle before the next earthquake. Our results are of importance for understanding the post-seismic and interseismic geoid patterns at subduction zones.

  16. Abnormal high seismic moment release rate along the Ecuador-Colombia subduction zone (United States)

    Nocquet, J. M.; Vallee, M.; Yepes, H. A.; Sladen, A.; Jarrin, P.; Rolandone, F.


    The Ecuador-Colombia subduction zone hosted a large seismic sequence that started with the great 1906 Mw8.8 earthquake, whose rupture area was then reactivated by large earthquakes with magnitude Mw 7.7-8.2. Unlike most subduction zones where the seismic budgets relies on historical records of past ruptures, suffering from large uncertainties, every event of the Ecuador-Colombia sequence since 1906 benefits from intensity, tsunami studies and global seismological records that enabled an epicenter location, fault parameters, aftershocks location and a moment magnitude to be derived. The 2016 earthquake further offers an opportunity to quantify the budgets of seismic moment versus plate motion and strain accumulation rates reliably estimated from GPS. The 2016 earthquake occurred in the same area as the 1942 event that had a similar size. In order to evaluate the level of overlap between the 1942 and 2016 ruptures, we carefully review every available observation. Despite the uncertainties inherent to the scarcity of records in 1942, we conclude to a significant overlap between the 2016 and 1942 earthquake slip distributions, suggesting the successive rupture of the same asperity. With co-seismic slip exceeding 6 m during the 2016 rupture, we find that the maximum slip largely overshoots the slip deficit accumulated since 1942 that is at most 3.2 m. Furthermore, regardless whether they broke the same asperity, both the 1942 and 2016 earthquakes had a moment exceeding significantly the moment accumulated since the previous earthquake. This characteristic is also shared by the Mw 7.7 1958 and Mw 8.2 1979 earthquakes, which had a seismic moment much larger than expected from the moment deficit accumulated from plate motion since 1906.These results have implications on the general description of the earthquake cycle but also call for a reappraisal seismic hazard assessment in the region on the short-term.

  17. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.


    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  18. How many M9 Earthquakes are possible? Interseismic coupling and rupture patch magnitudes along 15 of the world's subduction zones (United States)

    Graham, S. E.; Loveless, J. P.; Meade, B. J.


    There have been five recorded magnitude 9 earthquakes: 1952 M9.0 (Kamchatka), 1960 M9.5 (Chile), 1964 M9.2 (Alaska), 2004 M9.1 (Sumatra), and 2011 M9.1 (Japan). Given their long recurrence intervals and sparse historical record, it is unclear how many M9 ruptures are possible globally and where they may be located. Here we examine 15 of the world's subduction zones, estimating interseismic coupling and potential rupture patch size and magnitude. Using the first global block model, we invert a velocity field consisting of 19,664 GPS stations worldwide and simultaneously solve for spatially variable interseismic coupling along all subduction zone interfaces. Empirical scaling relationships are then used to relate the areas of regions contained within a constant coupling ratio to potential earthquake magnitude. We present results assuming coupling ratios of 80% and 30% and find a total of 4 and 14 M>9 rupture patches, respectively. These values represent the minimum number of potential M9 patches globally as not all subduction zones are sufficiently instrumented to resolve spatially variable coupling. We find that eleven of the fifteen subduction zones are capable of a M9 earthquake; however, all the plate boundaries studied have the potential to produce a M>8 event.

  19. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav


    Roč. 179, č. 3 (2009), s. 1301-1312 ISSN 0956-540X Institutional research plan: CEZ:AV0Z30120515 Keywords : seismicity and tectonics * volcano seismology * subduction zone processes * volcanic arc processes * magma migration and fragmentation * Pacific Ocean Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.435, year: 2009

  20. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone (United States)

    Becel, A.; Carton, H. D.; Shillington, D. J.


    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  1. Short-term Slow Slip Events at the Southcentral Alaska Subduction Zone (United States)

    McGuire, J. L.; Fu, Y.; Freymueller, J. T.


    The Pacific Plate is subducting beneath the North American Plate along the Aleutian Trench. The Alaska subduction zone is among the most tectonically active areas on Earth and is home to some of the largest earthquakes on record, including the second largest earthquake ever recorded, the M9.2 Prince William Sound earthquake of 1964. With the increasing availability of continuous GPS observations, studying time-dependent crustal movements in this area has become possible. Previous studies have analyzed the presence of long-term slow slip events (SSEs) in the region. Two long-term SSEs occurred from 1998-2001 and from 2010-2014 with durations of 3-4 years. These two long-term events occurred down-dip of the main asperity of the 1964 Prince William Sound earthquake. In addition to these long-term SSEs, there are also short-term SSEs evident in the GPS time series, which have durations of approximately two months. We have adequate data to study three short-term slow slip events, in 2005, 2006 and 2007. We fit the GPS time series data with the combination of a linear trend, a hyperbolic tangent function, and seasonal variations to derive the crustal displacements of all three short-term SSEs at each station in the north, east, and vertical directions. Then, an inversion model using the Green's functions for slip on the plate interface was employed to estimate the location and amplitude of slip and to calculate the magnitude of these slow slip events. Our results show Mw 6.09 for the 2005 event, Mw 6.40 for the 2006 event, and Mw 6.30 for the 2007 event. Our results indicate that both long-term SSEs and short-term SSEs occurred in the same location, down-dip of the rupture asperity of 1964 M9.2 earthquake. We use this information to relate the short-term slow slip events to the long-term events that have occurred in the region and to look for the implications on the slip budget of both short-term and long-term SSEs during the earthquake cycle at Southcentral Alaska

  2. Geophysical constraints on the deep structure of a limited ocean-continent subduction zone at the North Iberian Margin (United States)

    Ayarza, P.; MartíNez CataláN, J. R.; Alvarez-Marrón, J.; Zeyen, H.; Juhlin, C.


    Late Cretaceous to Cenozoic convergence between Iberia and Europe led to the partial closure of the Bay of Biscay with limited southward subduction of oceanic crust below the North Iberian Margin. Inclined sub-Moho reflections and diffractions observed in deep seismic reflection profiles shot across the margin are especially well represented in two reflection profiles: ESCIN-3.2 and ESCIN-3.3. These two profiles have been chosen to test if the sub-Moho reflections correspond to true primary deep events and, provided that they are reflecting off the subduction zone, to investigate its deep structure. Spectral analysis together with travel time estimation and migration allow us to characterize a number of these sub-Moho events as deep-source, low-frequency (˜19 Hz), reflections and diffractions. Synthetic seismograms were generated by three-dimensional seismic modeling of a sub-Moho southward dipping surface, interpreted to correspond to the top of subducted oceanic crust. Comparison between the real and synthetic data show that inclined, low-frequency sub-Moho reflections in both, ESCIN-3.2 and ESCIN-3.3 profiles may correspond to reflections from southward subducted Bay of Biscay oceanic crust. Geoid, free-air gravity, and absolute topography modeling provides additional constraints on the lithospheric-scale structure of this limited ocean-continent subduction zone beneath the North Iberian Margin.

  3. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California (United States)

    Sorensen, Sorena S.; Grossman, J.N.


    The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction zones. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction zone have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction zones. In the Catalina Schist, a subduction-zone metamorphic terrane of southern California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction zone or a portion of a shear zone closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments

  4. Effect of plate thickness on bending radius and energy dissipation at the subduction zone hinge

    NARCIS (Netherlands)

    Irvine, D. N.; Schellart, W. P.


    Despite the thickness of subducting oceanic plates being identified as a control on slab and hinge behavior during subduction, there have been few attempts to quantify its effect with fully dynamic models. This paper presents a series of dynamic laboratory experiments of progressive subduction of a

  5. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  6. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  7. Geodynamics of the Tavşanlı zone, western Turkey: Insights into subduction/obduction processes (United States)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Okay, Aral I.


    The tectono-metamorphic evolution of the high-pressure low-temperature (HP-LT) Tavşanlı zone (Western Anatolia, İzmir-Ankara suture zone) is herein reappraised to highlight processes occurring along a fossil subduction interface, from initial obduction stages to continental subduction. Structural and petrological data allow in particular to constrain the nature, internal structure and PT conditions of the oceanic accretionary complex sandwiched between the subducted continental margin of the Anatolide-Tauride Block (Orhaneli unit) and the non-metamorphic obducted ophiolite on top. Two distinct oceanic units (termed complexes 1 and 2) are recognised on top of one another, with metamorphic conditions ranging from incipient HP-LT imprint (complex 1) to blueschist facies conditions (complex 2). Based on the first occurrence of Fe-Mg carpholite and on pseudosection calculations, PT estimates of 250-350 °C and 11-13 kbar are inferred for complex 2. The internal structure of the accretionary complex points to the underplating of kilometre-scale units at different depths along the plate interface and to contrasting dynamics with respect to both the underlying continental unit and the ophiolite. Inter-plate mechanical coupling within the Tavşanlı zone is compared to the Oman case-study. The variable HP-LT overprint of the metamorphic sole places further constraints on regional scale tectonics, the accretionary dynamics and on the rapid thermal reequilibration of the subduction interface.

  8. Evolving Neogene Sediment Delivery to and Dispersal in the Aleutian-Alaska Subduction Zone (United States)

    Jaeger, J. M.; Gulick, S. P. S.; Morey, S.; Frederik, M. C. G.; Somchat, T. K.


    The Aleutian-Alaska subduction zone is the most tectonically active region in North America and contains pronounced along-strike variations in seismicity, volcanism, and incoming plate properties. Evaluation of the continental margin in the Kodiak Island region has argued for a fundamental change from erosion to accretion within the Neogene related to glacigenic sediment input from the north. Here we review recent geophysical and scientific drilling results to evaluate this hypothesis. Reanalysis of trench wedge sediment thickness coupled with recently acquired geophysical data reveal pronounced along-strike variation in trench sedimentation. Integrated Ocean Drilling Program Exp 341 recovered Miocene-to-recent strata from the Surveyor Fan that is subducting/accreting along the Aleutian Trench. Age control from Site U1417 allows for regional isopach mapping of trench and fan strata and a temporal evaluation of sediment delivery to the trench. The onset of major tidewater glaciation at 2.7 Ma represents a fundamental regional change in sedimentation. Prior to this, pre-Surveyor fan accumulation consisted of pelagic facies interspersed with episodic gravity flow deposition whose deep-water dispersal was dictated by seamounts with a relatively minor flux to the trench. The onset of glacigenic delivery from the coastal St. Elias orogen to the deepwater resulted in the formation of the Surveyor channel, which created the modern turbidite-dominated Surveyor fan and initiated direct sediment delivery to the Aleutian trench. Sediment accumulation on the fan and in the trench doubled after 2.7 Ma. The lack of avulsion of the Surveyor channel since 2.7 Ma may be a consequence of an underfilled trench that has maintained steep topographic gradients on the fan. Transition to longer duration glacial conditions starting 1.2 Ma resulted in increased flux through Surveyor Channel but also significant increases in along-strike flux down the Aleutian Trench as cross-shelf glacial

  9. Detection of Kuril Subduction-zone Earthquakes by Means of Remote Historic Records in Honshu (United States)

    Satake, K.


    Recurrence of large subduction-zone earthquakes around Japan has been estimated from historical records. For the Nankai trough, off southwest Japan, such estimates show that large earthquakes have repeated since 684 AD at average intervals of ~100-200 years. By contrast in northeastern Japan, along the southern Kuril trench, little is known about recurrence because the eastern Hokkaido has little written history earlier than 1800 AD. Here we show that historical seismicity along the Kuril trench can be estimated from remote records in Tohoku and Tokyo. Most modern M>=7 earthquakes along the Kuril trench were felt in Tohoku and all the way to Tokyo, because of low attenuation of seismic waves within the subducting Pacific plate. During the Edo period (1600-1867 AD), government officials in Tohoku and Tokyo kept daily records that include felt earthquakes. The officials usually noted earthquake time to the nearest 2 hours or less. In Tokyo, nearly 5000 earthquakes were reported, making the average annual number nearly 20. To the north in Tohoku, surviving documents from Hirosaki, Hachinohe and Morioka report about 2500 Edo-period earthquakes starting 1644. Nearly 400 of the earthquakes (about 2 per year) were reported at multiple Tohoku locations; about 100 of these events (about 0.5 per year) were also reportedly felt in Tokyo. Comparison with modern intensity observations indicates that the above rates are very similar to modern rates, and that the list should contain Kuril earthquakes. Modern Tokyo has an annual average of 15 felt earthquakes with seismic intensity >=2 on the Japan Meteorological Agency scale (JMA intensity 2 corresponds to Modified Mercalli intensity III). The JMA annual averages also show about 4 earthquakes of intensity >=2 at Tohoku, of which 0.6 reach that threshold in Tokyo as well. Nearly a quarter of these earthquakes occurred along the Kuril trench. At that rate, about 80 of the Tohoku earthquakes recorded in 1656-1867 likely had a Kuril

  10. Geodetic and Seismic Constraints on Strain Accumulation on the Hellenic Subduction Zone off Crete (United States)

    Floyd, M.; King, R. W.; Ganas, A.; Paradissis, D.; Vernant, P.; England, P. C.; Georgiev, I.; Ergintav, S.; Karabulut, H.; Tiryakioğlu, İ.; Reilinger, R. E.


    We present our most recent GPS velocity solution and seismic observations to investigate the active tectonics of the Aegean region. The central and southern Aegean Sea, and eastern Peloponnese region, have internal strain rates of right-lateral faulting. However, there are other clear differences between the two halves of Crete. The western side has generally higher topography and higher rates of incision, forming large canyons in the southwest, and has distinct uplifted paleo-shorelines that have been identified as relating to large earthquakes. Although earthquake damage is reported from Minoan times (1500-1100 BCE), no uplifted shorelines identified with specific earthquakes have been reported in eastern Crete. Longer observed seismic travel times beneath western Crete relative to eastern Crete may result from the presence of thick accreted material encroaching on or being subducted at the trench, which may also account for the high topography of western Crete and the permanent uplift of the 365 CE western Crete earthquake shoreline. If the 5 mm/yr differential motion in western Crete represents elastic strain accumulation due to changes in coupling of the plate interface along strike, episodic seismic or aseismic release of this strain may account for the absence of significant strike-slip faulting in central Crete. Given this assumption and the 35-40 mm/yr Nubia-Aegean plate convergence rate at Crete, roughly 10-15% of convergence would be contributing to strain accumulation on the segment of the arc below western Crete. This is consistent with the observed lack of seismic moment release compared to the plate convergence rate over the length of the Hellenic subduction zone.

  11. Evidence for Complex P-T-t Histories in Subduction Zone Rocks: A Case Study from Syros, Greece (United States)

    Gorce, J. S.; Kendall, J.; Caddick, M. J.; Baxter, E. F.


    Numerical models predict that material can move freely at the interface between the subducting slab and the overlying mantle wedge (mélange zone) independent of the motion of the subducting slab (i.e. Cloos 1982, Gerya et al. 2002). This is possible because the mélange zone consists of rigid blocks of metagabbroic and metabasic material suspended in a strongly sheared matrix of serpentinite, talc, and chlorite. The implication of this is that blocks of subducted material exposed in outcrops at the earth's surface could experience complex Pressure-Temperature-time (P-T-t) paths due to the cycling and recycling of subducted material within the mélange zone. Such behavior can affect the expulsion and retention of fluid during metamorphism and thus affect elemental cycles, geodynamics, mineral phase equilibra and mass transport of materials in the mélange zone depending on the physical properties and location of the blocks. The island of Syros, Greece preserves rocks that experienced blueschist-eclogite grade metamorphism during the subduction of the Pindos Oceanic Unit and thus provides a natural laboratory for investigating the evolution of subducted lithologies. Complex compositional zoning in a garnet-bearing quartz mica schist indicates that garnet crystals grew in two distinct stages. The presence of distinct cores and rims is interpreted as the result of a complex P-T-t history. Through the use of thermodynamic modeling, we calculate that the core of the garnet equilibrated at 485oC and 22.5 kbars. The edge of the first growth zone is predicted to stop growing at approximately 530oC and 20.5 kbars. We calculate that the rim began to grow at 21.7 kbars and 560oC and that the end of garnet growth occurred at approximately 16 kbars and 500oC. Sm/Nd garnet geochronology was used to date the cores of the garnets at 47 ± 3 Ma, with preliminary results suggesting that the rims grew at a significantly younger age. These data support the hypothesis that the cycling

  12. The Impact of Surface Bending, A Complete Mineralogical Model and Movement of the Overriding Plate on Subduction Zones (United States)

    Arredondo, Katrina Marie

    Modern observations of subduction zones provide only snapshots of a complex geologic system that can last tens of millions of years. Surface velocity measurements and seismic tomography images provide information on the possible forces acting on the plate and influencing slab shape and behavior. Modern subduction zones exhibit a wide range of behavior, from the rapidly rolling back Tonga subduction zone (where the trench is moving toward the subducting plate) to stationary trenches to trench advance (where the trench is moving toward the overriding plate). Slabs may also stagnate at 660 km while others directly penetrate into the lower mantle. Numerical models can combine observations and laboratory data to test and study possible forces that may explain the wide variety of behavior observed in modern subduction zones. Past numerical model studies have not studied the impact on subduction zone behavior from: composition-dependent phase transitions, a complete mineralogical model and movement of the overriding plate. Here we show that: 1) weakening of the subducting plate can be observed from the forebulge to the trench using highly detailed bathymetry and gravity measurement tracks parallel to the trench, 2) using a complete mineralogy model is important for accurate numerical models because incomplete approximations may overestimate slab stagnation and slab rollback, 3) in free subduction models, the complete mineralogy model creates a strong feedback loop between broad slab folds and trench velocities, and 4) the movement of the overriding plate is very important for slab rollback. Results presented in Chapter 1 indicate that the rheology in the numerical models should produce weakening in the slab as it bends into the trench, which is observed in the models of Chapter 2 and 3. Past published models can be analyzed in relation to Chapter 2 and 3 to determine if their conclusions are skewed by an overestimation of slab stagnation or trench rollback. The presented

  13. Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle (United States)

    Villaseñor, Antonio; Chevrot, Sébastien; Harnafi, Mimoun; Gallart, Josep; Pazos, Antonio; Serrano, Inmaculada; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro


    New tomographic images of the upper mantle beneath the westernmost Mediterranean suggest that the evolution of the region experienced two subduction-related episodes. First subduction of oceanic and/or extended continental lithosphere, now located mainly beneath the Betics at depths greater than 400 km, took place on a NW-SE oriented subduction zone. This was followed by a slab-tear process that initiated in the east and propagated to the west, leading to westward slab rollback and possibly lower crustal delamination. The current position of the slab tear is located approximately at 4°W, and to the west of this location the subducted lithosphere is still attached to the surface along the Gibraltar Arc. Our new P-wave velocity model is able to image the attached subducted lithosphere as a narrow high-velocity body extending to shallow depths, coinciding with the region of maximum curvature of the Gibraltar Arc, the occurrence of intermediate-depth earthquakes, and anomalously thick crust. This thick crust has a large influence in the measured teleseismic travel time residuals and therefore in the obtained P-wave tomographic model. We show that removing the effects of the thick crust significantly improves the shallow images of the slab and therefore the interpretations based on the seismic structure.

  14. Spatial Relationships between Deep-focus Earthquakes and Structural Heterogeneities within the Subducting Slabs of the Western Pacific Subduction Zones (United States)

    Chen, M.; Kiser, E.; Niu, F.


    The nature of deep-focus earthquakes with depths greater than 300 km has long been controversial. Mechanisms that may promote brittle deformation at such depths include dehydration embrittlement, phase transformational faulting, and thermal runaway instabilities. Of these, the most commonly referenced mechanism—phase transformational faulting—involves the breakdown of metastable olivine within the core of a cold subducting slab. Seismic observations of the metastable olivine wedge, as well as its spatial relationship to deep-focus seismicity, are limited. Classical 1-D ray-theory based tomography images indicate that deep-focus hypocenters coincide with the highest wave speed anomalies within the slab, traditionally viewed as the slab's cold core. However, our latest full waveform tomography images of the Kuril, Japan, and Izu-Bonin slabs show systematically deep-focus earthquakes located near the top of high wave speed regions, with hypocentral or centroid locations determined by EHB, global CMT, or JMA. In order to reduce location bias in global CMT solutions due to unmodeled 3-D structure, we relocate tens of deep-focus earthquakes within the new 3-D structural model based on a full wavefield modeling code SPECFEM3D_GLOBE, with seismic waves simulated to the shortest period of 9 seconds. We also determine the centroid locations of high-frequency energy (0.8 Hz-2 Hz) from back-projection results of several large earthquakes to understand how rupture propagates within the slab. The spatial correlations between the 3-D wave speed model and high-precision centroid locations from both long period and high frequency seismic waves further indicate that the deep-focus earthquakes occur and propagate near the top of the subducting slab. We will discuss the constraints that these relationships place on the mechanism of deep-focus earthquakes.

  15. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.


    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  16. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity (United States)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.


    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (, suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  17. Boron desorption and fractionation in Subduction Zone Fore Arcs: Implications for the sources and transport of deep fluids (United States)

    Saffer, Demian M.; Kopf, Achim J.


    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate fluid flow and chemical transport from depths of several kilometers. Identifying the source regions for these fluids is essential toward quantifying flow pathways and volatile fluxes through fore arcs, and in understanding their connection to the loci of excess pore pressure at depth. Here we develop a model to track the coupled effects of boron desorption, smectite dehydration, and progressive consolidation within sediment at the top of the subducting slab, where such deep fluid signals likely originate. Our analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, pore water freshening is maximized because dehydration releases bound water into low porosity sediment, whereas boron concentrations and isotopic signatures are modest because desorption is strongly sensitive to temperature and is only partially complete. For warmer slabs, freshening is smaller, because dehydration occurs earlier and into larger porosities, but the boron signatures are larger. The former scenario is typical of nonaccretionary margins where insulating sediment on the subducting plate is commonly thin. This result provides a quantitative explanation for the global observation that signatures of deeply sourced fluids are generally strongest at nonaccretionary margins. Application of our multitracer approach to the Costa Rica, N. Japan, N. Barbados, and Mediterranean Ridge subduction zones illustrates that desorption and dehydration are viable explanations for observed geochemical signals, and suggest updip fluid migration from these source regions over tens of km.

  18. Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska (United States)

    Kelsey, Harvey M.; Witter, Robert C.; Engelhart, Simon E.; Briggs, Richard; Nelson, Alan R.; Haeussler, Peter J.; Corbett, D. Reide


    The Kenai section of the eastern Alaska-Aleutian subduction zone straddles two areas of high slip in the 1964 great Alaska earthquake and is the least studied of the three megathrust segments (Kodiak, Kenai, Prince William Sound) that ruptured in 1964. Investigation of two coastal sites in the eastern part of the Kenai segment, on the southeast coast of the Kenai Peninsula, identified evidence for two subduction zone earthquakes that predate the 1964 earthquake. Both coastal sites provide paleoseismic data through inferred coseismic subsidence of wetlands and associated subsidence-induced erosion of beach ridges. At Verdant Cove, paleo-beach ridges record the paleoseismic history; whereas at Quicksand Cove, buried soils in drowned coastal wetlands are the primary indicators of paleoearthquake occurrence and age. The timing of submergence and death of trees mark the oldest earthquake at Verdant Cove that is consistent with the age of a well documented ∼900-year-ago subduction zone earthquake that ruptured the Prince William Sound segment of the megathrust to the east and the Kodiak segment to the west. Soils buried within the last 400–450 years mark the penultimate earthquake on the southeast coast of the Kenai Peninsula. The penultimate earthquake probably occurred before AD 1840 from its absence in Russian historical accounts. The penultimate subduction zone earthquake on the Kenai segment did not rupture in conjunction with the Prince William Sound to the northeast. Therefore the Kenai segment, which is presently creeping, can rupture independently of the adjacent Prince William Sound segment that is presently locked.

  19. Potential Lacustrine Records of Cascadia Great Earthquakes (United States)

    Morey, A. E.; Goldfinger, C.; Briles, C.; Gavin, D. G.; Colombaroli, D.


    Lacustrine sediments have been used successfully over the past few decades to develop earthquake chronologies and rupture assessments in a variety of locations and settings, from large lakes in Japan and Chile to Alpine lakes in central Europe. Although inland lakes in the Pacific Northwest have been used extensively for fire and vegetation reconstructions, they have been largely ignored with respect to their tectonic setting. Strong shaking from great earthquakes at subduction zones is known to produce significant environmental disturbance and can result in lake deposits that are distinctive and datable records of these events. Cascadia paleoseismic studies, including those at Lake Washington, Bradley Lake, and Effingham and Saanich Inlets, provide direct evidence that records of Cascadia great earthquakes are preserved in a variety of sedimentary archives. The field of marine turbidite paleoseismology has resulted in advancements which we have now begun to apply to inland lacustrine sediments using the records at Sanger and Bolan Lakes (both spring-fed, alpine cirque lakes), and Upper Squaw Lake (a stream-fed, landslide-dammed lake) located 45-100 km inland from the coast near the California/Oregon border. Inorganic terrigenous layers are visible in these sediments, and physical property data (via CT scans, magnetic susceptibility and gamma density) show characteristics that correlate between lakes, and more surprisingly, correlate great distances to seismogenic offshore turbidite deposits. The highest resolution site is Upper Squaw Lake, a 7.2 ha landslide-dammed lake which drains a 40 km2 watershed. A 10 m core spanning the past 2,000 years was extracted from this site, and is comprised of silty gyttja interbedded with inorganic turbidite deposits. Six major events are observed this core, similar to the number of events in the marine turbidite record in the same time period, with supporting age control. The characteristics of the physical property data are

  20. Detailed Structure and Thickness of Upper Mantle Discontinuities in the Tonga Subduction Zone From Regional Broadband Arrays (United States)

    Tibi, R.; Wiens, D. A.


    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the regional data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We studied the phases s410p, P660p and S660p. To enhance these low-amplitude phases, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant-stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660 are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660 in terms of local temperatures implies a thermal anomaly at 660 km depth of -800 to -1200oK for the Tonga slab, and -600 to -950oK for the piece of the Vityaz lithosphere. Except for the southern region where it thickens, the Tonga slab seems to penetrate the 660 with little deformation. Waveform modeling susggests that both the 410 and 660 discontinuities are sharp. The 410

  1. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  2. Automatic picking and earthquake relocation for the Antilles subduction zone (1972-2013) (United States)

    Massin, F.; Amorèse, D.; Bengoubou-Valerius, M.; Bernard, M.


    Locations for earthquake recorded in the Antilles subduction zone are processed separately by regional observatories and ISC. There is no earthquake location catalog available compiling all available first arrival data. We aim to produce a best complete earthquake catalog by merging all available first arrival data for better constrains on earthquake locations. ISC provides the first arrival data of 29243 earthquakes (magnitude range from 1.4 to 6.4) recorded by PRSN (Porto Rico), SRC (British West Indies), and form FUNVISIS (Venezuela). IPGP provided the first arrival data of 68718 earthquakes (magnitude from 0.1 to 7.5) recorded by OVSG (Guadeloupe, 53226 earthquakes since 1981) and by OVSM (Martinique, 29931 earthquakes since 1972). IPGP also provides the accelerometer waveform data of the GIS-RAP network in the Antilles. The final catalog contains 84979 earthquakes between 1972 and 2013, 24528 of which we compiled additional data. We achieved automatic picking using the Component Energy Correlation Method. The CECM provide high precision phase detection, a realistic estimation of picking error and realistic weights that can be used with manual pick weights. The CECM add an average of 3 P-waves and 2 S-waves arrivals to 3846 earthquakes recoded by the GIS-RAP network since 2002. Cluster analysis, earthquake local tomography and relative locations are to be applied in order to image active faulting and migration of seismicity. This will help to understand seismic coupling in the seismogenic zone as well as triggering mechanisms of intermediate depth seismicity like fluid migration beneath the volcanic arc.

  3. Seismic Imaging of the southern Rivera Plate and Jalisco Block Subduction Zone (United States)

    Nunez, D.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Gonzalez-Fernandez, A.; Gutierrez, Q. J.; Carrillo de la Cruz, J. L.; Danobeitia, J.; Bartolome, R.


    The importance of structural aspects and high seismic activity risk of the Jalisco Block makes the Pacific Coast of Mexico in one of the most attractive region for geophysical investigations. Furthermore, tectonic studies in this interesting geological region of the Rivera-North American contact zone, carried out during last two years by TSUJAL Project, are currently providing numerous geophysical results. In this study, we present the most relevant results in the southeastern part of the Rivera Plate-Jalisco Block area crossing the Mesoamerican Trench from to the east of Rivera Fracture Zone to La Huerta region (Jalisco state). Along this profile, we have combined wide-angle, multichannel seismic, multibeam bathymetry and seismicity data. The marine seismic sources used in this profile aboard RRS James Cook consisted of 12 guns divided in 4 subarrays of 3 guns each, with a total capacity of 5800 in3, shooting every 50 m and providing 1773 shots in a line of 89 km long. These sources were initially designed to recover multichannel seismic data, but 7 seismic portable stations were deployed perpendicular to the coast to register those sources providing a wide-angle offshore-onshore seismic transect of 130 km length with NE-SW orientation. The MCS data were also acquired aboard the RRS James Cook using a 5.85 km long digital streamer deployed at 10 m depth with 468 active channels. The WAS and MCS data processing and interpretation joined bathymetry afford new information about the geometry of southern Rivera Plate subducting under Jalisco Block with a dip angle of 14°, seismic images of the continental accretionary wedge and, also, the deep and shallow crustal structure along this profile up to maximum depth of 35 km.

  4. Spatially dependent seismic anisotropy in the Tonga subduction zone: A possible contributor to the complexity of deep earthquakes

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav


    Roč. 155, 1/2 (2006), s. 63-72 ISSN 0031-9201 R&D Projects: GA AV ČR IAA3012309; GA ČR GA205/02/0383 Institutional research plan: CEZ:AV0Z30120515 Keywords : deep-focus earthquakes * seismic anisotropy * subduction zones Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.440, year: 2006

  5. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32 degrees S), central Chile


    Marot, M.; Monfret, T.; Pardo, M.; Ranalli, G.; Nolet, G.


    The region of central Chile offers a unique opportunity to study the links between the subducting Juan Fernandez Ridge, the flat slab, the double seismic zone (DSZ), and the absence of modern volcanism. Here we report the presence and characteristics of the first observed DSZ within the intermediate-depth Nazca slab using two temporary seismic catalogs (Ovalle 1999 and Chile Argentina Seismological Measurement Experiment). The lower plane of seismicity (LP) is located 20-25km below the upper ...

  6. Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone: quantitative evaluations from seismic velocity (United States)

    Xia, Shaohong; Sun, Jinlong; Huang, Haibo


    Serpentinization is an important phenomenon for understanding the water cycle and geodynamics of subduction zones in the upper mantle. In this study, we evaluate quantitatively the degree of serpentinization using the seismic velocity. The results show that serpentinization mainly occurs in the forearc mantle wedge along the subducted oceanic crust, and the degree of serpentinization in the forearc mantle wedge of Kyushu is strongly heterogeneous and varies from 0 to 12 %, containing about 0-1.8 % water contents. In general, the degree of serpentinization gradually decreases with depth from 40 to 80 km and the largest degree usually occur in about 40-50 km depth. Localized high anomalies of serpentinization are revealed in the northern and southern portions of Kyushu, respectively. We suggest that in the northern portion of the forearc mantle wedge, the water contents are relatively large, which might result from the abundant fractures and cracks with more fluids in the subducting slab because of the subduction of Kyushu-Palau ridge and the sudden change in its subduction angle of Philippine Sea lithosphere. But the high degree of serpentinization in the southern portion is closely associated with the active left-lateral shear zone revealed by global positioning system site velocities and earthquake focal mechanisms. In addition, the present results also display that the low degree of serpentinization in the central domain of the forearc mantle wedge is consistent with the location of anomalous arc volcano. The distribution of water contents is closely associated with the degree of serpentinization in the forearc mantle wedge.

  7. Imaging the deep structures of the convergent plates along the Ecuadorian subduction zone through receiver function analysis (United States)

    Galve, A.; Charvis, P.; Regnier, M. M.; Font, Y.; Nocquet, J. M.; Segovia, M.


    The Ecuadorian subduction zone was affected by several large M>7.5 earthquakes. While we have low resolution on the 1942, 1958 earthquakes rupture zones extension, the 2016 Pedernales earthquake, that occurs at the same location than the 1942 earthquake, give strong constraints on the deep limit of the seismogenic zone. This downdip limit is caused by the onset of plasticity at a critical temperature (> 350-450 °C for crustal materials, or serpentinized mantle wedge, and eventually > 700 °C for dry mantle). However we still don't know exactly where is the upper plate Moho and therefore what controls the downdip limit of Ecuadorian large earthquakes seismogenic zone. For several years Géoazur and IG-EPN have maintained permanent and temporary networks (ADN and JUAN projects) along the margin to register the subduction zone seismological activity. Although Ecuador is not a good place to perform receiver function due to its position with respect to the worldwide teleseismic sources, the very long time deployment compensate this issue. We performed a frequency dependent receiver function analysis to derive (1) the thickness of the downgoing plate, (2) the interplate depth and (3) the upper plate Moho. These constraints give the frame to interpretation on the seismogenic zone of the 2016 Pedernales earthquake.

  8. Deeply subducted continental fragments - Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps) (United States)

    Giuntoli, Francesco; Lanari, Pierre; Burn, Marco; Kunz, Barbara Eva; Engi, Martin


    Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Petrochronology offers powerful tools to decipher pressure-temperature-time (P-T-t) histories of metamorphic rocks that preserve a record of several stages of transformation. A major issue is that the driving forces for re-equilibration at high pressure are not well understood. For example, continental granulite terrains subducted to mantle depths frequently show only partial and localized eclogitization. The Sesia Zone (NW Italy) is exceptional because it comprises several continental subunits in which eclogitic rocks predominate and high-pressure (HP) assemblages almost completely replaced the Permian granulite protoliths. This field-based study comprises both main complexes of the Sesia terrane, covering some of the recently recognized tectonic subunits involved in its assembly; hence our data constrain the HP tectonics that formed the Sesia Zone. We used a petrochronological approach consisting of petrographic and microstructural analysis linked with thermodynamic modelling and U-Th-Pb age dating to reconstruct the P-T-t trajectories of these tectonic subunits. Our study documents when and under what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel. In the Internal Complex (IC), pulses of fluid percolated at eclogite facies conditions between 77 and 55 Ma with the HP conditions reaching ˜ 2 GPa and 600-670 °C. By contrast, the External Complex (EC) records a lower pressure peak of ˜ 0.8 GPa for 500 °C at ˜ 63 Ma. The juxtaposition of the two complexes occurred during exhumation, probably at ˜ 0.8 GPa and 350 °C; the timing is constrained between 46

  9. Frictional properties of silicic to calcareous ooze on the Cocos Plate entering the Costa Rica Subduction Zone (United States)

    Tsutsumi, A.; Kameda, J.; Ujiie, K.


    Here we report experimental results on the frictional properties of the cover sediments on the Cocos plate incoming into the erosive Costa Rica subduction zone. Mechanical properties of the incoming sediments to subduction plate boundaries are essential to constrain subduction-related faulting processes. However, knowledge of the frictional properties of sediments composed of abundant biogenic component, such as spicules, diatoms, and radiolarians are limited. Experimental samples were silicic to calcareous ooze collected at a reference site (Site U1381) off shore Osa Peninsula during IODP Expedition 334 (Vannucchi et al., 2012). To be used in the experiments, the discrete samples was disaggregated, oven dried at 60 degrees centigrade for 24 hours. The experimental fault is composed of a 24.9 mm diameter cylinder of gabbro cut perpendicularly to the cylinder axis in two halves that are ground to obtain rough wall surfaces, and re-assembled with an intervening thin layer (~1.0 mm) disaggregated sample. Frictional experiments have been performed using a rotary-shear friction testing machine, at normal stresses up to 5 MPa, over a range of slip velocities from 0.0026 mm/s to 1.3 m/s, with more than ~150 mm of displacements for water saturated condition. Experimental results reveal that friction values at slow slip velocities (v ~30 mm/s), steady state friction decreases dramatically. For example, at a velocity of 260 mm/s, the friction coefficient for samples U1381A-9R and -10R show a gradual decrease with a large weakening displacement toward the establishment of a nearly constant level of friction at ~0.1. The velocity weakening behavior at slow velocities could provide a condition to initiate unstable fault motion at shallow depths along the subduction channel if the input sediments are incorporated into faulting. On the contrary, neutral to velocity strengthening behavior observed for intermediate velocities could stabilize the propagation process of earthquake

  10. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models (United States)

    Tassara, Andrés.; Echaurren, Andrés.


    We present an upgraded version of a previously published 3-D density model of the Andean subduction zone between 18°S and 45°S. This model consists of 3-D bodies of constant density, which geometry is constrained by independent seismic data and is triangulated from vertical cross-sections. These bodies define the first-order morphology and internal structure of the subducted Nazca slab and South American Plate. The new version of the density model results after forward modelling the Bouguer anomaly as computed from the most recent version of the Earth Gravitational Model (EGM2008). The 3-D density model incorporates new seismic information to better constrain the geometry of the subducted slab and continental Moho (CMH) and has a trench-parallel resolution doubling the resolution of the previous model. As an example of the potential utility of our model, we compare the geometry of the subducted slab and CMH against the corresponding global models Slab1.0 and Crust2.0, respectively. This exercise demonstrates that, although global models provide a good first-order representation of the slab and upper-plate crustal geometries, they show large discrepancies (up to ±40 km) with our upgraded model for some well-constrained areas. The geometries of the slab, lithosphere-asthenosphere boundary below the continent, CMH and intracrustal density discontinuity that we present here as Supporting Information can be used to study Andean geodynamic processes from a wide range of quantitative approaches.

  11. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.


    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  12. 3-D simulations of M9 earthquakes on the Cascadia Megathrust: Key parameters and uncertainty (United States)

    Wirth, Erin; Frankel, Arthur; Vidale, John; Marafi, Nasser A.; Stephenson, William J.


    Geologic and historical records indicate that the Cascadia subduction zone is capable of generating large, megathrust earthquakes up to magnitude 9. The last great Cascadia earthquake occurred in 1700, and thus there is no direct measure on the intensity of ground shaking or specific rupture parameters from seismic recordings. We use 3-D numerical simulations to generate broadband (0-10 Hz) synthetic seismograms for 50 M9 rupture scenarios on the Cascadia megathrust. Slip consists of multiple high-stress drop subevents (~M8) with short rise times on the deeper portion of the fault, superimposed on a background slip distribution with longer rise times. We find a >4x variation in the intensity of ground shaking depending upon several key parameters, including the down-dip limit of rupture, the slip distribution and location of strong-motion-generating subevents, and the hypocenter location. We find that extending the down-dip limit of rupture to the top of the non-volcanic tremor zone results in a ~2-3x increase in peak ground acceleration for the inland city of Seattle, Washington, compared to a completely offshore rupture. However, our simulations show that allowing the rupture to extend to the up-dip limit of tremor (i.e., the deepest rupture extent in the National Seismic Hazard Maps), even when tapering the slip to zero at the down-dip edge, results in multiple areas of coseismic coastal uplift. This is inconsistent with coastal geologic evidence (e.g., buried soils, submerged forests), which suggests predominantly coastal subsidence for the 1700 earthquake and previous events. Defining the down-dip limit of rupture as the 1 cm/yr locking contour (i.e., mostly offshore) results in primarily coseismic subsidence at coastal sites. We also find that the presence of deep subevents can produce along-strike variations in subsidence and ground shaking along the coast. Our results demonstrate the wide range of possible ground motions from an M9 megathrust earthquake in

  13. Mineralogy and fluid content of sediments entering the Costa Rica subduction zone - Results from Site U1414, IODP Expedition 344 (United States)

    Charpentier, D.; Buatier, M.; Kutterolf, S.; Straub, S. M.; Nascimento, D.; Millan, C.


    Subduction zones are characterized by the largest thrust earthquakes, as quantified by both rupture area and seismic moment release. Offshore Costa Rica, the oceanic Cocos Plate subducts under the Caribbean plate forming the southern end of the Middle America trench. A high convergence rate and almost complete subduction of incoming sediments make the Costa Rica convergent margin an extremely dynamic environment. The Costa Rica Seismogenesis Project (CRISP) is designed to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Site U1414 of IODP Exp.344 was drilled to investigate the material from the incoming Cocos Plate. A key parameter of incoming plate is fluid content and release because it impacts deformation within the subduction complex. The deposition, compaction and diagenesis of sedimentary rocks control the distribution of fluids, fluid pressures and fluid flow patterns within subduction zones. We therefore decided to characterize sediment composition and quantify the different types of water at Site U1414. Mineralogical investigations were performed using optical and electronic microscope observations, X Ray Diffraction (on bulk and clay fractions), Cation Exchange Capacity measurements, carbon analyses (to determine carbonate contents), and sequenced extractions in NaOH (to quantify the biogenic opal content). Fluid characteristics were approached by thermal gravimetric analyses. The entire sedimentary sequence was recovered at Site U1414 and can be divided into three major sedimentary units. The first one is a hemipelagic silty clay to clay with a gradual increase of calcareous nannofossils. The dominant mineral is smectite associated in the clay fractions with kaolinite and zeolites. Small amounts of biogenic opal have been analyzed. Other minerals like quartz, feldspar and calcite are also present. The second unit is composed of nannofossil-rich calcareous ooze. The proportion of

  14. Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone (United States)

    Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold


    The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km

  15. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece (United States)

    Koutsovitis, Petros


    The East Thessaly region, Central Greece, includes metaophiolitic mélange formations which extend from the eastern foothills of Mt. Olympus and Ossa, throughout the Agia basin, Mt. Mavrovouni (Sklithro region), South Pelion and reaching up to northeast Othris (regions of Aerino and Velestino). They appear in the form of dispersed and deformed thrust sheets having been variably emplaced onto Mesozoic platform series rocks of the Pelagonian tectonostratigraphic zone[1]. These formations consist mainly of serpentinites, as well as metasediments, metagabbros, metadolerites, rodingites, ophicalcites, talc-schists and chromitites. Based upon petrographic observations, mineral chemistry data and XRD patterns, the subduction zone-related serpentinites from the regions of Potamia, Anavra, Aetolofos and Kalochori-Chasanbali (Agia basin), as well as from the regions of Aerino and Velestino, are characterized by the progressive transformation of lizardite to antigorite and are distinguished into two groups. The first group includes serpentinites from the metaophiolitic formations of Potamia, Anavra, Aerino and Velestino, which are marked by destibillization of lizardite to antigorite, mostly along the grain boundaries of the lizardite mesh textured relics. The presence of lizardite and antigorite in almost equal amounts indicates medium-temperature blueschist facies metamorphic conditions (˜340-370 ° C; P≈10-11 kbar)[2,3,4]. The second serpentinite group appears in the regions of Aetolofos and Kalochori, characterized by the predominance of antigorite, the minor occurrence of lizardite and the complete replacement of spinel by Cr-magnetite. The absence of metamorphic olivine suggests that these serpentinites were most likely formed at slightly higher temperature and pressure conditions compared to the first serpentinite group, corresponding to medium or high temperature blueschist facies metamorphism (˜360-380 ° C; P≈12 kbar)[2,3,4]. These metamorphic conditions are

  16. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone (United States)

    Gaidzik, K.; Ramirez-Herrera, M. T.


    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  17. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica


    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  18. High pressure mafic granulites from the Mercara Suture Zone, southern India : Implications for deep subduction and subsequent exhumation (United States)

    Thenganodiyil, A.


    The Mercara Suture Zone in southern India, marked by steep gravity gradients along with electrical anomalies coincides the geologicaly marked transition zone in which the Coorg Block in Southern Granulite Terrain (SGT) is accreted to the Western Dharwar craton (WDC). The timing of high grade metamorphism as constrained from metamorphic overgrowths in zircons is ca. 3.0 Ga might marks the suturing event between the Western Dharwar Craton and the Coorg Block. Mafic granulites found as enclaves, bands or boudins within metaigneous and metasedimenatry rock suites along the Mercara suture and associated crustal blocks. These are medium to coarse grained rocks predominantly consisting of garnet, orthopyroxene, clinopyroxene, hornblende, plagioclase and quartz. Minor amounts of magnetite, rutile and ilmenite are also present as accessory phases. The available mineral assemblages and their reaction textues points towards the initial subduction, crustal thickening and subsequent exhumation, followed by cooling and retrogression of the terrain. The geothermobarometric computations based on phase equiliria modeling by pseudosections indicates high grade metamorphism at granulite facies conditions; substantiates the collisional mechanism invloved. Major and trace element chemistry of mafic granulites are suggestive that these rocks are essentially tholeiitic and are characterised by low silica, comparatively low alumina, high iron, high FeO/MgO ratio's. These signatures are also typical of subduction-related intraoceanic tholeiitic arc basalt. The high-density carbonic (1.15 g/cm3) fluids from these rocks is in conjunction with the mineral thermobarometry of the terrain and suggest deep subduction and subsequent exhumation.

  19. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements (United States)

    Canil, D.


    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  20. Historic and ancient tsunamis uncovered on the Jalisco-Colima Pacific coast, the Mexican subduction zone

    Czech Academy of Sciences Publication Activity Database

    Ramírez-Herrera, M.-T.; Bógalo, M.-F.; Černý, Jan; Goguitchaichvili, A.; Corona, N.; Machain, M. L.; Edwards, A. C.; Sosa, S.


    Roč. 259, April 15 (2016), s. 90-104 ISSN 0169-555X Institutional support: RVO:67985831 Keywords : Earthquake * magnetic properties * Mexican subduction * tsunami deposit Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.958, year: 2016

  1. Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays (United States)

    Tibi, Rigobert; Wiens, Douglas A.


    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high-frequency content for precise mapping of discontinuity topography and sharpness. To enhance the low-amplitude discontinuity phases s410p, P660p and S660p, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660-km discontinuity are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660-km discontinuity in terms of local temperatures implies a thermal anomaly of -800°K to -1200°K at 660 km depth. Except for the southern region where it may thicken, the width of the depressed 660-km discontinuity region implies that the Tonga slab seems to penetrate the 660-km discontinuity with little deformation. Waveform modeling suggests that both the 410- and 660-km discontinuities are sharp. The 660-km discontinuity is at most 2 km thick in many parts of the region, and a first-order discontinuity cannot be precluded. The 410-km discontinuity thickness shows

  2. Earthquake precise locations catalog for the Lesser Antilles subduction zone (1972-2013) (United States)

    Massin, Frederick; Amorese, Daniel; Beauducel, Francois; Bengoubou-Valérius, Mendy; Bernard, Marie-Lise; Bertil, Didier


    Locations for earthquake recorded in the Lesser Antilles subduction zone are processed separately by regional observatories, NEIC and ISC. There is no earthquake location catalog available compiling all available phase arrival data. We propose a new best complete earthquake catalog by merging all available phase arrival data for better constrains on earthquake locations. ISC provides the phase arrival data of 29243 earthquakes (magnitude range from 1.4 to 6.4) recorded by PRSN (Porto Rico), SRC (British West Indies), and from FUNVISIS (Venezuela). We add phases data from IPGP observatories for 68718 earthquakes from magnitudes 0.1 to 7.5 (OVSG, Guadeloupe, recorded 53226 earthquakes since 1981, and OVSM, Martinique, recorded 29931 earthquakes since 1972). IPGP also provides the accelerometer waveform data of the GIS-RAP network. We achieved automatic picking on the GIS-RAP data using the Component Energy Correlation Method. The CECM provides high precision phase detection, a realistic estimation of picking error and realistic weights that can be used with manual pick weights. The CECM add an average of 3 P-waves and 2 S-waves arrivals to 3846 earthquakes recorded by the GIS-RAP network since 2002. The final catalog contains 84979 earthquakes between 1972 and 2013, 24528 of which we compiled additional data. We achieve earthquake location using NonLinLoc, regional P and S waves data and a set of one dimensional velocity models. We produce improved locations for 22974 earthquakes (better residuals, on equal or larger arrival dataset) and improved duration magnitudes for 6258 earthquakes (using duration data and improved locations). A subset of best constrained 15626 hypocenters (with more than 8 phases and an average RMS of 0.48±0.77s) could be used for structural analysis and earthquake local tomography. Relative locations are to be applied in order to image active faulting. We aim to understand coupling in the seismogenic zone as well as triggering mechanisms of

  3. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation (United States)

    Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin


    We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its

  4. Boron Isotopes as Tracers of the Tectonic Origin and Geological History of Serpentinites in Subduction and Suture Zones. (United States)

    Martin, C.; Harlow, G. E.; Flores, K. E.; Angiboust, S.


    Serpentinites are known to play a key role in subduction, because they contain significant water content and can be enriched in elements such as As, B, Li, Sb, and U. They originate by hydration of peridotite by two different processes: (i) by a seawater source reacting with peridotite beneath the ocean crust and (ii) by reaction of peridotite at the base of the mantle-wedge with fluids released from the slab during subduction. In suture zones, it is relatively common to find serpentinite from both exhumed subduction channel mélange (from the mantle wedge) and ophiolite (from the oceanic crust), but recognizing them and their tectonic origin can be difficult. A recent study based on samples from the Guatemala Suture Zone demonstrated that boron (B) isotopes can be used as a probe of the fluid from which serpentinites form. Serpentinites from an ophiolite complex have positive δ11B, as expected for peridotites hydrated by seawater-derived fluid, whereas serpentinite samples from the matrix of the mélange (coming from the roof of the subducting channel) have negative δ11B, in agreement with hydration of mantellic peridotites by fluids released at 30-70 km depth from metamorphic rocks. Serpentinites from tectonically well-constrained locations were selected to extend our knowledge of metasomatism in subduction-related areas. The trace-element contents and B isotopes were measured in situ, respectively by LA-ICP-MS and LA-MC-ICP-MS on samples from the oceanic crust (ophiolite = Guatemala, Iran, Cuba), the subduction forearc (Nicaragua), and the mantle wedge (Guatemala, Iran, Japan, Myanmar). The spider diagrams and REE patterns, as well as a B/La vs. As/La diagram do not show any reliable difference to distinguish the tectonic origin of the serpentinite. However, in a δ11B vs. B content diagram, the serpentinites seem to plot in a triangle with fluid endmembers representing (i) seawater (δ11B = 40‰, [B] = 5ppm), (ii) metabasite-issued metamorphic fluids, and

  5. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction (United States)

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.


    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  6. Transportation of H2O in Subduction Zones as an Entrance of Water to the Mantle (United States)

    Iwamori, H.


    Dehydration of hydrous minerals occurs in the subducting plate as it subducts. The aqueous fluid generated is thought to ascend due to buoyancy, resulting in melting in the mantle wedge. This paper presents models for such fluid processes, in which phase relationships of the hydrous peridotitic and basaltic systems are incorporated into the fluid dynamical model. Then we compare the model results with the observations such as distribution of volcanoes and seismic structures. The Japan arcs are ideal for this study in terms of variations in subduction parameters and the amount and the quality of the observations. The model calculation suggests that in NE Japan, nearly all the H2O expelled from the subducted Pacific plate is hosted by serpentine and chlorite just above the plate, and is brought down to ~150 km. Breakdown of the minerals at these depths results in the formation of a fluid column, and results in the initiation of melting in the mantle wedge beneath the backarc.1 The seismic tomographic studies suggest the existence of such a melting region beneath the backarc.2 In central Japan, the subducted Philippine Sea plate overlaps the subducted Pacific plate. This geometry causes slow thermal recovery of the subducted Pacific plate, resulting in dehydration reactions at levels (200-300 km) deeper than in NE Japan, and deflection of the volcanic chain towards the backarc side. The model also suggests that, beneath central Japan, a part of H2O subducted is carried to depths greater than 300 km by phase-A.3 In contrast, in SW Japan, where a relatively hot part of the Philippine sea plate (Shikoku basin) subducts, the dehydration reactions are predicted to occur at relatively shallow levels (water is released from the subducting plate at depths shallower than 200~km, and that the main circulation of water is closed at the shallow level.3 References: 1: Iwamori, EPSL 160, 65, 1998. 2: Iwamori and Zhao, GRL 27, 425-428, 2000. 3: Iwamori, EPSL 181, 41-46, 2000. 4

  7. Fault and fluid systems in supra-subduction zones: The Troodos ophiolite (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter; Krenn, Kurt


    The Troodos massif on the island of Cyprus represents a well-preserved and complete supra-subduction zone (SSZ) ophiolite. It includes an extrusive sequence that is subdivided into Upper (UPL) and Lower Pillow Lavas (LPL). These volcanic rocks contain mineralized fractures (veins) and vesicles that record fluid availability probably related to slab dehydration and deformation subsequent to a period of subduction initiation in the framework of a SSZ setting. Here, we present electron microprobe element mappings and cathodoluminescence studies of vein minerals as well as analyses of fluid inclusions entrapped in zeolite, calcite and quartz from veins and vesicles of the Pillow Lavas of the Troodos ophiolite. Two different zeolite type assemblages, interpreted as alteration products of compositional varying volcanic glasses, occur: (1) Na-zeolites analcime and natrolite from the UPL that require lower formation temperatures, higher Na/Ca ratios and pH values than (2) Ca-zeolites heulandite and mordenite from the LPL which indicate temporal or spatial varying fluid compositions and conditions. Calcite represents a late stage phase in incompletely sealed blocky type (1) assemblage and in syntaxial quartz veins. Additionally, calcite occurs as major phase in syntaxial and blocky veins of UPL and LPL. These syntaxial quartz and calcite veins are assumed to be related to tectonic extension. Chalcedony is associated with quartz and occurs in typical veins and vesicles of the LPL. In addition, the presence of neptunian dykes in veins suggests that seawater penetrated fractures throughout the extrusive sequence. Thus, circulation in an open system via advective transport is favored while diffusion in a closed system is a subordinate, local and late stage phenomenon. Calcite veins and quartz vesicles contain primary, partly re-equilibrated two phase (liquid, vapor) fluid inclusions. The chemical system of all studied inclusions in both host minerals is restricted to aqueous

  8. High frequency local reflections and conversions from upper mantle discontinuities in the Fiji-Tonga subduction zone (United States)

    Tibi, R.; Wiens, D. A.


    Recordings of deep Fiji-Tonga earthquakes from an array of 15 broadband seismographs in Fiji are stacked and searched for reflections and conversions from upper mantle discontinuities near the Fiji-Tonga slab. The Fiji array operated as part of the SAFT (Seismic Arrays in Fiji and Tonga) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We study the phases s410p, P660p and S660p where they arrive at least 10 seconds after the direct P wave and prior to the S wave accross the array. To anhance low-amplitude reflections/conversions, deconvolved seismograms from each event are aligned on the maximum amplitude of the direct P wave and slant stacked. Preliminary results indicate that for the northern part of the Fiji-Tonga subduction zone, the 660-km discontinuity varies between 660 and 670 km in depth. In the central part we observe converted phases consistent with a ``410'' depth of 380 km, indicating the effect of the cold subducting plate. The reflections/conversions show only a slight frequency shift relative to the direct P waveforms, suggesting the discontinuities are relatively sharp. The thickness for the 660-km discontinuity is estimated as between 2 and 6 km.

  9. An Investigation of the Accuracy of Coulomb Stress Changes Inferred From Geodetic Observations Following Subduction Zone Earthquakes (United States)

    Stressler, Bryan J.; Barnhart, William D.


    Earthquake clustering along plate boundaries suggests that earthquakes may interact, and static Coulomb stress change (CSC) is commonly invoked as one possible mechanism for stress transfer between earthquakes and nearby faults. Previous work has addressed the precision of CSC predictions that are influenced by observational noise, inversion regularization, and simplified modeling assumptions. Here we address the accuracy of CSC predictions informed by geodetic observations in subduction zones where inversion model resolution is poor. We conduct synthetic tests to quantify the degree to which the sign and magnitude of CSC can be reliably inferred from slip distributions inverted from various geodetic observations (interferometric synthetic aperture radar (InSAR), GPS, and seafloor observations). We find that in an idealized subduction zone, CSC can only be confidently inferred for receiver faults far (tens of kilometers) from the earthquake source, though this distance shortens with the addition of synthetic seafloor observations. We apply this methodology to the 2010 Mw8.8 Maule earthquake and identify 13 aftershocks from a population of 475 documented events for which we can confidently resolve coseismic stress changes. These results demonstrate that the low model resolution of fault slip inversions in subduction zones limits our ability to address fundamental questions about earthquake sources and stress interactions. Nonetheless, our results highlight that stress change predictions are considerably more accurate after the introduction of seafloor geodetic observations. Additionally, we show that InSAR observations are not required to substantially improve stress change approximations in regions where GPS may be the only viable observation, such as in island arcs settings.

  10. Evolution of seismic signals and slip patterns along subduction zones: Insights from a friction lab scale experiment (United States)

    Voisin, Christophe; Grasso, Jean-Robert; Larose, Eric; Renard, François


    We investigate the influence of the cumulative slip on the frictional and acoustic patterns of a lab scale subduction zone. Shallow loud earthquakes, medium depth slow, deeper silent quakes and deepest steady-state creep are reproduced by the ageing of contact interface with cumulative displacement. The Acoustic Emission evolves with cumulative displacement and interface ageing, following a trend from strong impulsive events similar to earthquake seismic signals, to a collection of smaller amplitude and longer duration signals similar to NVT. The latter emerge as the local recollection of the unstable behaviour of the contact interface globally evolving towards the stable sliding regime.

  11. Do the eclogites of the Variscan Malpica-Tuy shear zone in NW Spain point to continental subduction? (United States)

    Li, Botao; Massonne, Hans-Joachim


    High-pressure (HP: P > 10 kbar) rocks such as eclogite typically occur in suture zones of collided continental plates in Phanerozoic times. In case of an extended area at the surface of a denuded orogen with HP and even ultrahigh pressure (UHP) metamorphic rocks, they are often interpreted as the result of continental subduction. We have tested this idea for the HP-UHP area of the Malpica-Tuy zone of the Variscan orogen, which was formed by the collision of Gondwana and Laurussia. For the test, we have initially studied an eclogite and its surrounding gneiss of this zone in detail. The eclogite contains the assemblage garnet, omphacite, amphibole, rutile, ilmenite, clinozoisite/epidote, quartz, and phengite with Si-contents as high as 3.45 per formula unit (pfu) in inner portions and 3.27-3.35 pfu in rims. Garnet exhibits chemical zonation with Gro25Alm55Pyr15Spe5, Gro29Alm57Pyr13Spe1, and Gro23Alm56Pyr20Spe1 as inner core, mantle, and outermost rim compositions, respectively. The gneiss is a former medium-grained granite now composed of quartz, plagioclase, K-feldspar, biotite, phengite, garnet, clinozoisite/epidote, titanite, apatite and ilmenite. Phengite shows Si contents between 3.40 (core) and 3.00 (rim) pfu. Garnet is chemically zoned with Gro69.6Alm27Pyr0.4Spe3, Gro65.5Alm32.5Pyr0.5Spe1.5, Gro65.7Alm31.7Pyr0.6Spe2, and Gro56.6Alm41.6Pyr1.2Spe0.6 as core, mantle, rim and outermost rim compositions, respectively. P-T pseudosections were calculated with the PERPLEX computer program in the system Na2O-K2O-CaO-FeO-O2-MnO-MgO-Al2O3-SiO2-TiO2-H2O for the bulk-rock compositions of the studied eclogite and gneiss. These pseudosections were contoured by isopleths of various parameters such as molar fractions of garnet components. Based on this contouring a P-T path was derived that starts at HP conditions for both lithologies. Garnet began to form at 22 kbar and 565°C in the eclogite. Subsequently, the temperatures increased to 585°C and the pressure decreased to

  12. Variation of Seismic Velocity Structure around the Mantle Transition Zone and Conjecture of Deep Water Transport by Subducted Slabs (United States)

    Tajima, F. C.; Stahler, S. C.; Ohtani, E.; Yoshida, M.; Sigloch, K.


    Seismic tomography models published in the past two decades determined common long-wavelength features of subducting plates as high velocity anomalies and upwelling plumes as low velocity anomalies, and have led to a new class of high-resolution three-dimensional (3D) modeling of global mantle convection with a link to tomography models [e.g., Becker and Boschi, 2002; Ritsema et al., 2007; Schuberth et al., 2009a,b]. However, even such high resolution numerical models do not account for the variation associated with different behaviors of subducting plates as they enter the mantle transition zone (MTZ), i.e., some flatten to form stagnant slabs with a large lateral extent and others descend further into the lower mantle. There are conventional interpretations applied for the cause of variation of the subducted slab behaviors, i.e., temperature difference due to different plate age, different geochemical compositions, different water content and subsequent possible reduction of viscosity etc., which could be taken as non-unique and somewhat equivocal. These parameters and conditions have been tested in two-dimensional numerical simulations, while the water content in the MTZ or the mechanisms of hydration and dehydration through subduction process are still in the realm of conjecture. Recent models of seismic P- and SH-wave velocities derived for the mantle structure beneath northeast China [Wang and Niu, 2010; Ye et al., 2011] using reflectivity synthetics with data from the dense Chinese networks of broadband seismic instruments, show a broader 660 km discontinuity (by about 30 to 70 km) and slower shear velocities above the MTZ than a global standard model iasp91 (Kennett and Engdahl, 1991). These features were interpreted with a mixture of different chemical properties which show delayed phase transformation, and effects of water above the flattened slab. Nonetheless, the SH-wave model has a structure similar to model TNA above the MTZ, which was derived for the

  13. GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua (United States)

    Correa-Mora, F.; DeMets, C.; Alvarado, D.; Turner, H. L.; Mattioli, G.; Hernandez, D.; Pullinger, C.; Rodriguez, M.; Tenorio, C.


    We invert GPS velocities from 32 sites in El Salvador, Honduras and Nicaragua to estimate the rate of long-term forearc motion and distributions of interseismic coupling across the Middle America subduction zone offshore from these countries and faults in the Salvadoran and Nicaraguan volcanic arcs. A 3-D finite element model is used to approximate the geometries of the subduction interface and strike-slip faults in the volcanic arc and determine the elastic response to coupling across these faults. The GPS velocities are best fit by a model in which the forearc moves 14-16 mmyr-1 and has coupling of 85-100 per cent across faults in the volcanic arc, in agreement with the high level of historic and recent earthquake activity in the volcanic arc. Our velocity inversion indicates that coupling across the potentially seismogenic areas of the subduction interface is remarkably weak, averaging no more than 3 per cent of the plate convergence rate and with only two poorly resolved patches where coupling might be higher along the 550-km-long segment we modelled. Our geodetic evidence for weak subduction coupling disagrees with a seismically derived coupling estimate of 60 +/- 10 per cent from a published analysis of earthquake damage back to 1690, but agrees with three other seismologic studies that infer weak subduction coupling from 20th century earthquakes. Most large historical earthquakes offshore from El Salvador and western Nicaragua may therefore have been intraslab normal faulting events similar to the Mw 7.3 1982 and Mw 7.7 2001 earthquakes offshore from El Salvador. Alternatively, the degree of coupling might vary with time. The evidence for weak coupling indirectly supports a recently published hypothesis that much of the Middle American forearc is escaping to the west or northwest away from the Cocos Ridge collision zone in Costa Rica. Such a hypothesis is particularly attractive for El Salvador, where there is little or no convergence obliquity to drive the

  14. State of stress and crustal fluid migration related to west-dipping structures in the slab-forearc system in the northern Chilean subduction zone


    P. Salazar; Juliane Kummerow; P. Wigger; S. Shapiro; Günter Asch


    Previous studies in the forearc of the northern Chilean subduction zone have identified important tectonic features in the upper crust. As a result of these works, the West Fissure Fault System (WFFS) has recently been imaged using microseismic events. The WFFS is the westward-dipping, sharp lower boundary of the northern Chilean forearc and is geometrically opposed to subduction of the Nazca plate. The present article builds on this previous work and is novel in that it characterizes this st...

  15. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico (United States)

    Garcia, E. S. M.; Ito, Y.


    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  16. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NARCIS (Netherlands)

    Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,

  17. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

    NARCIS (Netherlands)

    Meer, D.G. van der; Torsvik, T.H.; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.


    The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period, and

  18. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults

    NARCIS (Netherlands)

    den Hartog, S.A.M.; Spiers, C.J.


    To understand the temperature/depth distribution of destructive earthquakes in subduction megathrusts, and the mechanisms of nucleation of these events, data on the frictional behaviour of phyllosilicate/quartz-rich megathrust fault gouges under in-situ conditions are needed. We performed rotary

  19. Why Archaean TTG cannot be generated by MORB melting in subduction zones (United States)

    Martin, Hervé; Moyen, Jean-François; Guitreau, Martin; Blichert-Toft, Janne; Le Pennec, Jean-Luc


    Until recently it was assumed that the Archaean continental crust (made of TTGs: tonalites, trondhjemites, and granodiorites) was generated through partial melting of MORB-like basalts in hot subduction environments, where the subducted oceanic crust melted at high pressure, leaving a garnet-bearing amphibolitic or eclogitic residue. However, recent geochemical models as well as basalt melting experiments have precluded MORB as a plausible source for TTGs. Rather, geochemical and experimental evidences indicate that formation of TTG required a LILE-enriched source, similar to oceanic plateau basalts. Moreover, subduction is a continuous process, while continental growth is episodic. Several “super-growth events” have been identified at ~ 4.2, ~ 3.8, ~ 3.2, ~ 2.7, ~ 1.8, ~ 1.1, and ~ 0.5 Ga, which is inconsistent with the regular pattern that would be expected from a subduction-driven process. In order to account for this periodicity, it has been proposed that, as subduction proceeds, descending residual slabs accumulate at the 660-km seismic discontinuity. When stored oceanic crust exceeds a certain mass threshold, it rapidly sinks into the mantle as a cold avalanche, which induces the ascent of mantle plumes that in turn produce large amounts of magmas resulting in oceanic plateaus. However, melting at the base of thick oceanic plateaus does not appear to be a realistic process that can account for TTG genesis. Modern oceanic plateaus contain only small volumes (≤ 5%) of felsic magmas generally formed by high degrees of fractional crystallization of basaltic magmas. The composition of these felsic magmas drastically differs from that of TTGs. In Iceland, the interaction between a mantle plume and the mid-Atlantic ridge gives rise to an anomalously (Archaean-like) high geothermal gradient resulting in thick basaltic crust able to melt at shallow depth. Even in this favorable context though, the characteristic Archaean TTG trace element signature is not being

  20. The Seismogenic Coupling Zone in Southern Central Chile, 38° S: A Reflection seismic image of the subduction zone (Project TIPTEQ) (United States)

    Schulze, A.; Micksch, U.; Krawczyk, C. M.; Ryberg, T.; Stiller, M.


    The multi-disciplinary project TIPTEQ (from The Incoming Plate to mega-Thrust EarthQuake processes) investigates the seismogenic coupling zone in Southern Central Chile and the associated subduction zone processes between the Pacific Ocean and the volcanic arc. The reflection seismic component of TIPTEQ includes a 110 km long profile which spans from the coast over the down-dip end of the seismogenic coupling zone, crossing the 1960 Valdivia earthquake hypocentre. 180 three-component geophones were deployed (100 m spacing) along an 18 km wide spread whereof 4.5 km were shifted in a daily roll-along. With 100 borehole shots, 1.5 km apart, this up to 8-fold covered line delivers a high-resolution image of the seismogenic coupling zone. 15 additional shots in an expanding spread profiling configuration focussed on the seismogenic coupling zone. SH wave source signals were generated to yield an improved picture of the petrophysical contrasts within the system. The SPOC-South wide-angle data velocity model is combined with a first-break tomography velocity model to get an advanced migration image. The subducting Nazca plate can be traced from a depth of 25 km below the coast down to a depth of 50 km at the eastern end of the profile. Structural evidence suggests that material is transported down in a subduction channel. From slow uplift of the Coastal Cordillera we conclude that basal accretion of parts of this material controls the seismic architecture and growth of the south Chilean crust. Between depths of 5 to 25 km several bright reflectivity spots can be seen in the upper plate, which may suggest fluid traps in the accretionary wedge. The tomographic p-wave velocity model reaches approximately 10 km depth. Its segmentation corresponds to the geological units mapped at surface. The sediment thickness in the Central Valley is approx. 3 km, and we see prominent fault systems like the Lanalhue fault zone also in the tomographic model. At present, almost no seismicity

  1. Variations of b-values preceding large earthquakes in the shallow subduction zones of Cocos and Nazca plates (United States)

    Kulhanek, Ota; Persson, Leif; Nuannin, Paiboon


    The potential of b-value variations as a medium-term (months, years) precursor was investigated by focusing on the eight largest earthquakes, Mw ≥ 7.0, occurring between January 2000 and April 2010 in the shallow subduction zones of Cocos and Nazca plates. The available ISC and NEIC lists of events are complete for threshold magnitudes 4.3 (4569 events) and 4.6 (2742 events), respectively. Spatial and temporal perturbations of b were investigated in six regions surrounding the eight largest shocks. A technique of moving spatial- and temporal-windows was applied. Deduced b-values reveal large variations between 0.6 and 2.2. All eight earthquakes took place within regions of low b and were all preceded by significant drops in b-values. Observed correspondence between low b and the occurrence of large earthquakes suggests that b(t) has a potential to be employed in medium-term earthquake predictions in subduction zones of Central and South America.

  2. The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity (United States)

    Bali, Enikő; Audétat, Andreas; Keppler, Hans


    The solubility of U and Th in aqueous solutions at P-T-conditions relevant for subduction zones was studied by trapping uraninite or thorite saturated fluids as synthetic fluid inclusions in quartz and analyzing their composition by Laser Ablation-ICPMS. Uranium is virtually insoluble in aqueous fluids at Fe-FeO buffer conditions, whereas its solubility increases both with oxygen fugacity and with salinity to 960 ppm at 26.1 kbar, Re-ReO2 buffer conditions and 14.1 wt% NaCl in the fluid. At 26.1 kbar and 800°C, uranium solubility can be reproduced by the equation: log {{U}} = 2.681 + 0.1433log f{{O}}2 + 0.594{{Cl,}} where fO2 is the oxygen fugacity, and Cl is the chlorine content of the fluid in molality. In contrast, Th solubility is generally low (uranium increases strongly both with oxygen fugacity and with salinity. We show that reducing or NaCl-free fluids cannot produce primitive arc magmas with U/Th ratio higher than MORB. However, the dissolution of several wt% of oxidized, saline fluids in arc melts can produce U/Th ratios several times higher than in MORB. We suggest that observed U/Th ratios in arc magmas provide tight constraints on both the salinity and the oxidation state of subduction zone fluids.

  3. Structure of the subduction zone beneath the Wellington region, New Zealand , from passive seismic recordings (United States)

    Karalliyadda, S.; Savage, M. K.; Hall, C.; Stern, T. A.; Henrys, S. A.; Wech, A.; Townend, J.; Carrizales, A.


    The Seismic Array on the HiKurangi Experiment I consisted of 50 2-Hz seismometers deployed in a two-dimensional array and ten broadband seismometers deployed in a line above the Hikuangi Subduction Zone throughout the Wellington/Wairarapa region of New Zealand. Wellington is the capital and second largest city in New Zealand. Continuous signals were recorded between November 2009 and March 2010 on the short period sensors and up to 18 months on the broadband sensor. These stations densified the GeoNet network of two broadband and 11 1-Hz seismometers. Airgun shots and earthquakes were extracted for analysis. The E-W line was also occupied at several times with a high-density array of geophones deployed to record airgun shots and explosives. Here we summarize the results of preliminary analysis of earthquakes and seismic noise. Receiver function images of the plate boundary reveal similar structures to the results of active source analysis, suggesting that at long wavelength the S velocity and P velocity change at the same boundaries. A low velocity layer at the top of the plate and the within-slab Moho is well imaged. Deeper features are less clearly imaged but, like the controlled source reflectors, suggest that some converters are dipping in the same direction as the slab and some in the opposite direction. We use SKS phases recorded on the broadband array and permanent stations in the eastern part of our study area to investigate the deep anisotropic structure. Preliminary SKS splitting measurements display NE/SW fast polarization azimuths sub-parallel to Hikurangi trench and the predominant upper plate fault strike. Delay times of these splitting measurements range from 1.30 - 4.9 s (+/- 0.46 s) and SKS phases with large periods ( > 12 s) tend to show higher delay times ( > 2 s). Shear wave splitting on local earthquakes with magnitude greater than 4 yield mostly NE-SW polarization azimuths, consistent with previously determined local and SKS anisotropy at

  4. Elastic Wavespeed Images of Northern Chile Subduction Zone from the Joint Inversion of Body and Surface Waves: Structure of the Andean Forearc and the Double Seismic Zone (United States)

    Comte, D.; Carrizo, D.; Roecker, S. W.; Peyrat, S.; Arriaza, R.; Chi, R. K.; Baeza, S.


    Partly in anticipation of an imminent megathrust earthquake, a significant amount of seismic data has been collected over the past several years in northern Chile by local deployments of seismometers. In this study we generate elastic wavespeed images of the crust and upper mantle using a combination of body wave arrival times and surface wave dispersion curves. The body wave data set consists of 130000 P and 108000 S wave arrival times generated by 12000 earthquakes recorded locally over a period of 25 years by networks comprising about 360 stations. The surface wave data set consists of Rayleigh wave dispersion curves determined from ambient noise recorded by 60 broad band stations from three different networks over a period of three years. Transit time biases due to an uneven distribution of noise were estimated using a technique based on that of Yao and van der Hilst (2009) and found to be as high as 5% for some station pairs. We jointly invert the body and surface wave observations to both improve the overall resolution of the crustal images and reduce the trade-off between shallow and deep structures in the images of the subducted slab. Of particular interest in these images are three regions of anomalous Vp/Vs: (1) An extensive zone of low Vp/Vs (1.68) correlates with trench-parallel magmatic belts emplaced in the upper continental crust. In the region of the coast and continental slope, low Vp/Vs corresponds to batholithic structures in the Jurassic-Cretaceous magmatic arc. Between the central depression and Domeyko Cordillera, low Vp/Vs correlates with the distribution of magmatic arcs of Paleocene-Oligocene and Eocene-Oligocene age. Low Vp/Vs also correlates with the location of the Mejillones Peninsula. (2) A region of high Vp/Vs occurs in what is most likely the serpentinized wedge of the subduction zone. (3) An additional zone of low Vp/Vs is located in the middle of the double seismic zone at depths of 90-110 km. This region may exist all along the

  5. Deformation of Lawsonite at High Pressure and High Temperature - Implications for Low Velocity Layers in Subduction Zones (United States)

    Amiguet, E.; Hilairet, N.; Wang, Y.; Gillet, P.


    During subduction, the hydrated oceanic crust undergoes a series of metamorphic reactions and transform gradually to blueschists and eclogite at depths of 20-50 km. Detailed seismic observations of subduction zones suggest a complex layered structure with the presence of a Low Velocity Layer (LVL) related to the oceanic crust [1] persisting to considerable depths (100- 250 km).While the transformation from blueschist to eclogite [2] and the presence of glaucophane up to 90-100 km [3] could explain some of these observations, the presence of LVL at greater depths could be related to the presence of the hydrous mineral lawsonite (CaAl2(Si2O7)(OH)2 H2O). Its stability field extends to 8.5 GPa and 1100K corresponding to depths up to 250 km in cold hydrous part of subducting slabs [4]. Because these regions undergo large and heterogeneous deformation, lawsonite plasticity and crystal preferred orientation (CPOs) may strongly influence the dynamic of subduction zones and the seismic properties. We present a deformation study at high presssure and high temperature on lawsonite. Six samples were deformed at 4-10 GPa and 600K to 1000K using a D-DIA apparatus [5] at 13-BMD at GSECARS beamline, APS, in axial compression up to 30% deformation with strain rates of 3.10-4s-1 to 6.10-6s-1. We measured in-situ lattice strains (a proxy for macroscopic stress), texture and strain using synchrotron radiations and calculated the macroscopic stress using lawsonite elastic properties [6]. Results from lattice strain analysis show a dependence of flow stress with temperature and strain rate. Texture analysis coupled with transmission electron microscopy showed that dislocation creep is the dominant deformation mechanism under our deformation conditions. [1] Abers, Earth and Planetary Science Letters, 176, 323-330, 2000 [2] Helffrich et al., Journal of Geophysical Research, 94, 753-763, 1989 [3] Bezacier et al., Tectonophysics, 494, 201-210, 2010 [4] Schmidt & Poli, Earth and Planetary

  6. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone (United States)

    Yang, Wu-Bin; Niu, He-Cai; Shan, Qiang; Chen, Hua-Yong; Hollings, Pete; Li, Ning-Bo; Yan, Shuang; Zartman, Robert E.


    Arc magmatism plays an important role in the recycling of subducted carbon and returning it to the surface. However, the transfer mechanisms of carbon are poorly understood. In this study, the contribution of subducted carbonate-rich sediments to the genesis of the carbonate-bearing K-rich igneous rocks from western Tianshan was investigated. Four key triggers are involved, including sediments subduction, slab decarbonation, partial melting and magma segregation. The globular carbonate ocelli show C-O isotope signatures intermediate between oceanic sediments and mantle, suggesting that the carbon of the primary carbonate ocelli was derived from recycled subducted sediments in the mantle. Decarbonation of the subducted slab is regarded as the primary agent to carbonize the mantle wedge. Geochemical features indicate that the carbonate ocelli are primary, and that the parental K- and carbon-rich mafic alkaline magma was derived from partial melting of carbonated mantle wedge veined with phlogopite. Major and trace element compositions indicate that globular carbonate ocelli hosted in the Bugula K-rich igneous rocks are calcio-carbonate and formed primarily by segregation of the differentiated CO2-rich alkaline magma after crystallization fractionation. The K-rich alkaline magma, which formed from partial melting of metasomatized (i.e., phlogopite bearing) mantle wedge in the sub-arc region, is a favorable agent to transport subducted carbon back to the Earth's surface during carbon recycling in subduction zones, because of the high CO2 solubility in alkaline mafic magma. We therefore propose a model for the petrogenesis of the carbonate-bearing K-rich igneous rocks in western Tianshan, which are significant for revealing the mechanism of carbon recycling in subduction zones.

  7. Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics (United States)

    Kim, J.; Coish, R.; Evans, M.; Dick, G.


    Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.

  8. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru. (United States)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.


    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  9. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  10. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  11. Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties (United States)

    Rousset, Baptiste; Lasserre, Cécile; Cubas, Nadaya; Graham, Shannon; Radiguet, Mathilde; DeMets, Charles; Socquet, Anne; Campillo, Michel; Kostoglodov, Vladimir; Cabral-Cano, Enrique; Cotte, Nathalie; Walpersdorf, Andrea


    Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling 0.7) and transitions to uncoupled, steady slip at a relatively uniform ˜ 175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional transitions along the subduction plate interface. Based on the

  12. Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex - Papua New Guinea) (United States)

    Kaczmarek, M. A.; Jonda, L.; Davies, H. L.


    New geochemical and microstructural data from the Marum ophiolite in Papua New Guinea describe a piece of most depleted mantle made essentially of dunite and harzburgite showing compositions of supra-subduction zone (SSZ) peridotite. Strong olivine crystallographic preferred orientations (CPO) in dunite and harzburgite inferred the activation of both (001)[100] and (010)[100] slip systems. Clinopyroxene and orthopyroxene CPOs inferred the activation of (100)[001] and (010)[001] slip systems. This plastic deformation is interpreted to have developed at high temperature during the formation of the Marum ophiolite, prior to melt percolation. The orientation of the foliation and olivine [100] slip directions sub-parallel to the subduction zone indicates that mantle flow was parallel to the trench pointing a fast polarization direction parallel to the arc. Marum depleted mantle has been fertilised by diffuse crystallisation of a low proportion of clinopyroxene (1-2%) in the dunite and formation of cm-scale ol-clinopyroxenite and ol-websterite veins cross-cutting the foliation. This percolating melt shows silica-rich magnesian affinities (boninite-like) related to supra-subduction zone in a young fore-arc environment. The peridotite has also been percolated by a melt with more tholeiite affinities precipitating plagioclase-rich wehrlite and thin gabbroic veins; these are interpreted to form after the boninitic event. The small proportion of newly crystallized pyroxene distributed in the dunite shows similar orientation of crystallographic axes to the host dunite (ol parallel to cpx-opx). In contrast, the pyroxenes in ol-clinopyroxenite, ol-websterite and the thin gabbroic veins in the wehrlite, record their own orientation with axes at 45 to 60˚ to olivine axes. For low melt proportion, such as crystallization of pyroxenes in the dunite, the crystallization is governed by epitaxial growth, and when the proportion of melt is higher the newly formed minerals record syn

  13. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis


    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  14. Forearc serpentinites as probes into the chemical, petrological and biological diversity of subduction zones (United States)

    Savov, I. P.


    The mantle region that cover the variously fluid-saturated and heated subducted slabs is a site where colossal serpentinization processes occur. Nowhere this is more evident than in the forearcs of convergent plate margins, where the amount of fluids leaving the slabs and intermingling with the overlaying mantle wedge is maximized. The nature of this forearc serpentinization processes can be studied at accretionary prisms, serpentinite mud volcanoes (ODP Sites 125 and 195; IODP Exp. 366- all in the Marianas), or via tectonically exhumed, Proterozoic to modern, forearc melange complexes worldwide (Greenland, California, Kamchatka, Armenia, Cuba, Colombia, among others). I shall review the marine and continental settings hosting forearc serpentinites (FS) with emphasis on the FS fluid and mineral chemistry, imaging of isotopes/elements/molecules and textures (via ToF SIMS), and the environment and the P-T conditions that may lead to stable microbial communities like the recently discovered one under S.Chamorro Seamount that suggests life can exist in the forearcs as deep as 12 km (Plumper et al., 2017; PNAS). FS are very similar to classical abyssal serpentinites (from FZ or TF on the seafloor). They have similar mineralogy, textures, are major reservoir of fluid mobile trace elements (B, Li, Cs, As, Sb, I, Br) and also are a host of often vast isotope fractionations (B, Li, I). Yet differences exist and need to be further explored as both of these serpentinite types may take part of the subducted slab inventory and affect the input-output budgets across the "Subduction Factory". FS are often associated with blueschists, which combined with the FS may help us more fully explore the P-T-t evolution of the entire forearc region.

  15. FAST TRACK PAPER: The reflection seismic survey of project TIPTEQ-the inventory of the Chilean subduction zone at 38.2° S (United States)

    Groß, K.; Micksch, U.


    We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2°S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2-5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50-60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.

  16. Crystallographic preferred orientations of exhumed subduction channel rocks from the Eclogite Zone of the Tauern Window (Eastern Alps, Austria), and implications on rock elastic anisotropies at great depths

    Czech Academy of Sciences Publication Activity Database

    Keppler, R.; Ullemeyer, K.; Behrmann, J. H.; Stipp, M.; Kurzawski, R. M.; Lokajíček, Tomáš

    647/648, April (2015), s. 89-104 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : crystallographic preferred orientation * eclogite Zone * elastic properties * P-wave anisotropy * retrogression of eclogites * subduction channel Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.650, year: 2015

  17. Convergent margin structure and tectonics of the Java subduction zone (105°E-122°E) (United States)

    Kopp, H.; Barckhausen, U.; Djajadihardja, Y.; Engels, M.; Flueh, E. R.; Hindle, D. A.; Lueschen, E.; Mueller, C.; Planert, L.; Reichert, C. J.; Shulgin, A. A.; Wittwer, A.


    The Java margin is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our results show a high variability in subduction zone processes along the Java margin, ranging from accretionary subduction to erosive processes to zero-budget mass transfer. These variations are closely linked to changes in character of the incoming plate. Off Western Java (105°E -109°E), near-full accretion of the trench sediment fill is associated with a well-developed accretionary prism fronting a 4 km deep forearc basin. The Central Java segment (109°E -115°E) experiences the collision of an oceanic plateau dotted with numerous seamounts, causing large-scale uplift of the forearc, coupled with erosion of the frontal prism and correlated mass wasting processes. Intense deformation of the forearc basin results from thrusting and compressional forces. In the neighbouring segment farther to the east (115°E-119°E), the lack of significant sediment input to the trench supports the notion that recycling of upper plate material in the forearc sustains the massive outer high observed here adjacent to a mature forearc basin. The incoming oceanic plate of the Argo Abyssal plain is devoid of a sediment drape and the original spreading fabric overprinted by bending-related faulting near the trench shape its morphology. The transition zone from the Java margin to the Banda Arc (119°E-122°E) experiences the early stages of continent-island arc collision associated with the convergence of the

  18. Insights into Shallow Anisotropic Structure in the Forearc Hikurangi Subduction Zone, New Zealand via Splitting of Teleseisms (United States)

    Karalliyadda, S.; Savage, M. K.


    We use a recent transect that consists of 10 broadband stations across the northeast of Wellington region to explore the anisotropic structure of the forearc of the Hikurangi subduction zone in the southern North Island (NI), New Zealand from shear-wave splitting of SKS, ScS and teleseismic S phases. These measurements are then integrated with the previous splitting measurements in northwest of the transect. Splitting parameters from teleseismic S-phases revealed an abrupt lateral variation in the anisotropic structure. The general trend of splitting agrees well with the previous studies around this area, with NE-SW trench-parallel fast direction (φ). The range of delay times ( 0.5 - 3.0 s) and slightly varying SKS φ across the southeast of NI suggest a laterally varying anisotropic structure. As inferred by splitting variations from long period (>7 s) phases across the profile, the upper-plate Wairarapa fault and basin area appear to be characterized by a distinct anisotropic structure that is possibly localized at crustal depths. The sharp change in delay time (δt) around this fault zone divides the region in to two distinct domains of eastern and western sides. The average δt on the eastern side (2.05 × 0.45 s) is ~0.6 s higher than that measured in the western side (1.44 × 0.24 s) of the Wairarapa fault. This change takes place between two stations that are separated by ~3 km. Clear frequency dependent splitting from ScS and teleseismic S-phases suggests that the anisotropic structure is either stratified or governed by more complex anisotropy. Multilayer models are unable to explain the observations adequately, suggesting a more complex structure. We think that this complex structure is governed in part by the laterally-varying crustal contribution of anisotropy and this lateral variation is likely associated with the multilayer anisotropy to form a more complex structure. We suggest that the subduction structure is dominated by the mantle flow in the

  19. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones (United States)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.


    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  20. Improving automatic earthquake locations in subduction zones: a case study for GEOFON catalog of Tonga-Fiji region (United States)

    Nooshiri, Nima; Heimann, Sebastian; Saul, Joachim; Tilmann, Frederik; Dahm, Torsten


    Automatic earthquake locations are sometimes associated with very large residuals up to 10 s even for clear arrivals, especially for regional stations in subduction zones because of their strongly heterogeneous velocity structure associated. Although these residuals are most likely not related to measurement errors but unmodelled velocity heterogeneity, these stations are usually removed from or down-weighted in the location procedure. While this is possible for large events, it may not be useful if the earthquake is weak. In this case, implementation of travel-time station corrections may significantly improve the automatic locations. Here, the shrinking box source-specific station term method (SSST) [Lin and Shearer, 2005] has been applied to improve relative location accuracy of 1678 events that occurred in the Tonga subduction zone between 2010 and mid-2014. Picks were obtained from the GEOFON earthquake bulletin for all available station networks. We calculated a set of timing corrections for each station which vary as a function of source position. A separate time correction was computed for each source-receiver path at the given station by smoothing the residual field over nearby events. We begin with a very large smoothing radius essentially encompassing the whole event set and iterate by progressively shrinking the smoothing radius. In this way, we attempted to correct for the systematic errors, that are introduced into the locations by the inaccuracies in the assumed velocity structure, without solving for a new velocity model itself. One of the advantages of the SSST technique is that the event location part of the calculation is separate from the station term calculation and can be performed using any single event location method. In this study, we applied a non-linear, probabilistic, global-search earthquake location method using the software package NonLinLoc [Lomax et al., 2000]. The non-linear location algorithm implemented in NonLinLoc is less

  1. Status of the Ocean Bottom Seismology Component of the Cascadia Initiative (United States)

    Toomey, D. R.; Allen, R. M.; Collins, J. A.; Dziak, R. P.; Hooft, E. E.; Livelybrooks, D.; McGuire, J. J.; Schwartz, S. Y.; Tolstoy, M.; Trehu, A. M.; Wilcock, W. S.


    The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment that takes advantage of an Amphibious Array to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates. This diverse set of objectives are all components of understanding the overall subduction zone system and require an array that provides high quality data that crosses the shoreline and encompasses relevant plate boundaries. In October 2010, an open community workshop was convened in Portland, Oregon that produced a series of recommendations to maximize the scientific return of the CI and to develop deployment plans for the offshore component of the experiment. The NSF Cascadia Initiative Workshop Report1 presents the scientific objectives of the CI, the resources involved and the community-defined ocean bottom seismometer (OBS) deployment plan. Over its planned 4-year data acquisition period, the offshore portion of the Cascadia Initiative will involve the deployment and recovery of ~280 OBSs at ~160 different sites and a total of about 14 cruises. In addition, the 2010 CI workshop envisioned a significant education and outreach component that would be integrated into the operational plans. The Cascadia Initiative Expedition Team (CIET) is a group of scientists who are leading the seagoing expeditions to deploy and recover OBSs and are developing related Education and Outreach modules. The CIET is knowledgeable about the science and operational objectives of the CI, includes individuals with chief scientist experience, ones who have not yet been to sea and representatives from both the EAR and OCE communities. It is anticipated that there will be berths for students, post-docs and other scientists to participate in either deployment or recovery legs, thus providing the seismological community with opportunities to gain valuable experience in planning and carrying out an OBS

  2. Crustal Structure of the Caribbean-South American Diffuse Plate Boundary: Subduction Zone Migration and Polarity Reversal Along BOLIVAR Profile 64W (United States)

    Clark, S. A.; Levander, A.; Magnani, M.; Zelt, C. A.; Sawyer, D. S.; Ave Lallemant, H. G.


    The BOLIVAR (Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region) project is an NSF funded, collaborative seismic experiment in the southeast Caribbean region. The purpose of the project is to understand the diffuse plate boundary created by the oblique collision between the Caribbean and South American plates. Profile 64W of the BOLIVAR experiment, a 450 km-long, N-S transect onshore and offshore Venezuela located at ~64°W longitude, images the deep crustal structures formed by this collision. The active source components of profile 64W include 300 km of MCS reflection data, 33 coincident OBSs, and 344 land seismic stations which recorded 7500 offshore airgun shots and 2 explosive land shots. Results from the reflection and refraction seismic data along 64W show complex crustal structure across the entire span of the diffuse plate boundary. The onshore portion of 64W crosses the fold and thrust belt of the Serrania del Interior, which formed at ~16 Ma by collision of the Caribbean forearc with the northern South American passive margin. Underlying the Serrania del Interior is a south-vergent, remnant Lesser Antillean subduction zone. As this Lesser Antilles subduction impinged on continental crust, it caused a polarity reversal and jump offshore to the north. Convergence was initially localized in the closure and inversion of the Grenada Basin. However, subduction could not develop because of the ~20-km-thick crust of the Aves Ridge; instead, north-vergent subduction initiated further to the north, where ~12-km-thick Caribbean oceanic crust of the Venezuela Basin began to subduct beneath the Aves Ridge in the Pliocene (~4 Ma) and appears to continue subducting today. Between the remnant subduction zone and the modern one, the El Pilar and Coche dextral strike-slip faults accommodate most of the transform motion of the plate boundary. From the Serrania del Interior to the Aves Ridge, ~260 km of accreted orogenic float comprises the diffuse

  3. Tectono-metamorphic evolution of the Tavşanli zone, Western Anatolia: implications for mechanical coupling during subduction/obduction processes (United States)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Okay, Aral


    Obduction (i.e., emplacement of a dense oceanic lithosphere on top of a continent) and associated continental subduction provide insights into the rheology of the lithosphere and inter-plate mechanical coupling that usefully complements those inferred from normal oceanic subduction beneath continents. Structural and petrological data from the Tavşanlı zone are herein used to highlight processes occurring along the subduction interface from initial obduction stages (i.e., initiation of intra-oceanic subduction witnessed by metamorphic soles) to continental subduction (represented by high-pressure low-temperature, HP-LT rocks). The Tavşanlı zone (Western Anatolia) belongs to the İzmir-Ankara suture zone, which separates the Pontides and Anatolide-Tauride block. It represents a very well preserved late Cretaceous subduction interface, thanks to only mild, later collision. The Tavşanlı zone is divided in three main tectonic units related to (either continental or oceanic) subduction and obduction, respectively, which are from bottom to top: (i) the distal cover of the subducted north facing continental margin of the Anatolide-Tauride block (Orhaneli unit), which yields one of the lowest thermal gradients on earth (i.e., 5°C/km, with peak T and P of 430°C/22-24 kbar); (ii) an accretionary complex made of low-grade, subducted ocean-derived metamorphic rocks; (iii) the non-metamorphic obducted ophiolite, underlain by a thin metamorphic sole, which is found as klippen south of the İzmir-Ankara suture zone. Systematic sampling and structural work allow us to reappraise the nature, internal structure and P-T conditions of the accretionary complex sandwiched between the lower continental and upper oceanic plates. Two major tectonic units (termed complex 1 and 2) are recognised based on metamorphic grade and structural position with respect to the continental margin. Metamorphic conditions range from incipient HP-LT metamorphism (complex 1) to blueschist facies

  4. Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes (United States)

    Perchuk, A. L.; Yapaskurt, V. O.; Griffin, W. L.; Shur, M. Yu.; Gain, S. E. M.


    Piston-cylinder experiments with natural rocks and mineral separates were carried out at 750-900 °C and 2.9 GPa, conditions relevant to hot subduction zones, to study the mechanisms of metasomatic alteration of mantle-wedge rocks such as dunite and lherzolite, and the transfer of trace elements released from a carbonate-bearing amphibolite during its eclogitization. Element transfer from the slab to the mantle lithologies occurred in porous-, focused- and diffusive-flow regimes that remove melt and carbon, and partially water, from the metabasite layer. Porous flow is recorded by dissolution of clinopyroxene and growth of orthopyroxene ± garnet ± magnesite ± chlorite along grain boundaries in the peridotite layers, but is invisible in the metabasite layers. Porous flow of the same fluids/melts produces harzburgite mineralogy in both dunite and lherzolite. The transformation of lherzolite to harzburgite reflects breakdown of clinopyroxene in the lherzolite and diffusion of the liberated calcium into the metabasite layer, i.e. against the direction of major fluid/melt flow. Focused flow develops along the side walls of the capsules, producing a melt-free omphacite ± phengite ± quartz paragenesis in the metabasite, and melt segregations, separated from the host peridotite layers by newly-formed omphacite ± garnet ± phlogopite + orthopyroxene + magnesite. Diffusive flow leads to the formation of orthopyroxene ± magnesite ± garnet reaction zones at the metabasite-peridotite interface and some melt-peridotite interfaces. Melt segregations in the peridotite layers at 850-900 °C are rich in LREE and LILE, strongly depleted in Y and HREE, and have higher Sr/Y and La/Yb ratios than island arc andesites, dacites and rhyolites. These features, and negative anomalies in Nb-Ta and low Nb/Ta, resemble those of high-silica adakites and TTGs, but K2O is high compared to TTGs. Metasomatism in the dunite layer changes the REE patterns of dunite, recording chromatographic

  5. Seismic scattering in the subduction zone of the Middle America region (United States)

    Dominguez-Ramirez, Luis Antonio

    Seismic scattering is the direct consequence of the changes in the elastic properties of the medium. These so-call heterogeneities play a fundamental role for the understanding of the propagation of seismic waves and their possible effect on the analysis of seismic risk. This dissertation examines the scattering properties of Middle America region at continental scale, and provides a discussion of the current methods aimed to model the effect of small-scale heterogeneities in the crust. Using data from a portable array deployed in Mexico perpendicular to the trench, we identified and modeled trapped crustal waves that were previously undocumented. When low frequency fseismic records suggested that the structure formed by the flat-subducting slab and the crust behaves very similar to a sedimentary basin but at a larger scale. These observations could explain differences in attenuation along different paths of propagation in this area.

  6. GNSS imaging of time-dependent variable deformation in a Chilean subduction zone (United States)

    Baez, J. C., Sr.; Felipe, L., Sr.; DelCampo, F., Sr.; Pineda, D., Sr.; Barrientos, S. E.; Tassara, A.; Moreno, M.


    Using data from a large continuous GNSS network, composed of more than 130 stations located in continental Chile, we detected time-dependent deformation. We concentrate on removing the seasonal variations and recovering the interseismic, postseismic, and coseismic deformation. This enables us to model and estimate the locking rate, stress accumulation, and slip deficiency, in a short and long term approach. The inversion procedure to obtain the locking rate from the interseismic velocities makes a strong simplification: the medium is an elastic homogeneous half-space (e.g. Okada, 1985). The slip rate is restricted between zero up to the plate convergence velocity. Hence, besides this restriction, this inversion is the same as a coseismic slip inversion. The resulting from this study will improve our understanding of the seismic cycle in the Andean subduction environment.

  7. Subduction Zone Configuration of Central and Eastern Anatolia since the Late Cretaceous: Insights from Sedimentary Basins in the Neotethyan Suture Zone (United States)

    Gürer, D.; Van Hinsbergen, D. J. J.; Matenco, L.; Corfu, F.; Langereis, C. G.; Ozkaptan, M.


    Subduction and accretion of continental and Neotethyan oceanic crustal fragments during Africa-Europe convergence since the Mesozoic formed the Anatolian fold-and-thrust belt. Sedimentary basins overlying key locations of the resulting fold-thrust belt that was metamorphosed to varying grades, may help to quantitatively kinematically restore the subduction evolution, and to identify timing, directions and amounts of post-accretionary extension, shortening and strike-slip faulting. The Upper Cretaceous - Oligocene Ulukışla basin straddles ophiolites, underlain by the HT-LP metamorphic Kırşehir Block (KB) to its north, and the HP-LT Bolkardağ/Afyon zone (BA) to its south. At its southern margin a series of small-offset faults consistent with latest Cretaceous-Paleocene N-S extension, was contemporaneous with (presumably extensional) exhumation of BA. Close to the contact with KB, a series of large-offset listric normal faults compatible with E-W extension offsets sediments and the base of newly dated Paleocene volcanics, showing E-W extension simultaneous with N-S extension in the south, prevailing until at least 56 Ma. Subsequently, N-S directed contraction led to E-W striking folds and thrusts and back-thrusting of the BA over the Ulukisla basin, probably in Oligocene time, and coeval left lateral strike-slip motion along the Ecemiş fault (EF) at the eastern basin margin. We explain the interplay between two Late Cretaceous-Paleocene extension directions to result from interplay between N-S and E-W striking subduction segments in central and eastern Anatolia, respectively. The latter can be followed farther east towards the Bitlis. In addition, absence of a Kirsehir block in eastern Anatolia led to a much longer duration of subduction below the Pontides, throughout the Paleogene and perhaps until as young as the Middle Miocene, with a suture below the Sivas basin that covers the contact between the KB, the Pontides and the Taurides. We restore an amount of

  8. Crustal electrical conductivity of the Indian continental subduction zone: New data from the profile in the Garhwal Himalaya (United States)

    Sokolova, E. Yu.; Israil, M.; Gupta, P.; Koshurnikov, A. V.; Smirnov, M. Yu.; Cherevatova, M. V.


    We present the results of studying the geoelectrical structure of the zone of continental subduction of the Indian lithospheric plate within the Gahrwal Himalaya. In the framework of the Russian-Indian project, the data of the broadband magnetotelluric soundings conducted by the Indian Institute of Technology Roorkee on the regional profile across the structures of the orogen were expanded, processed, and interpreted by the new program tools adapted for the measurements in the mountain conditions and for the presence of industrial noise. The constructed model of the deep electrical conductivity cross section for Garhwal revealed its two-dimensional (2D) features and more accurately delineated the location of the midcrustal conductor associated with the ramp structure of the detachment plane. The correlations with the regional distribution of the earthquake hypocenters and the seismotomographic images suggest a common, fluid-related nature of the seismic and geoelectrical anomalies in the crust of the Garhwal Tectonic Corridor and enabled the identification of the seismogenerating zones. Among the data of the expanded profile set of magnetotelluric and magnetovariational transfer functions, the response of a poorly explored deep conductive body is revealed. This object is located east of the profile and is probably associated with the activation of the ancient trans-Himalayan cratonic structures which prepares the segmentation of the Himalayan arc.

  9. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism (United States)

    Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick


    Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (slab-metasomatized subarc mantle. The juxtaposition of such different mantle domains within the lithospheric mantle is viewed as a consequence of (1) tectonic mixing associated with accretion of oceanic and island arc terranes along the Pacific margin of North America prior to Neogene time, and possibly (2) a seaward jump in the locus of subduction at about 40 Ma. The Cascades arc is unusual in that the subducting oceanic plate is very young and hot. We suggest that slab dehydration outboard of the volcanic front resulted in a diminished role of aqueous fluids in generating or subsequently modifying SWC magmas compared to the situation at most convergent margins. Furthermore, with low fluid flux conditions, basalt generation is presumably triggered by other processes that increase the temperature of the mantle wedge (e.g., convective mantle flow, shear heating, etc.).

  10. Interseismic Coupling, Co- and Post-seismic Slip: a Stochastic View on the Northern Chilean Subduction Zone (United States)

    Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.


    Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.

  11. Forearc structure from legacy multichannel seismic data linked to mechanical variability and rupture segmentation on the central Alaska-Aleutian subduction zone (United States)

    Roland, E. C.; von Huene, R.; Miller, J.; Haeussler, P. J.; Scholl, D. W.; Ryan, H. F.; Kirby, S. H.


    The historical earthquake record, geodetic observations, and modern interseismic seismicity patterns indicate along-strike variability in the mechanical behavior of the subduction zone extending from the central Alaska peninsula west to the eastern Aleutian Islands. This region spans the rupture areas of several historical megathrust earthquakes, including the 1938 M8.3 Semidi Islands event, the 1946 M8.5 earthquake near Unimak Pass, and the 1957 M8.6 Andreanof Islands earthquake. Each of these events produced tsunamis that affected Alaska and/or far-field coastal regions in Hawaii and the mainland U.S. The '38 and '46 rupture areas are separated by a segment of the subduction zone in the vicinity of the Shumagin Islands where, based on plate velocities from GPS, plate coupling decreases from nearly fully locked in the east, to very low coupling in the western Shumagins, indicating an important change in seismic style along-strike. Changes in the degree of interseismic coupling are often attributed to variability in the mechanical strength of the thrust interface, influenced by heterogeneity in the material properties and subducted topographic relief. Furthermore, the expression of forearc structural features along the margin may indicate the width and up-dip limit of the locked zone. We explore structural characteristics of the shallow portion of the subduction system related to variations in the mechanical properties of the megathrust and interseismic coupling using legacy multichannel seismic (MCS) data from several segments along the Alaska-Aleutian subduction zone. Critical images were reprocessed with modern seismic processing systems. We characterize structural features of the downgoing plate and forearc, including the variation in thickness and character of subducted sediment, the geometry of the upper plate wedge, the distribution of imbricate thrust faults, the transition from outer prism to margin rock framework and extensional faulting. These

  12. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone (United States)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.


    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  13. Historic and ancient tsunamis uncovered on the Jalisco-Colima Pacific coast, the Mexican subduction zone (United States)

    Ramírez-Herrera, María Teresa; Bógalo, María Felicidad; Černý, Jan; Goguitchaichvili, Avto; Corona, Néstor; Machain, María Luisa; Edwards, Arturo Carranza; Sosa, Susana


    Research on extreme wave events such as tsunamis using the geological record in areas of infrequent and or small magnitude earthquakes can aid in extending the long-term history and recurrence intervals of large events. This information is valuable for risk management and community preparedness in coastal areas. Here we investigate tsunami deposits on the Jalisco coast of Mexico that overlies the subducting Rivera Plate under the North American plate, an area due for a large thrust earthquake and potential tsunami. Here, we apply a full battery of rock-magnetic analyses that also include a detailed AMS study and other typically applied proxies in tsunami deposits research. We present evidence to demonstrate that anomalous sand units with sharp basal contacts at La Manzanilla, Tenacatita Bay, and El Tecuán shore sites on the Jalisco coast may be the products of tsunamis generated by known historical (Ms 8.2 earthquake of 3 June 1932) and other earlier tsunamigenic earthquakes. A sandy unit with a sharp basal contact, flame structures at the base, rip-up clasts at La Manzanilla, and four sand units with sharp basal contact overlying buried soils at El Tecuán, together with other proxies, such as magnetic properties and others, suggest tsunami deposits. 210Pb dating of sediments slightly above the upper sand layer indicate an age A.D. 1935 ± 11 at El Tecuán. Historical accounts of tsunami inundation at both sites provide further evidence that this is most probably the result of the 3 June 1932 tsunami. Hence this study may provide the first evidence of a tsunami triggered by this earthquake and also of three probable predecessors. Further evidence of at least three earlier tsunamis that occurred since the fifteenth century is also evident in the stratigraphy. These events may correspond to events listed in historical archives, namely the 1563, 1816, and/or the 1818 events.

  14. Mantle hydration and Cl-rich fluids in the subduction forearc (United States)

    Reynard, Bruno


    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  15. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.


    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  16. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile (United States)

    Marot, M.; Monfret, T.; Pardo, M.; Ranalli, G.; Nolet, G.


    The region of central Chile offers a unique opportunity to study the links between the subducting Juan Fernandez Ridge, the flat slab, the double seismic zone (DSZ), and the absence of modern volcanism. Here we report the presence and characteristics of the first observed DSZ within the intermediate-depth Nazca slab using two temporary seismic catalogs (Ovalle 1999 and Chile Argentina Seismological Measurement Experiment). The lower plane of seismicity (LP) is located 20-25 km below the upper plane, begins at 50 km depth, and merges with the lower plane at 120 km depth, where the slab becomes horizontal. Focal mechanism analysis and stress tensor calculations indicate that the slab's state of stress is dominantly controlled by plate convergence and overriding crust thickness: Above 60-70 km depth, the slab is in horizontal compression, and below, it is in horizontal extension, parallel to plate convergence, which can be accounted for by vertical loading of the overriding lithosphere. Focal mechanisms below 60-70 km depth are strongly correlated with offshore outer rise bend faults, suggesting the reactivation of preexisting faults below this depth. The large interplane distances for all Nazca DSZs can be related to the slab's unusually cold thermal structure with respect to its age. Since LPs globally seem to mimic mantle mineral dehydration paths, we suggest that fluid migration and dehydration embrittlement provide the mechanism necessary to weaken the rock and that the stress field determines the direction of rupture.

  17. Hunt for slow slip events along the Sumatran subduction zone in a decade of continuous GPS data (United States)

    Feng, Lujia; Hill, Emma M.; Elósegui, Pedro; Qiu, Qiang; Hermawan, Iwan; Banerjee, Paramesh; Sieh, Kerry


    Slow slip events (SSEs) have been observed in GPS time series for many subduction zones worldwide but not in decade-long GPS time series from the Sumatran GPS Array (SuGAr). An outstanding question has been whether SSEs have simply not occurred on the Sunda megathrust or whether they have been obscured by the prodigious number of earthquakes and their ensuing postseismic deformation within the time of geodetic observation. We remove all known tectonic signals from the time series to search for evidence of SSEs. The residuals are essentially flat at the centimeter scale. To search for signals at the millimeter scale we test various filtering and visualization techniques. Despite these efforts, we conclude that it is difficult to confirm that SSEs exist at this scale using the current data, although we do see a few suspicious signals. The lack of evidence for events may reflect SSEs occurring at a magnitude, location, or timescale that renders them undetectable with the current resolution of the SuGAr, that the properties of this megathrust are not conducive to SSEs, or because the megathrust is in an active period of the earthquake cycle.

  18. Strain Localization in Crustal-scale Shear Zones and Argon Isotopic Record: Insights from Natural Fossilized Subduction Zones (Cycladic Blueschist Unit, Greece) (United States)

    Laurent, V.; Scaillet, S.; Jolivet, L.; Augier, R.


    Retrieving realistic estimates of strain rates accumulated along major lithospheric structures is critical to understand the rheological behaviour of the lithosphere. We use the 40Ar/39Ar dating technique to obtain dense age transects along strain gradients at various scales across HP-LT shear zones from the Cycladic Blueschist Unit (CBU) to quantify rates of strain localization in a former subduction zone. This HP-LT metamorphic unit was exhumed through a continuum of extensional top-to-the east shearing, all the way from the depth of the eclogite- to greenschist-facies P-T conditions. During exhumation, deformation progressively localized downward in the CBU, along several large-scale ductile shear zones. The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. White micas along these strain gradients were then dated with the 40Ar/39Ar method through various techniques (laser step heating on phengite single grain and population, and in situ laser ablation). We discuss the significance of obtained ages in terms of crystallization vs. cooling ages and use the crystallization ages for P-T-t paths. We compare our results with previous low-resolution studies on the examples of Alpine Corsica and the Betic Cordillera suggesting that strain localization at km-scale results into age gradients with a correlation between the most deformed samples and the youngest 40Ar/39Ar ages, leading to estimates of strain localization rates. We also discuss these results at small-scale to see whether deformation and fluid circulation, channelled within shear bands, can homogenize compositions and reset the 40Ar/39Ar isotopic record both in phengites within shear bands and the close-by foliation. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.

  19. Estimates of effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads and effective elastic thickness of subduction zones (United States)

    Yang, A.; Yongtao, F.


    The effective elastic thickness (Te) is an important parameter that characterizes the long term strength of the lithosphere, which has great significance on understanding the mechanical properties and evolution of the lithosphere. In contrast with many controversies regarding elastic thickness of continent lithosphere, the Te of oceanic lithosphere is thought to be in a simple way that is dependent on the age of the plate. However, rescent studies show that there is no simple relationship between Te and age at time of loading for both seamounts and subduction zones. As subsurface loading is very importand and has large influence in the estimate of Te for continent lithosphere, and many oceanic features such as subduction zones also have considerable subsurface loading. We introduce the method to estimate the effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads by using free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). We use the multitaper spectral estimation method to calculate the power spectral density. Through tests with synthetic subduction zone like bathymetry and gravity data show that the Te can be recovered in an accurance similar to that in the continent and there is also a trade-off between spatial resolution and variance for different window sizes. We estimate Te of many subduction zones (Peru-Chile trench, Middle America trench, Caribbean trench, Kuril-Japan trench, Mariana trench, Tonga trench, Java trench, Ryukyu-Philippine trench) with an age range of 0-160 Myr to reassess the relationship between elastic thickness and the age of the lithosphere at the time of loading. The results do not show a simple relationship between Te and age.

  20. The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone


    O. P. Malysheva; V. A. Shirokov; V. S. Yakovleva; P. P. Firstov


    The comparison of kinematics and dynamic parameters of radon and molecular hydrogen concentration in subsoil air on the stations network at the Petropavlovsk-Kamchatsky geodynamic proving ground with seismicity of the northern flank of the Kuril-Kamchatka subduction zone was fulfilled in the period from July till August 2004. On the basis of correlation analysis of the regional seismicity and variations of radon flux density calculated using the data of gas-discharge count...

  1. Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, Southern Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Guffanti, M. (Geological Survey, Reston, VA (USA)); Clynne, M.A.; Smith, J.G.; Muffler, L.J.P.; Bullen, T.D. (Geological Survey, Menlo Park, CA (USA))


    The authors identify 537 volcanic vents younger than 7 Ma, and they classify these into five age intervals and five compositional categories based on SiO{sub 2} content. Maps of vents by age and composition illustrate regionally representative volcanic trends. Most mafic volcanism is calcalkaline basalt and basaltic andesite. However, lesser volume of low-potassium olivine tholeiite (LKOT), a geochemically distinctive basalt type found in the northern Basin and Range province, also has erupted throughout the Lassen segment of the Cascade arc since the Pliocene. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW alignments of these features indicate NNW orientation of maximum horizontal stress (ENE extension), which is similar to the stress regime in the adjacent northwestern Basin and Range and northern Sierra Nevada provinces. They interpret the western limit of the zone of NNW trending normal faults as the western boundary of the Basin and Range province where it overlaps the Lassen segment of the Cascade arc. The Lassen volcanic region occurs above the subducting Gorda North plate but also lies within a broad zone of distributed extension that occurs in the North American lithosphere east and southeast of the present Cascadia subduction zone. The scarcity of volcanic rocks older than 7 Ma suggests that a more compressive lithospheric stress regime prior to the late Miocene extensional episode may have suppressed volcanism, even though subduction probably was occurring beneath the Lassen region.

  2. GPS/acoustic seafloor geodetic observation in the subduction zone around Japan (Invited) (United States)

    Sato, M.; Kido, M.; Tadokoro, K.; Fujimoto, H.


    GPS/acoustic (GPS/A) seafloor geodetic observation is a precise seafloor positioning technique and has made great progress over the last decade. GPS/A observation determines the positions of acoustic mirror-type transponders installed on the seafloor by combining the two techniques of kinematic GPS and acoustic ranging through a ship or a buoy. The original idea was proposed by Prof. Spiess at the Scripps Institution of Oceanography in 1985 and its protocol and hardware were made through research and development of his group by the mid-1990s. In Japan, three research groups, Japan Coast Guard, Tohoku University and Nagoya University, began to develop the GPS/A observation system in the 1990s, established GPS/A observation sites mainly on the landward slope of the plate boundaries around Japan, such as the Japan Trench and the Nankai trough, and have been carrying out campaign observations since around 2000. The primary purpose of our observation is to detect and monitor the crustal deformation caused by the subduction of the oceanic plate near the plate boundary where large interplate earthquakes have repeatedly occurred. By continuous efforts for over a decade, the positioning precision has achieved a few centimeters and seafloor movements such as intraplate deformation and coseismic displacements have been successfully detected. In particular, regarding the 2011 Tohoku-oki earthquake (M9.0), which occurred off northeastern Japan on March 11, 2011, east-southeastward coseismic displacements of up to 31 m were observed above the focal region, especially close to the epicenter, while those detected by on-land GPS measurements over 100 km away from the epicenter, conducted by the Geospatial Information Authority of Japan, was up to 5.3 m. Coseismic slip models on the plate boundary estimated from not only GPS data but also GPS/A results indicate that a huge slip of more than 50 m generated close to the trench axis, which was much larger than that estimated from GPS

  3. IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin

    Directory of Open Access Journals (Sweden)

    Paola Vannucchi


    Full Text Available The Costa Rica Seismogenesis Project (CRISP is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP Expedition 334 by R/V JOIDES Resolution is the first step toward deep drilling through the aseismic and seismicplate boundary at the Costa Rica subduction zone offshore the Osa Peninsula where the Cocos Ridge is subducting beneath the Caribbean plate. Drilling operations included logging while drilling (LWD at two slope sites (Sites U1378 and U1379 and coring at three slope sites (Sites U1378–1380and at one site on the Cocos plate (Site U1381. For the first time the lithology, stratigraphy, and age of the slope and incoming sediments as well as the petrology of the subducting Cocos Ridge have been characterized at this margin.The slope sites recorded a high sediment accumulation rate of 160–1035m m.y.-1 possibly caused by on-land uplift triggered by the subduction of the Cocos Ridge. The geochemical data as well as the in situ temperature data obtained at the slope sites suggest that fluids are transported from greater depths. The geochemical profiles at Site U1381 reflect diffusional communication of a fluid with seawater-likechemistry and the igneous basement of the Cocos plate (Solomon et al., 2011; Vannucchi et al., 2012a. The present-day in situ stress orientation determined by borehole breakouts at Site U1378 in the middle slope and Site U1379 in the upper slope shows a marked change in stress state within ~12 km along the CRISP transect; that maycorrespond to a change from compression (middle slope to extension (upper slope.

  4. Near-continuous tremor and low-frequency earthquake activities in the Alaska-Aleutian subduction zone revealed by a mini seismic array (United States)

    Li, Bo; Ghosh, Abhijit


    Tectonic tremor and low-frequency earthquakes (LFEs) are relatively poorly studied in the Alaska-Aleutian subduction zone due to the limited data availability, difficult logistics, and rugged terrain. Using 2 months of continuous data recorded by a mini seismic array in the Akutan Island, we detect near-continuous tremor activity with an average of 1.3 h of tectonic tremor per day using a beam backprojection method. Tremor sources are clustered in two patches with an 25 km gap in between them. In addition, we visually identify three low-frequency earthquakes, and using them as templates, we detect 1300 additional LFEs applying a matched-filter method. Tremor and LFE activities agree well in space and time, and LFEs show a much smaller recurrence interval during tremor than during non-tremor time periods. Tremor sources propagate both along the strike and dip directions of the subduction fault with velocities ranging between 13 and 110 km/h. Prolific patchy tremor and LFE activities suggest lateral heterogeneity in the locked to freely slipping transition zone, indicating that slow earthquakes may play an important role in the earthquake cycles in this subduction zone.

  5. The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone

    Directory of Open Access Journals (Sweden)

    O. P. Malysheva


    Full Text Available The comparison of kinematics and dynamic parameters of radon and molecular hydrogen concentration in subsoil air on the stations network at the Petropavlovsk-Kamchatsky geodynamic proving ground with seismicity of the northern flank of the Kuril-Kamchatka subduction zone was fulfilled in the period from July till August 2004. On the basis of correlation analysis of the regional seismicity and variations of radon flux density calculated using the data of gas-discharge counters of STS-6 type and SSNTDs it was shown that the radon mass transfer abnormal variations are conditioned by both regional seismicity in total and the subduction zone of proving ground. The azimuths of «geodeformation waves» coming to the registration points are calculated during clearly expressed anomaly beginnings, which coincide with directions to earthquake epicenters taking place at the same time. The geochemical anomalies recorded are presumptively deformative by nature and can be conditioned by processes of «quasi-viscous» flow of the lithosphere during rearrangement of tectonic stress fields of the subduction zone. The short-term (predicted time ? <14 days precursor of the earthquakes swarm was revealed in hydrogen dynamics on August, 4-5 (four earthquakes had M?5.3 and epicentral distance about 130 km from the Paratunka base station.

  6. Seafloor Geodesy usi­ng Wave Gliders to study Earthquake and Tsunami Hazards at Subduction Zones (United States)

    Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.


    Land-based GNSS networks are now in place to monitor most subduction zones of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using Wave Gliders, a new class of wave-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the Wave Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the Wave Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic waves underwater using the Wave Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using Wave Gliders should

  7. The effects of a CO2-bearing fluid on the rheology of quartz-bearing rocks in subduction zones (United States)

    Ashley, K. T.; Behr, W. M.


    The weakening effect of water on quartz rheology has been a well-recognized phenomenon for several decades. In many tectonic environments, however, the fluid phase is not pure H2O, but commonly includes other species such as CO2, dissolved silicates, and/or salts. CO2 is especially prevalent in subduction zone fluids due to subduction of carbonates and/or graphitic sediments. Some deformation experiments as well as natural observations suggest that CO2 can affect rheology and development of anisotropy in quartz-rich rocks, but the precise effects of CO2 are poorly understood. Here we take a petrologic approach to assess the role of a mixed H2O-CO2 fluid phase for deforming quartzite in the viscous regime. For quartz dislocation creep, CO2 in the fluid acts as a non-wetting phase, resulting in the reduction of water fugacity. However, for most rocks, the activity-composition (a-X) relationship of a H2O-CO2 fluid phase requires very high CO2 mole fractions to have a significant effect on strain rate. For XCO2 = 0.5 at 500°C, with a differential stress of 10 MPa, the water fugacity is only reduced by 30% and resultant strain rates are slowed by less than a factor of 3 — much less than the inherent uncertainty of the flow law. In contrast, because silica does not form complexes with CO2, its solubility greatly decreases at high carbonic fractions and pressure solution is greatly slowed. For most diagenetic conditions, a 50:50 H2O-CO2 fluid phase compared to a pure-H2O fluid phase results in a strain rate that is an order of magnitude slower. Higher carbonic fractions has dramatic effects on the rate of pressure solution (decreased by >3 orders of magnitude at XCO2 = 0.8). The difference in the response of quartz deformation mechanisms to changes in the fluid composition suggests CO2-rich fluids could result in the suppression of pressure solution and the activation of dislocation creep (or brittle failure) at lower temperatures than expected for a pure H2O fluid.

  8. Source parameters controlling the generation and propagation of potential local tsunamis along the cascadia margin (United States)

    Geist, E.; Yoshioka, S.


    The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.

  9. Magma formation in hot-slab subduction zones: Insights from hydrogen isotopes in Cascade Arc melt inclusions (United States)

    Walowski, K. J.; Wallace, P. J.; Hauri, E. H.; Clynne, M. A.; Rea, J.; Rasmussen, D. J.


    In a comparison of arcs globally, primitive basaltic magmas in the Cascades have slightly lower H2O concentrations, consistent with the hotter nature of the young subducted plate [Ruscitto et al., 2012]. In addition, geodynamic models [Syracuse et al., 2010] and geochemical studies [Cooper et al., 2012] agree that slab surface temperatures beneath the Cascade arc axis are hotter, on average, than in many other arcs. Data on volatiles and their relationships to fluid mobile trace elements are key to understanding volatile recycling and the formation of arc magmas. Here, we present the first data on hydrogen isotopes (D/H) in basaltic melt inclusions (MI) from the Cascades, as measured by NanoSIMS, in conjunction with a complete dataset on volatile, major, and trace elements in the MI. Recent work on MI from the Marianas [Shaw et al., 2012] has shown the potential for using δD to understand the cycling of hydrous fluids through subduction zones. Our samples were collected from cinder cones in the Lassen region of the southern Cascades (6 calc-alkaline basalts [CAB] and 2 transitional between CAB and low-K tholeiite [LKT]), and 2 basaltic tephra units from Mount St. Helens (MSH) that have OIB-like trace element characteristics, which is common in the central part of the arc. Using the maximum volatile contents at each cone to represent the undegassed magma, we find values of 2.1-3.4 wt% H2O and 500-1200 ppm CO2 for CABs and 1.15-1.30 wt% H2O and 750-850 ppm CO2 for transitional LKTs (all corrected to be in eq. with Fo90 olivine) in the Lassen Region. At MSH, we find 1.7 wt% H2O and <300 ppm CO2 for the OIB samples. For CABs from the Lassen Region, (Sr/P)N correlates with slab fluid tracers such as H2O/Ce and Cl/Nb, indicating a link between volatile and trace element enrichment of the mantle wedge, but transitional LKTs deviate slightly from the overall pattern. At MSH, values of (Sr/P)N, H2O/Ce, and Cl/Nb are lower than those in the Lassen Region, and are more

  10. Tomographic Imaging of the Peru Subduction Zone beneath the Altiplano and Implications for Andean Tectonics (United States)

    Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.


    This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.

  11. Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA (United States)

    Witter, Robert C.; Zhang, Yinglong J.; Wang, Kelin; Priest, George R.; Goldfinger, Chris; Stimely, Laura; English, John T.; Ferro, Paul A.


    Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model’s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with earthquakes with 9–44 m slip and Mw 8.7–9.2. Simulated tsunami inundation agrees with sparse deposits left by the A.D. 1700 and older tsunamis. Tsunami simulations for large (22–30 m slip) and medium (14–19 m slip) splay fault scenarios encompass 80%–95% of all inundation scenarios and provide reasonable guidelines for land-use planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (36–44 m slip) can help to guide development of local tsunami evacuation zones.

  12. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1 (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Dungan, Michael A.; Escrig, Stephane


    The composition of the convecting asthenospheric mantle that feeds the mantle wedge can be investigated via rear-arc lavas that have minimal slab influence. This "ambient mantle wedge" composition (the composition of the wedge prior to the addition of a slab component) varies substantially both worldwide and within individual arcs. 143Nd/144Nd measurements of rear-arc samples that have minimal slab influence are similar to 143Nd/144Nd in the stratovolcanoes of the adjacent volcanic fronts, suggesting that 143Nd/144Nd of arc-front volcanics are largely inherited from the ambient mantle composition. 143Nd/144Nd correlates with ratios such as Th/U, Zr/Nb, and La/Sm, indicating that these ratios also are strongly influenced by ambient wedge heterogeneity. The same phenomenon is observed among individual volcanoes from the Chilean Southern Volcanic Zone (SVZ), where along-strike variability of the volcanic front tracks that of rear-arc monogenetic volcanics. Depleted mantle wedges are more strongly influenced by slab-derived components than are enriched wedges. This leads to surprising trace element correlations in the global dataset, such as between Pb/Nb and Zr/Nb, which are not explicable by variable compositions or fluxes of slab components. Depleted ambient mantle is present beneath arcs with back-arc spreading; relatively enriched mantle is present adjacent to continents. Ambient mantle wedge heterogeneity both globally and regionally forms isotope mixing trajectories for Sr, Nd and Hf between depleted mantle and EM1-type enriched compositions as represented by Gough Island basalts. Making use of this relationship permits a quantitative match with the SVZ data. It has been suggested that EM1-type mantle reservoirs are the result of recycled lower continental crust, though such models do not account for certain trace element ratios such as Ce/Pb and Nb/U or the surprisingly homogeneous trace element compositions of EM1 volcanics. A model in which the EM1 end

  13. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids (United States)

    Zhong, X.; Galvez, M. E.


    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  14. The Molybdenum Isotope System as a Tracer of Slab Input in Subduction Zones: An Example From Martinique, Lesser Antilles Arc (United States)

    Gaschnig, Richard M.; Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Asael, Dan; Chauvel, Catherine


    Molybdenum isotopes are fractionated by Earth-surface processes and may provide a tracer for the recycling of crustal material into the mantle. Here, we examined the Mo isotope composition of arc lavas from Martinique in the Lesser Antilles arc, along with Cretaceous and Cenozoic Deep Sea Drilling Project sediments representing potential sedimentary inputs into the subduction zone. Mo stable isotope composition (defined as δ98Mo in ‰ deviation from the NIST 3134 standard) in lavas older than ˜7 million years (Ma) exhibits a narrow range similar to and slightly higher than MORB, whereas those younger than ˜7 Ma show a much greater range and extend to unusually low δ98Mo values. Sediments from DSDP Leg 78A, Site 543 have uniformly low δ98Mo values whereas Leg 14, Site 144 contains both sediments with isotopically light Mo and Mo-enriched black shales with isotopically heavy Mo. When coupled with published radiogenic isotope data, Mo isotope systematics of the lavas can be explained through binary mixing between a MORB-like end-member and different sedimentary compositions identified in the DSDP cores. The lavas older than ˜7 Ma were influenced by incorporation of isotopically heavy black shales into the mantle wedge. The younger lavas are the product of mixing isotopically light sedimentary material into the mantle wedge. The change in Mo isotope composition of the lavas at ˜7 Ma is interpreted to reflect the removal of the Cretaceous black shale component due to the arrival of younger ocean crust where the age-equivalent Cretaceous sediments were deposited in shallower oxic waters. Isotopic fractionation of Mo during its removal from the slab is not required to explain the observed systematics in this system.

  15. Overview of the Ocean Bottom Seismology Component of the Cascadia Initiative (Invited) (United States)

    Toomey, D. R.; Allen, R. M.; Collins, J. A.; Dziak, R. P.; Hooft, E. E.; Livelybrooks, D.; McGuire, J. J.; Schwartz, S. Y.; Tolstoy, M.; Trehu, A. M.; Wilcock, W. S.


    We report on the experimental progress of the ocean bottom seismology component of the Cascadia Initiative (CI). The CI is an onshore/offshore seismic and geodetic experiment that takes advantage of an Amphibious Array Facility (AAF) to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates. This diverse set of objectives are all components of understanding the overall subduction zone system and require an array that provides high quality data that crosses the shoreline and encompasses relevant plate boundaries. In October 2010, an open community workshop was convened in Portland, Oregon that produced a series of recommendations to maximize the scientific return of the CI and to develop deployment plans for the offshore component of the experiment. The NSF Cascadia Initiative Workshop Report1 presents the scientific objectives of the CI, the resources involved and the community-defined ocean bottom seismometer (OBS) deployment plan. There are several noteworthy aspects of the CI: The CI is the first to utilize a new generation of OBSs that are designed to withstand trawling by fisheries, thus allowing the collection of seismic data in the shallow water that overlies much of the Cascadia megathrust. The CI is a plate-scale experiment that provides a unique opportunity to study the structure and dynamics of an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continental plate. Together with the land stations that are part of the amphibious array and other land networks, the OBSs will provide coverage at a density comparable to the Transportable Array of Earthscope from the volcanic arc out to the Pacific-Juan de Fuca spreading center segments. The CI is a community experiment that provides open access to all data via the IRIS Data Management Center, thus ensuring that the scientific return from the investment of resources is

  16. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan) (United States)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.


    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can

  17. Electromagnetic Energy Released in the Subduction (Benioff) Zone in Weeks Previous to Earthquake Occurrence in Central Peru and the Estimation of Earthquake Magnitudes. (United States)

    Heraud, J. A.; Centa, V. A.; Bleier, T.


    During the past four years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone and are connected with the occurrence of earthquakes within a few kilometers of the source of such pulses. This evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. Additional work has been done and the method has now been expanded to provide the instantaneous energy released at the stress areas on the Benioff zone during the precursory stage, before an earthquake occurs. Collected data from several events and in other parts of the country will be shown in a sequential animated form that illustrates the way energy is released in the ULF part of the electromagnetic spectrum. The process has been extended in time and geographical places. Only pulses associated with the occurrence of earthquakes are taken into account in an area which is highly associated with subduction-zone seismic events and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including the animated data video, constitute additional work towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. The method is providing clearer evidence that electromagnetic precursors in effect conveys physical and useful information prior to the advent of a seismic event


    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis


    Full Text Available Although large earthquakes along the Makran Subduction Zone are infrequent, the potential for the generation of destructive tsunamis in the Northern Arabian Sea cannot be overlooked. It is quite possible that historical tsunamis in this region have not been properly reported or documented. Such past tsunamis must have affected Southern Pakistan, India, Iran, Oman, the Maldives and other countries bordering the Indian Ocean.The best known of the historical tsunamis in the region is the one generated by the great earthquake of November 28, 1945 off Pakistan's Makran Coast (Balochistan in the Northern Arabian Sea. The destructive tsunami killed more than 4,000 people in Southern Pakistan but also caused great loss of life and devastation along the coasts of Western India, Iran, Oman and possibly elsewhere.The seismotectonics of the Makran subduction zone, historical earthquakes in the region, the recent earthquake of October 8, 2005 in Northern Pakistan, and the great tsunamigenic earthquakes of December 26, 2004 and March 28, 2005, are indicative of the active tectonic collision process that is taking place along the entire southern and southeastern boundary of the Eurasian plate as it collides with the Indian plate and adjacent microplates. Tectonic stress transference to other, stress loaded tectonic regions could trigger tsunamigenic earthquakes in the Northern Arabian Sea in the future.The northward movement and subduction of the Oman oceanic lithosphere beneath the Iranian micro-plate at a very shallow angle and at the high rate is responsible for active orogenesis and uplift that has created a belt of highly folded and densely faulted coastal mountain ridges along the coastal region of Makran, in both the Balochistan and Sindh provinces. The same tectonic collision process has created offshore thrust faults. As in the past, large destructive tsunamigenic earthquakes can occur along major faults in the east Makran region, near Karachi, as

  19. Bauxite to eclogite: Evidence for late Permian supracontinental subduction at the Red River shear zone, northern Vietnam (United States)

    Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van


    We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia

  20. Searching for conditions of observation of subduction seismogenic zone transients on Ocean Bottom Seismometers deployed at the Lesser Antilles submerged fore-arc (United States)

    Bécel, Anne; Laigle, Mireille; Diaz, Jordi; Hirn, Alfred; Flueh, Ernst; Charvis, Philippe


    In the frame of the European Union « THALES WAS RIGHT » and French ANR CATTELL SUBSISMANTI funding, an unprecedented array of 80 OBS, Ocean Bottom Seismometers of Géoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven could gathered. They have been deployed for continuous recording over four months on the fore-arc domain of the Lesser Antilles subduction zone offshore Martinique, Dominica, Guadeloupe and Antigua Islands, by scientific cruises of N/O ATALANTE, F/S M. A. MERIAN and N/O ANTEA. One of the aims of this OBS array was the feasibility study of detecting at sea-bottom the seismological part of recently discovered phenomena such as NVT non-volcanic tremors and LP, for Long-Period events. The ability of detecting such transient signals is of importance, since they are possibly related to potential mega-thrust earthquakes and their preparation zone. At the Lesser Antilles subduction zone, the fore-arc domain overlying the seismogenic part of the interplate is located offshore, covered by as much as 4000 m of water. In this case, transient signals can be accessible only from OBS observations. Hence, there is a major difference, in the sense of the instrumental and logistical effort, with the subductions under NW US-Canada and under Central Japan where these signals have been discovered. There, the subduction zones have an emerged fore-arc that has allowed the chance discovery of those phenomena by regular instrument maintained routinely on land. Over 20 of the instruments were BB-OBS, with broadband seismic sensors, possibly the largest such gathering at the time of the experiment among the OBS types. Among those broadband OBS designed or used by different Institutions, there were at least three different seismometer brands and acoustical sensors, as well as different mechanical mounting and technical solutions for coupling them to ground. This did not facilitate data recovery and processing, but on the other hand, as planned by interweaving the

  1. He and N isotopes in thermal springs of the Mexican Pacific coast: subducting slab, continental crust and mantle contributions to fluids of a forearc zone. (United States)

    Taran, Yuri; Inguaggiato, Salvatore; Varley, Nicholas; Ramirez Guzman, Alejandro


    Two oceanic plates are subducting beneath the continent along the Mexican Pacific coast: Cocos Plate south of Colima graben (~19°N) and a young Rivera Plate to the north of Colima graben. The trench is situated ~ 70 km from the shore line which is very close comparing with other continental margins. There are 26 groups of thermal springs between 16°N and 21°N, in a 30 km-wide zone along the coast. The temperature and salinity ranges are 40-90°C and 100-20,000 ppm, respectively. The springs are mainly of a low salinity (Tuna) springs located within the southern board of the Colima graben discharge saline Na-Ca-Cl water (46°C, Cl=15,000 ppm) with N2/Ar > 400, δ15N = +4.6‰, almost no CH4 ( 300, δ15N = +5‰ and 3He/4He = 0.4Ra. A number of hot and warm springs associated with Puerto Vallarta graben are characterized by high 3He/4He up to 4.5Ra, elevated N2/Ar and δ15N. The last group, Punta Mita hot springs (20° 46'N), are submarine vents, 10 m deep. Their gas has elevated CH4 content, high N2/Ar and 3He/4He = 0.4Ra. The results are discussed in several aspects: (1) Why this low heat flow zone is characterized by so high hydrothermal activity? (2) Does the elevated 3He/4He within Michoacan-Colima profile relate to the slab detachment associated with the contact between Cocos and Rivera plates? (3) Do high N2/Ar and δ15N above the Rivera Plate subduction indicate the forearc degassing of the accreted organic-rich oceanic sediments? (4) How to estimate the total flux of volatiles released in a forearc zone from the subducting slab?

  2. Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain (United States)

    Henry, Hadrien; Tilhac, Romain; Griffin, William L.; O'Reilly, Suzanne Y.; Satsukawa, Takako; Kaczmarek, Mary-Alix; Grégoire, Michel; Ceuleneer, Georges


    pyroxenites: (1) delamination from an arc root in a mantle-wedge setting at temperatures above 1000 °C and (2) introduction into a relatively softer subduction channel where deformation was accommodated by localized shear zones, thus preserving the high-temperature fabrics of pyroxenites. The Cabo Ortegal pyroxenites may therefore be seen as a rare exposure of deformed mantle-wedge material.

  3. A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past (United States)

    Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.


    Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.

  4. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko


    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  5. Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region

    NARCIS (Netherlands)

    Meijers, M.J.M.; Vrouwe, B.; van Hinsbergen, D.J.J.; Kuiper, K.F.; Wijbrans, J.R.; Davies, G.R.; Stephenson, R.A.; Kaymakci, N.; Matenco, L.C.; Saintot, A.N.


    The early Cretaceous and younger opening of the Black Sea has obliterated much of the older record of Tethyan subduction below southeastern Europe. The earlier Mesozoic evolution was dominated by opening and closure of Tethyan oceans between Gondwana and Laurasia with their consumption, at least in

  6. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism (United States)

    Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F.


    We studied the Zhimafang ultrahigh-pressure metamorphic (UHP) peridotite from pre-pilot drill hole PP-1 of Chinese Continental Scientific Drilling project in the Sulu UHP terrane, eastern China. The peridotite occurs as lens within quartofeldspathic gneiss, and has an assemblage of Ol + Opx + Cpx + Phl + Ti-clinohumite (Ti-Chu) + Grt (or chromite) ?? magnesite (Mgs). Zircons were separated from cores at depths of 152 m (C24, garnet lhezolite), 160 m (C27, strongly retrograded phlogopite-rich peridotite) and 225 m (C50, banded peridotite), and were dated by SHRIMP mass spectrometer. Isometric zircons without inherited cores contain inclusions of olivine (Fo91-92), enstatite (En91-92), Ti-clinohumite, diopside, phlogopite and apatite. The enstatite inclusions have low Al2O3 contents of only 0.04-0.13 wt.%, indicating a UHP metamorphic origin. The weighted mean 206Pb/238U zircon age for garnet lherzolite (C24) is 221 ?? 3 Ma, and a discordia lower intercept age for peridotite (C50) is 220 ?? 2 Ma. These ages are within error and represent the time of subduction-zone UHP metamorphism. A younger lower intercept age of 212 ?? 3 Ma for a foliated wehrlite (C27) was probably caused by Pb loss during retrograde metamorphism. The source of zirconium may be partially attributed to melt/fluid metasomatism within the mantle wedge. Geochronological and geochemical data confirm that the mantle-derived Zhimafang garnet peridotites (probably the most representative type of Sulu garnet peridotites) were tectonically inserted into a subducting crustal slab and subjected to in situ Triassic subduction-zone UHP metamorphism. ?? 2005 Elsevier B.V. All rights reserved.

  7. Formation of mantle "lone plumes" in the global downwelling zone - A multiscale modelling of subduction-controlled plume generation beneath the South China Sea (United States)

    Zhang, Nan; Li, Zheng-Xiang


    It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.

  8. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration (United States)

    Peterson, D. E.; Keranen, K. M.


    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly

  9. Seismicity and velocity structure of the Southern Chilean subduction zone (between 37° and 39°S) revealed by the TIPTEQ local seismic network (United States)

    Haberland, C.; Rietbrock, A.; Lange, D.; Bataille, K.; Dahm, T.


    The largest earthquakes are being generated at convergent plate boundaries, where oceanic plates subduct beneath other tectonic plates. Understanding the factors leading to these earthquakes in the coupling zone of convergent margins and their interrelation with surface deformation are the main aims of the international and interdisciplinary research initiative TIPTEQ (From The Incoming Plate To megaThrust EarthQuake Processes). High resolution images of the seismogenic zone and the forearc structure form the base for identifying the processes involved. Within this project a large temporary seismological network was installed in southern Chile between November 2004 and October 2005, covering the forearc between 37° and 39°~S. In this region the Mw=9.5 1960 Chile earthquake, the worldwide largest instrumentally ever recorded earthquake, nucleated. The network consisted of up to 120 digitally recording and continuously running seismic stations equipped with short period sensors. The onshore network was complemented by 10 ocean bottom seismometers/hydrophones. In total we observed 544 local earthquakes (with local magnitudes between 1 and 5.2) and numerous regional and teleseismic events. A high-quality subset of 213 local earthquakes with 14.754 P and S onset times (occurring in the interseismic cycle) was used for a simultaneous inversion for the 1-D velocity model and precise earthquake locations. By relocating artificial shots we estimated the accuracy of the earthquake hypocenter to about 1~km horizontally and 500~m vertically. In a second step, locations and 1-D model were used for the simultaneous inversion for the 3-D velocity structure and hypocenters (tomography). The events are found in the crustal forearc, the downgoing plate, and at the interface between both plates. Crustal events along NW and NNW striking, deep-reaching faults reflect the interseismic transpressional deformation of the forearc crust due to the subduction of the Nazca plate. The

  10. Partial melting of carbonated pelite at 3-7 GPa and deep cycling of CO2 and H2O in subduction zones (United States)

    Tsuno, K.; Dasgupta, R.; Danielson, L. R.; Righter, K.


    The exchange of water and carbon dioxide between the Earth's crustal rocks and the interior is important for understanding geochemical and geophysical evolution of the planet on geologic timescale. Subduction of pelitic sediments is a key mechanism for volatile introduction to the mantle but the high-pressure behavior of H2O+ CO2 bearing sediments is only constrained for alumina-rich, low-Mg# bulk compositions [1, 2]. However, the ocean-floor sediments for many subduction zones that contain both water and CO2 are alumina-poor and have higher Mg#. To constrain the melting behavior of a model alumina poor carbonated pelite, we performed new experiments. Piston cylinder (3 GPa) and multianvil (5 and 7 GPa) experiments were conducted between 800 and 1150 °C, using a model sediment composition containing 1 wt.% H2O and 5 wt.% CO2 (trace vapor-present at subsolidus conditions). The choice of the bulk composition was aimed to model the loss of siliceous hydrous fluid during the shallow part of subduction. We determined the solidus temperatures between 800 and 850 °C at 3 GPa, 900 and 950 °C at 5 GPa, and calcio-carbonatitic, in contrast to the previous experimental results in alumina-rich and low Mg# bulk composition [1, 2], which showed the stability of Al-rich trachyitic silicate melt at near-solidus temperatures up to 5 GPa, and replaced by carbonate melt only at ≥5.5 GPa. Carbonate-silicate melt immiscibility was observed at 5 GPa, 1100 °C in our study. The phengite-out boundary is located between 850 and 900 °C at 3 GPa, between 1000 and 1100 °C at 5 GPa, and calcio-carbonatitic melt, are likely to be released from relatively hot subducting slabs. The observation of carbonate melt inclusion in cpx and garnet in deeply subducted carbonate-rich sediments [3] might be explained by our experimental results that carbonatite is the stable near-solidus sediment melt at deep sub-arc depths. [1] Thomsen, T.B. and Schmidt, M.W. 2008, EPSL 267, 17-31. [2] Grassi, D. and

  11. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.


    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  12. An exploratory study for rapid estimation of critical source parameters of great subduction-zone earthquakes in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. K; Perez-Campos, X, Iglesias, A; Pacheco, J. F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)


    The rapid and reliable estimation of moment magnitude M{sub w}, location, and size of rupture area, and radiated energy E{sub s} of great Mexican subduction zone earthquakes is critical for a quick assessment of tsunami and/or damage potential of the event and for issuing an early tsunami alert. To accomplish this goal, the Mexican broadband seismic network needs to be supplemented by permanent GPS stations along the Pacific coast, spaced about 65 km apart or less. The data from the GPS network must be transmitted to a central location and processed in near-real time to track the position of the stations. Assuming that this can be implemented, we develop a procedure for near-real time estimation of the critical source parameters. We demonstrate the viability of the procedure by processing near-source GPS data and regional seismograms for the earthquakes of Colima-Jalisco in 1995 (M{sub w}=8.0) and Sumatra-Andaman in 2004 (M{sub w}=9.0-9.3). The procedure yields estimates of M{sub w} and E{sub s} in excellent agreement with those reported from earlier solutions. In the case of the Colima-Jalisco earthquake, the estimated location and size of rupture area agree with that mapped from aftershock locations. Presently, there are 13 permanent GPS stations along the Pacific coast of Mexico with an average spacing of {approx}200 km which operate in an autonomous mode. It is urgent to increase the number of stations to {>=}28 thus decreasing the spacing of stations to {<=}65 km. Data must be transmitted in near-real time to a central station to track the position of the stations, preferably every second. [Spanish] Para una estimacion oportuna del potencial de dano y tsunami asociado a los grandes temblores de subduccion en Mexico, resulta critica la determinacion rapida y confiable de parametros sismologicos como lo son la magnitud de momento (M{sub w}), la energia sismica radiada (E{sub s}) y la localizacion y el tamano de la ruptura. Para alcanzar este objetivo, la red

  13. Effect of sulfate on the liquidus and sulfur concentration at anhydrite saturation (SCAS) of hydrous basalt at subduction zones (United States)

    Chowdhury, P.; Dasgupta, R.


    Sulfur (S) as sulfide minerals, melts, and as S2- species in silicate melts is prevalent in many different tectono-magmatic settings in Earth. Yet, S as anhydrite or as SO42- species in fluids and melts is thought to be relevant for subduction zones, where the presence of sulfate over sulfide is argued to play a key role in processes such as mobility of chalcophile element [e.g., 1], oxidation of mantle and mantle-derived magmas [2], and release of excess S-rich gases [3]. However, it remains unclear what role the slab-released SO42-, dissolved in fluids or melts plays in magma genesis in sub-arc mantle. Furthermore, although oxidized arc magma is thought to transport SO42- from mantle to volcanic arc crust and atmosphere, the SO42- carrying capacity of arc basalts at mantle conditions are unknown as the existing S concentration at anhydrite saturation (SCAS) experiments are restricted to 1 GPa and mostly on felsic compositions [e.g. 4,5]. We performed piston-cylinder experiments in Au-Pd capsules at 1-3 GPa and 1000-1325 °C to investigate (a) the effect of variable dissolved SO42- (0-2 wt.% S) on the liquidus of a primary hydrous arc basalt with 4 wt.% H2O and (b) the SCAS of hydrous mafic magmas. Dissolved SO42- in the silicate melt was confirmed by S Kα X-ray peak position using electron microprobe. S-free hydrous liquidus of cpx at 2 GPa is 25 °C hotter than the liquidus with 0.1 wt.% S as SO42- and the liquidus depression with further S enrichment to anhydrite saturation ( 2 wt.% S) can be fitted by an empirical power function. Experiments on more mafic compositions show that SCAS increases with increasing temperature and CaO and decreases with SiO2. Calculations using a new SCAS model, fitted with our new data and previous experiments, and assuming 150-550 ppm S in the arc mantle [6] show that <10% melting would exhaust anhydrite, if present. The S content as SO42- of hydrous arc basalts produced by 10-20% melting [7] will be 500-4000 ppm, which is

  14. Cenozoic Evolution of the Central Part of the Mexican Subduction Zone From Geologic and Geophysical Data - In the Eve of the Result From the "Mase" Experiment (United States)

    Ferrari, L.


    The Meso America Subduction Experiments (MASE), carried out jointly by Caltech, UCLA and UNAM (Institute of Geophysics and Center for Geoscience) is about to provide a detailed image of the crust and upper mantle in the central part of the Mexican subduction zone (Acapulco, Gro. Huejutla, Hgo.). Preliminary results show that the Cocos plate between the coast and the volcanic front is horizontal and placed just beneath the upper plate Moho. Further north, beneath the Trans-Mexican Volcanic Belt (TMVB), seismicity is scarce or absent and the geometry of the subducted plate is poorly defined. This part of the TMVB also displays a large geochemical variability, including lavas with scarce to none evidence of fluids from the subducting plate (OIB in Sierra Chichinautzin) and lavas with slab melting signature (adakites of Nevado de Toluca and Apan area) that coexist with the more abundant products showing clear evidence of fluids from the subduting plate. These peculiarities led several workers to formulate models that depart from a classic subduction scenario for the genesis of the TMVB. These include the presence of a rootless mantle plume, the development of a continental rift, a more or less abrupt increase of the subduction angle and a detached slab. While waiting from the final results of the MASE project the data available from potential methods, thermal modeling and the geologic record of the TMVB provide some constraints to evaluate these models. Gravimetric and magnetotelluric data consistently indicate that beneath the TMVB the upper mantle has a relatively low density and high temperatures/conductivity. Thermal modeling also indicates a low viscosity and high temperature mantle beneath the arc. All the above seems to indicate that the slab must increase rapidly its dip beneath the volcanic front leaving space for a hot asthenospheric mantle. The fate of the slab further to the north is unclear from geophysical data alone. Global and regional tomographic

  15. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan (United States)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.


    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  16. Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador) (United States)

    Samaniego, Pablo; Robin, Claude; Chazot, Gilles; Bourdon, Erwan; Cotten, Joseph


    Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an old, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1,100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza, and Cristal) which developed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate may account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the transition between the Rucu Pichincha andesites and Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the slab contribution

  17. Testing Spatial Correlation of Subduction Interplate Coupling and Forearc Morpho-Tectonics (United States)

    Goldfinger, Chris; Meigs, Andrew; Meigs, Andrew; Kaye, Grant D.; VanLaningham, Sam


    Subduction zones that are capable of generating great (Mw greater than 8) earthquakes appear to have a common assemblage of forearc morphologic elements. Although details vary, each have (from the trench landward), an accretionary prism, outer arc high, outer forearc basin, an inner forean: basin, and volcanic arc. This pattern is common in spite of great variation in forearc architecture. Because interseismic strain is known to be associated with a locked seismogenic plate interface, we infer that this common forearc morphology is related, in an unknown way, to the process of interseismic Strain accumulation and release in great earthquakes. To date, however, no clear relationship between the subduction process and the common elements of upper plate form has emerged. Whereas certain elements of the system, i.e. the outer arc high, are reasonably well- understood in a structural context, there is little understanding of the structural or topographic evolution of the other key elements like the inner arc and inner forearc basin, particularly with respect to the coupled zone of earthquake generation. This project developed a model of the seismologic, topographic, and uplift/denudation linkages between forearc topography and the subduction system by: 1) comparing geophysical, geodetic, and topographic data from subduction margins that generate large earthquakes; 2) using existing GPS, seismicity, and other data to model the relationship between seismic cycles involving a locked interface and upper-plate topographic development; and 3) using new GPS data and a range-scale topographic, uplift, and denudation analysis of the presently aseismic Cascadia margin to constrain topographic/plate coupling relationships at this poorly understood margin.

  18. Numerical modelling of lithospheric flexure in front of subduction zones in Japan and its role to initiate melt extraction from the LVZ. (United States)

    Bessat, A.; Pilet, S.; Duretz, T.; Schmalholz, S. M.


    Petit-spot volcanoes were found fifteen years ago by Japanese researchers at the top of the subducting plate in Japan (Hirano 2006). This discovery is of great significance as it highlights the importance of tectonic processes for the initiation of intraplate volcanism. The location of these small lava flows is unusual and seems to be related to the plate flexure, which may facilitate the extraction of low degree melts from the base of the lithosphere, a hypothesis previously suggested to explain changes in electric and seismic properties at 70-90 km depth, i.e. within the low velocity zone (LVS) (Sifré 2014). A critical question is related to the process associated with the extraction of this low degree melts from the LVZ. First models suggested that extension associated to plate bending allows large cracks to propagate across the lithosphere and could promote the extraction of low degree melts at the base of the lithosphere (Hirano 2006 & Yamamoto 2014). However, the study of petit-spot mantle xenoliths from Japan (Pilet 2016) has demonstrated that low degree melts are not directly extracted to the surface but percolate, interact and metasomatize the oceanic lithosphere. In order to understand the melt extraction process in the region of plate bending, we performed 2D thermo-mechanical simulations of Japanese-type subduction. The numerical model considers viscoelastoplastic deformation. This allows the quantification of state of the stress, strain rates, and viscosities which will control the percolation of melt initially stocked at the base of the lithosphere. Initial results show that plate flexure changes the distribution of the deformation mechanism in the flexure zone, between 40 km to 80 km depth. A change of the dominant deformation mechanism from diffusion creep to dislocation creep and from there to Peierls creep was observed about 200 to 300 km from the trench. These changes are linked to the augmentation of the stresses in the flexure zone. At the

  19. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration. (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.


    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  20. Sedimentology of seismo-turbidites off the Cascadia and northern California active tectonic continental margins, Pacific Ocean (United States)

    Gutierrez Pastor, Julia; Nelson, Hans; Goldfinger, Chris; Escutia, Carlota


    Holocene turbidites from turbidite channel systems along the active tectonic continental margins of the Cascadia subduction zone (offshore Vancouver Island to Mendocino Triple Junction) and the northern San Andreas Transform Fault (the Triple Junction to San Francisco Bay), have been analyzed for sedimentologic features related to their seismic origin. Centimeter thick silt/sand beds (turbidite base) capped by mud layers (turbidite tail) and interbedded with hemipelagic silty clay intervals with high biogenic content have been characterized by visual core descriptions, grain-size analysis, X-ray radiographs and physical properties. Along the northern California margin in upstream single tributary canyons and channels, most turbidites are uni-pulsed (classic fining up) whereas downstream below multiple tributary canyon and channel confluences, most deposits are stacked turbidites. Because each set of stacked turbidites has no hemipelagic sediment between each turbidite unit and each unit has a distinct mineralogy from a different tributary canyon, we interpret that a stacked turbidite is deposited by several coeval turbidity currents fed by multiple tributary canyons and channels with synchronous triggering from a single San Andreas Fault earthquake. The Cascadia margin is characterized by individual multi-pulsed turbidites that contain multiple coarse-grained sub-units without hemipelagic sediment between pulses. Because the number and character of multiple coarse-grained pulses for each correlative multi-pulsed turbidite is almost always constant both upstream and downstream in different channel systems for 600 km along the margin,we interpret that the earthquake shaking or aftershock signature is usually preserved, for the much stronger Cascadia (≥9 Mw) compared to weaker California (≥8Mw) earthquakes, which result in upstream uni-pulsed turbidites and downstream stacked turbidites. Consequently, both the strongest (≥9 Mw) great earthquakes and downstream

  1. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones (United States)

    Hattori, KéIko H.; Guillot, StéPhane


    Serpentinites associated with eclogitic rocks were examined from three areas: the Alps, Cuba, and the Himalayas. Most serpentinites have low Al/Si and high concentrations of Ir-type platinum group elements (PGE) in bulk rock compositions, indicating that they are hydrated mantle peridotites. A few samples contain high Al/Si and low concentrations of Ir-type PGE, suggesting that they are ultramafic cumulates. Among the hydrated mantle peridotites, we identified two groups, primarily on the basis of Al/Si and Mg/Si ratios: forearc mantle serpentinites and hydrated abyssal peridotites. Forearc serpentinites occur in the Himalayas and along a major deformation zone in Cuba. All serpentinites in the Alps and most serpentinites in Cuba are hydrated abyssal peridotites. Himalayan serpentinites have low Al/Si and high Mg/Si ratios in bulk rock compositions, and high Cr in spinel; they were serpentinized by fluids released from the subducted Indian continent and enriched in fluid-mobile elements, and show high 87Sr/86Sr, up to 0.730, similar to the values of rocks of the subducted margin of the Indian continent. Although Himalayan serpentinites have a similar refractory geochemical signature as the Mariana forearc serpentinites, the former contain markedly high concentrations of fluid-mobile elements and high 87Sr/86Sr compared to the latter that were hydrated by subducted Pacific Ocean crust. The data indicate that the enrichment of fluid-mobile elements in forearc serpentinites depends on the composition of subducted slabs. Alpine serpentinites and most Cuban serpentinites show moderate Al/Si similar to abyssal peridotites. Hydration of peridotites near the seafloor is supported by micro-Raman spectra of earlier formed lizardite, high δ34S (+11 to +17‰) of sulphides, and elevated 87Sr/86Sr, ranging from 0.7037 to 0.7095. The data support the contribution of S and Sr from seawater and sediments. These serpentinites are not highly enriched in fluid-mobile elements

  2. Seattle - seeking balance between the Space Needle, Starbucks, the Seahawks, and subduction (United States)

    Vidale, J. E.


    Seattle has rich natural hazards. Lahars from Mount Rainier flow from the south, volcanic ash drifts from the East, the South Whidbey Island fault lies north and east, the Cascadia subduction zone dives underfoot from the west, and the Seattle fault lies just below the surface. Past and future landslides are sprinkled democratically across the surface, and Lake Washington and Puget Sound are known to seiche. All are ultimately due to subduction tectonics. As in most tectonically-exposed cities, the hazards are due mainly (1) to the buildings predating the relatively recent revelation that faulting here is active, (2) transportation corridors built long ago that are aging without a good budget for renewal, and (3) the unknown unknowns. These hazards are hard to quantify. Only the largest earthquakes on the Cascadia megathrust have a 10,000-year history, and even for them the down-dip rupture limits, stress drop and attenuation have unacceptable uncertainty. For the threatening faults closer in the upper crust, written history is short, glacial erosion and blanketing preclude many geophysical investigations, and healthy forests frustrate InSAR. On the brighter side, the direct hazard of earthquake shaking is being addressed as well as it can be. The current seismic hazard estimate is derived by methods among the most sophisticated in the world. Logic trees informed by consensus forged from a series of workshops delineate the scenarios. Finite difference calculations that include the world-class deep and soggy basins project the shaking from fault to vulnerable city. One useful cartoon synthesizing the earthquake hazard, based on Art Frankel's report, is shown below. It illustrates that important areas will be strongly shaken, and issues remain to be addressed. Fortunately, with great coffee and good perspective, we are moving toward improved disaster preparedness and resilience.

  3. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps) (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin


    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  4. Key role of Upper Mantle rocks in Alpine type orogens: some speculations derived from extensional settings for subduction zone processes and mountain roots (United States)

    Müntener, Othmar


    Orogenic architecture and mountain roots are intrinsically related. Understanding mountain roots largely depends on geophysical methods and exhumed high pressure and high temperature rocks that might record snapshots of the temporal evolution at elevated pressure, temperatures and/or fluid pulses. If such high pressure rocks represent ophiolitic material they are commonly interpreted as exhumed remnants of some sort of 'mid-ocean ridge' processes. Mantle peridotites and their serpentinized counterparts thus play a key role in understanding orogenic architecture as they are often considered to track suture zones or ancient plate boundaries. The recognition that some mantle peridotites and their serpentinized counterparts are derived from ocean-continent transition zones (OCT's) or non-steady state (ultra-)slow plate separation systems question a series of 'common beliefs' that have been applied to understand Alpine-type collisional orogens in the framework of the ophiolite concept. Among these are: (i) the commonly held assumption of a simple genetic link between mantle melting and mafic (MORB-type) magmatism, (ii) the commonly held assumption that mélange zones represent deep subduction zone processes at the plate interface, (iii) that pre-collisional continental crust and oceanic crust can easily be reconstructed to their original thickness and used for reconstructions of the size of small subducted oceanic basins as geophysical data from rifted margins increasingly indicate that continental crust is thinned to much less than the average 30-35 kilometers over a large area that might be called the 'zone of hyperextension', and (iv) the lack of a continuous sheet of mafic oceanic crust and the extremely short time interval of formation results in a lack of 'eclogitization potential' during convergence and hence a lack of potential for subsequent slab pull and, perhaps, a lack of potential for 'slab-breakoff'. Here we provide a synopsis of mantle rocks from the

  5. Deeply subducted continental fragments – Part 1: Fracturing, dissolution–precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps

    Directory of Open Access Journals (Sweden)

    F. Giuntoli


    Full Text Available Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps. These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid–rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b peninsulas and atoll garnet are the result of replacement reactions; and (c spatially limited resorption and

  6. Array-Based Receiver Function Analysis of the Subducting Juan de Fuca Plate Beneath the Mount St. Helens Region and its Implications for Subduction Geometry and Metamorphism (United States)

    Mann, M. E.; Abers, G. A.; Creager, K. C.; Ulberg, C. W.; Crosbie, K.


    Mount St. Helens (MSH) is unusual as a prolific arc volcano located 50 km towards the forearc of the main Cascade arc. The iMUSH (imaging Magma Under mount St. Helens) broadband deployment featured 70 seismometers at 10-km spacing in a 50-km radius around MSH, spanning a sufficient width for testing along-strike variation in subsurface geometry as well as deep controls on volcanism in the Cascade arc. Previous estimates of the geometry of the subducting Juan de Fuca (JdF) slab are extrapolated to MSH from several hundred km to the north and south. We analyze both P-to-S receiver functions and 2-D Born migrations of the full data set to locate the upper plate Moho and the dip and depth of the subducting slab. The strongest coherent phase off the subducting slab is the primary reverberation (Ppxs; topside P-to-S reflection) from the Moho of the subducting JdF plate, as indicated by its polarity and spatial pattern. Migration images show a dipping low velocity layer at depths less than 50 km that we interpret as the subducting JdF crust. Its disappearance beyond 50 km depth may indicate dehydration of subducting crust or disruption of high fluid pressures along the megathrust. The lower boundary of the low velocity zone, the JdF Moho, persists in the migration image to depths of at least 90 km and is imaged at 74 km beneath MSH, dipping 23 degrees. The slab surface is 68 km beneath MSH and 85 km beneath Mount Adams volcano to the east. The JdF Moho exhibits 10% velocity contrasts as deep as 85 km, an observation difficult to reconcile with simple models of crustal eclogitization. The geometry and thickness of the JdF crust and upper plate Moho is consistent with similar transects of Cascadia and does not vary along strike beneath iMUSH, indicating a continuous slab with no major disruption. The upper plate Moho is clear on the east side of the array but it disappears west of MSH, a feature we interpret as a result of both serpentinization of the mantle wedge and a

  7. Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake (United States)

    Satriano, Claudio; Dionicio, Viviana; Miyake, Hiroe; Uchida, Naoki; Vilotte, Jean-Pierre; Bernard, Pascal


    The 2011 Tohoku megathrust earthquake ruptured a vast region of the northeast Japan Trench subduction zone in a way that had not been enough anticipated by earthquake and tsunami risk scenarios. We analyzed the Tohoku rupture combining high-frequency back-projection analysis with low frequency kinematic inversion of the co-seismic slip. Results support the to-day well-accepted broadband characteristics of this earthquake. Most of the seismic moment is released during the first 100 s, with large co-seismic slip (up to 55 m) offshore Miyagi in a compact region on the landward side of the trench. Coherent high-frequency radiation areas and relatively low co-seismic slip are a distinctive signature of the slab-mantle interface. The broadband characteristics of the Tohoku rupture are interpreted, integrating the seismic activity and structure information on the NE Japan forearc region, as a signature of along-dip segmentation and segment interactions, that result from thermal structure, plate geometry, material composition and fracture heterogeneities along the plate boundary interface. Deep mantle corner flow and low dehydration rates along the cold subduction slab interface lead to an extended seismogenic slab-mantle interface, with strong bi-material contrast controlling larger propagation distance in the downdip preferred rupture direction. Off Miyagi, plate bending below the mantle wedge, ∼142.3°E at ∼25 km depth, is associated with the eastern limit of the deep M7-8-class thrust-earthquakes, and of the strongest coherent high-frequency generation areas. The region of the slab-crust interface between the mantle wedge limit, ∼142.7°E at ∼20 km depth, and a trenchward plate bending, ∼143.2°E at ∼15 km, acted as an effective barrier resisting for many centuries to stress-loading gradient induced by deep stable sliding and large earthquakes along the slab-mantle interface. The 2011 Tohoku earthquake, whose hypocenter is located on the east side of the

  8. Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites (United States)

    Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.


    The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB

  9. Microfossil measures of rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia (United States)

    Horton, B.P.; Milker, Yvonne; Dura, T.; Wang, Kelin; Bridgeland, W.T.; Brophy, Laura S.; Ewald, M.; Khan, Nicole; Engelhart, S.E.; Nelson, Alan R.; Witter, Robert C.


    Comparisons of pre-earthquake and post-earthquake microfossils in tidal sequences are accurate means to measure coastal subsidence during past subduction earthquakes, but the amount of subsidence is uncertain, because the response times of fossil taxa to coseismic relative sea-level (RSL) rise are unknown. We measured the response of diatoms and foraminifera to restoration of a salt marsh in southern Oregon, USA. Tidal flooding following dike removal caused an RSL rise of ∼1 m, as might occur by coseismic subsidence during momentum magnitude (Mw) 8.1–8.8 earthquakes on this section of the Cascadia subduction zone. Less than two weeks after dike removal, diatoms colonized low marsh and tidal flats in large numbers, showing that they can record seismically induced subsidence soon after earthquakes. In contrast, low-marsh foraminifera took at least 11 months to appear in sizeable numbers. Where subsidence measured with diatoms and foraminifera differs, their different response times may provide an estimate of postseismic vertical deformation in the months following past megathrust earthquakes.

  10. Increasing tsunami preparedness through educator professional development in coastal Cascadia communities (United States)

    Pratt-Sitaula, B. A.; Butler, R. F.; Hunter, N.; Lillie, R. J.; Magura, B.; Groom, R.; Johnson, J. A.; Coe, M.


    Increasing society's ability to mitigate risks is one of the major goals of geohazard research. Therefore part of tsunami science research must be finding effective ways to communicate scientific findings to the public to be used in community preparedness plans. The "Cascadia EarthScope Earthquake and Tsunami Education Program" (CEETEP; has worked to bridge the gap between scientific researchers and the public by providing professional development workshops for educators from coastal communities in Oregon, Washington, and northern California. CEETEP translates cutting edge EarthScope and other geoscience research into educational resources appropriate for K-12 teachers, park and museum interpreters, and emergency management outreach educators and their learners. Local educators have the potential to reach a wide segment of coastal residents. The tsunami generated by the next Great Cascadia Subduction Zone earthquake will arrive only 10-30 minutes after shaking, making mitigation and community-wide education an imperative. An essential component of CEETEP is collaboration with experts in science, pedagogy, and emergency preparedness. CEETEP provided two 4-day workshops and a follow-up Share-a-thon each year for three years (2013-2015). 151 educators participated in the program. Results from CEETEP are very encouraging. Participant content knowledge improved from 49% to 82% over the course of the workshop. Similarly, confidence in teaching about workshop topics increased from an average of 3.0 to 5.3 on a 6-point scale. Participant optimism about the efficacy and tractability of community-level planning also increased from 6.1 to 7.8 on a 9-point scale. Nearly 90% of participants continued to be active with the program through their March Share-a-thon and presented on a wide range of activities that they and their learners undertook related to earthquake and tsunami science and preparedness. Participants were also quite favorable about the

  11. Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska (United States)

    Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.


    The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough

  12. Stress Orientations and Strain Rates in the Upper Plate of a `Locked' subduction zone, at southernmost North Island, New Zealand (United States)

    Evanzia, D. A. D.; Lamb, S. H.; Savage, M. K.


    The southern North Island, New Zealand is located at the southern Hikurangi Margin, where the Pacific Plate is obliquely subducting westward underneath the Australian Plate. The orientations of the principle stresses in the overriding plate are determined from microseismic focal mechanisms detected and located using the temporary SAHKE and permanent GeoNet seismic array operating during 2009-2010. The microseismic earthquakes are located with the NonLinLoc method, using a New Zealand specific 3D velocity model; only those earthquakes located above the modelled subduction plate interface are used. Strain rate parameters calculations are calculated using cGPS velocities from 56 stations located from the central North Island to the northernmost South Island, New Zealand. In the region west of the Tararua-range-bounding Wairarapa fault (the Western region), the orientations of stresses indicate a normal regime (S1: vertical; S2 & S3: horizontal), with SHmax trending ENE. In the Central Basin region (east of the Wairarapa fault) the orientations of the stresses indicate a reverse regime (S3: vertical; S1 & S2: horizontal), with SHmax orientated NW. The low seismicity rates in the Eastern region make the results unreliable. There is a distinct difference between the strain rate and vorticity on either side the Wairarapa fault. Strain rate and vorticity rates increase west and decreased east of the Wairarapa; this correlates well with the pattern of observed seismicity. The southern North Island is predominately contracting, except for a region on the West coast, where some expansion is occurs. This pattern of expansion in the West and contraction in the center of the study area, calculated from cGPS, is similar the stress inversion results calculated from focal mechanisms. These similarities suggest that the present stress and strain rates are collinear, as occurs in isotropic media.

  13. Late Cretaceous dacitic dykes swarm from Central Iran, a trace for amphibolite melting in a subduction zone (United States)

    Nosouhian, N.; Torabi, G.; Arai, S.


    Late Cretaceous Bayazeh dyke swarm is situated in the western part of the Central-East Iranian Microcontinent (CEIM). These dykes with a dominant northeast-southwest trend occur in the Eastern margin of the Yazd block. They cross cut the Lower Cretaceous sedimentary rocks. The length of the Bayazeh dykes occasionally reaches up to the 2 km. Rock forming minerals of these dykes are plagioclase (andesine and oligoclase), amphibole (magnesio-hastingsitic hornblende, magnesio-hornblende and tschermakitic hornblende), quartz, K-feldspar (orthoclase), zircon and apatite. Secondary minerals are chlorite (pycnochlorite), albite, magnetite and calcite. The main textures are porphyritic, glomeroporphyritic and poikilitic. The felsic character of the Bayazeh dacitic dykes is shown by their high SiO2 (62.70 to 64.60 wt %) and low [Fe2O3* + MgO + MnO + TiO2] (average 4.64 wt %) contents. These dykes represent the peraluminous to metaluminous nature and their Na2O and K2O values are 5.20-7.14 and 1.51-2.59 wt %, respectively, which reveal their sodic chemistry. The trace element characteristics are the LREE enrichment relative to HREE, [La/Yb]CN = 13.27-22.99, and slightly negative or positive Eu anomaly. These geochemical characteristics associated with low Nb/La (0.16-0.25), Yb/Nd (0.04-0.05) and high Zr/Sm (37.60-58.25) ratios indicate that the melting of a metamorphosed subducted oceanic crust is occurred where the residual mineral assemblage is dominated by garnet amphibolite. The chemical compositions of the Bayazeh dykes resemble those of slab-derived tonalite-trondhjemite-granodiorite (TTG) series. They were formed by subduction of Mesozoic Neo-Tethys -related Nain and Ashin oceanic crusts.

  14. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity (United States)

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.


    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  15. State of stress and crustal fluid migration related to west-dipping structures in the slab-forearc system in the northern Chilean subduction zone (United States)

    Salazar, P.; Kummerow, J.; Wigger, P.; Shapiro, S.; Asch, G.


    Previous studies in the forearc of the northern Chilean subduction zone have identified important tectonic features in the upper crust. As a result of these works, the West Fissure Fault System (WFFS) has recently been imaged using microseismic events. The WFFS is the westward-dipping, sharp lower boundary of the northern Chilean forearc and is geometrically opposed to subduction of the Nazca plate. The present article builds on this previous work and is novel in that it characterizes this structure's stress distribution using focal mechanisms and stress tensor analysis. The results of the stress tensor analysis show that the state of stress in the WFFS is related to its strike-slip tectonic context and likely represents a manifestation of local forces associated with the highest areas in the Andes. Two seismic clusters have also been identified; these clusters may be associated with a blind branch of the WFFS. We studied these clusters in order to determine their sources and possible connection with fluid migration across the upper plate. We observed that the two clusters differ from one another in some regards. The central cluster has characteristics consistent with an earthquake swarm with two clearly identifiable phases. Conversely, the SW cluster has a clear main shock associated with it, and it can be separated into two subclusters (A and A΄). In contrast, similarities among the two clusters suggest that the clusters may have a common origin. The b-values for both clusters are characteristic of tectonic plate boundaries. The spatial spreading, which is approximately confined to one plane, reflects progressive growth of the main fracture underlying the swarm and subcluster A. We also find that earthquakes themselves trigger aftershocks near the borders of their rupture areas. In addition, the spatio-temporal migration of hypocentres, as well as their spatial correlation with areas that are interpreted to be fluid migration zones, suggest that there is a close

  16. High-pressure metamorphism in the Aegean, eastern Mediterranean: Underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone (United States)

    Ring, Uwe; Layer, Paul W.


    We report 40Ar/39Ar ages from various tectonic units in the Aegean and westernmost Turkey. On the basis of published geochronologic data and our 40Ar/39Ar ages we propose that the Aegean is made up of several high-pressure units, which were successively underplated from the Late Cretaceous until the Miocene. Ages for high-pressure metamorphism range from 80-83 Ma in parts of the Vardar-Izmir-Ankara suture zone in the north to 21-24 Ma for the Basal unit in the Cyclades and the external high-pressure belt on Crete in the south. Published seismic data suggest that high-pressure metamorphism is currently occurring underneath Crete. Younging of high-pressure metamorphism in a southerly direction mimics the southward retreat of the Hellenic subduction zone. We propose that distinct stages of high-pressure metamorphism were controlled by the underthrusting of fragments of mainly thinned continental crust and that these punctuated events were superposed on progressive slab retreat. By far most of the exhumation of the high-pressure units occurred early during the orogenic history in a forearc position.

  17. Modeling the seismic cycle in subduction zones: The role and spatiotemporal occurrence of off-megathrust earthquakes

    KAUST Repository

    van Dinther, Y.


    Shallow off-megathrust subduction events are important in terms of hazard assessment and coseismic energy budget. Their role and spatiotemporal occurrence, however, remain poorly understood. We simulate their spontaneous activation and propagation using a newly developed 2-D, physically consistent, continuum, viscoelastoplastic seismo-thermo-mechanical modeling approach. The characteristics of simulated normal events within the outer rise and splay and normal antithetic events within the wedge resemble seismic and seismological observations in terms of location, geometry, and timing. Their occurrence agrees reasonably well with both long-term analytical predictions based on dynamic Coulomb wedge theory and short-term quasi-static stress changes resulting from the typically triggering megathrust event. The impact of off-megathrust faulting on the megathrust cycle is distinct, as more both shallower and slower megathrust events arise due to occasional off-megathrust triggering and increased updip locking. This also enhances tsunami hazards, which are amplified due to the steeply dipping fault planes of especially outer rise events.

  18. Cascadia Seismoturbidites: A Landlubber Critiqued (United States)

    Goldfinger, C.; Beeson, J. W.; Nelson, H.; Patton, J. R.; Morey, A. E.; Galer, S.


    Atwater and Griggs (2012) and Atwater (2013) present several notional arguments against our recent interpretation of Cascadia turbidite paleoseismology. We disagree with the points made in this report, and suggest that they are contradicted or not supported by the stratigraphic, mineralogic and new bathymetric data (collected in the Cascadia Initiative), and in some cases, violate the physics of turbidity currents. First, the report suggests that a higher frequency of turbidites in southern Cascadia is attributable to sensitivity to steeper slopes rather that higher earthquake frequency, despite the evidence of higher frequency at onshore paleoseismic sites such as Bradley Lake. Turbidity current propagation and deposition are only partly related to initial slope, and are influenced by other factors, notably whether the flow is channelized or not. On the Washington margin, initial slopes in the canyon heads are similar to the southern Cascadia margin. The difference is that they are channelized thereafter, and flow great distances with little attenuation. The turbidite stratigraphy at the base of the steep section in Quinault Canyon in Washington is similar to that at the base of the slope, and similar to distal records on the abyssal plain > 300 km away, attesting to modest attenuation in this channelized system. There are several local turbidites with limited along-strike correlation, as noted by Adams (1990), which may or may not represent local northern segment earthquakes. Atwater suggests that the original 'confluence test' of Adams (1990), reiterated by Goldfinger et al. (2012) fails because the source of both sides of the confluence is Willapa Canyon, or alternately that Quinault canyon had a pathway across the accretionary prism into Juan de Fuca Channel. In the former case, this pathway does not exist, and is blocked by a 250 m tall anticline. In the latter case, heavy mineral assemblages demonstrate that the JDF arm is fed by a northern source consistent

  19. GPS-derived strain in northwestern California: Termination of the San Andreas fault system and convergence of the Sierra Nevada Great Valley block contribute to southern Cascadia forearc contraction (United States)

    Williams, Todd B.; Kelsey, Harvey M.; Freymueller, Jeffrey T.


    GPS-derived velocities (1993-2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada-Great Valley (SNGV) block toward the coast and the second is the north-northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada-Great Valley block motion is northwest toward the coast, convergent with the more northerly, north-northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada-Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific-SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6-10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada-Great Valley block and growth of the northernmost segments of the San Andreas fault system.

  20. Kamchatka subduction zone, May 2013: the Mw 8.3 deep earthquake, preceding shallow swarm and numerous deep aftershocks

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří


    Roč. 58, č. 1 (2014), s. 76-83 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : Kamchatka * deep earthquake * earthquake swarm * Wadati-Benioff zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.806, year: 2014

  1. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field (United States)

    Iinuma, Takeshi


    A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi

  2. Late Cenozoic volcanism, subduction, and extension in the Lassen Region of California, southern Cascade Range (United States)

    Guffanti, Marianne; Clynne, Michael A.; Smith, James G.; Muffler, L. J. P.; Bullen, Thomas D.


    the Lassen segment of the Cascade arc. In our view, the Lassen volcanic region occurs above the subducting Gorda North plate but also lies within a broad zone of distributed extension that occurs in the North American lithosphere east and southeast of the present Cascadia subduction zone. An episode of ENE extension that began in the late Miocene in the northwestern Basin and Range province appears to have triggered widespread late Miocene to Quaternary mafic volcanism in the Lassen region. The scarcity of volcanic rocks older than 7 Ma suggests that a more compressive lithospheric stress regime prior to the late Miocene extensional episode may have suppressed volcanism, even though subduction probably was occurring beneath the Lassen region.

  3. Summary of November 2010 meeting to evaluate turbidite data for constraining the recurrence parameters of great Cascadia earthquakes for the update of national seismic hazard maps (United States)

    Frankel, Arthur D.


    This report summarizes a meeting of geologists, marine sedimentologists, geophysicists, and seismologists that was held on November 18–19, 2010 at Oregon State University in Corvallis, Oregon. The overall goal of the meeting was to evaluate observations of turbidite deposits to provide constraints on the recurrence time and rupture extent of great Cascadia subduction zone (CSZ) earthquakes for the next update of the U.S. national seismic hazard maps (NSHM). The meeting was convened at Oregon State University because this is the major center for collecting and evaluating turbidite evidence of great Cascadia earthquakes by Chris Goldfinger and his colleagues. We especially wanted the participants to see some of the numerous deep sea cores this group has collected that contain the turbidite deposits. Great earthquakes on the CSZ pose a major tsunami, ground-shaking, and ground-failure hazard to the Pacific Northwest. Figure 1 shows a map of the Pacific Northwest with a model for the rupture zone of a moment magnitude Mw 9.0 earthquake on the CSZ and the ground shaking intensity (in ShakeMap format) expected from such an earthquake, based on empirical ground-motion prediction equations. The damaging effects of such an earthquake would occur over a wide swath of the Pacific Northwest and an accompanying tsunami would likely cause devastation along the Pacifc Northwest coast and possibly cause damage and loss of life in other areas of the Pacific. A magnitude 8 earthquake on the CSZ would cause damaging ground shaking and ground failure over a substantial area and could also generate a destructive tsunami. The recent tragic occurrence of the 2011 Mw 9.0 Tohoku-Oki, Japan, earthquake highlights the importance of having accurate estimates of the recurrence times and magnitudes of great earthquakes on subduction zones. For the U.S. national seismic hazard maps, estimating the hazard from the Cascadia subduction zone has been based on coastal paleoseismic evidence of great

  4. Seismogram Analysis of the Earthquakes in Sumatra on WRAB Observation Station: S Wave Velocity Structure on Subduction Zone of Sumatra-Java

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa


    Full Text Available The S wave velocity structure at subduction zone under Sumatra-Java was investigated through seismogram analysis in time domain and three Cartesian’s components simultaneously. The main data set was the comparison between the measured seismogram and the synthetic one, not the travel time data. The synthetic seismogram was calculated with the GEMINI method. The seismogram comparison shows that the global earth mantle of PREMAN gives deviating synthetic seismogram and has later arrival times than the measured one. The gradient bh in the upper mantle is altered to positive from its negative slope as in the PREMAN model, and positive corrections are added to the zero order of polynomial’s coefficients in all earth mantle layers. The excellent fitting, as well as travel time or waveform, were obtained on the surface waves of Love and Rayleigh, the S and SS mantle and repetitive depth waves. The additional positive corrections were also confirmed by a well fitting on the repetitive depth waves. This result expresses that part of the earth mantle that due to tectonic processes has positive anomaly on S wave velocity and vertical anisotropy in all of the earth mantle layers.

  5. Subducting continental lower crust and crustal thickness variations in the intermediate seismic zone of Pamir-Hindu Kush inferred from Moho underside reflection pmP (United States)

    He, Hangqi; Pan, Fa-Bin; Chen, Hanlin; Zhang, Yujia; Zheng, Xin; He, Xiaobo


    The Pamir-Hindu Kush region is an orogenic belt which formed as a result of recent continental collision between the Indian and Eurasian Plates. A comprehensive understanding of the tectonic history of this region has been hampered due to limited seismological investigations. In this study, we use the Moho underside reflection pmP phase to constrain crustal thickness variations in the intermediate-depth seismic zone (36-37°N, 69-72°E). The seismic events characterized by focal depth deeper than 100 km and magnitude > 5.8 (Mw) were used. The crustal thickness was determined by identifying the depth phase pP and the Moho underside reflection pmP. The measured thickness varies spatially from 58.1 to 76.2 km, with uncertainties most likely resulting from deviation of the average P-wave velocities ( 6.21 km/s with a deviation of 0.22 km/s) in the crust. The strong Moho depth variations imply a large structural deformation of the crust, which reflects a complex collision-related mountain building history. We also detected two strong reflections from deep interfaces down to 97 km underneath the southernmost Pamir. Based on our direct observations and waveform modeling, we interpret that the two reflections are possibly the manifestations of the underplating subducted Eurasian lower crust in this region. Our observations complement those of other seismic results, including receiver functions from previous studies.

  6. Influences of the Tonga Subduction Zone on seafloor massive sulfide deposits along the Eastern Lau Spreading Center and Valu Fa Ridge (United States)

    Evans, Guy N.; Tivey, Margaret K.; Seewald, Jeffrey S.; Wheat, C. Geoff


    This study investigates the morphology, mineralogy, and geochemistry of seafloor massive sulfide (SMS) deposits from six back-arc hydrothermal vent fields along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the context of endmember vent fluid chemistry and proximity to the Tonga Subduction Zone. To complement deposit geochemistry, vent fluid analyses of Cu, Zn, Ba, Pb and H2,(aq) were completed to supplement existing data and enable thermodynamic calculations of mineral saturation states at in situ conditions. Results document southward increases in the abundance of mantle-incompatible elements in hydrothermal fluids (Ba and Pb) and SMS deposits (Ba, Pb, As, and Sb), which is also expressed in the abundance of barite (BaSO4) and galena (PbS) in SMS deposits. These increases correspond to a decrease in distance between the ELSC/VFR and the Tonga Subduction Zone that correlates with a change in crustal lithology from back-arc basin basalt in the north to mixed andesite, rhyolite, and dacite in the south. Barite influences deposit morphology, contributing to the formation of horizontal flanges and squat terraces. Results are also consistent with a regional-scale lowering of hydrothermal reaction zone temperatures from north to south (except at the southernmost Mariner vent field) that leads to lower-temperature, higher-pH vent fluids relative to mid-ocean ridges of similar spreading rates (Mottl et al., 2011). These fluids are Cu- and Zn-poor and the deposits formed from these fluids are Cu-poor but Zn-rich. In contrast, at the Mariner vent field, higher-temperature and lower pH vent fluids are hypothesized to result from higher reaction zone temperatures and the localized addition of acidic magmatic volatiles (Mottl et al., 2011). The Mariner fluids are Cu- and Zn-rich and vent from SMS deposits that are rich in Cu but poor in Zn with moderate amounts of Pb. Thermodynamic calculations indicate that the contrasting metal contents of vent fluids

  7. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction (United States)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye


    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  8. Origin of the {sup 238}U-{sup 230}Th disequilibrium in magmas from subduction zones: the Arenal example; Origine du desequilibre {sup 238}U-{sup 230}TH dans les magmas des zones de subduction: exemple de l`Arenal

    Energy Technology Data Exchange (ETDEWEB)

    Villemant, B. [Paris-6 Univ., 75 (France)


    The existence in some volcanic products of strong excess of {sup 238}U with respect to {sup 230}Th is one of the characteristics of volcanic arc magmas. These excesses are generally attributed to fluid additions inside mantellic sources before magma segregation, differentiation and eruption. These fluids should be linked to the dehydration of the subducted rocks. These hypotheses are essentially based on correlations between {sup 10}Be, {sup 87}Sr anomalies, Ba/La ratios and on the distribution of volcanic centers with respect to the subduction zone. Recent studies suggest an evolution of the composition of volcanic sources in Central America from a depleted mantle type (MORB) in the North (Nicaragua) to a less transformed enriched type (OIB) in the South (Costa Rica). The Arenal volcano belongs to a transition zone between these two types. The preliminary study of trace elements and {sup 238}U-{sup 230}Th disequilibria in recent volcanic products (1968-1993) indicates a more complex situation. At least two different mantle sources were successively involved characterized by different Th/La and La/Yb ratios and very different to the OIB type. Also most lavas are in equilibrium with {sup 238}U/{sup 232}Th ratios of about 1.2 to 1.3. However, in eruptive cycle, some lavas are characterized by a strong {sup 238}U excess with respect to {sup 230}Th with cannot be linked to the sources, even when modified by fluids in depth. These results are interpreted in terms of heterogeneities of mantle sources and low depths late interactions with hydrothermal fluids during eruptions. Abstract only. (J.S.). 2 refs.

  9. O, Sr and Nd isotopic constraints on Cenozoic granitoids of Northwestern Anatolia, Turkey: Enrichment by subduction zone fluids (United States)

    Yücel-Öztürk, Yeşim


    The oxygen and strontium isotope compositions of Cenozoic granitoids cropping out in the İzmir-Ankara-Erzincan suture zone help constrain the petrological evolution of magmatism in northwest Anatolia. The magmatism was mostly widespread between late Eocene (∼37 Ma) and the middle Miocene (∼14-15 Ma), and is represented by volcanic and plutonic rocks of orogenic affinity, of which Ezine, Eğrigöz, Çataldağ and Kozak are the largest Tertiary granitic plutons exposed in northwest Anatolia. They vary from granite to granodiorite, and are subalkaline, belonging to the high-K calc-alkaline I-type granite series. All these characteristics, combined with major, trace element geochemical data as well as mineralogical and textural evidence, reveal that the Oligocene-Miocene granitoids of NW Anatolia are comparable with volcanic arc granites, formed in a transitional oceanic to continental collisional tectonic setting, from a hybrid source, having crustal and mantle components that underwent further interaction with the upper crust. These plutons have initial 87Sr/86Sr ratios of 0.7072-0.7094, and εNd(t) values ranging from -3.48 to -1.20. These characteristics also indicate that a crustal component played an important role in the petrogenesis of NW Anatolian Oligocene-Miocene granitoids. The moderately evolved Ezine, Eğrigöz, Çataldağ and Kozak granitoids, have δ18O values that are consistent with those of normal I-type granites (6-10‰), but the δ18O relationships among minerals of samples collected from the intrusive contacts which are closest to mineralized zones, indicate a major influence of hydrothermal processes under subsolidus conditions. The oxygen isotope systematics of the samples from these plutons result from the activity of high-δ18O fluids (magmatic water), with major involvement of low-δ18O fluids (meteoric water) evident, near the edge zone of these plutons. This is most evident in δ18O quartz-feldspar pairs from these granitoids, which

  10. Imaging the Effects of Subducting Slabs on the Mantle Transition Zone with Pds Receiver Functions Beneath Southern Europe (United States)

    Cottaar, S.; Deuss, A. F.


    The mantle is delineated by seismic discontinuities between 300 and 800 km depth. Variations in topography, width and occurrence of the discontinuities indicate lateral variations in temperature, composition and water content, as these variations influence the mantle phase transitions. Seismic studies of the conversions of pressure to shear waves (Pds phases) are an important tool to observe lateral variations in these discontinuities. Here we collect a Pds data set across all European seismic stations since 2000 that are available through ORFEUS or IRIS; resulting in ~500,000 event-station pairs. We deconvolve the radial component by the vertical component - assumed to represent the source component- using the iterative deconvolution method to obtain receiver functions. We assess the quality of a receiver function by the signal-to-noise ratio and by evaluating how well the radial component is reproduced when reconvolving the receiver function with the vertical component. This results in ~36,000 high quality receiver functions across Europe. Our receiver functions show little lateral variation in the depth of the transition zone discontinuities across the East European Craton, and we use this region as a reference to the more tectonically unstable regions. Around the Mediterranean, we look for signature of slabs ponding or penetrating at the discontinuity around 660 km. The Hellenic slab, which in tomographic models extends into the lower mantle, causes a signature of a disappearing '410' and a deeper, broader '660'. There are also potential signatures of '300' and '520' discontinuities in the slab region. To explain our observations we compute synthetic Ps receiver functions for mantle transition zone models of various temperatures for various compositional models. The synthetic seismic velocity models are computed using Perple_X (Connolly, 2005) with the mineral parameter database of Stixrude and Lithgow-Bertolloni (2011). The synthetics are computed with the

  11. Insights upon upper crustal arhitecture of a subduction zone and its surroundings - Vrancea Zone and Focsani Basin - substantiated by geophysical studies (United States)

    Bocin, A.; Stephenson, R.; Mocanu, V.


    The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.

  12. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim


    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  13. Methane-bearing fluids in subduction zones: an experimental study of abiotic methanogenesis during serpentinization at 12 kbar and 300°C (United States)

    Lazar, C.; Manning, C. E.


    Serpentinization within subduction zones may generate reduced fluids that contain higher concentrations of abiotic methane than near-surface ultramafic environments. We present preliminary experimental data suggesting that the kinetics of abiotic methanogenesis are enhanced at high pressures. Thermodynamic calculations of C-O-H fluid speciations at the low oxygen fugacities attained during early serpentinization suggest complete conversion of oxidized carbon to methane, yet previous field and experimental investigations have reported fluid compositions with CH4/CO2 far below equilibrium (McCollom and Seewald, 2007). Much experimental work, therefore, has focused on CH4 production rates and the kinetic effects of temperature and mineral catalysis (Horita and Berdt, 1999; Foustoukos and Seyfried, 2004). Methane has been shown experimentally to form at very high pressures (Scott et al, 2004), but the quantitative effect of pressure on methanogenesis kinetics is unknown. We present preliminary results of a comparison of methane production rates at 0.35 and 12 kbar, 300°C, using experiments performed in piston cylinder and cold seal hydrothermal apparatus. Carbon was introduced as a roughly 70 mmol solution of isotopically-labeled formic acid, H13COOH, known to decompose to 13CO2 and H2 at run conditions. Roughly 15 mL of this solution, along with 1.9 mg of natural awaruite (Ni3Fe), was loaded into a gold capsule and then sealed via DC spot welding. Awaruite, a known methane catalyst (Horita and Berndt, 1999), was added to increase the overall rates of all experiments in order to boost the concentration for analysis and as an fO2 buffer appropriate for serpentinization. The experiments were held at T and P for approximately 160 hours. After each run, the capsule was placed in a gas vial and punctured with a needle. The contents of the vial were extracted via gas syringe and injected into gas chromatograph mass spectrometer (GC-MS). CH4 concentration in the 12 kbar run

  14. A Long-Term Geothermal Observatory Spanning Subseafloor Gas Hydrates in IODP Hole U1364A, Cascadia Accretionary Prism (United States)

    Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.


    We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.

  15. Impact of the slab dip change onto the deformation partitioning in the northern Lesser Antilles oblique subduction zone (Antigua-Virgin Islands) (United States)

    Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge


    Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.

  16. Fore-arc basin deformation in the Andaman-Nicobar segment of the Sumatra-Andaman subduction zone: Insight from high-resolution seismic reflection data (United States)

    Moeremans, Raphaële E.; Singh, Satish C.


    The Andaman-Nicobar region is the northernmost segment of the Sumatra-Andaman subduction zone and marks the western boundary of the Andaman Sea, which is a complex active back-arc extensional basin. We present the interpretation of a new set of deep seismic reflection data acquired across the Andaman-Nicobar fore-arc basin, from 8°N to 11°N, in order to better understand its structure and evolution, focusing on (1) how obliquity of convergence affects deformation in the fore arc, (2) the nature and role of the Diligent Fault (DF), and (3) the Eastern Margin Fault (EMF). Despite the obliquity of convergence, back thrusting and compression seem to dominate the Andaman-Nicobar fore-arc basin deformation. The DF is primarily a back thrust and corresponds to the Mentawai and West Andaman Fault systems farther in the south, along Sumatra. The DF is expressed in the fore-arc basin as a series of mostly landward verging folds and faults, deforming the early to late Miocene sediments. The DF seems to root from the boundary between the accretionary complex and the continental backstop, where it meets the EMF. The EMF marks the western boundary of the fore-arc basin; it is associated with subsidence and is expressed as a deep piggyback basin, containing recent Pliocene to Pleistocene sediments. The eastern edge of the fore-arc basin is the Invisible Bank (IB), which is thought to be tilted and uplifted continental crust. Subsidence along the EMF and uplift and tilting of the IB seem to be related to different opening phases in the Andaman Sea.

  17. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke


    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  18. Rheological behavior of the crust and mantle in subduction zones in the time-scale range from earthquake (minute) to mln years inferred from thermomechanical model and geodetic observations (United States)

    Sobolev, Stephan; Muldashev, Iskander


    The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.

  19. Anatomy of a subduction zone - seismicity structure of the northern Chilean forearc from >100,000 double-difference relocated earthquake hypocenters (United States)

    Sippl, Christian; Schurr, Bernd


    We present a catalog of >100k well-located earthquake hypocenters for the northern Chilean forearc region, between the latitudes of 18.5°S and 24°S. The detected events cover the timespan 2007-2014 and were extracted from the IPOC permanent station network dataset. Previously published earthquake catalogs for the region contain significantly fewer earthquakes. Using this new, high-resolution set of hypocenters, we can outline the slab structure in unprecedented detail, allowing e.g. the determination of along-strike changes in slab dip angle or the resolution of structures inside the zone of intermediate-depth seismicity. For the compilation of the catalog, we relied on an automated multi-step process for event detection, association and phase picking. Thus retrieved earthquake hypocenters were then relocated in a 2.5D velocity model for the Northern Chile forearc region with a probabilistic approach that also allows the determination of uncertainties. In a final step, double-difference re-location incorporating cross-correlation lag times was performed, which sharpened event clusters through relative location. We estimate that the completeness magnitude of the catalog is around 3. The majority of all >100k earthquakes are located at intermediate depths (between 80 and 140 km) inside the subducted slab. This area of pervasive activity extends along the entire strike of the investigated area, but shows a clear offset at 21°S, which may hint at a slab tear at this location. Events of comparable hypocentral depths to the south of this offset are located further east than the ones to the north of it. Further updip, a triple seismic zone at depths between 40 and around 80 km is visible, which grades into the highly active event cluster at intermediate depths: below the plate interface, which is clearly delineated by seismic activity, a second parallel band of hypocenters only about 5 km below likely corresponds to earthquakes occurring within the oceanic crust or

  20. 6.5 Years of Slow Slip Events in Cascadia: A Catalogue of SSE Surface Expressions, Interface Slip Distributions, Event Magnitudes and Relationship to Tremor. (United States)

    Dimitrova, L. L.; Wallace, L. M.; Haines, A. J.; Bartlow, N. M.


    Slow slip events (SSEs) in Cascadia occur at ~30-50 km depth, every 10-19 months, and typically involve slip of a few cm, producing surface displacements on the order of a few mm up to ~1cm. Are there smaller SSE signals that are currently not recognized geodetically? What is the spatial, temporal and size distribution of SSEs, and how are SSE related to tremor? We address these questions with a catalogue of all detectable SSEs spanning the last 6.5 years using a new methodology based on Vertical Derivatives of Horizontal Stress (VDoHS) rates obtained from cGPS times series. VDoHS rates, calculated by solving the force balance equations at the Earth's surface, represent the most inclusive and spatially compact surface expressions of subsurface deformation sources: VDoHS rate vectors are tightly localized above the sources and point in the direction of push or pull. We compare our results with those from the Network Inversion Filter (NIF) for selected events. We identify and characterize a spectrum of SSEs, including events with moment release at least two orders of magnitudes smaller than has been previously identified with GPS data. We catalogue events timing, interface slip distribution and moment release, and compare our results with existing tremor catalogues. VDoHS rates also reveal the boundaries between the locked and unlocked portions of the megathrust, and we can track how this varies throughout the SSE cycle. Above the locked interface, the pull of the subducted plate generates shear tractions in the overlying plate in the direction of subduction, while above the creeping section shear tractions are in the opposite direction, which is reflected in the VDoHS rates. We show that sections of the Cascadia megathrust unlock prior to some SSEs and lock thereafter, with the locked zone propagating downdip and eastward after the SSEs over weeks to months. The catalogue and movies of events will be available at

  1. CO2 Solubility in Natural Rhyolitic Melts at High Pressures - Implications for Carbon Flux in Subduction Zones by Sediment Partial Melts (United States)

    Duncan, M. S.; Dasgupta, R.


    Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents

  2. Estimation of Maximum Magnitudes of Subduction Earthquakes (United States)

    Muldashev, Iskander; Sobolev, Stephan


    Even though methods of instrumentally observing earthquakes at subduction zones have rapidly improved in recent decades, the characteristic recurrence interval of giant subduction earthquakes (Mw>8.5) is much larger than the currently available observational record and therefore the necessary conditions for giant earthquakes are not clear. However, the statistical studies have recognized the importance of the slab shape and its surface roughness, state of the strain of the upper plate and thickness of sediments filling the trenches. Here we apply cross-scale seismic cycle modeling technique (Sobolev and Muldashev, under review) to study key factors controlling maximum magnitudes of earthquakes in subduction zones. Our models employ elasticity, non-linear transient viscous rheology and rate-and-state friction. They generate spontaneous earthquake sequences and by using adaptive time-step algorithm, recreate the deformation process as observed naturally during seismic cycle and multiple seismic cycles. We explore effects of slab geometry, megathrust friction coefficients, and convergence rates on the magnitude of earthquakes. We found that the low-angle subduction (largest effect) and low static friction, likely caused by thick sediments in the subduction channel (smaller effect) are the key factors controlling magnitude of great earthquakes, while the change of subduction velocity from 10 to 3.5 cm/yr has much lower effect. Modeling results also suggest that thick sediments in the subduction channel causing low static friction, result in neutral or compressive deformation in the overriding plate for low-angle subduction zones in agreement with observations for the giant earthquakes. The model also predicts the magnitudes of the largest possible earthquakes for subduction zones of given dipping angles. We demonstrate that our predictions are consistent with all known giant subduction earthquakes of 20th and 21st centuries and with estimations for historical

  3. Geodetic constraints on areal changes in the Pacific-North America plate boundary zone: What controls Basin and Range extension? (United States)

    Kreemer, Corné; Hammond, William C.


    Using ˜1500 geodetic velocities we model the present-day spatial patterns of areal changes inside the Pacific-North America plate boundary zone. From this model we show that between the central Gulf of California and the Queen Charlotte Islands there is no significant net change in surface area. This zero net areal-change result allows us to relate regions of areal growth to areas of equivalent contraction elsewhere within the plate boundary zone. We find that areal growth of the Basin and Range province (BRP) and its eastern margin (˜5.2 ± 0.1 × 103 m2/yr) is balanced by areal reduction near northwestern California between 38°N and 42°N. The San Andreas fault system south of 38°N and the plate boundary zone north of ˜42°N (including the Juan de Fuca and Gorda Ridge systems) each have no significant net areal change. Our results suggest a kinematic relationship between extension in the BRP and contraction near the northern California Coast Ranges and Klamath Mountains. From these observations we propose that, although BRP extension may be caused by internal forces, the southernmost Cascadia subduction zone provides a “window of escape” that acts as a stress guide to BRP extension as well as northwestward Sierra Nevada motion. Such a dynamic model is consistent with independent findings that (1) the least principal horizontal stress orientations in the BRP are toward northern California, (2) extension directions in the BRP have changed orientation to track the northward migration of the Mendocino triple junction, and (3) the southernmost Cascadia subduction zone is a relatively weak plate boundary.

  4. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning

    NARCIS (Netherlands)

    Schellart, W. P.; Stegman, D. R.; Farrington, R. J.; Moresi, L.


    Subduction of oceanic lithosphere occurs through both trenchward subducting plate motion and trench retreat. We investigate how subducting plate velocity, trench velocity and the partitioning of these two velocity components vary for individual subduction zone segments as a function of proximity to

  5. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.


    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  6. Analysis of past recurrent methane seep activity using radiocarbon dating of Calyptogena spp. shells in the eastern Nankai subduction zone, Japan (United States)

    Yagasaki, Kazuhiro; Ashi, Juichiro; Yokoyama, Yusuke; Miyairi, Yosuke; Kuramoto, Shin'ichi


    Fault activity around subduction zones have been widely studied and monitored through drilling of oceanic plates, studying piston cores, use of monitoring equipment or through visual analysis using submersible vehicles. Yet the understanding of how small scale faults near shallow regions of the seabed behave in relation to cold seep vent activity is still vague, especially determining when they were active in the past. In tectonically active margins such as the Nankai and Tokai regions off Japan, dense methane hydrate reservoirs have been identified. Cold seeps releasing methane rich hydrocarbon fluids are common here, supporting a wide variety of biological species that hold a symbiotic relationship with the chemosynthetic bacteria. In 1998 a large dead Calyptogena spp. bivalve colony (over 400m2 in size) was discovered off Tokai, Japan. It is unusual for a bivalve colony this size to mostly be dead, raising questions as to what caused their death. In this study we document the radiocarbon 14C age of these bivalve shells to attempt analysing the possible methane seep bahaviour in the past. The measured 14C age ranged in three age groups of 1396±36-1448±34, 1912±31-1938±35 and 5975±34. The 14C age of shells that were alive upon collection and the dissolved inorganic carbon (DIC) in seawater show little difference (˜100 14C age) indicating that shells are not heavily affected by the dead carbon effect from cold seeps that is of biogenic or thermogenic origin, which can make the age to become considerably older than the actual age. Thus the novel calibration model used was based on the seawater DIC collected above the Calyptogena spp. colony site (1133±31), which resulted in the dead shells to be clustered around 1900 Cal AD. This proves to be interesting as the predicted epicenter of the Ansei-Tokai earthquake (M 8.4) in 1854 is extremely close to the bibalve colony site. Using geological data obtained using visual analysis and sub-seafloor structural

  7. Anisotropic path modeling to assess pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest (United States)

    Wood, Nathan J.; Schmidtlein, Mathew C.


    Recent disasters highlight the threat that tsunamis pose to coastal communities. When developing tsunami-education efforts and vertical-evacuation strategies, emergency managers need to understand how much time it could take for a coastal population to reach higher ground before tsunami waves arrive. To improve efforts to model pedestrian evacuations from tsunamis, we examine the sensitivity of least-cost-distance models to variations in modeling approaches, data resolutions, and travel-rate assumptions. We base our observations on the assumption that an anisotropic approach that uses path-distance algorithms and accounts for variations in land cover and directionality in slope is the most realistic of an actual evacuation landscape. We focus our efforts on the Long Beach Peninsula in Washington (USA), where a substantial residential and tourist population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Results indicate thousands of people are located in areas where evacuations to higher ground will be difficult before arrival of the first tsunami wave. Deviations from anisotropic modeling assumptions substantially influence the amount of time likely needed to reach higher ground. Across the entire study, changes in resolution of elevation data has a greater impact on calculated travel times than changes in land-cover resolution. In particular areas, land-cover resolution had a substantial impact when travel-inhibiting waterways were not reflected in small-scale data. Changes in travel-speed parameters had a substantial impact also, suggesting the importance of public-health campaigns as a tsunami risk-reduction strategy.

  8. Using paleomagnetism to expand the observation time window of plate locking along subduction zones: evidence from the Chilean fore-arc sliver (38°S - 42°S) (United States)

    Hernandez-Moreno, Catalina; Speranza, Fabio; Di Chiara, Anita


    Fore-arc crustal motion has been usually addressed by the analysis of earthquake slip vectors and, since the last twenty years, by velocity fields derived from Global Positioning System (GPS) data. Yet this observation time window (few decades) can be significantly shorter than a complete seismic cycle or constrained to interseismic periods where the postseismic deformation release, the vicinity of other important faults, and the slip partitioning in oblique subduction may hinder the finite deformation pattern. Paleomagnetic data may yield finite rotations occurring since rock formation, thus provide a much longer observation time span in the order of millions or tens of millions of years. The cumulative permanent or nonreversing deformation in function of the considered geological formation age can represent the average over many seismic cycles, thus significantly complement "instantaneous" information derived from seismic and GPS data. With the aim of evaluate the strike-variation and evolution of the plate coupling along the Chilean subduction zone, here we report on the paleomagnetism of 43 Oligocene-Pleistocene volcanic sites from the fore-arc sliver between 38°S and 42°S. Sites were gathered west of the 1000 km long Liquiñe-Ofqui dextral fault zone (LOFZ) that represents the eastern fore-arc sliver boundary. Nineteen reliable sites reveal that the fore arc is characterized by counterclockwise (CCW) rotations of variable magnitude, except at 40°S - 41°S, where ultrafast (>50°/Myr) clockwise (CW) rotations occur within a 30 km wide zone adjacent to the LOFZ. CCW rotation variability (even at close sites) and rapidity (>10°/Myr) suggest that the observed block rotation pattern is related to NW-SE seismically active sinistral faults crosscutting the whole fore arc. According to previously published data, CW rotations up to 170° also occur east of the LOFZ and have been related to ongoing LOFZ shear. We suggest that the occurrence and width of the eastern

  9. Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba (United States)

    van Hinsbergen, Douwe J. J.; Iturralde-Vinent, Manuel A.; van Geffen, Pim W. G.; García-Casco, Antonio; van Benthem, Steven


    The deformation history of sedimentary units incorporated in the North Cuban fold and thrust belt in the Paleocene to middle-late Eocene was associated with major shortening between the Caribbean and North American plates. This led to the formation of an intensely deformed tectonic pile comprising from top to bottom of a volcanic arc nappe, a deformed mafic-ultramafic complex with Mesozoic ophiolite components and a serpentinitic mélange with blocks of sedimentary (the Placetas belt) and metamorphic rocks; and the structurally lower unit composed of folded and thrusted sediments of the southern promontory of the Bahamas platform. In this paper we study the deformation history of sedimentary units incorporated in the North Cuban fold and thrust belt associated with this shortening history. We find that the occurrences of the Placetas sedimentary rocks within the foliated serpentinite mélange show varying styles and intensity of deformation, and varying number of deformation phases. They form isolated blocks within the serpentinite mélange and do not represent a coherent nappe underlying the allochtonous mafic-ultramafic complex. The deformation of the Remedios belt, part of the Bahamas platform, underwent a single phase of folding and thrusting, with shortening perpendicular to the plate contact. This folding occurred in the middle to late Eocene and marks the arrest of subduction and arc-continent collision. We find no evidence for a component of strike-slip during collision. The volcanic arc is thrusted upon the mafic-ultramafic complex, and the original forearc ophiolite appears to be shortened. This shortening may attest to a period of subduction erosion. Thrusting of the volcanic arc led to deposition of the Paleocene-lower Eocene Taguasco olistostrome which may date this event. We show that careful analysis of the complexly deformed Cuban fold and thrust belt may allow identification of subduction erosion and subduction accretion episodes. Expanding the

  10. Noble Gases Trace Earth's Subducted Water Flux (United States)

    Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.


    Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.

  11. Electrical structure of the lithosphere across the Western Paraná suture zone: the role of a Neoproterozoic-Cambrian subduction in generating the Paraná Magmatic Province (United States)

    Dragone, G. N.; Bologna, M.; Gimenez, M. E.; Alvarez, O.; Lince Klinger, F. G.; Correa-Otto, S.; Ussami, N.


    The Paraná Magmatic Province (PMP) together with the Etendeka Province (EP) in Africa is one of the Earth's largest igneous provinces originated prior to the Western Gondwanaland break-up and the inception of the South Atlantic Ocean in the Lower Cretaceous. Geochemical data of PMP-EP basalts collected since late 1980's indicate the origin of PMP-EP by melting of a heterogeneous and enriched subcontinental lithospheric mantle with fast rate of eruption (plate model). New isotopic geochemical data from Re-Os systematics (Rocha-Jr et al., 2012, EPSL) of PMP basalts indicate metasomatized asthenospheric mantle component probably generated at the mantle wedge between the PMP-EP lithosphere and the subducting oceanic plate. A combined seismic velocity and density model of PMP by Chaves et al. (2016, G3) indicates high velocity and a density increase of PMP ancient lithosphere interpreted as due to a long-term mantle refertilization process. To investigate the role of the subduction zones in the development of both the Paraná basin subsidence and the magmatic province we present the results of regional scale broad-band MT-magnetotelluric soundings across the western and southern borders of the PMP, the Western Paraná suture zone (WPS in Fig. 1). We discuss the electrical properties of the lithosphere along three MT profiles across the WPS. MT-A profile (Padilha et al., 2015, JGR) extends from Rio Apa craton towards the center of PMP (high-TiO2 basalts). Profile MT-B extends from Tebicuary craton towards the center of PMP (low-TiO2) and profile MT-C extends from Rio de la Plata craton towards the southern PMP (low- and high-TiO2). All profiles show a resistive ( 104 ohm m) and thick (> 150 km) lithosphere in the cratonic areas whereas the electrical lithosphere is thinner (<100 km) with alternating high and low resistivities within PMP. Vertically elongated and high electrical conductivity anomalies ( 10 ohm m) centered at 40 km depth occur along the -30 mGal contour

  12. Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates (United States)

    Wang, Pei-Ling; Engelhart, Simon E.; Wang, Kelin; Hawkes, Andrea D.; Horton, Benjamin P.; Nelson, Alan R.; Witter, Robert C.


    Past earthquake rupture models used to explain paleoseismic estimates of coastal subsidence during the great A.D. 1700 Cascadia earthquake have assumed a uniform slip distribution along the megathrust. Here we infer heterogeneous slip for the Cascadia margin in A.D. 1700 that is analogous to slip distributions during instrumentally recorded great subduction earthquakes worldwide. The assumption of uniform distribution in previous rupture models was due partly to the large uncertainties of then available paleoseismic data used to constrain the models. In this work, we use more precise estimates of subsidence in 1700 from detailed tidal microfossil studies. We develop a 3-D elastic dislocation model that allows the slip to vary both along strike and in the dip direction. Despite uncertainties in the updip and downdip slip extensions, the more precise subsidence estimates are best explained by a model with along-strike slip heterogeneity, with multiple patches of high-moment release separated by areas of low-moment release. For example, in A.D. 1700, there was very little slip near Alsea Bay, Oregon (~44.4°N), an area that coincides with a segment boundary previously suggested on the basis of gravity anomalies. A probable subducting seamount in this area may be responsible for impeding rupture during great earthquakes. Our results highlight the need for more precise, high-quality estimates of subsidence or uplift during prehistoric earthquakes from the coasts of southern British Columbia, northern Washington (north of 47°N), southernmost Oregon, and northern California (south of 43°N), where slip distributions of prehistoric earthquakes are poorly constrained.

  13. Seismic Imaging of the Cascadia Plate Boundary with Four Source Array Configurations (United States)

    Fortin, W. F.; Holbrook, W.; Kent, G.; Keranen, K. M.; Trehu, A. M.; Johnson, H. P.; Everson, E. D.


    Imaging the plate boundary in the Cascadia region has great importance for understanding seismic hazards in the coastal margin of the Pacific Northwest. The Cascadia margin is a potential earthquake and tsunami threat to the many millions who live in the area, yet the location and shape of the subducting oceanic plate boundary remains poorly understood. This is due in large part to the plate boundary being relatively aseismic and difficult to constrain through passive-source seismic methods. In July 2012, the COAST project acquired 15 seismic transects of the Cascadia margin intended to image the plate boundary. Four of the seismic transects were acquired over the same location with different source arrays: 36 air guns towed at 9m depth, 18 air guns towed at 9m depth, 36 air guns towed at 15m depth, and 18 air guns towed at 15m depth. These changes were chosen to represent possible configurations for 2D and 3D seismic data acquisitions with emphasis on identifying deep Earth features lying below complicated folding sediments of the accretionary wedge. Thirty-six air guns represents the full volume of the R/V Marcus G. Langseth source used when collecting 2D seismic data, while eighteen represents the half volume that would typically be fired for a 3D survey. Nine meters and fifteen meters are common source depths but have very different outputs in the frequency domain due to the "ghost notch" created by acoustic reflection off the sea surface. Here we present four identically processed, pre-stack depth migrated images of the Cascadia plate boundary and an analysis of the benefits and drawbacks of each seismic acquisition parameter set. While expressions of the plate boundary exist in all data acquired, preliminary results indicate that a deeper tow depth, and its lower frequency source output, captures more continuous representations of the plate boundary. However, a more shallow tow depth increases the resolution of the overlying sediments and the plate boundary

  14. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling (United States)

    Cubas, Nadaya


    reactivate normal faults at the down-dip limit of the seismogenic zone or at an increasing slip transition (e.g., Chile and Japan). Finally, we will show that the fault vergence is controlled by the frictional properties. Sudden and successive decreases of the megathrust effective friction during frontal propagation of earthquakes will lead to the formation of landward-vergent frontal thrusts in the accretionary prism. Therefore, a particular attention needs to be paid to accretionary prisms with normal faults implying large up-dip ruptures (e.g., Alaska and Japan) or with frontal landward-vergent thrust faults, markers of past seafloor coseismic ruptures leading to very large tsunamis (e.g., Cascadia and Sumatra). If the forearc long-term deformation seems in good accordance with our understanding of earthquake mechanics, recent studies have pointed to a major discrepancy between short- and long-term deformation at the coast (i.e., the Central Andes subduction zone). An analogue discrepancy has been pointed out for the Himalaya after the 2015 Mw 7.8 Gorkha earthquake. Melnick (2016) proposed that the coastal long-term deformation could be related to deep and less frequent earthquakes instead of standard subduction events. It is now of fundamental importance to understand the link between the coastal long-term record and the short-term deformation for seismic risk assessment and relief building processes understanding. It will probably constitute the next challenge for mechanical modelling.

  15. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China (United States)

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong


    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  16. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    ... complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, ...

  17. 3D Ground-Motion Simulations for Magnitude 9 Earthquakes on the Cascadia Megathrust: Sedimentary Basin Amplification, Rupture Directivity, and Ground-Motion Variability (United States)

    Frankel, A. D.; Wirth, E. A.; Marafi, N.; Vidale, J. E.; Stephenson, W. J.


    We have produced broadband (0-10 Hz) synthetic seismograms for Mw 9 earthquakes on the Cascadia subduction zone by combining synthetics from 3D finite-difference simulations at low frequencies (≤ 1 Hz) and stochastic synthetics at high frequencies (≥ 1 Hz). These synthetic ground motions are being used to evaluate building response, liquefaction, and landslides, as part of the M9 Project of the University of Washington, in collaboration with the U.S. Geological Survey. The kinematic rupture model is composed of high stress drop sub-events with Mw 8, similar to those observed in the Mw 9.0 Tohoku, Japan and Mw 8.8 Maule, Chile earthquakes, superimposed on large background slip with lower slip velocities. The 3D velocity model is based on active and passive-source seismic tomography studies, seismic refraction and reflection surveys, and geologic constraints. The Seattle basin portion of the model has been validated by simulating ground motions from local earthquakes. We have completed 50 3D simulations of Mw 9 earthquakes using a variety of hypocenters, slip distributions, sub-event locations, down-dip limits of rupture, and other parameters. For sites not in deep sedimentary basins, the response spectra of the synthetics for 0.1-6.0 s are similar, on average, to the values from the BC Hydro ground motion prediction equations (GMPE). For periods of 7-10 s, the synthetic response spectra exceed these GMPE, partially due to the shallow dip of the plate interface. We find large amplification factors of 2-5 for response spectra at periods of 1-10 s for locations in the Seattle and Tacoma basins, relative to sites outside the basins. This amplification depends on the direction of incoming waves and rupture directivity. The basin amplification is caused by surface waves generated at basin edges from incoming S-waves, as well as amplification and focusing of S-waves and surface waves by the 3D basin structure. The inter-event standard deviation of response spectral

  18. Escape of Sierra Nevada-Great Valley Block Motion Contributes to Upper-Plate Contraction Within the Southern Cascadia Margin Near Humboldt Bay, CA. (United States)

    Williams, T. B.; Kelsey, H. M.; Freymueller, J. T.


    Recent GPS-derived site velocities (1993-2002) in northwestern California reveal that an additional mechanism other than subduction is in part accountable for observed upper plate contraction north of the migrating Mendocino triple junction. Sites at and near Cape Mendocino are moving approximately 30 mm/yr and are consistently oriented approximately N 10° W, sub-parallel to the southern Cascadia trench. Sites just north of latitude 40.4° N begin to be oriented east of north, sub-parallel to the Gorda-North America plate convergence direction. The transition from west-of-north to east-of-north site azimuths occurs 20 km north of the Mendocino Fault. The change in site azimuths is abrupt, with an eastward swing of 25°-30° occurring over a distance of approximately 8 km across the Eel River valley. North and east of Cape Mendocino, sites 50-300 km inland have velocities oriented west of north, consistent with the direction of northern Sierra Nevada-Great Valley (SNGV) block and Pacific-North America (P-NA) relative motion. Northern SNGV block motion is 11 mm/yr directed to the northwest. This velocity persists northwestward to within 50 km of the coast at the latitude of Humboldt Bay. Approximately 20 mm/yr of distributed P-NA motion occurs inland of Cape Mendocino across the northern projections of the Ma'acama and Bartlett Springs fault zones, and continues northward into the Humboldt Bay region. The direction of observed SNGV motion is obliquely convergent to the P-NA relative motion direction. The observed convergence between SNGV and the Coast Ranges begins approximately 130 km inland of the coast near Weaverville, CA. We observe 3-6 mm/yr of roughly east-west contraction in that area, which is near the location of the highest topography in the northern Coast Ranges. Near Humboldt Bay, NE-SW convergence of 16+/-2 mm/yr occurs from the coast to approximately 50 km inland. After removing an estimate of the interseismic subduction zone signal from the

  19. Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction

    NARCIS (Netherlands)

    Meyer, Clio; Schellart, W. P.


    We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction

  20. Acoustic profiling and surface imaging of the coastal area near the subduction zone: the eastern coastal area of Boso Peninsula, Central Japan. (United States)

    Furuyama, S.; Sato, T.


    The plate motion of the Philippine Sea plate and the Pacific plate influences geology of coastal area in the Pacific side in Japan and sometime causes extensive damage of human activity, such as the Great East Japan Earthquake. It is important to understand the geological structures in a coastal area for disaster prevention. Especially, rapid equipment of geoinformations is highly demanded in the Kanto region where covers capital Tokyo area. Geological Survey of Japan investigated the eastern coastal area in Boso Peninsula, eastern part of the Kanto region, Japan within two years from 2014 to 2015. We obtained seismic sections of ca. 1100 km in total length with a boomer and multi-channel streamer (24 channel with 3.125 m spacing) and report the geological significance of the subsurface structures. The survey area is divided into the northern part of Kujukuri area, the southern part of Kujukuri area, the coastal part of Kujukuri area based on topography and geological structures. In these Kujukuri areas, two strata that show distinct stratification bounded by distinct unconformity distribute and we define them as the Kujukuri A Unit and the Kujukuri B Unit, in ascending order. The lower sequence has some folds and normal faults. These folds that deformed the Kujukuri B Unit extend toward north-northeast in the northern part of Kujukuri area. They contributed to development of wide shelf distributed in this area. In the southern part of Kujukuri area, a lot of faults deformed the Kujukuri B Unit and some of them displaced the Kujukuri A Unit over 10 msec (two way travel). Normal faults developed in the Kujukuri B Unit over 10 msec made grabens and half grabens in the coastal part of Kujukuri area and these grabens and half grabens could make the lowland in the Kujukuri coastal area. The combination of these geological structures identified in the Kujukuri areas could reflect the transition of stress field associated with the subduction of the Philippine Sea plate

  1. New sedimentary-core records and a recent co-seismic turbidite help to unravel the paleoseismicity of the Hikurangi Subduction Zone, New Zealand (United States)

    Barnes, Philip; Orpin, Alan; Howarth, Jamie; Patton, Jason; Lamarche, Geoffroy; Woelz, Susanne; Hopkins, Jenni; Gerring, Peter; Mitchell, John; Quinn, Will; McKeown, Monique; Ganguly, Aratrika; Banks, Simon; Davidson, Sam


    The Hikurangi margin straddles the convergent boundary between the Pacific and Australia tectonic plates and is New Zealand's potentially largest earthquake and tsunami hazard. The 3000 m-deep Hikurangi Trough, off eastern Marlborough, Wairarapa, Hawkes Bay, and East Cape, marks the location where the Pacific plate is subducting beneath the eastern continental margin of the North Island and northeastern South Island. To date the Hikurangi margin has a short historical record relative to the recurrence of great earthquakes and tsunami, and consequently the associated hazard remains poorly constrained. In October 2016 a new, international, 5-year project commenced to evaluate the pre-historic earthquake history of the margin. In November 2016 a RV Tangaroa voyage acquired 50 sediment cores up to 5.5 m long from sites on the continental margin between the Kaikoura coast and Poverty Bay. Core sites were selected using available 30 kHz multibeam bathymetry and backscatter data, sub-bottom acoustic profiles, archived sediment samples, and results from numerical modelling of turbidity currents. Sites fell into three general categories: turbidite distributary systems; small isolated slope-basins; and Hikurangi Channel, levees, and trough. Typical of the margin, the terrigenous-dominated sequence included layers of gravel, sand, mud, and volcanic ash. Many of these layers are turbidites, some of which may have been triggered by strong shaking associated with earthquakes (subduction megathrust and other coastal faults). Some cores contain up to 25 individual turbidites. This library of turbidites may provide the basis of new paleoseismic records that span several hundred kilometres of strike along the plate boundary. During the voyage the 14th November 2016 (NZDT) Mw 7.8 Kaikoura Earthquake occurred, causing strong ground shaking beneath the Kaikoura Canyon region. Sampling with a multicorer within five days of the earthquake, we recovered what appeared to be a very recently

  2. Hidden Earthquake Potential in Plate Boundary Transition Zones (United States)

    Furlong, Kevin P.; Herman, Matthew; Govers, Rob


    Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of

  3. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank


    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  4. OBSIP Instrumentation and Operations for the Cascadia Initiative (United States)

    Lodewyk, J. A.; Evers, B.


    The Ocean Bottom Seismograph Instrument Pool (OBSIP) is providing instrumentation and operations support for the Cascadia Initiative (Cascadia), an American Recovery and Reinvestment Act funded community experiment focused on investigating the unique geophysical processes through a combined onshore and offshore array of seismometers. Currently, OBSIP has deployed and recovered the instruments for years 1, 2, and 3 of the experiment. Year 4 instrumentation is currently collecting data on the ocean floor until fall 2015. Three OBSIP Institutional Instrument Contributors (IIC's) designed and built 60 new Ocean Bottom Seismometers (OBSs) specifically for the unique requirements of the Cascadia region, including shallow water deployments and heavy fishing activity. Lamont-Doherty Earth Observatory (LDEO) and Scripps Institute of Oceanography (SIO) both designed new trawl-resistant frames for the OBS instruments. Woods Hole Oceanographic Institute (WHOI) built 15 new deep-water instruments. To aid in the recovery of the heavy trawl resistant enclosures, OBSIP uses a Remotely Operated Vehicle (ROV). Cascadia OBS instruments include a seismometer, either a differential pressure gauge (DPG) or an absolute pressure sensor (APG), and extensive supporting electronics. One of the goals of the Cascadia Initiative is to encourage the joint use of onshore and offshore data. To support this goal, OBSIP has assembled a Horizontal Orientations report and an ARRA white paper summarizing the Cascadia Initiative performance. In both of these reports, OBSIP investigated the noise characteristics of the Cascadia OBS stations and the overall performance. With new instrumentation packages, the Cascadia instruments can be deployed in shallow water. OBSIP has investigated instrument performance to determine if water depth, instrument shielding, and recording season influence data quality.

  5. Earthquake occurrence along the Java trench in front of the onset of the Wadati-Benioff zone: Beginning of a new subduction cycle?

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří


    Roč. 26, č. 1 (2007), TC1005/1-TC1005/16 ISSN 0278-7407 R&D Projects: GA AV ČR IAA3012303 Institutional research plan: CEZ:AV0Z30120515 Keywords : Wadati-Benioff zone * earthquake occurrence * Java trench Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.398, year: 2007

  6. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions (United States)

    Wallace, Paul J.; Carmichael, Ian S. E.

    The Valley of Mexico and surrounding regions of Mexico and Morelos states in central Mexico contain more than 250 Quaternary eruptive vents in addition to the large, composite volcanoes of Popocatépetl, Iztaccíhuatl, and Nevado de Toluca. The eruptive vents include cinder and lava cones, shield volcanoes, and isolated andesitic and dacitic lava flows, and are most numerous in the Sierra Chichináutzin that forms the southern terminus of the Valley of Mexico. The Chichináutzin volcanic field (CVF) is part of the E-W-trending Mexican Volcanic Belt (MVB), a subduction-related volcanic arc that extends across Mexico. The crustal thickness beneath the CVF ( 50km) is the greatest of any region in the MVB and one of the greatest found in any arc worldwide. Lavas and scoriae erupted from vents in the CVF include alkaline basalts and calc-alkaline basaltic andesites, andesites, and dacites. Both alkaline and calc-alkaline groups contain primitive varieties that have whole rock Mg#, MgO, and Ni contents, and liquidus olivine compositions (<=Fo90) that are close to those expected of partial melts from mantle peridotite. Primitive varieties also show a wide range of incompatible trace element abundances (e.g. Ba 210-1080ppm Ce 25-100ppm Zr 130-280ppm). Data for primitive calc-alkaline rocks from both the CVF and other regions of the MVB to the west are consistent with magma generation in an underlying mantle wedge that is depleted in Ti, Zr, and Nb and enriched in large ion lithophile (K, Ba, Rb) and light rare earth (La, Ce) elements. Extents of partial melting estimated from Ti and Zr data are lower for primitive calc-alkaline magmas in the CVF than for those from the regions of the MVB to the west where the crust is thinner. The distinctive major element compositions (low CaO and Al2O3, high SiO2) of the primitive calc-alkaline magmas in the CVF indicate a more refractory mantle source beneath this region of thick crust. In contrast, primitive alkaline magmas from the

  7. Review of subduction and its association with geothermal system in Sumatera-Java (United States)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.


    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  8. Probabilistic tsunami hazard assessment based on the long-term evaluation of subduction-zone earthquakes along the Sagami Trough, Japan (United States)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Maeda, T.; Matsuyama, H.; Toyama, N.; Kito, T.; Murata, Y.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.; Hakamata, T.


    For the forthcoming large earthquakes along the Sagami Trough where the Philippine Sea Plate is subducting beneath the northeast Japan arc, the Earthquake Research Committee(ERC) /Headquarters for Earthquake Research Promotion, Japanese government (2014a) assessed that M7 and M8 class earthquakes will occur there and defined the possible extent of the earthquake source areas. They assessed 70% and 0% 5% of the occurrence probability within the next 30 years (from Jan. 1, 2014), respectively, for the M7 and M8 class earthquakes. First, we set possible 10 earthquake source areas(ESAs) and 920 ESAs, respectively, for M8 and M7 class earthquakes. Next, we constructed 125 characterized earthquake fault models (CEFMs) and 938 CEFMs, respectively, for M8 and M7 class earthquakes, based on "tsunami receipt" of ERC (2017) (Kitoh et al., 2016, JpGU). All the CEFMs are allowed to have a large slip area for expression of fault slip heterogeneity. For all the CEFMs, we calculate tsunamis by solving a nonlinear long wave equation, using FDM, including runup calculation, over a nesting grid system with a minimum grid size of 50 meters. Finally, we re-distributed the occurrence probability to all CEFMs (Abe et al., 2014, JpGU) and gathered excess probabilities for variable tsunami heights, calculated from all the CEFMs, at every observation point along Pacific coast to get PTHA. We incorporated aleatory uncertainties inherent in tsunami calculation and earthquake fault slip heterogeneity. We considered two kinds of probabilistic hazard models; one is "Present-time hazard model" under an assumption that the earthquake occurrence basically follows a renewal process based on BPT distribution if the latest faulting time was known. The other is "Long-time averaged hazard model" under an assumption that earthquake occurrence follows a stationary Poisson process. We fixed our viewpoint, for example, on the probability that the tsunami height will exceed 3 meters at coastal points in next

  9. Global subduction volume fluxes over the past 200 Ma (United States)

    Heine, C.; Butterworth, N. P.; Quevedo, L. E.; Müller, D.


    The volume of subducted oceanic lithosphere changes over geological time as seafloor of different mean age distributions is subducted at with different rates. This has potential implications for the spatio-temporal dynamics of mantle convection and especially dynamic topography induced by negatively buoyant material in the mantle as well as the time-dependence of the related mantle return flow. We use global plate kinematic models and paleooceanic age grids to analyse the subduction volume fluxes over the past 200 Million years and compare our results with global mantle convection models and observations from seismic tomography and key regions which are known to have experienced significant changes in vertical motions due to mantle convection-induced dynamic topography. Two distinct patterns of subduction are found related to the motion of the overriding plate: a localised volume flux, characteristic for relatively stationary subduction around southern and eastern Eurasia and a widely distributed volume flux, predominately for the North and South American Pacific subduction zones where oceanic slabs of varying age have been subducted over wide regions. Subduction zones around Antarctica and the SW Pacific range between both end-members types. We find that the global subduction volume flux decreases substantially from a peak with of around 6.5*10^6 km^3/Myr around the Base Cretaceous to volumes fluxes of around 3.0*10^6 km^3/Myr, reflecting a long-term decrease in oceanic crustal production. In addition we find peaks in global subduction volume flux around 125, 55 and 20 Ma, whose origin can be related to the regional evolution of particular subduction systems.

  10. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A. [Univ. of Washington, Seattle, WA (United States); Johnson, H. Paul [Univ. of Washington, Seattle, WA (United States); Salmi, Marie [Univ. of Washington, Seattle, WA (United States); Whorley, Theresa [Univ. of Washington, Seattle, WA (United States)


    samples were extracted from the gravity cores, and the pore water was analyzed for a comprehensive suite of solutes, gases, and stable isotope ratios. This comprehensive geochemical dataset was used to characterize the fluid and gas source(s) at each of the seep sites surveyed. The primary results of this project are: 1) Bottom simulating reflector-derived heat flow values decrease from 95 mW/m2 10 km east of the deformation front to ~60 mW/m2 60 km landward of the deformation front, with anomalously low values of ~25 mW/m2 on a prominent mid-margin terrace off central Washington. 2) The temperature of the incoming sediment/ocean crust interface at the deformation front ranges between 164-179 oC off central Washington, and the 350 oC isotherm at the top of the subducting ocean crust occurs 95 km landward of the deformation front. Differences between BSR-derived heat flow and modeled conductive heat flow suggest mean upward fluid flow rates of 0.4 cm/yr across the margin, with local regions (e.g. fault zones) exhibiting fluid flow rates up to 3.5 cm/yr. 3) A compilation of 2122 high-resolution CTD, glider, and Argo float temperature profiles spanning the upper continental slope of the Washington margin from the years 1968 to 2013 show a long-term warming trend that ranges from 0.006-0.008 oC/yr. Based on this long-term bottom water warming, we developed a 2-D thermal model to simulate the change in sediment temperature distribution over this period, along with the downslope retreat of the methane hydrate stability field. Over the 43 years of the simulation, the thermal disturbance propagated 30 m into the sediment column, causing the base of the methane hydrate stability field to shoal ~13 m and to move ~1 km downslope. 4) A preliminary analysis of seafloor observations and mid-water column acoustic data to detect bubble plumes was used to characterize the depth distribution of seeps along the Cascadia margin. These results indicate high bubble plume densities along the

  11. Deformation rates in northern Cascadia consistent with slow updip propagation of deep interseismic creep (United States)

    Bruhat, Lucile; Segall, Paul


    Interpretations of interseismic slip deficit on the northern Cascadia megathrust are complicated by an enigmatic `gap' between the downdip limit of the locked region, inferred from kinematic inversions of deformation rates, and the top of the episodic tremor and slip (ETS) zone. Recent inversions of global positioning system (GPS) and tide gauge/leveling data for shear stress rates acting on the megathrust found a ˜21 km locking depth with a steep slip-rate gradient at its base is required to fit the data. Previous studies have assumed the depth distribution of interseismic slip rate to be time invariant; however, steep slip-rate gradients could also result from the updip propagation of slip into the locked region. This study explores models where interseismic slip penetrates up into the locked zone. We consider the creeping region, corresponding to the gap and the ETS zone, as a quasi-static crack driven by the plate velocity at its downdip end. We derive a simple model that allows for crack propagation over time, and provides analytical expressions for stress drop within the crack, slip and slip rate on the fault. It is convenient to expand the non-singular slip-rate distribution in a sum of Chebyshev polynomials. Estimation of the polynomial coefficients is underdetermined, yet provides a useful way of testing particular solutions and provides bounds on the updip propagation rate. When applied to the deformation rates in northern Cascadia, best-fitting models reveal that a very slow updip propagation, between 30 and 120 m yr-1 along the fault, could explain the steep slip-rate profile, needed to fit the data. This work provides a new tool for estimating interseismic slip rates, between purely kinematic inversions and full physics-based modeling, allowing for the possibility for updip expansion of the creeping zone.

  12. Life and death of the resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time (United States)

    Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.


    Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade

  13. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery (United States)

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.


    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  14. Magnetotelluric Investigations of Convergent Margins and of Incipient Rifting: Preliminary Results from the EarthScope MT Transportable Array and MT FlexArray Deployments in Cascadia and in the North American Mid-Continent Region (United States)

    Schultz, A.; Bedrosian, P.; Key, K.; Livelybrooks, D.; Egbert, G. D.; Bowles-martinez, E.; Wannamaker, P. E.


    We report on preliminary analyses of data from the EarthScope MT Transportable Array, and from two high-resolution EarthScope MT studies in Cascadia. The first of these, iMUSH, is acquiring wideband MT data at 150 sites, as well as active and passive seismic data in SW Washington (including Mounts Saint Helens, Adams and Rainier). iMUSH seeks to determine details of crustal magma transport and storage, and to resolve major tectonic controls on volcanism along the arc. iMUSH may help to settle a debate over the origin of the SW Washington Crustal Conductor (SWCC), which covers ~5000 km2and that has alternately been attributed to accreted Eocene metasediments or to an extensive region of partial melt in the lower crust beneath the three volcanoes. The iMUSH array is continguous with an amphibious ~150 station MT experiment (MOCHA) onshore and offshore of the Washington and Oregon forearc. MOCHA iwill image the crust and upper mantle of the subduction system in 3D, constraining the fluid input to the system from offshore and the distribution of fluids released from the down-going slab, including along the transitional zone where Episodic Tremor and Slip occurs. Our goal is to refine our understanding of the segmentation, structure and fluid distribution along the convergent margin segments, and their relationship to the spatial pattern of ETS. In contrast to the active Cascadia margin, the Mid-Continent Rift (MCR) is the trace of a massive igneous event that nearly split North America 1.1 billion years ago. Initial results from 3D inversion of MT Transportable Array data show less fine-scale heterogeneity in the upper mantle (250 km depth) than is evident in western, tectonic North America, but a division at the base of thick lithosphere, with higher conductivities beneath and immediately south of the Great Lakes, than to the south. From the base of the lithosphere to the Moho, this high conductivity feature narrows, ultimately disappearing in the mid-crust. In the

  15. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow : Results from dynamic subduction models with an overriding plate

    NARCIS (Netherlands)

    Schellart, W. P.; Moresi, L.


    We present numerical subduction models to investigate overriding plate deformation at subduction zones. All models show forearc shortening, resulting predominantly from shear stresses at the subduction zone interface and opposite-sense mantle shear stresses at the base of the forearc lithosphere.

  16. Overview of Ground-Motion Issues for Cascadia Megathrust Events: Simulation of Ground-Motions and Earthquake Site Response

    Directory of Open Access Journals (Sweden)

    Hadi Ghofrani


    Full Text Available Ground motions for earthquakes of M7.5 to 9.0 on the Cascadia subduction interface are simulated based on a stochastic finite-fault model and used to estimate average response spectra for reference firm soil conditions. The simulations are first validated by modeling the wealth of ground-motion data from the 2011 M9.0 Tohoku earthquake of Japan. Adjustments to the calibrated model are then made to consider average source, attenuation and site parameters for the Cascadia region. This includes an evaluation of the likely variability in stress drop for large interface earthquakes and an assessment of regional attenuation and site effects. We perform best-estimate simulations for a preferred set of input parameters. Typical results suggest mean values of 5%-damped pseudoacceleration in the range from about 100 to 200 cm/s2, at frequencies from 1 to 4 Hz, for firm-ground conditions in Vancouver. Uncertainty in most-likely value of the parameter representing stress drop causes variability in simulated response spectra of about ±50%. Uncertainties in the attenuation model produce even larger variability in response spectral amplitudes—a factor of about two at a closest distance to the rupture plane (Rcd of 100 km, becoming even larger at greater distances. It is thus important to establish the regional attenuation model for ground-motion simulations and to bound the source properties controlling radiation of ground motion. We calculate theoretical one-dimensional spectral amplification estimates for four selected Fraser River Delta sites to show how the presence of softer sediments in the region may alter the predicted ground motions. The amplification functions are largely consistent with observed spectral amplification at Fraser River delta sites, suggesting amplification by factors of 2.5–5 at the peak frequency of the site; we note that deep sites in the delta have a low peak frequency, ∼0.3 Hz. This work will aid in seismic hazard

  17. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin (United States)

    Wolf, Stephen C.; Hamer, Michael R.


    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  18. Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone

    Directory of Open Access Journals (Sweden)

    M.L. Renjith


    Full Text Available A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994–1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt; and (ii morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.. Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self-mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in